
Efficient supersingularity testing overF𝑝 and
CSIDH key validation
Gustavo Banegas1, Valerie Gilchrist2,1,*, Benjamin Smith1
1Inria and Laboratoire d’Informatique de l’École polytechnique, Institut Polytechnique de Paris, Palaiseau, France
2University of Waterloo, Canada

Abstract Many public-key cryptographic protocols, notably non-interactive key exchange (NIKE), require incoming
public keys to be validated to mitigate some adaptive attacks. In CSIDH, an isogeny-based post-quantum NIKE, a
key is deemed legitimate if the given Montgomery coefficient specifies a supersingular elliptic curve over the prime
field. In this work, we survey the current supersingularity tests used for CSIDH key validation, and implement
and measure two new alternative algorithms. Our implementation shows that we can determine supersingularity
substantially faster, and using less memory, than the state-of-the-art.

Keywords: Isogenies, Key validation, Supersingularity, Elliptic Curves

1 INTRODUCTION
The security of many public-key cryptosystems assumes that public keys are honestly generated: that is, that

public keys have not been manipulated by adversaries. Key validation is the process of determining whether an
incoming public key was plausibly constructed following the protocol.
The simplest example of this is in non-interactive key exchange (NIKE). Consider classic static Diffie–Hellman

in a finite field: the system parameters fix a prime modulus 𝑝 and a generator 𝑔 in F𝑝 for a subgroup 𝐺 = ⟨𝑔⟩ ⊂ F×𝑝
of prime order 𝑟 . Alice samples a long-term secret integer 𝑎, and binds to the corresponding public key 𝐴 = 𝑔𝑎.
An honest Bob computes his keypair (𝐵 = 𝑔𝑏, 𝑏), and the shared secret is 𝑆 = 𝐴𝑏 = 𝐵𝑎. However, if 𝐺 is a
proper subgroup of F×𝑝 , then a dishonest Bob can choose some ℎ in F×𝑝 \ 𝐺, of order 𝑠 | (𝑝 − 1)/𝑟 , and transmit
the malformed public key 𝐵′ = 𝐵 · ℎ. The shared secret as computed by Alice is now 𝑆′ = (𝐵′)𝑎 = 𝑆 · ℎ𝑎, while
Bob derives the original 𝑆 = 𝐴𝑏. The success or failure of subsequent encrypted communication tells Bob whether
𝑆 = 𝑆′, and hence whether 𝑎 is 0 (mod 𝑠).
To avoid leaking information on her long-term private key to adaptive adversaries, then, Alice must validate

incoming public keys as being honestly generated. In the example above, this amounts to checking that Bob’s
public key really is an element of 𝐺; this can be done by checking that 𝐵𝑟 = 1. In elliptic-curve Diffie–Hellman
key exchange, key validation amounts to an analogous scalar multiplication by a (tiny or trivial) cofactor, plus a
simple check that Bob’s public key 𝐵 really does encode a point on the curve.
Moving now to the post-quantum setting, the best-established NIKE candidate is CSIDH [4], a key exchange

scheme based on the action of the ideal class group of Z[√−𝑝] on the isogeny class of supersingular elliptic curves
over F𝑝 (recall that E/F𝑝 is supersingular if #E(F𝑝) = 𝑝 + 1; otherwise, it is ordinary). The CSIDH group
action has also been used to construct other post-quantum public-key cryptosystems, including signatures [2, 8, 9],
threshold schemes [10], and oblivious transfer [16].
Validating CSIDH public keys is therefore important for long-term post-quantum security. The fundamental

problem is: we are given an element 𝐴 in F𝑝 corresponding to an elliptic curve with a Montgomery model

E𝐴/F𝑝 : 𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1) , (1)

and we must determine if E𝐴 is in the orbit of the group action. By [4, Proposition 8], to validate 𝐴 it suffices to
1. check that 𝐴2 ≠ 4 (that is, E𝐴 is an elliptic curve and not a singular cubic), a trivial task; and
2. check that E𝐴 is supersingular, a nontrivial and mathematically interesting task.
Key validation is not the bottleneck in CSIDH key exchange—it typically takes under 5% of the runtime—but

it is still a critical problem to be solved efficiently. The main issue is supersingularity testing over F𝑝 , and we will
focus entirely on this problem, ignoring the rest of the CSIDH cryptosystem and its derivatives (we refer the reader
to [4, 5, 1] for further details and discussion). The only relevant detail is that in CSIDH,

𝑝 = 4
𝑛∏
𝑖=1

ℓ𝑖 − 1

*Corresponding Author: Valerie Gilchrist, vgilchrist@uwaterloo.ca
∗Author list in alphabetical order; see https://www.ams.org/profession/leaders/CultureStatement04.pdf. This research was

funded in part by the French Agence Nationale de la Recherche through ANR CIAO (ANR-19-CE48-0008) and the European Commission
through H2020 SPARTA, https://www.sparta.eu/. Date of this document: 2022-07-26.

1

where the ℓ𝑖 are small primes: this ensures that supersingular curves over F𝑝 have rational points of order ℓ𝑖 for
1 ≤ 𝑖 ≤ 𝑛, which can be used to compute the group action for ideals of smooth norm in a particularly efficient way.
In particular, 𝑝 ≡ 3 (mod 4).
In this work we consider four algorithms for testing supersingularity over F𝑝 in the context of CSIDH key

validation. The algorithms are listed in Table 1. We have implemented and benchmarked each of them for the
512-bit prime 𝑝 defined by the CSIDH-512 parameter set; our practical results are also summarized in Table 1.

Table 1: Supersingularity testing algorithms for elliptic curves over F𝑝 . For Algorithms 2 and 3, 𝑝 + 1 = 4
∏𝑛
𝑖=1 ℓ𝑖 .

(The experimental setup for the performance measurements with CSIDH-512 parameters is detailed below.)
Test algorithm Asymptotics Supersingular input (valid keys) Non-supersingular input (invalid keys)

Time (F𝑝-ops) Space (F𝑝-elts) MCycles: Mean Median Stack (B) MCycles: Mean Median Stack (B)

Alg. 2 (Random point) 𝑂 (𝑛 log 𝑝) 𝑂 (1) 63.4 62.2 2890 65.3 62.9 2890
Alg. 3 (Product tree) 𝑂 ((log 𝑛) (log 𝑝)) 𝑂 (log 𝑛) 6.7 6.1 4344 1.7 1.6 3896
Alg. 5 (Sutherland) 𝑂 (log2 𝑝) 𝑂 (1) 35.4 35.1 2696 0.8 0.4 2696
Alg. 6 (Doliskani) 𝑂 (log 𝑝) 𝑂 (1) 4.5 4.7 3280 2.9 2.8 3264

Algorithms 2 and 3, detailed in §3, are elementary algorithms based on determining the order of a random
point on E𝐴. These are the algorithms used in existing CSIDH implementations, and we include them as a baseline
for comparison. These are the only supersingularity tests here that rely on the special form of CSIDH primes (they
require the factorization of 𝑝 + 1).
Algorithm 5, described in §4, is our variant of Sutherland’s test [22] for curves over F𝑝2 , adapted and optimized

for Montgomery models over F𝑝 . This test is based on distinguishing between the 2-isogeny graph structures of
supersingular and ordinary elliptic curves over F𝑝2 . While the asymptotic complexity of this algorithm is quadratic
in log 𝑝 (the others are linear or quasi-linear), it has very good constants, and we find that it performs surprisingly
well in practice. It is extremely easy to implement, and requires very little memory. It is also the only one of the
four tests considered here that always produces definitive proof of supersingularity.
Algorithm 6, described in §5, is our variant of Doliskani’s test [12] for curves over F𝑝2 , which uses Polynomial

Identity Testing to distinguish between the 𝑝-th division polynomials of supersingular and ordinary curves. We
have adapted and optimized this algorithm for Montgomery models over F𝑝 , drastically simplifying the division
polynomial computation. This algorithm is particularly simple: it only requires a single scalar multiplication of a
point over F𝑝2 , followed by an easy field exponentiation. Algorithm 6 is a Monte Carlo algorithm with one-sided
error: it may declare an ordinary curve supersingular, but the probability of this is in 𝑂 (1/𝑝), which is virtually
zero for cryptographic 𝑝: for the 512-bit 𝑝 of CSIDH, a false-accept rate of 2−512 is more than covered by the
claimed security level.
We will see that Algorithm 6 is the simplest and fastest supersingularity test for CSIDH public key validation.

Implementation and experimental results We implemented our algorithms in C for the 512-bit prime 𝑝 of the
CSIDH-512 parameter set, which was built from 𝑛 = 74 small primes ℓ𝑖 . For F𝑝-arithmetic, we used the assembly
code from the CTIDH library [1]1. For F𝑝2 -arithmetic, we used the “tricks” from [20], which we reproduce for
easy reference in Appendix A. The implementation of Algorithm 3 was taken directly from the CTIDH library.
Algorithms 2, 5, and 6 are our own implementations.
We ran our experiments on an Intel i7-10610U processor running at 4.90GHz with TurboBoost and SpeedStep

disabled, running Arch Linux with kernel 5.15.41-1-lts and GCC 12.1.0. Cycles were measured using the bench
utility provided in the CSIDH code package. For our experiments, we generated 500 valid (supersingular) curves
and 500 invalid (ordinary) curves. Table 1 presents the average and median runtime for each algorithm (in millions
of cycles), and the maximum stack use (in bytes) for a complete run of the algorithm (including subroutines). We
note that the algorithm used to compute square roots in F𝑝2 inside Algorithm 5 uses several temporary variables,
which increases the stack footprint; this might be further optimized.

