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Abstract. Access Control Encryption (ACE) [12] allows to control information flow between parties
by enforcing a policy that specifies which user can send messages to whom. The core of the scheme is a
sanitizer, i.e., an entity that “sanitizes” all messages by essentially re-encrypting the ciphertexts under
its key. In this work we investigate the natural question of whether it is still possible to achieve some
meaningful security properties in scenarios when such a sanitization step is not possible. We answer
positively by showing that it is possible to limit corrupted users to communicate only through insecure
subliminal channels, under the necessary assumption that parties do not have pre-shared randomness.
Moreover, we show that the bandwidth of such channels can be limited to be O(log(λ)) by adding public
ciphertext verifiability to the scheme under computational assumptions. In particular, we rely on a new
security definition for obfuscation, Game Specific Obfuscation (GSO), which is a weaker definition than
VBB, as it only requires the obfuscator to obfuscate programs in a specific family of programs, and
limited to a fixed security game.
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1 Introduction

Designers of practical secure IT systems are often interested in controlling the flow of information in their
system. For this purpose one sets up a security policy that contains rules on what operations the entities
in the system are allowed to execute. Crucially, such rules must constrain both write and read operations
as both types may lead to unwanted transfer of data. This was formalized in the classical Bell-Lapadula
security policy as the “no read up” (entities with low security clearance cannot read top-secret data) and
“no write-down” rules (entities with a high security clearance cannot write to public files). If entities are
not assumed to be honest, such a security policy cannot be enforced unless we assume a trusted party,
often known as a sanitizer, which will stop and/or modify unwanted communication. Of course, the sanitizer
cannot do this unless we assume that parties can only communicate via the sanitizer. In practical systems
one usually tries to ensure this by a combination of hardware security and software design, for instance in
the kernel of the operating system.

In [12] Damg̊ard et al. asked whether cryptography can be used to simplify the job of the sanitizer, and
reduce the amount of trust we need to place in it. To this end, they introduced the notion of Access Control
Encryption (ACE). Using an ACE scheme, the sanitizer does not need to know the security policy or the
identities of any parties in the system. It just needs to process every message it receives and pass it on.
The processing essentially amounts to re-randomize every message received. Instead of asking the sanitizer
to enforce the security policy, an ACE scheme integrates the policy in the key generation algorithm, which
gives an encryption key to each sender, a decryption key to each receiver and a sanitizer key for the sanitizer.
The keys are designed such that, after sanitization, a receiver can decrypt a message, only if it was encrypted
by a sender that is allowed to send to that receiver.

Observe that security requires the physical assumption that a corrupt sender cannot bypass the sanitizer
and send directly to any receiver she wants. Indeed, it may seem that nothing non-trivial can be achieved
if we drop this assumption. On the other hand, assuming such a communication bottleneck may be hard to
justify in practice, and makes the system vulnerable to DDoS attacks (in case the sanitizer is offline). It is
then natural to wonder:

Can we achieve any meaningful security without sanitization?

2 Our Results

In this paper, we answer affirmatively to the previous question analyzing two new models, both avoiding the
need of preprocessing ciphertexts before delivery. We present formal definitions of ACE in these models, and
we instantiate them under various computational assumptions. Along the way we obtain a standard ACE
with sender anonymity from standard assumptions, which had been left as an open problem in [18] (deferred
to Appendix C due to lack of space).

2.1 Modeling ACE without Sanitization

2.1.1 ACE without Sanitizer (ACEnoS) Removing the sanitization bottleneck implies that senders
can now post to a bulletin board that receivers can read from. As in standard ACE, parties have no other
communication channel available, and key generation assumes a trusted party. However, senders are now
free to post whatever they want. What security properties can we hope to achieve in such a model? Clearly,
we can do what cryptography “natively” allows us to do, namely what we call the No Read Rule (NRR): an
honest sender can encrypt a message such that only the designated receiver can extract information about
the plaintext from the ciphertext; furthermore we can guarantee that a ciphertext does not reveal the identity
of the sender. What we can do about a corrupt sender is more subtle: clearly, we cannot stop a sender from
simply posting any message she wants, thus broadcasting confidential data. But, on the other hand, this is
often not what a corrupt sender wants to do. If, for instance, the data involved is extremely valuable, it may
be more attractive to break the security policy by sending a secret message that can only be decrypted by a
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specific (corrupted) receiver she is not allowed to send to. This attack we can actually hope to stop, through
what we call the No Secret Write Rule (NSWR)1: parties cannot communicate secretly if the policy does
not allow it. If parties manage to communicate against policy, then anyone can read their communication.

2.1.2 Communication Restrictions For this goal to be meaningful, we can allow corrupted senders
and receivers to share a common strategy, but not randomness. Without this constraint, any no secret write
rule can trivially be broken just using one-time-pad encryption, for instance. Assuming that the parties’
initial states are uncorrelated, the rough intuition is that if the key generation does not supply a corrupted
sender and receiver with sufficiently correlated key material, the receiver’s ability to decrypt a ciphertext
cannot depend on the keys she has. But if it does not, then anyone should be able to extract the message
the corrupted sender wants to leak, and so the message is effectively publicly available. Observe that the
assumption that parties do not have pre-shared randomness is not new: in fact, Alwën et al. [3] already
pointed out the need for such an assumption when building collusion-free protocols.

2.1.3 Verifiable ACE (VACE) Our solution above implies that whatever information a corrupt sender
embeds in his message can in principle be accessed by anyone. But there is no limit on the amount of infor-
mation she can leak in this way. Is there some way to plausibly limit such leakage? We answer affirmatively,
by adding a way to publicly verify the posted ciphertexts. Intuitively, if a ciphertext verifies, it is correctly
formed according to the encryption algorithm, not something the sender can choose as he likes (e.g., no un-
encrypted messages). However, a sender may still try to output a valid ciphertext that equals the encoding
of an n-bit subliminal message. The hope is that now the sender’s situation becomes somewhat similar to
having to generate ciphertexts by calling a random (encryption) oracle. In this scenario embedding a random
n-bits string requires a number of queries exponential in n, as the sender can only make a polynomial number
of calls and cannot control the (somewhat) random outputs. This limits senders to leak up to a logarithmic
number of bits, which is optimal2.

Finally, as anyone can verify, senders are discouraged from posting invalid ciphertexts (e.g., unencrypted
messages) – as in practice, content that does not verify would be taken down and there might be conse-
quences for the sender. With this we obtain fast communication (no need of a sanitization bottleneck), while
maintaining some accountability. Observe that public verification yields something different from a standard
ACE, albeit very close. The difference is that not only the sanitization key is public (as in [14]), but the
sanitization step (the verification in this case) can be performed by any party, after ciphertexts are posted.
This was not the case in [14], where the sanitizer does more than just a routine check (in fact, it injects
honestly generated randomness in ciphertexts, cf. [14, Section 3.1]).

2.2 Instantiating ACEnoS and VACE

2.2.1 Constructing ACEnoS Even assuming parties not to have shared randomness, it is not straightfor-
ward to obtain a ACEnoS by simply “removing” the sanitization step from pre-existing ACE constructions:
the security of existing ACE schemes strongly relies on some transformation to be applied on a cipher-
text before its delivery. In our work, we give several constructions under various standard assumptions that
match in efficiency the existing ACE constructions (e.g., [12, 14]). One of these requires a new primitive, key-
indistinguishable predicate encryption. The definition is rather natural, and very useful, as it immediately
yields a solution of a problem left open by Kim and Wu [18] (see Appendix C).

1 This is closely related to the notion of subliminal channels [25], where the information sent is hidden in messages
that are seemingly created for a different purpose. In that language, NSWR says that, while a corrupt sender may
be able to establish a subliminal channel to a receiver he should not send to, any such channel is non-secret.

2 This reasoning yields a clear lower bound: no ACE scheme can prevent a sender to embed a logarithmic number
of bits in a ciphertext (by generating ciphertexts until, say, the first few bits of the string are equal to the message
bits she wants to embed) without sanitization.
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2.2.2 Constructing VACE We give a construction of an ACE scheme with verification and minimal
leakage based on a new definition of obfuscation. The need of a new assumption arises from the fact that
building a VACE is highly non-trivial. To see why, we can consider what seems at first a promising solution:
assume the sender is committed to a PRF key K and is supposed to compute the ciphertext c she posts using
randomness generated from K and the encrypted message m, via the PRF, i.e., c = Epk (m,PRFK (m)). In
addition, the sender adds a non-interactive zero-knowledge proof that c was correctly computed. This allows
verification. Moreover, it also seems to imply that a malicious sender cannot manipulate the randomness to
embed a subliminal message m ′ in c. However a closer look shows that this is not clear at all: the intuition
assumes that the sender chooses a message m to encrypt and the subliminal message m ′ first, then generates
randomness using the PRF key and hopes that the resulting ciphertext will be an encoding m ′. In fact, the
sender does not have to do this: she might be able to instead compute simultaneously c and m from the
subliminal message m ′, in a way that depends on K , such that c = Epk (m,PRFK (m)) holds. The security
properties of the PRF and the encryption function do not imply that this is infeasible: the PRF is only secure
if the key is not known, and the encryption function is only hard to invert on a random ciphertext, and this
does not prevent the adversary from generating c and m simultaneously from K . With this approach, it is
completely unclear that c could not be an encoding of a subliminal message m ′ that the adversary wants.
One might be able to make these problems go away if one is willing to model the PRF as a random oracle.
But now the problem is that the zero-knowledge proof requires access to the code of the instantiation of the
oracle. This code is no longer available once we pass to the random oracle model, so it is not clear how to
prove security.

In the absence of a solution based on standard assumptions, we rely on a new model for security of
obfuscation that we call Game-Specific Obfuscation (GSO). As the name suggests, GSO only requires the
obfuscator to obfuscate programs in a specific family of programs F used in a fixed security game G. Roughly
speaking, the security requirement is that the obfuscated program does not help an adversary to win the
specific game any more than oracle access to the program would have allowed. Note that while implied
by VBB, GSO makes a much weaker demand than VBB: we assume that the obfuscation gives nothing
more than oracle access, only as far as winning G is concerned, and the obfuscator only needs to obfuscate
programs in F . In particular, the impossibility result for VBB [6] does not apply to GSO. At the same time,
GSO and iO are somewhat incomparable: GSO has no specific requirement on the family of programs, while
iO needs them to compute the same function; on the other hand, iO still guarantees indistinguishability for
every game, while GSO targets a specific one. Nevertheless, assuming GSO is a strong assumption, and our
result mainly serves to rule out impossibility results for VACE with minimal leakage.

2.3 Concurrent work

Recently, Lu et al. [21] explore an analogous question in the context of collusion-preserving MPC [3]: could
one get rid of mediation? At a high level, their solution is similar to our VACE construction: parties’ messages
are encrypted, signed, and sent on an authenticated broadcast channel by a trusted hardware, which thus
performs the same task as the obfuscated program in our construction. However, to completely prevent
subliminal channels they have to assume that senders cannot run the trusted hardware multiple times and
choose which ciphertext to send, which is a stronger assumption than our communication model3.

2.4 Future Directions

We believe that the question we study here is a fundamental one that is of interest, also outside the scope of
ACE, as it can be phrased in a much more general context: assume a polynomial-time sender who is limited
to sending messages that satisfy some verification predicate. The question is to what extent we can use the
verification to limit the bandwidth of any subliminal channel that the sender may be able to embed? Given
our results, it seems that a logarithmic number of bits per message can be achieved. However, we leave a
solution based on standard assumptions as an open problem.

3 In a sense, this is akin to reverse firewalls [23].
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3 Access Control Encryption without Sanitization

In this section we define Access Control Encryption without a sanitization step and show how to instantiate
it. In addition to the protocol algorithms and security definitions, the model includes assumptions on parties,
communication policy and communication channels. We remark that, while the restriction on communication
channels is new, the assumptions on parties and communication policy are usually implicitly included in
models for standard ACE. We explicitly state them to avoid possible misunderstandings of the model setup.

Let [n] = 0, 1, . . . ,n for an integer n ∈ N, and λ be the security parameter. Denote by |s| the length of a
bit string s.

Parties. The protocol is run by n parties Pi. Each party can be either a sender or a receiver. We denote
by nS (resp., nR) the number of senders (resp., receivers); thus n = nS + nR.

Policy. A policy is a function P : [nS ]× [nR]→ {0, 1} defined as follows:
– P(i, j) = 1 means that the i-th sender can send messages to the j-th receiver (i.e., Rj can decrypt

ciphertexts generated by Si);
– P(i, j) = 0 means that the i-th sender cannot send messages to the j-th receiver (i.e., Rj cannot

decrypt ciphertexts generated by Si);
Finally, the party identity i = 0 represents a sender or receiver with no rights, i.e., for all j ∈ [nR],
k ∈ [nS ] it holds P(0, j) = P(k, 0) = 0.

Communication Model. We assume only one-way channels between parties:
– parties cannot share any randomness nor other key setup, and
– parties only communicate through a bulletin board, and do not have private channels, or, in general,

communication channels outside the protocol (analogously to ACE). Senders are the only ones allowed
to write on the bulletin board, while receivers have read-only access to it.

An Access Control Encryption scheme without sanitizer (denoted by ACEnoS in this work) is composed
by four algorithms:

Setup: (pp,msk)← Setup(1λ,P)
Takes as input the security parameter λ and the policy P, and outputs the public parameters of the
scheme (that include the message spaceM) and the master secret key.

Key Generation: ki ← KGen(pp,msk , i, t)
Takes as input the public parameters of the scheme, the master secret key, the identity of the party, and
a type t ∈ {sen, rec}, and outputs a key ki, generated depending on t and i as follows:
– ek i ← KGen(pp,msk , i, sen) is the encryption key for i ∈ [nS ];
– dk i ← KGen(pp,msk , i, rec) is the decryption key for i ∈ [nR];
– ek0 = dk0 = pp.

Encryption: c ← Enc(pp, ek i,m)
On input the secret key of Si and a message m ∈M, outputs the ciphertext.

Decryption: m ′ ← Dec(pp, dk i, c)
On input a ciphertext and the secret key of the receiver i, it outputs either a message or ⊥ (representing
a decryption failure).

As in the original scheme, an ACE without sanitizer has to satisfy:

Correctness: a honestly generated ciphertext can always be decrypted by the designated receivers.
No Read Rule: only the designated receiver can extract information about the plaintext from a ciphertext;

senders anonymity is guaranteed under natural assumptions.
No Secret Write Rule: parties cannot communicate secretly if the policy does not allow it. If parties

manage to communicate despite being forbidden by the policy, then anyone can read their communication.

When compared to the security definitions of ACE, only the No write Rule requires major changes, as
it is the only property where the sanitizer plays a fundamental role. Correctness and the No Real Rule only
need small adjustments.
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Definition 3.1 (Correctness). An ACE without sanitizer is correct if for all m ∈ M, i ∈ [nS ], j ∈ [nR]
such that P(i, j) = 1 it holds

Pr

Dec(pp, dk j ,Enc(pp, ek i,m)) ̸= m :
(pp,msk)← Setup(1λ,P),
ek i ← KGen(pp,msk , i, sen),
dk j ← KGen(pp,msk , j, rec)

 ≤ negl(λ) ,

where the probabilities are taken over the random coins of all the algorithms.

The NRR models the case in which a coalition of parties (both senders and receivers) tries to either break
the confidentiality of a message (payload privacy) or to break the anonymity of target senders. We consider
the most powerful adversary, that has even access to the target senders’ encryption keys. This guarantees
sender’s anonymity (and payload privacy) even for senders whose encryption key was leaked.

Definition 3.2 (No-Read Rule). Consider the following security experiment, where A is a stateful ad-
versary and b ∈ {0, 1},

Experiment ExpnrA,b(λ,P) Oracles

(pp,msk)← Setup(1λ,P) OG(j, t) : OE(j,m):
(m0,m1, i0, i1, st)← AOG(·), OE(·)(pp) If ∃ kj s.t. (kj , j, t) ∈ L, return kj. ek j ← OG(j, sen)
cb ← Enc(pp,OG(ib, sen),mb) Else kj ← KGen(pp,msk , j, t) c ← Enc(pp, ek j ,m).
b′ ← AOG(·), OE(·)(st , cb) L ← L ∪ {(kj , j, t)} Return c.
Return b′. Return kj.

Given the following requirement,

Necessary Condition: b = b′, |m0| = |m1|, i0, i1 ∈ [nS ],

we say that A wins the experiment if one of the following holds:

Payload Privacy (PP). The Necessary Condition holds, and for all queries q = (j, rec) to OG it holds that:

P(i0, j) = P(i1, j) = 0 .

Sender Anonymity (SA). The Necessary Condition holds, and for all queries q = (j, rec) to OG it holds
that:

P(i0, j) = P(i1, j) and m0 = m1 .

An ACE without sanitizer satisfies the No-Read rule if for all PPT A, b $←−{0, 1}

2 ·
∣∣∣∣Pr [(PP ∨ SA) : b′ ← ExpnrA,b(λ,P)

]
− 1

2

∣∣∣∣ ≤ negl(λ) .

NRR vs. Indistinguishability. The NRR corresponds to the indistinguishability properties of the PKE, which
in fact can be seen as special cases of the NRR: Payload Privacy when i0 = i1 guarantees IND-CPA security,
while the Sender Anonymity case is analogous of key-indistinguishability [7].

The goal of the No Secret Write Rule is to prevent unauthorized communications. However, as the
sanitization step is not present anymore, there is no countermeasure in place to prevent parties to try to
establish subliminal channels [25]: parties might try to embed messages in the bits of a valid ciphertext
using some shared randomness (for example, bits of their secret keys). As completely preventing subliminal
channels without some kind of sanitization step is impossible (cf. Section 7.2), we settle for preventing secure
exfiltration of information: if two parties manage to communicate despite this being against the policy,
they can only succeed in establishing an insecure subliminal channel (i.e., they can only send unencrypted
messages). This is useful in scenarios where leaking information by broadcasting it in the clear is not an
option (e.g., if the information allows to identify the party that leaked it). Thus we need to assume that
the corrupted sender and receiver do not share randomness or private communication channels. An obvious
implication is that they cannot corrupt the same party and they should only communicate through the
bulletin board. In fact, this imposes much bigger limitations to their corruption abilities:
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– They cannot corrupt parties that have parts of the key in common (e.g., in constructions relying on
symmetric key cryptography), as in this case the common bits can be used as shared randomness.

– They cannot corrupt parties whose keys can be recovered from each other (as it is the case for public
key cryptography, where usually the public key can be recovered from the secret key).

– Neither of them can have both read and write access to the board, otherwise they would have an
(insecure but) two-way communication channel that would then allow for key-exchange. This means
that the corrupted sender can only corrupt other senders, and analogously for the receiver. Moreover,
corrupted senders should not have access to an encryption oracle, while corrupted receivers do: the first
requirement is due to the fact that a corrupt sender could trivially break the property by “replaying”
encryptions under keys of (honest) senders who are allowed to communicate to the corrupted receiver,
while the latter is due to the fact that we want to model that receivers have access to the entire bulletin
board, which may contain encryptions of known messages under keys of known identities.

The definition says that if a corrupted receiver can recover a message, then knowing some decryption keys did
not help in the process. This is modeled by imposing that a party B without access to keys can recover the
message with a similar success probability4. Remark that there is no consistency check on the ciphertext s̄
output by the corrupted sender A1: s̄ could even be the entire view of A1. In Section 7.2 we show that adding
ciphertext verifiability yields stronger limitation on the communication between unauthorized parties.

Definition 3.3 (No Secret Write (NSW) Rule). Let A = (A1,A2) be an adversary and consider the
following game:

Experiments Oracles
Expnsw(A1,A2)(λ,P) Expnsw(A1,B)(λ,P)

(pp,msk)← Setup(1λ,P) (pp,msk)← Setup(1λ,P) OG(j, t) : OE(j,m):

(m̄, s̄)← A
OG(·,sen)
1 (pp) (m̄, s̄)← A

OG(·,sen)
1 (pp) If ∃ kj s.t. (kj , j, t) ∈ L, return kj. ek j ← OG(j, sen)

m ′ ← A
OG(·,rec), OE(·)
2 (pp, s̄) m ′′ ← BOE(·)(pp, s̄) Else kj ← KGen(pp,msk , j, t) c ← Enc(pp, ek j ,m).

