
Ferveo: Threshold Decryption for Mempool
Privacy in BFT networks

Joseph Bebel1, Dev Ojha2

Anoma, joe@heliax.dev, Osmosis Labs, dev@osmosis.team

Abstract. A distributed network has Mempool Privacy if transactions remain en-
crypted until their inclusion is finalized, and inclusion guarantees decryption and
execution. Mempool Privacy is highly desirable to prevent transaction censorship
and a broad class of MEV attacks.
We present Ferveo, a fast protocol for Mempool Privacy on BFT consensus blockchains,
such as those based on Tendermint. Blockchain validators use new Distributed Key
Generation and Threshold Public Key Encryption schemes to decrypt transactions
encrypted to a threshold public key, closely aligning security assumptions with
Tendermint and providing concrete scalability up to thousands of transactions per
block.
The blockchain security and efficiency models are quite different than typically studied
in the academic literature, requiring several new ideas for both the abstract scheme
and implementation.
Keywords: No keywords given.

1 Introduction
Decentralized finance (DeFi) is one of the most exciting applications for public blockchains.
However, the public and decentralized nature of most blockchains present significant
challenges such as censorship, front-running, content aware transaction re-ordering, and
arbitrage stealing, collectively commonly referred to as Miner Extractable Value:

“Miner extractable value (MEV) is a measure devised to study consensus security by
modeling the profit a miner (or validator, sequencer, or other privileged protocol actor)
can make through their ability to arbitrarily include, exclude, or re-order transactions
from the blocks they produce.” [18]

The focus of this paper is on tying consensus layer security assumptions with threshold
cryptography, to achieve strong mempool layer privacy guarantees. We achieve having all
transaction contents being encrypted to all network participants, until the transaction is
finalized within a block. Upon transaction finalization, the content is guaranteed to be
decrypted in the same order by consensus. This eliminate the vast majority of MEV seen on
blockchains today. MEV mitigation approaches deployed today don’t solve the underlying
problem: The miner or transaction orderer can see the contents of the transactions it
reorders.

Ferveo is an efficient distributed key generation and threshold public key encryption
protocol for Tendermint-based Proof of Stake blockchains with minimal assumptions over
those used to achieve consensus. The assumption alignment and concrete efficiency are
the key features, achieving only tens of milliseconds of amortized compute overhead per
transaction as seen in Figure 1.

Assumption alignment is a critically important property. If assumptions are not aligned
between the consensus and mempool privacy mechanisms, then the the whole system will

mailto:joe@heliax.dev
mailto:dev@osmosis.team

2

rely on the union of all assumptions. For example, using threshold decryption on a Proof
of Work blockchain can be quite difficult to simultaneously guarantee mempool privacy
protections and the consensus properties of the blockchain.

By encrypting all transactions contained in the mempool, arbitrary entities are far
more restricted in their ability to risklessly extract MEV from the mempool. Although
the validator set collectively retains decryption capability, and therefore can collectively
continue to extract MEV, this requires collusion of at least 2/3 of the voting power of the
network; therefore mitigating the most common forms of MEV. On top of this, generic
techniques can be applied to achieve further transaction ordering properties within a block.
The details of Ferveo mirror the security assumptions of the underlying blockchain very
closely. Ferveo achieves this by using a single non-interactive round for each validator in
both the DKG and threshold decryption schemes.

Assumption Tendermint Ferveo

Liveness ≥ 2/3 of voting power is live ≥ 2/3− ε voting power is live
Security < 1/3 of voting power is faulty < 1/3− ε is faulty
Synchrony Partial Partial

Mempool privacy None < 1/3− ε is faulty
Censorship resistance < 1/3 of voting power is faulty < 1/3− ε is faulty

Misbehavior Penalties (Reportable) Silent (Unreportable)
Comparison of assumptions between Tendermint and Ferveo. ε is as defined in the section

Approximation of voting power by shares.

1,024 2,048 4,096 8,1920

200

400

600

Number of shares

T
im

e
[m

s]

10 tx/block
100 tx/block
1000 tx/block

Figure 1: Amortized TPKE decryption time per transaction, single core. This task is fully
parallelizable, and only needs to be executed by a block proposer, who produces a result
easily verifiable by all nodes in the network

1.1 Motivation
The primary source for miner-extractable value derives from public or semi-public knowledge
of the contents of transactions prior to their execution. The existence of miner-extractable

Joseph Bebel, Dev Ojha 3

value negatively affects financial applications on blockchain through increased fees, reduc-
tion of arbitrage profits, selective transaction censorship, etc. Furthermore, it prohibits
blockchains from achieving strong guarantees around one of its fundamental goals, censor-
ship resistance. Transactions typically enter the public mempool, where they are publicly
visible, prior to execution, giving an opportunity for actors scanning the mempool for
useful information to obtain MEV. The amount of MEV can be reduced by introducing
mempool privacy, where the contents of transactions within the mempool are not publicly
visible and are plausibly not revealed until after an execution order for those transactions
has been committed to on the blockchain.

To solve this, blockchain protocols can include distributed key generation (DKG) and
threshold public key encryption (TPKE) schemes for transaction contents [20, 24]. Based on
the principles of Shamir Secret Sharing, a distributed key generation protocol [19] generates
a public key along with corresponding n private key shares held by a predetermined set
of entities. For a fixed threshold t, a TPKE scheme allows for every subset of at least
t shares to decrypt messages while every subset of at most t− 1 shares cannot decrypt.
Transaction contents can be encrypted to the public key; once a transaction is committed
to the blockchain, the entities can begin the threshold decryption protocol; therefore, the
contents of the transaction remain private until holders of at least t shares begin the
threshold decryption protocol.

Entity selection when using threshold public key encryption is critical. The decryption
protocol is particularly dependent on how block proposers are selected and how transactions
are executed, and ideally the blockchain is designed with threshold decryption in mind.
In this paper, we consider adding threshold encryption to fast finality BFT blockchains,
such as Tendermint. In this setting, the choice of entities is natural, namely the validators
already active for consensus. We amend their requirements in consensus from solely voting
on blocks to also include creating and gossiping decryption shares. In the case of block
proposers, their role now also includes aggregating the decryption shares into a block.