Elliptic curve models We focus on elliptic curves with Montgomery models, which are ubiquitous in isogeny-
based cryptography. However, we discuss extensions of our methods to more general elliptic curves over F𝑝
in §6.

Notation Throughout, 𝑝 denotes a (large) odd prime, and 𝑞 is a power of 𝑝. For every integer 𝑚 > 0, we write

len(𝑚) := ⌊log2 𝑚⌋ + 1 (i.e., the bitlength of 𝑚) .

1We used version 20210523, available from http://ctidh.isogeny.org/software.html.

2

http://ctidh.isogeny.org/software.html

Efficient supersingularity testing over F𝑝 and CSIDH key validation

2 MONTGOMERY ARITHMETIC
Weassume that the reader is familiar with basic elliptic curve arithmetic (see e.g. [21] for background). However,

Algorithm 6 requires some fine detail on the Montgomery ladder algorithm [18], which is also a subroutine of
Algorithms 2, 3, and CSIDH itself, so we take a moment to recall it here. (For further detail, see [7].)
In practice, most isogeny-based cryptosystems (including CSIDH) work with Montgomery models

E𝐴 : 𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1) .

We call the parameter 𝐴 the Montgomery coefficient. We write ⊕ and ⊖ for addition and subtraction on E𝐴.
Let 𝑃 and 𝑄 be points on E𝐴. Any three of 𝑥(𝑃), 𝑥(𝑄), 𝑥(𝑃 ⊖ 𝑄), and 𝑥(𝑃 ⊕ 𝑄) determines the fourth, so we

can define a differential addition

xADD : (𝑥(𝑃), 𝑥(𝑄), 𝑥(𝑃 ⊖ 𝑄)) ↦−→ 𝑥(𝑃 ⊕ 𝑄)

and a pseudo-doubling operation
xDBL𝐴 : 𝑥(𝑃) ↦−→ 𝑥([2]𝑃) .

We can evaluate these maps on affine representatives for projective points as follows. Given points 𝑃 and 𝑄 on E𝐴,
we write (𝑋𝑃 : 𝑍𝑃) = 𝑥(𝑃), (𝑋𝑄 : 𝑍𝑄) = 𝑥(𝑄), (𝑋⊕ : 𝑍⊕) = 𝑥(𝑃 ⊕ 𝑄), and (𝑋⊖ : 𝑍⊖) = 𝑥(𝑃 ⊖ 𝑄) (recall that
𝑥((𝑋 : 𝑌 : 𝑍)) = (𝑋 : 𝑍) if 𝑍 ≠ 0, and (1 : 0) if 𝑍 = 0). Now we can compute xADD using the formulæ{

𝑋⊕ = 𝑍⊖ · [𝑈 +𝑉]2 ,
𝑍⊕ = 𝑋⊖ · [𝑈 −𝑉]2

where

{
𝑈 = (𝑋𝑃 − 𝑍𝑃) (𝑋𝑄 + 𝑍𝑄) ,
𝑉 = (𝑋𝑃 + 𝑍𝑃) (𝑋𝑄 − 𝑍𝑄) .

(2)

Note that if we replace (𝑋𝑃 , 𝑍𝑃) and (𝑋𝑄, 𝑍𝑄) with the projectively equivalent (𝜆𝑃𝑋𝑃 , 𝜆𝑃𝑍𝑃) and (𝜆𝑄𝑋𝑄, 𝜆𝑄𝑍𝑄)
in (2), then (𝑋⊕ , 𝑍⊕) becomes ((𝜆𝑃𝜆𝑄)2𝑋⊕ , (𝜆𝑃𝜆𝑄)2𝑍⊕).
Similarly, writing (𝑋[2]𝑃 : 𝑌[2]𝑃 : 𝑍 [2]𝑃) for [2]𝑃, we can compute xDBL𝐴 using{

𝑋[2]𝑃 = 𝑅 · 𝑆 ,
𝑍 [2]𝑃 = 𝑇 · (𝑆 + 𝐴+2

4 𝑇)
where


𝑅 = (𝑋𝑃 + 𝑍𝑃)2 ,
𝑆 = (𝑋𝑃 − 𝑍𝑃)2 ,
𝑇 = 4𝑋𝑃 · 𝑍𝑃 = 𝑄 − 𝑅 .

(3)

If we replace (𝑋𝑃 , 𝑍𝑃) with (𝜆𝑃𝑋𝑃 , 𝜆𝑃𝑍𝑃) in (3), then (𝑋[2]𝑃 , 𝑍 [2]𝑃) becomes (𝜆4
𝑃
𝑋[2]𝑃 , 𝜆

4
𝑃
𝑍 [2]𝑃).

Algorithm 1 is the Montgomery ladder, which efficiently computes the map (𝑚, 𝑥(𝑃)) ↦→ 𝑥([𝑚]𝑃).

Algorithm 1: The Montgomery ladder on the 𝑥-line P1 under E𝐴 : 𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1)
Input: 𝐴 ∈ F𝑞 , 𝑚 =

∑𝛽−1
𝑖=0 𝑚𝑖2

𝑖 , and (𝑋𝑃 , 𝑍𝑃) ∈ F2
𝑞 with 𝑋𝑃𝑍𝑃 ≠ 0

Output: (𝑋𝑚, 𝑍𝑚) and (𝑋𝑚+1, 𝑍𝑚+1) in F𝑝 (𝑢)2 such that (𝑋𝑚 : 𝑍𝑚) = 𝑥([𝑚]𝑃) and
(𝑋𝑚+1 : 𝑍𝑚+1) = 𝑥([𝑚 + 1]𝑃) where 𝑃 is a point on E𝐴 with 𝑥(𝑃) = (𝑋𝑃 : 𝑍𝑃)

1 Function Ladder(𝐴, 𝑚, (𝑋𝑃 , 𝑍𝑃))
2 (R0,R1) ← ((1, 0), (𝑋𝑃 , 𝑍𝑃)) // (1 : 0) = 𝑥(0) and (𝑋𝑃 : 𝑍𝑃) = 𝑥(𝑃)
3 for 𝑖 in (𝛽 − 1, . . . , 0) do // Invariant: R0 = 𝑥([⌊𝑚/2𝑖⌋]𝑃) and R1 = 𝑥([⌊𝑚/2𝑖⌋ + 1]𝑃)
4 if 𝑚𝑖 = 0 then
5 (R0,R1) ← (xDBL𝐴(R0), xADD(R0,R1, (𝑋𝑃 , 𝑍𝑃))
6 else
7 (R0,R1) ← (xADD(R0,R1, (𝑋𝑃 , 𝑍𝑃)), xDBL𝐴(𝑅1))

8 return R0 and optionally R1 // R0 = 𝑥([𝑚]𝑃) and R1 = 𝑥([𝑚 + 1]𝑃)

3 ELEMENTARY SUPERSINGULARITY TESTS
We begin by considering the two supersingularity tests that have been proposed for use with CSIDH [4]. These

elementary tests are included as a point of reference when comparing performance with our new algorithms below;
for detailed discussion, see [4, §5 and §8].
The goal of these two tests is to try to exhibit a point of order 𝑁 | (𝑝 +1) with 𝑁 > 4√𝑝; then, the only multiple

of 𝑁 in the Hasse interval is 𝑝 + 1, so we can conclude that the curve has order 𝑝 + 1 and is therefore supersingular.

3

On the other hand, if we find a point whose order can be shown to not divide 𝑝 +1, then we can immediately declare
the curve ordinary. To efficiently determine (a divisor of) the order, we need to know the factorization of 𝑝 + 1,
which in the case of CSIDH is 4

∏𝑛
𝑖=1 ℓ𝑖 with the ℓ𝑖 very small.

Algorithm 2 proceeds in the simplest way: let 𝑢 be a random element of F𝑝 \ {0}. Now 𝑢 is the 𝑥-coordinate
of a point 𝑃 in E(F𝑝2), which has exponent 𝑝 + 1. For each of the primes ℓ𝑖 , we compute 𝑄𝑖 = [(𝑝 + 1)/ℓ𝑖]𝑃.

• If 𝑄𝑖 = 0, then we learn nothing from ℓ𝑖;

• if 𝑄𝑖 ≠ 0 but [ℓ𝑖]𝑄𝑖 = 0 then we know that ℓ𝑖 divides the order of 𝑃;

• if [ℓ𝑖]𝑄𝑖 ≠ 0 then the order of 𝑃 cannot divide 𝑝 + 1, so we know the curve is ordinary.
Once we have accumulated enough ℓ𝑖 that

∏
𝑖 ℓ𝑖 > 4√𝑝, we can stop and declare the curve supersingular.

Algorithm 2 is quite simple to follow and has low memory requirements, but its expected runtime is rather slow.
Indeed, each ℓ𝑖 that we treat entails two Ladder calls, with 𝑚 = (𝑝 +1)/ℓ𝑖 and ℓ𝑖 , and this adds up to approximately
the cost of a Ladder with 𝑚 = 𝑝 + 1. The asymptotic runtime is therefore 𝑂 (𝑛 log 𝑝) F𝑝-operations.
For amore concrete perspective: tominimise the total runtime before exceeding 4√𝑝 (or declaring ordinariness),

we treat the ℓ𝑖 from largest to smallest. If the curve is supersingular (which is the worst case for runtime), then we
will need a little under half of the ℓ𝑖; that is, we expect an effort equivalent of around 𝑛/2 full-length Ladder calls
over F𝑝 . Of course, in practice we can compute these point multiplications using precalculated optimal differential
addition chains, rather than the ladder, but this is only a small improvement.
It is possible, though extremely improbable for cryptographic-size 𝑝, for Algorithm 2 to fail and return⊥. (This

would imply that the random point has very small order.) If this happens, then we can simply re-run Algorithm 2
with a new random 𝑢.

