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Abstract. In this short note we explore a particular behaviour of the CSIDH

key exchange that leads to a very special form of (shared) key control via the

use of the quadratic twists. This peculiarity contained in CSIDH with regard
to quadratic twists was already noted in the original CSIDH work and used

in several subsequent papers but we believe spelling out this in the form of an

attack might be useful to the wider community.

1. Introduction

CSIDH is an isogeny based post quantum key exchange presented at Asiacrypt
2018 [1] based on an efficient commutative group action. The idea of using group
actions based on isogenies finds its origins in the now well known 1997 paper by
Couveignes [2]. Almost 10 years later Rostovtsev and Stolbunov rediscovered Cou-
veignes’s ideas [3]. A remark contained in the original CSIDH paper already shows
a symmetry of the isogeny graph over Fp with respect to quadratic twisting. In this
short note we are going to demonstrate how a malicious party in a key exchange
can leverage this CSIDH peculiarity to force the shared secret to a specific value
under the attacker’s control. This will render CSIDH susceptible to key control. As
we will discuss in the rest of the note this doesn’t represent an issue for standard
Diffie-Hellman key exchange but it might cause some trouble if CSIDH is employed
in some unusual non-Diffie-Hellman protocols.

2. CSIDH and quadratic twist

CSIDH is an isogeny based post quantum key exchange that was introduced
by Castryck, Lange, Martindale, Panny, and Renes [1] in 2018. CSIDH extends
the idea of Couveignes [2] and Rostovtsev-Stolbunov [3] (CRS) by restricting the
isogeny graph of supersingular elliptic curves and isogenies defined over Fp. By
employing supersingular curves all isogenies can be computed using Vélu’s formu-
las [4]. CSIDH key exchange shares similarities with the original Diffie-Hellman
construction. For a thorough explanation of the CSIDH protocol we refer to the
original CSIDH paper [1]. We report below a short summary:

CSIDH’s key exchange. Suppose Alice and Bob have key pairs ([a], E1) and
([b], E2). Upon receiving Bob’s public key E2, Alice verifies that the elliptic curve
is in Ellp(O). She then applies the action of her own secret [a] to E2 to compute
the curve [a]E2 = [a][b]E0. Bob proceeds analogously with his secret [b] and Alice’s
public key E1 to compute the curve [b]E1 = [b][a]E0 (which is the same than Alice’s
shared value due to the commutativity of cl(O)).
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An important fact in CSIDH is the symmetry of the isogeny graph over Fp with
respect to quadratic twisting [1, Remark 5]. The quadratic twist of an elliptic curve
E : y2 = f(x) is Et : dy2 = f(x) where d ∈ Fp is a non quadratic residue in Fp.
The quadratic twist can be efficiently computed in the CSIDH setting.

We report here this very important fact proved in [5, Lemma 5]:

Lemma 2.1. For all [a] ∈ cl(O) and all E ∈ Ellp(O) we have [a]−1E = ([a]Et)t

Remark 1. Lemma 2.1 is specific to the isogeny commutative group action operat-
ing on supersingular elliptic curves (like CSIDH). The same doesn’t apply to the
ordinary curve case as in the Couveignes–Rostovtsev–Stolbunov key exchange [2, 3].

In [5], the above Lemma 2.1 is used as part of an algorithm to solve the key
recovery problem in CSIDH when the full endomorphism ring of the target curve
is known. In [6] the quadratic twist is used to compress the three-round oblivious
transfer scheme to an optimal two rounds. A recent paper [7] defines a new notion
of group actions with twists in order to derive a new Password-Authenticated Key
Exchange schema. In the following sections we are going to show how Lemma 2.1
can be leveraged in order to gain some control over the shared key obtained as part
of a CSIDH key exchange.

3. Key control in key agreement protocols

The term key control indicates the situation where, during a key exchange pro-
tocol, a malicious party forces the other party’s shared secret to lie in a small key
space chosen by the attacker. The first to mention the issue were Mitchel et al. in
[8]. One known way to achieve this for classic Diffie-Helmann is the small subgroup
confinement attack that was first defined in a paper by van Oorschot and Wiener [9]
and attributed to Vanstone, Anderson and Vaudenay [10] who came up with a de-
scription of this notion. In a small subgroup confinement attack, an attacker (either
a man-in-the-middle or a malicious client or server) provides a key exchange value
y that lies in a subgroup of small order. Small subgroup confinement attacks are
possible even when the server does not repeat exponents—the only requirement is
that an implementation does not validate that received Diffie-Hellman key exchange
values are in the correct subgroup.

We have the following definition of key agreement protocol [11]:

Definition 3.1. A key agreement protocol is a key establishment technique
whereby a shared secret key is derived by two or more specified parties as a function
of information contributed by, or associated with, each of these, such that no party
can predetermine the resulting value.

A Diffie-Helmann key exchange can be seen as a special case of the more general
key agreement primitive.

Consider a simplified Diffie-Hellman authenticated key exchange protocol (see
Figure 1 ). The assumption here is that Alice’s encrypting gx to Bob’s public key
ENCB(gx) ensures that only Bob can learn gx. Then Alice and Bob negotiate a
shared secret k = gxy mod p using Diffie-Hellman key exchange. Bob’s hashing the
shared secret H(k) is used in Bob’s handshake response to demonstrate knowledge
of the computed shared key.