A key requirement for these networks is efficiency of the threshold decryption process
during consensus. A large focus of this work is designing this, to jointly achieve low
bandwidth overhead during consensus, and efficient properties for full nodes, validators
and the block proposer. For instance, in a typical instantiation with 100 validators, the
extra bandwidth overhead for a threshold encrypted transaction is around 5 kB (due to
gossiping decryption shares), but the resultant block space overhead is under 100 bytes.
As can be seen in Figure 1, the execution time overhead is quite sub-linear per transaction,
still allowing for block proposers to prepare a block in under a second. The computational
overhead for full nodes is negligible relative to other transaction verification logic, e.g.
signatures, as it primarily consists of symmetric cryptography operations.

1.2 Alternative approaches to Mempool Privacy
There are at least two other approaches to mempool privacy being explored within the
blockchain space, Trusted Execution Environment Encryption (TEE Encryption), and
Timelock Encryption. We describe these below.

Solution method Security cost Delay Additional Assumptions

TEE Encryption Cost of breaking TEE Block Finality TEE manufacturer honesty
Timelock Encryption Timelock hardware Many blocks All txs delayed
Threshold Encryption 2/3rds of validators Block Finality BFT Proof of Stake

• Timelock Encryption: Forms of time-lock encryption, typically based on Verifiable
Delay Functions (VDFs) [4, 27, 23] can be used to encrypt transactions such that

4

they require T sequential timesteps to decrypt. Benefits of a time-lock encryption
based approach include potential alignment of assumptions in proof of work networks,
more decentralization of the decrypters, and lower risk of MEV obtained by secret
collusion of miners or validators. The primary downsides of timelock encryption are
the hardware assumptions for this specialized problem, and the latencies this forces
for all transaction executions.
The timelock period must account for the length a transaction typically spends in the
mempool, as an adversary can start decrypting as soon as they see the transaction.
It also must include a multiplicative factor for better timelock hardware risk, and
account for the expected time until there is “sufficient” probabilistic finality of the
chain to avoid re-org concerns. This ends up requiring a significant delay before
transactions can be decrypted and executed on the chain, prohibiting many latency-
sensitive applications. This timelock period cannot be opt-in, every transaction in
the system must be forced to go through it, otherwise non-encrypted transaction
could front-run encrypted ones.

• TEE Encryption: The idea of TEE (Trusted Execution Environment) encryption
for mempool privacy is to have every node in the network have a TEE (i.e. Intel SGX),
and for them to all share an encryption key. Then all transactions are encrypted to
the enclaves. They get decrypted and executed once they are in a finalized block
on-chain.
The security assumption this depends on the cost to attack a given Trusted Execution
Environment, whereas the worth of exploitable MEV is upwards of $750 million
USD [8], which is conjectured to be far greater than the reasonable cost of breaking
any existing Trusted Execution Environment.

• Witness Encryption: Witness encryption [9] essentially enables the same func-
tionality as TEE Encryption, but solely using cryptographic assumptions. Namely,
creating an encrypted tx that can only be decrypted upon presenting inclusion of its
hash into a finalized block. However, the known constructions are not practically
efficient, often relating to Indistinguishability Obfuscation, and to our knowledge
have not been implemented in practice.

2 Techniques and Design Goals
Encrypting the contents of the mempool requires some desirable properties in order to be
useful: The desired properties are mempool encryption are the following.

1. Information safety: It is infeasible to decrypt the contents of a transaction prior to
finalization of the block that contains it

2. Execution Guarantee: Once a valid transaction is committed to a block, it must be
executed

3. Efficiency: the scheme must be computationally and communication efficient enough
to not substantially limit the throughput and latency of the network

In the specific case of BFT consensus-based blockchains, such as those based on the
Tendermint protocol, there is a natural correspondence between the network validators
and owners of private key shares. In typical Tendermint instantiations, holders of a
staking token delegate their tokens to one or more of a fixed number of network validators.
Validators propose and vote on potential blocks in proportion to the amount of stake
delegated to each one; once at least 2/3 of delegated stake has voted for a proposed block,
the block is finalized and executed.

Joseph Bebel, Dev Ojha 5

Since such a BFT consensus-based blockchain already depends on an assumption that
at least 2/3 of validators (by delegated stake, or voting power) are following the protocol,
ideally we want transactions to be encrypted such that they can be decrypted only by
at least 2/3 of validators (by voting power). The blockchain protocol can add threshold
decryption as a required step in the block voting process, aligning the voting and decryption
steps precisely: blocks are finalized if and only if a sufficient amount of decryption shares
for all contained transactions become public.

2.1 Design Goals
2.1.1 Weighting

Validators’ delegated stake can be highly nonuniform. In existing proof of stake networks
support delegation, we see a clear power law distribution of stake amongst the validators.
Therefore 1 private key share per validator does not align the decrypter set with the
validator set. While it is theoretically possible to issue 1 private key share for each minimal
unit of the staking token, as a practical matter this would create a completely impractical
number of private key shares. DKG computational complexity scales significantly in the
number of shares. This creates a tension between making Information Safety align as
close to possible with consensus safety, and making efficiency properties achievable. A
compromise approach is to give validators private key shares according to their approximate
relative staking weight – allowing a tradeoff between efficiency and precise correlation to
the consensus assumption. Concretely, 100 or 200 validators may collectively hold 4096 or
8192 private key shares.

2.1.2 Approximation of voting power by shares

Since a validator’s voting power must be approximated by an allocation of a small number
of private key shares, we use a partitioning algorithm PartitionDomain that attempts to
minimize the error in this approximation. By multiplying each validators voting power
by the total number of private key shares, and dividing by the total voting power of the
network, we get an optimal fractional assignment of key shares. Each validator receives at
least the integer floor number of key shares.

