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Abstract. SHA-3 is considered to be one of the most secure stan-
dardized hash functions. It relies on the Keccak-f[1600] permutation,
which operates on an internal state of 1600 bits, mostly represented as
a b X 5 x 64—bit matrix. While software implementations process the
state sequentially in chunks of typically 32 or 64 bits, the Keccak-f[1 600]
permutation can benefit a lot from speedup through parallelization. This
paper is the first to explore the full potential of parallelization of Keccak-
f[1600] in RISC-V based processors through custom vector extensions on
32-bit and 64-bit architectures. We analyze the Keccak-f[1 600] permuta-
tion, composed of five different step mappings, and propose ten custom
vector instructions to speed up the computation. We realize these ex-
tensions in a SIMD processor described in SystemVerilog. We compare
the performance of our hardware/software co-design to a software-only
implementation on the one hand and to existing architectures based on
(vectorized) hardware/software co-design on the other hand. We show
that our design outperforms all related work thanks to our carefully se-
lected custom vector instructions.
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1 Introduction

Data integrity is a crucial metric to guarantee the accuracy and reliability of
transmitted information [I1]. The Secure Hash Algorithm (SHA), a family of
cryptographic hash functions published by the National Institute of Standards
and Technology (NIST), has a wide range of applications in the domain of data
integrity verification [5]. These applications include regular hashing, message
authentication codes [14], digital signatures [9], pseudo-random number gener-
ators [7], key derivation algorithms [7], stream encryption [2], etc. The newest
generation, SHA-3, provides better security than former functions. It will grad-
ually replace the applications where SHA-1 and SHA-2 have been used [8/6].
The SHA-3 family contains four cryptographic hash functions and two ex-
tendable output functions. The four SHA-3 hash functions are named SHA3-224,



SHA3-256, SHA3-384, and SHA3-512, where the suffix after the dash is the fixed
length of the output [9]. The two extendable output functions, SHAKE128 and
SHAKE256, can generate any desired output length. Their suffixes define the
security strength [9]. The six functions adopt the sponge construction proposed
by Bertoni et al. in 2007 [4], whose basic structure is the Keccak-f[1600] per-
mutation. The Keccak-f[1 600] permutation contains 24 rounds and works with
a state of 1600 bits, which can be realized as a matrix with 5 rows, 5 columns,
and 64-bit elements [9]. This data structure is suitable for parallel processing.

SHA-3 functions are used in a number of candidate algorithms in the NIST
Post Quantum Cryptography (PQC) contest [I7/I8]. Especially in lattice-based
schemes, SHA-3 functions are used to calculate hashes and generate random
numbers on a large scale. The Keccak permutation in SHA-3 is computationally
intensive due to its high number of rounds and a high number of state bits. It
is always one of the speed-critical components in lattice-based algorithms [1124].
In CRYSTALS-Kyber, the same seeds are usually adopted as input data to
generate the polynomial matrix A, the secret key vectors s, and the error data
vectors e using SHA-3 functions. Take the matrix A generation in Kyber1024,
for example [I]. The public 4 x 4 matrix A is generated from a two-layer loop
structure by SHAKE-128, an extendable output function in SHA-3, whose input
data is the seed concatenated with the row order and the column order. Because
of the large amount of computation and similar input data, it would be beneficial
if one or more Keccak states could work simultaneously to generate A, s and
e. This work explores the feasibility of using vector instructions to make one or
more Keccak states work in parallel.

To realize this goal, we need a vector instruction set architecture (ISA) sup-
porting a flexible vector length that is large enough to include one or more
Keccak states. RISC-V vector extensions meet this requirement. To the best of
our knowledge, there are no other papers that use RISC-V vector extensions
for speeding up SHA-3. To investigate how RISC-V vector extensions can im-
prove the performance of SHA-3, we use the same scalable SIMD RISC-V based
processor as in [15] to do hardware/software (HW/SW) co-design. We allow dif-
ferent numbers of elements in one vector register to process one or more Keccak
states simultaneously. We analyze the algorithm consisting of five different step
mappings in the Keccak permutation, propose ten custom vector extensions for
32-bit and 64-bit architectures, and realize all these custom extensions in the
SIMD processor described in SystemVerilog. Then, we design the assembly code
program for the whole Keccak permutation targeting the 32-bit and 64-bit ar-
chitectures using our custom vector extensions and existing vector extensions for
RISC-V. Our contributions include the following aspects:

— We use RISC-V vector extensions to vectorize the Keccak-f[1 600] permuta-
tion of the SHA-3 function. To the best of our knowledge, we are the first to
use these extensions for speeding up SHA-3.

— We analyze the five step mappings in the Keccak permutation, propose ten
custom vector extensions for 32-bit and 64-bit architectures and realize all
these extensions in a SIMD processor written in System Verilog.



— We optimize the Keccak program for the 32-bit and 64-bit architectures
using the custom and existing RISC-V vector extensions.

— We use a register file with a flexible number of elements to accommodate
one or more Keccak states, and we implement the software code in a Xilinx
Alveo U250 accelerator card.

— The results show that our HW/SW co-design significantly outperforms all
previously proposed software-only and HW/SW co-design implementations.
This paper is organized as follows. In Section [2| we describe the Keccak-

f[1600] permutation and the RISC-V vector Instruction Set Architecture (ISA)
and present an overview of the most relevant related works. In Section 3] we
demonstrate our methodology to design the 32-bit and 64-bit architecture and
elaborate on the custom vector extensions for each step mapping in the two
architectures. In Section[d] we illustrate how to use the RISC-V vector extensions
and the custom extensions to realize the program for the two architectures.
Then we summarize and compare the execution time, throughput, and resource
utilization with the C-code implementation and four implementations in related
works. In Section[5} we conclude this work and present our plans for future work.

2 Background

This section presents the necessary background information on the Keccak-
f[1600] permutation and the RISC-V vector ISA and gives an overview of four
previously proposed implementations.

