
Post-quantum hash functions using SLn(Fp)

Corentin Le Coz*, Christopher Battarbee, Ramón Flores�,
Thomas Koberda�, and Delaram Kahrobaei§

Oppida, France, corentinlecoz@outlook.com
Department of Computer Science, University of York, UK,

cb2036@york.ac.uk
Department of Geometry and Topology, University of Seville,

Spain, ramonjflores@us.es
Department of Mathematics, University of Virginia,

thomas.koberda@gmail.com
Computer Science and Mathematics Departments, Queens College
CUNY; Department of Computer Science, University of York, UK;
Initiatives for the Theoretical Sciences (ITS), CUNY Graduate

Center, dkahrobaei@gc.cuny.edu

August 22, 2024

Abstract

We define new families of Tillich-Zémor hash functions, using higher
dimensional special linear groups over finite fields as platforms. The Cay-
ley graphs of these groups combine fast mixing properties and high girth,
which together give rise to good preimage and collision resistance of the
corresponding hash functions. We justify the claim that the resulting hash
functions are post-quantum secure.

1 Introduction

Hash functions obtained from families of expander graphs were introduced
by Charles-Lauter-Goren in [CLG08], where they were in turn inspired by a

*Supported by the Israel Science Foundation (grant no. 2919/19), the FWO and the FNRS
under the Excellence of Science (EOS) program (project ID 40007542)

�Partially supported by grant PID2020-117971GB-C21 of the Spanish Ministry of Science
and Innovation, and grant FQM-213 of the Junta de Andalućıa.

�Partially supported by NSF grant DMS-2002596
§Partially supported by a Canada’s New Frontiers in Research Fund, under the Exploration

grant entitled “Algebraic Techniques for Quantum Security” as well as a grant from CUNY.
DK also has been partially supported by an ONR grant, 62909-24-1-2002

1

scheme of Tillich-Zémor [TZ94a]. Charles-Lauter-Goren considered specific fam-
ilies of expander graphs discovered by Lubotzky-Phillips-Sarnak [LPS88] and
Pizer [Piz90]. The Charles-Lauter-Goren construction is quite general, and can
be applied to any expander family in which finding cycles is hard, and thereby
furnishes collision resistant hash functions. Similar schemes have been proposed
by several authors; see [SS16, BSV17,GM18], and [Sos18] for a survey of this
topic.

Interest in hash functions based on novel platforms fits into the context of
recent efforts to modernize existing hash functions, and to adapt them to the
design and security of hash-based consensus mechanisms, most notably with
respect to blockchains [Bor20], and especially in light of the recently proved
practicality of finding collisions in the SHA-1 hashing algorithm [SBK+17].

The general idea behind Tillich-Zémor hash functions is the following. Fixing
a base vertex, the input of the hash function is interpreted as a sequence of
instructions, resulting in a non-backtracking path in a d-regular graph. The
output of the hash function is the endpoint vertex of the path. More precisely,
the input is a string of numbers in

[d− 1] := {1, 2, . . . , d− 1}

of arbitrary length, and the output is the vertex obtained by performing a simple
walk starting at a base vertex, using the elements of [d − 1] as transition data
for subsequent steps in the walk. See Definition 2.4 below for details.

A well-constructed hash function is an efficiently computable function which
enjoys two main features. The first is preimage resistance, which means that
given a point in the hash value, it is computationally hard to find an input that
maps to that hash value. The second, is collision resistance, which requires the
problem of finding distinct inputs with the same output to be computationally
difficult.

The main goal of this paper is to propose a new Goren-Lauter-Charles–type
scheme, where the hash functions use Cayley graphs of the special linear groups
SLn(Fp) as platforms, where here p is prime and n ≥ 3. The restriction to the
fields Fp comes from the fact that the corresponding groups will be obtained as
quotients of SLn(Z). A crucial observation is that, in schemes using these groups
as a platform, the problem of finding a preimage or a collision corresponds to
finding factorizations of the identity matrix with prescribed factors. With this
observation in hand, and by taking into account recent work of Arzhantseva-
Biswas [AB22] concerning the expanding properties of the Cayley graphs of these
groups, we offer a detailed study of the security of our protocol. In particular,
we have the following:

� Preimage resistance. In Proposition 2.3, we collect the expansion prop-
erties the family of Cayley graphs {Gn,p}p of the groups SLn(Fp), where
n ≥ 3 is fixed and where p tends to infinity. Expansion in this family of
graphs guarantees good mixing properties, because under these conditions
the random walk gives a good approximation to the uniform distribution
after O(log p) steps.

2

� Collision resistance. The strength of our hash function with respect to
collision resistance is mainly based on the absence of small cycles in the
Cayley graphs of the underlying groups. In fact, Proposition 3.1 provides
a lower bound on the girth of the graphs {Gn,p}p on the order of log p.
It follows that a factorization of the identity, which is easily seen to be
equivalent to finding a collision for the hash function, is in turn equivalent
to solving over a system of n2 equations in a number of variables that
is O(log p), over the field Fp. In full generality, solving such systems of
equations is NP-hard.

