
Authenticated Garbling from
Simple Correlations

Samuel Dittmer1[0000−0003−0018−6354], Yuval Ishai2, Steve
Lu1[0000−0003−1837−8864], and Rafail Ostrovsky1,3[0000−0002−1501−1330]

1 Stealth Software Technologies, Inc.
2 Technion - Israel Institute of Technology

3 University of California, Los Angeles

Abstract. We revisit the problem of constant-round malicious secure
two-party computation by considering the use of simple correlations,
namely sources of correlated randomness that can be securely generated
with sublinear communication complexity and good concrete efficiency.
The current state-of-the-art protocol of Katz et al. (Crypto 2018) achieves
malicious security by realizing a variant of the authenticated garbling
functionality of Wang et al. (CCS 2017). Given oblivious transfer corre-
lations, the communication cost of this protocol (with 40 bits of statis-
tical security) is comparable to roughly 10 garbled circuits (GCs). This
protocol inherently requires more than 2 rounds of interaction.
In this work, we use other kinds of simple correlations to realize the
authenticated garbling functionality with better efficiency. Concretely,
we get the following reduced costs in the random oracle model:
– Using variants of both vector oblivious linear evaluation (VOLE)

and multiplication triples (MT), we reduce the cost to 1.31 GCs.
– Using only variants of VOLE, we reduce the cost to 2.25 GCs.
– Using only variants of MT, we obtain a non-interactive (i.e., 2-

message) protocol with cost comparable to 8 GCs.
Finally, we show that by using recent constructions of pseudorandom
correlation generators (Boyle et al., CCS 2018, Crypto 2019, 2020), the
simple correlations consumed by our protocols can be securely realized
without forming an efficiency bottleneck.

1 Introduction

Practical protocols for low-latency secure 2-party computation typically rely on
Garbled Circuits (GC) [23]. Such protocols have constant round complexity, on-
line communication proportional to the input size, total communication propor-
tional to the circuit size, and good computational cost. We revisit the question of
concretely efficient GC-based protocols with malicious security, which has been
the topic of a long line of work originating from [16,15]. The authenticated gar-
bling approach of Wang et al. [20] and Katz et al. [14] gives the state-of-the-art
protocols along this line. This approach relies on oblivious transfers for a cut-
and-choose based implementation of a preprocessing functionality made up of a
collection of authenticated wire labels.

2 S. Dittmer et al.

This work is motivated by recent techniques for securely generating simple
forms of correlated randomness [3,5,18,4,6,22,7], which make it feasible to explore
practical alternatives to constructions based only on OTs. In this work, we give
three new constructions, including a non-interactive secure computation (NISC)
protocol [13], which use simple correlations that can be securely generated with
sublinear communication complexity and good concrete efficiency.

Protocol Correlation Cost (garbled circuits)

Dep. + online Total

WRK [20] OT 2.5 11.0

KRRW [14] v1 OT 1.5 7.75

KRRW [14] v2 OT 1 9.7

KRRW [14] with VOLE FVOLE 1 2.5

KRRW [14] with SPDZ MT 1 7

KRRW [14] with SPDZ and cert. VOLE MT-FVOLE-FsubVOLE 1 2.9

Ours, v1
(KRRW with FDAMT compiler to Fpre(κ))

FDAMT-FsubVOLE-FVOLE 1 1.31

Ours, v2 FbVOLE-FsubVOLE-FVOLE 1.47 2.25

NISC in the single-execution setting

Ours, v3 FOLE 8 8

AMPR14 [1] CRS 40 40
Table 1. Communication complexity for evaluating a large circuit after a “silent”
randomness generation step, as a ratio to the cost of a semi-honest garbled circuit. The
bucket size for KRRW is set to B = 3, which is a lower bound for circuits of size less
than 2ρ. Dep. + online communication refers to the higher of the two party’s one-way
circuit-dependent communication cost, including online and offline phase costs. The
total column adds in the cost of circuit-independent offline communication.

Our approach achieves significant savings over the approach of [14], reducing
the total communication cost from around 10 semi-honest GCs to 1.31 GCs in
our first protocol (comparing to the size of half-gates garbled circuits in both
cases). Our second protocol uses a compressed preprocessing functionality that
is expensive to generate for small circuits, but outperforms [14] in the large
circuit setting, requiring only 2.25 GCs and using only simple “VOLE-type”
correlations (see §1.1).

Our third protocol is non-interactive (NISC) and achieves comparable com-
munication complexity (8 GCs) than the variant of [14] with round complexity
proportional to the circuit depth, and roughly 5x the communication efficiency
of the best NISC protocols [1] in the single execution setting.

Part of our advantage comes from swapping out less efficient ways of gener-
ating correlated randomness with recent advantages. For example, a large part
of the cost of [14] comes from their methods of generating an authenticated bits
functionality, which can be realized without any communication given two in-
stances of vector oblivious linear evaluation (VOLE), defined in § 1.1. But our

Authenticated Garbling from Simple Correlations 3

main advantage comes from novel compilers from new forms of simple corre-
lated randomness to authenticated garbling functionality, including the use of
efficient generalizations of certified VOLE protocols (see §3.2) that allow verifi-
cation across more of the verification work to be done under statistical security
instead of computational security (see § 4.2). As we show in Table 1, our most
efficient protocol still uses roughly 2x less communication than [14] would use,
even if we replaced their authenticated bits generation procedure with VOLE.

Alternatively, the SPDZ protocol [10] could be used to realize the prepro-
cessing functionality of [14] with authenticated multiplication triples (MTs) in a
black box way. Doing this would require 7 GCs. Applying our certified random-
ness optimization of § 4.2 to this SPDZ approach would reduce communication
to 2.9 GCs, which is still more than both our non-NISC variants.

As we further discuss below, the secure generation of the correlated ran-
domness required by our protocols is typically cheaper than the protocol that
consumes it, especially for VOLE-type correlations or when using multiple cores.
Moreover, this secure generation is circuit-independent and only involves local
computation without any interaction.

1.1 Simple correlations

Our informal definition of a simple correlation is one that can be securely gener-
ated with sublinear communication complexity and good concrete efficiency. The
cost of sending a GC in the semi-honest setting is already linear in the circuit
size, and so will dominate the communication cost of setting up the randomness,
and any reasonably efficient randomness protocol can be run on multiple cores
in the background faster than the communication of the main protocol.

We note that all of the flavors of simple correlations discussed here can be
realized with a one-time setup step that generates randomness seeds. These seeds
can then be expanded into the full correlated randomness locally by each party.
This property facilitates running these protocols in a streaming mode, where the
randomness is unpacked as needed. To draw attention to this, and to simplify
the presentation, we write Extend(F) to denote unpacking additional entries
from the correlated randomness seeds. Additionally, this one-time setup can be
performed non-interactively, which we need to make step 2 of Figure 12 non-
interactive for our NISC protocol. We describe these properties more formally
as part of an ideal functionality for the correlation calculus in the full version of
this paper.

We rely on two main flavors of simple correlations: vector oblivious linear
evaluation (VOLE)-type correlations, and multiplication triple (MT)-type cor-
relations. In VOLE, a receiving party learns v := aβ+c along with the scalar β,
while the sending party learns a, c. VOLE with sublinear communication com-
plexity was introduced by Boyle et al. [3] in 2019 and has been improved since
then, see [7] for the most efficient current variant.

In MT, parties learn shares of vectors x,y along with shares of the piecewise
product z, zi = xi · yi. MT have been studied as an important primitive for

4 S. Dittmer et al.

Functionality F-notation Mathematical relation Cost comparison

VOLE-type correlations

Vector OLE FVOLE v = aβ + c, for a, c ∈ F2ρ 1 VOLE

Subfield Vector OLE FsubVOLE v = aβ + c, for a ∈ F2, c ∈ F2ρ ≈ 0.6 VOLE

Block Vector OLE FbVOLE vi = aβi + ci, for i = 1 . . . , L L VOLE

MT-type correlations

Two-sided authenticated
multiplication triples

FDAMT
Choose x · y = z, then share
[x], [y], [z], [αz], [βz]

2 MT

Programmable OLE FOLE
vi,j = ai · βj + ci,j
for (i, j) ∈ Q

|Q| MT

Table 2. Correlated randomness used throughout the paper. For programmable OLE,
the set Q is an arbitrary set of ordered pairs of indices. Cost comparison is given
with reference to the “base” randomness protocol, either VOLE or MT. Generating 1
million entries of VOLE costs roughly 0.05 seconds on standard computers. Generating
1 million entries of MT costs roughly 10 seconds.

years, e.g. [10] but only recently have been able to be generated efficiently and
silently [6].

We require several variants of these two types of randomness, as summarized
in Table 2. We define all non-standard correlations as functionalities where they
arise in the presentation. Crucially, both flavors of randomness generation allow
for “progammability” in such a way that each new variant does not require an
entirely new protocol, see e.g. [4,6].

Indeed, we can think of VOLE-type and MT-type correlations in terms of
simple atomic operations under a “correlation calculus”. For VOLE, atomic op-
erations consist of choosing a vector v ∈ Fn, for some field F , multiplying v
by a scalar β (possibly in an extension field E), sending a vector to a party,
and secret-sharing a vector between parties. Taking F = E = F2ρ or F2κ gives
standard VOLE, taking F = F and E = F2ρ gives subfield VOLE. Reusing the
vector v with a set of scalars βi gives block VOLE and block subfield VOLE.

For MT-type correlations, atomic operations consist of picking a random vec-
tor x ∈ Fn, computing the scalar product βx, computing the point-wise product
x ·y, sending a vector to a party, and sharing a vector between parties. Standard
authenticated triples come from computing z := x ·y and βz and sharing all four
vectors. Our two-sided authentication triples come from additionally computing
αz, and sharing this as well.

Finally, programmable OLE consists of a family of OLE vectors vi,j = aiβj+
ci,j , where the parties agree to re-use certain vectors ai and βj on certain entries.
The generation time and seed size of programmable OLE scales linearly with the
number of pairs (i, j) for which we generate a vector of OLE entries.

The VOLE protocol of [7] can generate a million entries of VOLE correlations
in roughly 0.05 seconds, or a million entries of subfield VOLE in roughly 0.03
seconds. The OLE protocol of [6] can generate a million OLE correlations in
roughly 10 seconds. For each of these protocols, the dominant cost is the secret
sharing of vectors. We therefore expect that block VOLE over L instances costs

Authenticated Garbling from Simple Correlations 5

roughly L times as much computation as a single VOLE, that standard authen-
ticated triples costs two times as much communication as OLE, and two-sided
authenticated triples cost three times as much.

We remark here that the Ring-LPN approach only allows silent generation
of authenticated multiplication triples over large fields of characteristic 2 such
as F2ρ . If authenticated triples could be silently generated over F2, then the
preprocessing functionality of [14] could be generated with only 2 bits of com-
munication per gate, via a procedure similar to that given in Lemma 3. It is
precisely because there is no simple correlation that can generate the prepro-
cessing functionality directly that the question of the most efficient compiler
from simple correlations to that functionality arises.

1.2 Notation

We let f be a function realized by a circuit C, where C is made up of input gates
I, boolean gates G, and output gates O. Let the input I = IA ∪ IB be held by
two parties A and B, and define n to be the number of AND gates in G, and
m = |I|+ |G|, including all gates in m.

We use κ and ρ as a computational and statistical security parameter, re-
spectively, and take κ = 128 and ρ = 40 for our concrete communication metrics.

During the evaluation of a garbled circuit, we write zi for the true value of
a wire, λi for the wire mask, and share λi among A and B as λi = ai ⊕ bi. We
use (⊕,∧) for field addition and multiplication over F2, any of (⊕,+,−) for field
addition over larger fields of characteristic 2, and · or concatenation for field
multiplication over larger fields of characteristic 2.

We use α, β for VOLE receiver inputs over F2ρ held by A,B respectively, and
∆A for a VOLE receiver input held by A over F2κ .

When discussing randomness certification in § 3.2, we need to distinguish
between an instance of FVOLE where party A is the receiver and party B the
sender with another instance of FVOLE with the roles reversed. In this instance,
we refer to the latter functionality as FELOV.

1.3 Our contribution

Our first protocol relies on both VOLE-type and MT-type correlations. It em-
ploys the same authenticated garbling technique as that in [14], but uses authen-
ticated triples over F2ρ , rather than cut-and-choose techniques, to generated au-
thenticated wire labels. This construction relies on a new compiler from a special
flavor of authenticated triples to the desired preprocessing functionality given in
§4.1, as well as a lightweight compiler from preprocessing with statistical security
to preprocessing with computational security, given in §4.2.

Theorem 1. There is a protocol that securely computes f against malicious
adversaries in the RO−FDAMT−FVOLE−FsubVOLE-hybrid model with the following
features:

6 S. Dittmer et al.

– Online Communication: O(κ(|I|+ |O|)).
– Circuit Dependent Communication: (2κ+ 2)n bits of communication.
– Total Communication: (2κ+2ρ+2)n (one-way) or (2κ+4ρ+2)n (two-

way) plus terms sublinear in n.
– Computation: O(κn).

Our second protocol relies only on VOLE-type correlations, and a modifica-
tion of the authenticated garbling protocol that, approximately, uses a garbling
approach from [20] to replace the authentication procedure in [14]. We give this
modified garbling protocol and prove its correctness in §5.1.

