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Abstract. We give an efficient construction of a computational non-
interactive witness indistinguishable (NIWI) proof in the plain model,
and investigate notions of extraction for NIZKs for algebraic languages.
Our starting point is the recent work of Couteau and Hartmann
(CRYPTO 2020) who developed a new framework (CH framework) for
constructing non-interactive zero-knowledge proofs and arguments under
falsifiable assumptions for a large class of languages called algebraic lan-
guages. In this paper, we construct an efficient NIWI proof in the plain
model for algebraic languages based on the CH framework. In the plain
model, our NIWI construction is more efficient for algebraic languages
than state-of-the-art Groth-Ostrovsky-Sahai (GOS) NIWI (JACM 2012).
Next, we explore knowledge soundness of NIZK systems in the CH frame-
work. We define a notion of strong f -extractability, and show that the
CH proof system satisfies this notion.
We then put forth a new definition of knowledge soundness called seman-
tic extraction. We explore the relationship of semantic extraction with
existing knowledge soundness definitions and show that it is a general
definition that recovers black-box and non-black-box definitions as spe-
cial cases. Finally, we show that NIZKs for algebraic languages in the CH
framework cannot satisfy semantic extraction. We extend this impossi-
bility to a class of NIZK arguments over algebraic languages, namely
quasi-adaptive NIZK arguments that are constructed from smooth pro-
jective hash functions.

1 Introduction

Zero-knowledge proofs, introduced by Goldwasser, Micali and Rackoff [39], are
cryptographic primitives that allow a prover to convince a verifier that a state-
ment is true without revealing any other information. Zero-knowledge proof sys-
tems have a rich history in cryptography [37,31,12] finding numerous applica-
tions in cryptographic constructions such as identification schemes [30], public-
key encryption [49], signature schemes [21], anonymous credentials [20], secure
multi-party computation [38], and a wide variety of emerging applications.



The notion of zero-knowledge proof was later extended to non-interactive
zero-knowledge (NIZK) proofs by Blum, Feldman and Micali [16] where there
is a single message sent from the prover to the verifier. NIZKs are particularly
useful in low-interaction settings, and feasibility is known for all of NP in the
common reference string (CRS) model.

Pairing-based NIZKs. Starting from the work of Groth and Sahai [42], many
pairing-based NIZK proof systems have been constructed. These proof systems
avoid the need for expensive reductions to NP-complete languages and can di-
rectly handle a large class of languages over abelian groups.

Another line of work for constructing pairing-based NIZKs is via a smooth
projective hash function (SPHF) [27]. For a language over some abelian group
G1, a secret hashing key is embedded in group G2, and this NIZK proof can be
verified via a pairing operation between G1 and G2. The SPHF-based approach
leads to very efficient proofs for linear languages. However, they only provide a
quasi-adaptive type of soundness, where the CRS can depend on the language.

NIWIs. One can relax the security of a NIZK argument to a Non-Interactive
Witness Indistinguishable (NIWI) argument by replacing the zero-knowledge
property with a weaker witness indistinguishability (WI) property. Unlike NIZKs
for which we know impossibility in the plain model [16], and can therefore only
exist in the CRS model, NIWIs are possible in the plain model. Informally,
witness indistinguishability means that the verifier at the end of protocol, cannot
guess which of the possible witnesses the prover used to compute the proof.

The general idea to construct a NIWI in the plain model, is to start from
zero-knowledge proofs that are perfectly sound for some choice of the verifier
randomness (or some choice of the CRS). Namely, we let the prover sample the
randomness by itself and include additional checks to force the prover to compute
at least one proof for such choice of randomness. The first NIWI construction in
the plain model was proposed by Barak et al. [8] obtained by derandomizing any
two-round zero-knowledge proof (ZAP) [28]. The idea behind the construction
is to let the prover send a “high enough” number of proofs, each for a differ-
ent choice of randomness, such that it is hard to cheat for all of them. There
are however drawbacks that make such NIWI schemes unsuitable in practical
applications. In the NIWI of [8], the prover has to compute a logarithmic (in
the security parameter) number of proofs, which leads to inefficient schemes,
both in terms of computation and communication, even starting from efficient,
say, linear ZAPs. Also, security is based on a complexity theoretic assumption
(namely E = DTIME(2O(n)) has a function of circuit complexity 2Ω(n)) that
implies BPP = P.

Groth, Ostrovsky and Sahai [41] proposed a different framework for NIWI
proofs, which leads to more efficient proofs for concrete languages (instead of
circuit satisfiability). The key idea in [41] is to force the prover to produce two
CRSs, such that at least one of them guarantees perfect soundness. Moreover,
the structure of the CRS is such that multiplication of one element can always
transform a computationally sound CRS into a perfectly sound CRS. The NIWI
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proof system can now take advantage of the structure in the CRS as follows: the
prover generates a CRS on its own and provides proofs under both the chosen
CRS and its transformation. Perfect soundness holds by the fact that at least
one of the two CRSs guarantees this property. Some of the issues in the con-
struction of [8] mentioned above are overcome by the NIWI proof system of [41],
thanks also to further optimizations [52]. Namely, it is based on well-established
assumptions, and the number of proof elements is constant instead of logarithmic
in the security parameter. However, for some applications, having communica-
tion complexity that is twice the size of a Groth-Sahai (GS) proof is still not
practical, particularly considering that GS NIZK, and consequently the NIWI
often comes with a drastic efficiency reduction due to the need for reducing the
original language to an intermediate language supported by the GS proof system.

In this work, we construct more efficient computational NIWI proofs in the
plain model for a larger class of languages.

CH framework. Recently, Couteau and Hartmann [25] developed a new frame-
work (henceforth referred to as the CH framework) for constructing non-
interactive zero-knowledge proofs and arguments for a broad class of languages
under a falsifiable assumption. They provide several constructions whose effi-
ciency is satisfactory for many applications and enjoy a number of interesting
features such as having proofs that are as short as proofs resulting from the
Fiat-Shamir transformation applied to Σ-protocols. Their approach, at a very
high level, consists of compiling a Σ-protocol over an abelian group G1 into a
non-interactive zero-knowledge argument over Type III pairings by embedding
the challenge e into a group G2 and adding the embedded challenge to the CRS.

The work of [25] also obtains a simple and efficient ZAP argument in the
plain model where the WI property holds statistically as opposed to all previ-
ous pairing-based constructions that satisfy computational WI. While this ZAP
argument can be compiled directly into a non-interactive ZAP using the com-
piler of [8], the prover, as mentioned above, needs to send logarithmically many
proofs, hence decreasing the efficiency of the original scheme.

CH framework with knowledge soundness. All aforementioned proof systems
based on CH framework only guarantee soundness meaning that accepting
proofs cannot be computed for false statements. Typically, applications require a
stronger notion of soundness called knowledge soundness which guarantees that
the prover knows a witness for a statement if it can make the verifier accept.
This notion of knowledge soundness is formalized by the existence of an effi-
cient extractor that can extract a valid witness from the prover whenever the
prover provides a valid proof. Given that the NIZK systems in [25] only guaran-
tee soundness, we investigate the possibility of knowledge soundness of the CH
protocol, and pairing-based arguments in general.

Can we construct NIZK proofs in the CH framework with knowledge
soundness?

A näıve solution to provide extractability in the CRS model is to use well-
known techniques to augment the statement with a trapdoor for extraction. In
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particular, given a CRS that contains a public key pk, the most efficient currently
known approach is to ask the prover to encrypt the witness under pk and then
prove that the ciphertext is computed correctly. The extractor can then use the
secret key of pk to recover a valid witness from the proof. This however makes
the proof size much larger. On a high level, this is because existing algebraic
encryption schemes are not friendly enough with the CH framework, unless we
perform the encryption bit-by-bit as in [47,14], which makes the construction
undesirable. More importantly, the underlying NP relation is now changed into
an augmented relation that should also manage the correctness of ciphertext
computations. Our goal is however to study the (im)possibility of extractability
for the standard CH framework without changing the underlying relation.

Another solution is to show extractability under knowledge assumptions, or
in idealized models such as generic group model (GGM) [55] or algebraic group
model (AGM) [33]. Indeed, it is not hard to show that CH NIZKs are knowledge
sound in the AGM 4. Gentry and Wichs [36] show impossibility of a black-box
reduction to a falsifiable assumption to prove soundness for succinct arguments,
where the proof size is logarithmic in the size of the witness and the statement.
However, the use of idealized models or knowledge assumptions to prove
knowledge soundness of non-succinct proof systems seems to be less justifiable.

At first look, it might seem like knowledge assumptions for extraction are
justified since soundness of some CH NIZK is already based on a non-falsifiable
version of the extKerMDH assumption. As per Naor’s classification [48], knowl-
edge assumptions are a class of non-falsifiable assumptions. However, since
knowledge assumptions stipulate “feasibility” of efficient extraction, they do not
fit within a taxonomy of intractability assumptions [51]. On the other hand, an
assumption such as extKerMDH, while non-falsifiable, is still an intractability
assumption that can be phrased as a game between an adversary and a chal-
lenger, albeit with an inefficient challenger.

1.1 Our Contributions

We study NIZK and NIWI constructions in the pairing-based setting and make
the following contributions.
NIWI in the plain model. Different from the aforementioned idea of con-
structing NIWI in the plain model based on the CH framework [25] using the
compiler of [8], we investigate a more efficient strategy inspired by the approach
of [41] which allows the verifier to verify if, given a (small) set of CRSs, at least
one of them is perfectly binding, without breaking soundness.

Our construction is based on the existence of an efficient algorithm that,
given one CRS of the NIZK proof of [25], allows the verifier to check if it is a
perfectly binding one without compromising the soundness property. The key
idea in constructing such an algorithm is, at a high level, to add two additional
group elements to the CRS, chosen such that assuming the existence of Type
III pairings, it allows the verifier to (efficiently) check the distribution of the

4 We show knowledge soundness of the CH argument in the AGM in Appendix D.1.
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CRS (with a technique similar to what was done in [2]) while not compromising
the WI property. Now, with the verifier equipped with such an algorithm, we
construct a non-interactive ZAP by letting the prover compute this CRS and
output it together with the proof.

We need additional ideas to prove security of the resulting construction. First,
as noted in [25], the soundness of the resulting NIZK proof is based on the special
soundness property of the underlying Σ-protocol. Soundness of our NIWI proof
follows from the same reasoning and from the correctness of the algorithm that
checks the distribution of the CRS. Indeed, if the verifier accepts, then the prover
correctly sampled a perfectly binding CRS and thus soundness holds. To show
WI, we rely on a new decisional assumption, which we validate in the AGM. The
ability of the verifier to check the distribution of the CRS relies on DDH being
easy, and therefore it is not possible to rely on DDH for WI.
CH framework with knowledge soundness. The proof and argument sys-
tems presented in [25] and our NIWI construction ensure only soundness. As
our second contribution, we investigate knowledge soundness of NIZK systems
in the CH framework.

f -extractability. We define a notion of strong f -extractability that extends re-
lated notions of partial extraction used in literature. Informally, an argument
system satisfies f -extractability if there exists an efficient extractor that outputs
w̃ whenever the verifier accepts the proof for statement x, where w̃ = f(w) and w

is a valid witness for x. We extend the notion to strong f -extractability where
we ask that the partial witness w̃ allows for efficiently deciding membership of
the statement. We show that the CH proof system satisfies this notion where
the extracted value is the encoding of a witness to G2.

Semantic extraction. We then investigate the possibility of knowledge soundness
of the CH NIZKs, and pairing-based arguments in general. We show that the
CH argument is knowledge sound in the Algebraic Group Model (AGM), and
then ask the following question: can we show knowledge soundness in the stan-
dard model without relying on knowledge assumptions or show impossibility of
extraction? Towards this end, we put forth a notion of extraction called seman-
tic extraction, and prove that this notion of extraction is impossible for the CH
argument. The intuition behind the definition of semantic extraction is to con-
sider the random coins of the adversary as an input from a certain distribution.
This makes it possible to associate a function to each adversary: the function
that it computes on certain inputs including its random coins. We then require
that adversaries that implement the same function, have the same extractor.
We allow the flexibility to split the random coins in two distinct portions, and
then allow the extractor to see only one of the two portions. This gives a gen-
eral definition that, depending on how much randomness we allow the extractor
to see, gradually makes the extractor more powerful. We then investigate the
relationship between semantic extraction and classic notions of extraction. We
show that semantic extraction is a general definition, that captures both white-
box(n-BB) and black-box(BB) extraction. In particular, BB extraction trivially
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implies semantic extraction. Also a slightly weaker version of the other direc-
tion is true, when we give no randomness to the semantic extractor. Moreover,
semantic extraction is equivalent to n-BB extraction, where we give to the ex-
tractor all the random coins of the adversary. Finally, we show impossibility of
semantic extraction for CH argument: that no extractor that sees only a portion
of the adversary’s randomness can succeed. We then generalize this impossibility
to a class of NIZK arguments over algebraic languages, namely quasi-adaptive
NIZK arguments based on SPHFs. As a concrete case, we show that the most
efficient Quasi-Adaptive NIZK construction of Kiltz and Wee [45] cannot be
semantically extractable. While black-box extraction is impossible since the ar-
guments are shorter than the witnesses, the impossibility of semantic extraction
is a stronger result. We present this in Appendix D.4.

1.2 Technical Overview

In this section we provide a technical overview of our results. We start with
an overview of our NIWI construction in the plain model. Then we discuss our
definition of semantic extraction and sketch our impossibility result for semantic
extractability of CH NIZKs.
NIWI in the plain model. The starting point of our construction is the NIZK
proof for algebraic languages in [25] which is based on a compiler that converts
a Σ-protocol with linear answers over a group G1 into a NIZK argument by
embedding the verifier’s challenge into a group G2 in the CRS.
Σ-protocols for linear languages. A linear language with language parameter
[M]1 ∈ Gn×k1 is defined as LM =

{
[x]1 ∈ Gn1 |∃w ∈ Zkp : [x]1 = [M]1 ·w

}
. A

Σ-protocol for a linear language LM with corresponding relation RM is a three-
move honest-verifier zero-knowledge (HVZK) proof system between a prover P
and a verifier V with the following syntax. First, P with an input pair ([x]1,w)
selects r← Zkp and sends a first message [a]1 := [M]1 ·r ∈ Gn1 to V. Next, V sends

a random string e ∈ Zp to P. Finally, P sends a reply d := we+r ∈ Zkp to V, who
accepts the proof if [M]1 ·d = [x]1e+[a]1. The special soundness property states
that for any [x]1 and any pair of accepting conversations ([a]1, e,d), ([a]1, e

′,d′)
on [x]1 where e ̸= e′, one can efficiently compute a valid witness w for [x]1.
CH Compiler. Couteau and Hartmann [25] proposed the following approach to
compile a Σ-protocol into a NIZK in the CRS model: the setup algorithm picks
a random e ∈ Zp and sets [e]2 as the CRS. The prover computes [a]1 as in the
Σ-protocol, and an embedding of d in G2 by computing [d]2 := w · [e]2 + r ·
[1]2. The proof can (publicly) be verified by checking if the pairing equation
[M]1[d]2 = [x]1[e]2+[a]1[1]2 holds. While this leads to an argument system with
computational soundness, [25] further shows how to turn the argument into a
proof by providing two challenges with two different generators in the CRS and
having the prover answer both with the same randomness. The (unconditional)
special soundness property of the underlying Σ-protocol now guarantees that a
witness exists, resulting in perfect soundness.

The idea behind our NIWI construction is as follows: consider the CRS of the
CH NIZK proof [s1, s2, e1s1, e2s2]2 ∈ G4

2, where e1, e2, s1, s2 ∈ Zp, and [e1, e2]2
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play the role of the two challenges (embedded in G2) in the underlying Σ-
protocol. Now, we have the prover pick the CRS and the verifier checks that this
CRS computed by a potentially malicious prover is such that e1 ̸= e2, so we can
rely on the special soundness of the underlying Σ-protocol. We then prove that
the proof is witness-indistinguishable by relying on a new decisional assumption
that we show secure in the AGM. This observation leads us to a NIWI proof
in the plain model, where we let the prover to choose the “crs” parameters by
itself, such that it is verifiable that e1 ̸= e2.

