
A New Approach to the Constant-Round Re-encryption
Mix-Net

Myungsun Kim

Department of Mathematics, Gachon University
msunkim@gachon.ac.kr

Abstract. The re-encryption mix-net (RMN) is a basic cryptographic tool that
is widely used in the privacy protection domain and requires anonymity support;
for example, it is used in electronic voting, web browsing, and location systems.
To protect information about the relationship between senders and messages, a
number of mix servers in RMNs shuffle and forward a list of input ciphertexts in a
cascading manner. The output of the last mix server is decrypted to yield the set of
original messages. The main downside of this approach is that the mixing process
requires a number of rounds that is linear in the number of mix servers. This
implies that a long round delay would cause network latency, which can dominate
local computational latencies. To minimize the effect of network latency, RMN
protocols with constant round complexity are more desirable.
In this work, we propose a new RMN protocol that runs in Op1q rounds in
the number of mix servers and that UC-realizes a hybrid model with access to
some functionalities for secure communication and zero-knowledge proof (ZKP).
Interestingly, because our protocol does not require a ZKP protocol for a verifiable
shuffle, we also achieve a considerable efficiency gain in terms of computation cost.
Our main tools are secret sharing and an ElGamal encryption that is extended in the
sense that it works on a multiplicative group under field extension. Importantly, this
extended ElGamal encryption scheme acquires a new capability: it can efficiently
decompose a decrypted message into unique values. We provide a detailed report
on the theoretical performance and security analysis of this method.

Keywords: Re-encryption mix-net · ElGamal encryption · Round complexity.

1 Introduction

A mix-net is an interactive protocol that consists of senders, mix servers, and receivers,
where receivers can be replaced with mix servers (or any other trustees). The senders
that hold the initial inputs wish to hide the relationship between their initial inputs and
the final output produced by the receivers at the end of execution.

For this purpose, mix servers transform sets of input messages by a proper encryption
scheme and subsequently by the permutation of their output order. Then, the transformed
messages are sent through a sequence of mix servers. We graphically show the abstract
structure of this method in Figure 1. As long as the permutation of at least one server
remains secret, the system prevents linking message senders and messages. There are
many types of mix-nets, depending on the transformation that they perform on the
ciphertexts and how this transformation is verified.

Loosely speaking, there have been two basic types of mix-net. The first is known
as a re-encryption mix-net (RMN). In this type of mix-net, both inputs and outputs are
ciphertexts under a homomorphic encryption that allows re-encryption without knowing
the corresponding private key (e.g., ElGamal [18] and Paillier [37]). Because the output
is still in ciphertext, some number of receivers that had generated a public and private
key pair have to decrypt it to produce the final output. The second type is known as a
decryption mix-net, which was originally designed by Chaum [12]. The inputs to this
mix-net are ciphertexts produced through interactive encryption under the public keys
of individual servers. While processing the inputs, each mix server decrypts the layer
corresponding to its own public key in each ciphertext and then permutes the resulting
ciphertexts. Unlike RMNs, the final output is produced in cleartext.

Regardless of the type, one structural feature of mix-nets is that mix servers run in a
sequential order. This leads to a linear round complexity in the number of mix servers.
For a small number of mix servers, the network latency caused by a small round delay
may not pose a performance problem with respect to the whole execution time of the top
layer. However, as the number of mix servers increases, the network latency ultimately
dictates the local computation time. Then, the top-priority efficiency measure becomes
the round complexity. For this reason, much research effort has focused on devising
round-optimal protocols. (e.g., see [4,33,5] in the MPC literature).

In this work, we are primarily interested in obtaining RMNs with round complexity
that is constant in the number of mix servers while ensuring security against a static
adversary that can corrupt only a minority of mix servers. We note that if the mix servers
generate the key pair, the distributed key generation algorithm requires an honest majority
of mix servers; however, if the receivers generate the key pair, then we can drop the
minority condition.

Our goals. To our knowledge, no constructions of constant-round RMN protocols that
are secure in the universal composability (UC) model are known. Motivated by this
observation, we aim to build an efficient RMN protocol with Op1q round complexity
while guaranteeing UC security [7].

In this work, we present a suitable solution for achieving this goal by introducing
secret sharing and extending ElGamal encryption for our purposes.

Main challenges. A naïve solution to this problem is as follows: Let ns be the number
of senders and nm the number of mix servers. Each mix server outputs a re-encrypted
and permuted list of ns ciphertexts from the senders. We ask the receivers to decrypt the
output lists. Obviously, we can achieve Op1q round efficiency; however, the transmission
cost for the senders increases by Opnsnmq ciphertexts, and the computation cost of the
mix servers requires Opnsnmq exponentiations. In particular, the decryption cost on the
receivers’ side grows significantly, to Opnsnmnrq exponentiations for the number of
receivers nr.

In the RMN, a permutation known only to each mix server is a means of hiding the
relationship between messages and senders, together with re-encryption. Including at
least one honest mix server in the mix chain ensures security in that sense. Delinking
the mix chain of the RMN leads to the trivial protocol above. Nevertheless, chaining
without permutation is likely to be useless.

2

1.1 Our Ideas and Results

We present a new approach for constructing a constant-round RMN protocol that is
secure in the UC model against a static adversary that can corrupt only a minority of
mix servers. Using this approach, we are able to achieve both of our aforementioned
goals.

Splitting messages into additive shares. As a first step toward obtaining our result for
constant round efficiency, the sender Si finds each of the additive shares of her message
mi, that is, mi “ ‘

nm
j“1aij , and chooses a proper random value δi. Then, mij is set to

mij “ aij ∥ δi for each j.
Encoding the messages as a polynomial. Define a message polynomial mijpzq “

z ´ mij in a proper polynomial ring. Then, to treat mijpzq as a plaintext message, we
extend the ElGamal encryption on Z˚

p to one that applies to pFprzs{xθpzqyq˚, where p is
a prime and θpzq is an irreducible polynomial of degree n. We then define the extended
ElGamal encryption scheme on a subgroup of pFprzs{xθpzqyq˚. Now, we compute
eij “ Epmijpzqq with this new ElGamal encryption scheme and send the ciphertexts
eij to the mix servers.
Permuting the ciphertexts with homomorphic multiplication. Letej “ pe1j , . . . , ensjq

be a list of ciphertexts received by the mix serverMj . Then, the mix server computes ej “
śns

i“1 eij under a multiplicative homomorphism. Here, ej “ E p
śns

i“1pz ´ mijqq “

E p
śns

i“1pz ´ aij ∥ δiqq.
Permuting plaintexts by decomposing the plaintext polynomials. Lete “ pe1, . . . , enmq

be the output of the mixing stage. The receivers, which are assumed to generate a key
pair for our variant of the ElGamal encryption, jointly decrypt the list e into a list of
plaintext polynomials pm1pzq, . . . ,mnmpzqq. Finally, we factorize each polynomial into
irreducible polynomials and reconstruct the initial messages while not revealing the
information about the linkage between the senders and messages.

Putting these steps together, we can construct a basic constant-round RMN protocol
without considering security. In what follows, we describe in more detail our approach
to solving the problem of designing a constant-round RMN protocol.

1.2 Design Rationale behind the New Approach

Our starting point has two main components:

– The first observation provides a basis for the improvement of round efficiency. First,
we write an integer m into a vector pa1, . . . , anmq such that m “ ‘

nm
j“1aj . Then,

the vector is modified to m “ pa1 ∥ δ, . . . , anm ∥ δq for a unique value δ. Even
though the components of m are distributed over the mix servers, we can always
reconstruct m. Now, imagine that a group of senders distributes their respective
messages mi to mix servers in this way. Then, regardless of the order in which the
mix server permutes the input pa1j ∥ δ1, . . . , anmj ∥ δnmq, we can still reconstruct
every initial message.

– Next, the second observation enables us to reduce the computation overhead by in-
troducing a new method of shuffling based on a known method. Let m “

śns

i“1 mi

3

for each distinct prime mi P Z, and let E be a multiplicative homomorphic en-
cryption. Given a homomorphic product of Epmiq, i.e.,

śns

i“1 Epmiq, the prime
factorization of Dp

śns

i“1 Epmiqq “ DpEpmqq is tm1, . . . ,mnsu since Z is a unique
factorization domain. The resulting set can be considered the output of the RMN.

More specifically, we now explain the design rationale behind our technique based
on the observations.
Concurrent mixing. Our idea for breaking the Opnmq round barrier is to introduce
additive secret sharing, as mentioned in the first observation. Assume that a mix server
Mj receives eij from each sender Si, where eij “ Epaij ∥ δiq and aij is an additive
share of mi. Then, we build a list ej “ pe1j , . . . , ensjq and form a new list e1

j “

pe1
1j , . . . , e

1
nsj

q, where e1
ij is a re-encryption of eπjpiqj for a private permutation πj .

Decrypting the output pe1
1, . . . , e

1
nm

q from the mix servers, we can correctly recover
tm1, . . . ,mnmu.

However, this approach has a critical security flaw. When the mix servers decrypt
pe1

1, . . . , e
1
nm

q, they can see which message was sent from which sender because the δis
are unique. Specifically, on receiving eij from Si, the servers record pi, eijq in a table.
While performing decryption, they can uniquely mark all additive shares by using δi. Not
only did we fail to eliminate the need for a proof of correct shuffling, but because each
sender needs to send nm ciphertexts, we have as much computation and communication
overhead as in the naïve solution. This is clearly undesirable.

To fix this problem, we need a way to prevent the mix servers from associating eij
from Si with δi. Our solution takes advantage of the multiplicative homomorphism of
ElGamal encryption. Concretely, we make the mix servers homomorphically multiply
each ciphertext, i.e., compute e1

j “
śns

i“1 e
1
ij . Then, the mix servers can see only the

decryption of e1
j . To reconstruct the initial input, we have to decompose Dpejq into

pa1j ∥ δ1, . . . , ansj ∥ δnsq; however, we do not know that it is possible to decompose
Dpejq into irreducible elements in the plaintext space and that such a decomposition can
be performed efficiently in a practical sense.