This modified approach increases the communication cost of the online plus
circuit dependent step, but allows the use of a simple block VOLE functionality
instead of one of the more computationally intensive PCGs used to build authen-
ticated triples. As written, the protocol uses quasi-linear work instead of linear
work, but this can be reduced to linear work by dividing the gates into blocks
of some large fixed size, and running the compressed preprocessing functionality
Fcp on each block in parallel.

This approach is best suited to the large circuit setting, since it requires
L ≈ ρ log |C| instances of VOLE (or for sufficiently large N and |C| > N ,
L = |C|ρ logN

N), in order to construct the compressed functionality Fcp. Because
VOLE-type correlations are so much more efficient, the computation of the ran-
domness generation for this protocol is roughly comparable to that of the first
protocol, but the communication of the VOLE seeds is much larger.

Theorem 2. There is a protocol that securely computes f against malicious
adversaries in the RO−FVOLE−FsubVOLE−FbVOLE-hybrid model with the following
features:

– Online Communication: O(κ(|I|+ |O|)).
– Circuit Dependent Communication: (2κ+3ρ)n bits of communication.
– Total Communication: (2κ+ 8ρ+ 1)n+ o(n).
– Computation: O(κn log n) or O(κn) with running Fcp on blocks.

Our third protocol relies only on MT-type correlations. It uses a similar
preprocessing functionality and authenticated garbling protocol as our first pro-
tocol, but combines them into a (single-use) NISC protocol. These protocols
require certain modifications in order to make them non-interactive. In partic-
ular, we require a conditional disclosure of secrets (CDS) functionality to allow
the receiver to authenticate their inputs without communication to the prover.
We give the details in §6.1.

Theorem 3. There is a NISC protocol that securely computes f against mali-
cious adversaries in the RO −FOLE-hybrid model with the following features:

– Online Communication: O(κ(|I|+ |O|)).
– Circuit Dependent Communication: (2κ+3ρ)n bits of communication.
– Total Communication: 16κn+o(n) (one-way) or (29κ+3ρ)n+o(1) (two-

way).

Authenticated Garbling from Simple Correlations 7

– Computation: O(κn).

We expect the first and third protocols to be dominant in the secure 2PC and
NISC settings, respectively, in the million gate setting and the second protocol
to be competetive around ten million gates.

1.4 Structure of paper

In Section 2, we give an overview of the construction of [14], and explain how this
construction can be treated as a blueprint pattern for a family of authenticated
garbling constructions. We then describe, at a high-level, how each level of the
blueprint is modified for each of our three protocols. In Section 3 we describe a
series of technical results about certified VOLE, combining correlated random-
ness functionalities, and conditional disclosure of secrets. Each of these results
serve the same general purpose of allowing one party to authenticate that their
inputs are well-formed to the other party. We give some additional protocols
and proofs in Appendix A. We then give our three protocols ΠDAMT

2pc , ΠVOLE
2pc and

ΠNISC
2pc in Sections 4, 5, 6, respectively.

2 Authenticated garbling: blueprints and variations

We will present the authenticated garbling protocols in this paper as three dif-
ferent constructions following the same general blueprint design. The protocols
can be pictured as a series of structures built side-by-side with the same number
of levels, and corresponding levels play a similar role in each protocol. We begin
by reviewing the approach of [14] through this framework, and then go into more
detail about how our approaches differ.

2.1 Review: The authenticated garbling blueprint of KRRW [14]

Authenticated shared bits. The first level of the construction is an authen-
ticated shared bits functionality. In [14], this functionality is presented through
the language of IT-MACs. We offer an equivalent definition in the language of
simple correlations: The authenticated shared bits functionality is a pair of im-
plementations of FsubVOLE, the first instance is over F2ρ , with party A acting as
sender and B acting as receiver, so that B receives β ∈ F2ρ , A receives a ∈ Fm

2

and c ∈ Fm
2ρ , and B receives v := aβ + c. In the second instance, the roles re-

versed and the FsubVOLE is given over F2κ , so that A receives α ∈ F2κ , B receives
b ∈ Fm

2 and d ∈ Fm
2κ , and A receives w := bα+ d.

These shares will play the role of the wire masks in Yao’s garbled circuits.
For the i-th wire, party B will learn the value ai ⊕ bi ⊕ zi, where zi is the true
wire value under a plaintext evaluation of the circuit. Because the value ai is
unknown to B, B learns nothing from this value. Because the value bi is unknown
to A, A is unable to employ a selective-failure attack to deduce which row of the
garbled table B is attempting to read.

8 S. Dittmer et al.

Authenticated parallel AND. To make the protocol secure against a mali-
cious A, party B needs to be able to verify that the row of the garbled table B is
reading from was constructed correctly. In order to do this, the parties augment
the authenticated bit randomness above with authenticated shares of the bits
(ai ⊕ bi) ∧ (aj ⊕ bj), for every AND gate Gk := (i, j, k,∧), as shown in Figure 1.

This construction requires two stages. The first stage we call authenticated
parallel AND. Let PAnd(n) be a circuit consisting of n AND gates executed
in parallel, so that the kth gate has input wires (2k − 1, 2k) and output wire

2n + k. To simplify notation, we write Fpre(κ) for F (PAnd(n),κ,ρ)
pre and Fpre(ρ) for

F (PAnd(n),ρ,ρ)
pre where n is clear from context. In [14], the parties realize the prepro-

cessing functionality in the special case of Fpre(κ). Equivalently, they construct
authenticated multiplication triples with entries in F2; as remarked above, there
is no simple correlation that can generate these triples silently.

In [14], these triples are generated using cut-and-choose techniques, which
makes up the lion’s share of the circuit-independent communication cost of that
protocol.

Remark 1. We note that, as well as translating the language of Fpre in [14] from
IT-MACs to VOLE, we now require that if A holds an input bit, B’s share of
that input bit’s wire mask is 0, and vice versa. This does not alter the security
of the protocol but it simplifies some of the proofs.

Fig. 1. Authenticated wire labels

Functionality F (C,ρ,κ)
pre : Pre-processing of wire labels for authenticated garbling.

Parametrized by values ρ, κ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T), for T ∈ {∧,⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪O. Recall that m := |I|+ |G|.

– A chooses α ∈ F2κ and wire labels a ∈ Fm
2 , c ∈ Fm

2ρ and sends them to Fpre.
– B chooses β ∈ F2ρ and wire labels b ∈ Fm

2 , d ∈ Fm
2κ and sends them to Fpre.

– For each input wire i ∈ I, if i ∈ IA, set bi := 0, and if i ∈ IB , set ai := 0.
– For each gate G = (i, j, k, T), in topological order:
• If T = ⊕, Fpre sets the values ak = ai + aj , bk = bi + bj , ck = ci + cj , and

dk = di + dj , where the addition is performed in the appropriate field of
characteristic 2.

• If T = ∧, Fpre chooses values âk uniformly at random from F2ρ , ĉk uniformly
at random from F, d̂k uniformly at random from F2κ , and b̂k = (ai + bi) ·
(aj + bj) + âk.

– Fpre computes

(v, v̂,w, ŵ) = (aβ + c, âβ + ĉ,bα+ d, b̂α+ d̂).

– Fpre sends (v, v̂, b̂, d̂) to B and (w, ŵ, â, ĉ) to A.

Authenticated Garbling from Simple Correlations 9

Authenticated circuit wires. The second step is to convert this generic pre-
processing Fpre(κ), which serves the parallel AND gate circuit only, to the circuit-

dependent preprocessing F (C,ρ,κ)
pre . In other words, we now want shares of the bit

(ai ⊕ bi) ∧ (aj ⊕ bj) for arbitrary pairs of indices (i, j), and ai ⊕ bi, aj ⊕ bj may
in turn represent the XOR of several prior bits.

This conversion is done using standard Beaver triple techniques [2], as we
show below in §4.2. In one variant of [14] the triples are instead constructed
“in-place”, which gives a modified construction with less total communication,
but some additional communication in the circuit-dependent phase. The main
result of [14] can now be re-stated as follows:

Theorem 4 ([14]). The KRRW protocol [14] securely computes a functionality
f against malicious adversaries in the RO-Fpre-hybrid model, with 2κ+2 bits of
communication per AND gate, κ+ 1 bits of communication per input gate, and
1 bit of communication per output gate.

Authenticated garbling. The authenticated garbling protocols of both [20]
and the follow-up work [14] are both instructive here. After the authenticated
circuit wire labels are completed, party A plays the role of the sender in a semi-
honest evaluation of Yao’s garbled circuit, and some additional interaction allows
B to verify the correctness of the opened entry of each AND gate.

For an AND gate Gk := (i, j, k,∧), let âk, b̂k be the authenticated bit shares

of (ai ⊕ bi) ∧ (aj ⊕ bj), and let λk := ak ⊕ bk, with λ̂k defined similarly. If both
parties know the value (λi⊕ zi), where zi is the true value of the wire, then they
can locally construct authenticated bit shares of

zi ∧ zj ⊕ λk = λk ⊕ λ̂k ⊕ (zi ⊕ λi)λj ⊕ (zj ⊕ λj)λi ⊕ (zi ⊕ λi) ∧ (zj ⊕ λj).

From there, B evaluates the garbled circuit, A securely opens their bit share of
zi ∧ zj ⊕ λk, and B verifies that the value zi ∧ zj ⊕ λk is equal to the wire label
zk ∧ λk computed from garbled circuit evaluation.

The primary distinction between [20] and [14] is how the value of λi ⊕ zi is
computed. In [20], party A computes all four possibilities of (λi ⊕ zi, λj ⊕ zj),
with the accompanying shares of zi ∧ zj ⊕ λk. They then construct what are
essentially two garbled circuits. The first garbled circuit, used for evaluation,
uses computational security to hide gate labels from B. The second garbled
circuit, used for authentication, hides only the masked wire labels zi ⊕ λi and
the accompanying share of zi∧zj⊕λk, and uses statistical security to stop A from
flipping a bit of the masked wire label. In [20], the first garbled circuit requires
3κ communication per gate, and the second requires 4ρ bits of communication.

In the [14] protocol, the first circuit is improved to 2κ bits of communication
by applying the half-gate technique of Zahur et al. [24], and the second circuit
is replaced with one more round of communication wherein B opens all masked
wire labels to A, and A then batches together the proof of correct garbling on
the traveled path.

Remark 2. A recent advance due to Rosulek and Roy [17] reduces the cost of
semi-honest garbled circuits to 1.5κ+5 bits per AND gate and is compatible with

10 S. Dittmer et al.

free XOR. A natural question is whether the approach of [14] can be extended
to this new “three-halves” garbled circuit construction. We hope the answer is
yes, although there are some obstacles to overcome.

In the [17] construction, the gates and wire labels are “sliced and diced“ into
half labels, but there is no canonical way for the evaluator to perform a linear
combination of these half labels and compute the output wire’s half labels. In-
stead, the desired linear combination is garbling-dependent, and randomized and
encrypted in such a way that the evaluator learns the desired linear combination
without learning anything about the garbling. In the [14] paradigm, the garbler
cannot know the garbling, and naturally, it is harder to randomize and encrypt
something you do not know. We leave the study of this question to future work.

2.2 New Ideas: Authenticated shared bits

We now go through the levels of this blueprint again, this time explaining the
changes that each of our three protocols make to the pattern laid out above. First,
for authenticated shared bits, as mentioned above, two instances of FsubVOLE

are sufficient to generate this randomness, and we use exactly this for our first
protocol, ΠDAMT

2pc .

For the protocol using only VOLE-type correlations, ΠVOLE
2pc , we introduce a

complication. We now generate all wire tags bi as a (public) linear combination

of entries of a vector b̃ of wire tags. The length of b̃ is O(ρ log n). This allows

us to generate shares of values ai ∧ bj as a linear combination of values ai ∧ b̃j′ ,
which can in turn be represented as entries of VOLE.

To ensure that security against a malicious A remains, we have to verify that
we are still protected against selective failure attacks. Following the protocol of
[20], we do not allow A to learn the values zi ⊕ λi, and instead send a second
garbled circuit that allows B to learn zi ⊕ λi and the accompanying share of
zi ∧ zj ⊕ λk. If A corrupts only a single gate, then by the randomness of b̃, A
will learn nothing from an abort. However, if A corrupts more gates, the values
bi may be linearly related, and so A could learn something from whether or
not B aborts. However, with an appropriate choice of parameters, the values bi
will only be linearly related if A has corrupted so many gates that an abort is
inevitable.

We note that a similar approach that generates the vector a as a linear
transformation of a shorter vector ã (i.e. a = MH ã) would be insecure. Indeed,
any vector w in the (non-empty) left kernel of MH is orthogonal to a. B must
learn the values zi ⊕ λi in order to evaluate the circuit, and can then subtract
their share to obtain zi ⊕ ai. Taking the dot product of a⊕ z with w gives w · z,
and B has broken the zero-knowledge property of the secure computation.

Finally, for the NISC protocol ΠNISC
2pc , we can not realize an instance of

FsubVOLE where B is the sender and A is the receiver non-interactively. Instead,
we let one of A’s inputs to programmable OLE be the vector α := (α, α, . . . , α),
and then B’s input b intended for FsubVOLE can instead be given to FOLE.