Replacing the problem of factoring the identity with the problem of factor-
ing an arbitrary group element yields a similar system of equations, lending
further evidence of resistance of the hash function to finding preimages;
see Section 3.2.

For n = 2, certain Cayley graphs of the groups PSL2(Fp) give rise to the cel-
ebrated Lubotzky–Phillips–Sarnak expander graphs [LPS88], which were then
used to build hash functions in [CLG08]. A successful collision attack (i.e. an
efficient computation of a collision) was found in [TZ08], by taking coefficients
in Z[i] and then reducing to a system of equations of degree two. More recently,
Sardari [Sar21] attacked preimage resistance by designing a polynomial-time al-
gorithm that represents a number as a sum of four squares with some restricted
congruence conditions. The essentially different nature of higher dimensional
special linear groups gives evidence of additional security, and makes it likely
that these attacks are far more difficult to execute for the hash functions pro-
posed here.

Considering symmetric generating sets enables us to employ results from
the theory of simple random walks in simplicial graphs. Nevertheless, the fact
that we restrict ourselves to non backtracking random walks precludes the use of
multiplicativity of the hash function, and thus complicates parallel computation.
We discuss these issues in Section 3.4.

Structure of the paper: In Section 2 we give the relevant group theoretic back-
ground, define the hash functions, prove the expansion property of the Cayley
graphs, and exhibit concrete examples. In Section 3, we describe the various
properties of our scheme: namely, we relate free generation with a lower bound
on the girth; we then describe the role of polynomial equations in preimage find-
ing and in collision resistance. Finally, we discuss multiplicativity and parallel
computing, showing that the collision attack from Grassl et. al. [GIMS11] using
palindromes does not break the scheme presented here. Section 4 concludes the
paper.

In Appendix A we provide a Python/Sage implementation of an instance of
the hash functions considered in the paper.

3

2 Definition of the hash functions

This section defines our hash functions and exhibits concrete instances. We
start by recalling some relevant background material which will be essential in
our construction and in the sequel.

2.1 Background about special linear groups

For general results about special linear groups over finite fields, we refer the
reader to Hall’s book [Hal15]. In this section we concentrate on a number
of properties established by Arzhantseva-Biswas in their article [AB22]. We
summarize their results in the following theorem:

Theorem 2.1 (Arzhantseva-Biswas [AB22]). Let n ≥ 2 and let p a prime.
Write πp : SLn(Z) → SLn(Fp) for the canonical projection given by reduction

modulo p. There exist matrices Ã, B̃ ∈ SLn(Z) such that:

(i) There exists a prime p0 such that for all p ≥ p0, the matrices Ãp := πp(Ã)

and B̃p := πp(B̃) generate SLn(Fp).

(ii) If ⟨Ã, B̃⟩ is the subgroup generated by Ã and B̃ inside of SLn(Z), then
⟨Ã, B̃⟩ is isomorphic to F2, the free group of rank two.

(iii) The diameter of the Cayley graph Gn,p of SLn(Fp) with respect to {Ã±1
p , B̃±1

p }
is O(log p).

Observe that for n ≥ 3, items (i) and (ii) reflect the fact that the subgroup
of SLn(Z) generated by Ã and B̃ is usually a thin subgroup of SLn(R). The fact
that Ãp and B̃p generated the corresponding finite quotients for all but finitely
many values of p is a reflection of strong/superstrong approximation. In turn,
item (iii) implies that the girth of Gn,p is optimal, because the graphs {Gn,p}p
form a family of expander graphs (see Proposition 2.3 below).

Remark 2.2. When using the Cayley graphs Gn,p as a platform, we think of n
as being fixed and p as modulating the level of security, with the trade-off being
that the hash functions become more expensive to compute for large p.

Possible choices for Ã and B̃ are given by:

Ã =



1 a 0 0 . . . 0
0 1 a 0 . . . 0
0 0 1 a . . . 0
...

...
. . . a

0 0 0 0 . . . 1


, B̃ =



1 0 0 . . . 0
b 1 0 . . . 0
0 b 1 . . . 0
0 0 b . . . 0
...

...
...

0 0 0 . . . b 1


∈ SLn(Z),

with a, b ≥ 2. These matrices will be crucial in the description of our hash
function.

4

2.2 Expansion

For us to implement the Charles-Lauter-Goren approach, we must take advan-
tage of the good mixing properties of the expander graphs.

Proposition 2.3. For n ≥ 3 fixed and p → ∞, the sequence {Gn,p}p is a family
of expander graphs.

Sketch of proof. By item (i) of Theorem2.1, there exists a prime p0 such that for
all p ≥ p0, the matrices Ãp := πp(Ã) and B̃p := πp(B̃) generate SLn(Fp). Now,
since SLn(Z) has property (T) for n ≥ 3 [BdlHV08], and SL2(Z) has property
(τ) with respect to the family of congruence subgroups [Lub05], the proposition
follows.