Thus, we need to find a way to efficiently encode aij ∥ δi into an irreducible element
in the plaintext space. To address this issue, we encode aij ∥ δi into a polynomial
mpzq “ pz ´ aij ∥ δiq P Fprxs. However, in general, ElGamal encryption works on a
group of congruent integers (e.g., a subgroup of Z˚

p). We thus need to make ElGamal
encryption work on a group of polynomials. To do this, we extend ElGamal encryption
so that it works over a multiplicative group of extension fields. In particular, with this
extension, we can use efficient algorithms to factorize polynomials over finite fields.

A similar observation appears in [36]. Neff utilizes the property that a polynomial
hpzq “

śns

i“1pz ´mπpiqq is stable for any permutation π of its roots. However, because
our main purpose for using polynomials is the efficiency of factorization, there is a
primary difference from the proposal of Neff.
Shuffle proof-free mixing. Consider the Groth shuffle proof in [30] based on ElGamal
encryption. Since this shuffle proof requires each mix server (as the prover) to compute
2ns single exponentiations and 4ns multiexponentiations, approximately 6nsnm expo-
nentiations should be needed for only the shuffle prover. This is not a small amount of
computation.

4

S1

S2

...
Sns

m1

m1

mns

M1 M2 ¨ ¨ ¨ Mnm

Mix servers

R1

sk1

R2

. . .
sk2

Rnr

. .
.

sknr

Ri

ski

Senders Receivers

e ep1q ep2q ē m

Fig. 1. The classical RMN system model. epjq is the output of mix server Mj after mixing the list
of input ciphertexts epj´1q, where ep0q

“ e and ē “ epnmq.

As mentioned previously, we achieve the same effect as permutation by polynomial
factorization, and thus, we can save the computational cost of the shuffle proof. However,
we need to verify whether the mix servers correctly perform homomorphic multiplication
over ciphertexts. The problem is that proofs of the correct multiplication of ciphertexts
require the same amount of computation as the shuffle proof in an asymptotic sense.
Fortunately, we can circumvent zero-knowledge proofs of correct multiplication by using
δi. That is, after decrypting the ciphertexts from the mix servers, the sender Si can check
whether her δi and every additive share appear correctly on a public board.

1.3 Closely Related Work

The re-encryption mix-net was first developed by Park et al. in [38] to address the
drawbacks of the decryption mix-net [12] and the hybrid mix-net [24]. See [40,31]
for a comprehensive survey of mix-nets. Since Park et al.’s proposal, much research
has focused on RMNs. In a classical RMN, a sender Si only has to compute a single
encryption for all the mix servers as Epkpmi, riq, where Epq is the ElGamal public
key encryption under the public key pk used to encrypt mi with a randomizer ri. In
particular, since no predefined order of mix servers is required for the RMN, any mix
server Mj can compute Epkpmi, ri ` ρjq on the Si input, where ρj is a randomizer
of Mj for the re-encryption of the Si input. After the list of inputs is re-encrypted and
permuted, a mix server Mj broadcasts the mixed list to the remaining mix servers for
further mixing. The mixing stage terminates at the mix server Mnm , where nm is the
number of mix servers. The RMN is graphically illustrated in Fig. 1; after mixing, the
group of receivers may perform a joint decryption stage to output a set of permuted
messages.

We emphasize that in the RMN design, the mix servers do not have to share the
private key. Instead, the public and private keys can be those of the receivers, where
the public key pk is known to the mix servers. This type of design is widely used in
applications such as e-voting, where a set of authorities receives the mix-net output.

One of the weaknesses of the classical RMN is that to support multiple receivers, an
additional stage for sharing the private key is needed. This drawback was addressed with

5

an improved variant, called the universal re-encryption mix-net, proposed by Golle et al.
in [28]. In this RMN, the sender Si broadcasts two ElGamal ciphertexts, one containing
the plaintext message mi and the other containing the public key of the receiver used
to encrypt mi, i.e., Epkpmi, riq ∥ Epkp1, γiq. The remaining nm ´ 1 mix servers repeat
the re-encryption operation with different randomizers. However, the receiver should
perform an exhaustive search on every output list from the mix servers received for
possible plaintext messages encrypted under its public key pk.

Despite various optimization techniques, the basic RMN protocol is inherently in-
efficient in its operation. Since Abe observed that unlike the DMN, sequential ordered
mixing is not necessary [1] in the case of an RMN, Golle and Juels [29] utilized this
observation in the efficient design of an RMN in which the mix servers perform mixing
in parallel. Hence, the authors called this a parallel mix-net. Such a mix-net enjoys a
considerable improvement in network latency due to the parallelizing technique. More
specifically, each of the mix servers is assigned a random subset of the input list; i.e., each
subset contains ℓ{nm inputs, where ℓ is the size of the list. Then, the mix servers perform
the following steps:

1. Each mix server mixes a given subset of size ℓ{nm.
2. The mix servers perform ñnm rounds of rotations, where ñnm is a threshold parameter

less than nm. Here, each rotation involves a modulo operation with nm; thus, the
mix server Mj´1 transmits its mixed output list to Mj , while Mj transfers its mixed
output list to Mj`1, and so on.

3. After completing ñnm ´ 1 rounds, each mix server retains a random fraction 1{nm

nm

of its outputs and sends equal random portions of the remaining outputs to each of
the nm ´ 1 mix servers. Thus, Mj receives ℓ

nm
2 inputs from each of the remaining

mix servers, for a total of ℓnm

nm
2 “ ℓ

nm
inputs.

4. Steps 1 and 2 are repeated. Then, the resulting output from the nm mix servers is
the final output.

We note that the parallel mix-net requires a total of 2pñnm ´ 1q ` 2 “ 2ñnm rounds
of mixing. Consequently, the parallel mix-net has Opñnmq round complexity.

Organization. The rest of the paper is organized as follows: Section 2 presents the
notation and definitions used and preliminary background material. Section 3 formally
introduces the notion of the ideal mix-net functionality and gives a UC security def-
inition for it. Section 5 describes our main protocol, which has a round cost of Op1q

in the number of mix servers while ensuring UC security. Finally, Section 6 contains a
performance analysis and proofs of security.

2 Background: Models and Definitions

Before elucidating our main protocol, we introduce the notation and review some defi-
nitions and primitives used throughout the paper.

6

2.1 Notation

Let rns denote the set t1, 2, . . . , nu for n P N. A null value is denoted by K. Letting
v be an ordered ℓ-tuple (or simply a list) with elements v “ pv1, v2, . . . , vℓq, we use
the notation vris to index the i-th element vi. We use bold uppercase letters such as V
to denote tables (one may think of them as a database) and sometimes identify a table
with its ordered ℓ-tuple. Thus, we mean by V “ pv1,v2, . . . ,vnq a table consisting of
n ℓ-tuples, and similarly, V ri, js means the j-th element virjs of the i-th tuple. For any
integer a, we denote by |a| the length of a in bits. For a finite set A, we let a $

ÐÝ A be an
element that is sampled uniformly at random from A.

We use κ to denote the security parameter, which all protocols and ideal function-
alities implicitly take as input, throughout the paper. A function ν : N Ñ r0, 1s is
negligible if it tends toward zero faster than 1{nκ for every fixed constant κ. We then
use polypκq and neglpκq to denote unspecified polynomial and negligible functions in
κ, respectively. Let X “ tXκuκPN and Y “ tYκuκPN be ensembles. Two ensembles X
and Y are computationally indistinguishable, denoted by ”, if for every probabilistic
polynomial-time (PPT) algorithm D and for all κ P N, there exists a negligible function
negl such that

|PrrDpXκ, 1
κq “ 1s ´ PrrDpYκ, 1

κq “ 1s| ă neglpκq.

2.2 Models: System, Communication and Adversary

System. We assume that our system model consists of a set of ns senders S1, . . . ,Sns , a
set of nm mix servers M1, . . . ,Mnm , and a set of nr receivers R1, . . . ,Rnr , which are all
modeled by PPT Turing machines. Here, some number of receivers will jointly decrypt
a list of ciphertexts produced by mix servers. However, parties of the receiver type are
not requisite entities; they are employed only for simplicity of representation. Thus, on
behalf of the receivers, the mix servers can perform joint decryption after completing a
mix stage.
Channel. We assume that the parties have access to a broadcast channel (e.g., by
using a public, append-only bulletin board) Furthermore, we assume that the parties are
equipped with a synchronized clock; thus, computation is carried out in synchronized
rounds, and messages are received by their sink parties within a fixed time bound. For
simplicity of discussion, we assume a fully synchronous channel, where for the execution
of the protocol, messages of a given round are sent by all parties and in particular are
delivered to their intended sink parties.
Adversary. We assume that an adversary A can corrupt at most t of the nm mix servers
in the system for any access threshold t ă nm{2. Likewise, the adversary cannot corrupt
a dishonest majority of receivers. We consider a malicious adversary that can dictate
that corrupted parties deviate from the protocol specification in any way. We assume
that the adversary is also modeled by a PPT Turing machine. In particular, the adversary
is restricted to be static and thus needs to choose the corrupted parties at the beginning
of the protocol.

7

2.3 Hardness Assumptions

Our construction relies on the decisional Diffie-Hellman (DDH) assumptions, which are
formalized as follows.

Assumption 1. We say that a DDH problem is hard relative to Gq if for all PPT
algorithms A, there exists a negligible function neglp¨q such that

ˇ

ˇPrrApGq, q, g, g
a, gb, gcq “ 1 ´ PrrApGq, q, g,

a , gb, gabq “ 1ss
ˇ

ˇ ď neglpκq

where Gq is a group of order q and the probabilities are taken over the choices of g and
a, b, c P Z˚

q .

An additional assumption we use is the discrete logarithm (DL) problem, formalized
by

Assumption 2. We say that the DL problem is hard relative to Gq if for all PPT
algorithms A, there exists a negligible function neglp¨q such that

PrrApGq, q, g, g
aq “ as ď neglpκq

where Gq is a group of order q and the probabilities are taken over the choices of g and
a P Z˚

q .

2.4 Cryptographic Tools

Secret sharing. In [42], Shamir proposed the first pτ, nq-threshold secret sharing
scheme, where the pτ, nq-threshold means that the original secret m is split into n
different shares and that with any τ shares, the original secret can be reconstructed,
while any τ ´ 1 shares leak nothing about the secret.

A pτ, nq-threshold secret sharing scheme is a pair of PPT algorithms pSh,Rcq such
that:

– pm1, . . . ,mnq Ð Shppp,m, n, τq. Taking as input a publicly known parameter pp,
the number of parties n, and an access threshold τ , this distributes the secret m
among the n parties and outputs an n-tuple of shares pm1, . . . ,mnq. Assume that a
message space M is implicitly described in pp.