This ensures that with n validators and m private key shares, the approximation error
is at most n private key shares. In the case of 100 validators holding 8192 private key
shares, then a decryption threshold t = 2 · 8192/3− 100 = 5362 implies at least 65.5% of
voting power is needed to decrypt.

2.1.3 Public fees

Transaction fees and gas limits must remain public, both for spam prevention (ensuring
that transactions pay for their overhead) and to ensure blocks don’t exceed their overall
gas limits. In Ethereum, a block producer can execute txs and know exactly how much
gas they consumed. Therefore, a user only needs to be charged fees for the gas they used.
However in this setting, the fees must be collected / block space reserved prior to a tx
being executed. Thus every tx must be charged for the gas limit it allocates. While this
does leak a small amount of information about each transaction, this is far less than the
information contained in the actual contents of the transaction, and can in large part be
mitigated by padding or lower-granularity gas limits. (At the expense of higher fees)

2.1.4 Consensus Efficiency

The threshold encryption scheme presented in [2] assumes one private key share per party
and has excellent theoretical and concrete efficiency in this model. Since there is one

6

private key share per validator, and therefore one decryption share per validator per
transaction, this scheme is close to optimal.

However, our weighted share distribution model introduces some efficiency issues with
using [2] for Ferveo. Multiple private key shares per validator mean multiple decryption
shares are needed per validator per transaction.

Therefore, a significant problem with using a large number of private key shares is
potential overhead due to a large number of decryption shares for each transaction. For
example, in a hypothetical worst case scenario, if a single decryption share is 48 bytes
and 5398 (2/3 of 8192) decryption shares are needed, then over 259 kB of decryption
shares could be needed for each transaction, a significant overhead. However, this can be
mitigated in two ways:

1. In case of successful decryption, old decryption shares can be discarded or pruned.
Only the valid 32-byte symmetric key needs to be kept.

2. By using a re-keying trick, our TPKE scheme only needs one G1 decryption share per
validator and not one decryption share per private key share, a substantial savings.
Hypothetically, if a hundred validators issue a single 48 byte decryption share per
transaction, then 4.8 kB of decryption shares is much more reasonable.

While overhead of the DKG and TPKE schemes is somewhat unavoidable, much of the
overhead can be restricted to validator nodes only, and not full nodes in the network. Full
nodes do not need to participate at all in the threshold decryption protocol, or verify any
steps, other than verifying decryption shares in case of invalid transactions.

Since validator nodes are rewarded through fees for participating in the network, they
can invest in the CPU and bandwidth resources necessary for executing the DKG and
TPKE protocols; whereas full nodes only have modestly increased overhead.

2.1.5 Handling maliciously crafted transactions

A more significant issue for censorship resistance is that maliciously crafted transactions
must be detectable. The protocol requires that every transaction committed to a finalized
block must be executed; however, if a purposefully undecryptable “garbage“ transaction is
submitted, then we do not want the block to be discarded, the blockchain halted, or any
validators to be penalized for failure to decrypt. This means that encrypted transaction
validity must be publicly verifiable, such that either transactions are always successfully
decrypted and executed, or everyone can agree that the transaction is invalid.

This can be achieved with our TPKE scheme combined with a key-committing AEAD
scheme; validators publicly reveal decryption shares for a transaction during the voting
phase, which can be combined to obtain the shared symmetric key. In case the symmetric
key does not match the committed key, the validity of each individual decryption share
can be verified. If all decryption shares are valid, then the obtained symmetric key is valid,
and any mismatch with the committed key (or any other problems with the transaction
contents) is the fault of the transaction creator, and the transaction can be safely ignored
without execution without compromising censorship resistance.

2.2 Network model
2.2.1 Synchronous vs asynchronous

Much of the research effort on practical distributed key generation, including in the
blockchain domain, has focused on the asynchronous network model [15]. The asynchronous
model is more realistic for protocols running on the public internet, but it is much more
difficult to achieve resilience when adversaries and communication failures can create

Joseph Bebel, Dev Ojha 7

Byzantine faults. It is nontrivial to obtain DKGs with good concrete and asymptotic
complexity, in particular obtaining O(n logn) communication complexity for n entities
holding n private key shares.

However, in the case where the DKG protocol passes messages on an already syn-
chronized blockchain, the DKG protocol can be substantially conceptually simpler as the
protocol inherits properties, such as censorship resistance, from the underlying blockchain.
There is also substantial benefit from reusing already existing gossip protocols. However,
the relatively large amount of data that a DKG protocol exchanges is a complicating
issue when the underlying blockchain cannot support enough bandwidth. This does put
significant load on the blockchain’s gossip protocol. Ideally, the blockchain supports
pruning the DKG data once the generated public key becomes obsolete, which reduces the
long term storage costs.

While our O(nm) communication synchronous DKG protocol with n validators and m
private key shares is worse than the best achievable O(m logn) communication complexity,
the concrete performance remains good for reasonably sized (100-200) validator sets. Future
work can substantially improve performance in this area.

2.2.2 Epoched staking

Our DKG will assume that the validator set and each validator’s voting power is fixed
during each epoch, consisting of some number of blocks.

The validator set and voting powers might differ dramatically between epochs, which
requires running the DKG again for each epoch to generate a new public key (at a cost of
safety, the same public key may be reused for more than 1 epoch)

The “handover“ between epochs is a subtle situation which requires close analysis.
Ideally, the next epoch’s validator set engages in the DKG protocol during the current
epoch, so that the next epoch’s public key is ready for transactions beginning with the first
block of the next epoch. This presents a theoretical risk that the current epoch’s validator
set adversarially censors all DKG messages, leading to the network halting (unable to
execute new transactions) at the new epoch until the DKG protocol can run. However,
since the threshold (at least 1/3 of voting power) to censor DKG messages is equal to the
power to halt the network anyway, this risk does not substantially add to the power of the
previous epoch’s validator set.