Authenticated Garbling from Simple Correlations 11

2.3 Authenticated parallel AND

For our first protocol, ΠDAMT
2pc , we construct authenticated parallel AND gates

from doubly authenticated multiplication triples in two steps. First, we convert

from F (ρ,n)
DAMT to Fpre(ρ) using a construction inspired by Beaver triples, see § 4.2.

This conversion requires 2ρ bits of communication per AND gate.

We then convert from Fpre(ρ) to Fpre(κ), that is, from preprocessing for parallel
AND gates over F2ρ to parallel AND gates where bits held by party B are
authenticated over F2κ instead of F2ρ , using a lightweight protocol that requires
only 3 + o(1) bits per AND gate. This can be done with semi-honest security
using the usual compiler from random to fixed subfield VOLE (see e.g. [3]). To
make this secure against malicious B, B must convince A that the bits used for
this instance of fixed FsubVOLE match the authenticated bits generated by Fpre(ρ).
We give a lightweight protocol for this authentication in §4.2.

For our VOLE-only protocol, we instead use the block VOLE construction
(FbVOLE) to obtain bit shares of the product (a2i−1 ⊕ b2i−1) ∧ (a2i ⊕ b2i) term
by term. Party A holds the bit a2i−1 ∧ a2i locally, and can use this value as an
entry of its authenticated bits constructed above, and verify its correctness under
LPZK. Likewise party B holds the bit b2i−1 ∧ b2i locally and can authenticate
and verify under LPZK. The cross terms a2i−1 ∧ b2i and a2i ∧ b2i−1 are linear

combinations of terms of the form a2i−1 ∧ b̃j and a2i ∧ b̃j , respectively, and so
bit shares of these terms can be obtained from the block VOLE.

In order to obtain authenticated shares, we also need to generate shares of
(ai ∧ b̃j)β. To do this, we double the size of B’s input to the block VOLE, so

that B’s inputs are b̃j , b̃jβ. (For security reasons, we need to shift all of B’s
inputs by a random value γ, which is an additional input. We give the details in
§ 5.2 and Appendix B.1). To verify that B’s inputs satisfy the correct relation,
B passes their inputs to an instance of FVOLE, playing the role of Sender, and
proves correctness under LPZK.

For technical reasons, our protocol does not guarantee that a cheating A is
detected immediately, but instead ensures that, if A cheats, A corrupts their own
share of b̂iα, which will then be detected during the evaluation of the garbled
circuit with overwhelming probability.

Because of the linear dependence on B’s bits, this is no longer a realization
of Fpre(ρ). We define a modified functionality Fcp and show that the converter

from Fpre(ρ) to Fpre(κ) can likewise convert from F (ρ)
cp to F (κ)

cp .

For our NISC protocol, we follow the same approach as in the VOLE-only
protocol to produce shares of (a2i−1 ⊕ b2i−1) ∧ (a2i ⊕ b2i) and (a2i−1 ⊕ b2i−1) ∧
(a2i ⊕ b2i)β, term by term. As discussed above, the parties have to generate
authenticated bits through a call to FOLE instead of FsubVOLE. To generate the
pairwise products b2i ∧ a2i−1 and b2i−1 ∧ a2i, and so-on, we re-use A’s input a
to the FOLE functionality, and pair it with a new vector b′, which reverses the
order of every pair (b2i−1, b2i).

Because the protocol is non-interactive, B cannot prove anything about their
inputs to A (in the CRS model, this would require a CRS generated by A and

12 S. Dittmer et al.

a message from B to A before A’s final message from A to B for the secure
computation, giving a 3 round protocol). Instead, A and B use a lightweight
conditional disclosure of secrets protocol (CDS) which ensures that either B’s
inputs are well-formed or A’s message to B in the NISC protocol appears uni-
formly random to B. We sketch the protocol briefly here, and describe it in more
detail in § 6.1.

For the CDS protocol, parties A and B generate an instance of FOLE with A’s
input the vector α := (α, α, . . . , α), and B’s input the vector β := (β, β, . . . , β).
Call the resulting shares (v, c), so that if both parties are honest, we have vi+ci =
αβ for all i. Then likewise v1 − vi = c1 − ci for all i if both parties are honest,
and are otherwise offset by a term unknown to the cheating party.

Let the vector s := (ci − ci) be held by A and the vector t := (v1 − vi) be
held by B. Then A adds H(s) to all future messages, B subtracts H(t) from
all future messages. if B cheats, B will be unable to construct s, and so A’s
messages will appear random.

Similar protocols are used to guarantee that the vector b′ really holds the
desired re-ordering of b, and that all necessary polynomial relations on b hold.
We give more detail in § 6.1.

We note that our converters from authenticated gates over ρ to authenticated
gates over κ (i.e. the conversion from Fpre(ρ) to Fpre(κ), and related protocols)
can no longer be applied in the NISC setting because this protocol requires
opening certain shared values publicly, and thus is interactive. This is one of the
reasons that our NISC protocol requires more communication than our other
two protocols.

2.4 Authenticated circuit wires

For our first interactive protocol, ΠDAMT
2pc , the converter from Fpre(κ) to F (C,κ,ρ)

pre

follows the approach of [14]. We give the protocol converting from Fpre(κ) to

F (C,κ,ρ)
pre in § 4.2. For our VOLE-based protocol ΠVOLE

2pc , we give instead build

F (C,ρ,ρ)
cp directly and convert from that functionality to F (C,κ,ρ)

cp . We describe
these conversions in § 5.2.

For our NISC protocol, we define a modified functionality F (C,ρ,κ)
pre−wbc which is

similar to the functionality Fpre, but has the property from Fcp that a cheating A
is not immediately detected but corrupts their own shares. We observe that the
protocol sketched above for obtaining authenticated parallel AND gates from
authenticated bits can be used to obtain authenticated wires for an arbitrary
circuit. Instead of swapping b2i−1 and b2i in a second input vector to FOLE, we
have one input vector bL to the FOLE of all left inputs bi to gates Gk = (i, j, k,∧),
and a second input vector bR of all right inputs bj . The same techniques are
used to ensure that bL and bR hold the correct linear transformations of b.

2.5 Authenticated garbling

For our first protocol, we can use the authenticated garbling protocol of [14]

directly, once the functionality F (C,ρ,κ)
pre has been realized, with a small modifi-

Authenticated Garbling from Simple Correlations 13

cation to the step where the initial gate labels are determined to account for our

small modification to F (C,ρ,κ)
pre where we allow a party’s wire mask zero when

the other party knows the true wire value. The protocol still requires, as in [14],
2κ+ 2 bits of offline circuit dependent communication per AND gate.

For our VOLE-only protocol, we can no longer use the authentication ap-
proach of [14] where B reveals to A the masked wire labels zi⊕λi = zi⊕ai⊕ bi.
Of course, A can XOR these shares by the values ai that A holds, leaving zi⊕bi,
and, because the values bi are computed as linear combinations of some shorter
vector b̃, there is some linear combination of the zi ⊕ bi terms that causes the bi
terms to cancel identically, and A would learn some linear relation on the vector
z of true wire values.

Instead, we combine the techniques of [20] with Zahur’s half-gate techniques,
so that B can open exactly one authenticated bit, corresponding to (zi∧zj)⊕λk,
for the k-th multiplication gate. This requires only statistical security, since the
output is only used for verification, and does not play the role of a gate label for
an output wire. On the other hand, since the output is being used for verification,
we can no longer allow a term H(Li,0, k)⊕H(Lj,0, k) to be added to the output,
so we need to send an additional element of F2ρ as part of the garbled table. In
total, the authenticated garbling requires 2κ+3ρ bits of offline circuit dependent
communication per AND gate.

In our NISC protocol, we also cannot have party B revealing masked wire
labels to A, because that would require additional rounds of communication.
We use the same approach as in our VOLE-only protocol, but need to show
additional care to verify that the protocol can be made non-interactive. We give
the details in §6.2 and Appendix B.5.

3 Authenticating correlated randomness

Before we proceed with a technical description of our main protocols, we give an
overview of the techniques related to correlated randomness we use throughout
the rest of the paper.

3.1 Compilers from “random” to “fixed” randomness variants

There is a standard compiler from random VOLE to fixed VOLE (see e.g. [3])
that allows parties to replace a randomly selected vector v := aβ + c, where all
entries are chosen randomly, with a new vector v′ := a′β′ + c′, where a′, c′ are
chosen by the sender, β′ is chosen by the receiver, and the receiver additionally
learns v′ given above. The conversion protocol can be stated simply: the receiver
sends β′−β to the sender, the sender sends a′−a and c′−c+(β′−β) ·a′ to the
receiver, and both parties adjust their shares locally. In cases where the sender
does not need to control the value of c′, the sender sends only a′ − a, and sets
their pair of vectors to (a′, c− (β′ − β) · a).

We can use this same compiler with block VOLE, where a vector a is used
across several instances of VOLE. To replace a random a with a fixed vector a′,
party A only needs to send the message a′ − a once across all instances.

14 S. Dittmer et al.

A similar compiler exists for a batch of OLE correlations v := ab+ c, where
one party sends a′ −a, the other sends b′ −b, and both parties compute locally
to obtain v′ := a′b′ + c′. As with block VOLE, if the random vector a is used
in multiple instances of programmable OLE, a single message suffices to convert
this vector to a′ across all instances.

For a careful accounting of round complexity, we note that, when the value
of c can be chosen randomly, these messages can be sent concurrently or in
sequence, in either order. If one party does not require fixed inputs, that party
does not need to send a message at all.

3.2 Certification between varieties of correlated randomness

Recall the “correlation calculus” introduced in §1.1, that allows us to express
each of our randomness functionalities in terms of a short list of atomic oper-
ations. This same “correlation calculus” allows us to re-use vectors and scalars
across distinct flavors of correlated randomness as long as they are of the same
type (that is, VOLE-type or MT-type).

For example, if we wish to have an instance of FVOLE and an instance of
FsubVOLE using the same value β but different vectors a,a′, then we generate
a,a′ randomly, multiple each vector by β, and share each of the results over the
desired field. Similar approaches allow us to use the same vector and different
values β, β′, and can also be applied to use the same vectors or values between
instances of FsubVOLE or FVOLE over different (top-level) fields.

By combining this with the previous observation about compilers from ran-
dom to fixed VOLE and OLE, we can allow any vector or scalar to be used as
an input to any instance of FVOLE, FsubVOLE, or FbVOLE.

There are three situations that are not covered by this approach, for which
we require bespoke protocols. Each of them work by extending the randomness
instances with fresh randomness and evaluating some short polynomial expres-
sion on the outputs, which will produce equal outputs for both parties if and
only if the desired equality condition holds. A random oracle is applied to the
outputs and then the results are compared; any number of certifications of this
form can be batched together by applying the random oracle to the collection
of outputs.

First, in Section 4 we wish to authenticate that the same value α is used in a
call to FVOLE and a call to FDAMT. These are generated by different “correlation
calculuses”, and it would be a massive efficiency hit to generate FVOLE as MT-
type randomness. We give a lightweight protocol ΠDAMT∧VOLE

cert in Appendix A.1
Second, in Section 5, we wish to show that, for two calls to VOLE with the

parties switching between the role of receiver and sender, the constant value β
used by one party in their role as receiver matches another value b used by the
same party while playing the role of the sender. We give a lightweight protocol
ΠVOLE∧ELOV

cert in Appendix A.2.
Third, in Sections 4 and 5, we wish to certify that two instances of subfield

VOLE with different receiver inputs α,∆A over different fields F2ρ , F2κ have
the same vector inputs b, even if one vector is generated via the compiler from

Authenticated Garbling from Simple Correlations 15

random to fixed VOLE, and another is generated using an unspecified possibly
interactive protocol. We give a lightweight protocol Πρ∧κ

cert in Appendix A.3.

3.3 Line Point Zero Knowledge

In [11], Dittmer, Ishai and Ostrovsky introduced Line Point Zero Knowledge, or
LPZK, a protocol for building a NIZK for general circuits using a single instance
of VOLE. When working in the random oracle model on circuits corresponding to
low degree polynomials, LPZK is especially powerful, because many verifications
can be batched together. As shown in [21], any number of polynomials on a total
of n inputs of degree at most d can be verified with communication of (n+ d)κ
bits communication. For completeness, and because we use similar arguments
elsewhere in this paper, we sketch the argument here.

A prover P wishes to convince a verifier V that P holds inputs a = (ai)
such that g(a) = 0. Each input ai becomes the entry of a VOLE vi = aiβ +
ci, and V evaluates g(v), which will be a polynomial in β of degree at most
d − 1 if P is telling the truth. After masking these values with an oblivious
polynomial evaluation of degree d− 1, P opens the coefficients and V confirms
the desired equality. In the ROM, many such checks can be batched together,
with V computing

∑
g(v)H(m; i) and P computing the coefficients of

∑
g(at+

c)H(m; i), where m represents some message transcript committing P to the
values a, and i is the index representing the number of times we’ve evoked this
batch check.

This construction includes the cost of the compiler from random VOLE to
fixed VOLE. In our case, where we wish to prove relations on an already set
fixed VOLE, we can omit the nκ bits of communication, and send only dκ bits.
In this paper, we exclusively apply LPZK to the setting where we wish to prove
that already set VOLE inputs satisfy some collection of polynomials of degree d,
and take d ≤ 3 throughout. We write ΠLPZK(a, c, β,v,R) for the protocol that
proves that a satisfies the set of relations R, when one party holds (a, c) and
the other party holds β and v := aβ + c.