2.1 Keccak-f[1 600] permutation

All SHA-3 functions use the Keccak-f[1 600] permutation, which NIST selected
as the SHA-3 Cryptographic Hash Algorithm Competition winner [4J9]. The
Keccak permutation uses the sponge construction structure. As shown in Fig-
ure [} the sponge function construction consists of three main phases: padding,
absorbing, and squeezing, and two parameters: rate (r) and capacity (c). This
construction can serve as a framework with arbitrary input and output length.
That is, after an arbitrary number of input bits have been padded into a 1600-
bit message (padding phase), they are absorbed into the state of the Keccak
function (absorbing phase), after which output with an arbitrary number of bits
is squeezed out of the state (squeezing phase) [49].

The Keccak-f[1 600] permutation works on a 1600-bit state, which is ordered
as a three-dimensional = x y X 2z matrix, as shown in Figure[2] where = and y are 5,
and z is 64. Therefore, the 5x5x64—bit state can be viewed as 25 lanes, with each
lane consisting of 64 bits. They can be partitioned as 5 planes with each plane
containing 5 lanes in the same row (plane-wise partition), 64 slices with each slice
containing 25 bits (slice-wise partition), or 5 sheets with each sheet containing 5
lanes in the same column (sheet-wise partition). Among these different partition
options, the plane-wise partition is preferable to work with vector instructions,
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Fig. 1: The sponge construction [9].

where lanes within the same row can be processed simultaneously by the same
instructions [3]. We follow this plane-per-plane processing approach in this work.

The Keccak-f[1 600] permutation comprises 24 rounds. Each round contains
five step mappings, denoted as 6, p, m, X, t. The detailed operations for plane-
per-plane processing are shown in Algorithm 1. The 6 step mapping, designed
for linear diffusion, changes the lane value through XORing each state bit with
parities of adjacent columns. The p step mapping, designed for inter-slice dis-
persion, rotates each lane over a variable number of positions according to its
location. The 7 step mapping, designed for disturbing horizontal/vertical align-
ment, scrambles the location of all lanes. The x step mapping, designed for
non-linearity, updates the value of each row with AND, NOT, and XOR op-
erations among different lanes. The ¢ step mapping, designed for breaking the
symmetry, XORs a round constant with lane 0. The round constant (RC) value
changes according to the round number.

2.2 RISC-V Vector ISA

RISC-V is an open and freely accessible ISA based on reduced instruction set
computer (RISC) principles [26]. It is a real ISA suitable for direct native hard-
ware implementation with small base instructions (ISA bases) for simplified
general-purpose computers and rich optional instruction extensions for more
comprehensive applications. These optional extensions are designed to work with
all ISA bases without conflicts [26]. Besides, RISC-V allows users to customize
their instructions by three different methods to accelerate specification applica-
tions [I5].

RISC-V vector extensions (RISC-V vector ISA) are designed for vector op-
erations. These extensions make multiple data execute the same highly-parallel
process under one instruction and improve the whole system’s performance. The
RISC-V vector ISA includes the following main features according to the most
recent version 1.0 (RVV1.0) [21]:

1. There are total 32 vector registers in the register file.



Algorithm 1 Keccak-f[1600] step mappings in plane-per-plane processing [9]
Input: Keccak state A[z,y]

Output: Keccak state H[z, y]

Note:

1. B,C,D,E,F, G are all intermediate values.

2. The pairs [x, y] define the lane(x,y), with 0 < z<5 and 0 < y<5.

3. r[x, y] is the rotation value for each lane in the p step mapping.

4. RCJi] is the round constant value in the ¢ step mapping.

1) 0 step mapping;:
for z =0 to 4 do
Blz] = Alz,0) ® Afz,1] ® Alz,2] ® Alz, 3] ® Alx, 4]
end for
for x =0 to 4 do
Clz] = B[(z — 1) mod 5] ® ROT(B[(z + 1) mod 5], 1)
end for
for y=0to 4 do
for =0 to 4 do
Diz,y] = Alz,y] ® Cla]
end for
end for
2) p step mapping:
for y=0to 4 do
for z =0 to 4 do
E[z,y] = ROT(D[z,y], r[z, y])
end for
end for
3) 7 step mapping:
for y=0to 4 do
for z =0 to 4 do
Flz,y] = E[(z + 3y) mod 5, z]
end for
end for
4) x step mapping;:
for y=0to 4 do
for z =0 to 4 do
Glz,y] = (F[(z + 1) mod 5,y] & 1) - F[(z + 2) mod 5, ]
Hlz,y] = Flz,y] & Gz, y]
end for
end for
5) ¢ step mapping;:
H[0, 0] = H[0,0] ® RC[{]
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Fig. 2: Keccak state array.

The vector length, VLEN, defines the number of bits in a single vector reg-
ister. It must be a power of 2 and not greater than 2'6.

The element length, ELEN, defines the number of bits in every vector element
that any operation can produce or consume. It must be a power of 2 and no
smaller than 8.

The number of elements, EleNum, defines the number of vector elements in
one vector register. EleNum is determined by VLEN/ELEN.

The vector length, VL, specifies the number of elements to be operated on
in parallel within a vector extension [21]. It can be smaller or greater than
EleNum. When VL is smaller than EleNum, all elements are put in the same
vector register. When VL is greater than EleNum, several vector registers
are grouped to work under the same instruction.

The vector length multiplier, LMUL, specifies the maximum number of vec-
tor registers grouped under the same instruction. LMUL supports integer
values no larger than 8, that is, 1,2,4 or 8. LMUL should not be smaller than
VL/EleNum.

There are three types of instructions: configuration-setting instructions, vec-
tor memory instructions (vector load and store instructions), and vector
arithmetic instructions.

The configuration-setting instructions define VL, LMUL, ELEN, etc.

The vector memory instructions define how to move values between vector
registers and data memory. They support unit-stride, strided, and indexed
addressing modes. There are fields in these instructions to define the width
of memory elements, which can be different from the ELEN value described
in the configuration-setting instructions.

Vector arithmetic instructions define the operands and the opcode. Their
funct3 field specifies whether the two operands are vector-vector (.vv), vector-



immediate (.vi), or vector-scalar (.vx). It also defines whether the corre-
sponding operations are integer operations, multiply /division (MULT/DIV)
operations, or fixed-point operations.