Return 1 if m̄ = m ′, Return 1 if m̄ = m ′′, L ← L ∪ {(kj , j, t)} Return c.
0 otherwise. 0 otherwise. Return kj.

Let Q1 (resp., Q2) be the set of all queries q = (i, sen) (resp., q = (j, rec)) that A1 (resp.,A2) issues to
OG. The adversary wins the experiment if m ′ = m̄ while the following holds:

No Communication Rule (NCR). ∀ (i, sen) ∈ Q1, (j, rec) ∈ Q2, P(i, j) = 0.

Given λ and a policy P, an ACE without sanitizer satisfies the No Secret Write rule if for all PPT
A = (A1,A2) there exists a PPT algorithm B and a negligible function negl such that

Pr
[
1← Expnsw(A1,B)(λ,P)

]
≥ Pr

[
1← Expnsw(A1,A2)(λ,P) ∧ NCR

]
− negl(λ) .

Proving NSWR security. The security definition essentially implies that the views of A1 and A2 are inde-
pendent given the public parameters. In practice, proving the validity of this property means showing that
B can run A2 as a black-box by simulating its view without having access to OG (essentially, B performs a
man-in-the-middle attack on the adversary, only relaying the forged ciphertext). In fact, our constructions
satisfy a stronger version of the property: in all proofs B simulates the oracles even without exploiting its
access to OE .

Impossibility of ACEnoS from Symmetric Key Primitives. Instantiating a protocol only using symmetric key
cryptographic primitives is often desirable, both because they are usually more efficient than public key
cryptographic primitives, and because their post-quantum security is easier to assess. However, instantiating
an ACE without sanitization solely from symmetric key primitives seems impossible. The intuition is that
the symmetry of the keys does not limit their intended use: the same key can be used both for encryption
and decryption independently of what it was intended for. In details, without additional assumptions there
seem to be only three ways to distribute (symmetric) keys:

4 Alternatively one could require A2 (and consequently B) to distinguish whether a ciphertext contains a subliminal
message at all. This case is clearly implied by ours.
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– Receivers get just one key (different for each of them), and every sender is given the key of every receiver
it is allowed to communicate with.

– Senders get just one key (different for each of them), and every receiver is given the key of all the senders
it is allowed to receive message from.

– Senders have a different key for every receiver they are allowed to communicate with, and same for the
receivers (i.e., there is a different key pair for each pair of parties allowed to communicate).

Obviously, the last option is not viable, as it does not preserve sender anonymity: receivers can extract the
identity of the sender of a message by simply observing which key they use to decrypt the message. The
same holds for the second. The first option does not guarantee payload privacy (NRR): as sender keys can
be used to decrypt as well, the adversary can win the NRR experiment simply by decrypting the challenge
ciphertext cb twice, once with the key of sender i0 and once with the key of sender i1. A solution has to
ensure that sender keys cannot be used to decrypt, and, vice versa, receiver keys cannot be used to encrypt.

Updatable Policies and Policy Confidentiality. In our model, we consider the simplest case of a public and
static communication policy (i.e., all parties know the communication policy, and it is not possible to add
a party, or to change the policy, after the key generation phase). However, adapting the model to include
updatable policies or to impose some level of policy confidentiality seems straightforward. In the construction
from predicate encryption one could actually update the policy by just re-issuing the decryption keys, while
in the construction from PKE one would have to re-issue all the keys.

CCA Security. The security definitions only consider chosen-plaintext attacks, as the adversary is never
given a decryption algorithm. The CCA version of our definitions can be derived from them along the lines
of what Badertscher et al. [4] did for the security definitions of ACE with sanitizers. Our constructions can
be adapted to satisfy these new definitions adding a signature on the ciphertext with independently chosen
keys, and using a public key encryption scheme that is IND-CCA2 instead of IND-CPA secure.

Relay Attacks. One could imagine a scenario where A1 and A2 exploit a third party allowed to communicate
with both to relay messages between them. As we do not allow parties to be senders and receivers at the
same time, this is outside of our model. The reason behind ignoring relay attacks is that this vulnerability is
inherent to the design of the communication policy, not to the scheme itself5. That being said, in a potential
implementation of our constructions one should make sure that the policy is coherent with the model. In
particular, care should be taken when dealing with parties that have to be both senders and receivers, which
we call relaying parties. In cases when it is not possible to implement such parties so that the sender and
receiver parts are well separated (meaning: access to the sender side does not imply access to the receiver,
and vice versa), our model has to be used with care. One way to adapt it to such scenario could be to define
a new policy P ′ from the original policy P by representing P as a directed graph, and define P ′(i, j) = 1
if there exists a path that connects Si to Rj , independently of whether there is a relaying party in between
them. This essentially assumes that any relaying party could be corrupted at any time. By analyzing the
structure of P ′ one could then understand which kind of security guarantee our model would yield in such
scenario.

Remark about NCR. It is important that the rule is enforced in the experiment as a winning condition
and not at a oracle level. Otherwise A1 and A2 could agree on a strategy to check that they have access to
the same oracle by querying the key generation oracle on two pairs (i, sen), (j, rec) that are not allowed to
communicate by policy (assuming the policy is public). This would make it impossible to construct B from
A2 in a black-box way in the security proof, and it does not seem to be a requirement coming from use cases
of the protocol.

5 Such attack is not considered in normal ACE either, for the same reasons. Hence the remarks about implementation
apply to the case of ACE constructions too.
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4 Linear ACE without Sanitizer from PKE

The first construction is akin to the original linear ACE from standard assumptions by Damg̊ard et al. [12].
In such scheme, senders are given the public keys of all the receivers they are allowed to communicate with,
and “decoy/placeholder” public keys for the receivers they are not allowed to communicated with (to make
sure that ciphertexts generated by different senders have the same length). The encryption algorithm then
encrypts the message under all the keys. The i-th receiver just decrypts the i-th ciphertext using its secret
key. Sender’s anonymity requires that ciphertexts do not leak any information about the key used to generate
them, i.e., key indistinguishability [7].

Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be a public key encryption scheme, that is IND-CPA secure6 and
IK-CPA (Theorem A.3). An ACE without sanitizer from PKE (denoted ACEpke) can be instantiated as
follow.

Communication Model: parties communicate through a bulletin board. Only senders are allowed to write
on the board. Receivers can only read from it.

Message Space: M := {0, 1}ℓ.
Setup: (pp,msk)← Setup(1λ,P)

It generates the message set, and the number of parties n, of senders nS , and of receivers nR; all are
included in pp, along with the policy. The master secret key is a list of 2nR (distinct) pairs of asymmetric
keys, i.e.,

msk =

{
((pk0

j , sk
0
j ), (pk

1
j , sk

1
j )) :

For i = 1, 2

(pk i
j , sk

i
j)← PKE.KeyGen(1λ)

}
j∈[nR]

.

Key Generation: ki ← KGen(pp,msk , i, t)
On input (i, t), the algorithm parses msk = {((pk0

j , sk
0
j ), (pk

1
j , sk

1
j ))}j , and behaves as it follows.

– If i ̸= 0 and t = sen, it returns a vector ek i = (ek i[j])j∈[nR] such that ek i[j]← pk
P(i,j)
j .

– If i ̸= 0 and t = rec, it returns dk i = sk1
i .

– If i = 0, returns ek0 = dk0 = pp.

Encryption: c ← Enc(pp, ek i,m)
Run cj ← PKE.Enc(ek i[j],m; ρj) for all j ∈ [nR] (ρj is a random string). Return c = (cj)j=1,...,n .

Decryption: m ′ ← Dec(pp, dk j , c)
Let c = (c1, . . . , cnR

). Return the output of PKE.Dec(dk j , cj) (which could be either a message m or ⊥).

Efficiency, Storage Requirements, and Optimizations. Both the encryption and the decryption runtimes are
linear in the number of receivers nR (in the case of the decryption algorithm, this is an upperbound). The
ciphertext length is O(nR). Senders have to store nR public keys, while receivers only have to store one secret
key. The senders memory requirement can be optimized by getting rid of the decoy keys, and instead giving to
the sender only the public keys of the receivers they are allowed to communicate with. The encryption would
then generate a random ciphertext (e.g., an encryption of the message under a random public key) for each
missing receiver key. Security follows as long as the probability of collision with a receiver key when selecting
a random public key is negligible. Finally, remark that if we drop the Sender Anonymity requirement, we
can construct a compact (polylog) ACE already from public key encryption. Indeed, in this case each sender
can have just one encryption key, whose corresponding decryption key can be given to every receiver it is
allowed to communicate with. Hence each sender sends only one ciphertext. The SA is lost because by seeing
which key is used to decrypt, the receiver can infer the identity of the sender. It remains an open question
whether PKE is the minimal assumption to have ACE without sanitization and SA.

6 It is enough that the PKE is IND-CPA, as whenever the receiver has to distinguish between the encryption of 2
different messages, it is not allowed to get the decryption key (as it would be in the Payload privacy game). In the
sender anonymity game, when the adversary can ask for decryption keys, the only requirement is that is should be
impossible to identify a sender from the encryption key it uses, which is guaranteed by the key-indistinguishability
property.
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Policy Confidentiality. In its current formulation, the scheme already can be used to enforce policy confi-
dentiality (with the minor modification of removing the policy from the public parameters of the scheme).
This cannot be done when using the optimized version proposed in the previous paragraph.

Theorem 4.1. The ACEpke scheme is correct, and satisfies the properties of No-Read and No Secret Write
as described in Section 3 if the public key encryption scheme is IND-CPA secure and key-indistinguishable.

Proof. The proof is as follows.

Correctness. Correctness directly follows from the correctness of the PKE scheme.

No Read Rule. The No-Read Rule relies on both the IK-CPA and IND-CPA properties of the PKE scheme.
The proof has a similar structure as the proof of Theorem 3 in [12], i.e., relies on a sequence of indistin-
guishable hybrid games. In the odd hybrid games, a ciphertext in the challenge ciphertext is changed from
an encryption of m0 under ek i0 to an encryption of m0 under ek i1 . In the even hybrid games, the encryption
of m0 under ek i1 is substituted with an encryption of m1 under ek i1 .

Game 0. This is the No-Read game with b = 0.
Hybrid 2k for 0 ≤ k ≤ nR. Replace the encryption algorithm used to generate the challenge ciphertext

with Enc∗k(ek i0 , ek i1 ,m0,m1) which first encrypts m0 and m1 under ek i0 and ek i1 respectively to get:

c0 = (c01 , . . . , c
0
nR

)← Enc(pp, ek i0 ,m0)

c1 = (c11 , . . . , c
1
nR

)← Enc(pp, ek i1 ,m1)

Next, the algorithm outputs the following challenge ciphertext:

c̄2k = (c11 , . . . , c
1
k, c

0
k+1, . . . , c

0
nR

) .

Everything else is as in Game 2k − 1.
Hybrid 2k + 1 for 0 ≤ k ≤ nR − 1. Replace the encryption algorithm used to generate the challenge ci-

phertext with Enc∗k(ek i0 , ek i1 ,m0,m1) which first encrypts m0 under both ek i0 and ek i1 , and m1 under
ek i,1 to get:

c0 = (c01 , . . . , c
0
nR

)← Enc(pp, ek i0 ,m0)

cH = (cH1 , . . . , cHnR
)← Enc(pp, ek i1 ,m0)

c1 = (c11 , . . . , c
1
nR

)← Enc(pp, ek i1 ,m1) .

Then the algorithm outputs the following challenge ciphertext:

c̄2k+1 = (cH1 , c02 , . . . , c
0
nR

) if k = 0

c̄2k+1 = (c11 , . . . , c
1
k, c

H
k+1, c

0
k+2, . . . , c

0
nR

) if k > 0 .

Everything else is as in Game 2k.
Game 1. This is the No-Read game with b = 1.

Let QG be the set of all queries q = (j, t) that the adversary issues to the oracle OG, and J be the subset
of QG composed by all the queries q = (j, rec).

Payload Privacy. This case requires that for all queries q = (j, rec) ∈ J it holds that:

P(i0, j) = P(i1, j) = 0 .

This implies that the adversary cannot get the secret keys corresponding to the public keys contained in ek i0

and ek i1 .
We now prove that the games and their hybrid versions are indistinguishable.
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Game 0 ≈ Hybrid 0. In Game 0, the challenge ciphertext is generated as c0 ← Enc(pp, ek i0 ,m0). In
Hybrid 0 the challenge ciphertext c̄0 is set to be exactly c0 = (c01 , . . . , c

0
n) ← Enc(pp, ek i0 ,m0). Hence

the games are identical.
Hybrid 2k ≈ Hybrid 2k + 1 (0 ≤ k ≤ nR − 1). The only difference between the games is that in Hybrid

2k the (k + 1)-th component of the challenge ciphertext is

c0k+1 ← PKE.Enc(pk1
k+1,m0; ρk+1) if P(i0, k + 1) = 1 ,

c0k+1 ← PKE.Enc(pk0
k+1,m0; ρk+1) if P(i0, k + 1) = 0 ,

while in Hybrid 2k + 1 is

cHk+1 ← PKE.Enc(pk1
k+1,m0; ρk+1) if P(i1, k + 1) = 1 ,

cHk+1 ← PKE.Enc(pk0
k+1,m0; ρk+1) if P(i1, k + 1) = 0 .

We can have 4 cases:

1. P(i0, k + 1) = P(i1, k + 1) = 0,
2. P(i0, k + 1) = 0 ∧ P(i1, k + 1) = 1,
3. P(i0, k + 1) = 1 ∧ P(i1, k + 1) = 0,
4. P(i0, k + 1) = P(i1, k + 1) = 1.

Due to the Payload Privacy condition, the adversary is allowed to query the decryption key dkk+1 only in
the first case. In that case, the two ciphertexts c0k+1 and cHk+1 are generated the same way as encryptions

of m0 under pk0
k+1, thus the games are exactly equal.

In case 2 and 3, the adversary does not have the decryption key dkk+1. In these cases it is possible to
construct a PPT algorithm B that wins the IK-CPA experiment running A as a black-box. We show the
reduction for case 2; case 3 is analogous. B simulates the No Read game as follows:

– B sets the public key pk1
k+1 of the (k + 1)-th receiver and the (k + 1)-th decoy key pk0

k+1 to be the
challenge keys pk1 and pk0 from the IK-CPA experiment, respectively.

– When it is time to generate the challenge ciphertext c̄, B sends m0 as challenge plaintext to the
IK-CPA challenger, and sets c̄k+1 to be the challenge ciphertext from the IK-CPA game.

– Everything else is done honestly according to the game specifications in Theorem 3.2.

B outputs 0 if A returns 2k, 1 otherwise. If A wins the No Read game, then B wins the IK-CPA experiment
with the same probability. Remark that the adversary cannot ask dkk+1, thus it is not an issue that B
has no access to the secret keys corresponding to pk0 and pk1.
In case 4 both ek i0 and ek i1 contain the public key pk1

k+1 of the (k+1)-th receiver, thus both (k+1)-th
ciphertexts in c̄2k and in c̄2k+1 are encryptions of m0 under pkk+1 and the games are identical.

Hybrid 2(k − 1) + 1 ≈ Hybrid 2k (1 ≤ k ≤ nR). The only difference between the games is that in Hybrid
2(k − 1) + 1 the k-th component of the challenge ciphertext is

cHk ← PKE.Enc(pk1
k,m0; ρk+1) if P(i1, k) = 1 ,

cHk ← PKE.Enc(pk0
k,m0; ρk+1) if P(i1, k) = 0 ,

while in Hybrid 2k is

c1k ← PKE.Enc(pk1
k,m1; ρk+1) if P(i1, k) = 1 ,

c1k ← PKE.Enc(pk0
k,m1; ρk+1) if P(i1, k) = 0 ,

We can have 4 cases:

1. P(i0, k) = P(i1, k) = 0,
2. P(i0, k) = 0 ∧ P(i1, k) = 1,
3. P(i0, k) = 1 ∧ P(i1, k) = 0,
4. P(i0, k) = P(i1, k) = 1.
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Due to the Payload Privacy condition, the adversary is allowed to query the decryption key dkk only
in the first case. However, in that case, the two ciphertexts cHk and c1k are encryptions of m0 and m1

respectively under the key pk0
k which is independent from dkk = sk1

k. Therefore, distinguishing the games
implies breaking the IND-CPA property of the PKE scheme. Indeed, assume that A could distinguish
the two games. Then an adversary C for the IND-CPA experiment could win the experiment running A
as a black-box and simulating the NRR hybrid game as follows. C simulates the hybrid game according
to the specifications, setting pk0

k to be the public key pk given as challenge in the IND-CPA game. It
uses m0 and m1 as challenge messages in the IND-CPA game, and sets the k-th ciphertext in c̄ to be the
challenge ciphertext from IND-CPA game. The algorithm C outputs 1 if the distinguisher returns 2k, 0
otherwise. The simulated hybrid game is perfectly indistinguishable from the real one, and C wins with
the same success probability as the distinguisher (and runs in polynomial-time).
Case 2 and 3 are similar to the previous. Now the adversary does not have the decryption key dkk, and
the challenge ciphertext is such that cHk ← PKE.Enc(pk0

k,m0; ρk) and c1k ← PKE.Enc(pk1
k,m1; ρk) (this is

for case 2, case 3 is analogous). We can prove indistinguishability by adding an additional game hop in
between Hybrid 2(k−1)+1 and Hybrid 2k where the ciphertext cHk is set to be PKE.Enc(pk1

k,m0; ρk+1).
Remark that the adversary cannot query the decryption key dkk = sk1

k associated with pk1
k. Thus,

distinguishing this from Hybrid 2(k− 1) + 1 games implies breaking the IND-CPA property of the PKE
scheme, and distinguishing it from Hybrid 2k implies breaking IK-CPA.
In case 4 the adversary still does not have the decryption key dkk, but this time the challenge cipher-
text contains either cHk ← PKE.Enc(pk1

k,m0; ρk) or c1k ← PKE.Enc(pk1
k,m1; ρk). Thus, it is possible to

construct a PPT algorithm B that wins the IND-CPA experiment running A as a black-box. B simulates
the No Read game as follows:
– B sets pk1

k to be the challenge encryption key from the IND-CPA game. As A is not allowed to query
for dkk, this is indistinguishable from the standard game.

– When it is time to generate the challenge ciphertext c̄, B sends m1 and m0 as challenge messages to
the IND-CPA challenger, and sets c̄k to be the challenge ciphertext from the game.

– Everything else is done honestly according to the game specifications in Theorem 3.2.
B outputs 1 if A returns 2k, 0 otherwise. If A wins the No Read game, then B wins the IND-CPA
experiment with the same probability.

Hybrid 2nR ≈ Game 1. In Game 1, the challenge ciphertext is generated as c1 ← Enc(pp, ek i1 ,m1). In
Hybrid 2nR the challenge ciphertext c̄2n is set to be exactly the output of Enc(pp, ek i1 ,m1). Thus the
games are identical.

Sender Anonymity. This case requires that for all queries q = (j, rec) ∈ J it holds that:

P(i0, j) = P(i1, j) and m0 = m1 .

The indistinguishability of the games can be proved as follows.

Game 0 ≈ Hybrid 0. As in the Payload Privacy case these games are identical.
Hybrid 2k ≈ Hybrid 2k + 1 (0 ≤ k ≤ nR − 1). As before, the difference between the two games is how

the (k + 1)-th component of the challenge ciphertext is generated: in Hybrid 2k is

c0k+1 ← PKE.Enc(pk1
k+1,m0; ρk+1) if P(i0, k + 1) = 1 ,

c0k+1 ← PKE.Enc(pk0
k+1,m0; ρk+1) if P(i0, k + 1) = 0 ,

while in Hybrid 2k + 1 is

cHk+1 ← PKE.Enc(pk1
k+1,m0; ρk+1) if P(i1, k + 1) = 1 ,

cHk+1 ← PKE.Enc(pk0
k+1,m0; ρk+1) if P(i1, k + 1) = 0 .