Extractability in the CH framework. We now give an overview of the ex-
tractability notions we explore, the new notion of semantic extraction we pro-
pose, and the impossibility of semantic extraction for CH NIZKs.

The standard definition of knowledge extraction asks for the existence of an
efficient algorithm called extractor that takes as input a proof π of a statement x
and returns a value w′ such that w′ is a witness for the truth of x, i.e., (x, w′) ∈ R.
While such full extractability captures the fact that the prover must have known
the witness, there are instances where the existence of such a powerful extractor
is unlikely; however, it is still possible to extract some partial information about
the witness. One concrete example is the Groth-Sahai non-interactive proof of
knowledge [42] from which one can only extract a one-way function of the witness
f(w) where f : F → G is the encoding of the witness in the underlying group.
The barrier to full extractability is the fact that there does not seem to be a
trapdoor that can be used to compute, in an efficient way, a witness w from f(w)
(i.e., discrete logarithm problem). To capture this notion of partial extractability,
Belenkiy et al. [10] formalized the notion of f -extractability by the existence of
an efficient algorithm that outputs w̃ such that there exists some w with (x, w) ∈
R and w̃ = f(w)5. In their context of constructing anonymous credentials, f -
extractability is used by relaxing the notion of unforgeability to f -unforgeable
signatures where the adversary produces (f(m), σ) pair (as opposed to (m,σ))
without previously obtaining a signature on m. Since then, f -extractability has
been used as a standard property in many privacy-preserving authentication
mechanisms [4,18,29,40,43,53].

We begin with this observation that the CH NIZK proof is not only f -
extractable for f := [·]2, but the extracted value also allows to decide the mem-
bership of the statement via pairing checks. To see this, let ([x]1,w) be a pair
of statement-witness in the linear relation RM that returns 1 if [x]1 = [M]1 ·w.
One can observe that extracting [w]2 suffices to decide the membership of [x]1
by checking if [M]1[w]2 = [x]1[1]2. The primary distinction between partial and
full extractability is in the ability to decide membership of the statement being
proven via the extracted value. We fill the gap between the two notions by defin-
ing a stronger form of partial extractability called strong f -extractability which
guarantees the existence of an efficient procedure D that for any given statement
x and f -extracted value w̃ := f(w), D(x, w̃) can decide the membership of x. Note
that w̃ still falls short of being a full witness for the relation; assuming that f is

5 Note that this a generalization of the standard notion as the identity function f(·)
implies full extractability.
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one-way, w̃ cannot be used to produce a valid proof for x. This is what separates
strong f -extractability from full extractability.

Impossibility of Semantic Extraction. We show impossibility of semantic extrac-
tion for the CH NIZK argument for algebraic languages. Note that this is a
stronger result than ruling out BB extraction. Our impossibility holds only for
semantic extraction where there exists a portion of the adversary’s randomness
that the extractor cannot see.

We now articulate the implications of ruling out semantic extraction for
pairing-based arguments. In these systems, a proof consists only of group ele-
ments, while witnesses are elements of the underlying field6. Soundness relies
on the hardness of discrete logarithm in order to argue that the exponents of
elements in the CRS remain hidden from the prover. As a concrete example,
let us consider the CH NIZK argument that essentially compiles a Σ-protocol
with three-round messages ([a], e,d) into a NIZK argument in the CRS model
in such a way that the CRS includes [e]2 and the proof consists of two (vector
of) group elements ([a]1, [d]2). Informally, the security relies on the fact that the
prover cannot compute e (or [e]1) and the second component [d]2 should have
been computed as [d]2 = d0[1]2 + d1[e]2. But now, one can observe that from
a semantic point of view, there is no distinction between the case that [d]2 is
computed honestly as above and the case where the CRS trapdoor e is used for
generating [d]2 as d0[1]2 + e[d1]2. In fact, if an extractor Ext that is limited to
being semantic is able to extract the witness d1, then one can invoke Ext to
break the discrete logarithm in G2 by sampling e in the reduction. The above
reduction does not go through if Ext is a semantic extractor that has access
to all the adversary random coins (we show that such Ext is equivalent to a
classic white-box extractor). But as soon as some randomness is hidden from
the extractor, we can define an adversary that embeds a DL challenge in this
hidden part of the execution, for which no extractor can exist. This means that
a valid proof in such argument systems does not prove “knowledge” of w, but
only knowledge of [w]1, [w]2, and in order to extract w, one must rely on the
hypothesis of asymmetric pairings to conclude that the prover actually knew w
as a field element, which is essentially a knowledge-of-exponent type assumption.

Our results suggest that for most algebraic languages, extracting a witness
given the statement [x]1 is as hard as extracting a witness given [x]1, a valid
proof π together with used randomness r and trapdoor of the CRS e. Thus, if
an extractor that is not based on knowledge assumption exists, it completely ig-
nores the proof and just recomputes sampling a true statement together with its
relative witness. This can also be seen in the following way: consider a language
whose hardness relies on the hardness of discrete logarithm. Now, computing
the witness from the statement is as hard as discrete logarithm; computing the
witness given the statement, a proof, randomness used to compute the proof,
and trapdoor is (in the case of CH20) as hard as symmetric discrete logarithm

6 In structure preserving systems, the witness can be group elements as well, but in
this work, we are only interested in proof systems where witnesses are field elements.
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(SDL). This implies that either there is a gap between DL and SDL; or com-
puting w from [x]1 is as hard as computing w from ([x]1, r, π, e). In the case of
SPHF, both hardness of the language and our result rely on hardness of discrete
logarithm, implying that computing w from [x]1 is as hard as computing w from
([x]1, π, r, td). This gives an explanation for why in the pairing-based setting, we
have perfect soundness and f -extractability, like we show the CH proof is, while
no fully extractable scheme exists under falsifiable assumptions.

2 Preliminaries

Notation. For any positive integer n, [n] denotes the set {1, . . . , n}. Let k ∈ N
be the security parameter. Let negl(k) be an arbitrary negligible function. We
write a ≈k b if |a− b| ≤ negl(k). Moreover a is a negligible function if a ≈k 0.
When a function can be expressed in the form 1 − negl(k), we say that it is
overwhelming in k. We use DPT (resp. PPT) to mean a deterministic (resp.
probabilistic) polynomial time algorithm. We write Y ← F(X) to denote an

algorithm with input X and output Y . Further, we write a
$←−− S to denote

that a is sampled according to distribution S, or uniformly randomly if S is a
set. For two interactive machines P and V, we denote by ⟨P(α),V(β)⟩(γ) the
output of V after running on private input β with P using private input α, both
having common input γ. All adversaries will be stateful. To represent matrices
and vectors, we use bold upper-case and bold lower-case letters, respectively.

2.1 Bilinear Groups

We use additive notation for groups. Throughout the paper we let G be
a bilinear group generator that on input security parameter k returns
(p,G1,G2,GT , ê, [1]1, [1]2) ← G(1k), where G1,G2,GT are groups of prime
order p, [1]1 and [1]2 are respectively the generators for G1 and G2, and
ê : G1 × G2 → GT is a non-degenerate efficiently computable bilinear map
such that ∀[u]1 ∈ G1,∀[v]2 ∈ G2,∀a, b ∈ Zp : ê(a[U ]1, b[V ]2) = (ab)ê([U ]1, [V ]2).

We denote ê([U ]1, [V ]2) as [U ]1[V ]2. We consider only type III pairings, where
there does not exist an efficient isomorphism between G1 and G2.

2.2 Algebraic Languages

We refer to algebraic languages as the set of languages associated to a relation
that can be described by algebraic equations over an abelian group. More pre-
cisely, let gpar = (p,G1,G2,GT , ê, [1]1, [1]2)← G(1k). For the rest of the paper,
we suppose that these global parameters gpar are implicitly given as input to
each algorithm. Let lpar = (M,θ) be a set of language parameters generated
by a polynomial-time algorithm setup.lpar which takes gpar as input. Here,
M : Gℓ 7→ Gn×k and θ : Gℓ 7→ Gn are linear maps such that their different coef-
ficients are not necessarily in the same algebraic structures. Namely, in the most
common case, given a bilinear group gpar = (p,G1,G2,GT , ê, [1]1, [1]2), they can
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belong to either Zp, G1, G2, or GT as long as the equation θ(x) = M(x) ·w is
“well-consistent”. However, in this paper we only use algebraic languages where
the statement is defined as elements in G1. Formally, we define the algebraic
language Llpar ⊂ Xlpar as

Llpar =
{
[x]1 ∈ Gℓ1|∃w ∈ Zkp : [θ(x)]1 = [M(x)]1 ·w

}
. (1)

An algebraic language where M is independent of x and θ is the identity is called
a linear language. We sometimes require algebraic languages to satisfy a property
we call 1DL-friendly. Roughly, this is to enable the embedding of a symmetric
simple discrete logarithm challenge, which is given as a pair of group elements,
into an algebraic statement in the reduction. We give the definition( Defini-
tion 13) in Appendix A.4. We note that algebraic languages are as expressive as
NP, since every Boolean circuit can be represented by sets of linear equations.

2.3 Non-interactive Zero-knowledge Arguments

A NIZK (non-interactive zero-knowledge) argument Π, for a family of languages
Llpar consists of four PPT algorithms.

– CRSGen on input a security parameter 1k generates a pair (crs, td).
– P on input a crs, a statement x and a witness w, computes a proof π.
– V on input a crs, a statement x and a proof π outputs 1 (accept) or 0 (reject).
– Sim on input td, a true statement x computes a simulated proof π.

Here we are implicitly supposing that lpar is always given as input. We assume
that each td corresponds to only one crs and also that given td it is possible to
efficiently and deterministically compute the corresponding crs. This is w.l.o.g.,
since it is always possible to define the trapdoor in a way that the previous
property is satisfied. The following properties are required for a NIZK argument:

– Perfect completeness: for any pair of true statement x with a relative witness
w, for any crs computed by CRSGen

Pr [V(crs, x, π) = 1|π ← P(crs, x, w)] = 1.

– Computational soundness: for any PPT adversary A

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧ x /∈ Llpar (x, π)← A(crs)

]
≤ negl(k)

– (Perfect) zero-knowledge: for any true statement, witness pair (x, w), for any
(crs, td)← CRSGen(1k) the following distributions are identical

P(crs, x, w) ≡ Sim(crs, td, x).

If the zero-knowledge property requires the two distributions to only be com-
putationally insitinguishable, then we get a computational NIZK. If soundness
holds even against unbounded adversaries, we say that the protocol is a NIZK
proof system, with perfect soundness. We say that Π is black-box knowledge
sound if there exists an efficient extractor that computes a witness, given a
statement, an accepting proof and the crs trapdoor.

10



Definition 1 (BB Knowledge soundness). Let Π = (CRSGen,P,V,Sim) be
a NIZK argument for the relation Rlpar, defined by some language parameter
lpar. We say that Π is black-box knowledge sound, if there exists an extractor
Extbb such that, for any PPT adversary A:

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, w) /∈ Rlpar (x, π)← A(crs, lpar; r); w← Extbb(td, x, π)

]
≤ negl(k)

where r is the random coins of the adversary.

If the extractor is allowed to depend on the adversary and we also give it
as additional input, the random coins used by the adversary, we say that Π is
white-box knowledge sound.

Definition 2 (n-BB Knowledge soundness). Let Π = (CRSGen,P,V,Sim)
be a NIZK argument for the relation Rlpar, defined by some language parameter
lpar. We say that Π is white-box knowledge sound, if for any PPT adversary
A, there exists an efficient extractor Extwb,A such that:

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, w) /∈ Rlpar (x, π)← A(crs, lpar; r); w← Extwb,A(td, x, π, r)

]
≤ negl(k)

where r is the random coins of A.
We also consider the concrete security variants of the above definitions.

Roughly, Π is (t, ϵ)-BB knowledge sound if the extraction property holds with re-
spect to all t(k)-time bounded provers (as opposed to all PPT provers), and that
the extractor succeeds except with probability ϵ (as opposed to being negligible).
We give the formal definitions of the concrete-security versions in Appendix D.2.

Lastly, we state the witness indistinguishability definition for non-interactive
protocols. Recall that we are interested in non-interactive witness indistinguish-
able proof systems in the plain model without a trusted setup.

Definition 3 (Witness Indistinguishability (WI)). A non-interactive proof
system Π = (P,V) for language Llpar is WI if for every PPT verifier (V∗

1 ,V∗
2 ),

for all (x, w1, w2) such that (x, w1) ∈ Rlpar, (x, w2) ∈ Rlpar, we have

Pr
[
b← V∗

2 (st, π) (x, w1, w2, st)← V∗
1 (lpar); b

$←−− {0, 1};π ← P(lpar, x, wb)
]
≈k

1

2

2.4 From Σ-protocols to NIZKs

Recently, Couteau and Hartmann [25] propose a new approach for building
pairing-based non-interactive zero-knowledge arguments for algebraic languages.
At a high level, their approach is based on compiling a Σ-protocol (see Ap-
pendix A.1) into a non-interactive zero-knowledge argument by embedding the
challenge in G2 and publishing it once in the crs. The NIZK argument is de-
picted in Fig. 2, where we denote as SΣ the simulator for special honest verifier
zero-knowledge property of the Σ-protocol. A variant of their compiler yields
NIZK proofs, depicted in Fig. 3, based on standard assumptions. We refer to Ap-
pendix A.5 for more details.
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P(lpar, [x],w) V(lpar, [x])
r← Zk

p

[a] := [M(x)]r
[a]−−−−−−−−−−−−−−−−→

e← Zp
e←−−−−−−−−−−−−−−−

d := we+ r
d−−−−−−−−−−−−−−−→

[M(x)]d
?
= [θ(x)]e+ [a]

Fig. 1: Σ-protocol for algebraic language Llpar with lpar = (M,θ)

CRSGen(1k)

gpar← setup.gpar(1k)

e← Zp

crs := (gpar, [e]2); td := e

return (crs, td)

P(lpar, crs, [x]1,w)

r← Zk
p

[a]1 := [M(x)]1r

[d]2 := w[e]2 + [r]2

return π := ([a]1, [d]2)

Sim(lpar, crs, e, [x]1)

([a]1,d) := SΣ([x]1, e)

return π := ([a]1, [d]2)

V(lpar, crs, [x]1, π = ([a]1, [d]2))

[M(x)]1 · [d]2
?
= [θ(x)]1 · [e]2 + [a]1 · [1]2

Fig. 2: NIZK argument for algebraic language Llpar with lpar = (M,θ) [25]

2.5 Cryptographic Assumptions

The DL (discrete logarithm) assumption in group Gι of order p states that it is
hard to compute the discrete logarithm of a random element in Gι.

Assumption 1 (Discrete logarithm assumption) For any PPT adversary
A, it holds that:

Pr
[
w[1]ι = [x]ι w ← A([1, x]ι)

]
≤ negl(k)

where x is sampled from the uniform distribution over Zp.

