
Hashing to Prime in Zero-Knowledge

Thomas Groß
School of Computing, Newcastle University, United Kingdom

Keywords:
Primality Testing, Prime Hashing, RSA, Prime Encoding, Zero-Knowledge Argument

Abstract:
We establish a set of zero-knowledge arguments that allow for the hashing of a committed secret
a-bit input x to a committed secret (k + 1)-bit prime number px. The zero-knowledge arguments
can convince a verifier that a commitment indeed is the correctly generated prime number derived
from x with a soundness error probability of at most 2−k + 2−t dependent on the number of zero-
knowledge argument rounds k and the number of primality bases t to establish primality. Our
constructions offer a range of contributions including enabling dynamic encodings for prime-based
accumulator (Barić and Pfitzmann, 1997; Camenisch and Lysyanskaya, 2002), signature (Groß,
2015) and attribute-based credential schemes (Camenisch and Groß, 2008) allowing to reduce
these schemes’ public key size and setup requirements considerably and rendering them extensible.
While our new primality zero-knowledge arguments are of independent interest, we also show
improvements on proving that a secret number is the product of two secret safe primes significantly
more efficient than previously known results (Camenisch and Michels, 1999), with applications to
setting up secure special RSA moduli.

1 INTRODUCTION

Hashing to a prime number is a foundational
cryptographic function that enables the compu-
tation of a (k + 1)-bit prime number px from an
a-bit input x. It finds its applications in a wide
range of higher-level constructions that rely on
division-intractable encoding, such as in private
information retrieval (Cachin et al., 1999), veri-
fiable random functions (Micali et al., 1999) or
verifiable computing (Ozdemir et al., 2020).

While the hashing-to-prime primitives have
been found generally useful, a number of crypto-
graphic constructions was barred from their ben-
efits: Schemes that rely on prime or division-
intractable encoding while seeking to convince
verifiers in zero-knowledge of their faithful pro-
tocol execution. Such schemes include credential
schemes (Camenisch and Groß, 2012), special-
purpose signature schemes (Groß, 2015), as well
as dynamic accumulators and related revocation
systems (Barić and Pfitzmann, 1997; Camenisch
and Lysyanskaya, 2002)). These constructions
suffer from cumbersome join and elaborate setup
protocols, which bear large public key sizes, and
thereby limit their practical applications.

In this paper, we aim at creating zero-

knowledge arguments that convince a verifier that
a committed secret a-bit input x was determinis-
tically hashed to a committed secret (k + 1)-bit
prime number px.

Clearly, this goal is feasible as all NP-
languages are provable in zero-knowledge (Gol-
dreich et al., 1991). What we are interested in is
establishing efficient, flexible and practical con-
structions that can lift the limitations from a wide
range of other constructions.

1.1 High-Level Concept

We pursue two different concepts to hash-to-
prime zero-knowledge arguments. One concept
operates on the principle of elimination, the other
concept on the principle of recursive construc-
tion. Both constructions have in common that
they establish that a hidden integer px is a prime
derived from input x. That is, the prover con-
vinces a verifier of a zero-knowledge predicate
px = hashToPrime(x) between two commitments
Cx and Cpx on x and prime px, respectively.

Hash-to-Prime by Elimination. Upon re-
ceiving an a-bit bitstring x, the prover computes a

(k + 1)-bit yi = PRGH(x)(i), iterating over an in-
dex i starting from 1 until yu is a probable prime.
The prover commits to x and all (yi)

u
i=1 and en-

gages with a verifier in a zero-knowledge argu-
ment showing (i) that all computations were ex-
ecuted correctly, (ii) that the final committed out-
put px := yu passes a primality test. (iii) that all
committed intermediate candidates (yi)

u−1
i=1 are

composites. The number of eliminated compos-
ites u is public knowledge.

Hash-to-Prime by Recursive Construction.
Upon receiving an a-bit bitstring x, the prover
establishes a first prime p0 as 2`n0h0 + n0 where
h0 := HQ0,z0(x) and n0 is number of itera-
tions till the first prime is reached. Then, the
prover continues to build a Pocklington sequence
(pj−1, aj , rj) where each rj is given by rj := 2`nj ·
HQj ,zj (x)+nj for the current Pocklington step j.
In establishing each step, the prover tests in se-
quence for primality integers yj,i := pj−1 · rj,i + 1
till one is found to be prime. Then, the prover
commits to x, all (yj,i), rj , aj . The prover makes
the integers nj,i public. Then the prover en-
gages with a verifier in a zero-knowledge argu-
ment yielding that the base value is prime and the
preceding candidates composite, followed by that
for each Pocklington step (i) the prover knows a
Pocklington witness (pj−1, aj , rj), (ii) the Pock-
lington criterion is fulfilled such that the subse-
quent number pj is prime, (iii) the intermediate
candidates (yj,i) leading up to pj are composites.
The integer nj of each step is public knowledge.

1.2 Our Contributions

We offer new zero-knowledge arguments for hash-
ing to prime with both (i) elimination and (ii) re-
cursive construction methods. This inquiry yields
a range of modular, reusable zero-knowledge
predicates for primality criteria, pseudo-random
number generators, and square hashes to ex-
tend zero-knowledge specification languages in
the Camenisch-Stadler framework (Camenisch
and Stadler, 1997) and the UC framework (Ca-
menisch et al., 2011). We gain a new efficient
zero-knowledge argument that an integer is a
product of two safe primes as an immediate con-
sequence of the new predicates. We further pro-
vide a comprehensive complexity analysis that il-
lustrates the trade-offs for different application
scenarios. These contributions impact especially
prime-encoded credential schemes and signature
schemes by lifting the encoding to bit-strings, by

enabling dynamic changes of the encoding dictio-
naries, and by reducing public key size and setup
requirements. They enable identity-based accu-
mulators.

2 RELATED WORK

Hashing to prime has been investigated and used
as a primitive in a range of constructions. For in-
stance, Cachin, Micali, and Stadler (Cachin et al.,
1999) created a function PrimeSeq, which would
produce a prime px from an input x with a de-
terministic algorithm in the context of private
information retrieval. Micali, Rabin, and Vad-
han (Micali et al., 1999) used an adaptation of
that primitive in their first construction of a ver-
ifiable random function. Both are examples of
hash-to-prime by elimination.

Ozdemir et al. (Ozdemir et al., 2020) included
a construction for division-intractable encoding
through a hash-to-prime primitive. They, how-
ever, chose a recursive, constructive method by
establishing a sequence of primes and Pockling-
ton witnesses. They do this in the context of
SNARKs and verifiable computing. Both former
approaches are not applicable as zero-knowledge
arguments discrete-log based signature and zero-
knowledge proof systems.

This work is also related to and borrows tech-
niques from Camenisch and Michels’ general zero-
knowledge arguments on the primality of a se-
cret integer and the composition of a special RSA
modulus from two safe primes (Camenisch and
Michels, 1999).