A more significant issue is how to handle transactions submitted near the epoch
boundary. The transaction submitter must choose which public key to encrypt to, which
may be difficult to choose at this time.

3 Cryptography overview
Publicly verifiable distributed key generation (DKGs) and efficient threshold public key
encryption (“Threshold Encryption”) are desirable as primitives for mitigating censorship,
and preventing front-running on blockchains. Using threshold encryption in a blockchain
moves censorship and front-running from being risklessly executable by any node in the
network, to requiring breakage of security assumptions close to the blockchain’s underlying
security assumptions.

Ideally, both the distributed key generation protocol and the threshold decryption
protocol should as closely mirror the security properties of the underlying blockchain as
closely as possible, to avoid having to weaken the underlying assumptions of the entire
system.

In particular, it is desirable to have a publicly verifiable DKG, so that a party’s lack of
liveness during a DKG complaint round does not affect their risk of getting invalid key
shares.

8

The primary problem with existing publicly verifiable distributed key generation
protocols [14] is their generation of private keys (and private key shares) that are group
elements (elliptic curve points) instead of traditional finite field elements.

Although publicly verifiable distributed key generation protocols exist that generate
finite field private keys [13] their overall complexity makes them less desirable at the
current time. In addition, our threshold encryption scheme issues only one decryption
share per validator, a significant advantage that actually appears to be possible because
the private key shares are group elements.

Instead, we introduce a new threshold public key encryption scheme, based on standard
assumptions, that is compatible with the private key shares generated by our publicly
verifiable distributed key generator.

3.1 Our Results
Ferveo consists of:

• A publicly verifiable DKG scheme with acceptable performance

• A threshold public key encryption scheme with excellent performance that can scale
to thousands of transactions: Figure 1

• A pure-Rust implementation of both the DKG and TPKE schemes, built on ark-
works [1]

• Naturally integrate-able into Tendermint based blockchains

3.2 Related Work
The primary basis for our threshold public key encryption scheme is [2], a scheme that
can be adapted to use modern pairing-friendly elliptic curves. However, this scheme uses
finite field private keys.

Another existing scheme, [3] is designed to avoid the use of random oracles and is also
a useful scheme because it uses group element private keys (via a construction based on
threshold Identity Based Encryption).

The scheme presented below relies on random oracles, uses group element private keys,
and is slightly conceptually and computationally simpler than using a generic threshold
IBE based construction.

4 Cryptographic Schemes
4.1 Publicly Verifiable Distributed Key Generation
Most research into distributed key generation has focused on Verifiable Secret Sharing (VSS)
where secret shares are field elements and Pedersen or KZG polynomial commitments [16,
26] are used. The recent “Aggregatable DKG” [14] demonstrated the usefulness of Publicly
Verifiable Secret Sharing (PVSS) to achieve Publicly Verifiable Distributed Key Generation
(PVDKG). Similar to [14], we use the “SCRAPE” PVSS scheme [7] to share a secret group
element in a publicly verifiable way. A distributed key can be generated by the standard
method: each party acts as a trusted PVSS dealer, and all validly dealt PVSS instances
are summed elementwise to obtain the final distributed public key and key shares.

Unlike the “Aggregatable DKG”, for conceptual simplicity we avoid the aggregation
step and all parties verify each PVSS instance. This adds extra computation load to
validators and full nodes, but does not add much latency since a single validator would

Joseph Bebel, Dev Ojha 9

have to perform the aggregation step anyway. While it would be desirable to optimize this
step further, it is not necessary to achieve reasonable concrete performance levels.

For reference, the details of the SCRAPE PVSS scheme used are described below:

4.2 SCRAPE Publicly Verifiable Secret Sharing
4.2.1 Initialization

All parties have encryption keys eki ∈ G2 for each party Pi. Party Pi knows the corre-
sponding private dki such that eki = [dki]H.

4.2.2 Dealing

Scrape.Deal(bp, ek1, . . . , ekn)→ pvss
To deal a PVSS instance, the dealer samples a uniformly random polynomial f(x) =

a0 + a1x+ . . .+ atx
t of degree t, computes a Pedersen commitment F0, . . . , Ft to f

1. (ai, . . . , at)← Ft
2. F0, . . . , Ft ← [a0]G, . . . , [at]G
3. A1, . . . , An ← [f(ω1)]G, . . . , [f(ωn)]G
4. Y1, . . . , Yn ← [f(ω1)]ek1, . . . , [f(ωn)]ekn
5. pvss← (F0, . . . , Ft, A1, . . . , An, Y1, . . . , Yn)

pvss is called a PVSS transcript of this instance.

4.2.3 Verifying

A PVSS transcript pvss may be verified by anyone using this verification procedure:
Scrape.V erify(bp, ek1, . . . , ekn, pvss)→ {0, 1}

1. (F0, . . . , Ft, A1, . . . , An, Y1, . . . , Yn)← parse(pvss)
2. choose uniformly random α← F
3. check

∏n
j=1 A

`j(α)
j =

∏t
j=0 F

αj

j

4. check e(G, Yj) = e(Aj , ekj) for all 1 ≤ j ≤ n

where ωi is an nth root of unity.
F0 is the public key of a PVSS instance associated with the private key [a0]H.

4.2.4 Homomorphic addition

Two PVSS transcripts pvss1 and pvss2 may be added to get pvss by elementwise addition.

4.3 Final DKG protocol
The Ferveo DKG requires no trusted party. We achieve this in the standard way, by
having each validator act as a trusted PVSS dealer and then adding all distributed shares
together.