An immediate consequence of this proposition is that the random walk ap-
proximates the uniform distribution after O(log p) steps in the corresponding
graphGn,p, as we will elaborate in Section 3.3. We note that in [BSV17], random
walks are conducted on Cayley graphs with respect to non-symmetric generat-
ing sets, and thus their asymptotic behavior is less clear. Similar issues arise
in [TNS20], since then hash values could be restricted to a proper subgroup. As
stated in [AB22], we note that one can effectively compute the lower bound p0.
No explicit bound on p0 has been given, though by combining existing results
one can probably prove that p need not be very large, likely on the order of
magnitude of n; see for instance [GV12, Appendix] and [Gur99, Theorem D].
Note that the larger the value of the prime p, the more secure the hash function.

2.3 The general construction

We now use matrices given in [AB22] to define an explicit family of hash func-
tions.

Definition 2.4 (Special linear group based hash functions). Let n ≥ 3 and let
p be a prime number. Let a, b, ℓ ≥ 2 that satisfy:

� If n = 3, a ≡ 1(mod3), b ≡ −1(mod3) and ℓ = 4k for some positive
integer k.

� If n ≥ 4, there exists a prime q such that n ≡ a ≡ b ≡ 1(mod q) and ℓ is
at least 3(n− 1) and is of the form qk+1 + 1 for some integer k.

Consider the matrices Ã and B̃ from the previous section. In the following
we will denote A ≡ Ãℓ and B ≡ B̃ℓ.

We use the notation [k] to denote the set of integers from 1 to k, and [k]∗

to denote the set of finite strings of integers in [k]. We now define the hash
function φ : [3]∗ → SLn(Fp). We start by choosing bijections

s : [4] → {A±1, B±1}, sλ : [3] → {A±1, B±1} \ s(λ)

for each λ ∈ [4].

5

Then, given
x = (xi)1≤i≤k ∈ [3]k,

we have the following inductive definition:

� B1 = s1(x1),

� Bi = sλ(xi) with λ = s−1(B−1
i−1), for 2 ≤ i ≤ k.

Finally, we set φ(x) := B1 · · ·Bk ∈ SLn(Fp).

Remark 2.5. Note that Gn,p is 4–regular, so that after the first digit x1 of the
input x, there are exactly three non-backtracking edges in the graph by which
to proceed. The input x can thus be viewed as encoding a reduced word in the
free group F2. The lack of backtracking in the resulting walk on Gn,p is crucial
for the avoidance of collisions, as well as for the reduction of mixing time.

As stated in [AB22], the elements {A,B} generate a free subgroup of SLn(Z)
and generate SLn(Fp) for all but finitely many values of p, and these facts give
rise to strong preimage and collision resistance of the resulting hash functions.

2.4 A concrete example

We finish this section by describing a family of concrete examples of hash func-
tions, which are constructed for the specific values a = 4, b = 2 and ℓ = 4. We
do not know what minimal value of n would ensure security.

Definition 2.6. Let p be a prime, and let

A =



1 4 0 0 . . . 0
0 1 4 0 . . . 0
0 0 1 4 . . . 0
...

...
. . . 4

0 0 0 0 . . . 1



4

, B =



1 0 0 . . . 0
2 1 0 . . . 0
0 2 1 . . . 0
0 0 2 . . . 0
...

...
...

0 0 0 . . . 2 1



4

∈ SLn(Fp),

Let s(1) = A, s(2) = B, s(3) = A−1, s(4) = B−1. We define the functions
{sλ}λ∈[4] as follows:

� s1(1) = B, s1(2) = A−1, s1(3) = B−1,

� s2(1) = A, s2(2) = A−1, s2(3) = B−1,

� s3(1) = A, s3(2) = B−1, s3(3) = B,

� s4(1) = A, s4(2) = A−1, s4(3) = B,

Given an input sequence x = {xi}i∈[1,k] ∈ [3]k, we inductively define:

� B1 = s1(x1)

6

� Bi = sλ(xi), with λ = s−1(B−1
i−1), for each k ∈ [2, k].

Then, the sequence x is hashed to the matrix:

φ(x) = B1 · · ·Bk.

Thus, we obtain a hash function for every n ≥ 3.

Example 2.7. With n = 3 we have:

A =

1 16 96
0 1 16
0 0 1

 , B =

 1 0 0
8 1 0
24 8 1

 ∈ SL3(Fp),

For example, if we consider the sequence x = 2232221, following the proce-
dure above we obtain the sequence:

� B1 = s1(2) = A−1

� B2 = s1(2) = A−1, where we use the map s1 because B−1
1 = s(1),

� B3 = s1(3) = B−1, where we use the map s1 because B−1
2 = s(1),

� B4 = s2(2) = A−1, where we use the map s2 because B−1
3 = s(2),

� B5 = s1(2) = A−1, where we use the map s1 because B−1
4 = s(1),

� B6 = s1(2) = A−1, where we use the map s1 because B−1
5 = s(1),

� B7 = s1(1) = B, where we use the map s1 because B−1
6 = s(1),

Finally, x is mapped to B1B2 . . . B7:

φ(x) = A−2B−1A−3B =

694190977 233260720 29297952
−38379648 −12896255 −1619792
1191936 400512 50305

 ∈ SL3(Fp).

We refer to Appendix A for a Python/Sage implementation of this example.