3 PRELIMINARIES

We assume a group G with prime order Q and
two generators g and h, 〈g〉 = 〈h〉 = G, for which
the discrete logarithm logg h is not known. We
assume a commitment scheme in group G which
commits messages m with commitments of the
structure Cm := gmhrm , where rm is chosen uni-
formly at random, rm ∈R ZQ.

We assume the setup for a Square Hash
(SQH/U) (Etzel et al., 1999) family of functions
from ZQ to ZQ as: {HQ,z : ZQ −→ ZQ|z ∈ ZQ}
and {HQ,z,b : ZQ −→ ZQ|z, b ∈ ZQ} where the

functions HQ,z and HQ,z,b are defined as:

SQH: HQ,z(x) ≡ (x+ z)2 (mod Q)

SQHU: HQ,z,b(x) ≡ (x+ z)2 + b (mod Q)

Theorem 1 (Square Hash (Etzel et al., 1999)).
The family SQH is ∆-universal. The family
SQHU is strongly universal.

We assume a setup for the Naor-Reingold
PRG (Naor and Reingold, 1997). An instance
is generated with a key 〈Q,P, g,~a〉 with prime Q,
prime P dividing Q − 1, g a generator of order
P , G := 〈g〉 ⊂ ZQ, and ~a a sequence of k + 1
elements of ZP . For an a-bit input x with bits
x1, . . . , xn, PRGa0

(x) := fQ,P,g,~a is defined as:

fQ,P,g,~a := (ga0)
∏
xi=1 ai (mod Q).

3.1 Known Primality Criteria

We introduce in turn primality criteria related
to (i) Lehmann’s and Solovay-Strassen’s tests,
(ii) Miller’s test, and (iii) Pocklington’s test.

Theorem 2 ((Kranakis, 2013)). An odd integer
n > 1 is prime if and only if

∀a ∈ Z∗n : a(n−1)/2 ≡ ±1 (mod n) and (1)

∃a ∈ Z∗n : a(n−1)/2 ≡ −1 (mod n). (2)

Theorem 3 (Miller, adapted from (Kranakis,
2013)). For any odd integer n > 1 write n− 1 =
2eu, with u odd. Then, n is prime if and only if

(∀a ∈ Z∗n) : au 6≡ 1 (mod n) =⇒

∃k < e :
(
a2ku ≡ −1 (mod n)

)
.

Definition 1. We call an odd integer n > 1
in Theorem 3 which fulfills both clauses with re-
spect to base a, a strong probable prime to base
a. We call a composite n fulfilling those clauses
a strong pseudoprime to base a, extending nat-
urally to the case of pseudoprimes to several
bases (aj)

t
j=1. (Pomerance et al., 1980; Jaeschke,

1993) We write:

spsp
(

(aj)
t
j=1 , n

)
.

Theorem 4 (Pocklington, in an adaptation by
(Brillhart et al., 1975; Ozdemir et al., 2020)). Let
p be a prime, and r < p and a be positive integers.
Define p′ := p·r+1. Pocklington’s criterion states
that if apr ≡ 1 (mod p′) and gcd(ar − 1, p′) = 1,
then p′ is prime. In this case, we say that (p, r, a)
is a Pocklington witness for p′.

3.2 Known Zero-Knowledge
Proofs

We use the Camenisch-Stadler notation (Ca-
menisch and Stadler, 1997) to express known
discrete-log based proofs of representation.
Therein, we use these techniques, for instance,
as employed by Camenisch and Groß (Camenisch
and Groß, 2008; Camenisch and Groß, 2012), to
prove the following predicate.

(µ 6≡ ±1): Shows that given committed value is
neither one nor minus one.

S¬±1 := PK{(α, ρ, σ, ψ, ς,$) :

D = gµhρ∧
g = (D/g)

σ
hψ ∧ g = (gD)

ς
h$

}.

(gcd(µ, ν) = 1): To show that two values µ and

ν are coprime, we show that (gcd(µ, ν) = 1),
which is true if and only if there exist integers α
and β such that Bézout’s identity is gcd(µ, ν) =
1 = αµ+ βν:

Sgcd := PK{ (µ, ν, ρµ, ρν , α, β, ρ) :

Cµ = gµhρµ ∧ Cν = gνhρν∧
g = CαµC

β
ν h

ρ

}.

(µ > 0): We can show with a predicate (µ > 0)
that an integer µ is greater than zero, proving
knowledge of four integers χ1, χ2, χ3, χ4 such
that µ =

∑4
i=1 χ

2
i :

S>0 := PK{
(

(χi, ρχi)
4
i=1 , ρ

)
:

(Cχi = gχihρχi)
4
i=1 ∧ Cµ =

4∏
i=1

(
Cχiχi

)
hρ

}.

(
ab ≡ d (mod n)

)
: Camenisch and Michels (Ca-

menisch and Michels, 1999) introduced statistical
zero-knowledge arguments for secret exponentia-
tion we will adapt in two forms:(
ab ≡ d (mod n)

)
: signifies a secret modular ex-

ponentiation with secrets a, b, d, and n, real-
ized with computing a committed square-and-
multiply (mod n) with respect to the com-
mitted bit-representation of b.

(
ab = d

)
: means a secret exponentiation over

the integers with secrets a, b, and d, which
can be easily adapted from the former.

Both forms have in common that they pro-

duce intermediary commitments Cυi to either a2i

(mod n) in the former case or Cυi to a2i over the
integers in the latter case.

Theorem 5 (Secret ModExp (Camenisch and
Michels, 1999, p. 114)). Let ca, cb, cd, and cn
be commitments on integers a, b, d, and n and
let cb0 , . . . , cb`−1

, cv1
, . . . , cv`b−1

, cu0
, . . . , cu`b−2

be auxiliary commitments. Then assuming com-
puting discrete logarithms in G is infeasible, the
protocol S↑ is a statistical zero-knowledge argu-
ment that the equation ab ≡ d (mod n) holds.
The soundness error probability is 2−k.

(ai ∈ Zn)
k
i=1: This proof predicate governs the

joint generation of group elements ai ∈ Zn, where
the verifier may not be privy of n, showing that
the bases were generated correctly with random-
ness from both prover and verifier. This predicate
is part of the primality protocol (Camenisch and
Michels, 1999). The full version contains a mod-
ular construction.

(µ ∈ primesL(t)): Camenisch and Michels of-

fered a PK predicate we call primesL(t) proving
that a committed number is prime using a pred-
icate Sp for a secret execution of Lehmann’s pri-
mality test (Lehmann, 1982).

Theorem 6 (Primality (Camenisch and Michels,
1999, p. 118)). Assume computing discrete log-
arithms in G is infeasible. Then, [the protocol
primesL(t) on a commitment cn] is a statistical
zero-knowledge argument that the integer commit-
ted to by cn is a prime. The soundness error prob-
ability is at most 2−k + 2−t.

(µ ∈ composites()): This predicate proves that a
number µ is a composite by proving knowledge of
an integer a ∈ Z∗n that is a Lehmann composite-
ness witness such that a(n−1)/2 6≡ ±1 (mod n).
We include details of this protocol in the full ver-
sion. It holds:

Theorem 7. If the discrete-logarithm problem is
hard in group G, then the protocol composites()
on commitment Cn is a statistical zero-knowledge
argument that the integer n committed to by Cn
is a composite. The soundness error probability
is at most 2−k.