– m Ð Rcppp, tmiuiPrτsq. Given a τ -tuple of shares, this outputs a message m
satisfying the following correctness condition: for all m P M and for any subset
ti1, . . . , iτu Ď rns of size τ ,

Pr
pmiqiPrnsÐShppp,m,n,τq

rRcppp, tmi1 . . . ,miτ uq “ ms “ 1

We can see that the pτ, τq-threshold secret sharing technology is suitable for our
system model because mixing ciphertexts can be viewed as an outsourced protocol with
τ ě 2. Hereafter, we use

`

n
τ

˘

-sharing for convenience instead of pτ, nq-threshold secret
sharing.

8

Threshold homomorphic encryption. A public-key encryption (PKE) scheme is a
triple of PPT algorithms denoted by PKE “ pKg,E,Dq:

– ppk, skq Ð Kgp1κq takes a security parameter κ P N as input. It outputs a pair
of keys psk, pkq. Here, the public key pk also defines a plaintext space Mpk, a
randomness space Rpk, and a ciphertext space Cpk.

– e Ð Epkpm, rq takes pk and a plaintext m P Mpk as input. It outputs a ciphertext
e P Cpk. As usual, this process is randomized using a randomizer r P Rpk; however,
sometimes we simply write e Ð Epkpmq, omitting the randomness r.

– m Ð Dskpeq takes sk and e P Cpk as input. It outputs the plaintext m P Mpk.

We say that a PKE scheme is correct if for any ppk, skq ÐÝ Kgp1κq and anym P Mpk,
we have m “ Dpsk,Eppk,mqq.

We say that a PKE scheme is homomorphic for the binary relations p˚h,ˆhq if for
all ppk, skq Ð Kgp1κq, pMpk, ˚hq and pCpk,ˆhq each form a group, and for all e1, e2 P

Cpk, Dskpe1ˆhe2q “ Dskpe1q˚hDpsk, e2q. Moreover, given a ciphertext e, anyone
can produce a different ciphertext e˚ that carries the same plaintext as e. Therefore,
given a homomorphic PKE scheme, we can define the rerandomization algorithm as
Reppk, e, rq :“ eˆhEpkp0, rq for the identity 0 P Mpk and r P Rpk.

Because it is undesirable for only a single party to be able to control the decryption
process of ciphertexts, a threshold version of a homomorphic PKE scheme needs to be
used in a multiparty setting (e.g., [27,18,37,20]). We use a threshold ElGamal cryptosys-
tem due to its computational efficiency. A threshold PKE (TPKE) scheme has a different
syntax than the underlying encryption scheme because of the additional requirement.
We present the formal syntax of a TPKE scheme, which consists of a quadruple of PPT
algorithms.

– ppk, skq Ð TKgp1κ, nq takes as input a security parameter κ and the number
of parties n. It outputs a pair ppk, skq, where pk is called the public key and
sk “ psk1, . . . , sknq is a vector of n private key shares. A party Ri is given the
private key share ski and later uses it to compute a decryption share for a given
ciphertext.

– e Ð Epkpm, rq. This is the same as the underlying encryption algorithm.
– ei Ð TDpkpski, eq takes as input the public key pk, the ciphertext e, and one of the
n private key shares ski P sk. It outputs the decryption share ei of the plaintext, or
a special symbol K.

– m Ð TAgpkpteiuiPrnsq takes as input the public key pk, the ciphertext e, and n
decryption shares te1, . . . , enu. It outputs a plaintext m or K.

We next formally define the notion of semantic security against chosen plaintext
attacks (CPAs) [27]. To simplify the notation, we use a Ð AO1,O2,...pb1, b2, . . .q to
denote an algorithm A that takes as inputs b1, b2, . . ., uses oracles O1,O2, . . . in a
black-box manner and outputs a. For a PPT adversary A, we define the advantage
function

advIND-CPA
PKE pA, κq :“

ˇ

ˇ

ˇ

ˇ

Pr
“

b “ b1
ˇ

ˇb1 Ð AOKg,OEp1κq
‰

´
1

2

ˇ

ˇ

ˇ

ˇ

9

where OKg samples ppk, skq Ð Kgp1κq and b
$

ÐÝ t0, 1u and outputs pk; if |m0| “ |m1|,
then OEpm0,m1q returns eb Ð Epkpmbq. We say that the homomorphic PKE scheme
is semantically secure against a CPA attack (IND-CPA) if for all PPT adversaries A, the
advantage advIND-CPA

PKE pA, κq is a negligible function of κ.

Zero-knowledge proofs. Our construction exploits zero-knowledge proofs (ZKPs) to
ensure correct behavior. In practice, our protocol can be proven correct by using only so-
called Σ-protocols, which need only three rounds of interaction [16,14]. Unfortunately,
Σ-protocols are not known to be zero-knowledge, but they satisfy the weaker property
of honest-verifier zero-knowledge. This suffices for our purposes, as we can use the
Fiat-Shamir heuristic [19] to make these proofs noninteractive.1 As a consequence, the
obtained proofs are indeed zero-knowledge in the random oracle model and consist of
only a single message.2

A zero-knowledge proof of knowledge is a proof system xP, V y for a language L
defined over a relation R, i.e., L “ tx

ˇ

ˇDω : px, ωq P Ru, by which a prover P that
knows witness ω can prove the validity of a statement, i.e., x P L, to a verifier V . Let
pP pωq, V pz, rqqpxq be the output of V in interacting with P on the common public
statement x. The verifier holds the auxiliary input z and the random tape r, whereas P
owns the private witness ω.

Definition 1 (Interactive proof system). A pair of PPT interactive machines pP, V q is
called an interactive proof system for a language L if there exists a negligible function
neglp¨q such that the following two conditions hold:

– (Completeness) An honest prover can always convince an honest verifier of a valid
statement x P L. Formally, for every px, ωq P R,

PrrpP pωq, V qpxq “ 1s ě 1 ´ neglp|x|q.

– (Soundness) A dishonest prover is unable to make a valid proof for an invalid
statement x R L with a high probability. That is, for all px, ωq R R and for all
dishonest PPT provers P˚,

PrrpP˚pωq, V qpxq “ 1s ď neglp|x|q.

We formally define zero-knowledge and knowledge extraction by following [23]. We
next provide a definition of a Σ-protocol that constitutes a zero-knowledge proof of a
special type.

1 By a noninteractive proof, we mean that the proof generated by the prover can be verified
without further interaction with the prover.

2 The stronger assumption of a random oracle is only made for efficiency reasons. Alternatively,
we could employ noninteractive ZKPs in the common random string model [17] to obtain
noninteractivity. In principle, our security proof also works intact in the standard model by
utilizing interactive ZKPs.

10

Definition 2 (Zero-knowledge). Let pP, V q be an interactive proof system for a lan-
guageL. We say that pP, V q is computational zero-knowledge if for every PPT interactive
machine V ˚, there exists a PPT algorithm S such that

tpP pωq, V ˚pz, rqqpxquxPL ” tSpxquxPL,

where the left term denotes the output of V ˚ after it interacts with P on the common
input x, whereas the right term denotes the output of S on x.

Definition 3 (Knowledge extraction). Let R be a binary relation and τ : N Ñ r0, 1s.
We say that an interactive function V is a knowledge verifier for the relation R with
knowledge error τ if the following two conditions hold:

– (Nontriviality) There exists an interactive machine P such that for every px, ωq P R,
all possible interactions of V with P on the common input x and auxiliary input ω
are accepted.

– (Validity with error τ) There exists a polynomial ϕp¨q and a probabilistic oracle
machine M such that for every interactive function P , every x P LR and every
ω, γ P t0, 1u˚, every machine M satisfies the following condition:
Denote by δpx, ω, γq the probability that the interactive machine V accepts on input
x when interacting with the prover specified by Px,ω,γ . If δpx, ω, γq ą Mp|x|q,
then, on input x and with access to oracle Px,ω,γ , machine M outputs a solution
w P Rpxq within an expected number of steps bounded by

ϕp|x|q

δpx, ω, γq ´ τp|x|q
.

The oracle machine M is called a universal knowledge extractor.

Definition 4 (Σ-protocol). A protocolΠ is aΣ-protocol for relationR if it is a 3-round
public-coin protocol and the following requirements hold:

– (Completeness) If P and V follow the protocol on input x and private input ω to P ,
where px, ωq P R, then V always accepts.

– (Special soundness) There exists a polynomial-time algorithm A that, given any x
and any pair of accepting transcripts pa, e, zq, pa, e1, z1q on input x, where e ‰ e1,
outputs ω such that px, ωq P R.

– (Special honest-verifier zero knowledge) There exists a PPT algorithm M˚ such
that

tpP px, ωq, V px, eqquxPLR
” tMpx, equxPLR

where Mpx, eq denotes the output of M for the input x and e and pP px, ωq, V px, eqq

denotes the output transcript of an execution between P and V , where P has input
px, ωq, V has input x, and V ’s random tape (determining its query) equals e.

11

3 Ideal Functionalities

In this section, we formally define an ideal functionality FMIX for an RMN and de-
scribe other ideal functionalities invoked as submodules. We inherit some of the ideal
functionalities specified by Wikström [47] with modifications. The differences basically
result from the fact that the mix servers in our construction are different from those in
Wikström’s.

3.1 An Ideal Mix-Net Functionality

Functionality 1 (An ideal mix-net). Let ns, nm, nr P N, and let there be a threshold
t P N. The ideal functionality FMIX of a mix-net proceeds as follows, running with
senders S1, . . . ,Sns , mix servers M1, . . . ,Mnm , receivers R1, . . . ,Rnr , and an ideal
adversary S .

– Let Q “ pq1, . . . , qns
q. Initialize a table of same-sized tuples Q Ð H in which

each tuple qiPrnss
keeps a counter ci with the setting ci Ð 0. Further initialize a

set of index pairs to ΓiPrnss Ð H and index sets to ∆ Ð H, Λ Ð H. Configure
a table X Ð H in which the position of a row is indexed by a counter c, setting
c Ð 0. Finally, create a set of empty lists L “ pl1, . . . , lnmq.