Now if an attacker has full control over the shared key it might represent an issue
as we can see an in Figure 2. Mallory can send a generator gi of a group of order
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k = gxy

Figure 1. Simplified Diffie-Hellman authenticated key exchange protocol.

qi (qi is equal to one in the Figure 2’s example) as her Diffie-Hellman key exchange
value, and the shared secret will be an element of the subgroup of order qi. Mallory
can do the same with Bob. Mallory then has a good chance of guessing Alice’s and
Bob’s shared secret in this invalid group. This was indeed the case for Tor’s (older)
TAP circuit handshake [12]. Also the Triple Handshakes attack on earlier versions
of TLS [13] where Diffie-Hellman outputs were directly used for channel binding
hence falling to this trap deserves a mention here.

Bhargavan and Delignat-Lavaud [14] describe “key synchronization” attacks
against IKEv2 where a man-in-the-middle connects to both initiator and responder
in different connections, uses a small subgroup confinement attack against both,
and observes that there is a 1/qi probability of the shared secrets being the same
in both connections. Bhargavan and Leurent [15] describe several attacks that use
this type of small subgroup confinement attack to obtain a transcript collision and
break protocol authentication.

As we will see in the next paragraph in the case of CSIDH the key control the
attacker will manage to pull is really special and pretty different from the one over
the finite field or elliptic curve cases.

4. Key control on CSIDH

Now we are going to spell out a simple key control attack that affects CSIDH key
exchange. This deviates substantially from the classical small subgroup confinement
attack. The main differences respect the classical attack are:

• The small key space chosen by the attacker where the shared secret lies has
always cardinality equal to one (i.e. it is a single element). This allows the
attacker to predict exactly the value of the shared secret with probability
one.
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MitM Mallory knows k used for authenticated encryption

Figure 2. A man-in-the-middle can force both parties to agree
on the same key.

• The key exchange value provided by the attacker is dynamically generated
upon receiving the victim’s public key.
• There is no possibility of input validation (with regard to key control) in

plain CSIDH. In order to stop the attack a protocol change is needed.

We start by presenting a weak form of the attack where the shared secret derived
after the CSIDH handshake will be the starting curve E0. We will see that in this
simple case the validation is possible hence preventing the attack will be possible.

Strawman attack. Upon receiving Alice’s public key E1 = [a]E0, Eve com-
putes its quadratic twist Et

1 = [a]−1E0 and provides it as key exchange value. The
shared secret will then be [a][a]−1E0 = E0 as predicted. This attack can be easily
prevented. Indeed it is trivial for Alice to ensure that the received exchange value
is not the quadratic twist of her contribution.

Next we present a modification of the previous strawman attack. In this case
the attacker will still force the shared secret to be a specific single value under
attacker control but the victim would not have the possibility to spot the attack if
plain CSIDH is used (we will discuss later in the paper a modification to CSIDH
contained in [7] that solves the issue but doubles the cost of the protocol). The
attack though is still very simple:

Key control attack. Let assume Eve wants to have the shared secret to be
[b]E0. Upon receiving Alice’s public key E1 = [a]E0, Eve computes its quadratic
twist Et

1 = [a]−1E0 and then applies the action of her own secret [b] to Et
1. Then Eve

provides [b]Et
1 = [b][a]−1E0 to Alice. The shared curve will then be [a]([b][a]−1E0) =

[b]E0 as expected. As mentioned before, differently than the strawman attack Alice
doesn’t have any chance to validate Eve’s public key for plain CSIDH (this is
supported by [6, Lemma 2.1]).

It is evident from the example above that Eve’s public key has the intent to
cancel out Alice’s contribution to the shared key, namely [a].
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In order to prevent the attack described above altogether we could modify the
standard CSIDH flow in the same way modelled in [7] where a new notion of group
actions with twists is defined. In this setting the new shared key is computed as

KDF([a]E2, [a]Et
2) = KDF([ab]E0, [a/b]E0) = KDF([b]E1, [1/b]E1)

where KDF is a standard key derivation function. The idea here is that Eve will
not be able to cancel out both inputs of the KDF function at the same time. The
cost increase due the protocol modification is quite significant though. Now both
Alice and Bob need to double their work compared to CSIDH because they need
to apply the action of their own secret twice.

5. Conclusions

In this short note we analyzed the key control in the context of the CSIDH set-
ting. This is usually not a problem for plain key exchange nevertheless it might be
harmful in more convoluted protocols. In section 4 we mentioned a costly modifi-
cation to the CSIDH protocol that prevents the key control issue. Another way to
have a group action based on isogeny where key control cannot be performed would
be to bring back the key exchange in graphs of ordinary isogenies (CRS) and try
to speed up its last incarnation [16].

Acknowledgments. We would like to thank Luca De Feo, Steven Galbraith, Got-
tfried Herold, Simon Masson and Christophe Petit for fruitful discussions and Luca
De Feo for pointing out the key control attack’s remediation and clarifying the
presentation of the note.

References

[1] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH:
An efficient post-quantum commutative group action. In Thomas Peyrin and Steven D. Gal-

braith, editors, Advances in Cryptology – ASIACRYPT 2018, pages 395–427. Springer Inter-

national Publishing, 2018.
[2] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report

2006/291, 2006.

[3] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on isogenies.
Cryptology ePrint Archive, Report 2006/145, April 2006.
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