(µ = Hζ,β(ν)): This predicate proves that a

committed value µ is the output of a square hash
SQHU HQ,z,b with key (ζ, β) on committed in-
put ν. A corresponding predicate (µ = Hζ(ν))
for SQH HQ,z follows trivially. When evaluated
in ZQ, we omit parameter Q.

SSQHU := PK{ (µ, ρµ, ν, ρν , ζ, ρζ , µ̄, ρµ̄, β, ρβ , γ, δ, η) :

Cµ = gµhρµ ∧ Cν = gνhρν∧
Cζ = gζhρζ ∧ Cµ̄ = gµ̄hρµ̄∧
Cµ̄ = CζCνh

γ ∧ Cµ̂ = Cµ̄µ̄h
δ∧

Cβ = gβhρβ ∧ Cµ = Cµ̂Cβh
η

}.

(µ = PRGξ(ν)): This predicate proves that µ is

the output of pseudo-random generator PRG on
seed ξ and input ν. We can prove predicate of the
Naor-Reingold PRG in discrete-logarithm-based
zero-knowledge proofs efficiently that the relation
µ = fQ,P,g,~a(ν) is fulfilled in G. We include a
detailed construction of this predicate in the full
version of this paper.

4 SECURITY REQUIREMENTS

Definition 2 (Requirements (Menezes et al.,
2018)). We expect the following properties of our
interactive proof systems.
Completeness: An interactive proof system is

complete if, given an honest prover and an
honest verifier, the protocol succeeds with
overwhelming probability.

Soundness: An interactive proof system is
sound if there exists an exists an expected
polynomial-time algorithm M with the follow-
ing property: if a dishonest prover can with
non-negligible probability successfully execute
the protocol with the verifier, then M can
be used to extract from this prover knowl-
edge which with overwhelming probability al-
lows successful future protocol executions.

Zero-Knowledge: A proof of knowledge has the
zero-knowledge property if there exists an ex-
pected polynomial-time algorithm (simulator)
which can produce, upon input of the asser-
tions to be proven but without interacting with
the real prover, transcripts indistinguishable
from those resulting from interaction with the
real prover.

We will specify the protocols in the
Camenisch-Stadler framework (Camenisch

Table 1: Complexity of known PK predicates for k rounds

Computations (mexp)
Communication (ge/bits)

Prover Verifier

(µ 6≡ ±1) 1 + 3k 3k 1 + 3k ge + 6 logQ bits
(gcd(µ, ν) = 1) 2 + 3k 3k 2 + 3k ge + 7 logQ bits
(µ > 0) 5 + 5k 5k 5 + 5k ge + 5 logQ bits(
ab ≡ d (mod n)

)
3`b + (7`b)k (7`b)k 3`b ge + (14`b logQ+ 4`bε`)k bits(

ab = d
)

(µ ∈ primesL(t)) 2t log n+ (7t log n)k (7t log n)k 2t log n ge + (14t log n logQ+ 4t log n2ε`)k bits
(µ ∈ compositesL()) 2 log n+ (11 + 7 log n)k (11 + 7 log n)k 2 log n ge + (14 log n logQ+ 4`bε`)k bits

Note: k = number of PK rounds; mexp = multi-base exponentiations; ge = group elements from G

and Stadler, 1997), which naturally extends to
UC proofs in the Camenisch, Krenn and Shoup’s
corresponding UC framework (Camenisch et al.,
2011). We take natural composition of discrete-
logarithm based zero-knowledge proofs including
their completeness and zero-knowledge properties
for granted and focus on the soundness property
and soundness error probability quantification.

5 CONSTRUCTIONS

5.1 Miller Primality Predicate

We can execute a deterministic Miller test on a
careful selection of bases (aj)

t
j=1 ∈ Z∗n to enable a

deterministic primality test for small positive in-
tegers n, with fixed bitlength ˙̀

n and a soundness
error of εS = 0. The latter is based on research on
strong pseudoprimes to several bases (Pomerance
et al., 1980; Jaeschke, 1993).

Prover and Verifier agree on the variant of test
to run by establishing the parameters ˙̀

n, t, and

(aj)
t
j=1 as follows:

(
µ ∈ primesM(˙̀

n, (aj)
t
j=1)

)
:

Prover and Verifier agree on bitlength ˙̀
n. t is

set dependent on a valid fixed base set (aj)
t
j=1

such that the least n∗ with spsp
(

(aj)
t
j=1 , n

∗
)

is

greater than 2
˙̀
n .

To establish PK predicate primesM(t), let us
begin by proving that an odd integer n > 1 has
the form n = 2eu+ 1, with u odd.
1. The prover efficiently finds e such that n−1 =

2eu with u odd.
2. The prover commits to n in the form of Cn :=
gnhrn , to u in the form Cu := guhru , and to
constant 2 in the form C2 := g2hr2 .

3. The prover computes the strong pseudo-prime
equation for the selected bases (aj)

t
j=1:

(a) dj := auj (mod n).
(b) If dj 6≡ 1 (mod n), the prover finds the
k < e such that

d′j := a2ku
j (mod n) ∧ d′j ≡ −1 (mod n).

4. The prover commits to dj and d′j in the form

of Cdj := gdjhrdj and Cd′j := gd
′
jh
rd′
j .

5. The prover sends all commitments to the ver-
ifier. Then the prover runs the following pro-
tocol with the verifier sequentially for k times:

PK{ (ν, α, β, µ, γ, υ, ε,

(%j , ψj , $j , υj , ξj , κj , ηj ,∆j , ζj , τj , ςj , δj ,

πj , δ
′
j , π
′
j , ϑj , ϑ

′
j

)t
j=1

, χ,
)

:

Cn = gνhα ∧ (ν > 0)− 2
˙̀
n < ν < 2

˙̀
n∧ (3)

C2 = g2hβ ∧ Cu = gµhγ∧ (4)(
Caj = g%jh$j

)t
j=1
∧ (5)

C2e = gυhψj ∧ (2ε = υ)∧ (6)

Cn/g = Cµ2eh
χ ∧ (gcd(µ, 2) = 1)∧ (7)(

C2kj = gυjhξj ∧ (2κj = υj)
)t
j=1
∧ (8)(

C∆j
= g∆jhζj

)t
j=1
∧ (9)(

C∆j
= gε/gκjhηj ∧ (∆j > 0)

)t
j=1
∧ (10)(

C2kju = gµjhτj
)t
j=1
∧ (11)(

C2kju = Cµ
2kj
hςj
)t
j=1
∧ (12)(

Cdj = gδjhπj ∧ Cd′j = gδ
′
jhπ

′
j

)t
j=1
∧ (13)(

%µj ≡ δj (mod ν)
)t
j=1
∧ (14)(

%
µj
j ≡ δ

′
j (mod ν)

)t
j=1
∧ (15)(

Cdj/g = hϑj ∨ Cd′jg = hϑ
′
j

)t
j=1

(16)

}.