4 Authenticated garbling from authenticated garbled
triples

We follow the blueprint laid out in Section 2, giving the full protocol description
and proofs. Recall that in Figure 1, we gave the a preprocessing functionality

F (C,ρ,κ)
pre used in the constructions of [20] and [14]. Let PAnd(n) be a circuit con-

sisting of n AND gates executed in parallel, so that the kth gate has input wires

(2k−1, 2k) and output wire 2n+k. Recall that we write Fpre(κ) for F
(PAnd(n),κ,ρ)
pre

and Fpre(ρ) for F
(PAnd(n),ρ,ρ)
pre .

16 S. Dittmer et al.

4.1 From authenticated bits to parallel AND with authenticated
triples

The underlying correlated randomness we need for our protocol is subfield VOLE
for generating authenticated bits, VOLE, for running proofs of input correctness
under LPZK, and doubly authenticated multiplication triples, for converting
from authenticated bits to authenticated parallel AND.

Doubly authenticated multiplication triples can be generated from Ring-LPN
under the “correlation calculus” discussed in §1.1. This correlated randomness is
nonstandard, although it can be viewed as a modified form of the authenticated
triples of SPDZ [10]. We give the functionality formally in Figure 2. We then
prove the following lemma, which shows how to generate authenticated bits and
how to convert these bits to authenticated parallel AND gates.

Fig. 2. Two-sided authenticated triples

Functionality F (ρ,n)
DAMT: Two-sided authenticated triple generation

Parametrized by values ρ, n ∈ N.

– A chooses α ∈ F2ρ and sends α to FDAMT.
– B chooses β ∈ F2ρ and sends β to FDAMT.
– FDAMT samples vectors (x,y) uniformly at random from Fn

2ρ .
– FDAMT sets z := x · y, where the multiplication is done element-wise.
– FDAMT generates random shares (xA,1,yA,1, zA,1) and (xB,1,yB,1, zB,1) of the

vectors (x,y, z), with random shares chosen in F2ρ .
– FDAMT generates random shares (xA,2,yA,2, zA,2) and (xB,2,yB,2, zB,2) of the

vectors (αx, αy, αz), with random shares chosen in F2ρ .
– FDAMT generates random shares (xA,3,yA,3, zA,3) and (xB,3,yB,3, zB,3) of the

vectors (βx, βy, βz), with random shares chosen in F2ρ .
– For i ∈ {1, 2, 3}, FDAMT sends (xA,i,yA,i, zA,i) to A and (xB,i,yB,i, zB,i) to B.

Lemma 1. The protocol in Figure 3 securely computes Fpre(ρ) against malicious
adversaries in the FDAMT −FsubVOLE −FVOLE-hybrid model with 2ρ bits of com-
munication from B to A and 2ρ bits of communication from A to B per AND
gate.

Completeness. Expanding as in the standard Beaver triple approach, we have

âk + b̂k = ef + ey + fx+ z = (ai + bi)(aj + bj),

as desired. Then note that

ŵk + d̂k = (ai + bi)(aj + bj)α+ âkα = b̂kα,

Authenticated Garbling from Simple Correlations 17

Fig. 3. Authenticated parallel AND gates from FDAMT

Protocol Π
pre(ρ)
DAMT: Circuit dependent pre-processing of wire labels from

authenticated parallel AND gates.

Parametrized by values ρ, κ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T), for T ∈ {∧,⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪O.

1. A and B invoke FsubVOLE with A as sender and B as receiver so that A receives
α ∈ F2κ , B receives b ∈ Fm

2 and d ∈ Fm
2κ , and A receives w := bα+ d.

2. A and B invoke FsubVOLE with B as sender and A as receiver, so that B receives
β ∈ F2ρ , A receives a ∈ Fm

2 and c ∈ Fm
2ρ , and B receives v := aβ + c.

3. A and B invoke FDAMT with A’s input α, B’s input β, so that party P receives
(xP,ℓ,i, yP,ℓ,i, zP,ℓ,i) for ℓ ∈ {1, 2, 3} and 1 ≤ i ≤ n.

4. A and B compute the authentication messages (mA,mB) using ΠDAMT∧subVOLE
cert .

A sends H(mA) to B, who verifies that this equals H(mB), and otherwise
aborts.

5. Initialize a counter t← 1.
6. For each gate G = (i, j, k, T), in topological order:

– If T = ⊕:
• A sets the values ak = ai + aj , ck = ci + cj , and wk = wi + wj .
• B sets the values bk = bi + bj , dk = di + dj and vk = vi + vj .

– If T = ∧:
• A sends to B the messages

(mA
1 ,m

A
2 ,m

A
3 ,m

A
4) := (ai + xA,1,t, aj + yA,1,t, ci + xA,3,t, cj + yA,3,t).

• B sends to A the messages

(mB
1 ,m

B
2 ,m

B
3 ,m

B
4) := (bi + xB,1,t, bj + yB,1,t, di + xB,2,t, dj + yB,2,t).

• A locally verifies that (wi+αxA,1,t+xA,2,t+mB
3 , wj+yA,2,t+αyA,1,t+

mB
4) = (mB

1 α,m
B
2 α) and aborts if not.

• B locally verifies that (vi + βxB,1 + xB,3 +mA
3 , vj + yB,3,t + βyB,1,t +

mA
4) = (mA

1 β,m
A
2 β) and aborts if not.

• Both parties locally compute e := mA
1 +mB

1 and f := mA
2 +mB

2 .
• A locally computes

âk = ef + eyA,1,t + fxA,1,t + zA,1,t

ĉk = eyA,3,t + fxA,3,t + zA,3,t

ŵk = (ef + âk)α+ eyA,2,t + fxA,2,t + zA,2,t.

• B locally computes

b̂k = eyB,1,t + fxB,1,t + zB,1,t

d̂k = eyB,2,t + fxB,2,t + zB,2,t

v̂k = (ef + b̂k)β + eyB,3,t + fxB,3,t + zB,3,t.

• t← t+ 1.
7. Party A performs

ŵ→ ŵ + (a+ lsb(â))α, â→ lsb(â)

8. Party B performs

v̂→ v̂ + (b+ lsb(b̂))β, b̂→ lsb(b̂),

18 S. Dittmer et al.

as desired. Similarly, we have âkβ + ĉk = v̂k, as desired.
At the end of the protocol, parties A and B locally adjust these shares so

that â and b̂ become vectors of bits. Since â+b̂ ∈ {0, 1}n, we have (a+ lsb(â)) =

(b+ lsb(b̂)), so this adjustment preserves the desired relations.
Security. By the symmetry of the protocol, it is sufficient to consider the case
of a malicious A. Let A be an adversary corrupting A. First, we show that if A
sends incorrect values in a message, B will abort with overwhelming probability.
Indeed, if A sends ai + xA,1 + ϕ1 instead of ai + xA,1 and ci + xA,3 + ϕ2 instead
of ci + xA,3, B will verify whether

(ai + xA,1 + ϕ1)β = (ai + xA,1)β + ϕ2,

i.e. whether βϕ1 = ϕ2.
We can then construct a simple simulator S that runs A as a subroutine

and plays the role of A in the ideal world. The simulator generates B’s last two
messages uniformly at random, and the first two messages so that they satisfy the
desired check. By the uniform randomness of yB,1 and yB,2, the distribution of
B’s messages di+yB,1, dj+yB,2 in the real world are identical to the distribution
of S’s simulation of B in the ideal world. Since bi + xB,1 and bj + xB,2 can be
computed from A’s data and the message di + yB,1, dj + yB,2, the distribution
of these values are identical as well.

S then sends B’s messages to A, and aborts if A responds with anything
besides (ai+xA,1, aj+yB,1, ci+xA,3, cj+yA,3). Otherwise, S outputs whatever A
outputs. As discussed above, with overwhelming probability an honest B aborts
in the real world whenever S aborts, so the joint distribution of the outputs
of A and an honest B in the real world are indistinguishable from the joint
distribution of the outputs of A and S in the ideal world.

4.2 Circuit-dependent preprocessing from parallel AND gates

We now go from authenticated parallel AND gates over ρ to authenticated par-
allel AND gates over κ, and then to authenicated circuit wires. We begin with
the conversion from Fpre(ρ) to Fpre(κ).

Lemma 2. The protocol in Figure 4 realizes F (C,ρ,κ)
pre securely in the F (C,ρ,ρ)

pre −
FsubVOLE-RO hybrid model, at the cost of an additional 3n+O(κ) bits of commu-
nication. In particular, Fpre(κ) is securely realizable in the Fpre(ρ) −FsubVOLE-RO
hybrid model.

Proof. Completeness. We have w′ = b′∆A + d′ and ŵ′ = b̂′∆A + d̂′ both
immediately before Step 4 and immediately after Step 5. The desired relations

on the vectors a+b, â+b̂ follow from the correctness of the F (C,ρ,ρ)
pre functionality.

Security. Security of steps 1,2, and 6 follow from the security of the underlying
protocols. Security against a malicious B follows from the correctness of Πρ∧κ

cert ,
shown in Lemma 10, which guarantees that A (or a simulator S) will detect an
incorrect message with high probability.

Authenticated Garbling from Simple Correlations 19

For security against a malicious A, note that A sends no message in steps
3 through 5, and that the messages m1, m2 can be simulated by sampling
uniformly random sequences of bits, by the security of FsubVOLE.
Complexity. We have |w| = 2n and |ŵ| = n, so the messages m1,m2 take 2n+
n = 3n bits. The certification step calling Πρ∧κ

cert costs O(κ) bits by Lemma 10.
See § 3.2 for an overview of this certified functionality notation.

Fig. 4. Authenticated wire labels over κ from wire labels over ρ

Protocol Π
pre(κ)
pre(ρ) : Circuit dependent pre-processing of wire labels from

authenticated parallel ρ-AND gates.

Parametrized by values ρ, κ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T), for T ∈ {∧,⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪O.

1. A and B invoke F (C,ρ,ρ)
pre , generating vectors a, c,w, â, ĉ, ŵ and a value α for A

and vectors b,d,v, b̂, d̂, v̂ and a value β for B.
2. A and B invoke FsubVOLE with B as sender and A as receiver for the fields

(F2,F2κ), so that B learns b′,d′, b̂′, d̂′, and A learns ∆A ∈ F2κ and vectors
w′ := b′∆A + d′ and ŵ′ := b̂′∆A + d̂′.

3. B sends to A the vectors m1 := b+ b′ and m2 := b̂+ b̂′.
4. A adds to obtain w′ ← w′ +m1∆A and ŵ′ ← ŵ′ +m2∆A.
5. B adds to obtain b′ ← b′ +m1, b̂

′ ← b̂′ +m2.
6. A and B invoke Πρ∧κ

cert to certify that the new values of b, b̂ match their original
values.

7. A and B return a, c,w′, â, ĉ, ŵ′,∆A and b′,d′,v, b̂′, d̂′, v̂, β respectively.

Next, for completeness, we give a protocol for converting from Fpre(κ) to

F (C,ρ,κ)
pre . The following result is implicit in [14] and [20].

Lemma 3. Let C be a circuit with n AND gates. Then the protocol in Figure 5

securely computes F (C,κ,ρ)
pre against malicious adversaries in the RO-subVOLE-

Fpre(κ) hybrid model, with an additional 2n bits of communication.

Proof. The security of the first three steps follows from the security of the un-
derlying protocols.

Correctness is immediate, and the proof of security against malicious parties
is similar to the proof of Lemma 1.

Remark 3. As discussed in §2.1, Katz et al in [14] realize Fpre(κ) using an opti-
mized version of the TinyOT protocol. Their protocol, in addition to the cost of
producing authenticated bits, which could be done with sublinear communication

20 S. Dittmer et al.

Fig. 5. Authenticated wire labels from authenticated parallel AND gates

Protocol Π
pre(C)

pre(κ) : Circuit dependent pre-processing of wire labels from
authenticated parallel AND gates.

Parametrized by values ρ, κ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T), for T ∈ {∧,⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪O.

1. A and B invoke FsubVOLE with A as sender and B as receiver, so that A receives
α ∈ F2κ , B receives b ∈ Fm

2 and d ∈ Fm
2κ , and A receives w := bα+ d.

2. A and B invoke FsubVOLE with B as sender and A as receiver, so that B receives
β ∈ F2ρ , A receives a ∈ Fm

2 and c ∈ Fm
2ρ , and B receives v := aβ + c.

3. A and B invoke F (PAnd(n),κ,ρ)

pre(ρ) so that A obtains (w′, ŵ′, â′, ĉ′) and B obtains

(v′, v̂′, â′, ĉ′).
4. For each gate G = (i, j, k, T), in topological order:

– If T = ⊕:
• A sets the values ak = ai + aj , ck = ci + cj , and wk = wi + wj .

B sets the values bk = bi + bj , dk = di + dj and vk = vi + vj .
– If T = ∧ is the t-th AND gate:
• A sends (ai + a′

2t−1, aj + a′
2t) to B

• B sends (bi + b′2t−1, bj + b′2t) to A
• A and B locally compute ek := ai + bi + a′

2t−1 + b′2t−1 and fk :=
aj + bj + a′

2t + b′2t.
• A locally computes

âk = ekfk + ekaj + fkai + â′
t

ĉk = ekcj + fkci + ĉ′t

ŵk = ekwj + fkwi + ŵ′
t.