It is well known that this kind of DKG may output a biased key [12, 11]; in particular
the final PVSS dealer can bias the final key. Instead of attempting to unbias the final
key, which is itself nontrivial, we instead show that our threshold decryption scheme is
re-keyable as defined in [14] and therefore remains secure with a biased key.
for each validator Vi do

Vi generates a uniformly random session key dki.
Vi announces its public session key eki = [dki]H on the blockchain

end for

10

Each validator runs PartitionDomain
for each validator Vi do

Vi computes pvssi ← Scrape.Deal
Vi posts pvssi on the blockchain

end for
for each validator Vi do

for e doach validator Vj , i 6= j
Vi runs Scrape.verify(pvssj)
Vi computes pvss← pvss+ pvssj

end for
When 2/3 by voting power of validators have posted valid pvssj , exit for

end for
All validators agree on pvss
Note that this DKG protocol will always succeed as long as at least 2/3 of voting power

in the network follows the DKG protocol. In case that at least 1/3 does not follow the
protocol, this DKG protocol will never finish.

The final public key generated by the DKG is F0 of pvss.

4.4 Threshold Decryption Scheme
The primary contribution of this section is an efficient and simple threshold decryption
scheme that is compatible with keys generated by SCRAPE PVSS-based DKG protocols.

4.4.1 Encryption

TPKE.Encrypt(Y, aad) creates a new, random ciphertext (U,W, aad) encrypted to the
public key Y , and a corresponding ephemeral shared secret S such that the private key
associated with Y can efficiently compute S from the ciphertext (U,W, aad). Additional
authenticated data ‘aad‘ may be attached to the ciphertext, for example key commitment
data.

1. Let r be a uniformly random scalar.
2. Let S = e([r]Y,H)
3. Let U = [r]G
4. Let W = [r]HG2(U, aad)

The ephemeral shared secret S can be used to derive a shared symmetric encryption
key.

4.4.2 Ciphertext Validity Checking

In order to have Chosen Ciphertext security (IND-CCA) it must not be possible to re-
quest decryption of invalid ciphertexts. The TPKE.CheckCiphertextV alidity(U,W, aad)
operation tests if (U,W) is a valid ciphertext.

The ciphertext (U,W, aad) is valid if and only if:

e(U,HG2(U, aad)) = e(G,W)

4.4.3 Creating Decryption Shares

TPKE.CreateDecryptionShare(dki, U,W, aad)− > Di

Prior to creating a decryption share, the validity of the ciphertext (U,W, aad) should
be checked using TPKE.CheckCiphertextV alidity(U,W, aad). The decryption share Di

of ciphertext (U,W, aad) and party Pi is defined as:

Joseph Bebel, Dev Ojha 11

Di = [dk−1
i]U

4.4.4 Verifying Decryption Shares

Prior to running TPKE.CombineDecryptionShares(U,Di), the validity of a decryption
share can also be checked using TPKE.V erifyDecryptionShare(eki, U,Di) → {0, 1},
which outputs 1 if and only if:

e(Di, eki) = e(U,H)

If all Di pass this check, then TPKE.CombineDecryptionShares(U, {Di})
is guaranteed to succeed.

4.4.5 Combining Decryption Shares

Once t+ 1 valid decryption shares are available, they can be combined to obtain the same
shared secret S as the encrypter.

TPKE.CombineDecryptionShares(U, {Di})→ S =
∏
i

e(Di, [λωi
(0)]Yi)

where λωi
(0) is the Lagrange coefficient necessary for interpolation and Yi = [f(ωi)]eki

is the private key share from the PVSS instance.

4.4.6 Weighted shares optimization

In the case where the parties Pi each own several shares (because of a relative weighting
among the parties) a single decryption share is sufficient for each ciphertext. If party Pi
owns both shares i and j, then by setting dki = dkj (therefore eki = ekj) the value:

e(Di, [λωi
(0)]eki)e(Dj , [λωi

(0)]eki) = e(Di, [λωi
(0)]Yi + λωj

(0)]Yj)

which reuses the same decryption share, lowering the communication complexity, and
also simplifying the pairing. This leverages the fact that the “private” key share Yi are
actually public (although blinded by a dki factor), and multiplying U by dk−1

i effectively
“re-keys” the ciphertext to the publicly known key share Yi, allowing anyone to complete
the share combine process with the pvss transcript produced by the DKG.

4.4.7 Symmetric cryptography

The shared secret S can be used to derive a symmetric key used to encrypt the transaction
payload. Use of a key-committing AEAD scheme ensures that once the symmetric key is
derived, verified, and posted on the blockchain, none of the decryption shares need to be
preserved.

4.4.8 Transaction decryption protocol

Validator Vp is selected as block proposer
Vp fills block B with encrypted txs from mempool
for each validator Vj do

for each ciphertext (Ui,Wi) in B do
Vj checks the validity of (U,W)
Vj computes its decryption share Di,j = [dk−1

j]Ui
end for

12

Vj includes all Di,j in its vote for block B
end for
for each validator Vj do

for each ciphertext (Ui,Wi) in B do
for each decryption share Di,k from validator Vk do

Vj checks the validity of decryption share Di,k

end for
end for
If all Vk share’s are valid, then Vk’s vote for B is counted

end for
Once B has valid votes totaling at least 2/3 of voting power:
for each validator Vj do

for each ciphertext (Ui,Wi) in B do
Vj combines all decryption shares Di,k to get Si
Vj derives the symmetric key ki from Si

end for
end for
B is finalized including ki for every valid tx and Di,k for every invalid tx
Full nodes can verify a block by checking that at least 2/3 of voting power has signed

the block (without symmetric keys) and that all symmetric keys are included (except for
invalid transactions, where all decryption shares are included)

4.5 Optimizations
4.5.1 Deserialization

The DKG protocol requires validators to deserialize a large number of G2 points, and so
using arkworks’ fast subgroup check for BLS curve points [6] [22] substantially speeds up
verifying each PVSS transcript.

4.5.2 Combining decryption shares

Combining decryption shares is the most computationally expensive part of the threshold
decryption process, but this cost can be optimized in a few ways. In particular, Lagrange
coefficients must be computed for each block, as the coefficients depend on which subset
of validators submitted decryption shares. Therefore, in the worst case these Lagrange
coefficients must be recomputed for each block.