Again, we can have 4 cases:
1. P(i0, k + 1) = P(i1, k + 1) = 0,
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2. P(i0, k + 1) = 0 ∧ P(i1, k + 1) = 1,
3. P(i0, k + 1) = 1 ∧ P(i1, k + 1) = 0,
4. P(i0, k + 1) = P(i1, k + 1) = 1.
From the Sender Anonymity condition we have that A can ask for the decryption key dkk+1 only in cases
1 or 4. In case 1 the two ciphertexts are both encryptions of m0 under pk0

k+1, hence the two games are

equal. In case 4, the two ciphertexts are encryptions of the same message m0 under the same key pk1
k+1,

thus again they are the same game. In case 2 and 3, the adversary does not have the decryption key
dkk+1, hence a successful distinguisher can be used to break the IK-CPA property of the PKE scheme
as in the Payload Privacy case.

Hybrid 2(k − 1) + 1 ≈ Hybrid 2k (1 ≤ k ≤ nR). As m0 = m1 by the SA condition, these games are in
fact equal.

Hybrid n ≈ Game 1. This can be proved using the same argument as in the Payload Privacy case.

No Secret Write Rule. Given an adversary A = (A1,A2) that wins the game Expnsw(A1,A2)(λ,P) with probability
ϵA, to prove that the scheme satisfies the NSW Rule we need to construct an algorithm B that wins game
Expnsw(A1,B)(λ,P) with essentially the same probability (up to a negligible difference). Upon receiving s̄ from
A1, the algorithm B runs A2 internally on input (pp, s̄) simulating the oracles as follows. First, it generates

2nR pairs of PKE keys, and collects them in a fresh master secret key m̄sk = {(( ¯pk0
j , s̄k

0
j ), (p̄k

1
j , s̄k

1
j ))}j∈[nR].

The oracles are then simulated using msk ′:

OG: on input (j, t) from A2, B generates new keys according to the policy P using m̄sk . If t = sen B sends

ek j = (p̄k
P(j,i)
i )i∈[nR]; if t = rec, it sends dk j = s̄k

1
j . It stores the keys in a list K.

OE : simulates the encryption oracle as specified in the security experiment using the appropriate key from
K.

Finally, B outputs the message that A2 returns. By the definition of conditional probability, the success
probability of B is

Pr
[
1← Expnsw(A1,B)(λ,P)

]
= Pr

[
1← Expnsw(A1,A2)(λ,P) ∧ NCR

]
· Pr(E) ,

where we denote by E the event “A2 does not distinguish the simulated oracles from real ones”. The only
way A2 could distinguish, is if the answers of the simulated oracles were inconsistent with the challenge
ciphertext s̄. However, in the real game the encryption keys queried by A1 are statistically independent
of the decryption keys queried by A2, and they do not share state, thus any information encoded in s̄ is
statistically independent of the keys A2 queries. The only way A2 could get information about the encryption
keys owned by A1 would be by querying the encryption oracle on (i,m) for an i that A1 has corrupted (such
identity could be hardcoded in A2, so the attack can be performed even in absence of shared state). If A2

can distinguish that the ciphertext is not generated using the same key that A1 received, then A can be
exploited to break the key indistinguishability property of the PKE. Let qE be the number of queries by A2

to the encryption oracle. One can prove this by a sequence of hybrid games:

Game 0. This is the No-Secret-Write experiment.
Hybrid k for 0 ≤ k ≤ 2nR. In all hybrid games the view of A1 is generated according to the NSWR experi-

ment, i.e., using the master secret key msk generated at the beginning of the experiment. However, when
generating the view of A2, the challenger in Hybrid k generates the j-th key pairs in m̄sk as follows:

Case j < ⌊k/2⌋: it generates fresh PKE key pairs (p̄k
0
j , s̄k

0
j , p̄k

1
j , s̄k

1
j ).

Case j = k: it generates a fresh key pair (p̄k , s̄k), and sets the j-th PKE pairs to be (p̄k , s̄k , pk1
j , sk

1
j ) if

k is odd and (p̄k
0
j , s̄k

0
j , p̄k , s̄k) if k is even, where (pk0

j , sk
0
j , pk

1
j , sk

1
j ) is the j-th key pair in msk and

(p̄k
0
j , s̄k

0
j , )← PKE.KeyGen(1λ).

Case j > ⌊k/2⌋: it uses the same PKE key pairs (pk0
j , sk

0
j , pk

1
j , sk

1
j ) as in msk .

Let Ek be the event that A distinguishes between Hybrid k and Hybrid k − 1. Theorem 4.2 shows that
Pr(Ek) ≤ 2

3qEϵik-cpa(λ).
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Game 1. This is the No-Secret-Write experiment as simulated by B. By definition, Hybrid 0 is exactly equal
to Game 0, and Hybrid 2nR is the same as Game 1. Therefore:

Pr(E) ≥ 1− 3nRqEϵik-cpa(λ) ,

where ϵik-cpa(λ) is the probability of breaking the IK-CPA property of the PKE scheme and qE = poly(λ)
as A is a polynomial-time algorithm.

⊓⊔

Lemma 4.2. Pr(Ek) ≤ 3ϵik-cpa(λ)qE for all k ∈ [2nR].

Proof. We split the proof in 3 cases:

Case 1: for all queries (j, sen) by A1 to OG, P(j, k) = 0.
Case 2: there are ī, j̄ ∈ [nS ] such that A1 queried (̄i, sen) and (j̄, sen) to OG and P (̄i, k) = 1, P(j̄, k) = 0.
Case 3: for all queries (j, sen) by A1 to OG, P(j, k) = 1.

If k = 0 this is exactly the NSW experiment. If k = 2nR this is the NSW experiment as simulated by B.
Assume now 0 < k < 2nR.

Let us start from k odd. In Case 1 A1 sees pk0
k but not pk1

k, while A2 can query dkk and receives sk1
k

both in Hybrid k and in Hybrid k − 1. The only difference is that in Hybrid k OE uses ¯pkk, pk
1
k instead of

pk0
k, pk

1
k as in Hybrid k − 1. If A can distinguish in this case, we construct a PPT algorithm C that can win

the IK-CPA experiment running A as a subroutine. C receives pk0 and pk1 from the IK-CPA experiment
and generates msk setting (pk0

k, sk
0
k) = (pk0,⊥) and (p̄k , s̄k) = (pk1,⊥). The rest of the master secret keys

msk and m̄sk are generated as specified by Hybrid k. Then it answers to OG using msk for the queries by A1

and m̄sk for the queries by A2. To answer queries from A2 to OE , C selects a random q $←− [qE ] and behaves
as follows:

– C answers to the first q − 1 queries using pk0, pk
1
k as the k-th encryption keys.

– When A2 sends the q-th query (i,m), C returns m to the IK-CPA experiment and receives a challenge
ciphertext c̄. Then it generates the encryption of m as follows:

cj ← PKE.Enc(pk
P(i,j)
j ,m) for j = 1, . . . , k − 1

cj ← c̄ for j = k if P(i, k) = 0

cj ← PKE.Enc(pk1
j ,m) for j = k if P(i, k) = 1

cj ← PKE.Enc(p̄k
P(i,j)
j ,m) for j = k + 1, . . . ,nR

– C answers to the remaining qE − q + 1 queries using pk1, pk
1
k as the k-th encryption keys.

Thus it follows that for k odd

Pr(Ek | Case 1) ≤ |Pr(A wins Hybrid k − 1 | Case 1)− Pr(A wins Hybrid k | Case 1)|

≤ |
qE∑
Q=1

Pr(A wins the game | q = Q ∧ c̄ ← PKE.Enc(pk0,m))+

− Pr(A wins the game | q = Q ∧ c̄ ← PKE.Enc(pk1,m))|
≤ qEϵik-cpa(λ) .

In Case 2 A1 sees both pk0
k and pk1

k, while A2 cannot query dkk both in Hybrid k and in Hybrid k − 1.
The difference is that in Hybrid k OE uses ¯pkk, pk

1
k instead of pk0

k, pk
1
k as in Hybrid k − 1. The reduction

shown for Case 1 can be replicated without changes in this case. In Case 3 A1 sees pk1
k but not pk0

k, while
A2 cannot query dkk both in Hybrid k and in Hybrid k − 1. Again the only difference is that in Hybrid
k OE uses ¯pkk, pk

1
k instead of pk0

k, pk
1
k as in Hybrid k − 1. Thus in this case the view of A in Hybrid k is

statistically indistinguishable from the view of A in Hybrid k − 1.
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Finally, assume that k is even. In Case 1 A1 sees pk0
k but not pk1

k, while A2 can query dkk and receives

s̄k
1
k in Hybrid k and sk1

k in Hybrid k− 1. The encryption oracle OE uses ¯pkk
0
, p̄k in Hybrid k, and p̄k

0
k, pk

1
k

in Hybrid k−1. As the adversary does not see pk1
k, the view of A in Hybrid k is statistically indistinguishable

by the view of A in Hybrid k − 1. In Case 3 A1 sees pk1
k but not pk0

k, while A2 cannot query dkk both in

Hybrid k and in Hybrid k − 1. The difference is that in Hybrid k OE uses ¯pkk
0
, p̄k instead of p̄k

0
k, pk

1
k as in

Hybrid k−1. The previous reduction can be adapted to this case as follows. C receives pk0 and pk1 from the
IK-CPA experiment and generates msk setting (pk1

k, sk
1
k) = (pk0,⊥) and (p̄k , s̄k) = (pk1,⊥). The rest of the

master secret keys msk and m̄sk are generated as specified by Hybrid k. Then it answers to OG using msk
for the queries by A1 and m̄sk for the queries by A2. To answer queries from A2 to OE , C selects a random
q $←− [qE ] and behaves as follows:

– C answers to the first q − 1 queries using pk0, pk
1
k as the k-th encryption keys.

– When A2 sends the q-th query (i,m), C returns m to the IK-CPA experiment and receives a challenge
ciphertext c̄. Then it generates the encryption of m as follows:

cj ← PKE.Enc(pk
P(i,j)
j ,m) for j = 1, . . . , k − 1

cj ← PKE.Enc(p̄k
0
j ,m) for j = k if P(i, k) = 0

cj ← c̄ for j = k if P(i, k) = 1

cj ← PKE.Enc(p̄k
P(i,j)
j ,m) for j = k + 1, . . . ,nR

– C answers to the remaining qE − q + 1 queries using pk1, pk
1
k as the k-th encryption keys.

Analogously to the case of k odd, for k even it holds that

Pr(Ek | Case 3) ≤ qEϵik-cpa(λ) .

Finally, in Case 2 A1 sees both pk0
k and pk1

k, while A2 cannot query dkk both in Hybrid k and in Hybrid

k− 1. The difference is again that in Hybrid k OE uses ¯pkk
0
, p̄k instead of p̄k

0
k, pk

1
k as in Hybrid k− 1. The

reduction shown for Case 1 can be replicated without changes in this case. Therefore, for all k it holds that

Pr(Ek) =

3∑
i=1

Pr(Case i)Pr(Ek | Case i) ≤ 3qEϵik-cpa(λ) .

⊓⊔

5 Compact ACE from Hybrid Encryption

The previous construction has the problem that the length of ciphertexts depends linearly on ℓ ·nR. This can
be improved using a hybrid encryption technique: combining ACEpke with a rate-1 symmetric key encryption
(SKE) scheme yields a more compact ACE (denoted by ACEhe), which outputs ciphertexts whose size scales
with ℓ + nR instead. Interestingly, there is no known analogous hybrid encryption version of the original
construction of [12].

The idea is to encrypt each message m with the SKE using a one-time secret key sk , which is then
encrypted using ACEpke. Thus a ciphertext has two components, the SKE encryption of the message and
the ACEpke encryption of the one-time secret key. The NRR security follows easily combining the NRR of
ACEpke with the lor-cpa security of the SKE: intuitively, the Payload Privacy of the ACEpke implies that no
information about sk is leaked by the ciphertext, thus sk can be used as encryption key and the lor-cpa
security of SKE is preserved. The intuition behind the NSWR is the following: One can see the ciphertext as
an ACEpke ciphertext padded with some additional bits (the SKE ciphertext); this is possible because there
is no restriction on the bit length of the challenge ciphertext s̄ in the definition of NSWR. Thus extracting a
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subliminal message from a ciphertext generated with the compact ACE cannot be easier than extracting it
from a ciphertext generated with ACEpke. Interestingly enough, a formal proof of this intuition requires some
non-trivial steps, and relies on both the NSWR and the NRR-PP security of the ACEpke. Finally, observe
that the construction can be instantiated with any ACE without sanitizer that satisfies the definitions in
Section 3, not just with ACEpke.

Let (SE.KeyGen,SE.Enc,SE.Dec) be a rate-1 symmetric encryption scheme that is lor-cpa secure, and let
ACEnoS = (ACE.Setup,ACE.KGen,ACE.Enc,ACE.Dec) be an ACE without sanitizer that is NRR and NSWR
secure.

Communication Model: parties communicate through a bulletin board; senders and receivers have write-
only and read-only access respectively.

Message Space: M := {0, 1}ℓ.
Setup: (pp,msk)← Setup(1λ,P)

Return (pp,msk)← ACE.Setup(1λ,P).
Key Generation: ki ← KGen(pp,msk , i, t)

Return ki ← ACE.KGen(pp,msk , i, t).
Encryption: c ← Enc(pp, ek i,m)

Generate a one-time secret key sk ← SE.KeyGen(1λ), and encrypt the message using it: c1 ← SE.Encsk (m).
Then encrypt the key using the ACEnoS: c2 ← ACE.Enc(pp, ek i, sk). Return c = (c1, c2).

Decryption: m ′ ← Dec(pp, dk j , c)
Parse c = (c1, c2). Decrypt the secret key sk ′ ← ACE.Dec(pp, dk j , c2). If sk

′ = ⊥, return ⊥. Else return
m ′ ← SE.Decsk ′(c1).

Efficiency, Storage Requirements, and Optimizations. The length of the ciphertext is O(nR+ℓ) using a rate-1
SKE. Appendix C contains a construction from predicate encryption that outputs more compact ciphertexts
(of length O(log(nS) + λ)) when instantiated for policies such that minj∈[nR] Sj = O(log nS) where Sj is the
set of senders allowed to communicate with the receiver j.

Theorem 5.1. The protocol previously described is correct, and satisfies the properties of No-Read and No
Secret Write if the SKE is lor-cpa secure, and ACEnoS satisfies correctness, NRR and NSWR as described
in Section 3.

The security proof is akin to that of ACEpke, and is deferred to Appendix B.

6 Game-Specific Obfuscation

We suggest a variant of obfuscation that is weaker that Virtual Blackbox (VBB) obfuscation and hence may
be possible to implement in general. VBB obfuscation requires that the obfuscated program gives nothing
to the receiver, other than oracle access to the original program, and it is well known that no obfuscator can
be capable of VBB-obfuscating every program.

Here, we consider instead a security game G (formalized as an experiment in Fig. 1), in which a challenger
C plays against an adversary A, using an obfuscator Obf. The game comes with a specification of a family of
programs F := {Pk ,p}k∈{0,1}λ,p∈{0,1}m , parameterized by k and by a label p of some length m, so we have
one member of the family for each pair (k , p). This is meant to cover a wide range of applications where
obfuscated programs may be used: very often, an application bakes one or more cryptographic keys into the
program, this is modelled by the parameter k . The label p is useful in a multiparty scenario, where parties
may be given programs that depend on their identity, for instance.

The game proceeds in rounds, where in each round of the game, A can query C on various labels p to
obtain obfuscated programs P̂p

k = Obf(Pp
k ), as well as for other data (such as public parameters). At the end

of each round, A returns some final output zi, which is remembered between rounds. Optionally, the game
may allow A to remember additional state information between rounds (not represented in Fig. 1). In the
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Experiment ExpG
0

A,Obf(λ,F , q) Experiment ExpG
1

B,Obf(λ,F , q)

st ← (λ,F , q) st ← (λ,F , q)
(pp, k)← C(0; st) (pp, k)← C(0; st)
For i = 1, . . . , q: For i = 1, . . . , q:

zAi ← AC(1,k,·;st),C(3,·;st)(pp) zBi ← BC(2,k,·,·;st),C(3,·;st)(pp)

b← C(4, zA1 , . . . , z
A
q ; st) b← C(4, zB1 , . . . , z

B
q ; st)

Return b. Return b.

Fig. 1. Security experiment for Game-Specific Obfuscation.

end, C decides if A won the game. Our definition compares this to a similar experiment where, however, the
adversary B only gets oracle access to the programs.

Importantly, C can decide not to answer a query, based on the label and its current state. This models
conditions one would typically have in a game, such as: the game models a scheme with several parties
participating, some of which are corrupt, and the adversary is not allowed to query a program that was
given to an honest player. Since the same C plays against both A and B, they are under the same constraints,
so B cannot “cheat” and make queries that A could not.

For simplicity, we let C choose a single parameter k initially. We can easily generalize to cases where
programs using several different values of k are used.

Definition 6.1 (Game-Specific Obfuscation). We say that Obf is a game-specific secure obfuscator
(GSO) relative to G and F if for every PPT adversary A, there exists a PPT adversary B which plays G

using only oracle access to each obfuscated program, and where |Pr[1← ExpG
0

A,Obf(λ,F , q)]−Pr[1← ExpG
1

B,Obf(λ,
F , q)]| is negligible, where the challenger behaves as follows:

Challenge Generation: on input (0; (λ,F , q)), it returns k ∈ {0, 1}λ and some general public parameters
pp.

Program Obfuscation: on input (1, k , p; st), it returns the obfuscation P̂p
k ← Obf(Pp

k ) of the program, or
⊥.

Oracle Access to Programs: on input (2, (k , p,m); st) it returns the evaluation of the program Pp
k (m), or

⊥.
Other Data: on input (3, ·; st) it can return additional data.
Winning Condition Check: on input (4, z1, . . . , zq; st) it returns 1 if the adversary won the game, 0 oth-

erwise.

Every mode of operation can update the state st of the challenger too, if required by the game.

Note that this definition, while implied by VBB, makes a much weaker demand than VBB: we assume
that the obfuscation gives nothing more than oracle access, only as far as winning G is concerned, and
the obfuscator only needs to obfuscate programs in F . Indeed, the impossibility result for VBB does not
apply to game-specific obfuscation in general, it just rules out its existence for a specific game and family of
programs. The notion is somewhat incomparable to iO obfuscation: obfuscators secure in the iO sense are
usually claimed to be able to obfuscate any program, and can potentially be applied in any security game, but
on the other hand, iO only guarantees indistinguishability between programs with the same input/output
behavior. Even when restricting to assume the existence of iO/GSO for specific programs (as it happens
in constructions relying on iO), still iO and GSO target different aspects: GSO has no specific requirement
on the family of programs, while iO needs them to compute the same function; on the other hand, iO still
guarantees indistinguishability for every game, while GSO targets a specific one.

As usual, we also require the obfuscators to preserve functionality (the input-output behaviour of the
obfuscated program is equivalent to the original program) and polynomial slowdown (the obfuscated program
should can at most be polynomially slower/larger than the original one). The formal definitions of these
properties are deferred to Appendix A.
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7 ACE with Ciphertext Verifiability

In this section we explore whether it is possible to obtain more than just preventing parties from establishing
secure subliminal channels. The intuition is that it should be possible to restrict corrupted parties in the
bandwidth of their subliminal channels by adding some form of ciphertext verifiability to our model. Ci-
phertext verifiability allows any party with access to the bulletin board to verify that ciphertexts appended
to the public board have been generated honestly and according to policy, even if the party is not allowed
to decrypt them by the policy. We then show a scheme that allows to restrict the bandwidth of corrupted
senders to logarithmic in the security parameter under a novel variant of obfuscation, namely the GSO
introduced in the previous section. We find this a promising indication that public verification can help to
restrict subliminal communication between corrupted parties. As a byproduct, we get a construction whose
complexity only scales polylogarithmically with the number of parties.

