
A New Framework For More Efficient
Round-Optimal Lattice-Based (Partially)
Blind Signature via Trapdoor Sampling

Rafael del Pino1 and Shuichi Katsumata2

1PQShield SAS, France
rafael.del.pino@pqshield.com

2AIST, Japan and PQShield Ltd., U.K.
shuichi.katsumata@aist.go.jp

June 23, 2022

Abstract

Blind signatures, proposed by Chaum (CRYPTO’82), are interactive protocols between a signer and
a user, where a user can obtain a signature without revealing the message to be signed. Recently, Hauck
et al. (EUROCRYPT’20) observed that all efficient lattice-based blind signatures following the blueprint
of the original blind signature by Rükert (ASIACRYPT’10) have a flawed security proof. This puts us in
a situation where all known lattice-based blind signatures have at least two of the following drawbacks:
heuristic security; 1 MB or more signature size; only supporting bounded polynomially many signatures,
or being based on non-standard assumptions.

In this work, we construct the first round-optimal (i.e., two-round) lattice-based blind signature with
a signature size roughly 100 KB that supports unbounded polynomially many signatures and is provably
secure under standard assumptions. Even if we allow non-standard assumptions and more rounds,
ours provide the shortest signature size while simultaneously supporting unbounded polynomially many
signatures. The main idea of our work is revisiting the generic blind signature construction by Fischlin
(CRYPTO’06) and optimizing the commit-then-open proof using techniques tailored to lattices. Our
blind signature is also the first construction to have a formal security proof in the quantum random
oracle model. Finally, our blind signature extends naturally to partially blind signatures, where the user
and signer can include an agreed-upon public string in the message.

1

Contents
1 Introduction 3

1.1 Background . 3
1.2 Our Contribution . 4
1.3 Technical Overview . 5
1.4 Related Work . 9

2 Preliminaries 10
2.1 Blind Signature . 10
2.2 Non-Interactive Zero-Knowledge Proofs in the (Q)ROM . 11
2.3 Lattices . 13
2.4 Commitments . 15
2.5 Quantum Related Tools . 16

3 Lattice-based Blind Signature from Compatible Commitments 17
3.1 Trapdoor-Sampling-Compatible Commitments . 17
3.2 Construction of Blind Signature . 18
3.3 Correctness and Condition on Parameters . 20
3.4 Proof of Blindness . 21
3.5 Proof of One-More Unforgeability . 22
3.6 Extension: Partial Blind Signatures . 29

4 Instantiating Our Generic Construction 29
4.1 Concrete Choice for Trapdoor-Sampling-Compatible Commitments 29
4.2 Concrete Choice for Single-Proof Extractable NIZK . 30
4.3 Concrete Choice for Multi-Proof Extractable NIZK . 32
4.4 Optimization in the Classical ROM . 46
4.5 Putting Everything Together . 47

5 Security in the QROM 49
5.1 Item 1: QROM Security of the Generic Construction . 49
5.2 Item 2: QROM Security of Πs

NIZK . 53
5.3 Item 3: QROM Security of Πm

NIZK . 55

A Omitted Preliminaries 65
A.1 Proof Sketch of Modified Trapdoor Sampling . 65
A.2 Forking Lemma . 65
A.3 Partially Blind Signature . 66

B Tools to Argue Single-Proof Extractability of NIZKs in the QROM 67
B.1 Sigma Protocol . 67
B.2 Compatible Separable Function . 68

C Lattice-based Partially Blind Signature 70
C.1 Construction of Partially Blind Signature . 70
C.2 Security of Partially Blind Signature . 71

D Reference for Setting the Parameters 72

2

1 Introduction
1.1 Background
Blind signatures, originally proposed by Chaum [Cha82], are interactive protocols between a signer and a user,
where a user can obtain a signature without revealing the message to be signed to the signer. Blind signatures
satisfy two security notions: one-more unforgeability and blindness. One-more unforgeability states that if a
malicious user engages only in at most ` (possibly concurrent) signing sessions with the signer, then it cannot
output more than ` signatures. Blindness states that a malicious signer can neither learn the message during
the signing session nor link a particular message-signature pair to a particular signing session. The typical
applications of blind signatures include e-cash [Cha82, CFN90, OO92], anonymous credentials [Bra94, CL01],
e-voting [Cha88, FOO92], and so on, and more recently, it has found exciting applications in the context of
adding privacy features to blockchains [YL19] and privacy-preserving authentication tokens [Goo22].