11. Masking is supported on many vector instructions and can be applied to
the specific locations of vector elements in the vector register. The vm field
in the vector load and store instructions and vector arithmetic instructions
denotes whether the corresponding instructions are masked off or not. When
vm equals 1, the instruction is unmasked. Every element in the operand
vectors will participate in the corresponding operation. When vm equals
0, the instruction is masked. The corresponding operation only happens to
these elements whose mask bit is 1 in the mask vector register, which resides
in the vector register file.
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Fig. 3: The architecture of the SIMD RISC-V based Processor [15].

The authors in [I5] realized a scalable SIMD processor that can support
RISC-V ISA bases and RISC-V vector extensions written in SystemVerilog. The
SIMD processor contains a scalar core (top) and a vector processing unit (bot-
tom). The scalar core is an existing RISC-V core, Ibex [16], which decodes all
RISC-V instructions and sends vector instructions to the vector processing unit.
Inside the vector processing unit, the VecIS AInterface module decouples the
vector instructions into configuration-setting instructions, memory instructions,
and vector arithmetic instructions, which are sent to VecISAlInterface mod-



ule, VecLSU module, and VecOpExec module, respectively. The VecOpExec
module decode the vector arithmetic instructions further into different opera-
tions by ArithOpPrepro submodule. And the vector arithmetic instructions
are sent to Execution (Ex) sub-modules. The vector register file is located in
VecRegfile module, where there are in total 32 vector registers. The parameter
EleNum defines the number of vector element in each vector register, and the
parameter ELEN denotes the width of every element.

Figure [d] shows the working procedure for the instruction {vadd.vv v0,v0,v2}.
The elements in the first vector register of vectors v0 and v2 are read out si-
multaneously and sent to the respective Ex sub-module with the same element
index number for the addition operation. After the process finishes, the result of
every Ex sub-module will be sent to vector v0 according to the element index
number. Later, all elements from v/ and v8 will be fetched and executed, and
the result from every Ex sub-module will be written back to vector v1.
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.

. v2 v3
3 »
0 1
: xRN =]
| o ﬂ T
0 K EX[0] Ex[EleNum-1] Ex[0] Ex[EleNum-1] /
0 1 2 3
(LaneNum)

Fig. 4: Vector register file and address allocation [I5].

2.3 Related Work

HW /SW co-design partitions the whole SoC (system-on-chip) system into hard-
ware and software parts, with the hardware parts implemented on FPGA or
ASIC and the software parts embedded in the memory of the FPGA or ASIC [I5],
to be executed on a processor. The advantage of going from a software-only de-
sign to HW/SW co-design is a trade-off between performance, flexibility, and
resource utilization. The approach of using an Instruction Set Extension (ISE)
is commonly used in HW/SW co-design to extend the ISA with customized ex-
tensions for specific functions. These custom instructions are usually suited to
fine-grained operations that are best integrated into a processor pipeline and still
provide software programmability while only needing small hardware changes to



processors [23[19]. These instructions can be integrated into general-purpose
processors and can also be integrated into application-specific instruction set
processors (ASIP), whose instruction set is tailored to meet the requirements of
a specific application.

As far as we know, there are three previously reported implementations using
Instruction Set Extensions for SHA-3 implemented in FPGA or ASIC. All are
ASIPs. In 2015, Wang et al. [25] were the first to propose instruction set exten-
sions for SHA-3 implemented in FPGA. They created an ASIP implementation
based on a tailored 32-bit LEON3 processor with custom extensions that leads
to a reduction of around 87% in the cycle count compared to a software-only im-
plementation. In 2016, Elmohr et al. [I0] proposed two ASIP architectures based
on a 32-bit MIPS processor. In the first architecture (Native ISE), they created
four custom instructions for SHA-3, made slight modifications to the datapath
of the MIPS processor, and finally got a 25% performance improvement. The
second architecture (Co-processor ISE) adds auxiliary registers to supply par-
allel inputs, includes a co-processor to operate multiple inputs simultaneously,
and reaches a speedup of 61.4%. In the domain of the RISC-V ISA, Rao et al.
in 2018 [19] proposed two SHA-3 ASIPs for IoT systems based on a RISC-V
processor and obtained 71% and 262% performance improvements, respectively.
The first ASIP, named OASIP, accelerates operations on the existing datapath
with seven instruction extensions that do not support parallel processes. The sec-
ond ASIP, named DASIP, supports data-level and instruction-level parallelism.
In DASIP, the authors proposed 21 instruction extensions, extended a 64-bit
auxiliary register file, and changed the processor’s datapath to make data and
instructions work in parallel.

In the field of vector instruction set extensions, Rawa et al. [20] proposed six
vector instruction extensions for 128-bit vector-processing units in some main-
stream processors such as ARM (NEON), Intel (SSE, AVX), etc. They designed
the assembly code program for Keccak-f[1600] for a 64-bit architecture and in-
tegrated these vector instructions into the GEMb5 micro-architecture simulator.
As the authors mentioned in the paper, they finally got the performance to be
66 instructions per keccak-f[1600] round, and the latency also 66 clock cycles
per round when working with one cycle per instruction.

Until now, no other published works have used RISC-V vector extensions to
design SHA-3 functions. The RISC-V Cryptographic Extension Proposals [27]
from the University of Bristol propose vector extensions for AES, SHA-2, etc,
but not for SHA-3 functions. Another difference with our work is that they
design coarse-grained instructions for per-round operations and all-round op-
erations of AES and SHA-2, while we design customized vector extensions for
fine-grained operations in Keccak. We compare to the four designs mentioned
above [12122JT0I19)] in Section



3 System Design

In this section, we will firstly give a preliminary introduction to our design
methods for the 64-bit and 32-bit architectures in Section [3:1] and Section [3.2]
respectively. Then we will elaborate on the custom vector extensions for each
step mapping in the permutation for the two architectures in Section 3.3

We will use the same SIMD processor in [I5] to investigate the performance
improvement of SHA-3 with the goals of low latency and high throughput. The
SIMD processor contains a scalar core and a vector processing unit. Both parts
are 32-bit architectures. However, as the configuration-setting instructions can
set the ELEN parameter to different values, the data width in the vector pro-
cessing unit does not have to be consistent with the scalar core. Following the
description from Reference [21], it can be any length that is a power of 2 and
no smaller than 8. This mismatch does not impact the load and store opera-
tions because the vector load and store instructions can also define the width
of the data read from the data memory. There is also nothing to consider for
the vector arithmetic instructions when the two operands are vector-vector (.vv)
and vector-immediate (.vi). We need to adjust the length of the scalar integer
register after reading it from the scalar core if the two operands are vector-scalar
(.vx). We will set the element length (ELEN) to 64 bits and 32 bits separately to
realize the 64-bit architecture and the 32-bit architecture, respectively. To show
the entire vectorization process for the Keccak permutation, we do not combine
operations like many software designs do, for example, by combining the p and
7 step mappings [3].