Algorithm 2: Supersingularity testing for E/F𝑝 : 𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1) via random point multiplication [4,
Algorithm 1]. Assumes the factorization 𝑝 + 1 = 4

∏𝑛
𝑖=1 ℓ𝑖 is known, with ℓ𝑛 > · · · > ℓ1.

Input: 𝐴 ∈ F𝑝
Output: True or False or ⊥

1 Function IsSupersingular(𝐴)
2 𝑢 ← Random(F𝑝 \ {0})
3 𝑁 ← 1
4 for 𝑖 in (𝑛, . . . , 1) do
5 (𝑋, 𝑍) ← Ladder(𝐴, (𝑝 + 1)/ℓ𝑖 , (𝑢, 1))
6 (𝑋 ′, 𝑍 ′) ← Ladder(𝐴, ℓ𝑖 , (𝑋, 𝑍))
7 if 𝑍 ′ ≠ 0 then
8 return False
9 if 𝑍 ≠ 0 then

10 𝑁 ← 𝑁 · ℓ𝑖
11 if 𝑁 > 4√𝑝 then
12 return True

13 return ⊥

Algorithm 3 is a simple version of Algorithm 2 exploiting the fact that the various scalar multiplications are
products of the same small primes, so we can compute them more efficiently using a classic product-tree structure.
The algorithm proposed in [4, §8] traverses the product tree breadth-first. Algorithm 3, which is essentially
the algorithm currently used in the CSIDH and CTIDH reference implementations, does this depth-first instead,
handling the leaves corresponding to the largest ℓ𝑖 first (the depth-first approach saves a lot of memory, and a little
time too).
The product-tree approach is essentially a space-time tradeoff: we mutualise much of the effort of the scalar

multiplications in the basic Algorithm 2, at the cost of storing the internal nodes of the product tree on the path
to the current leaf. The depth of the tree is ⌈log2 𝑛⌉, so we have an asymptotic time complexity of 𝑂 (𝑘 log 𝑛)
F𝑝-operations and a space complexity of 𝑂 (log 𝑛) F𝑝-elements.

Remark 1. We warn the reader that the tests in this section do not work, or generalise, for elliptic curves over F𝑝2 :
supersingular curves over F𝑝2 do not have points of sufficiently large order to conclude on the group order.

4

Efficient supersingularity testing over F𝑝 and CSIDH key validation

Algorithm 3: Supersingularity testing for E/F𝑝 : 𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1) via random point multiplication
with an implicit product tree. Assumes the factorization 𝑝 + 1 = 4

∏𝑛
𝑖=1 ℓ𝑖 is known.

Input: 𝐴 ∈ F𝑝
Output: True or False

1 Function IsSupersingular(𝐴)
2 Function OrderRec(𝐴, (𝑋𝑄, 𝑍𝑄), 𝐿,𝑈, 𝑚)
3 if 𝑈 − 𝐿 = 1 then // At this point, 𝑄 = [(𝑝 + 1)/ℓ𝑈]𝑃
4 if 𝑍𝑄 = 0 then // In this case, we learn nothing
5 return 𝑚
6 (𝑋𝑄, 𝑍𝑄) ← Ladder(𝐴, ℓ𝑈 , (𝑋𝑄, 𝑍𝑄))
7 if 𝑍𝑄 = 0 then // ℓ𝑈 divides the order of 𝑃
8 return ℓ𝑈 · 𝑚
9 else // [𝑝 + 1]𝑃 ≠ 0: not supersingular!

10 return 0

11 (𝑋𝐿 , 𝑍𝐿) ← Ladder(𝐴,
∏ ⌊ (𝑈+𝐿)/2⌋
𝑖=𝐿+1 ℓ𝑖 , (𝑋𝑄, 𝑍𝑄))

12 𝑚 ← OrderRec(𝐴, (𝑋𝐿 , 𝑍𝐿), ⌊(𝑈 + 𝐿)/2⌋,𝑈, 𝑚)
13 if 𝑚 > 4√𝑝 then
14 return 𝑚
15 (𝑋𝑅, 𝑍𝑅) ← Ladder(𝐴,

∏𝑅
𝑖= ⌊ (𝑈+𝐿)/2+1⌋ ℓ𝑖 , (𝑋𝑄, 𝑍𝑄))

16 𝑚 ← OrderRec(𝐴, (𝑋𝑅, 𝑍𝑅), 𝐿, ⌊(𝑈 + 𝐿)/2⌋, 𝑚)
17 return 𝑚
18 𝑢 ← Random(F𝑝)
19 𝑚 ← OrderRec(𝐴, (4𝑢, 1), 0, 𝑛, 1)
20 if 𝑚 = 0 then
21 return False
22 else if 𝑚 > 4√𝑝 then
23 return True
24 else
25 return ⊥

4 ISOGENY VOLCANOES AND SUTHERLAND’S TEST
Our first non-elementary supersingularity test is Sutherland’s algorithm [22], which actually detects supersin-

gularity over F𝑝2 . As such, we will need a slightly more evolved perspective on supersingularity before describing
the algorithm. The facts stated here without proof are all covered in [21] (for supersingularity), and [15] and [13]
(for isogeny graphs and volcanoes).

4.1 SUPERSINGULARITY IN GENERAL
Let E : 𝑦2 = 𝑥3 + 𝑎2𝑥

2 + 𝑎4𝑥 + 𝑎6 be an elliptic curve over F𝑝𝑒 , and let 𝜋 : (𝑥, 𝑦) ↦→ (𝑥𝑝𝑒 , 𝑦𝑝𝑒) be the 𝑝𝑒-power
Frobenius endomorphism. Like all endomorphisms, 𝜋 satsifies a quadratic characteristic polynomial in the form

𝜒𝜋 (𝑋) = 𝑋2 − 𝑡𝑋 + 𝑝𝑒 .

The integer 𝑡 is called the trace of Frobenius, or simply the trace of E; Hasse’s theorem tells us that |𝑡 | ≤ 2𝑝𝑒/2.
Since the F𝑝𝑒 -rational points of E are precisely the points fixed by 𝜋, we have

#E(F𝑝𝑒) = 𝜒𝜋 (1) = 𝑝𝑒 − 𝑡 + 1 .

We say that E is supersingular if 𝑝 | 𝑡; otherwise, E is ordinary. (In particular, in the case 𝑒 = 1, Hasse’s
theorem implies that E is supersingular if and only if 𝑡 = 0, if and only if #E(F𝑝) = 𝑝 + 1.) Equivalently, E is
supersingular if E[𝑝𝑟] (F𝑝) = 0 for all 𝑟 > 0; for ordinary curves, E[𝑝𝑟] (F𝑝) � Z/𝑝𝑒Z.
If E is supersingular, then its multiplication-by-𝑝 endomorphism [𝑝] is purely inseparable, hence isomorphic to

the 𝑝2-power Frobenius isogeny, which is therefore isomorphic to an endomorphism. Hence, if E is supersingular,
then the 𝑗-invariant of E must be in F𝑝2 , and E is F𝑝𝑒 -isomorphic to a supersingular curve over F𝑝2 . Thus,
supersingularity testing over F𝑝𝑒 reduces immediately to supersingularity testing over F𝑝2 .

5

The ring Z[𝜋] forms a subring of the endomorphism ring End(E). If E is ordinary, then End(E) is an order in
the quadratic imaginary field Q(𝜋) � Q(

√︁
𝑡2 − 4𝑝𝑒). If E is supersingular, then End(E) is a maximal order in a

quaternion algebra ramified at 𝑝 and∞.

4.2 2-ISOGENY GRAPHS
An isogeny 𝜙 : E → E ′, is a non-zero morphism of elliptic curves. We say 𝜙 is a 𝑑-isogeny if the associated

extension of function fields has degree 𝑑 (we are only concerned with 2-isogenies in this paper).
If 𝜙 : E → E ′ is a 𝑑-isogeny, then there exists a dual 𝑑-isogeny 𝜙 : E ′→ E. The composition of two isogenies

is another isogeny, and every elliptic curve has an isogeny to itself (the identity map, for example). Isogeny is
therefore an equivalence relation: the set of all elliptic curves over F𝑝𝑒 decomposes into isogeny classes. Isogenous
curves have the same trace; in particular, supersingularity is preserved by isogeny.
The 2-isogeny graph of elliptic curves over F𝑝2 is the graph whose vertices are isomorphism classes of elliptic

curves over F𝑝2 , and where there is an edge between two vertices corresponding to (the isomorphism class of) each
2-isogeny between elliptic curves representing the vertices. While this graph is technically directed, away from the
vertices of 𝑗-invariant 0 and 1728 it behaves exactly like an undirected graph.
The 2-isogeny graphs containing ordinary and supersingular curves have very different structures.
• The 2-isogeny graph of supersingular curves over F𝑝2 is a connected 3-regular graph.