3 Properties of the constructed hash functions

In this section we use graph and group-theoretic machinery to describe the se-
curity of the hash functions defined above. We center our analysis on resistance
to preimage and collision breaking. The exposition is divided into five parts:
first, we establish a lower bound in the girth of the Cayley graphs of the group
SLn(Fp) with respect to the generating system {A±1

p , B±1
p }; second, we describe

the consequences of girth bounds for collision resistance; third, we investigate
mixing properties of the suggested platform. Two last subsections are devoted to
multiplicativity properties of the hash function, and showing that the so-called
palindromic attack from [GIMS11] is inapplicable.

7

3.1 Free groups and girth

The following proposition is in the spirit of [BSV17].

Proposition 3.1. Let A,B ∈ SLn(Z) such that the entries of A±1 and B±1 are
bounded in absolute value by a positive constant c. If A and B generate a free
subgroup of SLn(Z), then the girth of the Cayley graph of ⟨Ap, Bp⟩ ≤ SLn(Fp),
with respect to {A±1

p , B±1
p } is at least⌊

log(p− 1)

log nc

⌋
.

Proof. For any reduced word w in A±1 and B±1, we write wZ (resp. wFp) for
the projection of w to SLn(Z) (resp. SLn(Fp)). It follows by a straightforward
induction on k that, if w has length k, then the entries of wZ cannot exceed (nc)k

in absolute value. Now, let ℓ be the girth of the corresponding Cayley graph.
Then, there exists a nontrivial reduced word w of length ℓ such that wFp

= 1.
It follows that wZ is of the form 1 + pM , where M is an integer matrix. Since
w is nontrivial and since {A,B} generate a rank two free subgroup of SLn(Z),
the matrix M is nonzero. We conclude that wZ has an entry of absolute value
at least p − 1. Since the entries of wZ cannot exceed (nc)k in absolute value,

we have that the length ℓ of w is bounded below by ⌊ log(p−1)
lognc ⌋, and the desired

conclusion holds.

3.2 Preimage and collision resistance, and post-quantum
heuristics

We now analyze the resistance of our model to finding preimages and to colli-
sions. Observe that finding a preimage of a particular hash value (resp. finding
a collision of hash values) is equivalent to finding a factorization of a given group
element (resp. of the identity) in SLn(Fp) with respect to the generating set. We
note that in general, Tillich–Zémor hash functions seem to have robust collision
resistance; see [Tin23].

The matrices Ap, Bp involved have order p, so a factorization can be seen as
a family of equations {(Em)}m≥0 with variables

k1, . . . , km, ℓ1, . . . , ℓm ∈ Fp

satisfying:

(Em) Ak1Bℓ1 . . . AkmBℓm = M,

for a given challenge M ∈ SLn(Fp). This problem is equivalent to attacking the
preimage resistance of the hash function. In the case where M is the identity
matrix, this is equivalent to attacking the collision resistance. Note that there
are trivial solutions to preimage and collision breaking of the hash function,

8

given that Ap
p is the identity. Since the girth of Gn,p is O(log p), we consider

nontrivial solutions to preimage or collision breaking to be ones where

C1 log p ≤
m∑
i=1

(ki + ℓi) ≤ C2 log p,

where C1 and C2 are positive constants depending on n but not on p. Note that
estimates for C1 and C2 can be produced, and that Proposition 3.1 furnishes
an estimate for C1, for instance. Sharp values for C1 and C2 are of relatively
minor consequence for us.

Each entry of the left-hand side matrix in equation (Em) is polynomial in

k1, . . . , km, ℓ1, . . . , ℓm.

Thus, the equation (Em), equivalent to attacking preimage of the hash func-
tion, corresponds to a system of n2 multivariate polynomial equations over Fp.

Solving multivariate polynomial equations over a finite field is known to be
NP-hard [GJ79], which suggests a good level of security. Moreover, the reduction
to solving multivariate polynomials, a class of hardness problems considered for
standardization by the NIST, provides a certain degree of confidence that the
hash function is post-quantum. We contrast this approach with schemes based
on isogeny graphs, which reduce to a more well-defined problem, albeit one not
known to be NP-hard.

NP-hardness of a class of problems is a worst case complexity property, and
for certain NP-hard classes of problems, relatively simple and efficient algo-
rithms can find solutions in the vast majority of cases. Thus, NP-hardness of
the underlying problem is not a guarantee of post-quantum behavior of the hash
function.

A more compelling case for the hash function to be post-quantum arises
from empirical difficulty of factoring in special linear groups over finite fields.
For instance, in [FPPR11], subexponential factorization algorithms were found
for SL2(F2k), and these were only found in 2011. These algorithms rely essen-
tially on the fact that the matrices are 2×2, and on the fact that the underlying
field has characteristic two. Thus, the methods do not generalize in any straight-
forward way to larger dimensional special linear groups nor to fields with odd
characteristic. In practice, factoring matrices over finite fields is quite difficult,
and implemented algorithms are inefficient. Hardness appears to be optimized
when the system of equations resulting from (Em) is neither underdetermined
nor overdetermined, i.e. when the number of equations and variables is compa-
rable. Thus, the larger the value of p the more secure the hash function, at the
expense of computational time and space, and the balance of degrees of freedom
and constraints occurs when n2 ∼ log p, or in other words when n is approxi-
mately the square root of the logarithm of p. This is precisely the balance to
required so that the number of equations and number of variables are compa-
rable, as per the foregoing discussion. We may then expect the factorization
problem to take exponential time in the number of variables in this case.