Table 2: Overview of ZK primality arguments

Name Th. § Type Form px t Witnesses

Lehmann 2 Monte-Carlo n/a − log2 εS (aj)
t
j=1 ∈R Z∗n

Det. Miller 3 §5.1 Deterministic < ˙̀
n fixed t for ˙̀

n fixed (aj)
t
j=1

Pocklington 4 §5.2 Constructive/Recursive p · r + i ≈ log2 (k + 1) (pi−1, ri, ai)

εS: Soundness error

Clause 3 establishes the knowledge of candidate
n, that n is positive and fulfills the length re-
striction to ˙̀

n. Clause 5 proves knowledge of the
bases (aj)

t
j=1 committed to in Caj for j = 1, . . . , t;

in the deterministic case, these bases are known
publicly. Clause 4 shows the representation to
commitments to 2 and u as foundation for the
decomposition of n − 1 = 2eu. The follow-
ing clauses 6 thru 7 establish the composition of
n − 1 = 2eu, where the second clause of Line 7
yields that u is indeed odd. Subsequent clauses
establish the deterministic Miller test for fixed
known bases (aj)

t
j=1. First, we prove the cor-

rect representation of C2kj , which proceeds simi-
larly to the proof for C2e in Line 6. Secondly, we
establish the difference between 2e and 2kj and
prove that this difference is greater than zero in
Clause 6. The clauses on Line 12 establish the
knowledge and structure of commitment C2kju.
The clauses on Line 13 establish the knowledge of
the results of the Miller test dj and d′j . Clauses 14
and 15 establish the relations of the Miller test
auj ≡ dj (mod n) and a2kju

j ≡ d′j (mod n), where

secret µj represents 2kju. The final clauses on
Line 16 establish the different cases of strong
probable prime test, that is, either dj = 1, en-
tailing auj ≡ 1 (mod n), or d′j = −1, entailing

a2kju
j ≡ −1 (mod n). The proof sketch for the

following theorem is included in the appendix.

Theorem 8. Assuming that the discrete loga-
rithm problem is hard in G and that the least n∗

with spsp((aj)
t
j=1 , n

∗) is greater than 2
˙̀
n , then

the protocol
(
µ ∈ primesM(˙̀

n, (aj)
t
j=1)

)
is a zero-

knowledge argument that the committed integer µ
is prime. The soundness error probability is 2−k.

5.2 Pocklington Primality Witness

The predicate νj ∈ primesP(νj−1, %j , χj) con-
vinces a verifier that Pocklington’s criterion is ful-
filled for pj based on a secret Pocklington witness
(pj−1, rj , aj) such that:

a
pj−1r
j ≡ 1 (mod pj) ∧ gcd(a

rj
j − 1, pj) = 1.

We assume that a commitment to pj−1 is given
as Cpj−1

= gpj−1hrpj−1 and a commitment to rj
is given as Crj = grjhrrj where rpj−1

, rrj ∈R ZQ.
1. The prover searches for a positive integer aj

such that Pocklington’s criterion is fulfilled for
pj−1, rj , aj and pj :

a
pj−1r
j ≡ 1 (mod pj) ∧ gcd(a

rj
j − 1, pj) = 1.

If pj is prime, such an aj will exist.
2. The prover commits to aj with the structure
Caj = gajhraj with raj ∈R ZQ.

3. Then the prover engages with the verifier in
the following zero-knowledge proof k times:

PK{ (νj , νj−1, %j , χj , δj ,∆j , α, β, γ, ε, ζ, η, κ, ξ, τ, π, ψ) :

Cpj−1 = gνj−1hα ∧ Cpj = gνjhβ∧ (17)

Caj = g%jhγ ∧ Crj = dχjhε∧ (18)

− 2` < %j , χj , νj < 2`∧ (19)

C∆j
= g∆jhζ ∧ C∆j

= gνj−1/gχjhη∧ (20)

(%j > 0) ∧ (χj > 0) ∧ (∆j > 0)∧ (21)

Cpj/g = Cχjpj−1
hκ∧ (22)

Cdj = gδjhξ∧ (23)(
%
νj−1χj
j ≡ δj (mod νj)

)
∧ (24)

Cdj/g = hτ∧ (25)

Cλj = dλjhπ ∧ Cλjg = Cχjaj h
ψ∧ (26)

(gcd (λj , νj) = 1) (27)

}.

We assume that the length of pj−1 has been es-
tablished by the corresponding primality zero-
knowledge argument. Clauses 17 establish the
knowledge of the successive Pocklington primes
pj−1 and pj . Clauses 18 proves the knowledge
of the remainder of the Pocklington witness aj
and rj . The clauses 19 thru 21 prove the length
restrictions on pj , rj , and aj , where Clause 21 en-
sures that aj and rj are indeed positive integers
and that r < pj−1 as required by Theorem 4.

Clauses 23 thru 27 prove the Pocklington cri-
terion itself. Clause 23 proves knowledge of the
committed result dj of the Pocklington congru-
ence. Clause 24 shows the structure of the key

Pocklington congruence: a
pj−1r
j ≡ 1 (mod pj).

Subsequently, Clause 25 shows that the result is
indeed congruent to 1. Clause 26 shows the com-
mitment to the term a

rj
j − 1 and the subsequent

Clause 27 yields the coprimality with pj . The
proof sketch for this theorem is in the Appendix.

Theorem 9. Assuming that νj−1 has been estab-
lished to be prime and assuming that the discrete
logarithm problem is hard in G, then the protocol
(νj ∈ primesP(νj−1, %j , χj)) is a zero-knowledge
argument that the committed integer νj is prime.
The soundness error probability is 2−k.

5.3 Special RSA Modulus

Before we turn to the main contribution of this
paper, we show how the Pocklington Witness
predicate presented in Section 5.2 directly offers
a more efficient zero-knowledge argument that a
number n is a product of two safe primes. For
that, by proving knowledge of a Pocklington wit-
ness we can assert the structure of the constituent
safe primes, improving on computational and
communication complexity as well as soundness
error probability of earlier methods (Camenisch
and Michels, 1999).

1. The Prover computes two safe primes p :=
2p̃ + 1 and q := 2q̃ + 1, creating the RSA
modulus n := pq.

2. The prover searches for two bases ap and aq
that complete Pocklington witnesses for the
primality of p and q such that

a2p̃
p ≡ 1 (mod p) and gcd(a2

p − 1, p) = 1

a2q̃
q ≡ 1 (mod q) and gcd(a2

q − 1, q) = 1

3. We assume a commitment on integer n be
given as Cn = gnhrn . The prover commits
to p, q as well as ap and aq with Cp :=

gphrp , Cq := gqhrq , Cp̃ := g(p−1)/2hrp̃ , Cq̃ :=

g(q−1)/2hrq̃ , Cap := gaphrap , Caq := gaqhraq ,
where the corresponding randomnesses rp, rq,
rp̃, rq̃, rap , and raq ∈R ZQ. Furthermore,
the prover computes all commitments pre-
scribed by p̃ ∈ primesL(t), q̃ ∈ primesL(t),
p ∈ primesP(p̃, 2, ap), q ∈ primesP(q̃, 2, aq).