• The 2-isogeny graph of ordinary curves over F𝑝2 decomposes into a set of volcanoes, each formed by a
(possibly trivial) cycle whose vertices form the roots of a forest of regular binary trees, all of the same height.

Figure 1 illustrates an example of a 2-isogeny volcano. Following the terminology of [13], the cycle (at the top) is
called the crater, and the leaves of the trees form the floor.

Figure 1: Example isogeny volcano.

As shown in [15], the volcano structure can be interpreted in terms of endomorphism rings. Let E/F𝑝2 be
an ordinary curve representing a vertex in a 2-isogeny volcano, let 𝑡 be the trace of E, and let Δ := 𝑡2 − 4𝑝2;
then the algebra Q(𝜋) generated by the Frobenius endomorphism 𝜋 is isomorphic to the quadratic imaginary field
𝐾 := Q(

√
Δ). Let Δ0 be the fundamental discriminant of Δ, so Δ = 𝑐2Δ0 for some 𝑐 > 0, which is the conductor

(or index) of Z[𝜋] in the maximal order O𝐾 of 𝐾 .
Now, if E is on the crater, then End(E) ⊗ Z2 � O𝐾 ⊗ Z2; if E is on the floor, then End(E) ⊗ Z2 � Z[𝜋] ⊗ Z2.

In between, if E is 𝑑 levels down from the crater, then End(E) ⊗ Z2 has index 2𝑑 in O𝐾 ⊗ Z2; that is, the level 𝑑
gives the 2-valuation of the conductor of End(E) in O𝐾 . The height ℎ of the volcano is therefore bounded by the
2-valuation of 𝑐, which can never be greater than log2 (

√︁
|𝑡2 − 4𝑝2 |) ≤ log2 (

√︁
4𝑝2) = log2 𝑝 + 1.

4.3 SUPERSINGULARITY TESTING WITH ISOGENY VOLCANOES
Sutherland’s supersingularity test [22] determines the supersingularity of an elliptic curve E/F𝑝2 by exploring

the 2-isogeny graph around E and determining whether it is a volcano or not. If it is, then E must be ordinary;
otherwise, it is supersingular.
We explore the graph using modular polynomials. The (classical) modular polynomial of level 2 is

Φ2 (𝐽1, 𝐽2) = 𝐽3
1 + 𝐽

3
2 − 𝐽

2
1 𝐽

2
2 + 1488(𝐽2

1 𝐽2 + 𝐽1𝐽
2
2) − 162000(𝐽2

1 + 𝐽
2
2)

+ 40773375𝐽1𝐽2 + 8748000000(𝐽1 + 𝐽2) − 157464000000000 .

6

Efficient supersingularity testing over F𝑝 and CSIDH key validation

This polynomial has the property that

there exists a 2-isogeny E1 → E2 ⇐⇒ Φ2 (𝑗 (E1), 𝑗 (E2)) = 0 .

Hence, given a vertex 𝑗 (E) in the 2-isogeny graph, we can compute its neighbours by computing the roots of the
cubic polynomial Φ2 (𝑗0, 𝑋) in F𝑝2 .
Algorithm 4 is Sutherland’s algorithm for curves E/F𝑝2 . We start three non-backtracking walks in the graph

from the vertex of E. If the graph is a volcano, then one of the walks must head towards the floor; if we find the
floor (that is, a vertex with only one neighbour), then we can declare the curve ordinary. On the other hand, we
know the maximal distance to the floor, if it exists; so if no walk finds the floor in less than log2 𝑝 + 1 steps, then
we can declare the curve supersingular.
Initialising the three walks requires factoring the cubic Φ2 (𝑗 (E), 𝑋). In every proceeding step, we can avoid

backtracking by dividing the evaluated modular polynomial by 𝑋 − 𝑗 ′, where 𝑗 ′ is the 𝑗-invariant of the previous
vertex. Therefore, each subsequent step in a walk requires factoring only a quadratic, which can be done easily via
the quadratic formula; the cost of each step is therefore dominated by the computation of a square root in F𝑝2 .

Algorithm 4: Sutherland’s supersingularity test for elliptic curves over F𝑝2 .
Input: 𝑗 ∈ F𝑝2 (the 𝑗-invariant of an elliptic curve E/F𝑝2)
Output: True or False

1 Function IsSupersingular(𝑗)
2 Φ← ClassicalModularPolynomial(2) mod 𝑝 // Φ(𝑋,𝑌) ∈ F𝑝 [𝑋,𝑌]
3 𝑓 ← Evaluate(Φ, (𝑗 , 𝑋)) // 𝑓 (𝑋) ∈ F𝑝2 [𝑋], degree 3
4 𝐽 ← Roots(𝑓 , F𝑝2) // Roots may be repeated

5 if #𝐽 < 3 then
6 return False
7 (𝑗1, 𝑗2, 𝑗3) ← 𝐽

8 (𝑗 ′1, 𝑗
′
2, 𝑗
′
3) ← (𝑗 , 𝑗 , 𝑗)

9 for 0 ≤ 𝑠 ≤ ⌊log2 𝑝⌋ do // 2-isogeny walk steps
10 for 1 ≤ 𝑖 ≤ 3 do // Three parallel walks
11 𝑓𝑖 ← Evaluate(Φ, (𝑗𝑖 , 𝑋)) // 𝑓𝑖 (𝑋) ∈ F𝑝2 [𝑋], degree 3
12 𝑓𝑖 ← 𝑓𝑖/(𝑋 − 𝑗 ′𝑖) // No backtracking
13 𝐽𝑖 ← Roots(𝑓𝑖 , F𝑝2) // Roots may be repeated

14 if #𝐽𝑖 ≠ 2 then // We have hit the volcano floor
15 return False
16 (𝑗𝑖 , 𝑗 ′𝑖) ← (Random(𝐽𝑖), 𝑗𝑖) // Next step

17 return True

4.4 AN IMPROVED VOLCANO TEST FOR CURVES OVER PRIME FIELDS
Sutherland suggests a speed-up for the case that the given curve is defined over F𝑝—which is exactly the CSIDH

setting. The key fact is that if we consider the subgraph of the supersingular 2-isogeny graph supported on vertices
with 𝑗-invariants in F𝑝 , then this part looks like a particularly stumpy volcano:2 that is, it consists of a cycle, with
descending trees of height at most 1 (see [11] for a detailed treatment of this graph). When we allow vertices
over F𝑝2 , then we obtain the usual complete 3-regular graph. On the other hand, if E/F𝑝 is an ordinary curve, then
it is in the upper part of the volcano of curves over F𝑝2 , because the ring generated by the 𝑝2-power Frobenius is
(obviously) a subring of the ring generated by the 𝑝-power Frobenius.
Using these facts, when running Sutherland’s algorithm from a vertex in F𝑝 , the “descending” path can quickly

be determined: as soon as we encounter a 𝑗-invariant in F𝑝2 (which, in the supersingular case, will happen within
two steps) we know that this is the only possibility for a “descending” walk, so we can continue that walk and stop
the two others. This simple modification translates into a rough 3× speedup when the input is in F𝑝 .
In fact, we can do even better. Sutherland bounds the length of a maximal descending walk by log2 𝑝 +1, which

is the maximum height of the 2-isogeny volcano containing any ordinary curve over F𝑝2 . But as we noted above,

2In fact, this description corresponds to the graph whose vertices correspond to F𝑝-isomorphism classes of supersingular curves over F𝑝 ;
using 𝑗-invariants corresponds to quotienting this structure by the involution mapping each curve to its quadratic twist, but in practice this
makes no difference to the operation or correctness of the algorithm.

7

when working with curves defined over F𝑝 , we can quickly step into the F𝑝2 -part of the 2-isogeny graph, and then
continue there. Lemma 1 shows that the length of a “descending” walk in the F𝑝2 -part of the graph is bounded by
1
2 log2 𝑝 + 1: that is, essentially half of Sutherland’s bound. Combined with the modification above, this yields a
≈ 6× speedup over the general algorithm.

Lemma 1. Let E be an ordinary elliptic curve over F𝑝 . The height of the F𝑝2 -part of the 2-isogeny volcano
containing E is at most 1

2 ⌊log2 𝑝⌋ + 1.

Proof. Let 𝜋𝑝 be the 𝑝-power Frobenius endomorphism of E, and 𝑡𝑝 its trace. The height of the F𝑝2 -part of the
2-isogeny volcano containing E is the 2-valuation of the conductor of Z[𝜋2

𝑝] in Z[𝜋𝑝]. The discriminants of Z[𝜋𝑝]
and Z[𝜋2

𝑝] are Δ1 = 𝑡2𝑝 − 4𝑝 and Δ2 = (𝑡2𝑝 − 2𝑝)2 − 4𝑝2 = 𝑡2𝑝Δ1, respectively, so the relative conductor is |𝑡𝑝 |. But
|𝑡𝑝 | < 2√𝑝 by Hasse’s theorem; hence, the 2-valuation of |𝑡𝑝 | is bounded above by log2 (2

√
𝑝) = 1

2 log2 𝑝 + 1. □

Our second improvement is to streamline the isogeny step computations. Rather than computing roots of
evaluations of the classical modular polynomial Φ2, we can use Lemma 2 to compute explicit 2-isogenies.