3.1 64-bit Architecture

Address
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Fig.5: Memory allocation for Keccak states in the 64-bit architecture.
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For the 64-bit architecture, we set ELEN to 64 bits for making the SIMD
processor’s vector processor unit deal with 64-bit operands. Keccak-f[1600] is
easy to map to the 64-bit architecture as its lane width in the Keccak state is
compatible with the element length in the vector register.

As it is feasible to set the vector length VLEN to different values that are
a power of 2 and no greater than 2'6, it is possible to set VLEN to be large
enough. Then, we set the vector length VLEN to make the EleNum parameter,
determined by VLEN/ELEN, large enough for five lanes in one plane. We fit
the 5 x 5 lanes inside the vector register file, with 5 planes occupying 5 vector
registers. Moreover, as illustrated in Figure [5, we can even put more than one
Keccak state in the vector register file. In this figure, the EleNum parameter is
16, and sz, denotes the lane index in one Keccak state with row index z and
column index y. The planes with the same order from different Keccak states
reside in the same vector registers. We use the vector register address to denote
the y-axis and the element index order modulo 5 to indicate the x-axis of one
state. The first Keccak state, A0, occupies element index order 0 to 4, shown in
green; the second Keccak state, A1, occupies element index order 5 to 9, shown
in purple; and the third Keccak state, A2, occupies element index 10 to 14,
shown in blue.

3.2 32-bit Architecture

For the 32-bit architecture, we set the ELEN parameter of the SIMD processor to
32 bits, and then also set the EleNum parameter large enough to accommodate
one or more Keccak states. Later, we need to consider cutting the 64-bit lane
into two 32-bit lanes to reside inside the vector register file and work on 32-
bit operands. The most common way is the bit interleaving technique, where
the odd bits are put in one 32-bit word and the even bits in another 32-bit
word. This technique is beneficial for the rotation operation, especially in the p
step mapping, where the rotation length is sometimes larger than 32. However,
when SHA-3 algorithms work with other programs, extra efforts are required to
separate the lane into odd parts and even parts before the SHA-3 operations
and combine these two parts into 64-bit data after the SHA-3 operations.

In this design, we divide each lane into the most significant and least signifi-
cant parts, with each part containing 32 bits. We store the two parts separately
inside the vector register file, as shown in Figure[6] As a result, we do not need
to partition each lane before and after the Keccak permutation because we can
use the vector load and store instructions with indexed addressing modes to
exchange data between the vector register file and data memory.

3.3 Custom Vector Extensions

As the existing RISC-V vector instructions are for general-purposes applica-
tions, specific instructions for implementing Keccak in the 64-bit and 32-bit
architectures are needed. For example, there are no vector rotation instructions
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Fig. 6: Memory allocation for Keccak states in the 32-bit architecture

in RISC-V vector ISA, and vector slide instructions define behaviors that are
not applicable to our use case, etc.

In this part, we propose custom vector extensions for SHA-3 and realize
them through SystemVerilog in the SIMD processor. We define the parameter
SN to denote the number of Keccak states working in parallel. 5 x SN should
not be greater than the number of elements in one vector register. Note that all
the following instructions only operate on elements that store the Keccak state
values (element index number € [0,5 x SN — 1]). Elements with index numbers
not smaller than 5 x SN are unchanged. In the following parts, vd denotes
the destination vector operand. vI and v2 denote the source vector operands.
uwimm defines the unsigned immediate. simm specifies the signed immediate.

rs1 specifies the scalar register operand. vm denotes whether vector masking is
enabled.

Vector slide modulo five instructions In the 6 step mapping, intermediate
values move up and down the corresponding vector register after XORing all
planes. Moreover, inside the x step mapping, all planes must move down their
corresponding vector registers with offsets one and two, respectively. We pro-
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Fig. 7: Vector slide and modulo-five instructions. SN denotes the number of Kec-

cak states. N is the offset. Here, we take the offset of 1 as an example.

pose two extensions for both architectures: vslidedownm to do the moving down
operation, and wvslideupm to do the moving up operation. To keep lanes belong-
ing to different Keccak states from interfering, we use modulo-five operations to
restrict the element index number, as shown in Figure [7] The two instructions

are also explained in Table

Table 1: Vector slide modulo five instructions.

Instruction Description 64-bit [32-bit
for ¢ from 0 by 1 to SN — 1 do
for j from 0 by 1 to 4 do
vslidedownm.vi vd, vs2, wimm, vm vd[5 X i+ j] < vs2[5 X i + (j + wimm) mod 5]|Yes Yes
end for
end for
from 0 by 1 to SN — 1 do
for j from 0 by 1 to 4 do
vslideupm.vi vd, vs2, uimm, vm vd[5 X i+ j] = vs2[5 X i + (j — uimm) mod 5]|Yes Yes
end for
end for

Vector rotation instructions There are two step mappings using rotation
operations: 6 and p. In the 6 step mapping, the parity of the right column
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rotates one bit towards the most significant direction. For the 64-bit architecture,
we propose the rotation operation wrotup with two vector operands and one
immediate value, which defines the offset. For the 32-bit architecture, we need
to concatenate two 32-bit words into one 64-bit word and then do the rotate
operation. As there are two vector operands, we choose the default rotation offset
of 1 and create two custom extensions: v32[rotup and v32hrotup. The results are
the low 32 bits and the high 32 bits of the rotated 64-bit data, respectively.