4. Then the prover and the verifier engage in the
following zero-knowledge protocol k times.

PK{ (µ, ν, µ̃, ν̃, %p, %q, α, β, γ, ε, ζ, η, κ, ξ) :

Cp = gµhα ∧ Cq = gνhβ∧ (28)

Cp̃ = gµ̃hγ ∧ Cq̃ = gν̃hδ∧ (29)

Cn = Cνph
ε∧ (30)

Cp/(C
2
p̃g) = hζ ∧ Cq/(C2

q̃ g) = hη∧ (31)

Cap = g%phκ ∧ Caq = g%qhξ∧ (32)

(µ̃ ∈ primesL(t))∧ (33)

(ν̃ ∈ primesL(t))∧ (34)

(µ ∈ primesP(µ̃, 2, %p))∧ (35)

(ν ∈ primesP(ν̃, 2, %q)) (36)

}.
The length of µ, ν, µ̃, ν̃, %p and %q is con-
strained by the corresponding primesL(t) and
primesP(n, r, a) protocols. While the primality
of (p − 1)/2 and (q − 1)/2 is proven by secret
Lehmann primality tests in clauses 33 and 34. We
proceed with proving the primality of the p and
q with a Pocklington witness. The following the-
orem is proven in the Appendix.

Theorem 10. Assuming that the discrete loga-
rithm problem is hard in G, then the protocol is a
zero-knowledge argument that the integer n com-
mitted to in Cn is the product of two safe primes
p and q, for which (p − 1)/2 and (q − 1)/2 are
prime as well. The soundness error probability is
at most 2−k + 2−t.

6 SECRET HASH-TO-PRIME

Definition 3 (Hash-to-Prime).
(µ ∈ hashToPrimeF (ν, t)) is a zero-knowledge
predicate stating that committed secret µ an ele-
ment of the set of prime numbers derived accord-
ing to a specified procedure F from committed se-
cret input ν, using t steps.(
µ = hashToPrimeΥ

F (ν, t, u)
)

is a zero-knowledge

proof predicate stating that committed secret µ is
exactly the first prime number in sequence derived
according to a specified procedure F from commit-
ted secret input ν, using t steps and having elim-
inated u composite candidates in sequence. The
parameters t and u are public knowledge.

We offer two constructions for proving in
a zero-knowledge argument that a committed
(k + 1)-bit prime px was generated via hashing
from an a-bit input x: (i) by elimination (E)
and (ii) by recursive construction (R). Both vari-

ants of the predicate
(
µ = hashToPrimeΥ

F (ν, t, u)
)

have in common that the prover is required to
prove the compositeness of u eliminated candi-
dates in a fixed order, enforcing that the first
prime in sequence must be used.

6.1 Hash-to-Prime by Elimination

The idea of hashing-to-prime by elimination is
that the prover hashes the input x which then
seeds a PRG, evaluated in a deterministic se-
quence with known indices i = 1, . . . , u until the
outcome yu passes a test as a probable prime. To
establish the predicates (µ ∈ hashToPrimeE(ν, t))

and
(
µ = hashToPrimeΥ

E (ν, t, u)
)

, the prover runs

a protocol with the verifier to establish a zero-
knowledge argument (i) that the hash- and PRG-
computations are executed correctly, (ii) that

all committed eliminated candidates (yi)
u−1
i=1 are

composites (∗), and (iii) that the final committed
value px := yu is prime, where (∗) is only exe-

cuted for predicate
(
µ = hashToPrimeΥ

E (ν, t, u)
)

.

For specified and setup pseudo-random num-
ber generator PRG(), a hash function HQ,z,b()
and corresponding zero-knowledge predicates
(µ = PRGχ(ν)) and (µ = Hζ,β(ν)), we establish
the ZK predicates (µ ∈ hashToPrimeE(ν, t)) and(
µ = hashToPrimeΥ

E (ν, t, u)
)

as follows, where (∗)
marks the steps transforming the former to the
latter:

1. The prover computes yi := PRGHz,b(x)(i) for
i = 1, . . . , u testing each yi with a Miller-
Rabin test till yu passes the primality test as
a probable prime. The prover calls this yu the
outcome px.

2. the prover commits to the intermediary out-
put of the hash function Hz,b() as ȳ, in the
form of Cȳ = gȳhrȳ and rȳ ∈R ZQ.

3. The prover computes commitments on all
eliminated composite values yi as Cyi :=
gyihryi with i = 1, . . . , u−1 and ryi is ∈R ZQ.
(∗) The prover commits to the determined
prime px = yu in the form of Cpx := gpxhrpx ,
where rpx ∈R ZQ.

4. The prover sends all commitments, including
ones of sub-ordinate predicates to the verifier.

5. Finally, the prover engages with the verifier in
a zero-knowledge argument sequentially for k
times:

PK{
(
ν, ζ, β, µ, ρ, ρ′, µ̄, ρ̄, (µi)

u−1
i=1

)
:

Cx = gνgρ ∧ Cpx = gµhρ
′
∧ (37)

(Cyi = gµihρi)
u−1
i=1 ∧ (38)(

Cȳi = gµ̄ihρ̄i
)u
i=1
∧ (39)

(µ̄ = Hζ,β(ν))∧ (40)

(µ = PRGµu(u))∧ (41)

(µ ∈ primesL(t))∧ (42)

(µi = PRGµi(i))
u−1
i=1 (∗)∧ (43)

(µi ∈ composites())u−1
i=1 (∗) (44)

}.
The first three clauses 37 thru 39 establish the

representation of the commitments. Clause 40
yields the correct computation of the hash func-
tion HQ,z,b() with respect to the secret input x,
while the following two clauses 43 and 41 give
the correct computation of the PRG. Clause 42
shows the primality of the resulting output px.
Clause 44 establishes the elimination of interme-
diary composites (∗). The size constraints are
governed in the corresponding subordinate ZK
predicates.

Theorem 11. Assuming that the discrete
logarithm and the decisional Diffie-Hellman
problems are hard in G. Then the protocol
(µ ∈ hashToPrimeE(ν, t)) is a zero-knowledge
argument that the committed integer µ is
prime and was derived as hash-to-prime
from committed integer ν. The protocol(
µ = hashToPrimeΥ

E (ν, t, u)
)

is a zero-knowledge

argument that the committed integer µ is exactly
the first prime in sequence succeding u eliminated
candidates derived as hash-to-prime from com-
mitted integer ν, where the integer u is publicly
known. The soundness error probability is at
most 2−k + 2−t.

6.2 Hash-to-Prime by Recursion

For a recursive construction, we draw inspira-
tion from Ozdemir et al.’s approach to hash-
ing to primes (Ozdemir et al., 2020) to es-
tablish predicates (µ ∈ hashToPrimeR(ν, t)) and(
µ = hashToPrimeΥ

R (ν, t, (nj)
t
j=0)

)
, (∗) marking

the steps to transform the former to the latter.
The recursion has has t steps, each doubling the
size of the prime established, using a setup of col-

lection of SQHUs
(
HQj ,zj ,bj (·)

)t
j=0

.