Lemma 2. Let E/F𝑝2 be an elliptic curve defined by an equation 𝑦2 = 𝑥(𝑥2 + 𝑎2𝑥 + 𝑎4). Set 𝐷 := 𝑎2
2 − 4𝑎4, and

choose a square root 𝛿 :=
√
𝐷 in F𝑝 . Then 𝛼 := −(𝑎2 − 𝛿)/2 is a root of 𝑥2 + 𝑎2𝑥 + 𝑎4, there is a quotient isogeny

𝜑 : E −→ E/⟨(𝛼, 0)⟩ � E ′ : 𝑦2 = 𝑥(𝑥2 + 𝑎′2𝑥 + 𝑎
′
4) where

{
𝑎′2 = 𝑎2 − 3𝛿 ,
𝑎′4 = 𝑎2 (𝑎2 + 𝛿)/2 − 𝑎4

(4)

defined over F𝑝2 (𝛿), and the kernel of its dual isogeny 𝜑 is generated by (0, 0).

Proof. Follows on composing the normalized 2-isogeny given by Vélu’s formulæ (see [23] or [15, §2.4]) with the
map (𝑥, 𝑦) ↦→ (𝑥 + 𝛿, 𝑦). □

We can now define our variant of Sutherland’s algorithm. The subroutine SqrtFp2, given 𝛼 in F𝑝2 (or F𝑝),
returns a square root of 𝛼 in F𝑝2 if one exists, or ⊥ if not. When 𝑝 ≡ 3 (mod 4)—as in CSIDH, and many other
isogeny-based cryptosystems—we can use the efficient arithmetic for F𝑝2 from Appendix A.

Algorithm 5:Modified Sutherland supersingularity test for Montgomery curves over F𝑝 .
Input: 𝐴 ∈ F𝑝
Output: True or False

1 Function IsSupersingular(𝐴)
2 if 𝑝 . 3 (mod 4) then // No supersingular curve over F𝑝 has a Montgomery model
3 return False
4 if 𝐴 = 0 then // 𝑗-invariant 1728: always supersingular when 𝑝 ≡ 3 (mod 4)
5 return True
6 (𝑎2, 𝐷) ← (𝐴, 𝐴2 − 4)
7 𝛿← SqrtFp2(𝐷) // 𝐷 is in F𝑝, so 𝛿 cannot be ⊥
8 if 𝛿 ∈ F𝑝 then // 𝐷 is a square in F𝑝
9 return False

10 for 0 ≤ 𝑖 ≤ 1
2 ⌊log2 𝑝⌋ + 1 do

11 (𝑎2, 𝐷) ← (𝑎2 − 3𝛿, 8(𝐷 − 𝛿 · 𝑎2))
12 𝛿← SqrtFp2(𝐷)
13 if 𝛿 = ⊥ then // 𝐷 is not a square in F𝑝2

14 return False

15 return True

Proposition 1. Given a Montgomery coefficient 𝐴 in F𝑝 corresponding to an elliptic curve E𝐴 : 𝑦2 = 𝑥(𝑥2+𝐴𝑥+1),
Algorithm 5 returns True if and only if E is supersingular. It requires 𝑂 (log2 𝑝) F𝑝-operations (in the worst case,
which is when E is supersingular) and 𝑂 (1) F𝑝-elements worth of space.

Proof. First, recall that everyMontgomery model has cardinality divisible by 4, and therefore aMontgomery model
can only be supersingular if 𝑝 ≡ 3 (mod 4) (since otherwise 4 ∤ (𝑝 + 1)). We can immediately dispose of the
special case 𝐴 = 0: this curve has 𝑗-invariant 0, and is always supersingular when 𝑝 ≡ 3 (mod 4).

8

Efficient supersingularity testing over F𝑝 and CSIDH key validation

For the general case where 𝐴 ≠ 0, let 𝛼 and 1/𝛼 be the roots of 𝑥2 + 𝐴𝑥 + 1 in F𝑝2 . Having a Montgomery
model implies that E𝐴 is on the floor of the F𝑝-volcano [4, Prop. 8]; there is only one F𝑝-rational 2-isogeny (its
kernel is (0, 0)), and this isogeny must be ascending. In particular, if E𝐴 is supersingular then 𝑥2 + 𝐴𝑥 + 1 can have
no roots in F𝑝; hence, if 𝐴2 − 4 is a square in F𝑝 , then E𝐴 is ordinary and we can return False at Line 9.
Otherwise, Lemma 2 shows that we can continue with a non-backtracking walk into the F𝑝2 -part of the 2-

isogeny graph by iterating the mapping (𝑎2, 𝐷 = 𝑎2
2 − 4𝑎4) ↦→ (𝑎′2, 𝐷

′ = (𝑎′2)
2 − 4𝑎′4) defined by (4), starting with

(𝑎2, 𝐷) = (𝐴, 𝐴2 − 4). The F𝑝2 -rationality of each step depends on whether or not 𝐷 is a square in F𝑝2 ; the choice
between each pair of descending isogenies is made arbitrarily, according to which of the two square roots is returned
by SqrtFp2. Algorithm 5 repeats this process until we either hit the floor of F𝑝2 -rationality and conclude that E𝐴
is ordinary, or go beyond the maximal path length specified by Lemma 1 and conclude that E𝐴 is supersingular.
Algorithm 5 is therefore correct. It requires (in the worst case) one square root in F𝑝 and 1

2 log2 𝑝 + 2 iterations
of a loop consisting of a square root in F𝑝2 plus a handful of F𝑝2 -operations. Each square root costs 𝑂 (log 𝑝)
F𝑝-operations using the Tonelli–Shanks algorithm, so we have a total complexity of 𝑂 (log2 𝑝) F𝑝-operations. □

5 DIVISION POLYNOMIALS AND DOLISKANI’S TEST
Doliskani gives an interesting probabilistic supersingularity test in [12], based on Polynomial Identity Testing

and properties of division polynomials. To the best of our knowledge, this algorithm has not yet been used in
practice. Wewill provide some important algorithmic improvements that will ultimatelymake this themost efficient
of our supersingularity tests.

5.1 DIVISION POLYNOMIALS AND SUPERSINGULARITY
Recall that that for 𝑚 ≥ 0, the 𝑚-th division polynomial 𝜓E,𝑚 of an elliptic curve E satisfies

𝜓E,𝑚 (𝑥(𝑃), 𝑦(𝑃)) = 0 ⇐⇒ 𝑃 ∈ E[𝑚] \ {0} .

For E : 𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1), the first few division polynomials are

𝜓E,0 = 0 , 𝜓E,1 = 1 , 𝜓E,2 = 2𝑦 ,

then (for Montgomery models)

𝜓E,3 = 3𝑥4 + 4𝐴𝑥3 + 6𝑥2 − 1 , 𝜓E,4 = 4𝑦(𝑥2 − 1) (𝑥4 + 2𝐴𝑥3 + 6𝑥2 + 2𝐴𝑥 + 1) .

The higher-degree polynomials satisfy the standard recurrences

𝜓E,2𝑚 = (𝜓2
E,𝑚−1𝜓E,𝑚𝜓E,𝑚+2 − 𝜓E,𝑚−2𝜓E,𝑚𝜓

2
E,𝑚+1)/𝜓E,2 for 𝑚 ≥ 3 , (5)

𝜓E,2𝑚+1 = 𝜓3
E,𝑚𝜓E,𝑚+2 − 𝜓E,𝑚−1𝜓

3
E,𝑚+1 for 𝑚 ≥ 2 . (6)

We see that 𝜓2
E,𝑚 is a polynomial in F𝑝 [𝐴] [𝑥] for any 𝑚 > 0, and indeed 𝜓E,𝑚 is in F𝑝 [𝐴] [𝑥] for odd 𝑚.

Lemma 3. The 𝑝-th division polynomial satisfies 𝜓E, 𝑝 (𝑥) = 𝜓E, 𝑝 (𝑥) 𝑝 where 𝜓E, 𝑝 (𝑥) is either a polynomial of
degree (𝑝 − 1)/2 if E is ordinary, or ±1 if E is supersingular. In particular,

𝜓2
E, 𝑝 (𝑥) = 1 ⇐⇒ E is supersingular.

Proof. See Theorem 3.1 and Propositions 3.3 and 3.4 of [14] (where the sign in the ±1 for the supersingular case
is made completely explicit, though we only need the fact that 𝜓2

E, 𝑝 (𝑥) = 1 here). □

Example 1. Let E : 𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1) be the generic Montgomery model over F7 (𝐴). We find

𝜓E,7 (𝑥) = 𝜓E,7 (𝑥)7 where 𝜓E,7 (𝑥) = 𝐴(𝐴2 − 1)
(
𝑥3 − 𝐴(𝐴2 − 2)𝑥2 + 2(𝐴2 + 1)𝑥

)
− 1 .

In particular, if 𝐴 ∈ {−1, 0, 1} then 𝜓E,7 = −1 and E is supersingular; otherwise, deg𝜓E,7 = 3 and E is ordinary.

Doliskani’s test applies basic Polynomial Identity Testing to check the supersingularity criterion of Lemma 3.
The algorithm presented in [12] samples a uniformly random 𝑢 in F𝑝2 , and computes 𝜓E, 𝑝 (𝑢)2 as 𝜓E, 𝑝 (𝑢)2. If
this yields 𝜓E, 𝑝 (𝑢) = 1, then the Schwartz–Zippel lemma (see e.g. [19]) tells us that 𝜓2

E, 𝑝 (𝑥) = 1, and E is
supersingular, with probability 1 − (deg𝜓E, 𝑝)/#F𝑝2 = 1 − ((𝑝 − 1)/2)/𝑝2 ≈ 1 − 1/2𝑝.