Table 2:

Lookup table for the p step mapping.

x=0 x=1 x=2 x=3 x=4
y=0 0 1 62 28 27
y=1 36 44 6 55 20
=2 3 10 43 25 39
y=38 41 45 15 21 8
y= 18 2 61 56 14

Table 3: Vector rotation instructions.

Instruction

Description

32-bit

vrotup.vi vd, vs2, uimm, vm

vd + (vs2 K uimm) V (vs2 > (64 — uimm))
Note: V denotes a bit-wise OR operation.

No

v32lrotup.vi vd, vs2, vsl, vm

vd + (((vs2 || vsl) € 1) V ((vs2 || vsl) > 63))[31: 0]
Note: vs2 || vsl is the concatenation of vs2 and wvsl,
to build 64-bit word.

v32hrotup.vi vd, vs2, vsl, vm

vd + (((vs2 || vsl) € 1) V ((vs2 || vsl) > 63))[63 : 32]

No

v64rho.vi vd, vs2, simm, vm

from 0 by 1 to SN — 1 do
for j from 0 by 1 to 4 do
vd[5 X i + j] < (vs2[5b X i + j| K rho_shift[simm][j])
V(vs2[5 X i 4 j] > (64 — rho_shift[simm][j]))
end for
end for
Note: if simm is -1, the five rows process in sequence.
The counter Imul_cnt in hardware indexes the row.

Yes

v82lrho.vi vd, vs2, vsl, vm

1) vs2 || vsl;

2) The counter lmul_cnt in hardware indexes the row
number automatically for reading the lookup table;
3) The same process as v64rho is executed, and the
least significant 32 bits are stored.

No

v32hrho.vi vd, vs2, vsl, vm

1) vs2 || vsl;

2) The counter Imul_cnt in hardware indexes the row
number automatically for reading the lookup table;
3) The same process as v64rho is executed, and the
most-significant 32 bits are stored.

No

The p step rotates each lane over a variable number of positions according to
the different lane numbers. For the 64-bit architecture, we do not use the rotation
operation wvrotup here because it makes all lanes in one plane rotate with the
same offset under the same immediate value. We store the rotation values in a
lookup table (see Table and create v64rho for the 64-bit architecture, and
v32lrho and v32hrho for the 32-bit architecture.
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For v64rho, the two operands are vector and immediate data. When the
immediate is -1, all five planes in the Keccak are executed in sequence. The
immediate -1 is used when LMUL is greater than 1. Here, we use a counter in
the execution module of the SIMD processor, named Imul_cnt to denote the row
number for reading the offset from the lookup table. When the immediate equals
0, 1, 2, 3, or 4, only one plane is operated with the row index defined by the
immediate, and LMUL should equal 1.

For v32Irho and v32hrho, we combine two 32-bit words into one 64-bit word
and then do the rotate operation. As there are only two operands, i.e., two vec-
tors, there is no value defining the row number. Thus, they also use the counter
Imul_cnt to index the row number for reading the lookup table. The results of
v32lrho and v32hrho, are the least-significant 32 bits and the most-significant 32

bits of the rotated 64-bit data, respectively. All rotation instructions are illus-
trated in Table 3

AO Al A2

|Soo |510 |520 Isso |540| 500| s10| S20 |530 |54o|500 |510 | S20 | S30 |540 | |

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Stepl: Reading each row in
sequence and re-arranging

l the data into columns. The
column number is equal to
the Keccak state number.

Sy0|Sa1 [Sa2 Bos B
A0 Al A2 20 |sy|s31 [Saz [Sos |S1a | 520|531 [S42 Po3 P1a [sy0[S31 [Sa2 fSo3 [S1a

19 S40f So1 | S12 |S23 [Saa | Sao| So1 | S12 [S23 [S34 || Sa0||S01 |S12 |S23 |S34
S| S S20
0| =20

Sao| Sao | Sao ‘

S10 S10( S10

18 | S10|S21 [S32 [Sa3 [Soa | Siof S21|S32 [Saz [Soa | S10S21 [S32 [Sa3 [Soa

17 | S30| Sa1| So2| S13| S2al| S3o| Sai| Soz |S13 [S2aff S30 Sa1| So2 [S13] S24

) Soo| S11| S22 Sa3| s Soo || S11 | S22 [Sa3 | s

Step2: Storing each 16 00| S11| S22| S33| Saaf Soo| S11| S22 [S33 [Saaff Soo || S11| S22 533 [ Saa
column in the vector AO AL A2
Soo | Soo | Soo register file.

S30 [ S39 [ S30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig.8: m operation in the design.

Vector 7 instruction The 7 step mapping contains two steps: 1) reading ev-
ery row from the vector register file in sequence and re-arranging the elements
into columns; 2) storing each column in the vector register. The column num-
ber is equal to the Keccak state number, SN. The operation is illustrated in
Figure [§ and Table 4l We add interfaces between the execution module and the
vector register file in the SIMD processor to make data writing in column-mode
available. We propose a new custom extension vpi.

This instruction can work in both the 64-bit and the 32-bit architectures.
The two operands are vector and immediate data. When the immediate value is
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-1, all five planes in the Keccak are executed in sequence. This is used for LMUL
greater than 1. When the immediate equals 0, 1, 2, 3, or 4, only one plane is
processed, where the order is defined by the immediate, and LMUL should equal
1.

Table 4: Vector 7 instruction.

Instruction Description 64-bit |32-bit

The process is illustrated in Figure [g]

1) Reading elements from vs2 in the vector register file and
re-arranging the elements into columns.

2) Storing each column in the vector register with the starting
address of the column equals to vd.

3) If simm equals 0, 1, 2, 3 or 4, only one row is processed.