1. The interpolation domain, while always a subset of roots of unity, will not in general
be a closed subgroup, and so an FFT is not useful in computing the Lagrange
coefficients. However, it is still possible to compute all the necessary Lagrange
coefficients in O(n logn) time using a Subproduct Tree algorithm, achieving the
required asymptotic performance [10, 26].

2. Since decryption shares for different transactions within a block share the same
validator subset, the Lagrange coefficients only need to be computed once per block,
not once per transaction

3. Once λωi
(0) is computed, then [λωi

(0)]Yi can also be computed (per block) and
reused for all transactions within that block

4. All line functions of [λωi
(0)]Yi can also be computed once per block and reused for

each product of pairings for each transaction. This computation is done by converting
[λωi(0)]Yi to ‘G2Prepared‘ type in arkworks.

Joseph Bebel, Dev Ojha 13

1,024 2,048 4,096 8,1920

2

4

6

8

Number of shares

T
im

e
[s]

Create PVSS transcript
Verify PVSS transcript

Figure 2: PVSS benchmarks

5. Although in the worst-case the subset of validators used to reach the 2/3 threshold
may be different for every block, in practice liveness in Tendermint based protocols is
excellent and often >99% of validators vote on each block. Therefore, the ‘G2Prepared‘
value may be cached and reused between blocks as long as the subset of validators
used remain online.

These optimizations are critical for scalability. As shown in Figure 1, because many of
the per-block compute costs can be amortized across many transactions, the incremental
compute time needed per additional transaction is minimal or even insignificant compared
to the fixed costs.

As shown in Figure 4, the cost to combine decryption shares is dependent on the
number of validators submitting decryption shares rather than the number of private key
shares.

The total compute load per-block is therefore O(m + t) where m is the number of
private key shares and t is the number of transactions, providing excellent scalability when
both m and t are increased to useful levels.

5 Benchmarks
All benchmarks were performed on a 2021 MacBook Pro 16” with M1 Max CPU and 64
GB RAM. Note that arkworks supports inline assembly on the x86-64 architecture for
faster finite field and elliptic curve performance.

6 Future Work
Threshold decryption bandwidth: The threshold decryption approach used now
requires high amounts of bandwidth overhead. Namely, every validator must gossip a
unique piece of data for every encrypted transaction. There are two methods for mitigating
this:

• Making transactions encrypted to a particular block height. This weakens several
guarantees around not being able to discover the tx content though. We detail this
more in the appendix

14

1,024 2,048 4,096 8,192

200

400

600

800

1,000

Number of shares

Si
ze

[k
B]

Figure 3: Estimated PVSS transcript size

1,024 2,048 4,096 8,192

20

30

40

Number of private key shares

T
im

e
[m

s]

100 decryption shares
150 decryption shares
200 decryption shares

Figure 4: Decryption share combine time per tx

Joseph Bebel, Dev Ojha 15

• Allowing aggregation of validator-specific decryption shares, within the p2p layer.
This only matters if validator to validator communication is done over a flood gossip
p2p topology.

DKG bandwidth: The most significant deficiency in our protocol is the high band-
width requirement for the DKG due to the O(nm) communication complexity of the
DKG. This should be improvable to O(m logn) using an approach similar to [14] where
multiple gossiped PVSS transcripts are aggregated prior to commitment in a block; the
main open question is how to best achieve this while retaining most of the benefits of using
a synchronous DKG protocol. In particular, reuse of the existing gossip protocol for blocks
and transactions

Our protocol also lacks reportability or penalties for validators failing to follow the
protocol. There is nothing preventing validators with at least 2/3 voting power from
silently engaging in an alternative out-of-band protocol to decrypt transactions early and
extract MEV. While early release of decryption shares might potentially be reportable in
some way, it is difficult to protect innocent validators if the PVSS-dealing validator set
chooses to fabricate early decryption shares.

Additional measures such as SGX or other compute enclaves could be used to further
enforce protocol fidelity.

7 Acknowledgements
Thanks to Christopher Goes for guidance on the goals of this project, Christian Cachin
for DKG discussions, Simon Masson for discussions about pairing-friendly elliptic curves
and his arkworks contribution of fast subgroup checking for BLS curves, Alin Tomescu
for advice on scaling DKGs, and Ash Manning, Georgios Gkitsas, and Jacob Turner for
contributions to the Rust implementation of the DKG and TPKE crates. Special thanks
to Kobi Gurkan for feedback on the TPKE scheme and his suggestion for how to create
one decryption share per validator.

References
[1] Arkworks. url: https://github.com/arkworks-rs.
[2] Joonsang Baek and Yuliang Zheng. “Simple and efficient threshold cryptosystem

from the Gap Diffie-Hellman group”. In: GLOBECOM ’03. IEEE Global Telecom-
munications Conference (IEEE Cat. No.03CH37489). Vol. 3. 2003, 1491–1495 vol.3.
doi: 10.1109/GLOCOM.2003.1258486.

[3] Dan Boneh, Xavier Boyen, and Shai Halevi. “Chosen Ciphertext Secure Public
Key Threshold Encryption without Random Oracles”. In: Proceedings of the 2006
The Cryptographers’ Track at the RSA Conference on Topics in Cryptology. CT-
RSA’06. San Jose, CA: Springer-Verlag, 2006, pp. 226–243. isbn: 3540310339. doi:
10.1007/11605805_15. url: https://doi.org/10.1007/11605805_15.

[4] Dan Boneh et al. Verifiable Delay Functions. Cryptology ePrint Archive, Report
2018/601. https://ia.cr/2018/601. 2018.

[5] Sean Bowe. BLS12-381: New ZK-snark elliptic curve construction. Mar. 2017. url:
https://electriccoin.co/blog/new-snark-curve/.

[6] Sean Bowe. Faster Subgroup Checks for BLS12-381. Cryptology ePrint Archive,
Report 2019/814. https://ia.cr/2019/814. 2019.