Assumption 2 (Symmetric discrete logarithm assumption) For any
PPT adversary A, it holds that:

Pr
[
w[1]ι = [x]ι ; ι = 1, 2 w ← A([1, x]1, [1, x]2)

]
≤ negl(k)

where x is sampled from the uniform distribution over Zp.
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CRSGen(1k)

s1, s2, e1, e2 ← Zp

crs := ([s1, s2, s1e1, s2e2]2)

return crs

P(lpar, crs, [x]1,w)

r← Zk
p

[a]1 := [M(x)]1r

[di]2 := w[siei]2 + r[si]2

return π := ([a]1, [d1,d2]2)

Sim(lpar, [x]1)

e, s1, s2 ← Zp

([a]1,d) := SΣ([x]1, e)

crs = ([s1, s2, s1e, s2e]2)

π := ([a]1, [ds1,ds2]2)

return (crs, π)

V(lpar, crs, [x]1, π = ([a]1, [d1,d2]2))

for i ∈ {1, 2} check

[M(x)]1 · [di]2
?
= [θ(x)]1 · [siei]2 + [a]1 · [si]2

Fig. 3: NIZK proof for algebraic language Llpar with lpar = (M,θ) [25]

The co-CDH assumption was first proposed in [17]. Later a modified version
of the assumption was proposed in [50] which we adapt as follows.

Assumption 3 (Computational co-Diffie-Hellman (co-CDH) assumption)
For any PPT adversary A, it holds that:

Pr
[
[xy]2 ← A([1, x]1, [1, x, y]2)

]
≤ negl(k)

where x, y are sampled from the uniform distribution over Zp.

3 NIWI Proof in the Plain Model

Our NIWI proof system in the plain model is given in Fig. 4. We show that
our construction is perfectly sound and computationally WI. To show WI, we
rely on a new assumption that we validate in the algebraic group model (AGM)
in Appendix B.3. While it might seem like we can show WI by relying on DDH
in the second group and then invoking the WI of the underlying sigma protocol,
the presence of [s2]1 in the proof makes this impossible. In fact, we rely on DDH
being easy for perfect soundness by enabling the verifier to check that the two
challenges are indeed distinct. We show that the new assumption holds in the
AGM introduced by Fuchsbauer, Kiltz and Loss [33]. The model is a relaxation
of the generic group model [55] that captures adversaries exploiting the repre-
sentation of the underlying group, and has been shown to be useful in reasoning
about security properties of various constructions [46,34,23]. The work of [54]
extends this model to handle decisional assumptions by introducing the notion
of algebraic distinguishers. We use this model to show the algebraic equivalence
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P(lpar, [x]1,w)

s1, s2, e1, e2 ← Zp s.t e1 ̸= e2

r← Zk
p

[a]1 := [M(x)]1r

di := sieiw + sir for i = 1, 2

return π :=
(
[a, s1, s2]1,

[s1, s2, s1e1, s2e2,d1,d2]2
)

V(lpar, [x]1, π)

parse π as
(
[a, c1, c2]1, [s1, s2, E1, E2,d1,d2]2

)
accept if all the following checks pass

[ci]1[1]2
?
= [1]1[si]2 for i ∈ {1, 2} (1)

[c2]1[E1]2
?

̸= [c1]1[E2]2 (2)

for i ∈ {1, 2} :

[M(x)]1[di]2
?
= [θ(x)]1[Ei]2 + [a]1[si]2 (3)

Fig. 4: NIWI proof for algebraic language Llpar with lpar = (M,θ)

GADHR,b(A, lpar)

([x]1,w0,w1)← A([1]1, [2]2, lpar);

s1, s2, e1, e2 ← Zp; r← Zk
p; (e1 ̸= e2);

π = ([M(x)r, s1, s2]1, [s1, s1e1, s2, s2e2, s1e1wb + s1r, s2e2wb + s2r]2);

b′ ← A([M(x)]1,w0,w1, π);

if b = b′ then return 1; else return 0 fi ;

Fig. 5: Algebraic decisional hidden range games GADHR,i.

between our assumption and symmetric power discrete logarithm (SPDL) as-
sumption. While the assumption we make is a tautological assumption, we hope
it will be analysed further and will find other applications, just like the tauto-
logical Kiltz-Wee assumption for QA-NIZK [45,3]. We believe it is an interesting
open problem to prove the security of our construction under standard decisional
assumptions.

Assumption 4 (Algebraic decisional hidden range) Let lpar = (M,θ)
be any pair of language parameter that defines the algebraic language Llpar. Let
GADHR,i, for i ∈ {0, 1} be the games depicted in Fig. 5. The (M,θ)-ADHR
assumption states that for any PPT adversary A,

Adv
GADHR,0,1

A,lpar = |Pr [GADHR,0(A, lpar) = 1]− Pr [GADHR,1(A, lpar) = 1]| ≤ negl(k).

Theorem 1. For any algebraic language Llpar, with lpar = (M,θ), the pro-
tocol in Fig. 4 is a non-interactive witness indistinguishable proof under the
(M,θ)-ADHR assumption.

Proof. (Perfect completeness). We show that an honest prover convinces
an honest verifier with probability 1. For an honestly generated proof
π = ([a, c1, c2]1, [s1, s2, E1, E2,d1,d2]2), by construction, we have that ci = s−1

i ,
Ei = siei and di = si(eiw+ r). It is easy to see that all the verifier checks pass.
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1. [ci]1[si]2 = [s−1
i ]1[si]2 = [1]T .

2. [c1]1[E1]2 = [s−1
1 ]1[s1e1]2 = [e1]T , and [c2]1[E2]2 = [s−1

2 ]1[s2e2]2 = [e2]T , and
since e1 ̸= e2, we have [c1]1[E1]2 ̸= [c2]1[E2]2.

3. M(x)di = sieiM(x)w + siM(x)r = Eiθ(x) + asi.

(Perfect soundness). Let A be any (possibly unbounded) ad-
versary that breaks the soundness property by outputting a proof
π̃ = ([ã, c̃1, c̃2]1, [s̃1, s̃2, Ẽ1, Ẽ2, d̃1, d̃2]2) relative to an (adaptively) chosen
statement x = [x]1 /∈ Llpar, such that the NIWI verifier accepts π̃. We show
that such an accepting proof contradicts with the assumption that x /∈ Llpar. In
what follows, the index i will always be used as for each i ∈ {1, 2}.

From the verifier’s check (1), it must be that c̃i = s̃i. Moreover, from check (3)
we have thatM(x)d̃i = θ(x)Ẽi+ãs̃i, which means thatM(x)d̃i/c̃i = θ(x)Ẽi/c̃i+
ã. Now, since the NIWI verifier accepts the proof, from check (2), we have that
c̃2Ẽ1 ̸= c̃1Ẽ2. Therefore, there exists a pair of valid transcripts ([ã]1, Ẽi/c̃i, d̃i/c̃i)
for x, with the same first message [ã]1 and different challenges. From special
soundness of the underlying Σ-protocol, there exists an extractor that outputs
a witness for x given two such transcripts. This contradicts the assumption that
x /∈ Llpar.

(Witness indistinguishability). Let Llpar be an algebraic language with
lpar = (M,θ). Let A be a PPT adversary that wins the WI game with non-
negligible probability ϵ. We build an efficient adversary B against (M,θ)-ADHR
assumption as follows: B first calls A and obtains st = ([x]1,w0,w1). It then
outputs st and receives π from the challenger. Lastly, B calls A on π and returns
A’s decision bit. Since the challenger of GADHR,i computes π exactly as the
honest prover of the NIWI in Fig. 4, B breaks the assumption with the same
non-negligible probability ϵ.

⊓⊔

We discuss the efficiency of our construction and applications of NIWI in the
plain model in Appendix B.

4 Partial Extractability for the CH Framework

In this section, we first recall the definition of f -extractability and show the NIZK
proof system in Fig. 3 is [·]2-extractable. Next, we strengthen this property by
introducing a new notion called strong f -extractability where the partial witness
w̃ can be used by an efficient algorithm to decide membership of the statement.
In more detail, here we also require the existence of an efficiently computable
decision procedure D such that for w̃ = f(w) output by the extractor, D(x, w̃)
decides membership of x (i.e., (x, w) ∈ R iff D(x, w̃) = 1). However, w̃ falls short
of being a witness for the relation; assuming that f is one-way, w̃ cannot be used
to produce a valid proof for x.

Definition 4 (f-extractability [10]). Let Π = (CRSGen,P,V,Sim) be a
NIZK argument for the relation R, defined by some language parameter lpar.
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Let f be an efficiently computable function. We say that Π is (black-box) f -
extractable if there exists a PPT extractor Ext such that for any PPT adversary
that returns an accepting proof π for a statement x, Ext outputs a value w̃ for
which there exists some w such that (x, w) ∈ R and w̃ = f(w) with overwhelming
probability. More formally, for any PPT adversary A, we have

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, f−1(w̃)) /∈ R (x, π)← A(crs, lpar; r); w̃← Ext(td, x, π)

]
≤ negl(k)

where r is the random coins of the adversary.

We show that the CH proof system satisfies f -extractability where f(x) is the
encoding of x toG2. We state the lemma below and give the proof in Appendix C.

Lemma 1. The NIZK proof system of [25] depicted in Fig. 3 is [·]2-extractable.

4.1 Strong f-extractability

We now define strong f -extractability as an strengthening of f -extractability
where the extracted value further allows to decide membership of the statement
(although it cannot be used to produce a valid proof for it).

Definition 5 (Strong f-extractability). Let Π = (CRSGen,P,V,Sim) be a
NIZK argument for the relation R, defined by some language parameter lpar.
Let f be an efficiently computable function. We say that Π is strong f -extractable
if the following properties hold:

Extractability. Π is f -extractable (see Definition 4).
Decidability. There exists a DPT algorithm D, such that for any statement x

and string w̃, it holds that D(x, w̃) = 1 iff (x, w) ∈ R, where w̃ = f(w).
One-wayness. For any (x, w̃) sampled uniformly at random s.t D(x, w̃) = 1, if

there exists a PPT adversary A and a polynomial p(·), such that

Pr
[
V(crs, x, π′) = 1 π′ ← A(crs, x, w̃)

]
≥ 1

p(k)
,

there exists a PPT algorithm I, and polynomial q(·) such that

Pr
[
f(w̄) = w̃ w̄← I(w̃)

]
≥ 1

q(k)
.

Remark 1. Similar to Definition 4, strong f -extractability is defined without any
restriction on f and hence it can recover full extractability for the case when f is
the identity function. However, we only focus on strong f -extractability for non-
trivial f in this work. Having no restriction on f in Definitions 4 and 5 makes
strong f -extractability a middle ground between full and f -extractability.

We show in Appendix C.2 that the proof system in Fig. 3 is strong [·]2-
extractable under a standard hardness assumption. We remark that it is not
clear whether the argument system in Fig. 2 satisfies strong f -extractability.
Intuitively, if it did, then such an algorithm could likely be used to compute the
witness w in the case of the underlying Σ-protocol, given only one transcript,
which is impossible by SHVZK.
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5 Full Extractability for the CH Framework

The CH argument system from Fig. 2 is knowledge sound in the AGM. (We
show in Sec. D.1). Now, we turn to showing limitations of proving knowledge
soundness.7 We begin this section by defining a notion of knowledge sound-
ness called semantic extraction. We study the relationship between semantic
knowledge soundness and standard notions of black-box (BB) and white-box
(n-BB) knowledge soundness. Then, we show impossibility of the existence of
semantic extractors for the CH argument system in Fig. 2. The generalization of
this impossibility to quasi-adaptive NIZK arguments constructed from SPHFs
is in Appendix D.4.

Notation. We introduce some additional notation for this section. We denote by
CRS the set of all possible crs’s. We denote by χ the set of the statements x
and by Ψ the set of all possible proofs π We also split the randomness of PPT-s
into two strings s and t. We denote by Γt the set of all possible strings t and by
Γs the set of all possible strings s. Looking ahead, for adversarial provers, this
split, at a high level, is to distinguish between the portion of randomness that is
provided to the semantic extractor (t), and the portion that is not (s). Note that,
while CRS, χ, Ψ are defined by the NIZK construction, the randomness spaces
are not fixed by the NIZK. We only assume that s, t have polynomial size.

5.1 Semantic Extractor

We now define our new notion of extraction. Informally, this extractor inverts
the “semantic” function implemented by an adversarial prover regardless of how
the computation was done. The key difference from n-BB notion is that we will
not ask for a different extractor for every PPT A, instead, we ask for an extrac-
tor associated with a function f ; this extractor is universal for all TMs (even
unbounded ones) that implement f . We begin by modeling the function imple-
mented by a knowledge soundness adversary. To capture any possible adversarial
strategy, we consider functions f and a distribution D from which random coins
are sampled for a machine that implements f .

Definition 6 (Knowledge soundness strategy (KSS)). Consider NIZK
Π = (CRSGen,P,V,Sim). Let f : CRS×Γs×Γt → χ×Ψ be a function, and D
be the uniform distribution over Γs ×Γt. f is said to be a knowledge soundness
strategy for Π if

Pr

 (crs, td)← CRSGen(1k); (s||t)← D
V(crs, x, π) = 1

f(crs; (s, t)) = (x, π)

 = η(k)

7 Recently, [5] instantiated AGM under falsifiable assumptions. However, their con-
struction relies on indistinguishability obfuscation. It is inherently inefficient and
not a practical group for applications. Here, we focus on feasibility of knowledge
soundness of the CH framework as is in the standard model, without compromising
on the efficiency.
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where η(k) is non-negligible. We say that a TM A implements the knowledge
soundness strategy f , if for any crs ∈ CRS and (s, t) ← D, we have z ←
A(crs; s, t), where z = f(crs, s, t). If there exists a PPT A that implements a
knowledge soundness strategy f , we say that f is efficiently implementable.

We now define semantic knowledge soundness for a KSS.

Definition 7 (Semantic knowledge soundness). Consider a NIZK argu-
ment Π = (CRSGen,P,V,Sim). Let D be the uniform distribution over Γs×Γt.
We call Π semantic knowledge sound if for every efficiently implementable KSS
f , there exists a PPT extractor Ext = Extf , such that, for each (even unbounded)
TM A∗ that implements f , we have

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); (s||t)← D

∧(x, w) /∈ R (x, π)← A∗(crs; (s, t)); w← Ext(td, x, π, t)

]
≤ negl(k)

Remark 2. We note that asking for extraction only against provers that imple-
ment a KSS is not a weakening of the extraction definition, since we only care
about extracting from provers that make the verifier accept with non-negligible
probability.

Remark 3. Note that this definition is a generalization of the usual knowledge
soundness definitions. In particular, if we hide all the randomness from the ex-
tractor (that is Γt is the set that contains only the empty string), then we
recover the usual black-box knowledge soundness. On the other hand, if we give
the extractor all the randomness used by the adversary (that is Γs is the set
that contains only the empty string), then we recover the canonical white-box
knowledge soundness. We discuss these connections formally in Appendix D.2.
We define semBB and semn-BB exactly as in Definition 7 with the boxed part
replaced with w← Ext(td, x, π), and w← Ext(td, x, π, s||t) respectively.

Remark 4 (Canonical knowledge soundness adversary). The usual definition of
knowledge soundness naturally handles the existence of an extractor for the
honest prover. Our definition handles the case of the honest prover too; we show
the honest efficiently implementable KSS for a NIZK Π below:

1. Sample uniformly random strings (s, t)← Γs × Γt.
2. Sample a true statement x together with w, from the uniform distribution

over pair of (x, w) ∈ R, using random seed s. Note that this can be done
efficiently. That is, there exists a PPT A that computes (x, w) on random
coins s. Let us define the function g : Γs → χ× {0, 1}∗ as g(s) = (x, w).

3. Run the honest prover algorithm on input (crs, x, w) and random coins t, to
compute a proof π. Define the function g′ : CRS× χ× {0, 1}∗ ×Γt → Ψ as
g′(crs, x, w, t) = P(crs, x, w; t).

4. Define f : CRS× Γs × Γt → χ× Ψ as f(crs, (s, t)) = (x, π) where (x, w) =
g(s) and π = g′(crs, x, w, t).
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We call this f the canonical knowledge soundness strategy, and a PPT algorithm
that implements it the canonical adversary of knowledge soundness.