If simm is -1, the five rows process in sequence. The counter
Imul_cnt in hardware indexes the row.

vpt.vi vd, vs2, simm, vm Yes Yes

Table 5: Vector ¢ instruction.
Instruction Description 64-bit|32-bit
for ¢ from 0 by 1 to SN — 1 do
for j from 0 by 1 to 4 do
if(j =0)
vd[5 X i+ j] + vs2[5 X i + j] @ RC[rsl]
viota.vx vd, vs2, rs1, vm else Yes Yes
vd[5 X i+ j] < vs2[5 X i + j]
end for
end for
Note: The round constant values RC are shown in Table@

Vector ¢ instruction We propose the instruction viota to XOR a round con-
stant with lane 0 in the first row of every Keccak state for the ¢ step mapping.
The two operands in the instruction are a vector register and a scalar register.
The latter is used to index the round constant data. The data width of the round
constant for the 64-bit architecture is 64 bits, as shown in Table[5] For the 32-bit
architecture, every round constant is divided into a high 32-bit value and a low
32-bit value, and the viota instruction runs twice for each Keccak round.

4 Implementations and Results

We will briefly illustrate how to use the RISC-V vector extensions and the cus-
tom extensions to realize the program for 64-bit and 32-bit architectures in
Section Then we will implement different architectures on a Xilinx Alveo
U250 Data Center accelerator card, summarize and compare the execution time,
throughput, and resource utilization with the C-code implementation and four
reference works in Section
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Table 6: The round constant value in the ¢ step mapping.
0] [0x0000000000000001 [RC[1] [0x0000000000008082 [RC[2] [0x800000000000808A
RC[3] |0x8000000080008000 |RC[4] [0x000000000000808B |RC[5] |0x0000000080000001
6] |0x8000000080008081 |[RC[7] |0x8000000000008009 |RC[8] |0x000000000000008A
RC[9] [0x0000000000000088 |RC[10]|0x0000000080008009 | RC|11]|0x000000008000000A
RC[12][0x000000008000808B | RC[13]|0x800000000000008B | RC[14] | 0x8000000000008089
RC[15]|0x8000000000008003 | RC[16]|0x8000000000008002 | RC[17]|0x8000000000000080
RC[18][0x000000000000800A | RC[19][0x800000008000000A | RC[20] [0x8000000080008081
RC|[21][0x8000000000008080 |RC[22][0x0000000080000001 | RC[23][0x8000000080008008

4.1 Proposed Implementations Based on the SIMD Processor

After finishing the behavioral simulation to evaluate each instruction using the
Vivado 2020.1 tools, we use a program written in assembly language to execute
the whole process. We first realize the program for the 64-bit architecture. To get
a clear picture of the process, we first set LMUL to 1 such that one vector register
is operated each time under one vector instruction, as shown in Algorithm 2.

Before the Keccak permutation, in line 1, the configuration-setting instruc-
tion wsetvli sets VL to EleNum through the scalar register s1, LMUL to 1 through
ml, ELEN to 64 through e64. The 6 step mapping is realized from line 4 to line
16. From line 4 to 7, the vector XOR instruction, vzor, computes the XOR of the
five vector registers. Then, to get the parity of the adjacent columns, the inter-
mediate outputs of line 7 slide down with offset 1 under instruction wvslidedownm
in line 8 for the first operands. Next, they slide up with offset 1 by instruction
vslideupm in line 9 and rotate up by instruction vrotup in line 10 to get the
second operand. The two operands are XORed by vzor to get the parity results
in line 11. From lines 12 to 16, the parity results are XORed with all initial
five vector registers, where the original Keccak states reside. From lines 18 to
22, five v64rho instructions are used to calculate the p step mapping, with the
immediate value denoting the row number. From lines 24 to 28, the custom in-
struction vpi works to get the results from the 7 step. The destination operands
of the five instructions are the same because the re-arranged elements are put
in columns with a start addresses from v5, which is explained in Table |4 and
Figure [8] The x intermediate results are calculated from lines 30 to 54. Three
types of instructions, wvslidedownm, vzor, and vadd are applied here. As there
is no NOT operation in RISC-V vector extensions, vzor is used to do NOT by
XORing every bit with 1. s2 is a scalar register assigned to be -1, with every bit
equal to 1 because of complement storing. Instruction viota processes the ¢ step
mapping in line 56. All operations work without loading or storing intermediate
data to/from memory. This is very efficient and can save a significant portion of
the execution time.

Then, we set LMUL to be greater than 1 to consume less time for every
permutation. According to RVV1.0 [2I], when more than one vector register
work together, LMUL should be an integer with the value of 1, 2, 4, or 8. Here,
we choose LMUL to be equal to 8 to enable the processing of the five vectors,
corresponding to the five rows of the Keccak state, under the same instruction.
Another way is choosing LMUL to be 4 and 1. This way, a group of 4 registers
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Algorithm 2 Keccak-f[1 600] Permutation in the 64-bit architecture with LMUL
equal to 1. Before the permutation, sl is set to EleNum. s2 is set to -1 to make
every bit 1 in order to perform a NOT operation through an XOR with 1. s3 is set
to be 0, s4 is set to 24. The initial Keccak states are put in vector register 0,

1, 2, 3, 4. The program uses base instructions, RVV1.0 vector instructions [21]
and custom vector instructions. cc means clock cycles

29:  # chi step

30:  vslidedownm.vi v10,v5,1 # 2 cc
31:  vslidedownm.vi v11,v6,1
32:  vslidedownm.vi v12,v7,1
33:  vslidedownm.vi v13,v8,1
34:  vslidedownm.vi v14,v9,1
35:  wvxor.vx v10,v10,s2

36:  vxor.vx v1l,v11,s2

37:  vxor.vx v12,v12,s2

38:  wvxor.vx v13,v13,s2

39:  wvxor.vx v14,v14,s2

1: vsetvli x0,s1,e64,m1,tu,mu # 2 cc
2: permutation:

3:  #theta step

vxor.vv vH,v3,v4d # 2 cc
vxor.vv v6,v1,v2

vxor.vv v7,v0,v6

VXOr.vv vH,vd,v7

8:  wvslideupm.vi v6,v5,1 # 2 cc

9:  vslidedownm.vi v7,v5,1 # 2 cc

10: vrotup.vi v7,v7,1 # 2 cc 40:  vslidedownm.vi v15,v5,2 # 2 cc

41:  vslidedownm.vi v16,v6,2
42:  vslidedownm.vi v17,v7,2
43:  vslidedownm.vi v18,v8,2
44:  vslidedownm.vi v19,v9,2
45:  vand.vv v10,v10,v15 # 2 cc
46:  vand.vv v11,v11,v16