7.1 Ciphertext Verifiability

Parties, policies and the communication model are the same as in Section 3. The difference is that an
ACE with ciphertext verifiability (VACE) is composed by 5 algorithms (Setup,KGen,Enc,Verify,Dec). The
verification algorithm Verify allows receivers to verify that ciphertexts published in the bulletin board are
well-formed according to their decryption key:

Verification b ∈ {0, 1} ← Verify(dk j , c)
On input a ciphertext c and a decryption key, the algorithm outputs 1 if c ← Enc(pp, ek i,m) for some
(unknown) honestly generated sender’s key ek i and message m ∈M, and 0 otherwise.

Remark that the definition implies that verification can be done using dk0, i.e., the decryption key of the
receiver with identity j = 0 which by policy cannot receive messages7. Differently from ACEnoS, now dk0

might not be equal to the public parameters (while ek0 still is). Moreover, dk0 is not part of them: it is given
only to receivers, not to the senders. This follows quite naturally from the communication model: as senders
have write-only access to the public board, they cannot see (thus verify) ciphertexts by other senders than
themselves8.

The introduction of such algorithm requires to modify the properties of security and correctness as well.
This new construction of ACE should satisfy both correctness as defined in Section 3 and a completeness
requirement (i.e., that honestly generated ciphertexts pass verification).

Definition 7.1 (Completeness). A VACE scheme is complete if for all λ,m ∈ M, i ∈ [nS ], j ∈ [nR] it
holds

Pr

1← Verify(dk j ,Enc(pp, ek i,m)) :
(pp,msk)← Setup(1λ,P),
ek i ← KGen(pp,msk , i, sen),
dk j ← KGen(pp,msk , j, rec)

 = 1 ,

where the probabilities are taken over the random coins of all the algorithms.

To ensure that verification is meaningful, the outcome of verification should be consistent when done
with different keys.

Definition 7.2 (Verification Consistency). Given a policy P, a VACE scheme verifies consistently if,
for every PPT adversary A there exists a negligible function negl such that

Pr

b0 ̸= b1 |

(pp,msk)← Setup(1λ,P)
(i0, i1, c)← AOG(·,·)(pp)
For k = 0, 1

dk ik ← KGen(pp,msk , ik, rec)
bk ← Verify(dk ik , c)

 ≤ negl(λ) ,

7 The inclusion of the identity 0 for senders and receivers with no rights is standard in normal access control
encryption, cf. [12].

8 In fact, it seems to be necessary for a more technical reason related to the NSWR (as the verification key could be
seen as shared randomness between corrupted senders and receivers).
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where the OG returns ek j on input (j, sen), and dk j on input (j, rec).

The No Read Rule remains unchanged as such property is not concerned with enforcing the policy, but
with the anonymity and privacy of the scheme. On the other hand, the winning condition of the No Secret
Write Rule changes to impose that the challenge ciphertext successfully verifies w.r.t. some fixed receiver key.
This, combined with consistency of verification (which we just defined) implies that a successful verification
w.r.t. even just the public verification key dk0 is enough to guarantee it w.r.t. all receiver keys (which could
be impossible to check efficiently in the game if the number of receivers is superpolynomial).

The verification key dk0 is only given to the corrupted receiver A2 and to the public verifier B but not
to the corrupted sender A1, as the latter cannot read from the public board, but just write on it.

Definition 7.3 (No Secret Write Rule). Let A = (A1,A2) be an adversary and consider the following
game:

Experiments
Expnusw(A1,A2)(λ,P) Expnusw(A1,B)(λ,P)

(pp,msk)← Setup(1λ,P) (pp,msk)← Setup(1λ,P)
(m̄, c)← A

OG(·,sen)
1 (pp) (m̄, c)← A

OG(·,sen)
1 (pp, m̄)

m ′ ← A
OG(·,rec), OE(·)
2 (pp, c) m ′′ ← BOE(·),OG(0, rec)(pp, c)

Return 1 if Return 1 if
m̄ = m ′ ∧ 1← Verify(dk0, c), dk0 ← OG(0, rec), m̄ = m ′′ ∧ 1← Verify(dk0, c), dk0 ← OG(0, rec),

0 otherwise. 0 otherwise.

Oracles

OG(j, t) : OE(j,m):
If ∃ kj s.t. (kj , j, t) ∈ L, return kj. ek j ← OG(j, sen)
Else kj ← KGen(pp,msk , j, t) Return c ← Enc(pp, ek j ,m).

L ← L ∪ {(kj , j, t)}
Return kj.

Let Q1 (resp., Q2) be the set of all queries q = (i, sen) (resp., q = (j, rec)) that A1 (resp.,A2) issues to
OG. The adversary wins the experiment if m ′ = m̄ and the ciphertext verifies while the following holds:

No Communication Rule (NCR). ∀ (i, sen) ∈ Q1, (j, rec) ∈ Q2, it should hold that P(i, j) = 0.

Given λ and a policy P, a ACE without sanitizer with verifiable ciphertexts satisfies the No Secret Write
rule if for all PPT A = (A1,A2) there exists a PPT algorithm B and a negligible function negl such that

Pr
[
1← Expnsw(A1,B)(λ,P)

]
≥ Pr

[
1← Expnsw(A1,A2)(λ,P) ∧ NCR

]
− negl(λ) .

Ciphertext Verifiability vs. Sanitization. It is fair to wonder whether adding public verifiability yields an
ACE with sanitization. This is not the case because: (1) the sanitizer/verification key is public; (2) in the
VACE case, behavior of sanitizer/verifier is checkable by other receivers; (3) the access structure to a public
board usually requires an authentication layer: verification (and possible identification of dishonest senders)
can be enforced in that layer.

7.2 VACE from Game Specific Obfuscation

Verifiability of a ciphertext means that any party can verify that the ciphertext satisfies some relation, i.e.,
that has some structure, which bounds the entropy of the ciphertext. While this is not enough to prevent
subliminal channels completely (as this seems to require the injection of true randomness, e.g., cf. [12, 23]),
in this section we show that this is enough to meaningfully restrict the bandwidth of corrupted senders.
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We build a VACE following the IND-CCA PKE construction from iO by Sahai and Waters [24], with the
following changes: (1) we impose that every ciphertext encrypts the identity of the sender in addition to the
message, and (2) decryption is done by an obfuscated program that checks the policy too. As the original
protocol outputs ciphertexts composed by two parts, the encryption of the message and a value used as
authentication/integrity check, we easily get a VACE construction that is NRR secure assuming iO with a
proof similar to [24]. However, proving NSWR from iO seems impossible, thus we rely on a GSO assumption
on the obfuscator (further details in Section 7.3).

We now consider messages to be just one bit, i.e.,M = {0, 1}, and assume that nS = poly(λ) (as this is
needed when using the puncturable PRF in the proof of the NRR rule).

Setup: (pp,msk)← Setup(1λ,P)
Generate the keys for the PRFs: Kk

$←−{0, 1}λ, k = 1, 2. The algorithm returns pp = (λ,P,M) and the
master secret key msk = (K1,K2).

Key Generation: ki ← KGen(pp,msk , i, t)
Generate the obfuscated circuits P̂s

i ← Obf(λ,Ps
i ), i ∈ [nS ] \ {0}, and P̂r

i ← Obf(λ,Pr
i ), i ∈ [nR], of

the programs Ps
i and Pr

j in Fig. 2, padded so that they are as long as the programs in the reductions
(cf. proof of Theorem 7.4 and Theorem 7.9).

Ps
i (m, s)

t← PRG(s)
cipher ← PRF1(K1, t)⊕ (m, i)
sig ← PRF2(K2, (t || cipher))
c ← (t, cipher , sig))
Return c.

Pr
j (c)

Parse c = (t, cipher , sig).
b← (sig == PRF2(K2, (t || cipher)))
If (b == 1)

(m, i)← cipher ⊕ PRF1(K1, t)
If (P(i, j) == 1)

Return (1,m)
Else return (1,⊥).

Else Return (0,⊥).

Fig. 2.

– If i ̸= 0 and t = sen, return ek i = (P̂s
i ).

– If i = 0 and t = sen, return ek0 = pp.
– If t = rec, return dk i = (P̂r

i ).
Encryption: c ← Enc(pp, ek i,m)

Sample s $←−{0, 1}λ. Return c ← P̂s
i (m, s).

Decryption: m ′ ← Dec(pp, dk j , c)

Run (b,m ′)← P̂r
j(c) and return m ′.

Verification: b ∈ {0, 1} ← Verify(dk j , c)

Run (b,m ′)← P̂r
j(c) and return b.

For ease of exposition we split the security proof of the VACE in two theorems, as the NRR and NSWR
require different assumptions on Obf. In particular Theorem 7.4 shows NRR security and only requires the
standard notion of iO, whereas Theorem 7.9 uses the novel GSO assumption. Note that one could also have
chosen to prove the NRR security of the VACE assuming GSO instead of iO, but we opted for using the
minimal assumptions for each theorem.

Theorem 7.4. The VACE previously defined satisfies correctness and completeness, and has consistent ver-
ification, assuming the correctness of its building blocks. In addition, if Obf is a iO and PRF1, PRF2 and
PRG are two puncturable PRF and a PRG respectively, the previous VACE and is NRR secure.

Proof. Correctness and completeness of the VACE follows from the correctness of the building blocks. Veri-
fication consistency follows easily from the fact that the first bit of the output of P̂r

j is independent of the
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value of j, thus it is the same for all j ∈ [nR]. The NRR relies on the pseudorandomness property of the
functions used in the obfuscated program, and on iO. The the proof relies on a sequence of hybrid games
(when necessary, changes are pointed out in red):

Hybrid 0: this is the NRR experiment with b = 0.
Hybrid 1: in this game everything is the same as in Game 0 but the challenge ciphertext, which is generated

as follows:

t∗ $←−{0, 1}2λ

cipher∗ ← PRF1(K1, t
∗)⊕ (m0, i0)

sig∗ ← PRF2(K2, (t
∗ || cipher∗))

c∗ ← (t∗, cipher∗, sig∗) .

The probability of distinguishing Hybrid 1 from Game 0 is exactly the probability of distinguishing a
PRG from a uniform function.

Hybrid 2: in this game the challenger samples t∗ at the beginning of the experiment, and it generates the
receivers keys obfuscating the program P̄r

j in Fig. 3. The output of P̄r
j is equal to the output of Pr

j on all

P̄r
j (c)

Parse c = (t, cipher , sig).
b← (sig == PRF2(K2, (t || cipher)))
If (b == 1)

If t = t∗

y ← PRF1(K1, t
∗)

(m, i)← cipher ⊕ y
Else (m, i)← cipher ⊕ PRF1(K1, t)
If (P(i, j) == 1)

Return (1,m)
Else return (1,⊥).

Else Return (0,⊥).

Fig. 3.

inputs, thus distinguishing Hybrid 2 from Hybrid 1 amounts to break iO security of the obfuscator.
Hybrid 3: in this game the challenger samples t∗ at the beginning of the experiment, samples the PRF keys

K1, PRF2 and generates the punctured key K1,{t∗} and the value y∗ ← PRF1(K1, t
∗). Then it generates

the senders and receivers keys as obfuscation of the programs in Fig. 4. As t∗ is sampled uniformly at
random, the probability that t∗ is in the image of the PRG is 1/2λ. Therefore, with probability 1− 1/2λ

P̄s
i will not call PRF1(K1, t

∗), and for all (m, s) it holds that Ps
i (m, s) = P̄s

i (m, s). The functionality of P̄r
j

does not change between Hybrid 3 and Hybrid 2. Hence distinguishing Hybrid 3 from Hybrid 2 amounts
to breaking iO security.

Hybrid 4: in this game everything is the same as in Hybrid 3 except for the value y∗. Indeed, the challenger
samples y∗ $←−{0, 1}2λ alongside t∗ at the beginning of the game, and it uses it in P̄r

j from Fig. 4. When
it is time to generate the challenge ciphertext, it does the following:

cipher∗ ← y∗ ⊕ (m0, i0)

sig∗ ← PRF2(K2, (t
∗ || cipher∗))

c∗ ← (t∗, cipher∗, sig∗) .

Then distinguishing Hybrid 4 from Hybrid 3 is equivalent to breaking the security of the constrained
PRF PRF1.
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P̄s
i (m, s)

t← PRG(s)
cipher ← PRF1(K1,{t∗}, t)⊕ (m, i)
sig ← PRF2(K2, (t || cipher))
c = (t, cipher , sig)
Return c.

P̄r
j (c)

Parse c = (t, cipher , sig).
b← (sig == PRF2(K2, (t || cipher)))
If (b == 1)

If t = t∗

y ← y∗

(m, i)← cipher ⊕ y
Else (m, i)← cipher ⊕ PRF1(K1,{t∗}, t)
If (P(i, j) == 1)

Return (1,m)
Else return (1,⊥).

Else Return (0,⊥).

Fig. 4.

Hybrid 5: in this game everything is as in Hybrid 4 except for the challenge ciphertext, which is now
generated as

cipher∗ ← y∗ ⊕ (m1, i0)

sig∗ ← PRF2(K2, (t
∗ || cipher∗))

c∗ ← (t∗, cipher∗, sig∗) ,

where t∗ and y∗ are sampled at random at the beginning of the game as before. In the Sender Anonymity
case, m0 = m1, thus Hybrid 5 is exactly equal to Hybrid 4. In the Payload Privacy case, the distribution
of c∗1 is statistically close to uniform in both games, thus the only way the adversary can distinguish the
games is by somehow decrypt (t∗, cipher∗) using a decryption key. In Theorem 7.5 we show that this is
essentially equivalent to guessing a random 2λ-long bit string.

Hybrid 6: in this game everything is as in Hybrid 5 except for the challenge ciphertext, which now encrypts
identity i1:

cipher∗ ← y∗ ⊕ (m1, i1)

sig∗ ← PRF2(K2, (t
∗ || cipher∗))

c∗ ← (t∗, cipher∗, sig∗) ,

(t∗ and y∗ are sampled at random at the beginning of the game as before). In Theorem 7.6 we show that
again this is essentially equivalent to guessing a random 2λ-long bit string. The proof is analogous to
the proof of Theorem 7.5.

Hybrid 7: in this game everything is as in Hybrid 6 except for y∗, which is now generated as PRF1(K1, t
∗).

As the obfuscated programs are still generated using the punctured key K1,{t∗}, distinguishing Hybrid 7
from Hybrid 6 is as hard as breaking the security of the PRF.

Hybrid 8: in this game everything is done as in Hybrid 7 except for the senders and receivers keys, which
are now programmed to use the key K1 instead of its punctured version. As the probability that t∗ is in
the image of PRG is 1

2λ
, with probability 1 − negl(λ) the functionality of the programs do not change,

thus distinguishing Hybrid 7 from Hybrid 8 requires breaking iO.

Hybrid 9: in this game everything is as in Hybrid 8 but the receivers keys, which are generated as the
obfuscation of the program in Fig. 2. As the input/output behavior of the program does not change,
distinguishing Hybrid 9 from Hybrid 8 again requires to break iO.
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Hybrid 10: in Hybrid 10 everything is generated as in the previous game except for the challenge ciphertext,
which is now generated as:

s ← {0, 1}λ

t∗ ← PRG(s)

cipher∗ ← PRF1(K1, t
∗)⊕ (m1, i1)

sig∗ ← PRF2(K2, (t
∗ || cipher∗))

c∗ ← (t∗, cipher∗, sig∗) .

Distinguishing Hybrid 10 from Hybrid 9 would require to break the pseudorandomness of the PRG.
Game 1: this is the NRR game with b = 1. In fact, Game 1 is exactly identical to Hybrid 10.

⊓⊔

In the following there are the two Lemmas required to complete the proof of Theorem 7.4.

Lemma 7.5.
∣∣Pr [1← AH5

]
− Pr

[
1← AH4

]∣∣ ≤ 1+negliO+neglPRF
22λ

, where AHi is the experiment in which the
adversary is run in Hybrid i.

Proof. The distribution of the challenge ciphertext c∗1 is statistically close to uniform in both games, thus
the only way the adversary can distinguish the games is by somehow decrypt (t∗, cipher∗) using a decryption
key.
In the Sender Anonymity case it holds m0 = m1, thus the two hybrid games are identical.
In the Payload Privacy case, the only way the adversary can distinguish Hybrid 4 from Hybrid 5 is by
somehow decrypting the ciphertext (t∗, cipher∗). By definition of the PP case A can only query decryption
keys of identities j such that P(i0, j) = P(i1, j) = 0. To decrypt the ciphertext A has to change the
identity it encrypts: Fist, A selects a sender identity i′ such that there is a receiver’s identity j such that
P(i0, j) = P(i1, j) = 0 ∧ P(i′, j) = 1. Then it modifies the challenge ciphertext setting the second component
as cipher ′ = cipher∗ ⊕ (0, i′ ⊕ i0) = y∗ ⊕ (mb, i

′). However, to have it decrypted, it needs to forge a valid
tag sig ′ on (t∗, cipher ′). We show that the success probability of A is essentially the probability of guessing
a random 2λ-long bit string. The experiment is simulated as follows. Let B be the simulator. Before starting
the interaction with A,

– B samples t∗ $←−{0, 1}λ, y∗ $←−{0, 1}2λ.
– It samples a random key K2 for PRF2, and punctures it on the set S = {(t∗, y∗⊕ (0, i))}i∈[nS ], obtaining

K2,S . Remark that |S| = 2 ∗ nS , which is polynomial in λ, as nS is. This is why the proof does not
require constrained PRFs [10], but just puncturable PRFs (cf. Definition 7 in [24]).

– It samples strings {sig ′0,i, sig ′1,i}i∈[nS ] at random from {0, 1}2λ, and sets them to be the signatures on
the (t∗, y∗ ⊕ (0, i)), (t∗, y∗ ⊕ (1, i)) for the corresponding i ∈ [nS ].

Then, B send the public parameters to A, and it simulates the oracles as follows:

OG: B generates the keys as obfuscations of the programs in Fig. 5.
OE: according to NRR experiment.
c∗: B samples a random bit b $←−{0, 1}, and sets the challenge ciphertext as

c∗ ← (t∗, cipher∗ = y∗ ⊕ (b, i0), sig
∗ = sigb,i0)) ,

where recall the messages are 1-bit long, thus we can use the convention mb = b.

As t∗ cannot be output by PRG but with probability 1
2λ
, the functionalities of P̄s

i is exactly the same.
Moreover, distinguishing the simulated tags from honestly generated ones amounts to break the security of
the puncturable PRF PRF2. Therefore,∣∣Pr [1← AH5

]
− Pr

[
1← AH4

]∣∣ = 1 + negliO + neglPRF
22λ

.

⊓⊔

24



P̄s
i (m, s)

t← PRG(s)
cipher ← PRF1(K1,{t∗}, t)⊕ (m, i)
sig ← PRF2(K2,S , (t || cipher))
c = (t, cipher , sig)
Return c.

P̄r
j (c)

Parse c = (t, cipher , sig).
If t == t∗

y ← y∗

(m, i)← cipher ⊕ y
b← (sig == sig ′

m,i)
Else b← (sig == PRF2(K2,S , (t || cipher)))

(m, i)← cipher ⊕ PRF1(K1, t)
If (b == 1)

If (P(i, j) == 1)
Return (1,m)

Else return (1,⊥).
Else Return (0,⊥).

Fig. 5.

Lemma 7.6.
∣∣Pr [1← AH6

]
− Pr

[
1← AH5

]∣∣ ≤ 1+negliO+neglPRF
22λ

, where AHi is the experiment in which the
adversary is run in Hybrid i.