We start with establishing a first small prime
p0 based on the result of HQ0,z0,b0(x). From this

first prime, we recursively establish Pocklington
steps with their corresponding proofs with pred-
icate νj ∈ primesP(νj−1, %j , χj), while each step
roughly doubles the bitlength of the prime pj .
Finally, the prover convinces the verifier (i) that
the initial value p0 is prime with a determinis-
tic Miller predicate, while showing that interme-
diate candidates were composite (∗), (ii) that,
for each subsequent value pj , it is prime with
a Pocklington primality witness predicate νj ∈
primesP(νj−1, %j , χj) relating it to the previous
prime pj−1, (iii) that, for each primes pj , the
candidates eliminated in finding rj to complete
pj are composite (∗). For clarity, we shall explain
the base case and the recursion step separately,
even if the protocol is executed as one compound
zero-knowledge argument.

Base Case (j = 0). We establish the first prime
p0 with a bitlength arbitrarily set to 32 bits.
This prime will be derived from input secret x
as p0 := 2`n0h0 + n0 with h0 := HQ0,z0,b0(x) and
an integer counter n0. The primality is estab-
lished with a deterministic Miller primality pred-
icate (cf. Section 5.1) and constant 3 bases.

1. The prover computes HQ0,z0,b0(x) and estab-
lishes the first integer n0 in the sequence
1, . . . , n0 such that p0 = 2`n0 ·h0 +n0 is prob-
able prime. The prover stores all intermediate
values y0,i = 2`n0h0 + i for 1, . . . , n0 − 1 that
are composites. (∗)

2. The prover commits to p0 as Cp0
= gp0hrp1

with rp0
∈R ZQ and to the eliminated compos-

ites as Cy0,i
= gy0,ihry0,i for i = 1, . . . , n0 − 1

and with ry0,i
∈R ZQ (∗) and sends the com-

mitments to the verifier.
3. Then the prover runs the following protocol

with the verifier sequentially k times:

PK{
(
µ, α, β0, µ̄, ᾱ, ν0, ρ0, (ν0,i, ρ0,iγ0,i,)

u
i=1 , γ

)
:

Cx = gµhα ∧ Cµ̄ = gµ̄hᾱ∧ (45)

Cp0 = gν0hρ0∧ (46)(
Cy0,i

= gν0,ihρ0,i
)n0−1

i=1
∧ (47)

(µ̄ = Hζ0,β0
(µ))∧ (48)

Cp0 = C2`n0

µ̄ gn0hγ∧ (49)

ν0 ∈ primesM(t)∧ (50)(
Cy0,i

= C2`n0

µ̄ gihγ0,i

)n0−1

i=1
(∗)∧ (51)

(νi ∈ composites())n0−1
i=1 (∗) (52)

}.

Recursion Step (j − 1 → j). The prover
constructs the subsequent prime pj of the form
pj−1 · rj,i + 1 and established a Pocklington Wit-
ness zero-knowledge argument on is primality.
1. Given pj−1 and input x committed in Cx, the

prover computes yj,i := pj−1 ·rj,i+1 where the

positive integer rj,i := 2`nj · HQj ,zj ,bj (x) + i,
iterating over i = 1, . . . , u till pj := yj,u is a
probably prime. The integer u is stored as nj ,
the corresponding rj,u is called rj .

2. The prover searches for a positive integer aj
such that Pocklington’s criterion is fulfilled:

a
pj−1r
j ≡ 1 (mod pj) ∧ gcd(a

rj
j − 1, pj) = 1.

3. The prover commits to pj , aj , rj as well as
all intermediate values yj,i for i = 1, . . . , u− 1
(∗). The commitments have the forms Cpj :=
gpjhrpj , Caj := gajhraj , Crj := grjhrrj ,
Cyj,i := gyj,ihryj,i , where rpj , raj , rrj , and

(ryj,i)
u−1
i=1 are all ∈R ZQ.

4. The prover sends commitments to the verifier.
5. Then the prover engages with the verifier in

the following protocol sequentially k times:

PK{
(
µ̄, ᾱ, βj (χj,i, βj,i, γj,i, ψj,i, ϕj,i, εj,i)

u
i=1 , %j , δj

)
:

Cµ̄ = gµ̄hᾱ ∧
(
µ̄ = Hζj ,βj (µ)

)
∧ (53)(

Crj,i = gχj,ihβj,i
)u
i=1
∧ (54)(

Crj,i = C2
`nj

µ̄ gihγj,i
)u
i=1
∧ (55)(

Cyj,i = gψj,ihϕj,i
)u
i=1
∧ (56)

Caj = g%jhδj∧ (57)

(νj ∈ primesP(νj−1, %j , χj,i))∧ (58)(
Cyj,i/g = Cχj,ipj−1

hεj,i
)u
i=1

(∗)∧ (59)

(ψj,i ∈ composites(t))u−1
i=1 (∗) (60)

}.

Theorem 12. Assuming that the discrete log-
arithm problem is hard in G. Then the
protocol (µ ∈ hashToPrimeR(ν, t)) is a zero-
knowledge argument that the committed inte-
ger µ is prime and was derived as hash-to-
prime from committed integer ν. The proto-

col
(
µ = hashToPrimeΥ

R (ν, t, (nj)
t
j=0)

)
is a zero-

knowledge argument that the committed integer µ
is the prime created by choosing the first prime
in sequence in each of the t steps succeeding
(nj)

t
j=0 eliminated candidates, derived as hash-

to-prime from committed integer ν, where the in-
tegers (nj)

t
j=0 are publicly known. The soundness

error probability is 2−k.

0

2500000

5000000

7500000

25 50 75 100 125
Bitlength(n)

#M
E

xp

Scheme Lehmann Miller−Rabin Det.Miller Pocklington

Figure 1: Number of multi-base exponentiations by
bitlength of n for a primality ZK argument on small
primes n, |n| ≤ 128, with a fixed number of rounds
k = 80 and a soundness error probability of at most
2−80 + 2−80

7 COMPLEXITY EVALUATION

We have analyzed the computation complexity
of proving the primality of a secret integer n
in number of multi-base exponentiations by the
bitlength of n and the maximum soundness error
probability εS allowed, which in turn determines
the number of primality-test bases used t and the
number of ZKP rounds k executed. All simula-
tions are computed in the statistics software R.

7.1 Primality ZK Arguments

We have computed an simulation in R pitting
the growth of the number of multi-base expo-
nentiations for different primality predicates by
bitlength of n against each other. Figure 1
displays this complexity analysis graphically for
small primes; Figure 2 shows the secret primal-
ity proof for primes n up to a bitlength of `n =
1024. Therein, we notice that the secret primality
test with probabilistic Lehmann and Miller-Rabin
tests ((µ ∈ primesL(t)) and (µ ∈ primesMR(t)))
dominate the complexity, where the Lehmann
test proposed by Camenisch and Michels (Ca-
menisch and Michels, 1999) is the more efficient
of the two for equal soundness error probabilities.
Their complexity is largely dictated by the num-
ber of rounds t.