• B locally computes

b̂k = ekbj + fkbi + b̂′t

d̂k = ekdj + fkdi + d̂′t

v̂k = ekfkβ + ekvj + fkvi + v̂′t.

Authenticated Garbling from Simple Correlations 21

under VOLE, requires Bκ bits of communication per gate, with B ≈ ρ/ log |C|.
In particular, B ≥ 3 for |C| < 2ρ. Adding back in the 2κ bits required in the
online phase, the cost of [14] is at least 2.5x the cost of a semi-honest garbled
circuit for circuits with size |C| < 2ρ. Unfortunately, Lemma 2 does not offer
any improvements the approach of [14], since their compiler to Fpre(κ) requires
computational security, and so replacing it with a compiler to Fpre(ρ) would still
require Bκ bits per gate.

An alternative realization of the Fpre(κ) functionality could be accomplished
by the SPDZ protocol [10]. This would consume 6 authenticated multiplication
triples per AND gate and require 12κ additional communication under a naive
implementation. Applying Lemma 2 to the naive SPDZ-style approach gives a
compiler to Fpre(κ) by way of Fpre(ρ) that costs 12ρ+3 bits of communication per
gate, and thus 2κ+ 12ρ+ 3 bits per gate for the entire protocol, approximately
3x the cost of a semi-honest garbled circuit.

4.3 Authenticated garbling

The only changes we make to the authenticated garbling protocol of [14] are
after-effects of our decision to alter the preprocessing functionality so that A
does not hold a mask for a wire value that is one of B’s inputs, and vice versa.
The only steps that change materially therefore are steps 3 and 4. Step 3 in [14],
after translating into the language of VOLE, reads:

– For each i ∈ IB , A sends ai to B and invoke ΠLPZK to prove that this ai
matches the value in Fpre. B then sends yi ⊕ λi = yi ⊕ ai ⊕ bi to A. Finally,
A sends Li,yi⊕λi to B.

We replace this step with the following:

– For each i ∈ IB , B sends yi ⊕ bi to A. Then A sends Li,yi⊕bi
to B.

It is possible to simulate the previous protocol from this version by having
B generate A’s messages ai uniformly at random for i ∈ IA, and adjusting
their value bi to keep the sum ai ⊕ bi constant, and having A set ai = 0. These
adjustments can occur without any communication, since the values ai, bi are
never used again by A, B respectively. Therefore the security of one protocol
implies the security of the other. We make similar adjustments to Step 4.
Proof of Theorem 1 Combining the three lemmas in this section gives a real-

ization of F (C,ρ,κ)
pre in the FDAMT−FVOLE−FsubVOLE model. Applying Theorem 4

and incorporating the minor changes to the authenticated garbling protocol out-
lined above gives that the desired ΠDAMT

2pc protocol.

5 Authenticated garbling from block VOLE

5.1 Compressed authenticated bits from block VOLE

We begin by stating formally the compressed preprocessing functionality and
the block (subfield) VOLE functionality.

22 S. Dittmer et al.

The compressed preprocessing functionality compresses B’s wire labels be-
longing to AND gates in b to a much shorter vector b̃ of length

L :=
ρ log n− ρ log ρ

log 2
+ 2ρ.

Write bI for input wires, and b′ for AND gate wires. Then the vector b is
determined from bI∪b′ in the obvious way, and b′ is determined from b̃ by some
public linear transformation MH . Similarly B’s wire masks d′ are computed as
MH d̃, where d̃ ∈ FL

2κ .

Fig. 6. Compressed authenticated wire labels

Functionality F (C,ρ)
cp : Compressed pre-processing of wire labels for authenticated

garbling.

Parametrized by the value ρ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T), for T ∈ {∧,⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪O. Let n be the number of AND gates. Where clear from context, we
omit the parameters C, ρ, κ and write Fcp for F (C,ρ,κ)

cp .

– All parties compute

L =
ρ logn− ρ log ρ

log 2
+ 2ρ.

– A chooses α ∈ F2ρ and wire labels a ∈ Fn
2 , c ∈ Fn

2ρ and sends them to Fcp.

– B chooses β ∈ F2ρ and wire labels bI ∈ F|I|, b̃ ∈ FL
2 , dI ∈ F|I|

2ρ , d̃ ∈ FL
2ρ and

sends them to Fcp.
– Fcp chooses a random n× L matrix MH over F2 and sends MH to A and B.

– Fcp computes the vectors b′,d′ via b,= MH b̃ and d′ = MH d̃, and computes
b,d from b′,d′.

– As a sub-protocol, Fcp runs a simulation of the interaction of A, B, and F (C,ρ,κ)
pre

using α, β,a,b, c,d as the various parties’ inputs, and stores the output.
– Fcp sends (v, v̂, b̂, d̂) to B and (w, â, ĉ) to A.
– A sends either Honest or (Cheat,m∗) to Fcp.
– If A sent Honest, then Fcp sends (ŵ) to A.
– If A sent (Cheat,m∗), then Fcp sends (ŵ +m∗β−1) to A.

The other change made in this pre-processing functionality is that we allow
party A to cheat in such a way that is not immediately detected, but corrupts its
own output. Specifically, if A sends faulty messages, A can ensure both parties
hold shares of b̂iα+m∗β−1, rather than b̂iα. Since A does not know β, A cannot
use these corrupted shares, and B will discover the error and abort during the
execution of the authenticated garbling, as we show in § 5.3.

Authenticated Garbling from Simple Correlations 23

Fig. 7. Block subfield VOLE

Functionality F (F,E,k,n)
bVOLE : Block VOLE

Parametrized by a pair of fields F ⊆ E and integers k and n. In this paper, we
have F ∈ {F2,F2ρ} and E = F2ρ . We refer colloquially to the first variant as block
subfield VOLE and the second as block VOLE.

– B chooses parameters β1, . . . , βk ∈ E and sends them to FbVOLE.
– FbVOLE chooses a collection of vectors b1, . . . ,bk ∈ En and sends the vectors to

A.
– A chooses a vector a ∈ Fn and sends a to FbVOLE.
– For i = 1, . . . , k, the functionality FbVOLE computes vi = aβi + bi and sends

the result to B.

5.2 From block VOLE to compressed authenticated wire labels

We realize this preprocessing functionality using block VOLE, a collection of
VOLE or subfield VOLE instances where one party A uses the same inputs
across the VOLE calls. We define this protocol formally in Figure 7, and give
the converter from block VOLE to Fcp in Figure 8. We note that, in Step 12,
if a is one of A’s input to a block VOLE, and b + γ and γ are two of B’s
inputs to that block VOLE, then A and B can produce shares of the value ab
by subtracting their respective shares of a(b+γ) and aγ. All monomial terms in
Step 12 can be shared in this fashion. We defer the proof of the following lemma
to Appendix B.1.

Lemma 4. The protocol in Figure 8 can securely compute F (C,ρ,ρ)
cp against ma-

licious adversaries in the FbVOLE − FVOLE − FsubVOLE model with 1 + O(Ln) bits
of communication per gate from B to A and 5ρ + 1 bits of communication per
gate from A to B.

To convert from F (C,ρ,ρ)
cp to F (C,ρ,κ)

cp , we used almost the identical protocol
to that used to convert from Fpre(ρ) to Fpre(κ).

Lemma 5. The protocol in Figure 4 realizes F (C,ρ,κ)
cp in the F (C,ρ,ρ)

cp −FsubVOLE-

hybrid model, replacing F (C,ρ,ρ)
pre with F (C,ρ,ρ)

cp in Step 1.

Proof. The argument is identical to the argument in Lemma 2. We need only
note that the messages m1,m2 are still uniformly random in A’s view, in spite
of the linear relations on b allowed by Fcp, because of the masks b′, b̂′.

5.3 Authenticated garbling

In Figure 9, we give our modified authenticated garbled circuit protocol. The
wire labels are computed as in [14], but in the authentication step we apply

24 S. Dittmer et al.

Fig. 8. Compressed authenticated wire labels from block VOLE

Protocol Πcp(C, ρ): Compressed pre-processing of wire labels for authenticated
garbling.

Parametrized by the value ρ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T), for T ∈ {∧,⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪O. Let n be the number of AND gates.

1. All parties compute

L =
ρ logn− ρ log ρ

log 2
+ 2ρ

and choose a public n× L matrix MH over F2.
2. A and B invoke FsubVOLE with B as sender and A as receiver, so that B learns

(̃b, d̃) and A holds w̃, with length of the VOLE equal to L.
3. The parties extend the VOLE by length n, with additional entries

(wi,j , bi,j , di,j) where bi,j is the (i, j)-th entry of (MH b̃)T · (MH b̃).
4. Party A locally computes w = MHw̃.
5. B constructs the vector b = b̃iβ + γ, β + γ, γ with γ ∈ F2ρ chosen randomly.
6. Party A constructs the vector a := a∪(aiaj)∪(âi). The first vector is A’s input

to Fcp, the second vector is the the values ai ∧ aj , for every multiplication gate
Gk = (∧, i, j), and the third vector is a string of random bits which will be part
of A’s output.

7. The parties call Extend(FsubVOLE), adding b as an additional L+ 2 entries.

8. A and B perform F (F2ρ ,F2,L+2,n)
bVOLE , the subfield variant of block VOLE, with B’s

inputs the vector b and A’s inputs the vector a.
9. A and B invoke F (F2ρ ,F2ρ ,L+2,n)

bVOLE . B’s input to the block VOLE is again the
vector b with γ as above, and A’s input is the vector α · a ∪ (âi,2) ∪ {α}, that
is, A’s input above multiplied by α, along with a vector of masks âi,2 ∈ F2ρ

and the additional input α.
10. Both parties call ΠLPZK to prove correctness of the values ai ∧ aj , bi,j , and b̃iβ

under LPZK.
11. B certifies that their inputs to the block VOLE match their inputs to the VOLE

with A as receiver, with the ΠVOLE∧ELOV
cert protocol discussed in §3.2.

12. B locally computes:
v̂i := âiβ + ĉi

vi,2 := âi,2β + ci,2

vi,3 := âiαβ + ci,3

vi,4 := (aiaj + aibj + ajbi)β + ci,4

vi,5 := (aiaj + aibj + ajbi)αβ + ci,5

where all terms ĉi, ci,j can be computed locally by A.
13. A sends to B the terms (mi,1,mi,2) := (ĉi+ci,4, ci,2+ci,3+ci,5), and B defines

b̂i := (v̂i + vi,4 +mi,1)β
−1 + bibj

and

d̂i := (vi,2 + vi,3 + vi,5 +mi,2)β
−1 + di,j ,

respectively.
14. A adds locally to hold ŵi := âi,2 + wi,j .

Authenticated Garbling from Simple Correlations 25

the half gate technique of Zahur et al. [24] to the secondary garbled circuit
approach of [20].We also replace Fpre with Fcp, and modify Steps 3 and 4 by
setting unneeded wire masks to 0 as in §4.3.

Lemma 6. The protocol given in Figure 9 securely computes a functionality

f against malicious adversaries in the RO-F (C,ρ,κ)
cp − FsubVOLE − FVOLE-hybrid

model, with 2κ+ 3ρ bits of communication per AND gate, κ+ 1 bits of commu-
nication per input gate, and 1 bit of communication per output gate.

The key difficulty is protecting against a selective failure attack by A. Learn-
ing whether or not B aborts is equivalent to corrupting some subset of t table
entries (by corrupting the messages Gi,j or G

′
i,j), and learning whether B opened

any of those table entries during circuit evaluation. If the t table entries chosen
correspond to rows of MH that are linearly independent, then the labels MH b̃
are independent, and the probability of failure is 1− 2−t.

We therefore give a simulator that aborts with probability 1−2−t, and restrict
our attention to the case where the t entries correspond to linearly dependent
rows of MH . To treat this case, we recall the notion of (t, k)-independent sets
(the concept was first introduced in [12], see [19] for a thorough treatment, and
[9,8] for additional discussion). A (t, k)-independent set over Fq is a subset of
Fk
q such that no t+ 1 element subset is linearly dependent. For our purposes, it

is sufficient to construct a (ρ− 1, L)-independent set B ⊆ FL
2 such that |B| = n

via a randomized algorithm. Then either the simulator gives the correct abort
probability or the protocol aborts almost surely, with probability at least 1−2−ρ,
and either way party A learns nothing. We give the full proof in Appendix B.2.
Proof of Theorem 2 We begin with FbVOLE. We use Lemma 4 to construct

F (C,ρ,ρ)
cp , Lemma 5 to construct F (C,ρ,κ)

cp and prove the correctness of ΠVOLE
2pc in

Lemma 6.

6 NISC from garbled circuits

6.1 Conditional Disclosure of Secrets from programmable OLE

We construct a NISC protocol with A as sender and B as receiver. We generate
our authenticated bits and the related conversion protocol to authenticated cir-
cuit wire labels using the programmable OLE functionality given in Figure 10.
This protocol allows us to to the piece-wise product of any pair of vectors selected
from a collection of p vectors from A and q vectors from B.