9

5.2 EFFICIENT EVALUATION OF DIVISION POLYNOMIALS
To evaluate 𝜓E, 𝑝 (𝑢), Doliskani proposes an algorithm based on the standard recurrences of (5) and (6), which

resembles a vectorial addition chain where the vector tracks the values of nine consecutively-indexed division
polynomials. This algorithm seems to be folklore, but Cheng gives a detailed analysis in [6].
We can significantly improve the efficiency of division polynomial evaluation by using the link between division

polynomials and scalar multiplication. Recall that

[𝑚] (𝑥, 𝑦) =
(
𝜙E,𝑚 (𝑥)
𝜓E,𝑚 (𝑥)2

,
𝜔E,𝑚 (𝑥, 𝑦)
𝜓E,𝑚 (𝑥)3

)
where 𝜙E,𝑚 (𝑥) := 𝑥𝜓E,𝑚 (𝑥)2 − 𝜓E,𝑚+1 (𝑥)𝜓E,𝑚−1 (𝑥) (7)

and 𝜔E,𝑚 (𝑥, 𝑦) = (4𝑦)−1 (𝜓E,𝑚+2 (𝑥)𝜓2
E,𝑚−1 (𝑥) − 𝜓E,𝑚−2 (𝑥)𝜓2

E,𝑚+1 (𝑥)
)
(though we will not need 𝜔𝑚 in what

follows). Hence, if (𝑢 : 𝑣 : 1) is a point on E𝐴 and we use the Montgomery ladder to compute the (𝑋, 𝑍)-
coordinates of [𝑝] (𝑢 : 𝑣 : 1), then (7) tells us that the 𝑋 and 𝑍 coordinates are 𝜙E, 𝑝 (𝑢) and 𝜓2

E, 𝑝 (𝑢), respectively,
up to a common projective factor—which we can predict and remove. Proposition 2 makes this explicit for
general 𝑚.

Proposition 2. On input 𝐴, 𝑚, and (𝑥, 1), Algorithm 1 (the Montgomery ladder) returns

(𝑋𝑚, 𝑍𝑚) = (𝜙E,𝑚 (𝑥) · 𝑓𝑚 (𝑥), 𝜓2
E,𝑚 (𝑥) · 𝑓𝑚 (𝑥)) where 𝑓𝑚 (𝑥) := (4𝑥)𝑚(2len(𝑚)−𝑚) . (8)

Proof. Let 𝑃 be a point on E𝐴 with 𝑥-coordinate 𝑥 ≠ 0. We saw in §2 that Ladder(𝐴, 𝑚, (𝑥, 1)) returns
R0 = (𝑋𝑚, 𝑍𝑚) and R1 = (𝑋𝑚+1, 𝑍𝑚+1) such that 𝑋𝑚/𝑍𝑚 = 𝑥([𝑚]𝑃) and 𝑋𝑚+1/𝑍𝑚+1 = 𝑥([𝑚 + 1]𝑃), so (7)
implies

R0 = (𝑋𝑚, 𝑍𝑚) =
(
𝜙E,𝑚 (𝑥) · 𝑓𝑚 (𝑥), 𝜓2

E,𝑚 (𝑥) · 𝑓𝑚 (𝑥)
)
,

R1 = (𝑋𝑚+1, 𝑍𝑚+1) =
(
𝜙E,𝑚+1 (𝑥) · 𝑔𝑚 (𝑥), 𝜓2

E,𝑚+1 (𝑥) · 𝑔𝑚 (𝑥)
)

for some projective factors 𝑓𝑚 (𝑥) and 𝑔𝑚 (𝑥). We claim that

𝑓𝑚 (𝑥) = (4𝑥)𝐹𝑚 and 𝑔𝑚 (𝑥) = (4𝑥)𝐺𝑚 where

{
𝐹𝑚 := 𝑚(2len(𝑚) − 𝑚) ,
𝐺𝑚 := (𝑚 + 1) (2len(𝑚) − (𝑚 + 1)) .

(9)

We proceed by induction. First, the base case: on input (𝐴, 1, (𝑥, 1)), Algorithm 1 outputs

R0 = (4𝑥2, 4𝑥) = (𝜙E𝐴,1 (𝑥) · 4𝑥, 𝜓E,1 (𝑥) · 4𝑥) ,
R1 = (𝑥4 − 2𝑥2 + 1, 4𝑥3 + 4𝐴𝑥2 + 4𝑥) = (𝜙E,2 (𝑥) · 1, 𝜓2

E,2 (𝑥) · 1) ,

which is exactly (9) with 𝑚 = 1. For the inductive step: looking at the differential addition and doubling formulæ
in (2) and (3), respectively, we see that the projective factors are defined by mutually recursive relationships:

𝑓2𝑚 (𝑥) = 𝑓 4
𝑚 (𝑥) , 𝑓2𝑚+1 (𝑥) = 𝑔2𝑚 (𝑥) = 4𝑥 𝑓 2

𝑚 (𝑥)𝑔2
𝑚 (𝑥) , 𝑔2𝑚+1 (𝑥) = 𝑔4

𝑚 (𝑥) . (10)

Substituting (9) into (10), it suffices to show that

𝐹2𝑘 = 4𝐹𝑘 , 𝐺2𝑘 = 2𝐹𝑘 + 2𝐺𝑘 + 1 = 𝐹2𝑘+1 , and 𝐺2𝑘+1 = 4𝐺𝑘 .

Noting that len(2𝑘) = len(𝑘) + 1, we find that

𝐹2𝑘 = 2𝑘 (2len(2𝑘) − 2𝑘) = 2𝑘 (2 · 2len(𝑘) − 2𝑘) = 4𝑘 (2len(𝑘) − 𝑘) = 4𝐹𝑘

and similarly

𝐺2𝑘+1 = (2𝑘 + 2) (2len(2𝑘) − (2𝑘 + 2)) = 2(𝑘 + 1) (2 · 2len(𝑘) − 2(𝑘 + 1)) = 4(𝑘 + 1) (2len(𝑘) − (𝑘 + 1)) = 4𝐺𝑘 .

Since 𝐹2𝑘+1 = 𝐺2𝑘 by definition, it remains to show that 𝐺2𝑘 = 2𝐹𝑘 + 2𝐺𝑘 + 1, and indeed

𝐺2𝑘 = (2𝑘 + 1) (2len(2𝑘) − (2𝑘 + 1))
= (2𝑘 + 1) (2 · 2len(𝑘) − 2𝑘) − 2𝑘 − 1

= 2𝑘 (2len(𝑘) − 𝑘) + 2(𝑘 + 1) (2len(𝑘) − (𝑘 + 1)) + 1
= 2𝐹𝑘 + 2𝐺𝑘 + 1 ,

as required. □

10

Efficient supersingularity testing over F𝑝 and CSIDH key validation

When 𝑚 = 𝑝, we can use the fact that 𝛼𝑝 = 𝛼 for 𝛼 in F𝑝 to replace (8) with the simpler formula

𝑓𝑝 (𝑢) = (4𝑢̄)2
len(𝑝) /(4𝑢) where 𝑢̄ = 𝑢𝑝 . (11)

If 𝑝 ≡ 3 (mod 4) and we realise F𝑝2 as F𝑝 (𝑖), then 𝑎 + 𝑏𝑖 = 𝑎 − 𝑏𝑖, so computing 𝑢̄ = 𝑢𝑝 is almost free.
Computing 𝜓2

E,𝑚 (𝑢) using Proposition 2 requires ≈ 19 len(𝑚) arithmetic operations (each bit of 𝑚 requires
one 18-operation ladder step, plus one squaring in the final exponentiation). This compares very favourably with
Cheng’s algorithm, which requires ≈ 72 len(𝑚) operations to compute 𝜓E,𝑚 (𝑢), and more storage (see [6, §4]).

5.3 DOLISKANI’S TEST REVISITED
Doliskani’s original test from [12] samples a value 𝑢 uniformly at random from F𝑝2 , and returns True if

and only if 𝜓E, 𝑝+1 (𝑢)𝜓E, 𝑝−1 (𝑢) = 0 and 𝜓2
E, 𝑝 (𝑢) = 1. Algorithm 6 combines Doliskani’s test with our efficient

algorithm for evaluating division polynomials. Remarkably, we can replace the computation of𝜓2
E, 𝑝 (𝑢), 𝜓E, 𝑝+1 (𝑢),

and 𝜓E, 𝑝−1 (𝑢) with a single application of the Montgomery ladder over F𝑝2 .

Algorithm 6: Doliskani’s PIT supersingularity test with fast ladder-based division polynomial evaluation
Input: 𝐴 ∈ F𝑝
Output: True or False

1 Function IsSupersingular(𝐴)
2 𝑢 ← Random(F𝑝2 \ {0})
3 (𝑋𝑝 , 𝑍𝑝) ← Ladder(𝐴, 𝑝, (𝑢, 1))
4 if 𝑋𝑝 ≠ 𝑢 · 𝑍𝑝 then // Order of (𝑢 : ∗ : 1) does not divide 𝑝 ± 1
5 return False

6 if 4𝑢 · 𝑍𝑝 = (4𝑢̄)2len(𝑝) then // Polynomial Identity Testing: 𝑍𝑝 = 𝜓2
E, 𝑝 (𝑢) 𝑓𝑝 (𝑢)

7 return True
8 else
9 return False

Proposition 3. Let 𝐴 in F𝑝 be the Montgomery coefficient of an elliptic curve E𝐴 : 𝑦2 = 𝑥(𝑥2 + 𝐴𝑥 + 1).
• If E𝐴 is supersingular, then Algorithm 6 returns True.