For the new primality predicates proposed
in this work, we find that they excel at prov-
ing the primality of small primes. While the

0e+00

2e+07

4e+07

6e+07

0 250 500 750 1000
Bitlength(n)

#M
E

xp

Scheme Lehmann Miller−Rabin Det.Miller Pocklington

Figure 2: Number of multi-base exponentiations by
bitlength of n for a primality ZK argument on primes
n, with a fixed number of rounds k = 80 and a sound-
ness error probability of at most 2−80 + 2−80

deterministic Miller test ((µ ∈ primesM(t))) real-
ized here only allows proving the primality of
primes of a max bitlength of 81, it can be com-
puted with a small number of fixed based for each
bitlength. The Pocklington witness sequence em-
ploys (νj ∈ primesP(νj−1, %j , χj)) recursively from
a threshold bitlength of 32 bits yielding the
recursion base with a deterministic Miller test
(µ ∈ primesM(t)). Each recursion step doubles the
bitlength of the intermediate prime, which leads
to a logarithmic growth of the length t of the
Pocklington sequence in the bitlength of n.

To put the recursive Pocklington sequence
simulation on even footing with the other pri-
mality predicates, we included an estimate of the
cost that each Pocklington step j needs to find
by trial-and-error a new integer rj to construct
the subsequent prime pj . Given ` as bitlength of
that prime, we use as expected number of inter-
mediary Miller-Rabin (MR) tests computed per

recursion step 1−1/(ln(2)`)
1/(ln(2)`) . We account for two

multi-base exponentiations per MR trial.

7.2 SRSA ZK Arguments

We simulated the zero-knowledge argument that
a number n is product of two safe primes, com-
paring Camenisch and Michels’ method based on
the Lehmann primality criterion and our new con-
struction using a Pocklington witness from Sec-
tion 5.3. Figure 3 shows the comparison in num-
ber of multi-base exponentiations by bitlength of
the product n. In the figure, we can clearly see

Table 3: Computation complexity of constituent predicates for k rounds

Computations (mexp)

(µ ∈ primesL(t)) 2t logn+ (7t logn)k
(µ ∈ primesM(t)) 4 + 6 logn+ (13 + 12t+ (3t+ 1)(7 logn))k
(νj ∈ primesP(νj−1, %j , χj)) 18 + 3 logn+ (29 + 7 logn)k

Note: mexp = multi-base exponentiations

5e+08

1e+09

2000 4000 6000 8000
Bitlength(n)

#M
E

xp

Scheme Lehmann Lehmann−Pocklington

Figure 3: Number of multi-base exponentiations by
bitlength of n for the proof that a number n is the
product of two safe primes, with a fixed number of
rounds k = 80 and a soundness error probability of
at most 2−80 + 2−80.

that new Pocklington-Lehmann ZK argument is
more efficient and its complexity in mexp growing
more slowly that the ZK argument by Camenisch
and Michels. It is, thereby, more suitable to
compute large special RSA moduli for strong key
strengths. For instance, the number of mexp the
CM-algorithm uses to establish a ZK argument
that a 2048-bit number is a special RSA modu-
lus is roughly the same as to make an equivalent
ZK argument for a 4096-bit number with our new
method, maximum soundness error probabilities
being equal.

7.3 Hash-to-Prime ZK Arguments

We simulated the expected computational com-
plexity of the hash-to-prime zero-knowledge ar-
guments. We computed the expected number
of multi-base exponentiations for making a zero-
knowledge argument that a committed prime px
is the outcome of a hash-to-prime operation on
a committed input x. We evaluate that based
on the bitlength of the output prime px. The
simulation takes into account the expected num-

0e+00

5e+08

1e+09

0 250 500 750 1000
Bitlength(n)

#M
E

xp

Scheme Exclusion Recursive Construction

Figure 4: Expected number of multi-base exponen-
tiations for prove predicate (µ = hashToPrime(ν)) by
bitlength of the output prime px

ber of eliminated prime candidates at each stage
and thereby the expected number of calls to the
composite() predicate. Figure 4 illustrates the
outcome of the complexity simulation.

We observe in this analysis that the predicate(
µ = hashToPrimeΥ

F (ν, t, u)
)

is considerably more

efficient when realized by recursive construction
(R) than by elimination (E). This efficiency comes
with a trade-off in prime distribution. Whereas
the elimination method yields primes that are sta-
tistically closely distributed to uniform at ran-
dom, the recursive construction method yields
primes with less entropy and not uniformly dis-
tributed. We note that the recursive construction
method is quite efficient for hashing to primes
with less than 256 bits.

8 CONCLUSION

We showed zero-knowledge arguments for deter-
ministic Miller and Pocklington witness primality,
as well as Special RSA modulus correctness. We
constructed hash-to-prime zero-knowledge argu-
ments by elimination and recursion.

ACKNOWLEDGMENT

The author would like to thank Ioannis Sfyrakis
and Syh-Yuan Tan for the discussions on hashing-
to-prime primitives. This work was funded by the
ERC Starting Grant CASCAde (GA no716980).

REFERENCES

Barić, N. and Pfitzmann, B. (1997). Collision-free
accumulators and fail-stop signature schemes
without trees. In International Conference
on the Theory and Applications of Crypto-
graphic Techniques, pages 480–494. Springer.

Brillhart, J., Lehmer, D. H., and Selfridge, J. L.
(1975). New primality criteria and factoriza-
tions of 2ˆ{m}±1. Mathematics of computa-
tion, 29(130):620–647.

Cachin, C., Micali, S., and Stadler, M. (1999).
Computationally private information re-
trieval with polylogarithmic communication.
In International Conference on the The-
ory and Applications of Cryptographic Tech-
niques, pages 402–414. Springer.

Camenisch, J. and Groß, T. (2008). Efficient
attributes for anonymous credentials. In
Proceedings of the 15th ACM conference
on Computer and communications security
(CCS 2008), pages 345–356. ACM Press.

Camenisch, J. and Groß, T. (2012). Efficient at-
tributes for anonymous credentials. ACM
Transactions on Information and System Se-
curity (TISSEC), 15(1):4:1–4:30.

Camenisch, J., Krenn, S., and Shoup, V. (2011).
A framework for practical universally com-
posable zero-knowledge protocols. In Inter-
national Conference on the Theory and Ap-
plication of Cryptology and Information Se-
curity, pages 449–467. Springer.

Camenisch, J. and Lysyanskaya, A. (2002). Dy-
namic accumulators and application to ef-
ficient revocation of anonymous credentials.
In Annual International Cryptology Confer-
ence, pages 61–76. Springer.

Camenisch, J. and Michels, M. (1999). Prov-
ing in zero-knowledge that a number is the
product of two safe primes. In International
Conference on the Theory and Applications
of Cryptographic Techniques, pages 107–122.
Springer.