We illustrate the meaningfulness of the new notion by showing relationships
of semantic extraction with BB and n-BB extraction definitions in Appendix D.2.
Here we point out that the notion of semantic extraction has been implicitly used
in other works. For instance, standard Σ-protocols satisfy the semantic extrac-
tion notion. By special soundness, given a certain number of accepting transcripts
for the same statement, and the same prover’s first message, an extractor ex-
ists that outputs a valid witness. The extractor, therefore, does not depend on
the prover’s computation, instead, on a “semantic” function: one that outputs
two different accepting transcripts relative to the same statement, and the same
first message. One advantage in thinking of an extractor as a semantic one is
the possibility to use it in a reduction, without its relative “native” adversary.
This is indeed what is done in the proof of soundness for the NIZK proof of [25]
described in Fig. 3, which is based on the existence of an (unbounded) TM that
computes a valid input for the special soundness extractor, and then relying on
the implicit semantic property of the latter.

The non-black-box nature of the semantic definition is limited to making non-
black-box use of the malicious prover’s randomness, but otherwise the prover’s
TM is treated as a black-box. There are instances in literature where a n-BB
technique in fact corresponds to a semantic technique. Consider the case of sim-
ulation – Barak’s non-black-box zero-knowledge protocol [7]. Though simulation
is defined to make non-black-box use of the verifier’s TM, it can be modified
to only make non-black-box use of the auxiliary input and running time of the
verifier, and not its TM. The property needed to define the simulator is the ex-
istence of an efficient (with bounded-length description) adversary. Then in the
security proof, the next-message function implemented by the adversary is used,
together with the ability to choose its random coins. This means that the secu-
rity proof works for any adversary (even an unbounded one) that computes the
same next-message function. Moreover, the zero-knowledge simulator for each of
these adversaries would be exactly the same simulator as the one defined for the
efficient adversary. For concreteness, we may think that, given the code of one
efficient adversary, we define a simulator that works for each TM that computes
the same function, in the sense that we use the code in a black-box way; by just
fixing the random coins and taking partial outputs.

5.2 Impossibility of Semantic Knowledge Soundness for CH-NIZK

In this section we focus on semantic knowledge soundness of NIZK argument
in Fig. 2 for a large and useful class of algebraic languages. We show in Ap-
pendix D.1 that when the adversary is algebraic, knowledge soundness holds in
the AGM for this NIZK argument. We ask for knowledge soundness in the stan-
dard model, and show that CH NIZK argument cannot be semantic knowledge
sound. The impossibility can be interpreted as an adversary explicitly violating
AGM rules by hiding some exponent about the statement, and thus making the
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extractor fail. We refer to Remark 5, for more remarks on the interpretation of
this result, while we focus on technical details for the rest of this section.

We now show the impossibility proof of semantic knowledge soundness of CH
arguments for linear languages Llpar, where lpar = [M]1 is a constant matrix.
The proof of Theorem 2 for general case of 1DL-friendly languages is deferred
to Appendix D.3.

Lemma 2. Let Llpar be a linear language defined by constant matrix lpar :=
[M]1. The NIZK argument in Fig. 2 cannot be semantic knowledge sound for
Llpar under the SDL assumption.

Proof. We denote as wi components of the vector w. The description of the
canonical prover adversary on input (crs = [e]2) and random coins (s, t), where
t = (r, r′) is given in Fig. 6a. Let Extf be the semantic extractor for the
function f([e]2; (s, t)) = ([x]1, π), with π = ([a]1, [d]2) that is implemented
by the canonical prover adversary. By completeness of the NIZK argument,
Extf (e, [x,a]1, [d]2, t) outputs a valid witness w for [x]1 with overwhelming prob-
ability. Let us consider the (not polynomial-time) TM P∗ as in Fig. 6b that im-
plements f . P∗ implements the same f of the canonical adversary and therefore
its output can be used to feed the same extractor Extf .

We now exploit Extf to define an adversary A against SDL assumption.
On input an SDL challenge ([w1]1, [w1]2), A is defined as in Fig. 6c. Since A
computes inputs of Extf exactly as P∗ does, they are correctly distributed, and
hence A breaks SDL with the same probability that Extf succeeds.

Theorem 2. Let Llpar be a 1DL-friendly algebraic language (Definition 13) de-
fined by language parameters lpar := (M,θ). The NIZK argument in Fig. 2
cannot be semantic knowledge sound for Llpar under the SDL assumption.

Remark 5. Since our reduction exploits the knowledge of the trapdoor to com-
pute a proof, (as a typical ZK simulator would do), it might seem like we are
arguing about extracting from the simulator. However this is not the case, at
least in general. We note that the procedure defined by the SDL adversary is
very different from the zero-knowledge simulator. First, the adversary knows
something that the simulator does not, which is [x]2. Moreover, the adversary
is able to compute [a]1 before computing [d]2 as the honest prover; while the
simulator, in order to compute a proof must compute d before. This can be also
seen as the fact that the honest prover and simulator do not implement the same
function. In fact, given the language parameter M ∈ Zn×mp the prover computes
a proof π as a function of x,w, r where r ∈ Zn×1

p , while the simulator computes
a proof which is a function of random coins rSim ∈ Zm×1

p . In order to invoke the
semantic extractor associated to the honest prover, we must have a function that
defines a relation between the two randomness. This, for instance, can be done
(inefficiently) only in some particular cases, like when M is a square invertible
matrix. Finally, the existence of such cases is evidence towards the impossibility
of extraction. In fact, given the latter case, since we have perfect zero-knowledge
for a relation that defines only true statement, given a proof from the NIZK
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1. Sample uniformly random w1 using
random coins s.

2. Sample other components of w, wi

for i ̸= 1, using random coins r′.
3. Compute [x]1 = [M]1w.
4. Compute [a]1 = [M]1r.
5. Compute [d]2 = w[e]2 + r[1]2.
6. Output ([x]1, π = ([a]1, [d]2)).

(a) Canonical prover adversary

1. Use random coins s to sample w1 and
compute [w1]1, [w1]2.

2. Compute (inefficiently) e from [e]2.
3. Sample other components of w using

random coins r′.
4. Compute [x]1 = [Mw]1.
5. Compute [a]1 = [Mr]1.
6. Compute [d]2 = e[w]2 + r[1]2.

(b) Unbounded adversary

1. Sample e, r, r′.
2. Sample other components of w, wi for i ̸= 1, using random coins r′.
3. Compute [x]1 = [Mw]1.
4. Compute [a]1 = [Mr]1.
5. Compute [d]2 = e[w]2 + r[1]2.
6. Compute w← Extf (([a]1, [d]2), e, [x]1, (r, r

′)).
7. Output w1.

(c) SDL adversary

Fig. 6: Procedures for Lemma 2

argument, it is impossible to distinguish the case when the prover was honest,
from the case when a powerful adversary just computes the discrete logarithm of
the CRS and runs the simulator. Furthermore, it is impossible to distinguish the
case that adversary had [w]2 and the trapdoor e, instead of w without relying
on knowledge-type assumptions.
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Supporting Material

A Additional Preliminaries

A.1 Σ-Protocols

A Σ-protocol is a public-coin three-round interactive protocol between a prover
P and a verifier V. A Σ-protocol should satisfy completeness, special soundness,
and special honest verifier zero-knowledge (SHVZK), defined as follows:

Definition 8 (Completeness). A Σ-protocol is complete for relation R, if for
any PPT adversary A, and any honest P and V,

Pr
[
⟨P(w),V⟩(x) = 1 ∨ (x, w) /∈ R (x, w)← A(1k)

]
= 1

Definition 9 (Special Soundness). A Σ-protocol for a relation R is special
sound, if there exists a PPT algorithm Ext that given a statement x and two
accepting transcripts (a, e, d), (a, e′, d′) with the same first message and e ̸= e′

outputs a witness w, such that (x, w) ∈ R with overwhelming probability.

Definition 10 (Special Honest-Verifier Zero-Knowledge (SHVZK)). A
Σ-protocol for a relation R is SHVZK, if there exists a PPT simulator Sim such
that for (x, w) ∈ R and e ∈ {0, 1}k, the distributions of Sim(x, e) is identical to the
distribution of the 3-move honest transcript obtained when V sends e as challenge
and P runs on common input x and private input w such that (x, w) ∈ R.

For the sake of completeness, we also recall the definition of witness indis-
tinguishability for Σ-protocols. As shown in [26], every Σ-protocol that enjoys
Completeness, Special Soundness and perfect Honest Verifier Zero Knowledge
(HVZK) is perfect WI.

Definition 11 (Witness Indistinguishability (WI)). A Σ-protocol for a
relation R is perfect WI 8 if for every malicious verifier V∗, for all st = (x, w1, w2)
such that (x, w1) ∈ R, (x, w2) ∈ R, we have

Pr
[
⟨P(w1, 1k),V∗(st)⟩(x) = 1

]
= Pr

[
⟨P(w2, 1k),V∗(st)⟩(x) = 1

]
8 WI is used to mean both “witness indistinguishability” and “witness indistinguish-
able”.
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A.2 Witness Sampleable (WS) Languages

For a witness sampleable language L, the language parameters come together
with a trapdoor which allows to check whether x ∈ L. In this case, we suppose
that setup.lpar also outputs a (language) trapdoor ltrap associated with lpar

and allows to decide whether a given x ∈ X is in L or not. It is easy to see
that for linear languages, this trapdoor is the exponents of all matrix entries.
We refer to [25] for formal definition and more details of WS languages.

A.3 Smooth Projective Hash Function (SPHF)

A SPHF is defined as follows (cf. [13]).

Definition 12. A SPHF for {Llpar} is a tuple of PPT algorithms
(setup, hashkg, projkg, hash, projhash), which are defined as follows:

setup(1k): Takes a security parameter k and generates the global parameters pp
together with the language parameters lpar (we assume that all algorithms
have access to pp).

hashkg(lpar): Takes a language parameter lpar and outputs a hashing key hk.
projkg(lpar; hk, x): Takes a hashing key hk, lpar, and a statement x and outputs

a projection key hp, possibly depending on x.
hash(lpar; hk, x): Takes a hashing key hk, lpar, and a statement x and outputs

a hash value H.
projhash(lpar; hp, x, w): Takes a projection key hp, lpar, a statement x, and a

witness w for x ∈ L and outputs a hash value pH.

A SPHF needs to satisfy the following properties:

Correctness. It is required that hash(lpar; hk, x) = projhash(lpar; hp, x, w) for
all x ∈ L and their corresponding witnesses w.

Smoothness. It is required that for any lpar and any x ̸∈ L, the following
distributions are statistically indistinguishable:

{(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H← hash(lpar; hk, x)}
{(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H← Ω} .

where Ω is the set of hash values.

A.4 Construction of SPHF from Diverse Vector Space

A diverse vector space (DVS) [13,1,11] is a representation of a language L ⊆ X
as a subspace L̂ of some vector space. Let R = {(x, w)} be a relation with L =
{x : ∃w, (x, w) ∈ R}. Let pp be system parameters, including say the description
of a bilinear group. A (pairing-based) DVS V is defined as V = (pp,X ,L,R, n,
k,M,θ,λ), where M(x) is an n × k matrix, θ(x) is an n-dimensional vector,
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and λ(x, w) a k-dimensional vector. The matrix M(x) can depend on x (in this
case, it is called GL-DVS) or not (KV-DVS). Moreover, different coefficients of
θ(x), M(x), and λ(x, w) can belong to different algebraic structures as long as
the equation θ(x) = M(x) ·λ(x, w) is well-consistent. In the most common case,
this means that given a bilinear group pp = (p,G1,G2,GT , ê, g1, g2), they belong
to either Zp, G1, G2, or GT as long as the consistency of the above equation is
preserved.

A DVS V satisfies the following properties [11]:

– coordinate-independence of groups: the group in which each coordinate of
θ(x) lies is independent of x.

– perfect completeness: for any (x, w) ∈ R, θ(x) = M(x) · λ(x, w).
– statistical ε-soundness: ∀x ∈ X \ L, Pr[θ(x) ∈ colspace(M(x))] ≤ ε.

In this work, we only deal with DVSs where λ is the identity function. I.e.,
λ(x, w) = w. Given a GL/KV-DVS for L, one can construct an efficient GL/KV-
SPHF for x′ ∈ L, where w = w′ and x = [θ(x′)]ι = [M(x′)]ιw

′ [13], see Fig. 7.
Here, the only possible nonlinear operation is the dependency of θ and M on
the actual input x′. It is known that if V is a 0-sound GL-DVS/KV-DVS, then
the PHF in Fig. 7 is a perfectly smooth GL/KV-SPHF, see Theorem 3.1.11 in
[11].

– hashkg(lpar): sample α⃗← Zn
p , and output hk← α⃗;

– projkg(lpar; hk, x = [θ(x′)]ι): [γ]
⊤
ι ← α⃗⊤[M(x′)]ι ∈ G1×k

ι ; return hp← [γ]ι;
– hash(lpar; hk, x): return H← α⃗⊤[θ(x′)]ι;
– projhash(lpar; hp, x, w = w′): return pH← [γ]⊤ι w

′;

Fig. 7: DVS-based SPHF construction for Llpar with lpar = (M,θ).

We sometimes require algebraic languages to satisfy a property we call 1DL-
friendly. The reason we need this property is to enable the embedding of a
symmetric simple discrete logarithm challenge, which is given as a pair of group
elements, into an algebraic statement in the reduction. We give the definition
below.

Definition 13. An algebraic languages is 1DL-friendly if given a uniformly ran-
dom element, c ← Zp, there exist a tuple of functions λx, λw such that the fol-
lowing procedure can be used to generate a pair of true statement [x]1 with a
relative witness w.

– Define w1 = c and sample uniformly random w2, . . . , wd (independently from
w1). Compute w = λw(w1, . . . , wn). We restrict here to functions λw that
are affine in w1.
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– Compute [x]1 = λx(w1, . . . , wn), such that M(x)w = θ(x). Again, we re-
strict to functions λx that are affine in w1.

Practically, given group elements [x]1, [x]2, we implicitly define x = w1 and
sample w2, . . . , wn ← Zp. Then, we compute [x]1 = λx([x]1, w2, . . . , wn) and
a G2-encoding of the relative witness [w]2 = λw([x]2, w2, . . . , wn), which are
efficiently computable because λx, λw are required to be affine as a function of
w1. We remark that this condition is only assumed for simplicity, in order to
state our formal theorem under simple assumptions. However, our framework
could in principle, work for any hard algebraic language, at the cost of using
more structured assumptions.

A.5 From Σ-protocols to NIZKs (Extended)

The work of [25] proposed a framework for compiling a Σ-protocol for algebraic
languages into a non-interactive zero-knowledge argument by embedding the
challenge in G2 and publishing it once in the crs. The soundness of the compiled
NIZK is based on a new family of assumptions extended-kernel Matrix Diffie-
Hellman (extKerMDH) that are not necessarily falsifiable 9.

Couteau and Hartmann [25] also showed how to achieve perfect soundness
by making use of the unconditional special soundness of the Σ-protocol. More
precisely, they proved that the compiled protocol in Fig. 3 is a NIZK proof
with computational zero-knowledge if the DDH assumption holds in G2, and
the underlying Σ-protocol is complete, special sound and SHVZK.

We remark that there is no efficient extractor to compute the witness in the
latter proof system. In fact the existence of a witness is guaranteed by the special
soundness of the underlyingΣ-protocol, however, to be able to extract it, we need
an unbounded extractor to compute the exponent of group elements. To be more
precise, an efficient extractor can compute, in the best case, only exponentiations
of the witness in either G1 or G2 as shown in Section 4. It is worth mentioning
that the soundness proof is based on the existence of this unbounded extractor,
to compute a pair of proofs of the underlying Σ-protocol. More precisely, given
a valid proof for a false statement and under an honestly generated CRS, we
can (inefficiently) compute the field elements (s1, e1, s2, e2, d1, d2) and output
two valid proofs for the underlying Σ-protocol with the same first message and
different challenges (with overwhelming probability). This contradicts the special
soundness property, which states that two such proofs cannot exist for a false
statement.