Two obstacles present themselves in the conversion from programmable OLE
to authenticated circuit wire labels. First, we can no longer use ΠLPZK to certify
B’s inputs, since this would violate non-interactivity. Instead, we use a special-
ized conditional disclosure of secrets (CDS) protocol that ensures that any future
messages from A will be uniformly random if B cheats. The second obstacle is

26 S. Dittmer et al.

Fig. 9. Authenticated garbling protocol in the Fcp hybrid model

Protocol ΠVOLE
2pc

Inputs: Party A holds x ∈ {0, 1}|I1| and B holds y ∈ {0, 1}|I2|. Both parties hold
a circuit C for a function f : {0, 1}|I1|+|I2| → {0, 1}|O|.

1. A and B call F (C,ρ,ρ)
cp and then the compiler from F (C,ρ,ρ)

cp to F (C,ρ,κ)
cp , so that

A holds ∆A,w, ŵ,a, â, c, ĉ and B holds β, ,v, v̂,b, b̂,d, d̂. For each i ∈ I1∪I2,
A also picks a uniform κ-bit string Li,0. The parties jointly determine keys to
hash functions H : F2κ × {1, . . . , n} → F2κ and H ′ : F2κ × {1, . . . , n} → F2ρ .

2. Following the topological order of the circuit, for each gate G = (i, j, k, T),
– If T = ⊕, A computes Lk,0 := Li,0 ⊕ Lj,0

– If T = ∧, A computes Li,1 := Li,0 ⊕∆A, Lj,1 := Lj,0 ⊕∆A, and
• Gk,0 := H(Li,0, k)⊕H(Li,1, k)⊕ wj ⊕ aj∆A

• Gk,1 := H(Lj,0, k)⊕H(Lj,1, k)⊕ wi ⊕ ai∆A ⊕ Li,0

• Lk,0 := H(Li,0, k)⊕H(Lj,0, k)⊕ (wk ⊕ ŵk)⊕ (ak ⊕ âk) ·∆A

• G′
k,0 := H ′(Li,0, k)⊕H ′(Lj,0, k)⊕ ck ⊕ ĉk

• G′
k,1 := H ′(Li,0, k)⊕H ′(Li,1, k)⊕ cj

• G′
k,2 := H ′(Lj,0, k)⊕H ′(Lj,1, k)⊕ ci

A sends Gk,0, Gk,1, G
′
k,0, G

′
k,1, G

′
k,2 to B.

3. For each i ∈ IB , B sends yi ⊕ bi to A. Then A sends Li,yi⊕bi to B.
4. For each i ∈ IA, A sends xi ⊕ ai and Li,xi⊕ai to B.
5. B evaluates the circuit in topological order. For each gate G = (i, j, k, T), B

initially holds (zi ⊕ λi, Li,zi⊕λi) and (zj ⊕ λj , Lj,zj⊕λj), where zi, zj are the
underlying values of the wires.
(a) If T = ⊕, B computes zk ⊕ λk := (zi ⊕ λi) ⊕ (zj ⊕ λj) and Lk,zk⊕λk :=
Li,zi⊕λi ⊕ Lj,zj⊕λj .
(b) If T = ∧, B computes G0 := Gk,0 ⊕ dj , G1 := Gk,1 ⊕ di, and evaluates the
garbled table (G0, G1) to obtain the output label

Lk,zk⊕λk := H ((Li,zi⊕λi), k)⊕H
(
(Lj,zj⊕λj , k

)
⊕ (dk ⊕ d̂k)

⊕(zi ⊕ λi)G0 ⊕ (zj ⊕ λj)(G1 ⊕ Li,zi⊕λi).

Then B computes

bk ⊕ b̂k ⊕ (zi ⊕ λi)bj ⊕ (zj ⊕ λj)bi ⊕ (zi ⊕ λi) ∧ (zj ⊕ λj)

⊕ ((vk ⊕ v̂k ⊕ (zi ⊕ λi)vj ⊕ (zj ⊕ λj)vi)β
−1

⊕
(
H ′(Li,zi⊕λi

)⊕H ′(Lj,zj⊕λj
)⊕G′

k,0 ⊕ (zi ⊕ λi)G
′
k,1 ⊕ (zj ⊕ λj)G

′
k,2

)
β−1

= λk ⊕ λ̂k ⊕ (zi ⊕ λi)λj ⊕ (zj ⊕ λj)λi ⊕ (zi ⊕ λi) ∧ (zj ⊕ λj)

= λk ⊕ zk

6. For each i ∈ O, A sends ai to B and calls ΠLPZK to prove these values are
correct. B computes zi := (λi ⊕ zi)⊕ ai ⊕ bi.

Authenticated Garbling from Simple Correlations 27

Fig. 10. Programmable OLE

Functionality F (n,κ,p,q,Q)
OLE : Programmable OLE over a field F2κ and relations Q.

Parametrized by integers n, p, q, κ ∈ N and a set of relations Q ⊆ {1, . . . , p} ×
{1, . . . , q}, i.e. elements q ∈ Q are ordered pairs of integers.

– A chooses a collection of vectors a1, . . . ,ap of length n and sends them to
F (n,κ,p,q,Q)

OLE .
– B chooses a collection of vectors b1, . . . ,bq of length n and sends them to
F (n,κ,p,q,Q)

OLE .

– For each entry q = (i, j) ∈ Q, F (n,κ,p,q,Q)
OLE chooses vectors vq, cq with vq+cq =

ai · bj .
– F (n,κ,Q)

OLE sends vq to A and cq to B, for all q ∈ Q.

related to the task of minimizing p and q so that the protocol is concretely
efficient, and we cover it in § 6.2.

For CDS, informally, B sends a message to A that allows A to learn a secret
value sB known to B if and only if B’s message satisfies a desired set of relations.
Otherwise, A will compute a guess sA, which on at least one entry will appear
random to B. Then A appends H(sA) to all future messages to B, so that B
can recover the underlying message if and only if sA = sB . We give a formal
definition of this functionality in Figure 11.

We give a protocol realizing this functionality in Figure 12, and prove its
correctness in Appendix B.3. Our protocol works by first proving that A and B
each have one input vector that is constant, and using that to realize instances
of subfield VOLE over A’s input α and each of B’s input vectors bi. Write
Q′ := Q ∪ {(p + 1, j)} ∪ {(i, q + 1)}, for 1 ≤ j ≤ q + 1 and 1 ≤ i ≤ p, and
Q′′ := Q′ ∪ {(p+ 1, j} for j = q + 2, q + 3, q + 4.

It is possible to move Step 6 to Step 2, making the protocol non-interactive,

since the values ĉ
(j,k)
i used in Step 6 can be computed locally by B from the

output of the random FOLE functionality and B’s inputs. Step 6 is separated
from Step 2 because the most complicated part of the protocol is in Steps 6
and 7, which are used to verify the relations in R2. Removing Steps 6 and 7 and
using Q′ instead of Q′′ gives a warm-up CDS protocol for certifying the relations
in R1 only.

Lemma 7. The protocol in Figure 12 realizes the functionality F (n,κ,p,q,Q,R)
CDS

non-interactively in the RO-F (n,κ,p+1,q+4,Q′′,R)
OLE -hybrid model.

28 S. Dittmer et al.

Fig. 11. Programmable OLE with conditional disclosure of secrets

Functionality F (n,κ,p,q,Q,R)
CDS : CDS for F (n,κ,p,q,Q)

OLE over a field F2κ and relations
R.

Parametrized by integers n, κ, p, q,∈ N, a set of relations Q ⊆ {1, . . . , p}×{1, . . . , q}
as above, and a set of relations R = R1 ∪ R2, where R1 is a collection of equality
constraints bji = bℓk, and R2 is a collection of quadratic relations of the form b1i ·b1j =
b1k. Additionally, let m be a message that A plans to send to B.

– A and B interact with FCDS playing the role of FOLE on B’s input vectors
bi ∈ Fn

2 for 1 ≤ i ≤ q and A’s input vectors ai,vq ∈ Fn
2κ for 1 ≤ i ≤ p and

q ∈ Q.
– If the vectors bi satisfies the relations in R, FCDS sends m to B.
– If any of the vectors bi do not satisfy the relations in R, FCDS sends a random

vector to B.

6.2 Non-interactive authenticated circuit wires and authenticated
garbling

The remainder of the construction is similar to the construction given in Sec-
tion 5. We give a brief overview here, and a more detailed description in the
appendices.

As discussed in 1.1, the randomness computation time and the seed size grow
with the number of piece-wise products required, i.e. with |Q| using the notation
in the functionality description. In order to minimize the numbers p, q required,
we construct for A three vectors of inputs: a,aL, aR, where a, chosen randomly,
represents authenticated bits for all wires, aL represents only bit labels for wires
used as labels for left inputs to multiplication gates, so that aLk is the left input
to the kth multiplication gate, and aR likewise represents only bit labels for
wires used as labels for right inputs to multiplication gates.

We similarly define b,bL,bR. The full construction of the preprocessing func-
tionality is similar to the protocol Πcp. We give this protocol and a proof of its
correctness in Appendix B.4.

The authenticated garbling functionality is also similar to the protocolΠVOLE
2pc

used in the VOLE-only case, replacing Fcp with the NISC preprocessing func-
tionality. Besides the first step of generating the preprocessing functionality,
which is non-interactive by construction, the only message from B to A is given
in Step 3, when B sends bit masks of its input values yi ⊕ bi. This communica-
tion can be moved to Step 1 with no loss of security, making the entire protocol
non-interactive, which we prove in Appendix B.5.

Acknowledgements. Supported in part by DARPA Contract No. HR001120C0087.
Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of

Authenticated Garbling from Simple Correlations 29

Fig. 12. Conditional disclosure of secrets

Protocol ΠCDS: Conditional disclosure of secrets over programmable OLE.

Parametrized by integers n, κ, p, q,∈ N, a set of relations Q ⊆ {1, . . . , p}×{1, . . . , q}
as above, and a set of relations R = R1 ∪ R2 as above. Additionally, let m be a
message that A plans to send to B.

1. A and B choose random values α, β ∈ F2κ and define the vectors α :=
(α, . . . , α) and β := (β, . . . , β).

2. A and B invoke F (n,κ,p+1,q+1,Q′)
OLE with the additional inputs ap+1 := α, bq+1 :=

β. Let (mi
A) be the messages that A sends during the random-to-fixed OLE

compiler, and let ĉ
(j,k)
i be the vectors held by B before receiving (mi

A).

3. A computes s1A := (v
(p+1,q+1)
1 − v

(p+1,q+1)
2 , . . . , v

(p+1,q+1)
1 − v

(p+1,q+1)
n).

4. B computes s1B := (c
(p+1,q+1)
1 − c

(p+1,q+1)
2 , . . . , c

(p+1,q+1)
1 − c

(p+1,q+1)
n).

5. For each relation bji = bℓk ∈ R1, A appends v
(p+1,j)
i − v

(p+1,ℓ)
k to s2A and B

appends c
(p+1,j)
i − c

(p+1,ℓ)
k to s2B

6. B constructs three additional vectors, each of length equal to |R2|, with

bq+2 = (b1i ĉ
(p+1,1)
j + (b1j ĉ

(p+1,1)
i), bq+3 = (b1i b

1
j), and bq+4 = ĉ

(p+1,1)
k for triples

(i, j, k) ∈ R2, and both parties call Extend(FOLE),so that A and B now hold

F (n,κ,p+1,q+4,Q′′)
OLE .

7. For each relation b1i · b1j = b1k ∈ R2, let r be the index of this relation in R2.

A appends v
(p+1,1)
i · v(p+1,1)

j − αv
(p+1,1)
k − v

(p+1,q+2)
r − (v

(p+1,q+3)
r) · (m1

A,i +

m1
A,j)− (v

(p+1,q+4)
r)m1

A,k to s3A, and B appends c
(p+1,1)
i · c(p+1,1)

j − (c
(p+1,q+3)
r) ·

(m1
A,i +m1

A,j)− (c
(p+1,q+4)
r)m1

A,k to s3B .
8. Each party P computes sP := ∪is

i
P .

9. A sends m1 := m+H(sA) to B.
10. B computes m2 := m1 +H(sB) and outputs m2.

DARPA. Y. Ishai supported in part by ERC Project NTSC (742754), BSF grant
2018393, and ISF grant 2774/20.

References

1. Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive
secure computation based on cut-and-choose. In Eurocrypt, pages 387–404, 2014.

2. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan
Feigenbaum, editor, CRYPTO ’91, pages 420–432, 1991.

3. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In CCS 2018, pages 896–912, 2018.

4. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive
secure computation. In CCS 2019, pages 291–308, 2019.

5. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient pseudorandom correlation generators: Silent OT extension and
more. In CRYPTO 2019, Part III, pages 489–518, 2019.

30 S. Dittmer et al.

6. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter
Scholl. Efficient pseudorandom correlation generators from ring-lpn. In Crypto
2020, pages 387–416, 2020.

7. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE
and oblivious transfer from hardness of decoding structured LDPC codes. In
CRYPTO 2021, pages 502–534. Springer, 2021.

8. SB Damelin, G Michalski, and Gary L Mullen. The cardinality of sets of k-
independent vectors over finite fields. Monatshefte für Mathematik, 150(4):289–295,
2007.