– For each new input message, repeatedly perform the following:
‚ Upon receiving pSi : Send,mijq fromZ , check whether the i-th tuple qi “ Qris

is full and pi, jq P Γi. If it is not full and pi, jq R Γi, then ci Ð ci ` 1, Γi Ð

Γi Y tpi, jqu, add pSi : Send,mijq to Qris and hand pS : Si, Set, pi, ciqq to Z .
Otherwise, ignore the message.

‚ Upon receiving pMj : Mixq from Z , if for all i P rnss : ci ě j, then set
c Ð c ` 1, insert a tuple pMj : Mixq into Xrcs, and hand pS : Mj , Set, cq to
Z .

‚ Upon receiving pRk : Receiveq from Z , push a tuple pRk : Receiveq to Xrcs,
increment c by 1, and hand pS : Rk, Set, cq to Z .

‚ Upon receiving the message pS : Get, xq, do the following:
∗ Parse x into xpi, ciq, cy.
∗ Input. Suppose that c “K and a record pSi : Send,mijq was found at

Qri, cis “ qircis. If pi, jq P Γi, then single out mij from the record, choose
a random value δi P t0, 1upolypκq, append pmij ∥ δiq to the list lj , set
Γi Ð Γiztpi, jqu, and hand pS : Si, Sendq to Z .

∗ Mix. Suppose that pi, ciq “K and that pMj : Mixq was found at Xrcs. If j R

∆, set∆ Ð ∆Ytju and |∆| ě nm{2, sort lj in lexicographic order to build
a new list l˚

j , and hand xpS : Mj , Forwardq, tMj : Forward, l˚
j ujPrnmsy

to Z; otherwise, hand pS : Mj , Mixq to Z .
∗ Output. Suppose that pi, ciq “K and that pRk : Receiveq was found

at Xrcs. Set Λ Ð Λ Y tku. If |Λ| ě t, then for each i P rnss, j P

rnms, mark the mijs so that each mij has the same suffix value δi, and
restore mi from those mijs. Then, set l‚

“ tm1, . . . ,mnsu and hand xpS :
Rk, Recover, l

‚
q, tpRk : Recover, l‚

qukPrnrsy to Z . Otherwise, hand pS :
Rk, Receiveq to Z .

12

3.2 Security Definition

We formally define security via the UC framework [7]. Similar to the simplified UC
framework [8], we assume the existence of a default authenticated channel in the real
world. This enables the definition of our ideal functionality to be simpler, and it can be
removed easily by combining it with an ideal authenticated channel functionality.

Unlike existing work, we consider three types of participants (e.g., see [31]): senders,
mix servers, and receivers. In general, mix-nets consider only two types of participants:
the sender type and the mix-server type; however, in the service of mix servers, the step
of decrypting a list of shuffled ciphertexts is removed and given to a receiver-type entity.
This makes the structure of the mix-net appear simple and clear. We assume a fixed
number of parties in the system throughout the paper; i.e., no new party can join after
execution begins.

Specifically, each sender, denoted by SiPrnss with ns ě 2, owns an original input
message mi. Let nm be the number of mix servers, and let MjPrnms, with nm ě 2,
denote a mix server. Receivers are dedicated servers that jointly decrypt a permuted list
of original messages. We should note that a receiver-type party is introduced only for
the purpose of notational convenience and not for security reasons.

Let ΠMIX be a re-encryption mix-net protocol. Consider an adversarial environment
Z . We consider a static corruption model in which there is a fixed set of corrupt parties
determined a priori. Informally speaking, it is required that for all PPT adversaries
A that corrupt some subset of the parties and participate in the real execution of the
protocol, there exists an ideal adversary S such that for all environments Z , the view
of the environment is the same in both worlds. We describe this model more formally
below.
Ideal world. The ideal world is defined by a trusted ideal functionality FMIX described
in Functionality 1 that interacts with some number of dummy senders S1, . . . ,Sns , mix
servers M1, . . . ,Mnm , receivers R1, . . . ,Rnr , and an ideal adversary (the simulator) S
via secure and authenticated channels. The simulator can corrupt a subset of the parties
and may fully control them.
Real world. The environment sets the inputs for all parties, including the adversaries,
and obtains their outputs in both worlds. However, the environment does not observe
any internal interactions. For example, in the ideal world, such interactions take place
between the ideal functionality and another entity (a dummy party or the simulator);
in the real world, such interactions take place among real parties. Finally, once the
execution is over, the environment outputs a bit denoting either the real or ideal world.
For ideal functionality F , adversary A, simulator S, environment Z and a protocol Π ,
we formally denote the output of Z by the random variable IDEALF,S,Z in the ideal
world and REALΠ,A,Z in the real world.

Definition 5 (UC-Realizing RMN). Let FMIX be an ideal functionality as described in
Functionality 1, and let ΠMIX be an RMN protocol. We say that ΠMIX UC-realizes FMIX

if for any real-world PPT adversary A, there exists a PPT simulator S such that for all
environments Z ,

IDEALFMIX,S,Z ” REALΠMIX,A,Z .

13

Intuitively, for any adversary, there should be a simulator that can simulate its
behavior so that no environment can distinguish between these two worlds. Additionally,
our definition can capture compositions by considering anH-hybrid model with an ideal
functionality H for the setup.

3.3 Other Ideal Functionalities in a Hybrid Model

In this section, we specify ideal functionalities that capture authenticated point-to-point
and broadcast communication links as well as properties of ZKPs. We begin by defining
two ideal functionalities for the communication model. We use a slight modification of
the protocols defined in [25,9,26,11].

Secure communication channel. As a fundamental communication primitive, we first
consider a secure point-to-point communication (SC) ideal functionality that delivers
messages from a source party to a sink party. We rephrase the ideal functionality given
by Canetti [7].

Functionality 2 (SC). The ideal SC functionality, denoted by FSC, running with a
source party S, a sink party R and a simulator S, proceeds as follows:

1. Upon receiving a message pS : Send,m,Rq from Z , hand pS : S, Send,R, |m|q to
Z .

2. If S gives the appropriate instruction, hand pS : Send,m,Rq to Z .

Broadcast channel. The second communication primitive is a secure broadcast (BC)
functionality that ensures that the same message is delivered to all honest parties that do
not abort. This functionality can also be UC-realized by using the method of Goldwasser
and Lindell in [25,26]. Lemma 1 states that a secure BC can be securely realized,
assuming that more than half of the parties are honest.

Functionality 3 (BC). The ideal BC functionality, denoted byFBC, running with parties
S,R1 . . . ,Rnr and a simulator S, proceeds as follows.

1. Upon receiving a message pS : Broadcast,mq fromZ , hand pS : S, Broadcast, |m|,
tRkukPnrq toZ , and ifS gives the appropriate instruction, then hand pS : Broadcast,m, tRkukPrnrsq

to Z .

Lemma 1 ([26]). There exists a protocol ΠBC that securely realizes the ideal function-
ality FBC in a setting in which more than half of the parties are honest.

Distributed key generation (DKG) functionality. We present the ideal functionality
for key generation in a distributed manner for the ElGamal TPKE scheme.

Functionality 4 (DKG). The ideal DKG functionality for the ElGamal TPKE scheme,
denoted byFDKg, running with senders S1, . . . ,Sns , mix serversM1, . . . ,Mnm , receivers
R1, . . . ,Rnr , and a simulator S, proceeds as follows.

14

1. Initialize two index sets Λ “ H and Λk1Prnrs “ H.
2. For each k P rnrs, wait for a message pRk : SKShares, αk, βkq such that αk P Z˚

q

and βk “ gαk P Gq , and set Λ “ Λ Y tku.
3. Hand pS : PKShares, β1, . . . , βnrq to Z .
4. Hand tpSi : PKShares, β1, . . . , βnrquiPrnss and tpMj : PKShares, β1, . . . , βnrqujPrnms

to Z . Then, hand tpRk : KeyPair, αk, β1, . . . , βnrqukPrnrs to Z .
5. If pRk : Reconst,Rk1 q is received from Z , set Λk1 “ Λk1 Y tku. If |Λk1 | ě nr

2 ,
hand pS : Reconsted,Rk1 , αk1 q and tpRk : Reconsted,Rk1 , αk1 qukPrnrs to Z , and
otherwise, hand pS : Rk, Reconst,Rk1 q to Z .

For the ElGamal TPKE cryptosystem, Gennaro et al. [22] suggested a secure mul-
tiparty protocol for realizing this functionality. For a concrete UC-secure DKG instan-
tiation, see [46]. As usual, we omit the public parameter pp “ pGq, g, p, qq during key
generation.

Zero-knowledge proof of knowledge (ZPK) functionality. As mentioned above, our
protocol requires three idealized ZKP protocols, more precisely, zero-knowledge proof of
knowledge (ZPK) protocols. From now on, we use ZPK in place of ZKP, unless explicitly
stated otherwise. For consistency of representation, we define the ideal functionality for
these ZPK protocols following Canetti et al. [10]. Since this functionality takes as
a parameter a relation R, we present the ideal ZPK functionality, followed by three
relations for the functionalities used in constructing our RMN protocol.

Functionality 5 (ZPK). Let L be a language given by a relation R. The ideal func-
tionality, denoted by FRL

ZPK, for a zero-knowledge proof of knowledge of a witness ω to a
statement x P L, running with a prover P and a verifier V , proceeds as follows:

1. The functionality holds an empty table.
2. On receiving pP : Prove, x, ωq from Z , store ω in the table under the index pP, xq

and hand pS : P, Prove, x,Rpx, ωqq to Z . Discard all further messages from P .
3. On receiving pV : Verify, P, xq, read ω by the tag pP, xq (the empty string if no wit-

ness is found), and hand pS : V, Accept, P, x,Rpx, ωqq and pV : Accept, P,Rpx, ωqq

to Z .

The first relation we describe is a ZPK of the plaintext message m given a ciphertext
message e “ pu, vq, where u “ gr, v “ mβr. We formally define the relation RPT

as follows. As mentioned above, well-known examples of idealized ZPK protocols of
plaintext messages include [41,43].

Definition 6 (Knowledge of Plaintext). Define a relation RPT Ă pGqq4 ˆ Z˚
q as

xpg, β, u, vq, ry P RPT only if r “ logg u.

We remark that the pair pβ, vq appearing in the definition is not explicitly used, but we
retain it for compatibility with legacy methods.