A.6 Algebraic Group Model

Algebraic algorithms. We recall that AGM essentially states that for every ef-
ficient algorithm A that outputs the vector [y]ι of group elements in Gι when
given inputs the vector [x]ι of group elements in Gι, there exists an efficient

9 Although the assumption is falsifiable for all witness-sampleable languages (A.2).
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extractor ExtA that returns a matrix A such that y = Ax. In particular, since
we are working in the setting of asymmetric bilinear pairings, we require that
any outputs in one group must depend only on the inputs it receives in that
group.

Algebraic Distinguishers. Here, we briefly recall the notion of algebraic dis-
tinguishers and refer the reader to [54] for more details.

A distinguisher is an algorithm that aims to distinguish between 2 games.
Particularly, we consider adversaries A that engage in games with challengers,
parametrized by a bit b ∈ {0, 1}. We refer to Gb as the game where the bit
b is chosen. A distinguisher A aims to detect if it is playing the game G0, or
G1. At the end of its interaction with the challenger, it outputs a decisional bit
b′. A wins the game if b = b′. Let us denote by ViewGb

A the random variable
that describes the view of A in the game Gb (that is the input it received so
far and the internal random tape). Moreover, let [x0, . . . , xn1

]1, [y0, . . . , yn2
]2 be

A’s input, with x0 = y0 = 1, and let w⃗ be a vector indexed by two indices i ∈
{0, . . . , n1}, j ∈ {0, . . . , n2} such that the component wij is naturally associated
to the pairing of inputs [xi]1 and [yj ]1, i.e., [xi]1[yj ]2 = [xiyj ]T . We indicate

with
[
ViewGb

A

]
supp(w⃗)

the random variable that is defined by the view A in the

game Gb omitting all group elements whose corresponding entry in w⃗ is 0. A
distinguisher A participating in an algebraic game Gb, is said to be algebraic if
there exists a PPT extractor ExtA that computes a vector w⃗ that explains the
decision in an algebraic way, at least with a certain probability.

Definition 14 (Algebraic distinguisher). A distinguisher A participating
in an algebraic game Gb is said to be algebraic if there exists a PPT extractor
ExtA that computes a vector of field element w⃗ such that the following condition
holds.

1.
∑n1

i=1

∑n2

j=1 wij [xiyj ]T = [0]T .
2. Let t be an upper bound over the running time of A and ϵ be the probability

that A successfully distinguishes between G0 and G1. Then

Pr

[[
ViewG0

A

]
supp(w⃗)

̸=
[
ViewG1

A

]
supp(w⃗)

]
≥ ϵ/t2,

where the inequality is intended as distributions and the probability is over
the choice of w⃗ induced by a random execution of Gb(A) and ExtA.

B NIWI Proof in the Plain Model

B.1 Efficiency of Our NIWI Proof

We give an informal comparison between the Groth-Sahai NIWI [41] in the plain
model and our NIWI in Fig. 4.

Recall that Groth-Sahai techniques [41] to construct NIWI in the plain
model consists of sending two distinct Groth-Sahai proofs, along with two
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different crs-s chosen by the prover. This results in communication complexity
that is two times the size of proof plus the crs. With our technique, a NIWI
proof has communication complexity of one CH proof, on top of 6 group
elements that are sent as the “crs” that the prover chooses. As noted in [25],
proofs in the CH framework has the same size as optimized Groth-Sahai proofs,
for many languages of interest, such as disjunctions of linear languages. Hence
our NIWI proof, in these cases, has better communication complexity compared
to Groth-Sahai NIWI [41].

When proving statements where the statement is augmented with inter-
mediate commitments, our resulting statement size is much shorter, since
we only need to commit in G1, while usually one needs to commit in both
groups with GS. This results in better communication complexity in scenarios
where we embed a circuit satisfiability problem as an algebraic language and
commitments are part of the statement that are sent along with the proof.

Finally, we point out that our NIWI construction is the first that achieves
constant overhead for communication and computational complexity (with re-
spect to the language size), compared to the corresponding NIZK proof in the
CRS model.

B.2 Applications

There are several works [15,35,6] which show how one can make use of NIWI in
the plain model to construct more complex cryptographic primitives. Bitansky
et al. [15] showed how to construct verifiable random functions and verifiable
function commitment schemes using NIWI in the plain model. In [35], Garg
et al. introduced the notion of Efficiently Extractable Non-Interactive Instance-
Dependent Commitment Scheme and constructed a two-round resettable sta-
tistical witness-indistinguishable argument for languages that have such type
of commitments. The key idea in their construction is to make use of a NIWI
proof system in the plain model to ensure that verifier’s challenge in the first
round of the argument is well-formed. The fact that the verifier’s challenge is
a commitment to a random message indicates that the NIWI language is “na-
tively” algebraic, and hence our NIWI can be used to improve the efficiency of
the resulting argument in [35], wherein the NIWI is instantiated with [41].

The recent work of Ananth et al. [6] which provides a notion of accountability
towards the CRS generation authority employs a NIWI proof system. To this
end, the authority is required to include some valid transcript in the CRS and
since he is the one who generates the CRS, the idea of using a NIZK proof
does not work. The authority instead proves a statement about the transcript
using a NIWI proof. In more detail, the authority provides four commitments
(cm = (cm0, cm1), cm = (cm0, cm1)) and uses a NIWI in the plain model to prove
that one of cm or cm are commitments to both bits 0 and 1. Interestingly, the
NIWI language corresponding to the statements defined by the commitments is
again natively algebraic, for which our NIWI is suitable.
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B.3 New Computational Assumption and AGM Proof of Security

Assumption 5 (Symmetric power discrete logarithm (SPDL)) Let
q1, q2 be two integers. The (q1, q2)-SPDL assumption holds if for any PPT
adversary A,

Pr
[
y∗ = y y∗ ← A([1, y, y2, . . . , yq1 ]1, [1, y, y2, . . . , yq2 ]2)

]
≤ negl(k)

where y is sampled from the uniform distribution over Zp.

Following the framework of [54], we prove the security of our new assumption
in the AGM. We start by restating the new assumption.

Assumption 6 (Algebraic decisional hidden range) Let GADHR,i, for i ∈
{0, 1} be the games depicted in Fig. 5. Let lpar = (M,θ) be any pair of lan-
guage parameter that defines the algebraic language Llpar. The (M,θ)-ADHR
assumption states that for any PPT adversary A,

Adv
GADHR,0,1

A,lpar = |Pr [GADHR,0(A, lpar) = 1]− Pr [GADHR,1(A, lpar) = 1]| ≤ negl(k).

Theorem 3. If the (1, 2)-SPDL holds, then for any PPT algebraic distin-
guisher A, it holds that

Adv
GADHR,0,1

A,lpar ≤ negl(k)

for any lpar = (M,θ) that defines the algebraic language Llpar.

Proof. Let us first consider the case that M is of dimension d× 1 for any d > 0,
so r is a single element. Let A be an algebraic PPT distinguisher for the games
depicted in Fig. 5. In Fig. 8 we show how to exploit A in order to define an
adversary B to (1, 2)-SPDL problem. The reduction proceeds as follows: B first
picks some language parameter lpar and then runs the first stage of A in or-
der to obtain (x,w0,w1). Note that since B knows lpar as field elements, A
is algebraic and A receives as input only the generators, we can assume that
B knows x as field elements. Next, B samples some uniformly random elements
(u1, u2, ur, t1, t2, tr) to embed the challenge as elements uiy + ti. This is a stan-
dard procedure frequently used to embed a univariate challenge in a multivariate
polynomial [33,9]. Note that elements u1, u2, ur and y are perfectly hidden to
A as they are “one-time padded” with ti-s. This property will be used later in
the proof. Then, B samples uniformly random trapdoors e1, e2, computes π and
then runs the second phase of A in order to obtain the distinguisher bit b′. Note
that B needs [Y 2]2 in order to compute elements of the form [sir]2.
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BA
2-SPDL([y]1, [y, y

2]2)

Fix any lpar = (M,θ);

(x,w0,w1)← A([1]1, [1]2, lpar);
b← {0, 1};
ur, u1, u2, tr, t1, t2 ← Zp;

if ur[y]1 + tr[1]1 = [0]1, then return − tr/ur;fi ; (1)

if ∃i ∈ {1, 2} such that ui[y]1 + ti[1]1 = [0]1, then return − ti/ui;fi ; (2)

e1, e2 ← Zp; (e1 ̸= e2)

for ι ∈ {1, 2} [r]ι = ur[y]ι + tr[1]ι;

for i ∈ {1, 2} [si]ι = ur[y]ι + tr[1]ι;

[sir]2 = uiur[y
2]2 + (uitr + urti)[y]2 + titr[1]2;

[di]2 = eiwb[si]2 + [sir]2;

if [di]2 = [0]2 then return − (tr + eiwb)/ur;fi ; (3)

endfor

endfor (∗)
π = ([M(x)r, s1, s2]1, [s1, s1e1, s2, s2e2, d1, d2]2);

b′ ← A([M(x)]1,w0,w1, π);

(ϕ⃗, ψ⃗, σ⃗)← ExtA;

Find all the roots of the univariate polynomials V (Y ) = V (u1Y + t1, u2Y + t2, e1, e2, urY + tr,x);

Check if one of the roots y∗ is equal to y; If yes return y∗ else return ⊥;

Fig. 8: SPDL reduction for the new assumption. Polynomials Φ,Σ, Ψ are as de-
fined in Eq. (2) and polynomial V is as defined in Eq. (3).

Let us define the polynomials

Φ(S⃗, E⃗) =
2∑
i=1

[ϕ0iSi + ϕ1iSiEi] +
2∑

i,j=1

[ϕ2ijSiSj + ϕ3ijSiSjEj ];

Σ(R,X) = σ0 + σ1M(X)R.

Ψ(S⃗, E⃗, R,X) =

2∑
i=1

[ψ0i(SiEiw + SiR) + ψ1iM(X)RSi + ψ2iM(X)RSiEi]

+

2∑
i=1

[ψ3iM(X)R(SiEiw + SiR)] +

2∑
i,j=1

[ψ4ijSj(SiEiw + SiR)];

(2)

Since A is supposed to be an algebraic distinguisher, there exists a PPT extrac-
tor ExtA that computes coefficients (ψ⃗, ϕ⃗, σ⃗) such that the following verification
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polynomial V (S⃗, E⃗, R,X) = Φ(S⃗, E⃗) + Ψ(S⃗, E⃗, R,X) +Σ(R,X) is 0 when eval-
uated in the point defined by A’s inputs. That is,

V (s⃗, e⃗, r,x) = Φ(s⃗, e⃗) + Ψ(s⃗, e⃗, r,x) +Σ(r,x) = 0. (3)

It is easy to see that V is the polynomial taking all the possible pairings among
A’s inputs. As shown in Fig. 8, B invokes ExtA to compute coefficients (ϕ⃗, ψ⃗, σ⃗)
of V .

Recall that by definition of algebraic distinguisher, with high probability,
V must have a number of non-zero coefficients, such that the view of A,
when restricted to the input corresponding to the non-zero monomials, is dis-
tributed differently in the two games. Particularly, in our case this implies that
V must explicitly depend on the used witness wb. Note that the monomials
of V in which wb is multiplied by M(x) are the same in both games, since
M(x)w0 = M(x)w1 = θ(x). Thus [Viewwb

A ]supp(ϕ⃗,ψ⃗,σ⃗) for b ∈ {0, 1} are dis-

tributed differently if and only if V has a non-zero coefficient that corresponds
to a monomial in which wb but not M(x) appears. Formally, let ϵ be the advan-
tage of A in distinguishing the two distributions, and t be the running time of
A. Let Hit be the event that V explicitly depends on the used witness wb. Then
Pr [Hit] ≥ ϵ/t2 by the definition of algebraic distinguishers.

We first observe that B stops before the point labeled as (∗) with negligible
probability. This can be concluded by the fact that (u1, u2, ur, t1, t2, tr) and e1, e2
are sampled from uniform distributions which implies that the elements eiwb are
distributed uniformly at random too.

We now show that Pr [B wins] ≥ negl(k) + Pr [Hit]. Note that the variable R
appears in Ψ only multiplied by at least one of the variables S1, S2. Suppose that
Ψ(S⃗, e⃗, R,x) is a polynomial of degree at least 1 in R. So, there exists a non-zero

element ψ̃ of ψ⃗ that corresponds to a monomial in which the variable R appears.
Let Sz1S

q
2RJ(e1, e2,x), for z, q ∈ {0, 1, 2} and some J , be this monomial. Since

Σ is independent from Si and Φ is independent from R, then V (S1, S2, e⃗, R,x) =
ψ̃Sz1S

q
2RJ(e1, e2,x) + P (S1, S2, e⃗, R,x) where P is a trivariate polynomial that

does not contain a monomial of the type Sz1S
q
2R. Thus, V (S1, S2, e⃗, R,x) is also

a non-zero polynomial of degree at least 2. Suppose now that Ψ(S⃗, e⃗, R,x) is

of degree 0 in R. This can happen if and only if Ψ = −
∑2
i=1 M(x)wψ1iSiEi,

(ψ0i = −ψ1i, and other coefficients of Ψ are equal to 0). Thus Ψ , and also V are
independent from w and the view of A is the same in the two games. Note in
fact that M(SiEiw) = θ(x)SiEi for each valid witness. By definition of Hit, this
cannot happen. Thus, we have shown that, conditioned on the event Hit, V is a
non-zero polynomial of (total) degree at least 2.

We now recall a lemma from [9] that we use in our proof.

Lemma 3 ([9]). Let V (X1, ..., Xm) be a non-zero multivariate polynomial in
Zp of total degree d. For each vectors u⃗, t⃗ of length m, define V (Y ) as V (Y ) =
P (u1Y + t1, . . . , umY + tm). Then the coefficient of maximal degree of Q is a
polynomial in u1, . . . , um of degree d.

By applying this lemma, we have that the coefficient of the term with maxi-
mal degree in V (Y ) = V (u1Y + t1, u2Y + t2, e1, e2, urY + tr,x) is polynomial in
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u1, u2, ur of degree at least 2. Let v(u1, u2, ur) be this term. Since u1, u2, ur are
perfectly hidden to A, the probability that v(u1, u2, ur) = 0 is negligible based
on the Schwartz-Zippel lemma.

Summing up, we have V (y) = 0 and, conditioned on Hit, V (Y ) ̸= 0 as a
polynomial, except with negligible probability. This shows that Pr [B wins] ≥
negl(k) + Pr [Hit]− negl(k) ≥ negl(k) + ϵ/t2.

Thus, ϵ ≤ t2 Pr [B wins] + negl(k). The fact that Pr [B wins] is negligible by
assumption concludes the proof for the case of (d× 1)-dimension M.

What is left is to generalize the proof to the case whereM is a n×k matrix. In
this case, B will sample k different and independently chosen uniformly random
uir, tir and define each value of r as uirY + tir. Then, instead of having just one
verification polynomial V , we have k verification polynomials {Vi}i∈[k], one for
each line of M. By the definition of AGM distinguisher, at least one of these
polynomials, say Vi, must explicitly depend on wb. Applying the same procedure
to Vi as described above completes the proof. ⊓⊔

C Partial Extractability of CH Framework

C.1 f-extractability of CH Proof systems

We show that the CH NIZK proof system satisfies f extractability where f(x)
is the encoding of x to G2.

Lemma 4 (Lemma 1 restated). The NIZK proof system of [25] depicted
in Fig. 3 is [·]2-extractable.