Proof. The distribution of the challenge ciphertext is the same in both games. Therefore, again the only way
that A can distinguish is by observing discrepancies in the decryption of the string (t∗, cipher∗). Now, for all
receivers’ keys queried by A to OG, it holds that:

Sender Anonymity: P(i0, j) = P(i1, j).
Payload Privacy: P(i0, j) = P(i1, j) = 0.

Analogously as in the proof of Theorem 7.5, the only way A can decrypt the ciphertext is to change the
identity it encrypts: Fist, A selects a sender identity i′ such that there is a receiver’s identity j such that
P(i′ ⊕ i0, j) ̸= P(i′ ⊕ i1, j). Then it modifies the challenge ciphertext setting the second component as
cipher ′ = cipher∗ ⊕ (0, i′) = y∗ ⊕ (m1, i

′ ⊕ ib). To have such a ciphertext decrypted, A needs to forge a valid
tag sig ′ on (t∗, cipher ′). Again the experiment can be simulated so that distinguishing between the games
is essentially equivalent to guessing a random string. The simulator B generated the simulation exactly as
the simulator in the proof of Theorem 7.5, except for the challenge ciphertext, which is now generated as
follows:

b $←−{0, 1}
c∗ ← (t∗, cipher∗ = y∗ ⊕ (m1, ib), sig

∗ = sig ′m1,ib
)) .

As t∗ cannot be output by PRG but with probability 1
2λ
, the functionalities of P̄s

i is exactly the same, thus
distinguishing the simulated keys from honestly generated ones is equivalent to breaking iO. Observe that
if b = 0 (resp., b = 1) the challenge ciphertext (excluding the tag) is generated as in Hybrid 5 (resp.,
Hybrid 6); distinguishing the simulated hybrid games from the real ones requires breaking the security of
the puncturable PRF. To understand how would A distinguish, assume P(i′ ⊕ i0, j) = 1 ∧ P(i′ ⊕ i1, j) = 0
(the opposite case is analogous). Clearly, if A guesses the tag sig ′ correctly in the case b = 0 (i.e., in Hybrid
5) it holds

cipher ′ = cipher∗ ⊕ (0, i′) = y∗ ⊕ (m1, i
′ ⊕ i0)

and Obf(P̄r
j(t
∗, cipher ′, sig ′)) returns (1,m1), while if b = 1 (i.e., in Hybrid 6) we have that

cipher ′ = cipher∗ ⊕ (0, i′) = y∗ ⊕ (m1, i
′ ⊕ i1)

and Obf(P̄r
j(t
∗, cipher ′, sig ′)) returns (1,⊥). Therefore,

∣∣Pr [1← AH6
]
− Pr

[
1← AH5

]∣∣ = 1 + negliO + neglPRF
22λ

.

⊓⊔
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7.3 No Secret Write Rule of VACE

We argue that indistinguishability obfuscation does not seem enough to prove NSWR security for our VACE.
A major hint in this direction is that proving that the NSWR holds seems to require to show that A2 cannot
distinguish the real experiment from an experiment where both the encryption oracle and the receiver keys
are simulated using only the information available to B (i.e., the encryption oracle and the verification key).
However, we do not see a way to simulate the decryption keys that preserves their I/O behavior without
knowing the master secret keys. Such a consistency in the I/O behavior of the keys is needed because A1

could still transmit information to A2 related to the behavior of the senders’ keys queried by A1, e.g., the
output on a particular input (s,m): as B does not know which keys have been queried by A1, it cannot rely
on the encryption oracle to answer these queries consistently. However, simulation can be done assuming
Obf to be a secure GSO. In particular, the obfuscator is assumed to be GSO secure for the following family
of programs and game.

Definition 7.7 (F). The family F = {Pk ,p}k ,p contains all the possible keys:

– k = msk = (K1,K2), and
– p = (j, t) is the identity and type of party, and
– Pk ,(j,t) = Pt

j, t ∈ {s, r} as defined in Fig. 2.

Definition 7.8 (Gnsw). The game Gnsw runs for q = 2 rounds and is played by a challenger Cnsw that
behaves as follows:

– C(0, . . . ; st) returns (pp, k) = (pp,msk) ← Setup(1λ,P) and stores them in st (alongside a round
counter).

– C(1, (k , (j, t)); st) returns the output of KGen(pp,msk , j, t) and stores the query in a list qi for i = 1, . . . , q
in st.

– C(2, (k , (j, t),m); st) it returns the evaluation of the program Pt
j(m).

– C(3, st) returns ⊥ during round 1, and s̄ in round 2.
– C(4, z1, z2; st) parses z1 = (m̄, s̄) and returns 1 if the following three conditions hold:

1. z2 = m̄
2. 1← Verify(dk0, s̄)
3. q1 (resp., q2) contains only queries for sender (resp., receiver) keys, and for every (i, sen) ∈ q1 and

(j, rec) ∈ q2 it holds that P(i, j) = 0.

Note that we have chosen to only use the GSO assumption where it is necessary, namely the NSWR
property. Therefore, since the NRR property is still proven using the iO assumption, the PRFs used in the
construction are still puncturable even if this property is not explicitly used in the proof of the NSWR
property.

Theorem 7.9. Assuming Obf is a secure GSO for F and Gnsw as in Theorem 7.7 and Theorem 7.8, and
given two puncturable PRF and a PRG, the previous VACE is NSWR secure. Moreover, assuming that only
ciphertexts that pass the verification are posted, it only allows for subliminal channels of bandwidth at most
O(log(λ)).

Proof. Proving the NSWR relies on the hypothesis that Obf is a secure GSO for (F , Gnsw). Indeed, the NSWR
experiment in Theorem 7.3 is exactly equal to the game in Fig. 1 where (F , Gnsw) are as in Theorem 7.7 and
Theorem 7.8, and the adversary A in the GSO experiment behaves like A1 in the first round, and like A2

in the second. This implies that the probability that (A1,A2) win the NSWR experiment is the same as the
probability that A wins the GSO experiment. In fact, from GSO security it follows that for any adversary A
there exists a second adversary A′ that has only oracle access to all the keys, but wins the game Gnsw (i.e.,
the NSWR experiment) with almost the same probability:

Pr
[
1← Expnsw(A1,A2)(λ,P) ∧ NCR

]
= Pr

[
1← Exp

G0
nsw

A,Obf(λ,F , 2)
]

≤ Pr
[
1← Exp

G1
nsw

A′,Obf(λ,F , 2)
]
+ ϵGSO . (1)
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Let us now analyze the winning probability of A′. Denote by (A′1,A
′
2) the execution of A′ in the first and

second round of G1
nsw respectively. This adversary now does not receive the sender (or receiver) keys, but is

only given oracle access to them. In fact, the oracle only evaluates the plaintext version of the keys, thus it
is possible to substitute the PRF and PRG used in the keys with random functions, without significantly
impacting the winning probability of A′:

Pr
[
1← Exp

G1
nsw

A′,Obf(λ,F , 2)
]
= Pr

[
1← Exp

G2
nsw

A′,Obf(λ,F , 2)
]
+ ϵρ , (2)

where ϵρ is the probability of distinguishing the PRF and PRG from a random function, and the game G2
nsw

is a modification of G1
nsw where C(2, ·) answers the queries executing the code of Pt

i where PRF1, PRF2 and
PRG have been substituted by random functions.

At this point we can already observe that the bandwidth of the subliminal channel (for ciphertexts that
pass the verification) has to be at most O(log(λ)). Indeed, in game G2

nsw the components t and cipher of the
ciphertext are uniformly random while the tag sig is deterministically generated from them, thus a corrupted
sender is restricted to encode a subliminal message in a ciphertext only through rejection sampling: A′1 can
only try encrypting randomly chosen messages (the ciphertext does not reveal anything about the plaintext,
thus it is fair to assume that the subliminal message and the plaintext are independently chosen) until
the ciphertext finally encodes the subliminal message. If the sender runtime is restricted to be polynomial-
time, this limits the amount of rejection sampling that it can do, restricting the amount of information
encoded in the ciphertext (the subliminal message) to O(log(λ)). The GSO assumption allows to conclude
the argument: as A1 cannot do (much) better than A′1, the adversary can send short subliminal messages in
the real experiment too.

Finally, we conclude the proof of the NSWR by showing an algorithm B that can win the NSWR exper-
iment running A′2 internally, with almost the same probability as the adversary A. Recall that in game G2

nsw

the sender keys oracle (i.e., the simulated C(2, (·, (·, sen),m); st), which can be called in both rounds) returns
a uniformly random bit string. This in particular implies that the view of A′1 (i.e., A′ at round 1) and A′2 are
independent of the master secret key msk generated at the beginning of the game. Therefore, a simulator
B can win the NSWR experiment running A′ at round 2 internally by generating a fresh pp′,msk ′ for the
VACE and use them to simulate C(2, ·). As the public parameters of the scheme only contain λ,M and P,
there is no way for A′2 to distinguish between the real and simulated experiment, and it holds that

Pr
[
1← Exp

G2
nsw

A′,Obf(λ,F , 2)
]
= Pr

[
1← Exp

G2
nsw

(A′
1,B),Obf(λ,F , 2)

]
= Pr

[
1← Expnsw(A1,B)(λ,P)

]
. (3)

Combining Equations (1), (2), and (3) yields the claim. ⊓⊔

7.4 On the Need for Ciphertext Verifiability

Ciphertext verifiability is crucial for the previous argument to go through: if one cannot verify that the
ciphertext has been generated by the obfuscated program, a corrupted sender could just set the ciphertext
to be the (subliminal) message it wants to send. So long as the data structure of the ciphertext fits the
specifications, the subliminal channel cannot be detected. The next lemma (which is a folklore result) shows
that our result is optimal: stricter restrictions on the subliminal channel require sanitization.

Lemma 7.10. Let λ be the security parameter. An encoding scheme (KG,Enc,Dec) (either symmetric or
asymmetric, deterministic or probabilistic) such that the domain of Enck has dimension at least poly(λ)
for every k output by the key generation KG always allows for insecure subliminal channels with bandwidth
O(log(λ)) (in absence of a trusted sanitization step) assuming the adversary runs in polynomial-time and
has oracle access to the encryption algorithm.

Proof. Consider an encoding (KG,Enc,Dec) that satisfies basic correctness (reportend in the following for
completeness):

Correctness: ∀λ ∈ N, ∀m ∈ M, ∃ϵ = negl(λ) : Pr(m ′ ̸= m | (ke, kd) ← KG(1λ), c ← Enc(ke,m), m ′ ←
Dec(kd, c)) ≤ ϵ.
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Then a PPT adversary A1 that has only oracle access to the encryption algorithm can transmit any subliminal
message m̄ such that |m̄| ≤ O(log(λ)) to a PPT receiver A2 by sending a single valid ciphertext, even in the
worst case scenario in which A2 cannot decrypt the ciphertext, nor it shares state with A1, and independently
of the security guarantees of the encoding scheme.

The attack is very simple. Having oracle access to the encoding algorithm means that on input m, the
oracle returns its encryption under a key fixed at the beginning of the game (and unknown to A1). The
adversary A1 can query the encryption oracle to obtain q = poly(λ) distinct ciphertexts {ci}i=1,...,q (because
it runs in polynomial-time, and the domain of the encryption algorithm is large enough for the ciphertexts
to be distinct). As they are all distinct, there exists w.h.p. a ciphertext ci whose (w.l.o.g.) first |m̄| bits are
equal to m̄. ⊓⊔

Thus, preventing insecure subliminal channels with bandwidth ≤ poly(log(λ)) requires a somewhat trusted
party (sanitizer) injecting honest randomness in the ciphertexts.
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A Prerequisites

Let N, Z, and R be the sets of the natural, integer and real numbers.

Definition A.1. A function negl : N ← [0, 1] is negligible if negl(λ) < 1/poly(λ) for every univariate
polynomial poly ∈ R[X] and a large enough integer λ ∈ N.

A.1 Public Key Encryption Scheme

Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be a public key encryption scheme.

Definition A.2 (IND for PKE). Consider the following game between a challenger C and a stateful
adversary A,

Expind-cpaA (λ)

(pk , sk)← PKE.KeyGen(1λ)
(m0,m1, st)← A(pk)
b $←−{0, 1}, ρ $←−{0, 1}ℓ(λ)
cipher b ← PKE.Enc(pk ,mb, ρ)
b′ ← A(st , cipher b)
If b′ = b return 1, else return 0.
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A PKE (PKE.KeyGen,PKE.Enc,PKE.Dec) is IND-CPA secure if for all PPT A there exists a negligible
quantity ϵind-cpa = neglind-cpa(λ) such that

2 ·
∣∣∣∣Pr [1← Expind-cpaA (λ)

]
− 1

2

∣∣∣∣ ≤ ϵind-cpa .

Definition A.3 (IK-CPA, from [7]). Consider the following game between a challenger C and an adver-
sary A,

Expik-cpaA,b (λ)

(pk0, sk0)← PKE.KeyGen(1λ), (pk1, sk1)← PKE.KeyGen(1λ)
(m, st)← A(pk0, pk1)
b $←−{0, 1}, ρ $←−{0, 1}ℓ(λ)
cipher b ← PKE.Enc(pk b,m, ρ)
b′ ← A(st , cipher b)
If b′ = b return 1, else return 0.

A PKE (PKE.KeyGen,PKE.Enc,PKE.Dec) is IK-CPA secure if for all PPT A there exists a negligible
quantity ϵik-cpa = neglik-cpa(λ) such that

2 ·
∣∣∣∣Pr [1← Expik-cpaA (λ)

]
− 1

2

∣∣∣∣ ≤ ϵik-cpa .

A.2 Symmetric Encryption Scheme

Let (SE.KeyGen,SE.Enc,SE.Dec) be a symmetric encryption scheme (cf. [8] for a formal treatment). The
Left-or-Right security of a symmetric encryption scheme can be defined as follows.

Definition A.4 (LOR-CPA). Let (SE.KeyGen,SE.Enc,SE.Dec) be a symmetric encryption scheme, b ∈
{0, 1}, λ be the security parameter (i.e., the bit length of the key). Consider the following security experiment:

Explor-cpaA,b (λ) OLR,b(m0,m1) :

sk ← SE.KeyGen(1λ) If |m0| ≠ |m1| abort.
b′ ← AOLR,b(·,·)(λ) c ← SE.Encsk (mb)
Return b′ Return c.

A symmetric encryption scheme satisfies Left-Or-Right Indistinguishability under Chosen-Plaintext Attacks
(i.e., it is lor-cpa secure) if for all PPT adversaries A,∣∣∣Pr [1← Explor-cpaA,1 (λ)

]
− Pr

[
1← Explor-cpaA,0 (λ)

]∣∣∣ ≤ negl(λ) .

A.3 Obfuscation

Let C be a circuit. We denote by |C| the bit length of C.

Definition A.5 (Indistinguishability Obfuscator). An indistinguishability obfuscator (iO) for circuits
is a probabilistic algorithm Obf that takes as input a circuit C and a security parameter λ and outputs an
obfuscated circuit Ĉ← Obf(λ,C) such that

Functionality. For every circuit C, and all valid inputs x , it holds that Ĉ(x ) = C(x ).
Efficiency. runtime(Obf) = poly(|C|, λ).
Polynomial Slowdown. runtime(Ĉ) = poly(runtime(C), λ).
Indistinguishability. For any PPT A and security parameter λ, there exists a negligible quantity negliO =

negliO(λ) such that, for all two circuits C0 and C1 that compute the same function and are of the same
size k, it holds that

|Pr [1← A(Obf(C0, λ))]− Pr [1← A(Obf(C1, λ))]| ≤ negliO .
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Experiment Expsu-cma
A (λ)

m ′ ← A1(1
λ)

(otssk , otsvk)← OTS.KeyGen(1λ)
sig ′ ← OTS.Sign(otssk ,m ′)
(m∗, sig∗)← A2(otsvk ,m

′, sig ′)
If 1← OTS.Ver (otsvk ,m∗, sig∗)

and m ′ ̸= m∗,
then return 1 else return 0.

Fig. 6. Selective unforgeability experiment for OTS.

A.4 Function Families

Definition A.6 (Pseudorandom Function ensemble (PRF), from [15]). An (efficiently computable)
PRF ensemble is a function ensemble {fK : {0, 1}κ(|K |) → {0, 1}κ(|K |)}K∈{0,1}∗ where κ : N→ N such that

Efficient Evaluation: there exists a polynomial-time algorithm PRF that on input K and x ∈ {0, 1}κ(|K |)
returns fK (x).

Pseudorandomness: The function ensemble {PRFλ}λ∈N such that PRFλ is uniformly distributed over the
multi-set {fK}K∈{0,1}λ is pseudorandom9.

Definition A.7 (Pseudorandom Generator (PRG), from [15]). A PRG is a deterministic polynomial-
time algorithm PRG satisfying the following two conditions:

Expansion: There exists a function l : N → N such that l(n) > n for all n ∈ N, and |G(s)| = l(|s|). The
function l is called the expansion factor of PRG.

Pseudorandomness: The ensemble {G(Un)}n∈N is indistinguishable in polynomial-time from a truly uni-
formly random ensemble {Un}n∈N.

A.5 One-Time Signatures

A One-Time Signature (OTS) scheme for message set M is composed by a key generation algorithm
(otssk , otsvk) ← OTS.KeyGen(1λ), a signing algorithm sig ← OTS.Sign(otssk ,m) and a verification algo-
rithm b← OTS.Ver(otsvk ,m, sig), b ∈ {0, 1}.

Correctness requires that for all security parameters λ ∈ N it holds that:

Pr

[
1← OTS.Ver (otsvk ,m, sig) :

(otssk , otsvk)← OTS.KeyGen(1λ),
sig ← OTS.Sign(otssk ,m)

]
= 1 .

Definition A.8 (su-cma security of OTS). A OTS scheme is said to be selectively unforgeable under
chosen-message attacks (su-cma) if a PPT adversary A = (A1,A2) has negligible probability ϵsu-cma in winning
the experiment Expsu-cma

A (λ) in Fig. 6.

A.6 One-Time Signatures from LWE

In this section we show how to construct a OTS from lattices whose security relies on the LWE problem.
This scheme is used in Appendix C.1 to construct a secure predicate for the predicate encryption scheme by
Katz et al. [17].

Definition A.9. The LWE distribution As,χ outputs pairs (a, b) ∈ Zn
q × Zq such that b = as+ e mod q for

a uniformly random a in Zn
q and e $←−χ.

The (average-case) LWEk,χ decisional problem (in the normal form) on Zn
q with distribution χ and k

samples is to distinguish whether k pairs (a1, b1), . . . , (ak, bk) were sampled from As,χ for a random choice
of s $←−χn or from the uniform distribution over Zn

q .

9 Pseudorandom essentially means that no PPT algorithm can distinguish it from a source of uniformly random bits
with non-negligible advantage.
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The construction is analogous to the Lamport OTS [20], where the one-way function returns two instances
of the LWE1,χ decisional problem.

Let the message space be a bit m = {0, 1}. Let χ,Bχ be parameters of the LWE distribution.

(otssk , otsvk)← OTS.KeyGen(1λ). Generate two LWE samples: s0, s1, e0, e1 ← χ, a0,a1
$←−Zn

q , bb ← absb +
eb mod q. Set the keys as otsvk = (a0,a1, b0, b1) and otssk = (s0, s1, e0, e1).

sig ← OTS.Sign(otssk ,m). On input a message m ∈ {0, 1}, return sig = (sm , em).

b← OTS.Ver(otsvk ,m, sig), b ∈ {0, 1}. Parse sig = (s, e) Return 1 if bm = ams+ e mod q and ∥e∥∞ ≤ Bχ,
and 0 otherwise.

Theorem A.10. The OTS signature from LWE is weakly selective unforgeable if LWE1,χ is hard.