The second relation for our purpose is a ZPK protocol for the knowledge of equality
of discrete logarithms, where given a ciphertext pu, vq, a prover presents a ciphertext
pu1, v1q and a proof that there exists some r such that logu u1 “ logβ v

1{v “ r. The
formal definition is given below.

15

Definition 7 (Knowledge of the Equality of Discrete Logs). Define a relationREDL Ă

pGqq6 ˆ Z˚
q as xpg, β, pu, vq, pu1, v1qq, ry P REDL only if u1 “ ur ^ v1 “ vβr.

One can view the relationREDL as an ideal correspondence to theΣ protocol shown
by Cramer et al. [13]. As a simple variant, we can consider a ZPK of correct decryption
by which a receiver can prove the knowledge of the secret key share αi. Specifically,
we define a relation RCD Ă pGqq5 ˆ Z˚

q as xpg, βi, pu, vq, diq, αiy P RCD only if
logg βi “ logu di “ αi. In our protocol, the receiver Ri holds e “ pu, vq, di, αi is such
that di “ uαi , and βi is a public component of pk.

In describing our main protocol, we will use FRPT

ZPK to denote an ideal primitive of
a ZPK protocol for the relation RPT, i.e., a zero-knowledge proof of knowledge of the
plaintext. With a similar purpose, we will use the additional notation FRCD

ZPK in a later
section.

4 Cryptographic Tools and Extensions

Secret sharing and multiplicative homomorphic encryption (MHE) are two main cryp-
tographic primitives for solving the performance problem in RMNs. We concretely
instantiate these primitives and provide some further discussion related to our MHE
variant.

4.1 Secret Sharing

As a popular variant method, Blakley in [6] constructed additive secret sharing, which
allows a given secret m to be decomposed into the sum of τ random numbers. In this
work, we use an additive

`

τ
τ

˘

-sharing scheme as follows:

– pr1, . . . , rτ´1,mτ q Ð Shpm, τ, τq. To share a value m, a party, as the dealer,
chooses trkukPrτ´1s

$
ÐÝ pt0, 1upolypκqqτ´1, sets mτ “ m ‘

Àτ´1
k“1 rk, and outputs

pr1, . . . , rτ´1,mτ q.
– m Ð RcptmkukPrτsq. This takes as input pm1, . . . ,mτ q P pt0, 1upolypκqqτ and

outputs
Àτ

k“1 mi.

This approach is much more efficient for computation than Shamir’s solution, and
in particular, since our construction does not require a series of multiplications on the
shares, a

`

τ
τ

˘

-sharing scheme is quite suitable for our purpose.

4.2 ElGamal Variant with Fast Decomposition

In addition to secret sharing, our protocol makes use of several cryptographic tools, such
as ZKP protocols. A primary tool is ElGamal encryption [18], and our RMN protocol
takes advantage of several nice properties, including distributed key generation, re-
encryption, and multiplicative homomorphisms. However, it is not sufficient to solve
the problem at hand with only these capabilities. Thus, we need to upgrade ElGamal
encryption so that it acquires an extra property, called decomposition.

16

pEpkpm1q, . . . ,Epkpmℓqq Epkp˚h
ℓ
i“1miq

mtm1, . . . ,mℓu

ˆh

Dskp¨q

φ

Epkp¨q

Fig. 2. An abstract relationship between ElGamal processes for our main protocol. Here, we denote
by φ a deterministic algorithm Dcom that is added to ElGamal encryption, and m “ ˚h

ℓ
i“1mi.

In what follows, we develop an algorithm that takes as an input a homomorphic
product of ℓ ElGamal ciphertexts and outputs a set of original plaintexts by decrypting
the product. We call this a decomposition algorithm and denote it as Dcom. Intuitively,
the decomposition algorithm aims to restore every original plaintext by factorizing the
value being decrypted from a resulting ciphertext by homomorphically multiplying
two or more ElGamal ciphertexts. We wish to extend the ElGamal encryption scheme
to obtain this efficient decomposition algorithm. In this manner, the extended ElGa-
mal encryption scheme provides the advantages shown in Figure 2. Then, the resulting
extended ElGamal variant has two key properties. Letting e1, . . . , eℓ be ElGamal cipher-
texts, the first property is that homomorphic multiplication ˆh

ℓ
i“1ei is inherited from

the original ElGamal encryption scheme. More importantly, given a decrypted message
m “ ˚h

n
i“1mi, one can identify from m all original values m1,m2, . . . ,mℓ uniquely

up to rearrangement of those values.
A similar technique was given in [32,34] with different motivations, such as com-

pressing ciphertexts and set operations, respectively.

The description. The main idea for obtaining an efficient decomposition is to switch
a working DDH group from Z˚

p to one of F˚
pn , where p is a prime. In principle, a

decomposition algorithm can be built in the context of the standard ElGamal encryption
in the sense of operating in Z˚

p . That is, we encode a plaintext message into an irre-
ducible element in the DDH group, treating it as Z. Then, given a ciphertext through
a homomorphic product of ciphertexts whose plaintexts were encoded in this way, af-
ter decrypting the ciphertext, one needs to factorize a product of irreducible elements.
However, integer factorization may run inefficiently; moreover, a large amount of space
is needed to keep the dictionary that may be needed for decoding. On the other hand,
because an ElGamal variant in the setting of the multiplicative group F˚

pn encodes a
message mi into a message polynomial mipzq “ pz ´ miq P Fprzs, one can factorize
mpzq “

śℓ
i“1 mipzq P Fprzs into tmipzquiPrℓs much more efficiently. More precisely,

one can decompose a monic square-free univariate polynomial f P Fprzs of degree
ℓ within time Õpℓ2 log p log´1 εq with a small failure probability ε, where f “ Õpℓq
means that f “ Opℓplog ℓqηq for constant η [21]; see also the survey [45,44] for a
summary of this field.

17

We are ready to provide a detailed description of the ElGamal variant that allows
efficient decomposition.

For reasons of space, we do not offer a syntax for this class of ElGamal variants.
Instead, because our main protocol requires distributing a secret key among nr receivers,
we describe the ElGamal encryption as operating in F˚

pn ,3 following the syntax of TPKE
given in Section 2.4. ElGamal encryption in the setting of a cyclic subgroup Gq of
pFprzs{xθpzqyq˚ consists of six PPT algorithms as follows:

Construction 1 (ElGamal in extension fields). Let κ be the security parameter, and
let ḡpzq be a generator of the multiplicative group pFprzs{xθpzqyq˚, where θpzq is an
irreducible polynomial of degree n.

– pp Ð ElG.Setupp1κq. This constructs a DDH group Gq of order q by iteratively us-
ing gpzq “ ḡpzq

pn´1
q , where pn´1 “ sq for another prime q and an even s, and out-

puts a publicly known group and protocol parameters as pp “ pGq, gpzq, θpzq, p, qq.
– ppk, skq Ð ElG.TKgppp, 1κ, nrq : This takes as input the public parameter pp “

pGq, gpzq, θpzq, p, qq, a security parameter κ and the number of receivers nr as
input. Each party outputs βpzq “ gpzqαi for a random αi

$
ÐÝ Zq and sets ski to

ski “ αi. It outputs the public key pk “ ppp, βpzqq and the secret key sk “ α,
where βpzq “

śnr

i“1 βipzq and α “
řnr

i“1 αi.
– e Ð ElG.Epkpm, rq. This takes as input a plaintext message m P Fp and random-

ness r $
ÐÝ Zq , writes m to mpzq “ pz ´ mq P Fprzs,4 and outputs the ciphertext

message e “ pgpzqr,mpzqβpzqrq.
– uipzq Ð ElG.TDpkpski, eq. Given a ciphertext e “ pupzq, vpzqq, a party Ri pub-

lishes her decryption share uipzq “ upzqαi .
– m Ð ElG.TAgpkpvpzq, tuipzquiPrnrsq. This computes the plaintextmpzq “

vpzq
ś

iPrnrs uipzq
“

mpzqβpzq
r

gpzq
r¨

ř

iPrnrs αi
and outputs the message m.

– tm1, . . . ,mℓu Ð ElG.Dcompkpmpzqq. This takes as input a message polynomial
mpzq P Fprzs of degree ℓ, decomposes it into a set of monic irreducible polynomials
tmipzquiPrℓs P pGqqℓ, and outputs a set of plaintext messages tmiuiPrℓs P pFpqℓ.

Proposition 1 ensures that the ElGamal encryption scheme in the setting of a finite
cyclic multiplicative subgroup Gq of pFprzs{xθpzqyq˚ is secure against the IND-CPA
attack. As discussed in [15,35], it is easy to prove the security of this ElGamal variant
by following one of the ElGamal encryption schemes working in Z˚

p . All the above
computations are performed modulo θpzq, which we have omitted for brevity.

Proposition 1. The ElGamal encryption scheme in Construction 1 is semantically se-
cure, provided that the DDH assumption holds in Gq .

More information regarding the distributed key generation (DKG). Despite the
simplicity of the DKG procedure above, the complete process is quite involved. The first

3 In fact, Menezes et al. [35, §8.4.2] provided a generalized ElGamal encryption scheme that
implies our description. For completeness, we provide a full-fledged description.

4 At this point, it is not clear that m P Fp; we will justify this later.

18

design was proposed by Pedersen in [39]; however, Gennaro et al. [22] later observed
a flaw in the distribution of generated keys and suggested a new DKG construction
for DL-based cryptosystems, including ElGamal encryption. Because our variant is the
same as conventional ElGamal encryption except that polynomial arithmetic is used in
Fprzs rather than congruent integer arithmetic, we can directly apply Gennaro et al.’s
DKG protocol to the ElGamal variant in extension fields. For this reason, we will use
it without further specification, while hiding the details of the DKG in the ElGamal
variant. We remark that as in [22], the security of this method holds only for a static
adversary that can corrupt at most t parties for t ă nr{2.
Compatibility with legacy ZKPs. The second issue that arises because of our mod-
ifications is whether the ElGamal variant allows us to reuse existing ZKP protocols,
including proof of plaintext knowledge and proof of correct decryption. As mentioned
above, since the base is a polynomial gpzq but the exponents are still in Z˚

q , in principle,
our modifications do not need to alter ElGamal-related ZKP protocols.