Proof. We show the existence of an efficient extractor Ext that given a trapdoor
td and a valid proof π for any statement [x]1, outputs partial witness w̃. Let
td = (e1, e2, s1, s2). By relying on the soundness of the NIZK proof and the fact
that a valid proof π = ([a]1, [d1,d2]2) must satisfy the verification equations,
Ext computes a partial witness w̃ as follows:

– [d′
i]2 := [di]2s

−1
i = w[ei]2 + r[1]2

– u⃗ = [d′
1]2 − [d′

2]2
– return w̃ = u⃗(e1 − e2)−1

It is easy to see that w̃ = [w]2 with probability 1.

C.2 Strong Partial Extractability of CH proof systems

To ease exposition we first show the proof for linear languages and then prove
the general case for any 1DL-friendly language.

Lemma 5. Let Llpar be any linear language defined by lpar = [M]1. Assuming
that co-CDH problem is hard, the NIZK proof system in Fig. 3 for Llpar is strong
[·]2-extractable.
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Proof. From Lemma 1, we have that the proof system is [·]2-extractable. This
means that for any adversarially generated ([x]1, π) which passes the verifica-
tion, the extractor can extract w̃ = [w]2. To prove that it satisfies decidability
property, we define the algorithm D as follows: D([x]1, w̃ = [w]2) returns 1 if
[M]1[w]2 = [x]1[1]2. It is clear that D is efficient. To show how D decides the
membership of [x]1, note that the pairing equality holds iff w = f−1([w]2) (for
f(x) := [x]2) is a valid witness for [x]1, i.e., ([x]1,w) ∈ Rlpar. We now argue
that, compute w = f−1([w]2), is as hard as computing a valid proof π′ for [x]1
given w̃ = [w]2. Clearly, computing w = f−1([w]2) is hard given the hardness
of discrete logarithm in G2. We now show the hardness of computing a valid
proof, given a partial witness w̃, by a reduction to the co-CDH problem. Re-
call that co-CDH problem asks to compute [XY ]2, given ([1, X, Y ]2) ∈ G2 and
([1, X]1) ∈ G1 as input.

Consider the linear language Llpar, defined by lpar = [M]1, where M =
(mij) ∈ Zn×kp . W.l.o.g we can assume that the first entry of M (i.e., m11) is
non-zero 10. Let A be an efficient algorithm that on input (lpar, crs, [x]1, w̃)
computes a valid proof π with non-negligible probability ϵ. We construct an
efficient algorithm B against co-CDH problem so that on input challenge
([1, X]1, [1, X, Y ]2) proceeds as follows:

– Generate the CRS parameters by sampling s1, s2, e1 ← Zp and set e2 = [Y ]2.
Let crs = ([s1, s2, s1e1, s2e2]2). It is clear that the distribution of crs is the
same as an honestly generated CRS.

– Define [w1]1 = [X]1 and sample uniformly random elements w2, . . . , wk ←
Zp. Let [w]1 = [w1, . . . , wk]1 and compute [x]1 = M[w]1. Compute also
w̃ = [w]2, where [w1]2 = [X]2 is from the challenge.

– Run A on input (lpar, crs, [x]1, w̃) to obtain a proof π = ([a]1, [d1,d2]2).
– Check if π makes the verifier accepts; and abort otherwise.
– Let u be the first entry of the vector (s1M[d2]2 + s1s2e1[x]2 −
s2M[d1]2)/(s1s2). Return ([u]2 − (

∑d
i=2m1iwi)[e2]2)/m11.

To see that the output is [XY ]2, we note that, if the verifier accepts, then
Mdi = xsiei + sia for i ∈ 1, 2. Thus, we have MwY = xY = xe2 = (s1Md2 +
s1s2e1x − s2Md1)/(s1s2). To complete the proof we note that, since X = w1,

the first entry of MwY is equal to m11XY + (
∑d
i=2m1iwi)Y . This shows that

B returns [XY ]2 with at least the same probability ϵ that A computes a valid
proof given only w̃ as the witness. ⊓⊔

Strong partial extractability for 1DL-friendly languages. Fix any lpar =
(M,θ) such that the defined algebraic language is 1DL-friendly. Thus, there
exists two affine functions λx, λw such that, M(λx(X))λw(X) = θ(λx(X)). Here,
with a little abuse of notation, we implicitly assume that X = w1, w2, ..., wn
are fixed values and λx(X) indicates λx(X,w2, ..., wn). Same for λw. Since the

10 This is without loss of generality since columns of M can be assumed to be linearly
independent.
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composition of a linear and an affine map is still affine, we have that each entry
of (M(λx(X)))ij is defined by an affine function m1ijX +m0ij . Moreover, each
entry of (λw(X))j is defined by an affine function w1jX + w0j . Note that each
w2, ..., wn corresponds to a set of coefficients m1ij ,m0ij , w1j , w0j ; and viceversa,
i.e., to each set of coefficients, at least one choice of w2, ..., wn is corresponded.
Thus, we can assume that the reduction below knows w2, ..., wn. Given, any
e ∈ Zp, for any i ∈ {1, ..., n} let us define the polynomial

giT (X,Y ) = X2Y
∑
j

(m1ijw1j)+XY
∑
j

(m1ijw0j+m0ijw1j)−X2e
∑
j

(m1ijw1j)

(4)
Note that this polynomial is not in the subspace generated by the base
{1, X,X2, Y,XY }, as long as

∑
j(m1ijw1j) ̸= 0. Following the framework of

Uber-assumptions (see [19]) we define the following assumption.

Assumption 7 Let giT be any polynomial as defined in Eq. (4), such that∑
j(m1ijw1j) ̸= 0. For any PPT adversary A it holds that:

Pr
[
t = giT (x, y) x, y ← Zp; [t]T ← A([1, x]1, [1, x, y]2)

]
≤ negl(k)

Lemma 6. If Assumption 7 holds, then the NIZK proof system in [25], depicted
in Fig. 3 for any 1DL-friendly language, is strong [·]2-extractable.

Proof. The first part of the proof is the same as in Lemma 5. We just need to
show that, given w̃ = [w]2, computing a proof is hard. We prove the hardness
under Assumption 7.

Consider any git defined by the choice of any 1DL-friendly language and any
e ∈ Zp. Suppose that A can efficiently compute a valid proof with high probabil-
ity, having on input (lpar, crs, [x]1, w̃ = [w]2). We show how to define an effi-
cient adversary B to compute [git(x, y)]T , given the challenge ([1, x]1, [1, x, y]2).
B is defined as follows.

– Let e be as in Eq. (4). If e = y then compute [giT (x, y)]T . Note that in this
case [giT (x, y)]T can be easily computed having ([1, x, xy]1, [1, x, y]2).

– Else, generate the CRS parameters by sampling s1, s2 ← Zp and set [e1]2 =
[y]2, e2 = e. Let crs = ([s1, s2, s1e1, s2e2]2). It is clear that the distribution
of crs is the same as one that is generated honestly.

– Define [x]1 = [λx(x)]1, [w]1 = [λw(x)]1, [w]2 = [λw(x)]2. Note that w̃ = [w]2.
– Run A on input ([1,x]1, [1, s1, s2, s1e1, s2e2,w]2) to obtain a proof π =

([a]1, [d1,d2]2).
– Check if π makes the verifier accepts, otherwise B abort.
– Compute [δd]2 = (s2/s1)[d1]2 − [d2]2.
– Let [out]T be

[x]1(
∑
j

(m1ij [δ
d
j ]2 + s2em1ijw0ij [1]2 + s2em0ijw1ij [1]2))

+[−1]1(
∑
j

s2m0ijw0j [y]2) + [1]1(
∑
j

(m0ij [δ
d
j ]2 + s2em0ijw0ij [1]2)).
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Output (1/s2)[out]T .

To see that B’s output is equal to gi,T (x, y), we note that, if the verifier
accepts, then, for i ∈ {1, 2},

M([λx(X)]1)[di]2 = θ([λx(X)]1)[siei]2 + [a]1[si]2,

which implies

M([λx(X)]1)[δ
d]2 = θ([λx(X)]1)[s2(Y − e)]2,

where the last equality follows by observing that e1 = Y , and e2 = e, and then
by multiplying the first equation with s2/s1 and subtracting the second. The
i-th row of the previous equation defines the polynomial∑

j

((m1ijX +m0ij)δ
d
j ) = s2(Y − e)

∑
j

((m1ijX +m0ij)(w1jX + w0j)).

Thus, we have

s2gi,T (X,Y ) = X

∑
j

(m1ijδ
d
j + s2e(m1ijw0ij +m0ijw1ij))


− Y (s2

∑
j

m0ijw0j) +
∑
j

(m0ijδ
d
j + s2em0ijw0ij).

This completes the proof. ⊓⊔

D Full Extractability for the CH Framework

D.1 Knowledge Soundness of CH Argument Systems in the AGM

We show knowledge soundness of the argument system in Fig. 2 in the AGM
framework. We recall that AGM essentially states that for every efficient algo-
rithm A that outputs the vector [y]ι of group elements in Gι when given inputs
the vector [x]ι of group elements in Gι, there exists an efficient extractor ExtA
that returns a matrix A such that y = Ax. In particular, since we are working
in the setting of asymmetric bilinear pairings, we require that any outputs in
one group must depend only on the inputs it receives in that group.

Lemma 7. The NIZK argument in Fig. 2 is knowledge sound in the algebraic
group model for asymmetric pairings, under DL-assumption in G2.

Proof. Let A be a knowledge soundness adversary that on input [1]1, [1, e]2 out-
puts [x,a]1, [d]2. Since the verification equations hold, we have that,

M(x) · d = θ(x) · e+ a·
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Now, since A is an algebraic algorithm, there exists an extractor that outputs
vectors d0,d1,a0,a1 such that d = d0 + d1e, a = a0, x = a1. The knowledge
soundness extractor simply outputs w = d1.

We show that this extractor outputs a witness whenever the verifier accepts,
except with negligible probability. Each equation defined by the verifier’s test can
be written as a a univariate polynomial Qi(X) := d0i + d1iX = xiX + ai where
d0i = (M(a1) · d0)i, d1i = (M(a1) · d1)i, xi = θ(a1)i and ai = a0i. Suppose
for the sake of contradiction that A computed a valid proof [a]1, [d]2 for an
adaptively chosen statement [x]1, but w output by the extractor as described
above is not a valid witness, that is, M(x) · w ̸= θ(x). Then we can use A to
break the DL assumption in G2.

The DL adversary receives a challenge [e]2 and invokes A on input crs = [e]2.
Then, the DL adversary obtains d0,d1,a0,a1 as defined above by the extractor
for the algebraic adversary A. If each polynomial Qi(X) is identically 0, that is
Qi(X) ≡ 0 as a polynomial, then M(a1) ·d1 = θ(a1) which implies that w = d1

and the extractor doesn’t fail. Otherwise, there exists i such that Qi(e) = 0, for
a non-zero polynomial Qi(X). Then e = (ai − d0i)/(d1i − xi) is the only root of
Qi(e). Note that Qi(X) ̸≡ 0 implies that d1i ̸= xi and thus the DL adversary
succeeds in breaking the DL-assumption in G2.

D.2 Semantic, BB and n-BB Extraction

Semantic extraction demands that for every adversary that implements a strat-
egy (an efficiently computable function that outputs an accepting proof) there
exists an extractor. Unlike n-BB extraction where there could be a different ex-
tractor for every machine, in semantic extraction, one extractor for a function
is a good extractor for all machines that implement that function. Semantic ex-
traction is non-blackbox only in the randomness of the adversary but treats the
adversary’s machine as a black-box; our formal definition allows the extractor
access to a part of the adversary’s randomness. By allowing the extractor to see
all or none of the prover’s randomness, the semantic definition recovers standard
n-BB and BB extraction definitions. We show that a NIZK satisfies semantic ex-
traction where the extractor is given all the randomness of the adversary (called
semn-BB) if and only if it satisfies the standard n-BB extraction definition. While
it seems intuitive that the extractor’s (in)ability to see the adversary’s random
coins makes the semantic extractor (BB)n-BB, this is not straightforward, es-
pecially the equivalence with BB definition. A BB extractor is also a semantic
extractor. For the other direction, consider the case when the semantic extractor
is not allowed to see the adversary’s randomness; here we would like to argue that
such a semantic extractor (called semBB) is a BB extractor. However, semantic
extraction only guarantees a (potentially different) extractor for every function
implemented by a prover. We therefore have to switch the order of quantifiers in
order to construct one universal extractor that works for all provers. For a re-
laxed concrete security notion of extraction, we can indeed show this concluding
that a special case of semantic extraction semBB implies BB extraction.
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At a high-level, we rely on the minimax theorem from game theory to con-
struct a universal extractor from function-dependent extractors. We define a
utility function to capture how well the extractor performs. The minimax theo-
rem guarantees the existence of a distribution over extractors. Computing this
distribution is not guaranteed to be efficient. This can be done efficiently by
using a multiplicative weights algorithm [32] to implement an approximate min-
imax strategy by knowing the randomness used by the adversary. However, this
use of the adversary’s randomness makes the universal extractor non-blackbox.
We then show how to make the universal extractor BB without the randomness
of the adversary. Our use of minimax is reminiscent of its use in proving the
equivalence of distinguisher-dependent and universal simulators in [24], and in
switching the order of quantifiers in the proof of the leakage lemma in [36].

From Semantic to BB and n-BB. In the definition of semantic extraction, the
function implemented by the adversary uses randomness (s, t), and the extractor
receives t, but not s; thus the extractor is allowed to see a part of the adver-
sary’s randomness. Let us consider the two extremes of the extractor’s access:
(i) the extractor is not given even r, that is, does not see the randomness of the
adversary. (ii) the extractor is given both (s, t), that is, the extractor sees the
entire randomness of the adversary. Intuitively, the former is black-box in the
adversary, and the latter is white-box. However, in order to establish the equiv-
alences, we also have to be careful with the order of quantifiers in the definition
of extraction, which is different in the black-box and the semantic notion. In
this section, we show that versions of semantic extraction where we control the
randomness access of the extractor as in (i) and (ii) are equivalent to standard
black-box (one side of the equivalence additionally needs a relaxed concrete (t, ϵ)
variant of the definitions) and white-box definitions respectively.

We first give the concrete security definitions of black-box extraction, and se-
mantic black-box extraction which is the semantic definition where the extractor
is not given the randomness of the prover.

Definition 15. A NIZK argument Π = (CRSGen,P,V,Sim) is semantic black-
box knowledge sound (semBB) if for each efficiently implementable knowledge
soundness strategy f there exists a PPT extractor Ext = Extf , such that, for
each (even unbounded) TM A∗ that implements f

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); (s, t)← D
∧(x, w) /∈ R (x, π)← A∗(crs; s, t); w← Ext(td, x, π)

]
≤ negl(k).

Definition 16. A NIZK argument Π = (CRSGen,P,V,Sim) is (t, ϵ) black-box
knowledge sound, if there exists an extractor Extbb such that, for any t-time
adversary A:

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, w) /∈ R (x, π)← A(crs; r); w← Extbb(td, x, π)

]
≤ ϵ(k)

where r is the random coins of the adversary.
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Definition 17. A NIZK argument Π = (CRSGen,P,V,Sim) is (t, ϵ) semBB
(semantic black-box knowledge sound) if for each t-time implementable knowledge
soundness strategy f , there exists a PPT extractor Ext = Extf , such that, for
each (even unbounded) TM A∗ that implements f

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); (s, t)← D
∧(x, w) /∈ R (x, π)← A∗(crs; s, t); w← Ext(td, x, π)

]
≤ ϵ(k).

Theorem 4. Let Π be a NIZK argument that is BB knowledge sound as in
Definition 1. Π is also semBB knowledge sound as in Definition 15. Conversely,
if a NIZK argument Π is (t, ϵ) semBB knowledge sound as in Definition 17,
for each polynomial t and inverse polynomial ϵ, then Π is (t′, ϵ′) BB knowledge
sound for every polynomial t′ and inverse polynomial ϵ′ as in Definition 16.