47:  vand.vv v12,v12,v17

48:  vand.vv v13,v13,v18

49:  vand.vv v14,v14,v19

11:  vxor.vv vb,v6,v7

12:  vxor.vv v0,v0,v5
13:  wvxor.vv vl,vl,vb
14:  vxor.vv v2,v2,v5
15:  vxor.vv v3,v3,vb
16:  vxor.vv v4,v4,v5

17:  # rho step

18:  v64rho.vi v0,v0,0 # 2 cc
19:  v64rho.vi v1,vl,1

20:  v64rho.vi v2,v2,2

21:  v64rho.vi v3,v3,3

22:  v64rho.vi v4,v4,4

50:  wvxor.vv v0,v5,v10
51:  wvxor.vv vl,v6,v1l
52:  wvxor.vv v2,v7,v12
53:  wvxor.vv v3,v8,v13
54:  wvxor.vv v4,v9,v14

23:  # pi step 55
24:  vpi.vi v5,v0,0 # 3 cc )
25:  vpi.vi vh,vl,1
26:  vpi.vi vb,v2,2
27 wvpi.vi vH,v3,3
28:  vpi.vi vb,v4,4

# iota step
56:  viota.vx v0,v0,33 # 2 cc

57:  # jump
58: addi s3,s3,1
59:  blt s3,s4,permutation
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Algorithm 3 Modified implementation of p, 7w, x and ¢ in the 64-bit architecture
with LMUL = 8. Before the permutation, s5 is set to 5 x EleNum.

1: # rho step

2: vsetvli x0,s5,664,m8 tu,mu # 2 cc
3: v64rho.vi v0,v0,-1 # 6 cc

8: vxor.vx v16,v16,s2 # 6 cc
9: vslidedownm.vi v24,v8,2 # 6 cc
10:  vand.vv v16,v16,v24 # 6 cc

4 4 pi step 11: vxor.vv v0,v8,v16 # 6 cc
5: vpi.vi v8,v0,-1 # 7 cc 19: 4 iota step

13: vsetvli x0,s1,e64,m1,tu,mu # 2 cc
14: viota.vx v0,v0,s3 # 2 cc

=2

# chi step
7 vslidedownm.vi v16,v8,1 # 6 cc

is operational, followed by a group of 1 register. We do not do this, because we
would need to configure the LMUL value in an alternating way, which would
consume more time. VL is set to be 5 x EleNum. It is not better to make the 6
and ¢ step mappings run with LMUL equal to 8 because in the 6 step mapping,
the five rows in sequence are XORed separately to get the column parities, and
in the ¢ step mapping, only the first row is processed. LMUL equal to 8 is feasible
for other step mappings, so we need to re-configure the LMUL value before the
p step mapping and after the y step mapping. We rewrite the p, 7, x, and ¢ step
mappings accordingly in Algorithm 3.

For the 32-bit architecture, we also set LMUL to be 8 for p, m, and x step
mappings. As illustrated in Figure [} we put the least-significant part in vector
register 0 to 4 and the most significant part in vector register 16 to 20. The
32 vector registers in the SIMD processor are enough for the whole Keccak
permutation. The program for the 32-bit architecture is similar to the 64-bit
program, except for the rotation processes in the 8 and p step mappings, where
the specific vector rotation instructions for the 32-bit architecture, including
v32lrotup, v32hrotup, v32lrho and v32hrho, are used.

4.2 Experimental Results

This design uses one RISC-V GNU Compiler Toolchairﬁ to compile all our soft-
ware programs. The Xilinx Alveo U250 Data Center accelerator card is selected
as the hardware platform. We use Vivado 2020.1 tools to synthesize and imple-
ment the SIMD processor at 100 MHz. We compare our designs with the existing
ASIP designs mentioned in Section [2.3] which adopt tailored processors with a
subset of instructions to meet design requirements. In our implementations, we
also use a smaller set of instructions together with the custom extensions for Kec-
cak. We keep all instructions in the scalar core of the SIMD processor, where the
base RISC-V ISA and multiplication and division extensions are supported. The
vector processing unit reserves configuration-setting instructions, vector load and
store instructions, vector logical instructions in vector arithmetic, and all custom
extensions for different architectures.

® https://github.com/riscv-collab/riscv-gnu-toolchain/
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Table 7: Results of our 64-bit architectures and comparison with a 64-bit refer-
ence architecture. The execution time for one round is reported as the number of
cycles to complete one round (cycles/round). The execution time to complete the
entire permutation is reported as the number of cycles per byte (cycles/byte).

Implementation Execution time .Throughput . A_rea
cycles/round]cycles/byte]| (bits/cycle) x 10 (slices)
Vector Extensions [20] 66 - 1010.1 (only simulation)

(Gél_;)liltuﬁli};}f/{sg;el) 103 12.8 624.02 7323
(gﬁiﬁnﬁ%} 5. s[tJ:tels) 103 12.8 1872.07 24789
(Stll\)lilfn:v:it;}),L tliv[ :g;;ela) 103 12.8 3744.15 48180
(fsél_:liltuvl;jllt:}g ,Li\/[s[‘g;eg) 75 9.5 845.67 7323
(giif%ﬁrﬁit&? oy s[i;tegs) 75 9.5 2537.00 24789

(gfﬁﬁ‘ﬁr,?;té‘of?ﬂi) 5 9.5 5073.00 48180

Table 8: Results of our 32-bit architectures and comparison with 32-bit reference
architectures. The execution time for one round is reported as the number of
cycles it takes to complete one round (cycles/round). The execution time for the
entire 24-round Keccak permutation is reported as the number of cycles it takes

per byte to complete the permutation (cycles/byte).