5 Our RMN Protocol Design

Thus far, we have described building blocks to develop a constant-round RMN protocol.
In this section, we present the main protocol based on these building blocks. The
organization of this section is as follows. First, we clarify the communication model
and review some functionalities for ZPK. Next, we provide the details of our RMN
protocol and discuss a variant of our protocol. In the next section, we aim to show that
our construction UC-realizes the ideal mix-net functionality in a hybrid model.

We assume that the protocol accesses two secure communication primitives as the
ideal functionalities specified in Sections 3.3. Furthermore, we need to provide our
protocol with the following functionalities for ZPK, which output 1 if the proofs are
verified and output 0 otherwise. The reason we restate the functionalities is to maintain
consistency with the newly developed ElGamal variant.

– ElGamal plaintext knowledge (FRPT

ZPK). This writes a ciphertext with epzq “ pupzq, vpzqq.
For input pgpzq, βpzq, epzqq from the verifier, the prover inputs r such that upzq “

gpzqr.
– Correct decryption of an ElGamal ciphertext (FRCD

ZPK). For an input pgpzq, βipzq, epzq, dipzqq

from the verifier, where epzq is the same as above, the prover inputs αi such that
βipzq “ gpzqαi and dipzq “ upzqαi .

– Secure ElGamal initialization (FDKg). For an input pα1, . . . , αnrq, a secret sharing of
a random, uniformly distributed valueα P Z˚

q is generated such thatα “
ř

kPrnrs
αi,

and the value βpzq “ gpzqα is publicly open. It is clear that βpzq is therefore
uniformly distributed in Gq “ xgpzqy.

5.1 Protocol Details

We are now ready to present the details of our RMN protocol. For simplicity, we
assume that the publicly known group description and protocol parameters pp “

pGq, gpzq, θpzq, p, qq are given to all parties, and hence we omit the setup algorithm. In

19

addition, letH be the hybrid model consisting of functionalitiesFSC,FBC,FDKg,FRPT

ZPK ,
and FRCD

ZPK .

Construction 2 (Our RMN Protocol). The RMN protocolΠMIX is composed of senders
SiPrnss, mix servers MjPrnms, and receivers RkPrnrs and runs in the H-hybrid model.

– Inputs: Each message mi from owner Si
– Outputs: At the end of execution, any set of t or more receivers outputs a set of

messages tm1, . . . ,mnsu

– The protocol:
1. Key generation. Each receiver Rk does the following:

(a) Choose αk
$

ÐÝ Z˚
q and hand pRk : SKShares, αk, gpzqαkq to Z .

(b) Wait for a message pRk : KeyPair, αk, β1pzq, . . . , βnrpzqq from Z and set
βpzq “

ś

kPrnrs
βkpzq “ gpzq

ř

k αk .
2. Message input. Each sender Si proceeds as follows:

(a) Wait for a message pSi : PKShares, β1pzq, . . . , βnrpzqq from FDKg and set
βpzq “

ś

kPrnrs
βkpzq “ gpzq

ř

k αk .
(b) Wait for a message pSi : Sendijq for j P rnms from Z . Then, choose

a random value δi P t0, 1upolypκq and a randomizer rij
$

ÐÝ Z˚
q . By run-

ning pmi1, . . . ,minmq Ð Shpmi, nm, nmq, compute eij Ð ElG.Epkpmij ∥
δi, rijq.

(c) Hand pSi : Prove, xpgpzq, βpzq, eijq, rijyq to FRPT

ZPK .
(d) Hand pSi : Send, eij ,Mjq to FSC.

3. Ciphertext mixing. Each mix server Mj proceeds as follows:
(a) Wait for a message pSi : PKShares, β1pzq, . . . , βnrpzqq from FDKg and set

βpzq “
ś

kPrnrs
βkpzq “ gpzq

ř

k αk .
(b) Wait until pSi : Send, eij ,Mjq has been received from FSC for all senders;

then, do the following:
i. Hand pMj : Verify,Si, pgpzq, βpzq, eijqq to FRPT

ZPK .
ii. Wait for pMj : Accept,Si, bj1q from FRPT

ZPK . Then, if bj1 “ 0, abort.
(c) Wait for a message pMj : Mixq from Z; then, do the following:

i. Compute e1
j “ ˆh

ns
i“1eij , choose γj

$
ÐÝ Z˚

q , and compute ej Ð

ElG.Repkpe1
j , γjq.

ii. Hand pMj : Prove, xpgpzq, βpzq, ej , e
1
jq, γjyq to FREDL

ZPK .
iii. Hand pMj : Broadcast, pe1

j , ejq, tRkukPrnrsq to FBC.
4. Message output. Each receiver Rk performs the following:

(a) Wait for a message pMj : Broadcast, ej , tRkukPrnrsq from Z; then, do the
following:

i. Hand pRk : Verify, pgpzq, βpzq, ej , e
1
jqq to FREDL

ZPK .
ii. Wait for a message pRk : Accept,Mj , bk2q from FREDL

ZPK . If bk2 “ 0,
abort.

(b) Wait for a message pRk : Recoverq from Z , and if more than t distinct
Recover messages are received, do the following:

i. Parse ej into pujpzq, vjpzqq for all j P rnms.

20

ii. For each j, compute u‚
j pzq Ð ElG.TDpski, ejq and set v‚

j pzq “ vjpzq.
iii. Hand pRk : Prove, xpgpzq, βipzq, pu‚

i pzq, v‚
j pzqqq, αiyq to FRCD

ZPK .
iv. Hand pRk : Broadcast, u‚

j pzq, tRk1 uk1Prnrsztkuq to FBC.
v. Wait until at least t different u‚

j pzq are received from Z; then, compute
mjpzq Ð ElG.TAgpkptu‚

j pzquq and tm1j ∥ δ1, . . . ,mnsj ∥ δnsu Ð

ElG.Dcompmjpzqq. Then, for each j P rnms, calculate a set of plain-
texts m “ tm1 ∥ δ1, . . . ,mns ∥ δnsu,5 identifying every ns-tuple
whose elements have the same δi and applying mi Ð Rcptmijuq.

vi. Output pRk : Recover,mq

5.2 Discussion

We have described the RMN protocol in a clear way to prove its security. Before reporting
the details of the theoretical analysis, we would like to give some further discussions
regarding our protocol. These include the following:

– Generation of δi. One problem that the value δi may pose is that two different
senders could choose the same δi. One possible way to reduce the chance of this is
to use a keyed pseudorandom function (PRF) parameterized by the message mi and
a secret key known only to each Si. For example, consider AES in counter mode to
instantiate such a keyed PRF.
More importantly, δi enables us to have mijpzq “ pz ´ mij ∥ δiq P Fprzs by
repeatedly checking whether mijpzqq “ 1 mod θpzq. Since we can choose a small
number s such that pn ´ 1 “ sq by the Bateman-Horn conjecture [3], we can
efficiently find such a δi.

– The length of δi. Essentially, the length of δi should be sufficiently large compared
with |ns| to avoid a collision. For the sake of performance, one may take a relatively
small prime p, but this increases the probability of collisions. We should therefore
take care in choosing the protocol parameters n, p, q. For the details of the parameter
choice, see Section 6.1.

– Usefulness of δi. The value δi can be used to prevent malicious mix servers from
manipulating some ciphertexts. Assuming at least one honest mix server, malicious
servers cannot make nm distinct messages for the same δ appear at every mix server.

6 Analysis

Our RMN protocol is designed to produce a set of permuted messages across the
mix servers while maintaining strong provable security. As we will show, our protocol
is secure against an active adversary that can control a minority of dishonest mix
servers. This section shows that our protocol satisfies the security requirement. We
begin by studying the asymptotic efficiency of our protocol, mainly focusing on the
round complexity.

5 We should note thatm is a set, and thus there is no information about the order of the messages.

21

6.1 Parameters

In our RMN protocol, ElGamal encryption is the fundamental primitive for security;
however, for our purpose, we make it operate on a multiplicative group ofFpn . Therefore,
we need to generate the parameters so that our ElGamal variant is secure to several
known attacks, including index calculus methods. In taking two primes p, q such that
pn ´ 1 “ sq for some small even s, we should consider the following. First, if p is a
relatively small prime, the function field sieve [2] on a finite field of small characteristic
can efficiently extract discrete logs. Thus, we have to take a prime p such that Fp has a
medium characteristic. For such a prime p, we then take a large prime q such that the
size of the DDH group Gq ensures a proper security level (e.g., a 3072-bit prime for
128-bit security).

6.2 Asymptotic Costs

We quantify the costs for computation and transmission by counting the number of
exponentiations used in the whole execution and the total number of Gq elements
exchanged between parties, respectively. We exclude the costs for idealized primitives
such as ZPK protocols.
Computational complexity. Let us use Exp to denote an exponentiation time, and
let ℓq be the bit length of q. The sender computes nm ElGamal ciphertexts for nm

additive shares of its message with 2nmExppℓqq operations in Fprzs, re-encryption of
the mix server requires 2Exppℓqq, and the receiver uses nmExppℓqq operations in Fprzs

for threshold decryption as well as one Exppℓqq operation for key generation. In total,
our protocol incurs Opnmpns ` nrqExppℓqqq operations in Fprzs.

In comparison, our protocol requires Opnmq exponentiations for the sender. In con-
trast, in most existing RMN protocols, the sender computes a single ElGamal ciphertext.
However, the increase in the computation overhead occurs only on the sender’s side, and
in practice, the number of mix servers is often much smaller than the number of senders.
Transmission complexity. Likewise, the sender needs to transmit more ElGamal ci-
phertexts than in previous RMN solutions. That is, each sender sends 2nm elements in
Gq elements, and thus, the total communication cost for the sender amounts to 2nsnm

elements in Gq elements. Since the mix server sends a single ElGamal ciphertext and
the receiver needs to exchange nm elements in Gq , their total communication cost is
nm`nrnm elements inGq . As a result, our protocol hasOpnmpns`nrqq communication
complexity in terms of the elements in Gq .
Round complexity. Finally, we examine the round efficiency of our protocol. In our pro-
tocol, after performing many local computations, such as homomorphic multiplication
and re-encryption, the mix servers broadcast a single ElGamal ciphertext to the receivers
through the ideal functionality of BC. Because the UC-secure broadcast [26] used in our
protocol runs in constant rounds, the round complexity of our protocol is also constant
for the mix servers. Moreover, all other idealized primitives have constant rounds, and
the senders can complete transmission using only a single round via an idealized broad-
cast channel. Assuming a broadcast channel, decryption can be performed in a constant
number of rounds [22]. Note that over a secure point-to-point communication channel,
the sender can send nm ElGamal ciphertexts in parallel in a single round.