9. SB Damelin, G Michalski, GL Mullen, and D Stone. The number of linearly
independent binary vectors with applications to the construction of hypercubes
and orthogonal arrays, pseudo (t, m, s)-nets and linear codes. Monatshefte für
Mathematik, 141(4):277–288, 2004.

10. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In CRYPTO, 2012.

11. Sam Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its
applications. In ITC 2021, 2021. Full version: https://eprint.iacr.org/2020/1446.

12. Yevgeniy Dodis and Sanjeev Khanna. Space-time tradeoffs for graph properties.
In ICALP 1999, pages 291–300. Springer, 1999.

13. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit
Sahai. Efficient non-interactive secure computation. In EUROCRYPT 2011, pages
406–425, 2011.

14. Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing
authenticated garbling for faster secure two-party computation. In Crypto 2018,
pages 365–391. Springer, 2018.

15. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In EUROCRYPT, pages 52–78,
2007.

16. Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious
two-party computation. In PKC, pages 458–473, 2006.

17. Mike Rosulek and Lawrence Roy. Three halves make a whole? beating the half-
gates lower bound for garbled circuits. In CRYPTO 2021, pages 94–124, 2021.

18. Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-OLE: Improved constructions and implementation. In CCS 2019,
pages 1055–1072, 2019.

19. Tamir Tassa and Jorge L Villar. On proper secrets, (t, k)-bases and linear codes.
Designs, Codes and Cryptography, 52(2):129–154, 2009.

20. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and
efficient maliciously secure two-party computation. In CCS 2017, pages 21–37,
2017.

21. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver: Efficient
and affordable zero-knowledge proofs for circuits and polynomials over any field.
In CCS, 2021. Full version: https://eprint.iacr.org/2021/076.

22. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In CCS ’20, pages 1607–
1626, 2020.

23. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

24. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole. In
Eurocrypt 2015, pages 220–250, 2015.

https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2021/076

Authenticated Garbling from Simple Correlations 31

A Supplemental: Additional certification protocols

A.1 Certification between VOLE instances and authenticated
triples

We give a lightweight protocol for establishing that the parameter α for an
instance of VOLE matches the parameter α from an authenticated triple.

Fig. 13. Certification between authenticated triples and VOLE

Protocol ΠDAMT∧VOLE
cert : The certification that a value α is consistent across a call

to FDAMT and a call to FVOLE.

Inputs are the functionalities FDAMT, FVOLE, equipped with the operation Extend,
and party A’s inputs α, α′ to FDAMT,FVOLE, respectively.

1. Both parties call Extend(FDAMT) so that the parties learn (xA,1, xA,2) and
(xB,1, xB,2), A and B’s respective shares of (x, αx) from a fresh two-sided
authenticated triple.

2. Both parties call Extend(FsubVOLE) so that B learns (a, b) and A learns v :=
aα′ + b generated by the VOLE.

3. B sends xB,1 − a to A, so that A now holds v′ := xB,1α
′ + b.

4. A computes
m := H(v′ + xA,1α

′ − xA,2)

to B.
5. B verifies that m = H(xB,2 + b) and otherwise aborts.

Lemma 8. F (ρ,n1)
DAMT ∧α,α,F2ρ

Fρ,n2

VOLE is realizable in the F (ρ,n1+1)
DAMT −Fρ,n2+1

VOLE -hybrid
model.

Proof. Let (xA,1, xA,2) and (xB,1, xB,2) be A and B’s respective shares of (x, αx)
from a two-sided authenticated triple, and let B hold (a, b) and A hold α′, v :=
aα′+b generated by the VOLE. Using the standard compiler from random VOLE
to fixed VOLE, B sends xB,1 − a to A, so that A now holds v′ := xB,1α

′ + b.
Then A computes

v′ + xA,1α
′ − xA,2 = xα′ − xA,2 + b = x(α′ − α) + xB,2 + b,

applies a cryptographic hash function H to the result, and sends this to B. Now
B compares this value toH(xB,2+b), which they can compute locally, and aborts
if the values are not equal. Otherwise they continue with FVOLE and FDAMT.

For security against a malicious B, note that if an adversary A corrupts B,
a simulator S can simulate the message they receive from A as a random value

32 S. Dittmer et al.

from F2κ , by the security of H, and if A sends the correct information, the
simulator simply outputs H(xB,2 + b).

Security against a malicious A follows from the security of the random VOLE
to fixed VOLE compiler, and because the randomness of b guarantees that a
simulator S can generate v′ uniformly at random and match the distribution
under the real world protocol execution. Finally, if a malicious A has α′ ̸= α,
guessing H(xB,2 + b) is equivalent to guessing x, which A can only do with
negligible probability, and so the ideal world and real world abort probabilities
are equal up to a negligible term.

A.2 Certification across VOLEs with reversed sender and receiver

Our second protocol is used to certify that a party playing the role of both VOLE
receiver and VOLE sender uses the same value in both protocols.

Fig. 14. Certified across VOLEs with reversed sender and receiver

Protocol ΠVOLE∧ELOV
cert : The certification that a value α is consistent across two

calls to FVOLE with roles of sender and receiver reversed.

Inputs are the functionalities FVOLE, FELOV, equipped with the operation Extend,
and party B’s inputs β, β′ to FVOLE,FELOV, respectively.

1. Both parties call Extend(FVOLE) so that A learns a, c and B learns w := aβ+ c.
2. Both parties call Extend(FELOV) so thatB holds (β′, d) and A learns v := β′α+d.
3. A chooses a random value e and sends (m1,m2) := (α− a, v + e) to B.
4. B computes m3 := H(w +m1β + d−m2) to A.
5. A verifies that m3 = H(c− e) and otherwise aborts.

Lemma 9. F (ρ,n1)
VOLE ∧α,a1,F2ρ

Fρ,n2

ELOV is realizable in the F (ρ,n1+1)
VOLE −Fρ,n2+1

ELOV -hybrid
model.

Proof. Suppose A holds the values a, c, v := β′α + d and B holds the values
β′, d, w := aβ+c, where the values a, c, α, β are chosen uniformly at random, and
B wishes to convince A that β′ = β. Then A chooses some random value e and
sends m1 := (α−a) and m2 = v+e to B. B computes w+m1β+d−m2 = c−e,
and sends m3 = H(c − e) to A. A verifies that m3 = H(c − e), and otherwise
aborts. If A does not abort, both parties continue evaluating the FVOLE and
FELOV functionalities.

For security against a malicious A, the simulator outputs a random message
for m3 when A cheats in its message for m1, and otherwise outputs the correct
value of H(c − e), where it computes e as m2 − v, where m2 is output by A.

Authenticated Garbling from Simple Correlations 33

When A cheats in m1, the value of m3 is equal to H ((m1 + a− α)β + c− e),
and so appears random to A, since the value of β is random.

For security against a malicious B, the randomness of a and e ensures that a
simulator S can generate the messages m1,m2 uniformly at random and match
the distribution under the real world protocol execution. Additionally, if an
adversary A has β′ ̸= β, then w +m1β + d−m2 = α(β − β′) + (c− e), and so
guessing H(c−e) is equivalent to guessing α, which A can only do with negligible
probability, and so the ideal world and real world abort probabilities are equal
up to a negligible term.

A.3 Certification between subfield VOLE and interactively
generated subfield VOLE

Fig. 15. Certification of senders’ inputs between subVOLE instances with distinct
parameters ρ, κ

Protocol Πρ∧κ
cert : The certification that a value b is consistent across two distinct
calls to FsubVOLE, which may be generated non-silently.

Inputs are the functionalities Fρ
subVOLE, F

κ
subVOLE, FVOLE, equipped with the operation

Extend, party A’s inputs α,∆A, and party B’s inputs b1,b2, where we desire to
certify that b1 = b2. Assume ρ divides κ for simplicity.

1. The parties A and B call Extend(FsubVOLE) twice, using the correlation calculus
so that B’s inputs match across both instances, so that B holds b3 ∈ F, d3 ∈
F2ρ and d4 ∈ F2κ , and A holds v3 := b3α+ d3, v4 := b3∆A + d4.

2. B sends m1 := b1 − b3 to A.
3. A adds v3 ← v3 +m1α and v4 ← v4 ← v4 +m1∆A.
4. B computes m2 = H(d1 − d3;d2 − d4) and sends to A.
5. A aborts if m2 ̸= H(v1 − v3;v2 − v4).

We note that this protocol is necessary only in the particular setting where
A and B generate an instance of fixed FsubVOLE using some optimized proto-
col, rather than the generic compiler from random to fixed VOLE, and so the
“correlation calculus” cannot be used to ensure that the fixed FsubVOLE outputs
match. We obtain the desired certification simply by replacing these artifically
generated instances of FsubVOLE with fresh instances that are generated with the
same vector b3.

Lemma 10. F (ρ,n)
subVOLE∧b1,b2,F2F

(κ,n)
subVOLE is realizable in the RO-F (ρ,2n)

subVOLE-F
(κ,2n)
subVOLE-

hybrid model under the “correlation calculus” with O(κ) bits of communication
when A’s inputs α,∆A are chosen uniformly at random.

34 S. Dittmer et al.

Proof. Correctness follows because, if A and B follow the protocl, each of vi, for
i = 1, 2, 3, 4, is of the form vi = b1α+di or b1∆A+di, so that v1−v3 = d1−d3

and v2 −v4 = d2 −d4. A sends no messages in the protocol, so security against
a malicious A follows from the security of the underlying correlated randomness
functionalities.

Security against a malicious B follows because the vector m1 is distributed
uniformly at random under an honest run of the protocol, by the randomness
of b3, and so a simulator for an adversary A simply generates m1 uniformly at
random and computes m2 from m1.

B Deferred proofs

B.1 proof of Lemma 4

Completeness. When both parties are honest, in Step 13 we have

b̂i := (v̂i + ĉi + vi,4 + ci,4)β
−1 + bibj

= aiaj + aibj + ajbi + bibj + âi

and

d̂i := (vi,2 + ci,2 + vi,3 + ci,3 + vi,5 + ci,5)β
−1 + di,j

= (aiaj + aibj + ajbi + âi)α+ âi,2 + di,j ,

respectively, so that A holds ŵi := âi,2 + wi,j = b̂iα+ d̂i, as desired.
Security.

Most of the communication in this protocol involves compilers to fixed VOLE
and subfield VOLE from random VOLE and subfield VOLE that only touch the
linear terms (that is, the a term in aβ + c, not the c term), and so appear uni-
formly random by the randomness of each c term. Because of the certification of
inputs, B has no space to cheat that will not be detected by A with overwhelm-
ing probability, and the only place A can cheat is in the messages mi,1 := ĉi+ci,4
and mi,2 := ci,2 + ci,3 + ci,5.

For security against a malicious A, in the ideal world if A cheats on any
messages mi,1 by sending mi,1∗ , the simulator S aborts. In the real world, B

computes b̂∗i = b̂i + (m∗
i,1 −mi,1)β

−1, and aborts unless this lies in {0, 1}, which
happens with negligible probability, since it only happens if A guesses β.

If A cheats on mi,2 by sending instead (m∗
i,2) the simulator S records the

message (Cheat,m∗), where m∗ = (mi,2 − m∗
i,2), and sends A the vector ŵ +

m∗β−1. In the real world, let (b̂i, d̂
∗
i) be the values computed by B when A sends

(mi,1, m̂i,2). Then A can compute

âi,2 + wi,j = b̂iα+ d̂i = b̂iα+ d̂∗i + (mi,2 −m∗
i,2)β

−1 = ŵ∗
i +m∗

i β
−1

and so A’s view in the ideal world and real world are indistinguishable. Note
that when A holds w∗

i := b̂iα+ d̂∗i +m∗
i β

−1 and B holds b̂i, d̂
∗
i , A has a negligible

Authenticated Garbling from Simple Correlations 35

probability of sending some false w∗
i + s to B and convincing B that m∗

i = 0,
since this is equivalent to guessing β. We use this in the proof of Lemma 6.

For security against a malicious B, as noted above the abort probabilities in
the ideal world and real world are identical. In the ideal world, a simulator S
chooses all values v̂i and vi,j uniformly at random except for v̂i and vi,2, and

chooses the values mi,1,mi,2, b̂i, d̂i uniformly at random.

Then S computes v̂i = (b̂i − bibj)β − mi,1 − vi,4 and vi,2 := (d̂i − di,j)β −
mi,2 − vi,3 − vi,5.

B.2 Proof of Lemma 6

Proof. Completeness. The computation of Lk,zk⊕λk
is unaltered from [14]. The

correctness of the computation of λk ⊕ zk follows from expanding the expression
in Step 5(b) of the protocol for each of the four possible values of (λi⊕zi, λj⊕zj).
Security against a malicious A. If A cheats during Fcp, then the computation
of Lk,zk⊕λk

will be off by the valuem∗
kβ

−1, and A has only a negligible probability
of successfully offsetting this with suitable adjustments to Gk,0, Gk,1. Thus B
will abort with overwhelming probability, and A learns nothing.

The only messages A receives during the protocol are in the compiler to

F (C,ρ,κ)
cp and in step 3 and 4, along with a message ⊥ if B aborts. Let A be an

adversary corrupting A. A simulator S can match the real world view of A on
steps 3 and 4 by choosing random bits in steps 3 and 4, and the security of step
1 is established by Lemma 4.