In this paper, we focus on one class of blind signatures that has recently attracted a lot of attention:
lattice-based blind signatures; currently the only known class of blind signatures believed to withstand
quantum attacks (see Section 1.4 for other related works). The first lattice-based blind signature was
proposed by Rükert [Rüc10], who followed a design paradigm similar to the classical Schnorr or Okamoto-
Schnorr blind signatures [Sch01, PS00]. The blind signature consists of three rounds and supports poly-
logarithmically many signatures (in the security parameter λ) before having to regenerate the verification key.
This general approach has been extended and optimized in subsequent works [PHBS19, LSK+19, AEB20a,
AEB20b, AHJ21], where BLAZE+ by Alkadri et al. [AEB20b] currently stands as the most efficient proposal.
However, recently, Hauck et al. [HKLN20] showed that all constructions following the blueprint of Rükert’s
blind signature contain the same bug in their security proof1, consequently leaving them only heuristically
secure at best. Building on Rükert’s blind signature and optimizations employed by BLAZE+, Hauck et
al. managed to construct the first provably secure lattice-based blind signature. Unfortunately, the security
proof required very large parameter sets, and their proposal resulted in a signature size of roughly 7.9 MB
with a communication cost of 34 MB and supported only 7 signatures per verification key. Thus, the work
of Hauck et al. [HKLN20] reopened the question of building efficient and provably secure lattice-based blind
signatures.

Very recently, two works aimed at solving this. One by Agrawal et al. [AKSY21a]. Instead of following
the three-move structure seen in Schnorr’s blind signature [Sch01], Agrawal et al. builds on Fischlin [Fis06]
and Garg et al. [GRS+11] that provide a generic construction of a two-move (i.e., round-optimal) blind
signatures. Concretely, they propose two constructions. One produces a short signature in the range of a
few KB with a communication cost of around 50 MB but comes with several caveats: the scheme can support
only bounded polynomially many signatures; blindness only holds against very honest signers (i.e. the public
key must be generated honestly and the signer cannot deviate from the protocol), and the scheme is only
heuristically secure as it needs to homomorphically evaluate a standard signature scheme that internally
uses a hash function modeled as a random oracle. The second can support unbounded polynomially many
signatures and blindness holds against honest signers (i.e. the public key must be generated honestly but
the signer can deviate from the protocol) but it requires a new non-standard hardness assumption called the
one-more-inhomogeneous SIS assumption. Moreover, the signature size becomes as large as 1 MB2,3, while
the communication cost is lowered to a few KB. The other work is by Lyubashevsky et al. [LNP22a]. They
propose a round-optimal blind signature based on a new approach using one-time signatures and OR-proofs.
Unlike [AKSY21a], the security of their blind signature is based on the standard hardness of the MSIS and
MLWE assumptions. However, the scheme only supports bounded polynomially many signatures with a

1Alkadri et al. [AHJ21] claims to have fixed the bug of BLAZE+ (and thus by Rükert) but we have found several errors in
their security proof. This has been confirmed by the authors through personal communication.

2Agrawal et al. provide an informal estimate of 30 KB to 100 KB and states to use the NIZK by [ENS20, LNS21]. However,
considering that their security proof relies on an exact proof for a relation Cs = u for a large matrix C (since the authors argue
that C is indistinguishable from uniform with the leftover hash lemma) and a witness s with entries as large as Ω(√q), even an
optimistic estimate gives a lower bound of 1 MB with current lattice-based NIZKs.