• If E𝐴 is ordinary, then Algorithm 6 returns True with probability 1/(2𝑝 + 2), and False otherwise.
Algorithm 6 requires one random element of F𝑝2 , 𝑂 (log 𝑝) F𝑝-operations and 𝑂 (1) F𝑝-elements worth of space.

Proof. As mentioned above, Doliskani’s test samples 𝑢 uniformly at random from F𝑝2 , and returns True if and
only if 𝜓E, 𝑝+1 (𝑢)𝜓E, 𝑝−1 (𝑢) = 0 and 𝜓2

E, 𝑝 (𝑢) = 1. We make a small change here, requiring 𝑢 ≠ 0 to ensure that
the Montgomery ladder returns valid output on input (𝑢, 1).
Let 𝑣 ∈ F𝑝4 be such that 𝑃 = (𝑢 : 𝑣 : 1) is a point in E𝐴(F𝑝4). If E𝐴/F𝑝 is supersingular, then E𝐴(F𝑝4) �

(Z/(𝑝2 − 1)Z)2, so the condition 𝜓E, 𝑝+1 (𝑢)𝜓E, 𝑝−1 (𝑢) = 0 amounts to checking that 𝑃 has order dividing 𝑝2 − 1.
But we can equivalently check that [𝑝]𝑃 = ±𝑃, which is what Line 4 does.
It remains to check that 𝜓2

E, 𝑝 (𝑢) = 1, which holds if and only if 𝜓2
E, 𝑝 (𝑢̄) = 1. The probability that 𝜓2

E, 𝑝 (𝑢̄) = 1
while 𝜓E, 𝑝 (𝑥) ≠ ±1 (that is, while E𝐴 is ordinary) is deg𝜓E, 𝑝/#(F𝑝2 \ {0}) = ((𝑝 − 1)/2)/(𝑝2 − 1) = 1/(2𝑝 + 2)
by the Schwartz–Zippel lemma. We compute 𝜓2

E, 𝑝 (𝑢) using Proposition 2 and (11). This requires one application
of the Montgomery ladder over F𝑝2 with a scalar of length len(𝑝) = ⌈log2 𝑝⌉, followed by len(𝑝) squarings in F𝑝;
both cost 𝑂 (log 𝑝) F𝑝-operations, storing only 𝑂 (1) F𝑝-elements. □

Remark 2. The projective factor 𝑓𝑝 of Proposition 2 depends on the ladder algorithm as presented in Algorithm 1
and the differential addition and doubling formulæ in §2. If the ladder is initialised differently, or replaced with an
optimal differential addition chain, or if alternative formulæ are used, then 𝑓𝑝 should be redefined accordingly.

Remark 3. Doliskani’s test is not limited to curves over F𝑝: indeed, it was designed for curves over F𝑝2 . Our
algorithm and implementation makes little use of the fact that the input is defined over F𝑝 (this slightly simplifies
multiplication by curve constants, but this makes only a slight difference to the runtime): it should have essentially
the same cost for inputs in F𝑝2 , and the same probability of correctness.

11

6 OTHER ELLIPTIC CURVE MODELS
Looking beyond the Montgomery models used in CSIDH, the supersingularity tests described here can all be

easily adapted to other elliptic curve models over F𝑝 , such as short Weierstrass curves or (twisted) Edwards curves.
Such adaptations may be required for key validation in other isogeny-based systems such as CSURF [3], but they
might also be useful for purely number-theoretic calculations.

Elementary tests The random-point tests of Algorithms 2 and 3 work essentially unchanged for other curve
models, once the Montgomery ladder has been replaced with a suitable high-speed scalar multiplication routine,
and tests like 𝑍 ≠ 0 replaced with comparisons against the neutral element of the group.

Sutherland’s test Sutherland’s original supersingularity test over F𝑝2 (Algorithm 4) works for any curve model.
Our modified version over F𝑝 (Algorithm 5) requires extensive changes for alternative curve models, though the
underlying algorithm is very similar:

• Lines 2 and 4 are Montgomery-specific, and must be replaced (or omitted) according to the curve model.
• Lines 6 through 14 depend on the Montgomery-specific formulæ from Lemma 2, which should be replaced
with an appropriate analogue for the given curve model.

• Lines 7 through 9 use the fact that supersingular Montgomery curves are necessarily on the floor of the
F𝑝-volcano for ℓ = 2. This is not true for more general curves: for example, the curves in CSURF [3] are
supposed to be on the surface. These lines should be replaced with an examination of the neighbourhood of
the starting vertex to find a neighbour on the floor, if it exists, before proceeding as usual.

Doliskani’s test Our modification of Doliskani’s test (Algorithm 6) extends to other projective curve models.
The Montgomery ladder must be replaced with a suitable high-speed scalar multiplication, and as we noted in
Remark 2, the projective factor must be adapted to fit that scalar multiplication algorithm and the curve arithmetic
that it uses.

7 CONCLUSION
This paper improves two supersingularity tests, originally due to Sutherland and Doliskani, and compares them

with the state-of-the-art in the context of CSIDH public-key validation.
Our modification of Sutherland’s algorithm specialized to prime fields reduces the running time and space;

while it does not change the asymptotic complexity, it does improve the constant hidden by the big-𝑂. It performs
relatively slowly for valid keys (though it is still quite practical for CSIDH-512 parameters), but it rejects invalid
keys much faster than the other tests: it is therefore probably more useful in computational number theory (where
we mostly encounter ordinary input) than in CSIDH key validation (where we mostly expect supersingular input
from honest parties). In any case, it has the advantages of low memory and definitive proof of supersingularity.
Our modification of Doliskani’s algorithm shows a more significant improvement due to our new method for

evaluating squared division polynomials. This algorithm achieved a substantial speedup over the alternatives for
valid CSIDH-512 keys, while remaining competitive on invalid keys. It uses less memory than the currently-used
product-tree algorithm, and is far simpler to implement correctly. We therefore suggest that this algorithm is a
better choice for key validation in CSIDH and similar isogeny-based protocols.
Our benchmarks all used the CSIDH-512 parameter set, with a 512-bit prime 𝑝. We expect that our algorithms

and results will be relevant for larger primes, but more work needs to be done to optimize these cases.

REFERENCES
[1] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael Meyer, Benjamin

Smith, and Jana Sotáková. “CTIDH: faster constant-time CSIDH”. In: IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021.4 (2021), pp. 351–387. doi: 10.46586/tches.v2021.i4.351-387.

[2] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh: Efficient Isogeny Based Signa-
tures Through Class Group Computations”. In: Advances in Cryptology - ASIACRYPT 2019 - 25th Inter-
national Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part I. Ed. by Steven D. Galbraith and ShihoMoriai. Vol. 11921. Lecture
Notes in Computer Science. Springer, 2019, pp. 227–247. doi: 10.1007/978-3-030-34578-5_9.

12

https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1007/978-3-030-34578-5_9

Efficient supersingularity testing over F𝑝 and CSIDH key validation

[3] Wouter Castryck and Thomas Decru. “CSIDH on the Surface”. In: Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings. Ed. by Jintai
Ding and Jean-Pierre Tillich. Vol. 12100. Lecture Notes in Computer Science. Springer, 2020, pp. 111–129.
doi: 10.1007/978-3-030-44223-1_7.

[4] WouterCastryck, Tanja Lange, ChloeMartindale, Lorenz Panny, and Joost Renes. “CSIDH:AnEfficient Post-
Quantum Commutative Group Action”. In: Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part III. Ed. by Thomas Peyrin and Steven D. Galbraith. Vol. 11274.
LectureNotes inComputer Science. Springer, 2018, pp. 395–427. doi: 10.1007/978-3-030-03332-3_15.

[5] Jorge Chávez-Saab, Jesús-Javier Chi-Domınguez, Samuel Jaques, and Francisco Rodrıguez-Henrıquez. “The
SQALE of CSIDH: Square-root Vélu quantum-resistant isogeny action with low exponents”. In: Journal of
Cryptographic Engineering (2021). doi: 10.1007/s13389-021-00271-w.

[6] Qi Cheng. “Straight-line programs and torsion points on elliptic curves”. In: Computational Complexity 12
(2003), pp. 150–161. doi: 10.1007/s00037-003-0180-0.

[7] Craig Costello and Benjamin Smith. “Montgomery curves and their arithmetic: The case of large character-
istic fields”. In: Journal of Cryptographic Engineering 8.3 (2018), pp. 227–240. doi: 10.1007/s13389-
017-0157-6.

[8] Luca De Feo and Steven D. Galbraith. “SeaSign: Compact Isogeny Signatures from Class Group Actions”.
In: Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III.
Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11478. Lecture Notes in Computer Science. Springer, 2019,
pp. 759–789. doi: 10.1007/978-3-030-17659-4_26.

[9] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski. “SQISign: Com-
pact Post-quantum Signatures from Quaternions and Isogenies”. In: Advances in Cryptology - ASIACRYPT
2020 - 26th International Conference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I. Ed. by ShihoMoriai and HuaxiongWang.
Vol. 12491. Lecture Notes in Computer Science. Springer, 2020, pp. 64–93. doi: 10.1007/978-3-030-
64837-4_3.