22

From our discussion thus far, we obtain the following:

Proposition 2. Our RMN protocol given in Construction 2 runs in Op1q rounds for all
parties with Opnmpns ` nrqq computation and communication complexities in total.

6.3 Security Proof

We prove that our protocol is secure in the UC framework. As mentioned in the In-
troduction, an RMN protocol may serve as a subprotocol of a high-layer application
(e.g., e-voting), and thus we need a strong notion of security. Our proof is carried out
in a hybrid model that assumes the existence of some ideal functionalities used in the
protocol description (see Section5.1). As mentioned in Section 3, each functionality
can be instantiated using any protocol if the protocol can be proven to UC-realize the
functionality.

An ideal functionality FMIX for RMN is specified in Section 3.1. Now, we will
show that our RMN protocol UC-realizes FMIX against a dishonest minority of static
corruptions for the mix servers. We should note that we allow the static adversary to
corrupt a dishonest majority of the senders. Recall that we use H to denote the hybrid
model including the ideal functionalities FSC,FBC,FDKg,FRPT

ZPK , and FRCD

ZPK . The main
claim for the protocol is given in Proposition 3.

Proposition 3. Our RMN protocol given in Construction 2 UC-realizes the ideal RMN
functionalityFMIX in theH-hybrid model with respect to an adversary that can statically
corrupt at most a dishonest minority of mix servers and a dishonest majority of senders,
assuming the DDH assumption in Gq .

Proof. We assume that all parties implicitly agree on a session ID as either a prefix
of all messages or a default parameter and that they agree on the protocol parameter
pp “ pGq, gpzq, p, qq.

We first define a simulator S as follows. We fix the PPT environmentZ and, as usual,
assume a dummy adversary A. Then, the simulator S runs a copy of A, simulates the
other parties for A’s manipulation, and forwards all messages from Z to its simulated
A and back. We remark that S has access to the randomness used for every ElGamal
ciphertext of Si and Mj since it is handed to a counterpart ZPK functionality, and the
simulator S also knows the private key shares as well as the private key for each receiver
Rk. This is because for the honest receivers, S generates the private key share, but the
corrupt ones will send the private key shares to FDKg to prove that they know the private
key shares.

We need to show that Z cannot distinguish between interacting with A in the H-
hybrid execution and interacting with S in an ideal execution, particularly when the
simulator can access only FMIX, with nonnegligible probability. Our strategy is to show
that the DDH assumption can be broken using a simulator that does not imply the
security of the protocol.
The simulator S. Let IP be the index set of parties of entity type P “ tS,M,Ru that
are corrupted by A. Thus, the simulator S corrupts the dummy parties SiPIS , MjPIM , and
RkPIR .

23

The simulator S simulates all parties except for the corrupted parties SiPIS ,MjPIM ,
and RkPIR under the real adversary A. Thus, S simulates the honest parties Si (i.e., i R

IS) and the ideal functionalities FSC,FRPT

ZPK , and FDKg honestly. Likewise, it simu-
lates all honest Mj for j R IM and the functionalities FDKg,FSC,FBC,FRPT

ZPK , and
FREDL

ZPK honestly. Then, it honestly simulates all RkRIR as well as the functionalities
FDKg,FBC,FRCD

ZPK , and FREDL

ZPK .

1. Simulation of communications between corrupted parties and Z . We use Z̃ to
indicate a copy of a PPT machineZ for the hybrid model. The simulator S simulates
all corrupted parties Si for i P IS, Mj for j P IM, and Rk for k P IR such that it
appears as though Z directly communicates with corrupted parties Si,Mj , or Rk as
follows:

– If Z̃ receives a messagem fromA, thenS writesm toZ . However, ifS receives
m from Z , then Z̃ writes it to A.

– To simulate a corrupted party P P tSi,Mj ,Rku directly communicating with
Z , where i P IS, j P IM, k P IR, if Z̃ receives a message m from P , then Si
writes m to Z . Conversely, if SiPIS receives m from Z , then Z̃ writes it to Si.

2. Extraction and computation for the senders. When a corrupt sender SiPIS produces
a ciphertext and informs FRPT

ZPK that the input is valid, then S must instruct Si to
hand this as input to FMIX.
When a dummy sender Si for i R IS receives a message mij from Z , S must ensure
that Si receives some message m1

ij from Z̃ . However, since S cannot see mij , it
needs to hand some other message m1

ij ‰ mij to Si. More specifically, this step is
performed as follows:
(a) The case of i P IS. BeforeS receives xpS : Mj , Forwardq, tMj : Forward, l

˚
j ujPrnmsy

from Z , it proceeds as follows:
– IfFRPT

ZPK receives pSi : Prove, pgpzq, βpzq, eijq, rijq such that xpgpzq, βpzq,
eijq, rijy P RPT, then S checks whether the message pSi : Send, eij ,Mjq

has been written to FSC.
– If FSC receives ppSi : Send, eij ,Mjq, it is determined whether FRPT

ZPK

recorded rij such that xpgpzq, βpzq, eijq, rijy P RPT.
Using rij , Si later recovers mij “ vij{βrij and sends it to FMIX. Then, S waits
until it receives pS : Si, Set, pi, c1

iqq from Z . It records pi, ci, c
1
iq and proceeds

to the simulation of FSC and FRPT

ZPK .
(b) The case of i R IS. If S receives pS : Si, Set, c

1
iq, then Z̃ sets m1

ij “ 0, chooses
a random padding δ1

i, and sends pm1
ij , δ

1
iq to Si. Then, Si chooses r1

ij
$

ÐÝ Z˚
q and

computes eij “ Epkpm1
ij ∥ δ1

i, r
1
ijq. If FSC hands pA : Set,Si, eij , pi, c1

iqq to
Z , then the simulation is interrupted. Then, S records pi, ci, c

1
iq and continues

the simulation.
(c) If FSC receives pA : Si, Get, pi, ciqq, then the simulation of FSC is paused. If

there exists a tuple pi, ci, c
1
iq for some c1

i, then S hands pFMIX : Get, c1
iq to Z .

When FSC receives pS : Si, eijq, the simulation of FSC continues.
3. Extraction and computation for the mix servers. When a corrupt mix server MjPIM

hands pMj : Mixq toFBC,S must ensure that Mj hands pMj : Mixq toFmix. Likewise,
if the honest dummy mix server Mj receives a message pMj : Mixq from Z , S must

24

ensure that Mj receives a message pMj : Mixq from Z̃ . Regarding the command
pForwardq, S must ensure that if an honest MjRIM hands pMj : Forward, l˚

j q to
FBC, the honest dummy Mj does the same. More specifically, the process is as
follows:

– The case of j P IM. BeforeS receives xpS : Rk, Recover, l
‚
q, tpRk : Recover, l‚

ukPrnrsqy

from Z , it proceeds as follows:
‚ IfFREDL

ZPK receives pMj : Prove, xpgpzq, βpzq, ej , e
1
jq, γjyq such that pgpzq,

βpzq, ej , e
1
jq P REDL from Z , it searches for pMj , pe1

j , ejq, cq in the table
of FBC.

‚ If FBC receives a message pMj : Mixq, then S continues the simulation
before the functionality hands pA : Mix,Mj , cq to Z . Then, the simulation
of FBC is interrupted, and Mj hands pMj : Mixq to FMIX. If the simulator S
receives pMj : Set, c

1q from Z , then it records a pair of counters pc, c1q and
restarts the simulation of FBC.

– The case of j R IM. If the simulator S receives pS : Set, Mj , c
1q from Z , then

Z̃ hands pMj , Mixq to Z and continues to simulate FBC before FBC hands
pA : Set, Mj , Mix, cq to Z . Then, S records the pair of counters pc, c1q and
continues the simulation of FBC.

– If FBC receives a message pA : Get,Mj , cq, the simulation of FBC is inter-
rupted. Then, if the record pc, c1q is found, S hands pFMIXq : Get, c1q to Z .
There is a pause until S receives pS : Mix, Mjq or xpS : Forward, Mj , l

˚
j q, tpMj :

Forward, l1
jqujPrnmsy from Z . Then, S proceeds with the simulation of FBC.

4. Extraction and computation for the receivers. When a corrupt receiver Rk for
k P IR writes a message pRk : Recoverq on FBC, S must ensure that Rk hands
pRk : Recoverq to FMIX. If an honest dummy receiver Rk receives a message
pRk : Recoverq from Z , then S must ensure that Rk receives pRk : Recoverq

from Z̃ . To do this, S first sends a message and instructs FMIX to accept the given
message. The honest receiver Rk outputs pRk : Recover,mq, and S should ensure
that Rk does the same. This process is as follows:

– The case of k P IR. IfFBC receives a message pRk : Recoverq, thenS continues
the simulation until just before FBC hands pA,Rk, Recover, cq to Z . Then, it
interrupts the simulation of FBC and hands pRk : Recoverq to FMIX. When S
receives pRk : Set, c1q from Z , it records a pair of counters pc, c1q and returns
to the simulation of FBC.

– The case of k R IR. If S receives pS : Set, Rk, cq from Z , then Z̃ hands
pRk : Recoverq to Rk and proceeds with the simulation before FBC hands
pA : Set, Rk, cq to Z . Then, it records pc, c1q and continues the simulation.

– If FBC receives a message pA : Get, Rk, cq, then the simulation of FBC is
interrupted. If the pair pc, c1q is found in the table under index c1, then S
hands pFMIX : Get, c1q to Z . It waits until it receives pS : Rk, Receiveq

or ppS : Rk, Recover, l
‚
q, tpRk : Recover, l‚

qukPrnrsq from Z . Then, the
simulation of FBC continues.