9

3.3 The mixing property

By the mixing property, we mean that the output vertex of a random input —
in our case a random walk — approaches the uniform distribution on the hash
space. When the random walk approaches the uniform distribution quickly,
mixing is observed even when the input messages have relatively small length,
say polynomial in log p. More precisely, we have the following corollary of result
of Alon-Benjamini-Lubetzky-Sodin [ABLS07], which characterizes the rate at
which a random walk on a graph converges to the uniform distribution in terms
of the spectral properties of its adjacency matrix:

Theorem 3.2. [ABLS07, Theorem 1.1, cf. proof of Theorem 1.3] Suppose
d > 2. Let X0, X1, . . . , Xℓ be a non backtracking random walk on a d–regular
connected graph G with N vertices. There is a constant C > 0 such that when-
ever ℓ ≥ C · logN we have

|Pr(Xℓ = v)− 1/N | ≤ 1/N2,

for every vertex v of G.

Examining the proof given in [ABLS07], one finds that the rate of mixing
depends not so much on the graph G, but rather on the eigenvalues of the
adjacency matrix of G. Thus, if G is a member of a sequence {Gi}i∈N of
expander graphs, we may take the constant C in Theorem 3.2 to depend only
on the expansion constant of the family.

It is well-known that mixing properties are desirable in Tillich-Zémor hashing
schemes; see [CLG08, TZ08]. As explained in [TZ08], mixing is particularly
relevant when the hash functions are used in protocols whose security relies on
the random oracle model; see [BR93] for example of such protocols.

The probability that an attacker finds a collision is at least the probability
given by the birthday paradox, taking samples at random, which is minimized
with the uniform probability [Ste04, Exercise 13.7].

The relevance of this approach depends on the distribution of possible mes-
sages and in particular on how they are encoded, a question we do not address
in the present paper.

Surprisingly few mathematical statements addressing the relationship be-
tween mixing and attacks are present in the literature; an example can be found
in [Ste21, Theorem 3], in the context of commitment schemes. The following
proposition is an immediate consequence of the previous theorem and the dis-
cussion above:

Proposition 3.3. Let φ : [3]k → SLn(Fp) be the hash function of Definition
2.4, and let N = |SLn(Fp)|. Then, there is a positive constant C such that, if
k ≥ C · logN , and m is taken uniformly at random in [3]k, then we have

|Pr(φ(m) = M)− 1/N | ≤ 1/N2,

for every M ∈ SLn(Fp).

10

3.4 Multiplicativity and parallel computing

The hash functions considered in this article take as input a string of integers
in [3], convert each integer into a matrix of the form {A±1, B±1}, and finally
output the product of these matrices.

The fact that we require the underlying walk to be non-backtracking im-
plies that this mapping is not locally determined: a given digit in the string is
mapped to a matrix that depends on the previous digits. This dependency can
be dramatic: for example, according to Definition 2.6 a sequence of the form
133 · · · 3 will be mapped to the product B ·B ·B · · ·B, while a sequence of the
form 333 . . . 3 will be mapped to the product B−1 ·B−1 ·B−1 · · ·B−1. In partic-
ular, the last digit 3 of these two strings can be mapped to different matrices,
depending on the first digit in the string. The endpoints of the corresponding
walk in the Cayley graph may be far away from each other.

As a consequence, the function φ need not be multiplicative under concate-
nation of strings, which is generally a desirable feature for hash function. This
lack of multiplicativity makes it difficult to perform parallel computations with
the given hash functions, as we now investigate in more detail.

3.4.1 Good and bad tails

Recall that for a finite set X, the notation X∗ is used for the set of finite length
strings of elements of X. As before, the notation [3] denotes the set {1, 2, 3}.

Definition 3.4. Let G be a finite group, generated by two elements A and B.
Let φ̃ : [3]∗ → {A±1, B±1}∗.

A string s ∈ [3]∗ is called a good tail with respect to φ̃ if there exists S ∈
{A±1, B±1} such that for every s′ ∈ [3]∗, the last letter of φ̃(s′s) is S, where
here s′s is the string obtained from the concatenation of s′ and s. A string
which is not a good tail is called a bad tail.

Local constraints in Definition 2.6, can be obtained by the following fact:

Fact 3.5. The function

φ̃ : {xi} ∈ [3]∗ 7→ {Bi} ∈ {A±1, B±1}∗

constructed in Definition 2.6 has the following good tails: 11, 31, 22, 32, 13 and
23.

Proof. It is straightforward to check that:

� any string ending in 11 or 31 outputs a string ending in A;

� any string ending in 22 or 32 outputs a string ending in A−1;

� any string ending in 13 outputs a string ending in B;

� any string ending in 23 outputs a string ending in B−1.

11

Figure 1: Description of the maps si in Definition 2.6

last step matrix 1 2 3
A−1 B A−1 B−1

B−1 A A−1 B−1

A A B−1 B
B A A−1 B

The following proposition shows that the mapping above is optimal.