Proof. Let A be an adversary that breaks the selective unforgeability of the OTS. We show that an algorithm
B can solve LWE exploiting A as follows. On input the message, B sets the public key of the scheme to be
(am ,a1−m , bm , b1−m) where (a1−m , b1−m) are from the LWE distribution, and the rest is honestly generated.
B returns the signature and the public key to A. For the adversary to output a successful forgery it has to
output a s∗ and e∗ such that b1−m = a1−ms∗ + e∗ mod q and ∥e∥∞, ∥s∥∞ ≤ Bχ, thus finding a solution
to LWE. If A returns a forgery, B returns LWE, otherwise uniform. B breaks LWE with the same success
probability of A (as the simulated experiment is indistinguishable from the real one). ⊓⊔

Longer messages. The signature can be extended to sign messages in M = {0, 1}ℓ in different ways. The
standard paradigm would be to sign each bit of the message separately then padding the signatures together.
However, this blows up the length of the signature considerably. A better way to do it without expanding
the length of the signature is to extend it to a full-fledged (deterministic) digital signature: For every
message m ∈ M, the key generation generates (sm , em) ← χ and one LWE sample (am , bm). The signing
algorithm just on m simply returns (sm , em) on input m. Analogously to the LWE-based OTS, this signature
is selectively unforgeable if LWE1,χ is hard.

Binary Secrets. The reader could wonder why we did not choose the LWE secret to be binary. The reason is
that LWE with binary secrets in {0, 1}n can be reduced to standard LWE with secrets in Zk

q if n = k log q,
thus essentially the length of the secret would be exactly the same (cf. [11, 22]).

B Security Proof for ACEhe (Theorem 5.1)

Proof. The proof is split in three parts: correctness, NRR security, and NSWR security.

Correctness. Directly follows from the correctness of the building blocks.

No Read Rule. Intuitively, the NRR follows from the NRR property of the ACEnoS and from the lor-cpa
security of the SKE.

We treat the PP and SA case separately, to show that

ϵNRR = 2 ·
∣∣∣∣Pr [(PP ∨ SA) : b′ ← ExpnrA,b(λ,P)

]
− 1

2

∣∣∣∣
≤ 2 ·

∣∣∣∣Pr [PP : b′ ← ExpnrA,b(λ,P)
]
+ Pr

[
SA : b′ ← ExpnrA,b(λ,P)

]
− 1

2

∣∣∣∣
≤ 2 ·

∣∣∣∣Pr [PP : b′ ← ExpnrA,b(λ,P)
]
− 1

2

∣∣∣∣+ 2 ·
∣∣Pr [SA : b′ ← ExpnrA,b(λ,P)

]∣∣ (4)

≤ negl(λ) ,
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Payload Privacy. This case requires that for all queries q = (j, rec) ∈ J it holds that:

P(i0, j) = P(i1, j) = 0 .

This implies that the adversary cannot get the secret keys corresponding to the public keys contained in
ek i0 and ek i1 . The NRR security of the ACEhe scheme in this case can be shown formally through a series of
indistinguishable hybrid games, each of which consists of a slight modification of the original NRR security
experiment (changes are highlighted in red).

Game 0: this game is the NRR-PP security experiment with b = 0.
Hybrid 0: in this hybrid game a simulator B runs A internally while simulating the security experiment.

B does everything as specified in Theorem 3.2 except for the challenge ciphertext c∗, whose second
component is now encrypted using the key of i1 instead of i0:

sk ← SE.KeyGen(1λ)

c1 ← SE.Encsk (m0)

c2 ← ACE.Enc(pp, ek i1 , sk)

c∗ ← (c1, c2) .

Hybrid 1: in this game B again acts as in Hybrid 0 except when generating the challenge ciphertext:

sk ← SE.KeyGen(1λ)

c1 ← SE.Encsk (m0)

ρ $←−{0, 1}|sk |

c2 ← ACE.Enc(pp, ek i1 , ρ)

c∗ ← (c1, c2) .

Now B sets the second component of c∗ to be the encryption of a random string instead of encrypting
the key sk used to generate the first component of c∗; B still uses the key of i1 to encrypt it, as in Hybrid
0.

Hybrid 2: in this game B acts exactly as in Hybrid 1, except when generating the challenge ciphertext,
whose first component is now an encryption of m1 instead of m0:

sk ← SE.KeyGen(1λ)

c1 ← SE.Encsk (m1)

ρ $←−{0, 1}|sk |

c2 ← ACE.Enc(pp, ek i1 , ρ)

c∗ ← (c1, c2) .

Hybrid 3: in this game B acts exactly as in Hybrid 2, except that now the second component of the
challenge ciphertext is the encryption under the key of i1 of the secret key sk used to encrypt m1:

sk ← SE.KeyGen(1λ)

c1 ← SE.Encsk (m1)

c2 ← ACE.Enc(pp, ek i1 , sk)

c ← (c1, c2) .

Game 1: this game is the NRRPP security experiment with b = 1.

We now proceed to prove that these games are in fact computationally indistinguishable; this then implies
that (under computational assumptions) there is no adversary that can win the NRR-PP experiment. Let
QG be the set of all queries q = (j, t) that the adversary issues to the oracle OG, and J be the subset of
QG composed by all the queries q = (j, rec). Let Gi (resp. Hi) be the probability that A returns 1 in Game
(resp. Hybrid) i.

33



Game 0 ≈ Hybrid 0. Indistinguishability is guaranteed by the SA property of the underlying ACEnoS
scheme used as building block. Indeed, if A can distinguish between these games, then B can exploit it
to break the NRR-SA security of ACEnoS as follows.

public parameters pp: B sends the public parameters pp of the ACEnoS to A.

OG(j, t): B queries (j, t) to the key generation oracle of the NRR-SA experiment of the ACEnoS, and
returns its response to A.

OE(j,m): B samples a secret key sk and uses it to generate the encryption c1 of m, then it queries (j, sk)
to the encryption oracle of the NRR-SA experiment of the ACEnoS to get c2, and returns (c1, c2) to
A.

c∗: when A returns (m0,m1, i0, i1), B generates a secret key sk , and sends (sk , i0, i1) to the challenger of
the NRR-SA experiment of the ACEnoS. Upon receiving cb from the challenger, B sets the challenge
ciphertext to be c∗ ← (SE.Encsk (m0), cb).

The simulated oracles are identical to the real ones, so the view of A is the same as in the real game.
Moreover, as B is simulating the NRR experiment for ACEhe in the PP case, A can only query receivers
keys to OG for identities that cannot communicate with i0 and i1; thus the queries of B in the NRR-SA
experiment of ACEnoS will satisfy the required restriction. Now, if b = 0 (resp. b = 1) in the NRR-SA
experiment, then the game simulated by B is exactly Game 0 (resp. Hybrid 0). Thus the advantage of
B in winning the security experiment is exactly equal to the success probability of A in distinguishing
Game 0 from Hybrid 0:

|Pr [PP : G0]− Pr [PP : H0]| = ϵACEnoSNRR−SA .

Hybrid 0 ≈ Hybrid 1. It is not hard to see that distinguishing these games is equal to break the NRR
of the ACEnoS in the PP case where i0 = i1. Indeed, B can break it exploiting A by simulating the
experiment as follows.

public parameters pp: B sends the public parameters pp of the ACEnoS to A.

OG(j, t): B queries (j, t) to the key generation oracle of the NRR-PP experiment of the ACEnoS, and
returns its response to A.

OE(j,m): B samples a secret key sk and uses it to generate the encryption c1 of m, then it queries (j, sk)
to the encryption oracle of the NRR-PP experiment of the ACEnoS to get c2, and returns (c1, c2) to
A.

c∗: when A returns (m0,m1, i0, i1), B generates a secret key sk and a random string ρ of equal length,
and sends (sk , ρ, i1, i1) to the challenger of the NRR-PP experiment of the ACEnoS. Upon receiving
cb from the challenger, B sets the challenge ciphertext to be c∗ ← (SE.Encsk (m0), cb).

Analogously as before, the view of A is exactly the same as when given access to the real oracles, and
the queries of A to OG do not require B to break the PP condition when querying the key generation
oracle in the NRR-PP experiment of the ACEnoS. Now, if b = 0 (resp. b = 1) in the NRR-PP experiment,
then the game simulated by B is exactly Hybrid 0 (resp. Hybrid 1). Thus the advantage of B in winning
the security experiment is exactly equal to the success probability of A in distinguishing Hybrid 0 from
Hybrid 1:

|Pr [PP : H0]− Pr [PP : H1]| = ϵACEnoSNRR−PP .

Hybrid 1 ≈ Hybrid 2. Distinguishing these games requires to break the lor-cpa security pf the SKE.
Indeed, if A can distinguish with non-negligible advantage, B can win the lor-cpa experiment exploiting
A as follows. B generates the public parameters pp and the master secret key msk of the ACEnoS honestly,
and uses them to simulate the oracles according to the NRR experiment specifications. When it is time
to generate the challenge ciphertext c∗, B sends the messages (m0,m1) sent by A as challenge messages
in the lor-cpa game, thus receiving a ciphertext cb. Finally, B generates the random string ρ, and sends
c∗ ← (cb,ACE.Enc(pp, ek i1 , ρ)) to A. If b = 0 (resp. b = 1) in the lor-cpa experiment, then the game
simulated by B is exactly equal to Hybrid 0 (resp. Hybrid 1). Hence,

|Pr [PP : H1]− Pr [PP : H2]| = ϵlor-cpa .
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Hybrid 2 ≈ Hybrid 3. These games are again indistinguishable because of the NRR-SA security of ACEnoS:

|Pr [PP : H2]− Pr [PP : H3]| = ϵACEnoSNRR−SA .

The proof follows the line of the proof that Hybrid 0 and Hybrid 1 are indistinguishable, thus we omit
it.

Hybrid 3 = Game 1. It is easy to see that the two games are exactly equal.

Thus it holds that

2·
∣∣∣∣Pr [PP : b′ ← ExpnrA,b(λ,P)

]
− 1

2

∣∣∣∣ =
= 2 ·

∣∣∣∣12 · Pr [PP : 1← ExpnrA,1(λ,P)
]
+

1

2
· Pr

[
PP : 0← ExpnrA,0(λ,P)

]
− 1

2

∣∣∣∣
=

∣∣Pr [PP : 1← ExpnrA,1(λ,P)
]
+ (1− Pr

[
PP : 1← ExpnrA,0(λ,P)

]
)− 1

∣∣
= |Pr [PP : G1]− Pr [PP : G0]|

≤ |Pr [PP : G1]− Pr [PP : H3]|+
2∑

i=0

|Pr [PP : Hi+1]− Pr [PP : Hi]|

+ |Pr [PP : H0]− Pr [PP : G0]|
= 2 · ϵACEnoSNRR−SA + ϵACEnoSNRR−PP + ϵlor-cpa . (5)

Sender Anonymity. This case requires that for all queries q = (j, rec) ∈ J it holds that:

P(i0, j) = P(i1, j) and m0 = m1 .

Proving NRR security of the ACEhe scheme in this case is quite easy. Indeed, observe that in the SA case the
challenge ciphertext encrypts the same message both when b = 0 and when b = 1, as m0 = m1. Thus, the
difference in the challenge ciphertext c is only the encryption key used to generate the second component
c2: when b = 0 c2 is the encryption of the secret key sk under the key ek i0 , while when b = 1 c2 is the
encryption of the secret key sk under the key ek i1 . Thus, winning the NRR-SA experiment for the ACEhe

scheme is exactly equal to breaking the NRR-SA security of the ACEnoS:

Pr
[
SA : b′ ← ExpnrA,b(λ,P)

]
= ϵACEnoSNRR−SA . (6)

Therefore, combining Equation (4), (5), and (6) yields that the advantage of A in breaking the NRR
security of the ACEhe scheme is negligible:

ϵNRR ≤ 2 ·
∣∣∣∣Pr [PP : b′ ← ExpnrA,b(λ,P)

]
− 1

2

∣∣∣∣+ 2 ·
∣∣Pr [SA : b′ ← ExpnrA,b(λ,P)

]∣∣
≤ 4 · ϵACEnoSNRR−SA + ϵACEnoSNRR−PP + ϵlor-cpa .

No Secret Write Rule. The NSWR security of the ACEhe relies on the NSWR security and on the NRR-
PP security of ACEnoS. To see this, observe that in the NSWR definition (cf. Theorem 3.3) the challenge
ciphertext s̄ can be of any length. This is crucial to show that the NSWR experiment for the ACEnoS is
essentially equivalent to the NSWR experiment for the ACEhe. More in details, the proof is constructive, and
has two steps: First, we prove that any adversary (Ahe

1 ,Ahe
2 ) that wins the NSWR experiment for the ACEhe

with some probability immediately yields a pair (A1,A2) that wins the NSWR experiment for the ACEnoS
with the same probability. The key fact here is that the algorithms A1 and Ahe

1 are equal. This allows to
show in the second step that a simulator B such that (A1,B) win the experiment for ACEnoS with almost the
same probability as (A1,A2) can be used to construct a simulator Bhe such that (Ahe

1 ,Bhe) wins the NSWR
experiment for ACEhe with almost the same probability as (Ahe

1 ,Ahe
2 ). Thus, assuming that NSWR holds for
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ACEnoS (i.e., for every pair of successful (A1,A2) such a B exists), then the NSWR holds also for ACEhe (i.e.,
a simulator Bhe exists for every (Ahe

1 ,Ahe
2 )).

A successful adversary Ahe = (Ahe
1 ,Ahe

2 ) in the NSWR experiment of the ACEhe can be converted into a
successful adversary A = (A1,A2) in the NSWR experiment of the ACEnoS as follows. The corrupted sender
algorithm A1 runs Ahe

1 internally, using its access to a key generation oracle to answer the queries of Ahe
1 . As

the keys are identical in both the ACEhe and the ACEnoS, the view of Ahe
1 is exactly the same as in the real

experiment. Then it outputs the same pair (m̄, s̄) output by Ahe
1 . As there is no limit on the length of the

ciphertext containing the subliminal message, this pair is accepted as a valid challenge ciphertext in both
NSWR experiments. The corrupted receiver A2 simply gives s̄ as input to Ahe

2 , and uses its access to the
encryption and key generation oracle to answer queries from Ahe

2 :

Receiver Key: whenever Ahe
2 queries a receiver key, A2 returns the answer of the ACEnoS key generation

oracle.
Encryption: when Ahe

2 queries for the encryption of a message m with the key of the i-th sender, A2

first generates a random key sk for the SKE, then it queries its encryption oracle on (i, sk) to get the
ciphertext c2, and finally it sets c1 to be the SKE encryption of m under sk .

Finally, A2 outputs the message m ′ returned by Ahe
2 . As A perfectly simulates the experiment, and does

exactly the same queries as Ahe to the key generation oracle, it wins the experiment without breaking the
NCR with the same probability as Ahe:

Pr
[
1← Expnsw−ACEnoS(A1,A2)

(λ,P) ∧ NCR
]
= Pr

[
1← Expnsw−ACE

he

(Ahe
1 ,Ahe

2 )
(λ,P) ∧ NCR

]
. (7)

To conclude the proof, we need to show that an algorithm B that extracts the subliminal message in the
NSWR experiment for ACEnoS without having access to receivers keys with probability

Pr
[
1← Expnsw−ACEnoS(A1,B)

(λ,P)
]
≥ Pr

[
1← Expnsw−ACEnoS(A1,A2)

(λ,P)
]
− negl(λ) , (8)

can be used to construct an algorithm Bhe that extracts m̄ from s̄ in the NSWR of the ACEhe scheme with
probability

Pr
[
1← Expnsw−ACE

he

(Ahe
1 ,Bhe)

(λ,P)
]
≥ Pr

[
1← Expnsw−ACE

he

(Ahe
1 ,Ahe

2 )
(λ,P)

]
− negl(λ) .

On input s̄, Bhe simulates the view of B as follows:

Input: B receives as input the public parameters pp of the ACEhe (which are the same as the public param-
eters of the ACEnoS scheme by construction) and the challenge ciphertext s̄.

Encryption Oracle: when B queries (j,m) to the encryption oracle of the ACEnoS, Bhe queries (j,m) to
the encryption oracle of the ACEhe to get (c1, c2) and returns c2 to B. Remark that the encryption oracle
of the ACEhe experiment returns an ACEnoS encryption of a random string (the secret key used to encrypt
the message), not of the queried message. We show later in the proof that distinguishing the real from
the simulated oracle amounts to breaking the NRR-PP security of the ACEnoS.

Finally, Bhe returns the message m ′ returned by B. Clearly Bhe wins the experiment with the same probability
of B, assuming that the simulated experiment is indistinguishable from the real one. Denote by E the case
in which B distinguishes the real from the simulated experiment. The winning probability of Bhe becomes

Pr
[
1← Expnsw−ACE

he

(Ahe
1 ,Bhe)

(λ,P)
]
= Pr

[
1← Expnsw−ACEnoS(A1,B)

(λ,P)
]
− Pr [E] (9)

≥ Pr
[
1← Expnsw−ACE

he

(Ahe
1 ,Ahe

2 )
(λ,P)

]
− Pr [E]− negl(λ) ,

where the first equality holds because the algorithm A1 is equal to Ahe
1 , and the second follows from Equation

(7) and (8). Now, assume that B can distinguish between the simulated and real experiment with non
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negligible probability ϵB. “Distinguishing” here means that the behavior of B is different in the real and

simulated experiment, i.e., that ϵB := Pr [E] = Pr
[
1← Expnsw−ACEnoS(A1,B)

(λ,P)
]
− Pr

[
1← Expnsw−ACE

he

(Ahe
1 ,Bhe)

(λ,P)
]

(trivially implied by Equation (9)). Then one could break the NRR-PP security of ACEnoS exploiting (Ahe
1 ,B)

(remark that B is defined w.r.t. a corrupted sender algorithm A1, which is exactly equal to Ahe
1 ). We show

this through a sequence of hybrid games. Let q be the number of the queries asked by B.

Game 0 = Hybrid 0: this is the real NSWR experiment for ACEhe.

Hybrid k, k ∈ {1, . . . , q − 1}: in this game everything is as in Game 0 except for the encryption oracle.
Indeed, upon receiving (j,m) from B, the oracle behaves as follows.

query i ≤ k: generate the ciphertext as in Game 0.

query i > k: generate the ciphertext as in Game 1, i.e., as an encryption of a random key sk ←
SE.KeyGen(1λ).

Game 1 = Hybrid q: in this game the view of B is simulated by Bhe.

Let Hk be the event “B returns m ′ = m̄ in Hybrid k”. By construction,

|Pr [G1]− Pr [G0]| = ϵB .

Therefore, by the hybrid argument there exists k̄ ∈ {0, . . . , q − 1} such that∣∣Pr [Hk̄+1

]
− Pr [Hk̄]

∣∣ ≥ ϵB
q + 1

− negl(λ) .

Given k̄, we show now how to construct an adversary D for the NRR-PP experiment of ACEnoS. D simulates
the view of (Ahe

1 ,B) as follows

Public parameters pp: the public parameters of the ACEhe are set to be the pp of the ACEnoS, and given
as input to Ahe

1 (and, later on, to B).

OG(j, t): when Ahe
1 queries (j, sen) to the key generation oracle, the simulated oracle responds by querying

the key generation oracle of the NRR-PP experiment of the ACEnoS. As the senders keys are the same
for both the ACEhe and ACEnoS, Ahe

1 cannot distinguish between the real and simulated oracle.

OE(j,m): when B queries (j,m), the oracle behaves as follows.

query i < k̄: generate the ciphertext by querying the key generation oracle in the NRR-PP game on
(j, sen) to get the j-th sender key, and then return c ← ACE.Enc(pp, ek j ,m).

query i > k̄: generate the ciphertext by querying the encryption oracle in the NRR-PP game on (j,m).

query i = k̄: on input (j,m), sample a random key sk ← SE.KeyGen(1λ), send (m, sk , j, j) as challenge
to the NRR-PP game, and return the challenge ciphertext c to B.