Learning whether or not B aborts is equivalent to corrupting some subset of
t table entries (by corrupting the messages Gi,j or G

′
i,j), and learning whether B

opened any of those table entries during circuit evaluation. If the t table entries
chosen correspond to rows of MH that are linearly independent, then the labels
MH b̃ are independent, and A’s view can be simulated as the logical conjunction
of t random values. Therefore we restrict our attention to the case where the t
entries correspond to linearly dependent rows of MH .

To treat this case, we recall the notion of (t, k)-independent sets (the concept
was first introduced in [12], see [19] for a thorough treatment, and [9,8] for
additional discussion).

A (t, k)-independent set over Fq is a subset of Fk
q such that no t+ 1 element

subset is linearly dependent. For our purposes, it is sufficient to construct a
(ρ−1, L)-independent set B ⊆ FL

2 such that |B| = n via a randomized algorithm.
If we generate n uniformly random vectors from FL

2 , and let R be a random
variable denoting the number of relations on B with at most ρ elements. We
then have

E[R] ≤
ρ∑

k=1

(
n

k

)
(12)

L

by linearity of expectation, and so by Markov’s inequality we have

Pr[R ≥ 1] ≤ (ρ+ 1)nρ

(ρ)!2L
,

36 S. Dittmer et al.

and taking

L =
ρ log n− ρ log ρ

log 2
+ 2ρ

and by Stirling’s approximation, this gives

Pr[R = 0] ≥ 1− 2−ρ.

Thus if the t entries chosen above correspond to linearly dependent rows of
MH , we have t ≥ ρ. The probability that corrupting ρ independent random table
entries causes an abort is equal to 1− 2−ρ, and so with t ≥ ρ, B aborts except
with negligible probability, and again A learns nothing. Formally, a simulator S
aborts with probability 1−2−t for t < ρ, and aborts with probability 1 otherwise,
and the view of A interacting with S is indistinguishable from the real world
execution in both cases.
Security against a malicious B. The proof here is similar to the proof in
[14]. When a simulator S acts as an honest A with input x = 0, the view of an
adversary A corrupting B is identical to the view of A when A uses their actual
input, by the security of H and H ′.

Similarly, because the wire values ak are still drawn from a uniformly inde-
pendent distribution, A’s view of λk ⊕ zk is uniformly random, whether x = 0
or x is A’s actual input.

B.3 Proof of Lemma 7

Correctness. When both parties are honest we have

s1A,i−1 := v
(p+1,q+1)
1 − v

(p+1,q+1)
i = αβ + c

(p+1,q+1)
1 − (αβ + c

(p+1,q+1)
i) = s1B,i−1,

and

s2A,r := v
(p+1,j)
i − v

(p+1,ℓ)
k = αbji + c

(p+1,j)
i − (αbℓk + c

(p+1,ℓ)
k) = s1B,r,

as desired. For the relation b1i · b1j = b1k, the calculation is more involved, but
similar:

s3A,r := v
(p+1,1)
i · v(p+1,1)

j −αv
(p+1,1)
k − v(p+1,q+2)

r

−(v(p+1,q+3)
r) · (m1

A,i +m1
A,j)− (v(p+1,q+4)

r)m1
A,k

= α2(bibj − bk) + (c
(p+1,1)
i bj + c

(p+1,1)
j bi − c

(p+1,1)
k

−b(q+2)
r −b(q+3)

r (m1
A,i +m1

A,j)− b(q+4)
r m1

A,k)α

+c
(p+1,1)
i ·c(p+1,1)

j − (c(p+1,q+3)
r) · (m1

A,i +m1
A,j)− (c(p+1,q+4)

r)m1
A,k

= c
(p+1,1)
i · c(p+1,1)

j −(c(p+1,q+3)
r) · (m1

A,i +m1
A,j)− (c(p+1,q+4)

r)m1
A,k

= s3B,r.

Security against malicious A. Party A receives no messages from B during
the protocol besides the compiler from random to fixed FOLE in Steps 2 and 6,

Authenticated Garbling from Simple Correlations 37

and whether or not B aborts. Recall that the message in Step 6 can be moved
to Step 2, preserving non-interactivity. The messages in Steps 2 and 6 can be
simulated as uniformly random vectors, by the security of the random to fixed
FOLE compiler.

Assume that B aborts whenever sA ̸= sB , and instruct the simulator S to
construct the correct message s′A, and abort if the vector ap+1 ̸= α or if s′A ̸= sA.

If ap+1 ̸= α, then a∗i := ap+1
1 − ap+1

i ̸= 0 for some index i > 1. But then

c
(p+1,q+1)
1 − c

(p+1,q+1)
i = a∗i β + v

(p+1,q+1)
1 − v

(p+1,q+1)
i , which A can guess only

with probability 1/2κ, and so B will abort with probability 1 − 1/2κ while S
aborts with probability 1.

If ap+1 = α, then all terms c
(p+1,j)
i will be computed correctly by b, and so

we have s′A = sB , by the correctness of the protocol. Therefore the probability
that S aborts is computationally indistinguishable from the probability that B
aborts during a real world execution of the protocol, and a cheating A is detected
with overwhelming probability.
Security against malicious B. We construct a simulator S that has access to
the intended message m in the ideal world setting. S generates (mi

A) uniformly
at random, computes H(sB), and outputs m1 = m + H(sB) if B follows the
protocol honestly, and a random message otherwise. The distribution of (mi

A)
matches the distribution under a real world execution of the protocol by the
correctness of FOLE.

As above, if bq+1 ̸= β, then b∗i := bq+1
1 − bq+1

i ̸= 0 for some index i > 1. But

then v
(p+1,q+1)
1 −v

(p+1,q+1)
i = b∗iα+c

(p+1,q+1)
1 −c

(p+1,q+1)
i , which B can guess only

with probability 1/2κ, and so sB,i−1 ̸= sA,i−1 with overwhelming probability.

Similarly, if bji ̸= bℓk, the value v
(p+1,j)
i − v

(p+1,ℓ)
k will be off by some multiple of

α, and if b1i b
1
j ̸= b1k, then the expression s3B,r will be off by some multiple of α2

(and a possibly additional multiple of α). Finally, if B has inputs that satisfy
the relations R, but cheats on the values bq+i, for i ∈ {2, 3, 4}, then in Step 7,
B will hold some linear expression in α, whose coefficients B can compute. Then
the expression H(sB) will not be equal H(sA) with overwhelming probability if
the coefficient of α in this expression is nonzero. In the ideal world execution,
the simulator S can likewise compute the coefficients of this linear expression
from the adversary’s messages and the randomly generated (mi

A), and outputs
a random string for m2 if and only if the coefficient of α is nonzero.

B.4 Non-interactive circuit wires from programmable OLE

We define a modified form of the functionality F (C,ρ,κ)
pre , replacing the last line

of Fpre with the last four lines of Fcp, and call it F (C,ρ,κ)
pre−wbc, preprocessing with

blind cheating. In other words, as in Fcp, we allow party A to cheat in such a
way that is not immediately detected, but leaves A with corrupted shares that
cannot be used as shares of âi∆A.

We give the protocol realizing this functionality in Figure 16. The proof of
correctness is similar to the proof for our VOLE-based protocol. Here we give a
careful accounting of the total communication cost.

38 S. Dittmer et al.

The CDS protocol requires an additional κn bits of communication for A and
an additional 3|R2|κ bits for B. The relations we need to verify on B’s inputs
are bL · β = bLβ, bR · β = bRβ, and bL · bRβ = bibjβ, so the cost of CDS is
equal to 9κn bits of communication for B.

We can use A’s constant value from ΠCDS as ∆A, and the values ai,2 can be
chosen uniformly at random over F2κ , but the remainder of A’s inputs require
communication, giving an additional 10κ bits of communication for A. Similarly
B requires another 7κ bits of communication.

This gives 11κ bits of communication for A and 16κ bits of communication
for B.

Adding in the 2κ + 3ρ bits of communication for A in the garbled circuit
gives total communication of 13κ+ 3ρ bits for A and 16κ bits for B.

B.5 Non-interactive authenticated garbling

We only make two changes fromΠVOLE
2pc to give the garbling protocolΠNISC

2pc . First,

we replaceΠcp withΠnisc
pre (C, ρ, κ) in Step 1. Second, we move the communication

in Step 3 to Step 1.
The correctness and non-interactivity of Πnisc

pre follows from the previous sub-
section. Moving B’s message earlier does nothing to help a malicious B, so secu-
rity against B still holds. What remains is to verify security against a malicious
A.

The proof of security is very close to the proof of security in [14]. Essentially,
we notice that the proof does not anywhere require Step 3 to occur after Step
2, and so everything goes through after re-ordering. We give the formal proof
below for completeness.

First, we note that, if λi ⊕ zi and λj ⊕ zj are correct, the expression in 5(b)
will either be equal to λk ⊕ zk or λk ⊕ zk ⊕ β−1x∗, for some value x∗. Therefore
either B aborts or B outputs f(x, y) with overwhelming probability.

Next, let A be an adversary corrupting A. We construct a simulator S that
runs A as a subroutine and plays the role of A in the ideal world involving an
ideal functionality F evaluating f . S is defined as follows.

– Step 1. S plays the role of F (C,ρ,κ)
pre−wbc and records all values that F (C,ρ,κ)

pre−wbc sends
to both parties.

– Step 3. (re-ordered) S acts as an honest B using y := 0.
– Step 2. S receives A’s messages.
– Step 4. S receives A’s message x̂i and computes xi := x̂i ⊕ ai, where ai is

the value used by F (C,ρ,κ)
pre−wbc previously.

– Steps 5-6. S acts as an honest B, and aborts if B would abort, and otherwise
sends x to F .

We show that the joint distribution on the outputs of A and an honest B in
the real world execution is indistinguishable from the joint distribution on the
outputs of A and S in an ideal world execution, through a series of hybrid model
protocols.

Authenticated Garbling from Simple Correlations 39

Fig. 16. Non-interactive authenticated wire labels from programmable OLE

Protocol Πnisc
pre (C, ρ, κ): Non-interactive pre-processing of wire labels for
authenticated garbling from programmable OLE.

Parametrized by the value ρ, and a circuit C consisting of W wires, I input wires,
O output wires, and gates G of the form (i, j, k, T), for T ∈ {∧,⊕}, i, j ∈ I ∪ W,
and k ∈ W ∪O. Let n be the number of AND gates.

1. The parties invoke a Π
(n,κ,11,7,Q,R)
CDS functionality, where A’s inputs are

(∆A,a,aL,aR, (aiaj), â,∆Aa,∆AaL,∆AaR,∆A(aiaj),∆Aâ, (ai,2)) and B’s in-
puts are the set (b+ γ,bL + γ,bR + γ,bLβ + γ,bRβ + γ, bibjβ + γ,β,γ). The
correspondence between A inputs and B inputs given by Q arise in the protocol
description. The relations R1 are the permutations required to construct bL

and bR. The relations R2 are the product relations on bi, bj , β.
2. A and B store the resulting value s and add H(s) to all subsequent messages.
3. Party B computes v̂i, vi,2 as in Πcp, and computes

vi,3 := âi∆Aβ + ci,3

vi,4 := (aiaj + aibj + ajbi + bibj)β + ci,4

vi,5 := (aiaj + aibj + ajbi + bibj)∆Aβ + ci,5

4. A and B construct as entries of OLE:

ui = ∆A(bi + γ) + ei

and
u′
i = ∆A(γ) + e′i,

The parties then take wi = ei + e′i and di = ui + u′
i in F (C,ρ,κ)

pre . The value
wi,j := bibj∆Aβ + di,j is computed similarly.

5. As in Πcp, A sends the messages ĉi + ci,4 and ci,2 + ci,3 + ci,5 to B to open
b̂i, d̂i to B, and A can locally compute ŵi.

6. The parties produce entries of OLE corresponding to secret shares of the prod-
uct of each of aiaj ,∆Aai,∆Aaiaj ,∆Aâi with β.

7. Treating the resulting secret sharing as a realization of VOLE, A and B invoke
ΠLPZK to verify that the terms aiaj ,∆Aai,∆Aaiaj ,∆Aâi have been computed
correctly.

40 S. Dittmer et al.

Hybrid-1. S plays the role of an honest B, using B’s input y, and also plays

the role of F (C,ρ,κ)
pre−wbc. Hybrid-2. S plays the role of an honest B, using B’s input

y, and also plays the role of F (C,ρ,κ)
pre−wbc, in steps 1-3. In step 4, S extracts the value

xi := x̂i ⊕ ai, and then aborts if B would abort and otherwise sends x to F .
Hybrid-3. S follows the ideal-world setting laid out above.

There is no difference in A’s view betweenHybrid-1 andHybrid-2, because
S aborts in both cases if B would abort, and as noted above, if B fails to abort,
it will necessarily output f(x, y), which is also what is output by Hybrid-2.

The only difference between Hybrid-2 and Hybrid-3 is that S sets y := 0,
but the values yi ⊕ bi = bi will still appear totally random to A. All of B’s
calculations in steps 5 and 6 do not depend on y, only on the values yi ⊕ bi and
zi⊕λi, so that whether or not B aborts is not affected by which scenario we are
in, and A will be unable to distinguish between Hybrid-2 and Hybrid-3. This
completes the proof.

C Formalization of the correlation calculus

	Authenticated Garbling from Simple Correlations