[7] Ignacio Cascudo and Bernardo David. SCRAPE: Scalable Randomness Attested by
Public Entities. Cryptology ePrint Archive, Report 2017/216. https://ia.cr/2017/
216. 2017.

https://github.com/arkworks-rs
https://doi.org/10.1109/GLOCOM.2003.1258486
https://doi.org/10.1007/11605805_15
https://doi.org/10.1007/11605805_15
https://ia.cr/2018/601
https://electriccoin.co/blog/new-snark-curve/
https://ia.cr/2019/814
https://ia.cr/2017/216
https://ia.cr/2017/216

16

[8] Flashbots core developers. MEV-explore. url: https://explore.flashbots.net/.
[9] Sanjam Garg et al. Witness Encryption and its Applications. Cryptology ePrint

Archive, Report 2013/258. https://ia.cr/2013/258. 2013.
[10] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra (2. ed.).

Cambridge University Press, 2003, pp. I–XIII, 1–785. isbn: 978-0-521-82646-4.
[11] Rosario Gennaro, Stanislaw Jarecki, and Hugo Krawczyk. “Revisiting the Distributed

Key Generation for Discrete-Log Based Cryptosystems”. In: 2007.
[12] Rosario Gennaro et al. “Secure Distributed Key Generation for Discrete-Log Based

Cryptosystems”. In: Proceedings of the 17th International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT’99. Prague, Czech Republic:
Springer-Verlag, 1999, pp. 295–310. isbn: 3540658890.

[13] Jens Groth. Non-interactive distributed key generation and key resharing. Cryptology
ePrint Archive, Report 2021/339. https://ia.cr/2021/339. 2021.

[14] Kobi Gurkan et al. Aggregatable Distributed Key Generation. Cryptology ePrint
Archive, Report 2021/005. https://ia.cr/2021/005. 2021.

[15] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed Key Generation in the
Wild. Cryptology ePrint Archive, Report 2012/377. https://ia.cr/2012/377. 2012.

[16] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Commitments
to Polynomials and Their Applications”. In: Advances in Cryptology - ASIACRYPT
2010. Ed. by Masayuki Abe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 177–194. isbn: 978-3-642-17373-8.

[17] Chelsea Komlo and Ian Goldberg. FROST: Flexible Round-Optimized Schnorr Thresh-
old Signatures. Cryptology ePrint Archive, Report 2020/852. https://ia.cr/2020/
852. 2020.

[18] Alex Obadia. Flashbots: Frontrunning the MeV crisis. Nov. 2020. url: https :
//medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752.

[19] Torben Pryds Pedersen. “Non-Interactive and Information-Theoretic Secure Veri-
fiable Secret Sharing”. In: Advances in Cryptology — CRYPTO ’91. Ed. by Joan
Feigenbaum. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 129–140. isbn:
978-3-540-46766-3.

[20] Philipp Schindler et al. ETHDKG: Distributed Key Generation with Ethereum Smart
Contracts. Cryptology ePrint Archive, Report 2019/985. https://ia.cr/2019/985.
2019.

[21] C. P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: Advances
in Cryptology — CRYPTO’ 89 Proceedings. Ed. by Gilles Brassard. New York, NY:
Springer New York, 1990, pp. 239–252. isbn: 978-0-387-34805-6.

[22] Michael Scott. A note on group membership tests for G1, G2 and GT on BLS pairing-
friendly curves. Cryptology ePrint Archive, Report 2021/1130. https://ia.cr/
2021/1130. 2021.

[23] StarkWare. Presenting: Veedo. June 2020. url: https://medium.com/starkware/
presenting-veedo-e4bbff77c7ae.

[24] Oliver Stengele et al. ETHTID: Deployable Threshold Information Disclosure on
Ethereum. 2021. arXiv: 2107.01600 [cs.CR].

[25] Douglas R. Stinson and Reto Strobl. “Provably Secure Distributed Schnorr Signatures
and a (t, n) Threshold Scheme for Implicit Certificates”. In: Information Security
and Privacy. Ed. by Vijay Varadharajan and Yi Mu. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 417–434. isbn: 978-3-540-47719-8.

https://explore.flashbots.net/
https://ia.cr/2013/258
https://ia.cr/2021/339
https://ia.cr/2021/005
https://ia.cr/2012/377
https://ia.cr/2020/852
https://ia.cr/2020/852
https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752
https://medium.com/flashbots/frontrunning-the-mev-crisis-40629a613752
https://ia.cr/2019/985
https://ia.cr/2021/1130
https://ia.cr/2021/1130
https://medium.com/starkware/presenting-veedo-e4bbff77c7ae
https://medium.com/starkware/presenting-veedo-e4bbff77c7ae
https://arxiv.org/abs/2107.01600

Joseph Bebel, Dev Ojha 17

[26] A. Tomescu et al. “Towards Scalable Threshold Cryptosystems”. In: 2020 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer
Society, May 2020, pp. 877–893. doi: 10.1109/SP40000.2020.00059. url: https:
//doi.ieeecomputersociety.org/10.1109/SP40000.2020.00059.

[27] Benjamin Wesolowski. Efficient verifiable delay functions. Cryptology ePrint Archive,
Report 2018/623. https://ia.cr/2018/623. 2018.

A Technical Preliminaries
A.1 Notation
Ferveo cryptography uses the BLS12-381 pairing-friendly elliptic curve [5], which consists of
groups G1,G2,GT with order divisible by prime p, and e : G1×G2 → GT is a nondegenerate
bilinear map. Let G be a generator for G1 and H be a generator for G2. This curve
provides an ideal security and performance level, although the abstract scheme can use
other pairing-friendly elliptic curves.

A.2 Threshold Public Key Encryption Scheme
The starting point for our TPKE scheme begins with [2] and (TPKE without random
oracles). The following amendments are desirable for our applications:

• Private keys are G2 elements instead of field elements

• Create a single decryption share for each validator, instead of each private key share

• The threshold decryption result should be publicly verifiable

• Show the scheme is re-keyable (sound with a biased key)

A.3 System Model
We assume that there are n parties who will share a “t-of-n” distributed key, such that t+1
parties are necessary and able to decrypt. The parties communicate over a synchronous
protocol where every online party agrees on the sequence of messages exchanged.