Essentially, the behavior at the query k depends on the bit b in the NRR-PP experiment: if b = 0, the
game is exactly Hybrid k̄, otherwise it is Hybrid k̄ + 1.

D returns 1 if (A1,B) win the NSWR experiment for the ACEnoS, 0 otherwise. Remark that the simulation
requires to query only sender keys to the key generation oracle of the NRR-PP experiment, thus its behavior
always satisfies the PP condition. The advantage of D in the NRR-PP experiment is

Pr
[
PP : b′ ← Expnr−ACEnoSD,b (λ,P)

]
= ϵACEnoSNRR−PP

=
∣∣Pr [Hk̄+1

]
− Pr

[
Hk̄+1

]∣∣ ≥ ϵB
q + 1

− negl(λ) ,

which yields ϵB ≤ (q + 1) · ϵACEnoSNRR−SA + negl(λ), that concludes our proof.

⊓⊔
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C Linear ACEnoS from Predicate Encryption and Deterministic Signatures

In this section we present a construction (including a possible instantiation, cf. Appendix C.1) of ACEnoS
that returns ciphertexts that are O(n + ℓ) and with complexity polylogarithmic in the number of parties.
In fact, for particular policies this construction is more efficient than the one presented in Section 5: in
Theorem C.6 we show that for policies such that nR ≫ minj∈[nR] |{i ∈ [nS ] : P(i, j) = 1}| = O(log nS) the
length of the ciphertext is O(log(nS) + ℓ), which is optimal.

The approach relies on Predicate Encryption (cf. [17]) and deterministic signatures, and it is akin to the
ACE with sanitization for generic policies by Kim and Wu [18]. In fact, our construction can be extended to
solve one of the problems left open in [18] (cf. Theorem C.9). In this section we first introduce two security
properties (secure predicates and key-indistinguishability) of predicate encryption that are needed for our
constructions, then show the construction itself. Finally, Appendix C.3 contains a possible instantiation of
the scheme, and in particular a PE scheme that satisfies our new definition of key indistinguishability.

C.1 Key-Indistinguishable Predicate Encryption

PE is a special case of Attribute-based Encryption (ABE) where the attribute linked to the ciphertext is not
leaked in the decryption procedure. It was formally introduced in [17], even if it was implicit already in [9].

Definition C.1 (Predicate Encryption). A Predicate Encryption scheme (PE) for the class of predicates
F over the set of attributes Σ and for message spaceM consists of four PPT algorithms (PE.Setup,PE.KeyGen,
PE.Enc,PE.Dec) such that:

(PE .par ,PE .msk)← PE.Setup(1λ): on input the security parameter 1λ, outputs the public parameters PE .par
and the master secret key PE .msk.

PE .sk ← PE.KeyGen(PE .msk , f ): on input the master secret key msk and a predicate f ∈ F , outputs a
decryption key PE .sk.

PE .c ← PE.Enc(PE .par ,m, α): on input the public parameters of the scheme PE .par, a message m ∈ M
and an attribute α ∈ Σ, outputs a ciphertext PE .c.

m ← PE.Dec(PE .c,PE .sk): on input a ciphertext PE .c and a decryption key PE .sk, outputs a message
m ∈M or a special symbol ⊥.

Definition C.2 (Correctness). A PE scheme (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) for (M,F , Σ) is
correct for all λ, (PE .par ,PE .msk)← PE.Setup(1λ), f ∈ F , PE .sk ← PE.KeyGen(PE .msk , f ), m ∈M, and
α ∈ Σ:

– If f (α) = 1 then m ← PE.Dec(PE.Enc(PE .par ,m, α),PE .sk).
– If f (α) = 0 then ⊥ ← PE.Dec(PE.Enc(PE .par ,m, α),PE .sk).

with all but negligible probability.

Security of PE has three different characteristics: selective/adaptive, IND-CPA/IND-CCA1/IND-CCA2,
one-sided/attribute-hiding. We include the definition for the combination of them that we need in this work.

Definition C.3 (selective, IND-CPA AH for PE, original def from [17]). Consider the following
game between a challenger C and a stateful adversary A,

Exps−ind-ahA (λ,Σ,F) Oracle Definition

(α0, α1)← A(1λ, Σ,F)
If (α0, α1) /∈ Σ abort.
(PE .par ,PE .msk)← PE.Setup(1λ) OPE.KeyGen,PE .msk (fi)
(m0,m1, st)← AOPE.KeyGen,PE.msk (PE .par) If (fi ∈ F) ∧ (fi(α0) = fi(α1)),
b $←−{0, 1}, PE .sk ← PE.KeyGen(PE .msk , fi)
cipher b ← PE.Enc(PE .par ,mb, αb) Store Q ← Q∪ {fi}.
b′ ← AOPE.KeyGen,PE.msk (st , cipher b) Else PE .sk ← ⊥.
If (∃ fi ∈ Q : fi(α0) = fi(α1) = 1) ∧ (m0 ̸= m1) return 0. Return PE .sk.
ElseIf b′ = b

Return 1,
Else return 0.
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A PE (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) is (selective, IND-CPA) attribute hiding if for all PPT A,
predicate sets F , and attribute sets Σ there exists a negligible quantity ϵs−ind-ah = negls−ind-ah(λ) such that

2 ·
∣∣∣∣Pr [1← Exps−ind-ahA (λ)

]
− 1

2

∣∣∣∣ ≤ ϵs−ind-ah .

It is easy to see that this security definition is extremely similar to the No Read Rule: the winning
condition is essentially NRR-Sender Anonymity (imagine fi = P(·, i)), while the oracle condition enforces
NRR-Payload Privacy.

Key Indistinguishability with Secure Predicate. We define key-indistinguishability property for PE schemes
as a combination of key indistinguisability in the PKE case [7] and left-or-right indistinguishability for the
SKE case [8]. Essentially, we want that, given two public parameters sets PE .par0, PE .par1, an adversary
is not able to distinguish whether some decryption keys are generated from PE .msk0 or PE .msk1. As it
is stated, the property clearly never holds: an adversary A can just generate a predicate f along with an
attribute α such that f (α) = 1, query the key generation oracle for a decryption key PE .sk for f , generate
two ciphertexts PE .cb ← PE.Enc(PE .par b,m, α), b ∈ {0, 1} for a random message m, and return the bit b
such that PE .cb can be correctly decrypted using PE .sk . To ensure that the definition is not trivially broken,
we then need to require that generating such a pair of attribute and predicate is hard.

Definition C.4 (Secure Predicate Family). A secure predicate family is a family of predicates F such
that:

Generation. There exists a PPT algorithm (F , Σ) ← PredGen(1λ) that generates the family of predicates
F , and a collection Σ = {Σf }f∈F of sets Σf of all the attributes satisfying each predicate.

Security. For all PPT algorithm A there exists a negligible quantity ϵs = negl(λ) such that

Pr
(F,Σ)←PredGen(1λ)

(f (α) = 1 : (α, f )← A(F)) ≤ ϵs .

We now define key indistinguishability with respect to secure predicates. Essentially we require that,
given two public parameters sets PE .par0, PE .par1 and a secure predicate family F , an adversary should
not be able to distinguish whether some decryption keys and ciphertexts10 are generated from (PE .par0,
PE .msk0) or (PE .par1,PE .msk1).

Definition C.5 (IK-CPA). Let F be a secure predicate family. Consider the following game between a
challenger C and an adversary A,

Expik-cpaA,b (λ)

(F , Σ)← PredGen(1λ)
(PE .par c,PE .msk c)← PE.Setup(1λ) for c ∈ {0, 1}
b′ ← AOPE.KeyGen,b, OPE.Enc,b, OΣ (PE .par0,PE .par1,F)
Return b′.

Key Generation Oracle Encryption Oracle Attribute Oracle

OPE.KeyGen,b(f ): OPE.Enc,b(m, f ): OΣ(f ):
If (f /∈ F) ∨ (f ∈ QΣ), return ⊥. If (f /∈ F), return ⊥. If (f /∈ F) ∨ (∃ PE .sk : (f ,PE .sk) ∈ Q), return ⊥.
Else If (∃ PE .sk : (f ,PE .sk) ∈ Q) return PE .sk. Else α $←−Σf , Else α $←−Σf

Else return PE .sk ← PE.KeyGen(PE .msk b, f ) return cipher ← PE.Enc(PE .par b,m, α). store QΣ ← QΣ ∪ {f }.
Store Q ← Q∪ {(f ,PE .sk)}. return α.

10 As we are interested in PE schemes that are attribute-hiding, we allow the adversary to see ciphertexts generated
using random attributes (chosen by the encryption oracle) satisfying a predicate of its choice. The definition of key
indistinguishability for PE that are partially or not hiding can be obtained from Theorem C.5 by removing the
encryption oracle.
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A PE (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) satisfies the key-indistinguishability property if for all PPT A
and attribute sets Σ there exists a negligible quantity ϵik-cpa = negl(λ) such that∣∣∣Pr [1← Expik-cpaA,1 (λ)

]
− Pr

[
1← Expik-cpaA,0 (λ)

]∣∣∣ ≤ ϵik-cpa .

Remark that the definition is quite weak, as the adversary is even allowed to query valid attributes w.r.t.
some of the predicates. However, this requires to make sure that A does not get not the decryption keys
corresponding to such predicates. Indeed, assume A could get both the decryption key PE .sk f corresponding
to some predicate f and a valid attribute α w.r.t. f . Then it could trivially win the experiment by choosing a
message m, generating PE .c0 ← PE.Enc(PE .par0,m, α) and PE .c1 ← PE.Enc(PE .par1,m, α), and checking
which of the two ciphertexts can be decrypted using PE .sk f .

C.2 Polylog ACEnoS from Predicate Encryption with Secure Predicates

Predicate encryption (PE) decrypts a ciphertext only if it is associated to a (possibly secret) attribute that
verifies a certain predicate f . Intuitively, this is how a policy can be enforced: a ciphertext is decrypted
only if the sender and the receiver are allowed to communicate11. This requires to add an authentication
layer to verify the identities of the parties involved. During key generation each sender receives a signed
identity along with the PE encryption key, and each receiver a decryption key connected to its identity.
Such keys are generated so that decryption outputs a plaintext only if it is associated with a valid sender
identity allowed to communicate with the receiver. The attribute-hiding property of the PE (i.e., ciphertexts
do not leak information about the attribute they are linked to, cf. Appendix C.1) allows to keep the sender’s
signed identity hidden from the receiver, thus ensures the NRR. Essentially, encryption enforces secrecy,
while authentication guarantees that the party is allowed to send messages to the decrypting party.

Thus, given the following building blocks,

– a OTS scheme (OTS.KeyGen,OTS.Sign,OTS.Ver) that is selectively unforgeable and outputs signatures
in a set S.

– a predicate encryption scheme (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) that is attribute-hiding selective
IND-CPA secure and IK-CPA for:
Message Space: M := {0, 1}ℓ
Attribute Space: Σ := {(i, sig i)}i∈[nS ]

Predicate Space: F := {f Si }i∈[nS ] ∪{f Ri }i∈[nR], where f
x
i : [nS ]×S → 0, 1 for x ∈ {S,R} is defined as:

f Sj (i, sig) = ((i == j) ∧ (OTS.Verotsvki(sig , i))) (10)

f Rj (i, sig) = (P(i, j) ∧ (OTS.Verotsvki(sig , i))) (11)

where S is the set of possible signatures output by the OTS, {otsvk i}i∈[nS ] are verification keys of
the OTS. The f Sj ’s are not used in the construction, but they are needed when reducing breaking
the NSWR to breaking the IK-CPA property of the PE.

we construct an ACE without sanitizer as follows.

Communication Model: same as before. There is a public bulletin board; only senders can write on it,
receivers have read-only access.

Message Space: M := {0, 1}ℓ.
11 The intuition is similar to the intuition behind compact ACE from iO in [12]. In fact, it is possible to also obtain a

compact ACE without sanitizer from iO through a similar construction (cf. Section 7.2: removing verifiability from
the construction presented there only influences the bound on the insecure subliminal channel bandwidth). The
construction in this section is obtained substituting the iO and NIZK proof with Predicate Encryption (PE) (with
an approach similar to [18]). Hence we can fit all the checks that were previously done by the obfuscated program
in the f . By choosing a PE that is attribute-hiding, we do not need the NIZK proof.
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Setup: (pp,msk)← Setup(1λ,P)
Generate the parameters and master secret key of the PE (PE .par ,PE .msk) ← PE.Setup(1λ), and the
OTS key pairs for message space [nS ]: (otssk i, otsvk i) ← Sig.KeyGen(1λ, [nS ]), i ∈ [nS ]. Let otssk :=
{otssk i}i∈[nS ] and otsvk := {otsvk i}i∈[nS ]. The algorithm returns the public parameters pp = (λ,M)
and the master secret key msk = (P,PE .par ,PE .msk ,F , Σ, otssk , otsvk).

Key Generation: ki ← KGen(pp,msk , i, t)
– If i ̸= 0 and t = sen, generate a signature on the identity sig i ← OTS.Signotsski

(i). Return ek i =
(PE .par , i, sig i).

– If i ̸= 0 and t = rec, return dk i = PE .sk i ← PE.KeyGen(PE .msk , f Ri ).
– If i = 0, return ek0 = dk0 = pp.

Encryption: c ← Enc(pp, ek i,m)
Encrypt the message using the PE key: PE .c ← PE.Enc(PE .par ,m, (i, sig i)) (where the identity i and
its signature compose the attribute). Return c = PE .c.

Decryption: m ′ ← Dec(pp, dk j , c)
Output m ′ ← PE.Dec(PE .c, dk j).

Remark C.6. This construction returns ciphertexts that are O(n+ℓ) bits long instead of O(nℓ) as in Section 4.
In fact, our instantiation (cf. Appendix C.3) is linear in minj∈[nR] Sj+ℓ, where Sj is the set of senders allowed
to communicate with the receiver j. Thus, for policies such that minj∈[nR] Sj = O(log nS) this is already
optimal. The scheme presented in Section 7.2 is better, as the ciphertext length is linear in log(n). Remark
that this estimate is related to the current state of the art in PE: better, more efficient schemes might be
available following a PE with better check. Finally, the runtime of the construction is polylog in the number
of parties (as it generates only one ciphertext, which contains the identity of the sender as an attribute of
the message).

Remarks about the Authentication Layer. We decided to use (one-time) signatures instead of MACs because
the verification of the signature is included in the predicate. If we were to use a MAC, the predicate would
depend on the secret key, and we would have to worry about leakage during decryption or in the decryption
key. Using a signature we do not have to worry about the secrecy of the predicate in the PE, as the predicate
is not generated from values that have to remain hidden to the receiver – besides PE .par (whose leakage
would break the secrecy of the encryption anyway). Moreover, using a different key pair for each sender
allows to keep the keys of parties that are not allowed to communicate independent. Finally, remark that it
is enough for the signature to be selectively weakly unforgeable, as in an impersonation attack the A does
not even see a signature w.r.t. the verification key of the target sender i, but at most it sees vk i.

Theorem C.7. The protocol previously described is correct, and satisfies the properties of No-Read and
No Undetectable Secret Write as described in Section 3 and Section 7.1 assuming that the signature is
selectively unforgeable and the predicate encryption is attribute-hiding selective IND-CPA secure and key
indistinguishable.

Proof (sketch).

Correctness. From correctness of building blocks.

NRR. This follows from the attribute hiding property of the PE. Indeed, assume A is a PPT adversary
that wins the NRR experiment with advantage ϵA. We construct a PPT algorithm B that wins the ind-ah
experiment with advantage ϵA

22nS
, where the loss in the number of senders is due to the fact that the PE is

only selectively secure; in case the PE is adaptively secure, B wins with the same advantage as A. B simulates
the NRR experiment as follows:

– B generates the signature key pairs (otssk i, otsvk i)← {OTS.KeyGen(1λ, [nS ]) for all i ∈ [nS ], guesses the
identities (i′0, i

′
1), signs them, and sends ((i′0, sig i0), (i

′
1, sig i1)) to the ind-ah challenger. Then it sends the

public parameters pp (i.e.,M and λ) to A.
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– Upon receiving the public key PE .par of the PE, B simulates the oracles as follows:
OG: on input (i, sen) returns (PE .par , i,OTS.Signotsski

(i)). On input (j, rec) queries the key generation
oracle of the ind-ah experiment on f Rj and returns the oracle answer to A.

OE: on input (i,m) generates the encryption key ek i = (PE .par , i, sig i) ← OG(j, sen) and returns
PE .c ← PE.Enc(PE .par ,m, (i, sig i)) to A.

When needed, B uses the previously generated sig i0 , sig i1 .
– When A returns (m0,m1, i0, i1), B aborts if (i0, i1) ̸= (i′0, i

′
1). Else it sends (m0,m1) to the PE challenger,

and returns the challenge ciphertext PE .cb to A.
– B answers the oracle queries round as previously defined.
– Upon receiving the bit guess b from A, B sends it as bit guess in the ind-ah experiment.

To compute the advantage of B we need to analyze three points:

– whether the output of A satisfies the winning condition of the ind-ah experiment: to win the ind-ah
experiment the queries and challenge messages/identities chosen by A should be such that: f Rj (i0) =

f Rj (i1) for all (j, rec) queried to the key generation oracle and, if f Rj (i0) = f Rj (i1) = 1, then m0 = m1.
These are exactly the condition of PP and SA in the NRR experiment: thus the interaction of B with
the ind-ah challenger does not end in an abort.

– whether A can distinguish the simulated from the original NRR experiment: the experiment simulated
by B is exactly equal to the NRR experiment, thus A cannot distinguish.

– whether B aborts: this happens only if B wrongly guessed the challenge identities, thus with probability
1

22nS
.

Hence the advantage of B is ϵA2
−2nS .

NSWR. Assume that there is a successful adversary in the NSWR experiment. Then the algorithm B could
win the game with essentially the same probability as A, by running A2 as a subroutine, simulating the oracles
as follows: B generates the signature key pairs (otssk i, otsvk i)← {OTS.KeyGen(1λ, [nS ]) for all i ∈ [nS ], and
a pair of keys for the predicate encryption (PE .par ,PE .msk)← PE.Setup(1λ, ([nS ],S)) and,

OG: on input (j, rec) from A2, it generates keys according to the policy P using ({otsvk i}i∈[nS ] : P(i,j)=1,
PE .par ,PE .msk). The keys are stored in a list K.

OE: on input (i,m), B executes the honest encryption oracle as specified in the security experiment gener-
ating the encryption key of the sender i using (otssk i,PE .par). It stores the keys (with corresponding
identity and signature) in the list K.

B outputs whatever A2 returns, thus wins with essentially the same probability. To estimate the loss in
the success probability, we need to analyze the probability that A2 can distinguish between the real and
simulated oracles. We do this through a series of games.

Game 0: this is the NSWR experiment.
Game 1: same as Game 0, but now the key generation oracle is split into two independent oracles, OK,1

accessed by A1 and OK,2 accessed by A2, that do not share state. In particular, this means that the
verification keys used by OK,2 and the signatures on the senders identities used by OE are not the same
used by OK,1.

Game 2: same as Game 1, but nowOK,2 generates the keys using a freshly generated pair (PE .par ′,PE .msk ′).
This is the NSWR experiment in which the oracles accessed by A2 are in fact simulated by B.

Let Gi be the probability that A2 returns a message m ′ = m̄ in Game i. We show that:∣∣∣Pr [1← Expnsw(A1,A2)(λ,P) ∧ NCR
]
− Pr

[
1← Expnsw(A1,B)(λ,P)

]∣∣∣
= |Pr(G0)− Pr(G1) + Pr(G1)− Pr(G2)|

≤
∣∣∣∣qE2 ϵind-ah + ϵik-cpa

1− nS · ϵsu-cma

∣∣∣∣ .