[10] Luca De Feo andMichael Meyer. “Threshold Schemes from Isogeny Assumptions”. In: Public-Key Cryptog-
raphy - PKC 2020 - 23rd IACR International Conference on Practice and Theory of Public-Key Cryptography,
Edinburgh, UK, May 4-7, 2020, Proceedings, Part II. Ed. by Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas. Vol. 12111. Lecture Notes in Computer Science. Springer, 2020, pp. 187–212.
doi: 10.1007/978-3-030-45388-6_7.

[11] Christina Delfs and Steven D. Galbraith. “Computing isogenies between supersingular elliptic curves over
F𝑝”. In: Des. Codes Cryptogr. 78.2 (2016), pp. 425–440. doi: 10.1007/s10623-014-0010-1.

[12] Javad Doliskani. “On division polynomial PIT and supersingularity”. In: Appl. Algebra Eng. Commun.
Comput. 29.5 (2018), pp. 393–407. doi: 10.1007/s00200-018-0349-z.

[13] Mireille Fouquet and FrançoisMorain. “IsogenyVolcanoes and the SEAAlgorithm”. In:Algorithmic Number
Theory. ANTS 2002. Ed. by Claus Fieker and David R. Kohel. Vol. 2369. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2002, pp. 276–291. isbn: 978-3-540-45455-7. doi: 10.1007/3-540-45455-
1_23.

[14] Josep González. “On the 𝑝-th division polynomial”. In: Journal of Number Theory 233 (2022), pp. 285–300.
doi: 10.1016/j.jnt.2021.06.011.

[15] David R. Kohel. “Endomorphism rings of elliptic curves over finite fields”. http://iml.univ-mrs.fr/
~kohel/pub/thesis.pdf. PhD thesis. University of California at Berkeley, 1996.

[16] Yi-Fu Lai, Steven D. Galbraith, and Cyprien Delpech de Saint Guilhem. “Compact, Efficient and UC-
Secure Isogeny-Based Oblivious Transfer”. In: Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
October 17-21, 2021, Proceedings, Part I. Ed. by Anne Canteaut and François-Xavier Standaert. Vol. 12696.
Lecture Notes in Computer Science. Springer, 2021, pp. 213–241. doi: 10.1007/978-3-030-77870-5_8.

[17] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography. CRC
press, 2018.

[18] Peter L. Montgomery. “Speeding the Pollard and elliptic curve methods of factorization”. In: Mathematics
of Computation 48.177 (1987), pp. 243–264. doi: 10.1090/S0025-5718-1987-0866113-7.

13

https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s00037-003-0180-0
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s00200-018-0349-z
https://doi.org/10.1007/3-540-45455-1_23
https://doi.org/10.1007/3-540-45455-1_23
https://doi.org/10.1016/j.jnt.2021.06.011
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
https://doi.org/10.1007/978-3-030-77870-5_8
https://doi.org/10.1090/S0025-5718-1987-0866113-7

[19] Jacob T. Schwartz. “Fast probabilistic algorithms for verification of polynomial identities”. In: J. ACM 27.4
(1980), pp. 701–717. doi: 10.1145/322217.322225.

[20] Michael Scott. “A note on the calculation of some functions in finite fields: Tricks of the trade”. IACR ePrint
2020/1497, https://ia.cr/2020/1497. 2020.

[21] Joseph H. Silverman. The arithmetic of elliptic curves. 2nd edition. New York, NY: Springer-Verlag, 2009.
isbn: 0387094938.

[22] Andrew V. Sutherland. “Identifying supersingular elliptic curves”. In: LMS Journal of Computation and
Mathematics 15 (2012), pp. 317–325. doi: 10.1112/S1461157012001106.

[23] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus Hebdomadaires des Séances de
l’Académie des Sciences, Série A 273 (July 1971), pp. 238–241.

A FINITE FIELD ARITHMETIC
Square roots in F𝑝 . In our case we have 𝑝 ≡ 3 mod 4, so the classic Tonelli–Shanks algorithm (see e.g. [17,
§3.51]) reduces to computing 𝑡 = 𝑎 (𝑝+1)/4 for 𝑎 ∈ F𝑝 (which can be done using a precomputed optimal chain of
squares and multiplications). If 𝑡𝑎2 = 𝑎 then 𝑡 is a square root of 𝑎; otherwise, 𝑎 is not a square in F𝑝 .

Representing F𝑝2 . Since 𝑝 ≡ 3 (mod 4), we can realise F𝑝2 as F𝑝 (𝑖), where 𝑖2 = −1. Elements 𝑥 of F𝑝2 are
encoded as the pair of elements (𝑥𝑟 , 𝑥𝑖) of F𝑝 (the “real” and “imaginary” parts) such that 𝑥 = 𝑥𝑟 + 𝑥𝑖 · 𝑖.

Addition. Given two elements 𝑎, 𝑏 ∈ F𝑝2 , we can compute 𝑐 = 𝑎 + 𝑏 at the cost of two additions in F𝑝 using

𝑐𝑟 = 𝑎𝑟 + 𝑏𝑟 mod 𝑝 , 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 mod 𝑝 .

Subtraction. Similarly, we can compute 𝑐 = 𝑎 − 𝑏 at the cost of two subtractions in F𝑝 using

𝑐𝑟 = 𝑎𝑟 − 𝑏𝑟 mod 𝑝 , 𝑐𝑖 = 𝑎𝑖 − 𝑏𝑖 mod 𝑝 .

Multiplication. We can compute 𝑐 = 𝑎 · 𝑏 for 4 multiplications, 1 addition, and 1 subtraction in F𝑝 using

𝑐𝑟 = 𝑎𝑟 · 𝑏𝑟 − 𝑎𝑖 · 𝑏𝑖 mod 𝑝 , 𝑐𝑖 = 𝑎𝑖 · 𝑏𝑟 + 𝑎𝑟 · 𝑏𝑖 mod 𝑝 .

A Karatsuba-style method computes 𝑐 with 3 multiplications, 3 additions, and 2 subtractions: first we compute

𝑡0 := 𝑎𝑟 · 𝑏𝑟 , 𝑡1 := 𝑎𝑖 · 𝑏𝑖 , 𝑡2 := 𝑎𝑟 + 𝑎𝑖 , 𝑡3 := 𝑏𝑟 + 𝑏𝑖 , 𝑡4 := 𝑡2 · 𝑡3 , 𝑡5 := 𝑡0 + 𝑡1 ,

and then

𝑐𝑟 = 𝑡0 − 𝑡1 mod 𝑝 , 𝑐𝑖 = 𝑡4 − 𝑡5 mod 𝑝 .

Square roots in F𝑝2 . Algorithm 7 computes square roots in F𝑝2 following the method of [20] with some minor
corrections. The exponentiations in Lines 4 and 11 are done using an optimal precomputed addition chain.

14

https://doi.org/10.1145/322217.322225
https://ia.cr/2020/1497
https://doi.org/10.1112/S1461157012001106

Efficient supersingularity testing over F𝑝 and CSIDH key validation

Algorithm 7: Square root in F𝑝2 = F𝑝 (𝑖) where 𝑝 ≡ 3 (mod 4) and 𝑖 =
√
−1, as in [20].

Input: 𝑥 in F𝑝 (𝑖)
Output: 𝑟 in F𝑝 (𝑖) such that 𝑟2 = 𝑥, if it exists; otherwise ⊥

1 Function SqrtFp2(𝑥)
2 𝑎 + 𝑏𝑖 ← 𝑥 // 𝑎, 𝑏 ∈ F𝑝
3 𝛿← 𝑎2 + 𝑏2 // 𝛿 = norm of 𝑥

4 𝜆← 𝛿 (𝑝−3)/4 // 𝜆 = progenitor of 𝛿
5 𝜌 ← 𝛿 · 𝜆 // 𝜌 is candidate square root of 𝛿

6 if 𝜌2 ≠ 𝛿 then // 𝛿 not square in F𝑝 =⇒ 𝑥 not square in F𝑝2

7 return ⊥
8 𝛾 ← (𝑎 + 𝜌)/2
9 if 𝛾 = 0 then // Can happen when 𝑏 = 0 and 𝜌 = −𝑎

10 𝛾 = −𝜌 // Now 𝛾 = (𝑎 − 𝜌)/2
11 𝜇← 𝛾 (𝑝−3)/4 // 𝜇 = progenitor of 𝛾
12 𝜎 ← 𝛾 · 𝜇 // 𝜎 = candidate square root of 𝛾

13 𝛾−1 ← 𝜎 · 𝜇3 // True inverse of 𝛾

14 𝜏 ← 𝜎 · 𝛾−1 // 𝜏 = candidate square root of 𝛾−1

15 𝜔← (𝑏/2) · 𝜏
16 if 𝜎2 = 𝛾 then
17 return 𝜎 + 𝜔𝑖
18 else // −𝜎 =

√−𝛾 and 𝜏 =
√︁
−𝛾−1

19 return 𝜔 − 𝜎𝑖

15

	Introduction
	Montgomery arithmetic
	Elementary supersingularity tests
	Isogeny volcanoes and Sutherland's test
	Supersingularity in general
	2-isogeny graphs
	Supersingularity testing with Isogeny Volcanoes
	An improved volcano test for curves over prime fields

	Division polynomials and Doliskani's test
	Division polynomials and supersingularity
	Efficient evaluation of division polynomials
	Doliskani's test revisited

	Other elliptic curve models
	Conclusion
	Finite field arithmetic