B Proof sketches
B.1 Notation
LetGroupGen(1λ) be an efficient algorithm that outputs a tuple bp = (p,G1,G2,GT , e,G,H)
where G1,G2,GT are groups with order divisible by p, G generates G1, H generates G2,
and e : G1 ×G2 → GT is a nondegenerate bilinear map.

Let HG : {0, 1}∗ → G be the hash to curve function into the group G as specified in
RFC https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/

B.2 Semantic security
The TPKE scheme is intended to be secure against adaptive chosen ciphertexts in the
random oracle model (IND-CCA) when decrypted directly with uniformly random private
keys and with threshold decryption (THD-IND-CCA [2]) when decrypted using private
key shares.

https://doi.org/10.1109/SP40000.2020.00059
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00059
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00059
https://ia.cr/2018/623
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/

18

Definition 1. For a probabilistic polynomial time (PPT) adversary A, their advantage is:

Adv(λ) = |Pr[gg ← GroupGen(1λ);α, β ← F : A(gg, [α]G, [β]G, [αβ]G) = 1]
− Pr[gg ← GroupGen(1λ);α, β, γ ← F : A(gg, [α]G, [β]G, [γ]G) = 1]|

Definition 2. For an adversary A,

Pr[gg ← GroupGen(1λ);α, β, γ ← F : A(gg, [α]G, [β]G, [γ]H, [αγ]H) = e(G,H)αβ] < negl(λ)

Theorem 1. The TPKE is adaptive chosen ciphertext secure in the single decrypter model.
Suppose for some ε > 0 an adversary A has a non negligible advantage Adv(λ) > λ−ε.

Then the Computational Bilinear Diffie-Hellman Assumption is false.

Proof Sketch. We will simulate the adversary that has advantage against the TPKE scheme
to construct an adversary against CBDH.

On an instance of CBDH (gg, [α]G, [β]G, [γ]H, [αγ]H), construct a ciphertext (U,W)
where U = [α]G and W = [ραγ]H and public key Y = [β]G, where the simulation
fixes HG2(U, aad) = [ργ]H. (Whenever the simulation queries HG2 on other values, the
random oracle should return [ρ]H, for uniformly random ρ) As long as [ργ]H 6= [αβ]H the
simulation is indistinguishable to the adversary.

This ciphertext and public key are passed to the simulated adversary; since e(U, [ργ]H) =
e(G,W) the ciphertext validity check passes. Then by assumption, the adversary has
advantage computing e(G,H)αβ from the ciphertext, which is now an advantage against
the instance of CBDH.

In the unlikely case where HG2(U, aad) = [αβ]H, then e(G,H)αβ = e(G,HG2(U, aad)).

B.3 Rekeyability
The concept of rekeyability from [14] is necessary to prove that our DKG can be safely
used with our TPKE scheme.

Theorem 2. The threshold public key encryption scheme is re-keyable under the definition
from [14]

Proof Sketch. Suppose the public key Y1 has associated private key Z1. The shared secret
S can be rekeyed with respect to the private key Z1 to a new private key Ẑ = [α]Z1 + Z2,
as the new shared secret Ŝ = Sαe(U,Z2) = e(U, [α]Z2)e(U,Z2) = e(U, [α]Z1 + Z2).

The shared secret S can be rekeyed with respect to the public key Y1 to a new public key
Ŷ = [α]Y1 + Y2 as the new shared secret Ŝ = Sαe([r]Y2, H) = e([rα]Y1, H)e([r]Y2, H) =
e([r]([α]Y1 + Y2), H).

C Threshold Signature
Although Ferveo does not require or implement threshold signatures, we briefly note that
the distributed key produced by our DKG can be used in a Schnorr-like [21] threshold
signature scheme based on similar assumptions as our TPKE scheme. The details are
omitted in the interest of time.

C.1 To sign
Let m be the message to sign.

Joseph Bebel, Dev Ojha 19

1. Sample a random nonce k.
2. Let R = e([k]G,H)
3. Let c = HF(R||Y ||m)
4. Let z = [k]H + [c]Z
5. Let the signature be σ = (R, z)

Note that z = [k + xc]H, but is computable without knowledge of x
As with other similar signature schemes, k may be derived in a deterministic way to

avoid known issues with random nonces.

C.2 To verify
1. Let σ = (R, z) be the signature of m
2. Let c = HF(R||Y ||m)
3. Let R′ = e(G, z) ∗ e([c]Y,H)−1

4. If R = R′ the signature is valid.

C.3 Threshold Signature
Threshold signature schemes have traditionally been based on Schnorr signatures and their
techniques may be adapted [25], since although this scheme does not describe a standard
Schnorr signature, it resembles it closely.

The technique of FROST [17] can be applied to this new scheme; the individual
commitments Ri are computed similar to FROST as Ri = e(D + [ρi]Ei, H), R =

∏
Ri,

and the value z = [di + eiρi]H + [λisic]Z.
Although this signature scheme is not suitable as a random beacon, the key produced

by our DKG can be used in the Verifiably Unpredictable Function defined in [14].

	Introduction
	Motivation
	Alternative approaches to Mempool Privacy

	Techniques and Design Goals
	Design Goals
	Network model

	Cryptography overview
	Our Results
	Related Work

	Cryptographic Schemes
	Publicly Verifiable Distributed Key Generation
	SCRAPE Publicly Verifiable Secret Sharing
	Final DKG protocol
	Threshold Decryption Scheme
	Optimizations

	Benchmarks
	Future Work
	Acknowledgements
	Technical Preliminaries
	Notation
	Threshold Public Key Encryption Scheme
	System Model

	Proof sketches
	Notation
	Semantic security
	Rekeyability

	Threshold Signature
	To sign
	To verify
	Threshold Signature