Implementation Execution time Throughput Area
cycles/round[cycles/byte| (bits/cycle) x 103 |(slices)
LEONS3 ISE [25] - 369 21.68 8648
MIPS Native ISE [10] - 178.1 44.92 6595
MIPS Co-processor ISE [10] - 137.9 58.01 7643
OASIP [19] - 291.5 27.44 981
DASIP [19] - 130.4 61.35 1522
Ibex core (C-code) 2908 355.69 22.45 432
32-bit with LMULS8
(EleNum=5, 1 state) 147 18.1 441.98 6359
32-bit LMUL=8
(EleNum=15, 3 states) 147 18.1 1325.97 23408
32-bit LMUL=8
(EleNum=30, 6 states) 147 18.1 2651.93 48 036
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We compile all the optimized programs using vector extensions for three
different structures: (1) 64-bit architecture with LMUL equal to 1, (2) 64-bit
architecture with LMUL equal to 8, and (3) 32-bit architecture with LMUL equal
to 8. Every generated binary machine code is stored inside the program memory
of the SIMD processor. The former two structures use the same System Verilog
code because the instructions can support different LM UL settings. For the 64-
bit architecture with LMUL equal to 1, the latency of one round (consisting of
the 5 step mappings) is 103 cycles, and the latency of the Keccak permutation,
i.e. 24 rounds plus a few additional instructions, is 2564 cycles. For the 64-
bit architecture with LMUL equal to 8, the latency of one round is 75 cycles,
and the latency of the Keccak permutation is 1892 cycles. Furthermore, for the
32-bit architecture, the latency of one round is 147 cycles, and the latency of
the Keccak permutation is 3620 cycles. As we increase the EleNum value, the
vector register file can hold more than one Keccak state, and the architecture
can perform multiple Keccak operations in parallel. The Keccak state number
(SN) determines the number of states processed in parallel. The latency is the
same no matter how many Keccak states there are in the system simultaneously.
However, the throughput increases as EleNum increases. For example, when
EleNum equals 30, 6 Keccak states can be processed in parallel. In this case,
the number of bits processed per cycle is 3.74, 5.07, and 2.65, respectively, for
the three architectures, compared to 0.62, 0.85, and 0.44 when only one state is
processed in parallel.

To compare our architectures with other implementations, we first use the
Keccak C-code from the PQ-M4 project as the baseline implementation [13].
We run the baseline code on the Ibex core [16], a pure 32-bit RISC-V based
processor without RISC-V vector extensions, and determine the latency and
resource utilization. Then we compare our results to the four reference designs
introduced in Section [2:3] All results and comparisons are shown in Table [7] and
Table

All references [25IT0IT9] use the number of slices as the unit to represent the
resource utilization (area). In our work, we derive the number of slices from the
post-implementation results in Vivado. We define two types of execution time:
cycles per Keccak round (cycles/round) and cycles per message byte in one Kec-
cak state (cycles/byte). Cycles/round is the latency to finish one Keccak round,
while cycles/byte is the latency measured in clock cycles for hashing one byte
of the message in the entire 24-round Keccak permutation. Either is justified to
present the execution time. The reason to use the two is that different references
use different measures. For example, reference [10] uses cycles/byte to denote the
execution time; reference [19] adopts bytes/cycle to compare the performance. In
addition, reference [20] uses cycles/round to represent its running time. Besides,
we do not include the clock frequency to compare the performance because the
reference designs either use different clock frequencies or do not mention their
frequency.
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LMUL = 1 vs. LMUL = 8 In Table[7] we can see that in the 64-bit archi-
tecture, when LMUL is equal to 8, the performance improves. The throughput
increases with a factor of 1.35 compared to when LMUL equals 1.

64-bit architecture vs. 32-bit architecture When comparing the 64-bit
and 32-bit architectures with LMUL 8, we can see that the 64-bit architecture
runs almost twice as fast as the 32-bit architecture, and both use similar re-
sources. The reason that the resources are similar is that the 32-bit architecture
uses more resources for the rotation instructions, while the 64-bit architecture
uses more resources for the datapath and the register file.

32-bit architecture vs. C-code When comparing the C-code implemen-
tation with our 32-bit architecture (LMUL = 8 and EleNum = 30), we get a
performance improvement of 117.9 times and utilize 111.2 times more FPGA
resources.

32-bit architecture vs. MIPS Co-processor ISE [10] When compared
with the Co-processor ISE in [I0], where parallel operations are supported, the
throughput of our 32-bit architecture (LMUL = 8 and EleNum = 30) is improved
by a factor of 45.7. The area is increased by a factor of 6.3.

32-bit architecture vs. DASIP [19] Our 32-bit architecture (LMUL = 8
and EleNum = 30) is 43.2 times faster but 31.5 larger than DASIP [I9], which
supports data-level and instruction-level parallelism.

64-bit architecture vs. Vector Extensions [20] For the 64-bit architec-
ture (LMUL = 8 and EleNum = 30), the performance is increased by a factor
of 5.3 compared to the vector extensions design for Keccak in [20] because more
Keccak states can be processed simultaneously.

5 Conclusion and Future work

In this paper, we start from an existing SIMD RISC-V based processor to explore
the use of custom vector instruction set extensions for the implementation of the
Keccak-1[1 600] permutation in SHA-3 hash functions. We vectorize the Keccak-
f[1600] permutation to make more than one Keccak state work simultaneously.
We analyze the five step mappings, propose ten custom vector extensions for 64-
bit and 32-bit architectures, and realize these custom instructions in the SIMD
processor in SystemVerilog. Then, we design the assembly code program for both
the 64-bit and the 32-bit architectures using the custom vector instructions and
the existing RISC-V vector extensions. Our results for the 32-bit architecture
show an improvement of 45.7 and 43.2 times in throughput compared to two
existing parallelized designs [I0JI9]. The 64-bit architecture offers optimization
of 5.3 times compared to an existing design where vector extensions are sup-
ported [20]. Our work uses fine-grained instruction-set customization and does
not fuse adjacent operations for the purpose of showing the whole vectoriza-
tion process using RISC-V vector extension. Predictably, the two architectures’
performance will improve more if we increase the granularity or combine some
adjacent operations.
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In future work, we will integrate this work in the implementation of PQC
algorithms, such as CRYSTALS-Kyber [1] to see how the performance can be
improved by the vectorization of Keccak-f[1 600] permutation. Moreover, we will
investigate the optimization of the complete CRYSTALS-Kyber scheme with
other techniques, such as polynomial multiplication optimizations.
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