Camenisch, J. and Stadler, M. (1997). Efficient
group signature schemes for large groups.
In Annual International Cryptology Confer-
ence, pages 410–424. Springer.

Etzel, M., Patel, S., and Ramzan, Z. (1999).
Square hash: Fast message authentica-
tion via optimized universal hash functions.
In Annual International Cryptology Confer-
ence, pages 234–251. Springer.

Goldreich, O., Micali, S., and Wigderson, A.
(1991). Proofs that yield nothing but their
validity or all languages in np have zero-
knowledge proof systems. Journal of the
ACM (JACM), 38(3):690–728.

Groß, T. (2015). Signatures and efficient proofs
on committed graphs and NP-statements. In
19th International Conference on Financial
Cryptography and Data Security (FC 2015),
pages 293–314.

Jaeschke, G. (1993). On strong pseudoprimes to
several bases. Mathematics of Computation,
61(204):915–926.

Kranakis, E. (2013). Primality and cryptography.
Springer-Verlag.

Lehmann, D. J. (1982). On primality tests. SIAM
Journal on Computing, 11(2):374–375.

Menezes, A. J., Van Oorschot, P. C., and Van-
stone, S. A. (2018). Handbook of applied
cryptography. CRC press.

Micali, S., Rabin, M., and Vadhan, S. (1999).
Verifiable random functions. In 40th annual
symposium on foundations of computer sci-
ence (cat. No. 99CB37039), pages 120–130.
IEEE.

Naor, M. and Reingold, O. (1997). Number-
theoretic constructions of efficient pseudo-
random functions. In Proceedings 38th An-
nual Symposium on Foundations of Com-
puter Science, pages 458–467. IEEE.

Ozdemir, A., Wahby, R., Whitehat, B., and
Boneh, D. (2020). Scaling verifiable
computation using efficient set accumula-
tors. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2075–2092.

Pomerance, C., Selfridge, J. L., and Wagstaff,
S. S. (1980). The pseudoprimes to 25 · 109.
Mathematics of Computation, 35(151):1003–
1026.

APPENDIX

We offer proof sketches for the theorems pre-
sented in the paper. The full version of this paper
contains the corresponding proofs.

Miller Primality Predicate. Let us consider
the proof sketch for Theorem 8:

Proof Sketch. The proof is based on the zero-
knowledge properties of the underlying predi-
cates. Using standard techniques a knowledge ex-
tractor can extract integers for the secrets in the
protocol. Given that the discrete-logarithm prob-
lem in G is assumed hard and provided that the
logg h is unknown, then the equations encoded on
generator g hold in the exponent (mod Q). The
knowledge extractor gains the integer n̂ and inte-
gers û and ê for which it establishes the relation
n̂ − 1 = 2êû and that û is odd. The knowledge
extractor gains bases (âj)

t
j=1. We are interested

which relations hold for these extracted secrets,

especially the Miller primality relations âûj ≡ d̂j

(mod n̂) and â2k̂j û
j ≡ d̂′j (mod n̂). That these re-

lations hold in zero-knowledge follows from The-

orem 5. d̂j = 1 and d̂′j = −1 is established
with standard techniques. Finally, we have that

n̂ < 2
˙̀
n < n∗, where n∗ is the least integer such

that spsp
(

(âj)
t
j=1 , n

∗
)

. Therefore, n̂ fulfilling

the established relations must be prime. The pri-
mality relation established by the extracted se-
crets are deterministic. Therefore the soundness
error probability is 2−k, gained from the number
of zero-knowledge proof rounds k.

Pocklington Primality Witness. The proof
sketch for Theorem 9 is as follows:

Proof Sketch. With standard techniques the
knowledge extractor extracts integers for the se-
crets in the protocol. Assuming the hardness
of the discrete logarithm and that logg h is un-
known, equations encoded on g hold in the expo-
nent (mod Q). Especially, it gains p̂j−1, r̂j , p̂j ,
and âj . In the relations it is assured that r̂j and
âj are positive and that r̂j < p̂j . Thereby, the
conditions for the Pocklington criterion named
in Theorem 4 are fulfilled. Two aspects remain
to show: First, âp̂·r̂ ≡ 1 (mod p̂′j), which follows
from Theorem 5 and the standard comparison of

d̂ with 1. Second, gcd(âr̂i − 1, p̂i) is shown with
the predicate (gcd(x, y) = 1). Provided that p̂j−1

is prime and that these two relations have been
established, by p̂j is prime by Theorem 4. The

soundness error probability of 2−k stems from the
k rounds of the zero-knowledge proof.

Special RSA Modulus. We sketch the proof
for Theorem 10:

Proof Sketch. It is standard to construct knowl-
edge extractors for the given protocol and to es-
tablish the relation between the secrets showing
that the following relations between extracted in-
tegers hold hold:

p̂ = 2˜̂p+ 1, q̂ = 2˜̂q + 1, and n̂ = p̂q̂.

The primality of (p̂ − 1)/2 and (q̂ − 1)/2 is es-
tablished as a zero-knowledge argument governed
by Theorem 6, yielding a soundness error prob-
ability of 2−k + 2−t with t being the number of
Lehmann primality bases employed. The primal-
ity of p̂ and q̂ is given by the Pocklington wit-
ness zero-knowledge argument established in The-
orem 9. The latter proven with one base only per
predicate and has a soundness error probability
of 2k.

Secret Hash-to-Prime. Let us consider the
proof sketch for the Theorems 11 and 12.

Proof Sketch. For the secrets derived by the
knowledge extractor, the Theorems 6, 8, and 9
govern that the committed integer p̂x is indeed
prime with a primality soundness error proba-
bility of at most 2−t. Furthermore, proof pred-
icates (µ = Hζ,β(ν)) and (µ = PRGξ(ν)) govern
that the outputs of hash function and PRG were
computed correctly. It remains to show that the
prime p̂x is indeed the first prime in the sequence
ŷi established by the known indices i = 1, . . . , u.
For each ŷi with i = 1, . . . , u − 1, the predicate
(µ ∈ composites()) establishes that ŷi is compos-
ite by Theorem 7. By contradiction, if ŷi were
prime, it holds by Theorem 2, Clause 1, that
∀a ∈ Z∗n : a(n−1)/2 ≡ ±1 (mod n). Hence, an
extracted base â ∈ Z∗Q such that â(n̂−1)/2 6≡ ±1

(mod n̂) does not exist. Consequently, the se-
quence (ŷi)

u−1
i=1 does not contain a prime. There-

fore, the overall soundness error probability of
(µ = hashToPrimeE(ν, t)) is at most 2−k + 2−t

and of (µ = hashToPrimeR(ν, t)) is 2−k. We note

that the predicates
(
µ = hashToPrimeΥ

E (ν, t, u)
)

and
(
µ = hashToPrimeΥ

R (ν, t, (nj)
t
j=0)

)
declare as

public knowledge the number of eliminated prime
candidates u and (nj)

t
j=0, respectively, in the

predicate specification.