Indeed it holds that
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Game 0 ≈ Game 1. The decryption keys queried by A2 do not make use of the {otsvk i}i generated to
answer queries from A1, as the two adversaries are not allowed to corrupt parties that can communicate.
Thus, the fact that OK,2 does not know the verification keys generated by OK,1 is undetectable by A2.
The only way that A could distinguish is if it could tell that the signatures used by OK,1 are different
from the signatures used by OE . This can only happen in case A2 queries OE on a (j,m) where j was
queried by A1 to OK,1. Then there exists an algorithm C that can break the ind-ah property of the PE
scheme as follows. C sets the challenge messages in the ind-ah experiment to be m0 ← (j, sig ,m) and
m1 ← (j, sig ′,m) (where sig is the signature given to A1 as part of the j-th sender’s key). Then it sets
the answer to the query (j,m) as the challenge ciphertext of the ind-ah experiment. If A2 returns m ′ = m̄
C returns 1, otherwise 0. The success probability of C is 1

qE2
(Pr(G1) − Pr(G0)) ≤ ϵs−ind-ah, where qE2 is

the number of queries by A2 to OE .
Game 1 ≈ Game 2. Distinguishing these games is essentially the same as winning the ik-cpa experiment for

the PE scheme. An algorithm C running A as a black-box can win the ik-cpa experiment with probability:
ϵik-cpa ≥ Pr(G2)−Pr(G1). Indeed, upon receiving F , PE .par0, and PE .par1 from the ik-cpa experiment,
C simulates the adversary’s inputs and the oracles as follows:
Input to A1: λ andM from the PE scheme.
OK,1: on input i, if there is an entry (i, sig i) ∈ Q1

K , returns (PE .par0, i, sig i) to A1. Otherwise, C
queries the attribute oracle OΣ on (f si ) to get a signature sig i on i. C stores (i, sig i) in Q1

K , and
sends (PE .par0, i, sig i) to A1 (C aborts if i /∈ [nS ]).

Input to A2: upon receiving (m̄, s̄) from A1, C stores m̄ and gives s̄ in input to A2 (along with λ and
M).

OK,2: on input j, queries the key generation oracle of the ik-cpa experiment on f Rj and returns the oracle
answer to A2 (aborts if j /∈ [nR]). As A2 is not allowed to communicate with A1, no attribute queried
by C to OΣ is valid w.r.t. any of the f Rj queried to the key generation oracle of the ik-cpa experiment.
Thus C can always return a key to A2.

OE: on input (j,m), queries the encryption oracle of the ik-cpa experiment on (m, f Sj ), and returns the
oracle answer to A2 (aborts if j /∈ [nS ]).

Upon receiving m ′ from A2, C returns 1 if m ′ = m̄, and 0 otherwise. Thus the winning probability
of C is (1 − ϵs)(Pr(G2) − Pr(G1)) ≤ ϵik-cpa, where ϵs is the probability of breaking the security of the
predicate family F . In Theorem C.8 we show that the family F defined in Equation (10) is in fact a
secure predicate family, and that ϵs ≤ ϵsu-cma · nS . Thus, Pr(G2)− Pr(G1) ≤ ϵik-cpa

1−nS ·ϵsu-cma
.

Lemma C.8. Given a OTS that is weekly selectively unforgeable, the predicate family F := {f Si }i∈[nS ] ∪
{f Ri }i∈[nR] with nS subexponential in λ, defined in Equation (10) is a secure predicate family (cf. Theo-
rem C.4).

Proof (Sketch.). The generation algorithm for (P,nS ,nR) simply generates the signature key pair and a
signature on each i ∈ [nS ], then generates the f xi ’s in F according to Equation (10).

Security follows from the unforgeability of the signature. Assume there exists a PPT algorithm A that
on input F returns (i, sig i) such that f xi (i, sig i) = 1 with probability ϵs. Then an algorithm B can win the
su-cma experiment in Fig. 6 as follows. B commits to a random message ī ∈ [nS ] in the su-cma experiment,
and gets back ¯otsvk . Then it sets otsvk ī = ¯otsvk , generates the rest of the OTS keypairs, and constructs the
predicates as specified in Equation (10). Finally, it runs A(F). There are two cases:

– If A returns ((i, sig), f Sk ), this means that i = k and sig is a valid signature on i w.r.t. otsvk i.
– If A returns ((i, sig), f Rj ), this means that P(i, j) = 1, and sig is a valid signature on i w.r.t. otsvk i.

In both cases, if i = ī B can submit (i, sig) as a forgery and wins with probability ϵB = ϵs
nS

. Thus, ϵB =
ϵsu-cma ≥ ϵs

nS
, and ϵs ≤ ϵsu-cma · nS . ⊓⊔

Remark C.9. Our construction guarantees full anonymity: the identity of the sender is hidden even from the
receiver of the message (NRR-SA case). This is different from the construction by Kim and Wu [18]: in fact,
how to build an ACE scheme for general policies with such a strong anonymity guarantee was left as an open
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problem. We indirectly solve such problem: our construction can be modified to get a fully anonymous ACE
with sanitization by adding the sanitization layer from Kim and Wu, i.e. the functional encryption scheme.
The main reason for it is that our scheme relies on an attribute-hiding IND-CPA PE, instead of a one-sided
IND-CPA predicate encryption scheme.

C.3 Instantiations

Not all PE scheme are suitable to instantiate this ACE scheme. Beyond the obvious security requirements,
there are some small design details that are pivotal in the security reduction, but might get overlooked
when designing a PE. In particular, a suitable PE should generate the keys without having access to the
predicates, which why we choose the construction by Katz et al. [17] over the construction by Baltico et
al. [5]12. All other existing PE cannot be used as they either only guarantee one-sided security (it does not
guarantee that the attribute is hidden if it satisfies the predicate, cf. [1, 19]), or because they require part of
the attribute to decrypt (partially hiding security, cf. [16, 26, 13]). In general, it seems that one cannot use
schemes that have simulation based security definitions, as they do not allow the adversary to query keys
after it has gotten the challenge ciphertext (so e.g. [2] does not work).

We now prove that scheme from [17] satisfies the IK-CPA property when instantiated with a family
of secure predicates. Let us start by recalling the scheme in the following. What we present is a slight
modification of the original protocol, where the generators of two of the three subgroups are part of the
public parameters instead of part of the public key for the sake of simplicity.

Setup: Generate N = pqr ∈ N, with p, q, r primes, the cyclic groups G = Gp × Gq × Gr and GT of
order N , and a pairing ê : G × G → GT . Computes gq, gr, gp generators of Gp,Gq,Gr respectively, and
random γ $←−Zp, R0, R1,i, R2,i

$←−Gr, h, h1,i, h2,i
$←−Gp for i = 1, . . . , n. Let (N,G,GT , ê, gr, gp) be the

public parameters, and let the public key PE .par and the master secret key PE .msk be:

PE .par= (Q = gqR0, P = ê(gp, h)
γ , {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}i=1,...,n)

PE .msk= (p, q, r, gq, h
−γ , {h1,i, h2,i}i=1,...,n) .

Encryption: on input an attribute α = (α0, . . . , αn) ∈ Zn
N and a message m ∈ GT , choose random

s, α, β $←−ZN and R3,i, R4,i
$←−Gr for i = 1, . . . , n, and return the ciphertext

PE .c =
(
C = mP s, C0 = gsp,

{
C1,i = Hs

1,iQ
ααiR3,i, C2,i = Hs

2,iQ
βαiR4,i

}
i=1,...,n

)
.

Key Generation: on input PE .msk and the predicate f = (f1, . . . , fn) ∈ Zn
N , generate random r1,i, r2,i

$←−Zp

for i = 1, . . . , n, R5
$←−Gr, ϕ1, ϕ2

$←−Zq, Q6
$←−Gq. Return the decryption key

PE .sk f =
(
K = R5Q6h

−γ ∏n
i=1 h

−r1,i
1,i h

−r2,i
2,i ,

{
K1,i = g

r1,i
p gϕ1fi

q ,K2,i = g
r2,i
p gϕ2fi

q

}
i=1,...,n

)
. (12)

Decryption: on input PE .c and PE .sk f as defined above, return

m ′ = C · ê(C0,K) ·
n∏

i=1

ê(C1,iK1,i) · ê(C2,iK2,i)

In the following theorem we show that given a family of secure predicates the PE is IK-CPA under the
same assumptions that underlie its ind-ah security.

Theorem C.10. The PE scheme from [17] is IK-CPA secure if the predicates family is a family of secure
predicates and Assumption 1 and 2 from [17] hold.

12 Remark that one can adapt their construction to circumvent this limitation, but still would need to prove it satisfies
key-indistinguishability as defined in this section.
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Proof. We prove the statement with a series of game hops to transform the ik-cpa experiment with b = 0 into
the ik-cpa experiment with b = 1. With each hybrid game, we will substitute one part of the ciphertexts or
secret keys generated using elements of PE .par0 with parts generated using the corresponding components
of PE .par1. The thesis essentially follows from the fact that the secret keys and ciphertexts computationally
hide the master secret key. Let A be the adversary in the ik-cpa experiment, and let

PE .par0=
(
Q0 = gqR

0
0, P 0 = ê(gp, h

0)γ
0

, {H0
1,i = h0

1,i ·R0
1,i, H0

2,i = h0
2,i ·R0

2,i}i=1,...,n

)
, (13)

PE .par1=
(
Q1 = gqR

1
0, P 1 = ê(gp, h

1)γ
1

, {H1
1,i = h1

1,i ·R1
1,i, H1

2,i = h1
2,i ·R1

2,i}i=1,...,n

)
. (14)

be the challenge keys given to A alongside the public parameters and the encryption and key generation
oracles OPE.Enc,b, OPE.KeyGen,b.

Game 0: this is the ik-cpa experiment with b = 0.
Hybrid 0: in this hybrid game the oracle OPE.Enc,b generates the ciphertexts using Q1 = gqR

1
0 instead of

Q0 = gqR
0
0. Everything else is the same as in Game 0. This does not impact decryption, as the elements in

Gr are used as masking elements and get canceled out when applying ê. Moreover, the distribution of the

ciphertext is exactly the same, as its projection in Gr sends C1,i to (R
0
1,i)

s(R1
0)

ααiR3,i = g
a0
1,is+a1

0ααi+a3,i

r ,

where a01,i = loggr R
0
1,i, a

1
0 = loggr R

1
0 and a3,i = loggr R3,i. Now, recall that sampling a random element

R in Gr is equivalent to sampling a random exponent a ∈ Zr and setting R = gar , where gr is a generator

of Gr. Therefore, the element g
a0
1,is+ab

0ααi+a3,i

r for b ∈ {0, 1} is in fact a random element of Gr, as
a3,i

$←−Zr, independently of whether the oracle uses R0
0 or R1

0 to generate it13. An analogous analysis can
be done for C2,i.
Therefore Hybrid 1 is statistically indistinguishable from Game 0.

Hybrid 1: in this hybrid game the oracle OPE.Enc,b generates the ciphertexts using R1
1,i instead of R0

1,i.
Everything else is the same as in Hybrid 0. Analogously to the previous case we can argue that Hybrid
1 is statistically indistinguishable from Hybrid 0.

Hybrid 2: in this hybrid game the oracle OPE.Enc,b generates the ciphertexts using R2
1,i instead of R0

2,i.
Everything else is the same as in Hybrid 1. Analogously to the previous case we can argue that Hybrid
2 is statistically indistinguishable from Hybrid 1.

Hybrid 3: in this hybrid game OPE.Enc,b and OPE.KeyGen,b are simulated as follows. The encryption oracle
OPE.Enc,b does everything as in Hybrid 2 except for the exponent s. Instead of s $←−ZN , the oracle samples
s0, s1

$←−ZN and sets s ← s0 + s1 · (γ−10 k−10 γ1k1), where kb := loggp h
i (the simulator knows already

kb because it generates the public keys itself, so it does not have to compute the logarithm). The key
generation oracle OPE.KeyGen,b does everything as in Hybrid 2 except for the exponent r1,1. Instead of
r1,1

$←−Zp, the oracle samples r0, r1
$←−Zp and sets r1,1 ← r0−(k01,1)−1(γ0k0−γ1k1) where k01,1 = loggp h

0
1,1.

Remark that r1,1 is still in Zp, as all the logarithms are modulo gp. A standard computation shows that
decryption still works. The distributions of s and r1,1 are the same in both Hybrid 3 and Hybrid 2, thus
the games are statistically indistinguishable.

Hybrid 4: in this game the secret keys are generated using h1−γ1 , and the ciphertexts output by OPE.Enc,b

are generated using P 1 and s $←−ZN . A standard computation shows that decryption still works. In
Theorem C.11 we show that the two games are indistinguishable if the PE is ind-ah secure, thus under
Assumption 1 and 2 from [17] (cf. Theorem C.1 in [17]).

Hybrid 5: in this hybrid game OPE.Enc,b and OPE.KeyGen,b are simulated as follows. The encryption oracle
OPE.Enc,b does everything as in Hybrid 4 except for the exponent s. Instead of s $←−ZN , the oracle samples

s0, s1
$←−ZN and sets s ← s0 + s1 · (k01,1

−1
k11,1), where kb1,1 := loggp h

b
1,1. The key generation oracle

OPE.KeyGen,b does everything as in Hybrid 2 except for the exponent r1,1. Instead of r1,1
$←−Zp, the oracle

samples r0, r1
$←−Zp and sets r1,1 ← r0+r1(k

0
1,1+k11,1). A standard computation shows that decryption still

works, and that (h0
1,1)

s = (h1
1,1)

s1+s0·(k1
1,1

−1
k0
1,1) and (h0

1,1)
r1,1 = (h1

1,1)
−(r1+r0k

1
1,1

−1
). The distributions of

s and r1,1 are the same in both Hybrid 4 and Hybrid 5, thus the games are statistically indistinguishable.

13 Another way of seeing this is by setting a′
3,i = a3,i +(a0

0− a0,1)ααi and observing that a′
3,i mod r is still a random

element in Zr.
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Hybrid 6: in this game both the secret keys and the ciphertexts are generated using h1
1,1 and sampling

fresh r1,1
$←−Zp, s

$←−ZN . A standard computation shows that decryption still works. With an analogous
proof to the case of Hybrid 3 and 4 one can show that the two games are indistinguishable if the PE is
ind-ah secure.

For i = 2, . . . , n
Hybrid 5+i: in each game the secret keys and the ciphertexts are generated using h1

1,i. Indistinguishability
follows from the proof of indistinguishability of Hybrid 4, 5, 6.

For i = 1, . . . , n:
Hybrid (5+n)+i: in each game the secret keys and the ciphertexts are generated using h1

2,i. The argument
for indistinguishability is the same as before.

Game 1: this is the ik-cpa experiment with b = 1. In fact, this is exactly equal to Hybrid 5 + 2n.

Lemma C.11. If the PE is ind-ah secure, Hybrid 4 and Hybrid 3 are indistinguishable.

Proof. First, let us consider a ciphertext in Hybrid 3. By standard algebraic computation we obtain that the
components of PE .c = (C,C0, {C1,i, c2,i}i) are such that

C = mP 0s =
kb:=loggp

hb, b=0,1
m · ê(gp, gp)γ0k0·s =

E←ê(gp,gp)
m · Eγ0k0·s

= m · Eγ0k0·(s0+s1·(γ−1
0 k−1

0 γ1k1))

= m · Eγ0k0·s0 · Eγ0k0·s1·γ−1
0 k−1

0 γ1k1

= m · P 0s0P 1s1 = m · P 1s1+s0·(γ−1
1 k−1

1 γ0k0)

C0 = gsp

For all i = 1, . . . , n

C1,i = (h0
1,iR

1
1,i)

sQ1ααi
R3,i

C2,i = (h0
2,iR

1
2,i)

sQ1βαi
R4,i .

The exponents s = s0 + s1 · (γ−10 k−10 γ1k1 and s′ := s1 + s0 · (γ−11 k−11 γ0k0) are uniformly distributed over ZN

as s1, s2
$←−ZN . Therefore the distribution of the ciphertext is statistically indistinguishable from a ciphertext

PE .c = (m · P 1u
′

, gup , {(h0
1,iR

1
1,i)

uQ1ααiR3,i, (h0
2,iR

1
2,i)

uQ1βαiR4,i}i) for u, u′ $←−ZN .
Analogously, the secret key generated in Hybrid 3 is such that

K = R5Q6h
0−γ0

n∏
i=1

h0
1,i
−r1,i

h0
2,i
−r2,i

K1,i = gr1,ip gϕ1fi
q

K2,i = gr2,ip gϕ2fi
q ,

where r0, r1,i, r2,j
$←−Zp for i ̸= 1 and for all j, and r1,1 ← r0− (k01,1)

−1(γ0k0−γ1k1). by a standard algebraic
computation we get that:

h0
1,1
−r1,1

= h0
1,1
−r0+(k0

1,1)
−1(γ0k0−γ1k1)

= h0
1,1
−r0 · gγ0k0−γ1k1

p

= h0
1,1
−r0 · h0γ0 · h1−γ1

.

Therefore

K = R5Q6h
1−γ1 · h0

1,1
−r0

h0
2,1
−r2,1 ·

n∏
i=2

h0
1,i
−r1,i

h0
2,i
−r2,i

,
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and the distributions of the decryption keys in Hybrid 3 and Hybrid 4 are statistically indistinguishable. From
the previous observations it follows that distinguishing Hybrid 3 from Hybrid 4 entails distinguishing whether
s′ = s ∈ ZN given ciphertexts (for convenience we drop the indices 0, 1 of the elements of PE .par0, PE .par1)

PE .c =
(
C = mP s′−sP s, C0 = gsp,

{
C1,i = Hs

1,iQ
ααiR3,i, C2,i = Hs

2,iQ
βαiR4,i

}
i=1,...,n

)
. (15)

A successful distinguisher could then break the indistinguishability property of the PE (with challenge
messages (m,m · P t) for some random t $←−ZN ). ⊓⊔

C.4 Secure Predicate Family Instantiation

The PE scheme from [17] can be used to verify predicates that can be expressed as an inner product of the
attribute vector α with a predicate vector f . This in particular means that they can verify that the attribute
is a solution of a particular polynomial, thus obtaining conjunctions and disjunctions of inequalities too
(cf. Sections 5.3 and 5.4 in [17]). We now show how to instantiate the predicate family in Eq. (10) as an
inner product using the deterministic signature in Appendix A.6. Essentially, we check that a signature (s, e)
satisfies the following logical expression: ∨

i∈[Bχ]

(|e| = i)

 ∧
 ∨

k∈Sj

(aks+ e− bk)

 ,

where the first disjunction checks that the norm of the error is smaller than Bχ, and Sj is the set of all the
senders allowed to communicate with the j-th receiver, Sj := {k ∈ [nS ] : P(k, j) = 1}. To convert this
expression into a polynomial we have to be careful, ad the cardinality of Sj (the set of senders allowed to
communicate with receiver j) may vary depending on the j. This would imply that the total degree of the
polynomial representing this expression might vary, thus the length of the attribute (that has to contain one
value for all the monomials in such polynomial) cannot be fixed. As a workaround we add bogus signature
verifications for all the senders not in Sj , by sampling random ajk, bjk. As the predicate is generated by the
setup, which is trusted, we can assume that these are generated such that no signature (si, ei) is such that
ajksi + ei = bjk mod q.

Given random ri ∈ ZN for all i ∈ [nS ], and ajh
$←−Zn

q , b
j
h

$←−Zq for all h ∈ [nS ] \Sj , j ∈ [nR], the predicate

family is F := {f Si }i∈[n] ∪ {f Ri }i∈[n] where

f Sj (s, e) = (ajs+ e− bj) + rj

Bχ∑
i=1

(e− i) mod N

f Rj (s, e) =
∏
k∈Sj

(aks+ e− bk)
∏

h∈[nS ]\Sj

(ajhs+ e− bjh) + rj

Bχ∑
i=1

(e− i) mod N .

The total degree of this polynomial is max {Bχ,nS}, thus the length of the vector representation of an
attribute is

max

{(
n+ 2

nS

)
+ (Bχ − nS),

(
n+ 2

nS

)}
.
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