Proposition 3.6. Special linear group based hash functions (Definition 2.4)
admit at most six good tails of length two.

The bound in Proposition 3.6 is sharp, as shown via the mappings from
Definition 2.6. The proof of Proposition 3.6 will follow from the following lemma:

Lemma 3.7. Let

φ̃ : {xi} ∈ [3]∗ 7→ {Bi} ∈ {A±1, B±1}∗

be a special linear group based hash function (Definition 2.4), and let b ∈ [3].
Then, there exists b′ ∈ [3] such that b′b is a bad tail with respect to φ̃.

Proof. The only freedom that we have in the construction of Definition 2.4 is
how we define the maps si. We call elements of {A±1, B±1} step matrices. Using
φ̃, we say that the elements of [3] are encoded by step matrices. We summarize
the definitions of the maps si in a table, with one row for each step matrix, and
one column for each element of [3]. Each cell from this tabular contains a step
matrix.

To use this table, start from a string {xi} ∈ [3]∗. Say that for some i > 1,
we want to find the step matrix associated with xi. Let S be the step matrix
encoding xi−1. Then, the step matrix encoding xi is the step matrix in the cell
located in the row labelled by S and in the column labelled by xi.

It follows from the definition of the maps si that for each step matrix S, the
row labelled by S contains exactly the three matrices in the set {A±1, B±1}\S−1.
The mapping from Definition 2.6 can be described as in Figure 1.

Moreover, since each matrix can actually be the last step matrix used, every
cell of the table can potentially be used. Fix an element b ∈ [3], and assume for
a contradiction that every integer b′ ∈ [3] has the property that b′b is a good
tail. The column corresponding to each b′ has to contain at least two different
step matrices. This implies that, in the row labelled by b, at least two cells
contain the same step matrix. Since this is true for each b′ ∈ [3], this implies
in particular that there is a step matrix S that is contained three times in the
column labelled by b. The fourth cell of this column cannot be part of the
row labelled by S since this would give rise to another S in a different column.
This implies that the label S′ of this row appears in a cell of another column.

12

Additionally, this column contains a cell with step matrix not equal to S′. Then,
the label b′ ∈ [3] of this column gives us an integer having the property that
inputs ending by b′b can have either S or another matrix as a final matrix. This
is a contradiction and concludes the proof of the lemma.

Proof of Proposition 3.6. From Lemma 3.7, to each integer of [3] corresponds
at least one bad tail, giving three different bad tails.

As remarked previously, Definition 2.6 shows that the estimate in Proposi-
tion 3.6 is sharp, and so that in some sense, we have found an optimal way of
defining the maps si.

3.4.2 Multiplicativity

It follows from the discussion of good and bad tails above that multiplicativity
of the hash function can be obtained by restricting to sequences whose product
ends with the matrix s(1)−1.

Fact 3.8. In Definition 2.6, we have φ(s1 ∗s2) = φ(s1) ·φ(s2), provided s1 ends
with 22 or 32.

3.4.3 Parallel computing

Multiplicativity of the hash function under suitable conditions can be lever-
aged to compute its values by parallel computation. First, look for good tail
substrings, namely: 11, 31, 22, 32, 13 or 23. For generic messages, one would
expect such substrings to be quite common. Next, split the input immedi-
ately following one of these strings, and apply a slightly modified hash function
(i.e. using the relevant si instead of s1 in the first matrix mapping). Finally,
compute the product of the hash outputs.

Example 3.9. Say we want to hash the string 1321321323. Observe that:
1321321323. We thus compute: M1 = φ(13213) and M2 = φ′(21323), where φ′

is defined analogously to φ in Definition 2.6, apart from the fact that B1 is set
to be s4(x1) instead of s1(x1), since φ(13213) is a product ending by B. Finally,
φ(1321221323) = M1 ·M2.

3.5 Palindromic attacks

One of several proposals of hashing by walks on Cayley graphs can be found
in [TZ94b], wherein the Cayley graph is that of SL2(F2n). A method for finding
collisions for this hash function is presented in [GIMS11] (cf. [FPPR11]); we
argue that the attack does not apply in our case, though our evidence for this
claim is primarily empirical.

The idea of [GIMS11] is to find collisions on palindromes; that is, digit-string
entries that are invariant under reversing the order. To begin, one conjugates
generators of SL2(F2n) to obtain new generators which give rise to an isomorphic
graph, but which are symmetric matrices. That is, if the original generators are

13

{A±1, B±1}, one finds a matrix C such that Â = CAC−1 and B̂ = CBC−1 are
both symmetric matrices.

We first note that in our case, finding C is not easy; for SL3(5) and SL3(7),
about 0.02% of the elements satisfy this criterion. Moreover, there is no obvious
way to compute C; attempts to calculate the entries of such a matrix directly
have proved resistant to equation solving methods in standard computer algebra
systems - indeed, this approach is actually less efficient than just checking all
possible matrices. Therefore, we do not have much data for larger primes, since
the naive method used to find a suitable matrix C quickly becomes computa-
tionally infeasible.