5. Replacing each fake message m1
ij “ 0 with a real message mij for i R IS. Since the

simulator S does not know the real messages mij of the honest dummy senders Si
for i R IS, we need to address this flaw to obtain a correct simulation. Fortunately,

25

as constructed above, because S has received pS : Rk, Recover, l
‚
q, where l‚

“

tmi ∥ δiuiPrnss, it can build a set xm “ l‚
ztmi ∥ δiuiPIS . Of course, it cannot see

which message in xm is owned by which sender, but we can replace m1
ij “ 0 with a

message in xm. For simplicity of discussion, we fix an honest mix server Mτ . This
is done as follows:

– For i R IS, compute mi “ ‘jPrnmsmij and build a list pmij ∥ δiqjPrnms. Then,
for each j, choose rij

$
ÐÝ Z˚

q and compute eij Ð ElG.Epkpmij ∥ δi, rijq.
– Modify Mτ and FREDL

ZPK so that they pretend to run with the real messages.
‚ Modify Step 3c: S computes e1

τ “ ˆhi“1nseiτ with the newly generated
ciphertexts for the honest senders and re-encrypts it as eτ with γτ

$
ÐÝ Z˚

q .
Then, it hands pMτ : Prove, ¨ ¨ ¨ q toFREDL

ZPK and pMτ : Broadcast, tRkukq

to FBC.
‚ If FREDL

ZPK receives pRk : Verify, pgpzq, βpzq, eτ , e
1
τ , qq, then we check

whether it has received pMτ : Prove, ¨ ¨ ¨ q and, if so, set bk2 “ 1; we set
bk2 “ 0 otherwise.

We note that we used the same randomness rij , γj in the modification for all
corrupted parties, and the ciphertexts of all corrupted parties are distributed
exactly as in the real protocol.

Defining a sequence of hybrid execution. For proof by contradiction, we assume that
the ideal adversary S does not successfully simulate the real adversary A and then show
that we can break the DDH assumption.

We assume that S does not ensure the security of our protocol ΠMIX in Construc-
tion 2. Then, there exists a hybrid adversary A, an environment Z , and a constant λ such
that for ν P N,

|PrrIDEALFMIX,S,Z “ 1s ´ PrrREALΠMIX,A,Z “ 1s| ě 1{νλ.

– A sequence of hybrids. For convenience of exposition, let JS “ rnsszIS. Then,
consider a sequence of hybrids H0, . . . ,H|JS|, where H0 is the ideal environment
consisting of the ideal adversary S and the ideal functionality FMIX with dummy
parties; i.e., H0 “ ZpFMIX,S, tSiui, tMjuj , tRkukq, with some abuse of notation.
As usual, we define Hℓ by the following modification of H0:
1. If S receives pSi : Sendq from FMIX for i P JS, then it checks whether i P rℓs.
2. If i P rℓs, it finds the message mij of Si that was sent. Then, Z̃ sends mij to Si.

In this case, we treat Si as a corrupt sender and thus set rij “ r1
ij ,m

1
ij “ mij .

3. Otherwise, Z̃ chooses a random message m1
ij and sends it to Si, as in the

original simulation.
Then, the output ofH|JS| is distributed identically to the output ofZpΠMIX,A, tSiui, tMjuj ,
tRkukq except that Mτ cannot set the real messages; however, this is not noticed. If
we set ρℓ “ PrrHℓ “ 1s, then we have |ρℓ ´ ρℓ´1| ě 1

|JS|κλ ě 1
nsκλ by a simple

calculation.
– A distinguishing algorithm D. Finally, we describe a distinguisher D for the DDH

experiment. Thus, D is given the following test, where an oracle chooses r, r1, α P

Z˚
q and a bit b $

ÐÝ t0, 1u:

26

‚ If b “ 0, define pg, u, w, vq “ pgpzq, gpzqr, gpzqα, gpzqr
1

q.
‚ If b “ 1, define pg, u, w, vq “ pgpzq, gpzqr, gpzqα, gpzqrαq.

The point of constructing the distinguisher D is that it can embed w into the public
key because this process does not change the key distribution without knowledge of
the private key α. The distinguisher D continues to simulate Hℓ before Sℓ receives
the message pSℓ : Sendq. Then, it computes puℓτ , vℓτ q “ pu,mℓτ ¨ vq and instructs
Sℓ to hand pSℓ : Send, puℓτ , vℓτ q,Mτ q and FRrpt

ZPK to output bj1 “ 1. Then, D
continues the simulation of Hℓ until it outputs a bit b1, and this bit is its final output.
By construction, if b “ 0, then both elements uℓτ , vℓτ are random elements in Gq ,
which corresponds to Step 2 in the description of the hybrid sequence. Thus, the
output of D is identically distributed to that of Hℓ´1, and the two elements are
also identically distributed to the corresponding ciphertexts in the simulation. On
the other hand, if b “ 1, then uℓτ , vℓτ is a valid ciphertext with randomizer r. This
corresponds to Step 3 in the hybrid description; thus, the output of D is identically
distributed to that of Hℓ. Thus, we have

|PrrDpGq, q, gpzq, gpzqr, gpzqα, gpzqr
1

q “ 1s´

PrrDpGq, q, gpzq, gpzqr, gpzqα, gpzqrαq “ 1s| ě
1

nsκλ
.

This completes the proof of the theorem. [\

7 Concluding Remarks

In this work, we suggest a new technique for designing a constant RMN protocol while
UC-realizing a hybrid model with access to some functionalities for secure communica-
tion and several efficient ZKPs. Our main tool is secret sharing and generalized ElGamal
encryption under field extension. The extended ElGamal encryption scheme allows us to
utilize a decomposition capability that can efficiently and uniquely factorize a decrypted
message into irreducible elements. In particular, one of the outstanding features is that
our protocol does not require a ZKP of correct shuffling; thus, we obtain a considerable
efficiency gain in terms of computation cost.

References

1. Abe, M.: Mix-networks on permutation networks. In: Advances in Cryptology - Asiacrypt.
pp. 258–273 (1999)

2. Adleman, L.: The function field sieve. In: Algorithmic Number Theory. vol. 877, pp. 108–121
(1994)

3. Bateman, P., Horn, R.: A heuristic asymptotic formula concerning the distribution of prime
numbers. Mathematics of Computation 16(79), 363–367 (1962)

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: STOC. pp.
503–513 (1990)

5. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer
via garbled interactive circuits. In: Advances in Cryptology - Eurocrypt. pp. 500–532 (2018)

27

6. Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on Managing
Requirements Knowledge (MARK). pp. 313–318 (1979)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS. pp. 136–145 (2001)

8. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable security for
standard multiparty computation. In: Advances in Cryptology - Crypto. pp. 3–22 (2015)

9. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and secure
channels. In: Advances in Cryptology - Eurocrypt. pp. 337–351 (2002)

10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and
multi-party secure computation. In: STOC. pp. 494–503 (2002)

11. Canetti, R., Shahaf, D., Vald, M.: Universally composable authentication and key-exchange
with global PKI. In: Public-Key Cryptography. pp. 265–296 (2016)

12. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM 24(2), 84–88 (1981)

13. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic
encryption. In: Advances in Cryptology-Eurocrypt. pp. 280–299 (2001)

14. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design
of witness hiding protocols. In: Advances in Cryptology - Crypto. pp. 174–187 (1994)

15. Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks.
In: Advances in Cryptology - Crypto. pp. 445–456 (1991)

16. Damgård, I.: OnΣ-protocols. Lecture Notes, University of Aarhus, Department for Computer
Science (2002)

17. De Santis, A., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive
zero knowledge. In: Advances in Cryptology - Crypto. pp. 566–598 (2001)

18. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
In: Advances in Cryptology - Crypto. pp. 10–18 (1984)

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature
problems. In: Advances in Cryptology - Crypto. pp. 186–194 (1986)

20. Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the context of voting of lotteries.
In: Financial Cryptography. pp. 90–104 (2000)

21. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra (3. ed.). Cambridge University
Press (2013)

22. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for
discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

23. Goldreich, O.: The Foundations of Cryptography: Volume 1–Basic tools. Cambridge Univer-
sity Press (2004)

24. Goldschlag, D., Reed, M., Syverson, P.: Hiding routing information. In: Information Hiding.
pp. 137–150 (1996)

25. Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Distributed Comput-
ing. pp. 17–32 (2002)

26. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J. Cryptol.
18(3), 247–287 (2005)

27. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. (1984)
28. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for mixnets. In:

Topics in Cryptology - CT-RSA. pp. 163–178 (2004)
29. Golle, P., Juels, A.: Parallel mixing. In: CCS. pp. 220–226 (2004)
30. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. of Cryptology 23,

546–579 (2010)
31. Haines, T., Müller, J.: SoK: Techniques for verifiable mix nets. In: IEEE Computer Security

Foundations Symposium. pp. 49–64 (2020)

28

32. Hong, J., Kim, J.W., Kim, J., Park, K., Cheon, J.H.: Constant-round privacy preserving
multiset union. IACR Cryptol. ePrint Arch. p. 138 (2011)

33. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation with a
dishonest majority. In: Advances in Cryptology - Eurocrypt. pp. 578–595 (2003)

34. Kim, M., Kim, J., Cheon, J.H.: Compress multiple ciphertexts using encryption schemes.
Journal of the Korean Mathematical Society 50(2), 361–377 (2013)

35. Menezes, A., Oorschot, P.v., Vanstone, S.: Handbook of applied cryptography. CRC Press
(1996)

36. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS. pp.
116–125 (2001)

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Advances in Cryptology - Eurocrypt. pp. 223–238 (1999)

38. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing election
scheme. In: Advances in Cryptology - Eurocrypt. pp. 248–259 (1993)

39. Pedersen, T.: A threshold cryptosystem without a trusted party (extended abstract). In: Ad-
vances in Cryptology - Eurocrypt. pp. 522–526 (1991)

40. Sampigethaya, K., Poovendran, R.: A survey on mix networks and their secure applications.
Proc. IEEE 94(12), 2142–2181 (2006)

41. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)
42. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
43. Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Public Key Cryp-

tography. pp. 117–134 (1998)
44. van der Hoeven, J., Lecerf, G.: Univariate polynomial factorization over finite fields with

large extension degree. Applicable Algebra in Engineering, Communication and Computing
(2022)

45. von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: A survey. Journal of
Symbolic Computation 31(1), 3–17 (2001)

46. Wikström, D.: Universally composable DKG with linear number of exponentiations. In:
Security in Communication Networks. pp. 263–277

47. Wikström, D.: A universally composable mix-net. In: Theory of Cryptography Conference
(TCC). pp. 317–335 (2004)

29

	A New Approach to the Constant-Round Re-encryption Mix-Net