Proof. The first implication is straightforward. Let Ext be a BB extractor that
satisfies Definition 1. Then this extractor is, by definition, a semantic black-box
extractor for each efficiently implementable knowledge soundness strategy as in
Definition 1.

We now prove the second implication. Suppose Π is (t, ϵ) semBB as in Defini-
tion 17, for each polynomial t and inverse polynomial ϵ. Let t′ be any polynomial,
and ϵ′ any inverse polynomial. We show that Π is (t′, ϵ′) BB by constructing an
extractor ExtBB and showing that it satisfies Definition 16.

High-level description of the extractor. The universal extractor ExtBB on in-
put td, x, π uses the multiplicative weights algorithm [32] to find a good set
of extractors (Ext1, . . . ,ExtL), then runs each of the extractors in the set and
outputs a witness if at least one of the extractors succeeds.

We define the “advantage” of an extractor Ext with respect to a knowledge
soundness strategy kss = f as follows. Since kss is efficiently implementable, we
fix a PPT adversary Akss that implements kss.

µ(Ext,Akss) := Pr

[
V(crs, x, π) = 1 r ← D,

(x, w) ∈ R (x, π) = f(crs; r), w← Ext(td, x, π)

]
.

Note that we define this advantage for a fixed pair of (crs, td). We would now
like to define this advantage for a distribution over the set kss of knowledge
soundness strategies kss1, . . . , kssk; consider the set {Akss1 ,Akss2 , . . . ,Akssk} of
efficient uniform machines with description of size ≤ log k that are implementa-
tions of the set of kss. We also redefine each Akssj such that it halts and outputs
⊥ after t′ steps. Each fixed t′-time machine A for t′ = poly(k) will eventually
appear in the set.

Given a distribution D over the set {Akss1 ,Akss2 , . . . ,Akssk}, we define the
advantage of the extractor Ext with respect to the distribution as

µ(Ext,D) := EAkss∼D [µ(Ext,Akss)] =
∑

Akss∈Supp(D)

D(Akss) · µ(Ext,Akss).

where (D(Akss1), . . . ,D(Akssk)) is the vector of probability weights representing
D. Our goal is to construct an extractor Ext such that for every t′ implementable
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strategy that is implemented by Akss, we have that

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k);
∧(x, w) /∈ R (x, π)← Akss(crs; r); w← Ext(td, x, π)

]
≤ ϵ′(k).

We note that, this is equivalent to constructing Ext such that for every t′

implementable strategy (implemented by Akss),

E(crs,td)∼CRSGen(1k) [µ(Ext,Akss)] ≥ 1−O(ϵ′(k)).

We now give an overview of the multiplicative weights algorithm. The ex-
tractor emulates a certain number of rounds of a zero-sum game between an
extractor player and a knowledge soundness adversary. The payoff function for
the extractor is the advantage µ(·, ·). In each round, the knowledge soundness
adversary chooses a distribution D, and the extractor chooses Exti such that
its expected payoff is high. We begin with the uniform distribution D(1) over
{Akss1 ,Akss2 , . . . ,Akssk}. In each round, this is updated to D(i+1) using the mul-
tiplicative weights algorithm using the advantage function µ(·, ·). For this, the
knowledge soundness adversary in the two player game needs to compute the
payoff function µ(Ext,Akss) of an extractor that is good with respect to Akss.
We use a universal adversary that takes a description of a knowledge soundness
adversary Akss as auxiliary input and runs Akss in order to compute the payoff
function. Then, we choose an extractor that is good with respect to this univer-
sal adversary. The extractor, therefore needs to efficiently find the kss-dependent
extractor for the mixed strategy D(i) over kss implementations. This is done by
using the universal adversary AU that takes the vector of probability weights
representing D as auxiliary input, samples a kss adversary from the distribu-
tion, and runs the sampled adversary. Let ExtAU

be the extractor for the kss
implemented by AU that is guaranteed to exist by semantic extraction. In the
ith round, we choose Exti to be the machine that runs ExtAU

given the weights
of D(i) as auxiliary input. The description of this extractor is given in Fig. 9.
Later, we show how to make ExtBB efficient when Exti is not given any auxiliary
input.

It can be verified that ExtBB runs in time O(L[γ(t′ + TU ) + TU ]) =

O( log k
ϵ′(k2) [

log(kL/ϵ′(k))
ϵ′(k)2 k(t′+TU )+TU ]), that is polynomial in t′ and 1/ϵ′. To prove

the theorem we must show that, for each t′ implementable knowledge soundness
strategy kss, E(crs,td)∼CRSGen(1k) [µ(ExtBB,Akss)] ≥ 1−O(ϵ′(k)). In order to show
this, we rely on two auxiliary lemmas: the first shows that if in each round Exti
does well against D(i) with respect to µ̃(·, ·), then Ext does well against each
Akss. This follows from the analysis of the multiplicative weights algorithm. The
second lemma shows that the above statement holds for µ(·, ·).

Lemma 8. For every knowledge soundness strategy implementation Akssj ∈
{Akss1 ,Akss2 , . . . ,Akssk}, the extractor defined in Fig. 9 generates D(1), . . . ,D(L)

and Ext1, . . . ,ExtL such that

1

L

L∑
i=1

µ̃(Exti,Akssj ) ≥
1

L

L∑
i=1

µ̃(Exti,D(i))−O(ϵ′(k)).
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ExtBB(td, x, π).

– Let D be a distribution over a set of kss implementations
{Akss1 ,Akss2 , . . . ,Akssk}. Let wD be the vector of weights representing

D. That is (wD)j = Pr
[
Akssj

$←−− D
]
. Let AU be the PPT that on input

(crs, r) interprets r as wD||χ||r′, samples a knowledge soundness strategy
adversary Akssj from D, using random coins χ, and runs Akssj on (crs, r′).
Let f be the function implemented by AU , and TU be a polynomial that
bounds the running time of AU . Let ExtAU be the (TU , ϵ

′) black-box semantic
extractor for AU as in Definition 17.

– Let L = Θ( log k
ϵ′(k2)

) and β = 1

1+
√

(2 log k)/L
.

– Let D(1) be the uniform distribution over {Akss1 ,Akss2 , . . . ,Akssk}. For i =
1, . . . , L do
1. On input (td, x, π), consider the adversary AUi(crs, (χ||r)) which is de-

fined as AU (crs, r
′), where r′ = wD(i) ||χ||r. Let fi be the function im-

plemented by AUi . Note that fi(crs, (χ||r)) = f(crs, (wD(i) ||χ||r)). Note
also that fi is an efficiently implementable knowledge soundness strategy,
since the running time of AUi is bound by TU . Let Exti be the (TU , ϵ

′)
black-box semantic extractor for AUi .

2. Let D(i+1) be defined as β
µ̃(Exti,Akssj

) · D(i) up to renormalizing. That is

D(i+1)(Akssj ) =
β
µ̃(Exti,Akssj

)D(i)(Akssj )∑k
l=1 β

µ̃(Exti,Akssl
)D(i)(Akssl)

where µ̃(Ext,Akss) is defined by the procedure in Fig. 10. µ̃(Ext,Akss) can
be thought of as an approximation of µ(Ext,Akss).

– Run each extractor Exti in the set {Ext1, . . . ,ExtL}, and verify if one of them
succeeded in computing a valid witness.

– Output a valid witness if available, else output ⊥.

Fig. 9: The black-box (t′, ϵ′) extractor.

Let γ = Θ( log(kL/ϵ′(k))
ϵ′(k)2 ). Let freq = 0. For i = 1, . . . , γ do

1. Sample r ← D. Compute (x, π) = Akss(crs, r).
2. Compute w← Ext(td, x, π).
3. If V(crs, x, π) = 1 and (x, w) ∈ R, then freq = freq+ 1.

µ̃(Ext,Akss) = freq/γ.

Fig. 10: µ̃(Ext,Akss)
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Proof. Recall that the relative entropy of two random variables X and Y is
defined as

KL(X||Y ) =
∑

x∈supp(X)

Pr [X = x] ln
Pr [X = x]

Pr [Y = y]
.

Now, consider a strategy Akssj ∈ {Akss1 , . . . ,Akssk}. Fix a pair (crs, td) ←
CRSGen. Lastly, fix the random tape of the extractor. in this way, all the random
variables that appears in Fig. 9, became fixed.

We begin showing that for each i ∈ {1, . . . , L} we have

KL(Akssj ||D(i+1))−KL(Akssj ||D(i)) ≤ (ln
1

β
)µ̃(Exti,Akssj )−(1−β)

k∑
b=1

Pr
[
D(i) = kssb

]
µ̃(Exti,Akssb).

(5)

Upon fixed i, we have

KL(Akssj ||D(i+1))−KL(Akssj ||D(i)) = ln
1

Pr
[
D(i+1) = kssj

] − ln
1

Pr
[
D(i) = Akssj

]
= ln

Pr
[
D(i) = Akssj

]
Pr
[
D(i+1) = Akssj

]
= ln

∑k
b=1 β

µ̃(Exti,Akssb
) Pr

[
D(i) = Akssb

]
βµ̃(Exti,Akssj

)

= ln(
1

β
)µ̃(Exti,Akssj ) + ln

k∑
b=1

βµ̃(Exti,Akssb
) Pr

[
D(i) = Akssb

]
.

Since, x ∈ [0, 1] and β > 0 imply that βx ≤ 1 − (1 − β)x, recalling that∑k
b=1 Pr

[
D(i) = Akssb

]
= 1, we have

ln(
1

β
)µ̃(Exti,Akssj ) + ln

k∑
b=1

βµ̃(Exti,Akssb
) Pr

[
D(i) = Akssb

]
≤ ln(

1

β
)µ̃(Exti,Akssj ) + ln

(
1− (1− β)

k∑
b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

])

Lastly, from x < 1 implies that ln(1− x) ≤ −x, we have

ln(
1

β
)µ̃(Exti,Akssj ) + ln

(
1− (1− β)

k∑
b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

])

≤ ln(
1

β
)µ̃(Exti,Akssj )− (1− β)

k∑
b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
,

which complete the proof of Eq. (5).
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Now, summing Eq. (5) over i ∈ {1, ..., L}, we have

KL(Akssj ||D(L+1))−KL(Akssj ||D(1))

≤ ln(
1

β
)

L∑
i=1

µ̃(Exti,Akssj )− (1− β)
L∑
i=1

k∑
b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
.

From the last inequality and using KL(Akssj ||D(L+1)) ≥ 0,

KL(Akssj ||D(1)) ≤ ln k and ln( 1β ) ≤
1−β2

2β (which holds because β ∈ (0, 1]), we
have

− ln k ≤ 1− β2

2β

L∑
i=1

µ̃(Exti,Akssj )−(1−β)
L∑
i=1

k∑
b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
.

Rearranging the last inequality we have

L∑
i=1

k∑
b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
≤ 1− β2

2β(1− β)

L∑
i=1

µ̃(Exti,Akssj) +
1

1− β
ln k

=
1 + β

2β

L∑
i=1

µ̃(Exti,Akssj ) +
1

1− β
ln k

=

L∑
i=1

µ̃(Exti,Akssj ) +

(
1 + β

2β
− 1

) L∑
i=1

µ̃(Exti,Akssj ) +
1

1− β
ln k.

We recall here that β = 1

1−
√

(2 log k)/L
. So 1

1−β ln k =
√
2L ln k
2 + ln k and

1−β
2β L+

√
2L ln k
2 =

√
2L ln k, which imply

L∑
i=1

k∑
b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
≤

L∑
i=1

µ̃(Exti,Akssj ) +

(
1 + β

2β
− 1

) L∑
i=1

µ̃(Exti,Akssj ) +
1

1− β
ln k

=

L∑
i=1

µ̃(Exti,Akssj ) +

(
1 + β

2β
− 1

) L∑
i=1

µ̃(Exti,Akssj ) +

√
2L ln k

2
+ ln k

≤
L∑
i=1

µ̃(Exti,Akssj ) +
1− β
2β

L+

√
2L ln k

2
+ ln k

=

L∑
i=1

µ̃(Exti,Akssj ) +
√
2L ln k + ln k.

Finally, rearranging the inequality and dividing by L we have the result. For
the reader convenience, we also recall here that, by definition,

µ̃(Exti,D(i)) =

k∑
b=1

µ̃(Exti,Akssb) Pr
[
D(i) = Akssb

]
.

⊓⊔
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Lemma 9. For each Akssj ∈ {Akss1 ,Akss2 , . . . ,Akssk}, with probability 1 −
O(ϵ(k)) over the random coins of the extractor, the extractor defined in Fig. 9
generates D(1), . . . ,D(L) and Ext1, . . . ,ExtL such that

1

L

L∑
i=1

µ(Exti,Akssj ) ≥
1

L

L∑
i=1

µ(Exti,D(i))−O(ϵ′(k)).

Proof. As done in the previous lemma, fix a pair (crs, td)← CRSGen, and fix the
random tape of the extractor. in this way, all the random variables that appears
in Fig. 9, become fixed. We begin to show that, |µ̃(Ext,Akss)− µ(Ext,Akss)| ≤
O(ϵ′(k)) with probability 1 − O( ϵ

′(k)
kL ), for each extractor Ext and each Akss ∈

{Akss1, . . . ,Akssk}. Let X denotes the random variable that counts the number
of success of the extractor Ext, when one compute µ̃(Ext,Akss), as prescribed in
Fig. 10. That isX = freq, where freq is the variable defined in Fig. 10. Formally,
X = γµ̃(Ext,Akss). Note that the expected value of X is E(X) = γµ(Ext,Akss).
Now,

Pr [|µ̃(Ext,Akss)− µ(Ext,Akss)| ≥ ϵ′(k)] = Pr [|X − γµ(Ext,Akss)| ≥ ϵ′(k)γ]
≤ Pr [|X − γµ(Ext,Akss)| ≥ ϵ′(k)γµ(Ext,Akss)]

= Pr [|X − E(X)| ≥ ϵ′(k)E(X)] .

We recall here the multiplicative form of Chernoff bound for a random vari-
able X. For each δ > 0, it holds that

Pr [|X − E(X)| ≥ δE(X)] ≤ 2e−(δ2E(X))/3.

We also recall that γ = Θ( log(kL/ϵ
′(k))

ϵ′(k)2 ). Applying the Chernoff bound to the last

term of the inequality above, we have

Pr [|µ̃(Ext,Akss)− µ(Ext,Akss)| ≥ ϵ′(k)] ≤ 2e−(ϵ(n)2E(X))/3

= 2e−(ϵ(k)2γµ(Ext,Akss))/3

= 2

(
kL

ϵ′(k)

)(−Cµ(Ext,Akss))

= O(ϵ
′(k)

kL
),

where C is a positive constant.

By the union bound, we have

|µ̃(Exti,Akss)− µ(Ext,Akss)| ≤ O(ϵ′(k)), (6)

for each i ∈ {1, . . . , L}, with probability at least 1− kLO( ϵ
′(k)
kL ) = 1−O(ϵ′(k)).
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Finally, conditioned on the previous event, we have

1

L

L∑
i=1

µ(Exti,Akssj ) ≥
1

L

L∑
i=1

µ̃(Exti,Akssj )−O(ϵ′(k))

≥ 1

L

L∑
i=1

n∑
k=1

µ̃(Exti,Akssk) Pr
[
D(i) = Akssk

]
−O(ϵ′(k))

≥ 1

L

L∑
i=1

k∑
b=1

(µ(Exti,Akssb)−O(ϵ′(k))) Pr
[
D(i) = Akssb

]
−O(ϵ′(k))

=
1

L

L∑
i=1

µ(Exti,D(i))−O(ϵ′(k)).