Provided one can find a matrix C, it follows that collisions in the hash
function with respect to Â, B̂ as generators are exactly the collisions with A,B
as generators; one can therefore rename the matrices Â, B̂ as A,B. One then
proceeds according [GIMS11, Lemma 1]: upon input of a palindromic string v,
the output of the product of conjugated generators in SL2(F2n) will always be
a symmetric matrix.

Since our hash function requires avoidance of backtracking in the walk, we
are not guaranteed a palindromic matrix product from a palindromic input
string; however, since one could reverse-engineer the necessary input to obtain a
palindromic matrix product, we proceed to discuss palindromic matrix products
without reference to hash function.

It turns out, as one may check easily by induction, that a palindromic
product in symmetric generators will itself be symmetric. The ultimate goal
of [GIMS11] is to use this fact to demonstrate that the function

ρ : M 7→ AMA+BMB,

where M is a palindromic product, outputs a matrix populated with either
zeroes or the square of a field element appearing as an entry in M . One then
employs number theoretic tricks to force the nonzero elements to 0 in M and
thus to obtain ρ(M) = 0. One thus builds distinct palindromic decompositions
of the same matrix.

Consider the generators from Definition 2.6 over SL3(F11). Transforming
these generators with respect to the matrix

C =

2 6 10
5 3 10
2 3 3

 ,

one checks that the palindrome M = ABABA is such that

M =

7 4 2
4 0 6
2 6 6

 , ρ(M) =

2 1 5
1 1 7
5 7 7

 .

In particular, for each i ∈ [10], the matrix ρ(M) contains an entry that is
not the ith power of any entry of M . This furnishes evidence that for p = 11,

14

there is little hope of extending [GIMS11, Corollary 1] to our context; we argue
that the lack of closed form of transformed generators in general, the difficulty
of finding them for larger parameters, and this example with a small value of p,
conspire to provide strong evidence that the approach will fail in general.

4 Conclusions

We have presented new Tillich-Zémor hash functions, with platforms Cayley
graphs of SLn(Fp) for n ≥ 3. We show that choosing appropriate generating
matrices produces graphs without small cycles, and having a quick mixing prop-
erty, both of which are highly desirable for preimage and collision resistance.
Moreover, flexibility of choice of generating matrices and of the dimension n
gives the option of increasing the complexity of attacks. Future work includes
the exact computation of the spectral gap and the prime p0 (cf. item (i) of
Theorem 2.1). Moreover, simulations should be carried out in order to compare
with other existing schemes and determine the optimal values of p and n to be
taken in implementations.

Acknowledgments

The authors would like to thank Ludovic Perret, Hadi
Salmasian, Vladimir Shpilrain, and Bianca Sosnovski for helpful comments and
discussions. The authors thank ITS for hosting CL, CB, and RF while this
project has been done partially. DK thanks Institut des Hautes Études Sci-
entifiques - IHES for providing stimulating environment while this project was
partially done. She has conducted this work partially with the support of ONR
Grant 62909-24-1-2002.

The authors are also grateful to two anonymous referees who gave interesting
suggestions on how to improve the paper.

15

A Implementation of the hash function

In this appendix, we provide an implementation of the hash function given in
Example 2.7.

from sage.all import *

a 1024 bits random prime p

nbits = 1024

p = random_prime(2 ** nbits , lbound = 2 ** (nbits-1))

assert is_prime(p)

definition of the matrices A, B and their inverses

A = matrix(GF(p),[[1, 16, 96], [0, 1, 16], [0, 0, 1]])

Ainv = A ** (-1)

B = matrix(GF(p),[[1, 0, 0], [8, 1, 0], [24 , 8, 1]])

Binv = B ** (-1)

identification between digits (in base 4) and matrices

s = [A, B, Ainv , Binv]

sigma = [[B, Ainv , Binv], [A, Ainv , Binv], [A, Binv , B], [A, Ainv ,

B]]

definition of the hash function

def hash(string):

input must be a string

the only characters allowed are ’1’, ’2’ and ’3’

out = identity_matrix(GF(p), 3)

inv_prec = A

for k in range(len(string)):

i = s.index(inv_prec)

step_matrix = sigma[i][int(string[k])-1]

inv_prec = step_matrix **(-1)

out = out * step_matrix

return out

test of the example given in the paper

string = ’2232221 ’

assert hash(string) == matrix(GF(p),

[[694190977 , 233260720 , 29297952],

[-38379648 , -12896255 , -1619792],

[1191936 , 400512 , 50305]])

References

[AB22] Goulnara Arzhantseva and Arindam Biswas. Logarithmic girth ex-
pander graphs of SLn(Fp). Journal of Algebraic Combinatorics,
2022.

[ABLS07] Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-
backtracking random walks mix faster. Commun. Contemp. Math.,
9(4):585–603, 2007.

16

[BdlHV08] Bachir Bekka, Pierre de la Harpe, and Alain Valette. Kazhdan’s
Property (T). New Mathematical Monographs. Cambridge Univer-
sity Press, 2008.

[Bor20] Tom Borthwick. Applications of homomorphic cryptographic primi-
tives in blockchain and the internet of things, Undergraduate Thesis,
University of York, 2020.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. In Proceedings of the
1st ACM Conference on Computer and Communications Security,
CCS ’93, page 6273, New York, NY, USA, 1993. Association for
Computing Machinery.

[BSV17] Lisa Bromberg, Vladimir Shpilrain, and Alina Vdovina. Navigat-
ing in the Cayley graph of SL2(Fp) and applications to hashing.
Semigroup Forum, 94(2):314–324, 2017.

[CLG08] Denis Charles, Kristin Lauter, and Eyal Goren. Cryptographic hash
functions from expander graphs. Journal of Cryptology, 22:93–113,
12 2008.

[FPPR11] Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and
Guénaël Renault. New subexponential algorithms for factoring in
SL2(F2n). IACR Cryptol. ePrint Arch., page 598, 2011.

[GIMS11] Markus Grassl, Ivana Ilić, Spyros Magliveras, and Rainer Stein-
wandt. Cryptanalysis of the Tillich–Zémor hash function. Journal
of cryptology, 24(1):148–156, 2011.

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractabil-
ity. A Series of Books in the Mathematical Sciences. W. H. Freeman
and Co., San Francisco, Calif., 1979. A guide to the theory of NP-
completeness.

[GM18] Mohammad Hossein Ghaffari and Zohreh Mostaghim. More se-
cure version of a Cayley hash function. Groups Complex. Cryptol.,
10(1):29–32, 2018.

[Gur99] Robert M. Guralnick. Small representations are completely re-
ducible. J. Algebra, 220(2):531–541, 1999.

[GV12] Alireza Salehi Golsefidy and Péter P. Varjú. Expansion in perfect
groups. Geom. Funct. Anal., 22(6):1832–1891, 2012.

[Hal15] Brian Hall. Lie groups, Lie algebras, and representations, volume
222 of Graduate Texts in Mathematics. Springer, Cham, second
edition, 2015. An elementary introduction.

17

[LPS88] Alex Lubotzky, Ralph S. Phillips, and Peter C. Sarnak. Ramanujan
graphs. Combinatorica, 8(3):261–277, 1988.

[Lub05] Alex Lubotzky. What is. . . property (τ)? Notices Amer. Math. Soc.,
52(6):626–627, 2005.

[Piz90] Arnold K. Pizer. Ramanujan graphs and Hecke operators. Bull.
Amer. Math. Soc. (N.S.), 23(1):127–137, 1990.

[Sar21] Naser T. Sardari. Complexity of strong approximation on the sphere.
Int. Math. Res. Not. IMRN, (18):13839–13866, 2021.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and
Yarik Markov. The first collision for full SHA-1. In Advances in
cryptology—CRYPTO 2017. Part I, volume 10401 of Lecture Notes
in Comput. Sci., pages 570–596. Springer, Cham, 2017.

[Sos18] Bianca Sosnovski. Recent developments in Cayley hash functions. In
Mathematical software—ICMS 2018, volume 10931 of Lecture Notes
in Comput. Sci., pages 438–447. Springer, Cham, 2018.

[SS16] Vladimir Shpilrain and Bianca Sosnovski. Compositions of linear
functions and applications to hashing. Groups Complex. Cryptol.,
8(2):155–161, 2016.

[Ste04] J. Michael Steele. The Cauchy-Schwarz Master Class: An Introduc-
tion to the Art of Mathematical Inequalities. Cambridge University
Press, 2004.

[Ste21] Bruno Sterner. Commitment schemes from supersingular elliptic
curve isogeny graphs. Cryptology ePrint Archive, Report 2021/1031,
2021. https://ia.cr/2021/1031.

[Tin23] Simran Tinani. Methods for collisions in some algebraic hash func-
tions. 2023.

[TNS20] Hayley Tomkins, Monica Nevins, and Hadi Salmasian. New Zémor-
Tillich type hash functions over GL2(Fpn). J. Math. Cryptol.,
14(1):236–253, 2020.

[TZ94a] Jean-Pierre Tillich and Gilles Zémor. Group-theoretic hash func-
tions. In Algebraic coding (Paris, 1993), volume 781 of Lecture
Notes in Comput. Sci., pages 90–110. Springer, Berlin, 1994.

[TZ94b] Jean-Pierre Tillich and Gilles Zémor. Hashing with SL2. In Annual
International Cryptology Conference, pages 40–49. Springer, 1994.

[TZ08] Jean-Pierre Tillich and Gilles Zémor. Collisions for the LPS ex-
pander graph hash function. In Proceedings of the Theory and Appli-
cations of Cryptographic Techniques 27th Annual International Con-
ference on Advances in Cryptology, EUROCRYPT’08, page 254269,
Berlin, Heidelberg, 2008. Springer-Verlag.

18

https://ia.cr/2021/1031

	Introduction
	Definition of the hash functions
	Background about special linear groups
	Expansion
	The general construction
	A concrete example

	Properties of the constructed hash functions
	Free groups and girth
	Preimage and collision resistance, and post-quantum heuristics
	The mixing property
	Multiplicativity and parallel computing
	Good and bad tails
	Multiplicativity
	Parallel computing

	Palindromic attacks

	Conclusions
	Implementation of the hash function