Here the second inequality holds by Lemma 8 and the other inequalities follows
by Eq. (6). ⊓⊔

Now, we show that, for each i ∈ {1, . . . , L}, Exti is a good extractor against
D(i), that is E(crs,td)∼CRSGen(1k)

[
µ(Exti,D(i))

]
≥ O(ϵ′(k)) for each i. Consider,

µ(Exti,D(i)) =

k∑
j=1

D(i)(Akssj ) · µ(Ext,Akssj )

=

k∑
j=1

D(i)(Akssj ) · Pr

V(crs, x, π) = 1 r ← Dj ,
∧ (x, π) = fj(crs; r),

(x, w) ∈ R w← Ext(td, x, π)

 .
= µ(Exti,AUi

) = µ(ExtAUi
,AUi

)

The second equality is given by the definition of AUi
, and the third inequal-

ity follows from the definition of Exti. Let f be the kss implemented by AUi
.

Now, since ExtAUi
is a good extractor for f , by the (t′, ϵ′) semantic black-box

extraction, we have that

E
(crs,td)∼CRSGen(1k)

[
µ(Exti,D(i))

]
= E

(crs,td)∼CRSGen(1k)

[
µ(ExtAUi

,AUi
)
]

= Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); s← D
∧(x, w) ∈ R (x, π)← AUi

(crs; s); w← ExtAUi
(td, x, π)

]
≥ 1− ϵ′(k) (7)

From Lemma 9, with probability 1−O(ϵ′(k)), the generated {Ext1, . . . ,ExtL}
are such that

1

L

L∑
i=1

µ(Exti,Akssj ) ≥
1

L

L∑
i=1

µ(Exti,D(i))−O(ϵ′(k))

1

L
E

(crs,td)

[
L∑
i=1

µ(Exti,Akssj )

]
≥ 1

L
E

(crs,td)

[
L∑
i=1

µ(Exti,D(i))

]
−O(ϵ′(k)) (8)
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From Eq. (7) and Eq. (8),

1

L

L∑
i=1

E
(crs,td)

[µ(Exti,Akss)] ≥ 1−O(ϵ′(k)).

Finally, since ExtBB generates the set of {Exti}, and fails only if all of them
fail, we have

E
(crs,td)

[µ(ExtBB,Akss)] ≥
1

L

L∑
i=1

E
(crs,td)

[µ(Exti,Akss)] ≥ 1−O(ϵ′(k)).

⊓⊔

Unfortunately, the extractor depicted in Fig. 9 is not guaranteed to be poly-
nomial time since it is not efficient to find the distribution-dependent extractor
Exti. Using an auxiliary input to encode the distribution is an idea used in prior
works like [24], however, since we are interested in a BB extractor, we cannot
allow the extractor to read auxiliary inputs. Instead, we interpret the universal
KSS – that takes an auxiliary input, a string encoding each distribution D(i),
samples a distribution, then samples a KSS as per that distribution – also as a
knowledge soundness strategy. We then show that invoking the extractor corre-
sponding to this universal KSS works well against distribution dependent AUi

.
Note that such a AU is indeed polynomial time: Each distribution D computed
in the “for” loop of Fig. 9 can be represented as a weight vector wD of polynomial
length.

Let ExtAU
be a (t, ϵ2) extractor against the knowledge soundness strategy

AU , where AU is as defined above. We show in the following lemma that ExtAU

is a good approximation of an extractor for any distribution dependent AUi
,

with probability greater than 1−O(ϵ). Thus, we can define the efficient univer-
sal black-box extractor as follows: run L independent executions of ExtAU

and
output a valid witness if at least one of the executions succeeds. The used ExtAU

has to be a (t, ϵ) with ϵ much better than ϵ′2.

Lemma 10. Let N be the number of times that any semantic extractor is called
in the procedure defined in Fig. 9. Let L be defined as in Fig. 9. Let ExtAU

be the
(t, ϵ) semantic black-box extractor against AU , where ϵ = O(ϵ′2/N). Then the
procedure defined by running L independent executions of ExtAU

is a black-box
(Lt, ϵ′) extractor, for every inverse polynomial ϵ, ϵ′.

Proof. Let Y be the conditional expectation of the failure of ExtAU
against AU ,

given a fixed distribution wD over Akss-es. Formally we have

Y (W) = E [1− µ(ExtAU
,AU )| [W = w]]

= Pr

[
V(crs, x, π) = 1 (χ, r)← D
∧(x, w) /∈ R (x, π)← AU (crs; (w||χ||r)); w← ExtAU

(td, x, π)

]
.
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Note that E [Y ] = ϵ(k), by definition. We now recall Markov inequality. For each
non-negative random variableX that admits expected value E [X], for each value
α it holds that

Pr [X ≥ α] ≤ E [X]

α
.

Applying the inequality to Y we get

Pr [Y ≥ ϵ′(k)] ≤ ϵ(k)

ϵ′(k)
= O(ϵ′(k)/N(k)).

Note that, for each of the k Akss, there exists w such that

Pr

[
V(crs, x, π) = 1 r ← D
∧(x, w) /∈ R (x, π)← Akss(crs; r); w← ExtAU

(td, x, π)

]
=Pr

[
V(crs, x, π) = 1 (χ, r)← D
∧(x, w) /∈ R (x, π)← AU (crs; (w||χ||r)); w← ExtAU

(td, x, π)

]
= Y (w).

Here w is the distribution that puts a weight of 1 on Akss. Moreover, for each
distributions D(i), represented by vector of weights wi and the corresponding
AUi

, we have

Pr

[
V(crs, x, π) = 1 (χ||r)← D
∧(x, w) /∈ R (x, π)← AUi

(crs; (χ||r)); w← ExtAU
(td, x, π)

]
=Pr

[
V(crs, x, π) = 1 (χ, r)← D
∧(x, w) /∈ R (x, π)← AU (crs; (wi||χ||r)); w← ExtAU

(td, x, π)

]
= Y (wi).

Suppose now, we define a universal extractor as the one defined in Fig. 9,
except, we run AU every time an extractor is called in the procedure. This new
universal extractor is a good approximation of the one in Fig. 9, as long as
the distribution of Y (W) is sufficiently dense around its average. Indeed, using
Markov inequality, we show how to choose ϵ as a function of ϵ′ so that each
time we use ExtAU

instead of any other extractor in the proof of Theorem 4,
with overwhelming probability, we have an average loss of O(ϵ′(k)/N(k)). Now
applying the union bound we have the result. The resulting BB extractor runs
in time Lt.

⊓⊔

Semantic and white-box extraction. We now state the restricted semantic
knowledge soundness definition for which the equivalence to white-box knowl-
edge soundness holds. We consider knowledge soundness strategies f such that
f : CRS× Γt → χ× Ψ and Γs is the set that contains only the empty string.

Definition 18. A NIZK argument Π = (CRSGen,P,V,Sim) is semantic white-
box knowledge sound (semn-BB) if for each efficiently implementable knowledge
soundness strategy f , there exists a PPT extractor Ext = Extf , such that, for
each (even unbounded) TM A∗ that implements f

Pr

[
V(crs, x, π) = 1 (crs, td)← CRSGen(1k); r ← D
∧(x, w) /∈ R (x, π)← A∗(crs; r); w← Ext(td, x, π, r)

]
≤ negl(k).
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Theorem 5. A NIZK argument is white-box knowledge sound (semn-BB) as in
Definition 2 if and only if it is also semantic knowledge sound as in Definition 18.

Proof. Any semantic extractor that satisfies Definition 18, is also, by definition, a
white-box extractor for each PPT that implements a certain function. So “only
if” side is trivial. To show the other direction, suppose that there exists two
efficient PPT machines A,A′ that implement the same function f . Let Ext,Ext′

be the corresponding white-box extractors as in Definition 2. We show that Ext
is a semantic extractor for A′.

Consider the set of tuples (crs, x, π) such that there exists r for which (x, π) =
f(crs, r). We can divide this set into two disjoint subset. The first subset is
defined by the tuples such that w ← Ext(td, x, π, r), w′ ← Ext′(td, x, π, r) and
(x, w) ∈ R, (x, w′) ∈ R with overwhelming probability. Given the tuple belongs
to this set, then Ext will also be a good extractor for A′, although in the general
case it can return a different (but still valid) witness with respect to Ext′.

We now consider the set of tuples (crs, x, π) such that at least one extractor
fails with non-negligible probability. Consider the subset of tuples such that
w ← Ext(td, x, π, r), w′ ← Ext′(td, x, π, r) and (x, w) /∈ R, (x, w′) ∈ R. This set
is of negligible size, since it is a subset of the set of tuples for which Ext fails,
which is negligible dy definition.

Thus, Ext is a good semantic extractor for each PPT that implements the
function f . It only remains to show that Ext is a good extractor even against
unbounded TMs that implement f . This is true since the set in which Ext fails
is of negligible size. So, let A∗ be an unbounded TM that implements f . Clearly,
Ext is a good extractor for A∗, since A(crs, r) = A∗(crs, r) for each (crs, r). It
is also a good semantic extractor for A∗, since the set of (crs, x, π) tuples such
that Ext fails on A∗ but not for A is the empty set.

D.3 Impossibility of Semantic Knowledge Soundness for CH-NIZK

Theorem 6 (Theorem 2 restated). Let Llpar be any 1DL-friendly algebraic
language with lpar = (M,θ). The NIZK argument in Fig. 2 cannot be semantic
knowledge sound for Llpar under the SDL assumption.

Proof. The proof is similar to the proof of Lemma 2. Fix a language with the
properties mentioned in the statement; that is, fix suitable M,θ. Suppose that
the relative NIZK argument is semantic knowledge sound. Define the canonical
prover adversary, on input crs = [e]2 and randomness (s, r, r′), in the following
way:

1. Sample uniformly random w1 using seed s.
2. Using random coins r′ sample all the other integer, w2, . . . , wd and define

w = λw(w1, . . . , wn).
3. Compute x = λx(w1, . . . , wn).
4. Using random coins r compute a, [d]2 as prescribed by the honest prover.
5. Output ([x]1, π = ([a]1, [d]2)).
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Let Extf be the semantic extractor defined for the canonical adversary. We can
exploit it to define an adversary A for the SDL assumption. On input an SDL
challenge ([w1]1, [w1]2), A do the following.

1. Sample e, r, r′.
2. Using random coins r′ sample all the other integer, w2, ...wd and define

[w]2 = λw([w1]2, w2 . . . , wn). Recall that this is efficiently computable since
λw is linear in w1.

3. Compute [x]1 = λx([w1]1, w2 . . . , wn). Recall that this is efficiently com-
putable since λx is linear in w1.

4. Compute [a]1 as r[M(x)]1.
5. Compute [d]2 as e[λ(w)]2 + [r]2.
6. Compute w← Extf (([a]1, [d]2), e, [x]1, (r, r

′)).
7. Output w1.

Since A computes the same function as an unbounded prover that is able to
recover e from [e]2, inputs provided to the extractor are correctly distributed.
Thus, A computes discrete logarithm w1 with the same probability that Extf is
successful, breaking the SDL assumption.

D.4 Impossibility of Semantic Extractability for SPHF-based
QA-NIZKs

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS can
depend on some parameters lpar of the language for which proofs have to be
generated [44]. The language dependent preprocessing improves efficiency and
leads to succinct proofs which have size as short as a single group element [44].
QA-NIZK arguments are not arguments of knowledge in general. While in [22]
it has been shown that QA-NIZK arguments can satisfy this property in the
generic/algebraic group model, showing this property in the case of black-box
extraction where the extractor can extract a witness from the prover using only
its input/output interface seems counterintuitive as the proof size is shorter
than the witness. In this section, we prove this intuition to be correct by giving a
stronger impossibility result which shows SPHF-based QA-NIZKs with semantic
knowledge soundness cannot exist. More precisely, we consider the most efficient
QA-NIZKs Πkw by Kiltz and Wee [45] and show that it cannot be semantic
knowledge sound.

D.5 Overview of Kiltz-Wee QA-NIZK

The core idea of the NIZK proof system in [45] for linear space membership
languages is as follows: starting from a DVS-based SPHF for the language
(see Fig. 7), which can be seen as a symmetric-key analogue of NIZK with a
designated verifier and then translating it to the bilinear group setting. To be
more precise, let Llpar with lpar = [M]1 ∈ Gℓ×k1 be the linear language defined
as

Llpar =
{
[x]1 ∈ Gℓ1|∃w ∈ Zkp : [x]1 = [M]1 ·w

}
(9)
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CRSGen(lpar = [M]1 ∈ Gℓ×k
1 )

A← Dt;α← Zℓ×(t+1)
p

[γ]1 := [M⊤α]1;C := αA

crs := ([γ]1, [C,A]2)

return (crs, td = α)

Sim(crs, td = α, [x]1)

return π := [x⊤α]1

P(crs, [x]1 = [M]1w,w)

return π := ([w⊤γ]1 ∈ Gt+1
1

V(crs, [x]1,π)

ê([x⊤]1, [C]2)
?
= ê(π, [A]2)

Fig. 11: QA-NIZK proof system Πkw under Dt-KerMDH assumption

A designated-verifier ZK from a DVS-based SPHF (see A.4) for Llpar can be con-

structed as follows: the verifier first selects a key α ∈ Zℓ×(t+1)
p , where t depends

on the hardness assumption behind the soundness property. Next, the verifier
sends [M⊤α]1 to the prover, who later computes and sends π = w⊤[M⊤α]1 to
the verifier. Finally, the verifier checks if [x⊤]1α = π. Starting from this con-
struction, Kiltz and Wee make it a publicly-verifiable QA-NIZK proof system in
the CRS model by using pairing techniques as follows: the CRS includes [M⊤α]1
and [A,αA]2 for a vector A ∈ Z(t+1)×t

p chosen from a distribution Dt. The proof
remains the same as before, but the verification is the pairing check

ê([x⊤]1, [αA]2)
?
= ê(π, [A]2)

The soundness relies on the hardness of finding non-trivial cokernel elements of
A and the smoothness of the underlying projective hash function (PHF). Also,
for the right choice of the distribution for A, the most efficient choice that the
assumption is believed to hold is t = 1 which results in succinct proofs consisting
of only two group elements. The protocol Πkw is depicted in Fig. 11.

D.6 Impossibility of semantic extractor for Kiltz-Wee QA-NIZK.

We now prove that Πkw cannot be semantic knowledge sound under the discrete
logarithm assumption.

Theorem 7. Let Llpar be a linear language over some cyclic group G1 with
lpar = [M]1. The QA-NIZK Πkw depicted in Fig. 11 cannot be semantic knowl-
edge sound under the DL assumption in G1.

Proof. The proof is very similar to the proof of Lemma 2. Suppose Πkw is se-
mantic knowledge sound. Let P be the canonical prover adversary that on input
a CRS crs = ([γ]1, [C,A]2) and random coins s, r′ proceeds as follows:

1. Sample the first component of the witness w1 using random coins s.
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2. Sample other components of w using random coins r′.
3. Compute x = [M]1w.
4. Compute π := ([w⊤γ]1 ∈ Gt+1

1 .
5. Return ([x]1,π).

Let f be the function of honest prover strategy that P uses to compute a valid
proof. Namely, f(crs, (s, r′)) = ([x]1,π). The semantic extractor ExtP given as
input ([x]1,π, td = α; r) can output w with overwhelming probability. Note
that r = ⊥ as the prover is deterministic. A DL adversary A can now use this
extractor to break the DL assumption. Specifically, A, on a DL challenge [ϱ]1
proceeds as follows:

1. Samples a group element [x]1 using randomness r′ such that the first element
of [x]1 is defined as [x1]1 = [ϱ]1.

2. Selects a trapdoor td = α and computes an accepting proof π = [x⊤]1α.
3. Invokes the extractor on [x]1,π who outputs w. Return the first element w1

of w.

Now observe that A computes inputs of Extf exactly as an inefficient prover P∗

for which the extraction is guaranteed. Hence,A computes the discrete logarithm
ϱ = w1 of [ϱ]1 with the same probability that Extf succeeds.

⊓⊔

52


	NIWI and New Notions of Extraction for Algebraic Languages