3After submission of this paper, Agrawal et al. updated their paper to use the NIZK by Lyubashevsky et al. [LNP22b]
appearing at CRYPTO 2022. See Section 1.4 work for more detail.

3

signature size of roughly 150 KB. The communication cost is around 16 MB and the signer running time
scales linearly in the maximum number of signatures that can be signed.

In summary, all known lattice-based blind signatures have at least two of the following drawbacks:
heuristic security; 1 MB or more signature size; only supporting bounded polynomially many signatures, or
based on non-standard assumptions. This leaves open the following natural question:

Can we construct an efficient and provably secure lattice-based blind signature supporting un-
bounded polynomially many signatures based on standard assumptions?

As an independent interest, we also note that all provably secure lattice-based blind signatures mentioned
above are only proven secure against classical adversaries in the classical random oracle model (ROM).
Indeed, most strategies used to prove security completely break down when handling quantum adversaries
in the quantum ROM (QROM). Although we do not imagine all previous constructions can be broken using
quantum adversaries, considering that one of the main appeals of lattice-based cryptography is their resilience
against quantum adversaries, we believe any formal post-quantum security guarantee is highly desirable.

1.2 Our Contribution
In this work, we answer the above question in the affirmative. We construct the first round-optimal lattice-
based blind signature with a signature size roughly 100 KB that supports unbounded many signatures
and is provably secure under standard assumptions. Even if we allow non-standard assumptions and more
rounds, ours provide the shortest signature size while also supporting unbounded many signatures. The
communication cost currently sits at 850 KB, but as we explain later, we believe by using the right non-
interactive zero-knowledge (NIZK) proofs, we could cut this down to roughly 100 KB while maintaining
the same signature size. The security of our blind signature is established both in the classical ROM and
QROM. It is secure against malicious signers, where blindness holds even when the signer can register
malicious keys and deviate from the protocol. Moreover, our scheme can be easily transformed into a
partially blind signature [AO00]. This allows the user and signer to include a common agreed-upon message
into the signature and has proven to be useful in applications such as e-cash [Cha82, CFN90, OO92] and
e-voting [Cha88, FOO92].

We obtain our blind signature by a new generic construction tailored to lattices. The starting point of our
work is the generic round-optimal blind signature construction by Fischlin [Fis06]. The signature in Fischlin’s
blind signature consists of a complex NIZK proof that informally proves possession of two things: a signature
from a standard signature scheme and an opening to a commitment. At the heart of our generic construction
is a technique inspired by del Pino et al. [dLS18] that allows us to transform such complex statement into a
simple lattice statement consisting only of proving possession of a short vector. Consequently, we can rely
on well-known efficient lattice-based NIZKs such as those by Lyubashevsky [Lyu09, Lyu12] to generate the
signature.

One tool required by our generic construction is a multi-proof straight-line extractable NIZK [BDK+21],4
which is used by the user to prove the well-formedness of its first message sent to the signer. Informally, such
an NIZK guarantees the existence of an extractor that, on input a simulation trapdoor and any adaptively cho-
sen proofs, outputs the corresponding witnesses. This is in sharp contrast to standard NIZKs in the (Q)ROM
where witness extraction is performed via rewinding [PS00, BN06]. If we were to rely on rewinding-based
extractions, our security proof would incur an exponential security loss in the number of signing sessions,
and result in a scheme that can only support poly-logarithmically many signatures. Similar issues crop up
in the context of IND-CCA secure public key encryptions [SG98, BFW15] and group signatures [BDK+21].
In this work, to construct such strong NIZKs for relatively complex lattice-based statements, we rely on the
recent technique of extractable linear homomorphic commitments proposed by Katsumata [Kat21].

Finally, we highlight that due to the modularity of our generic construction, any future improvements
in lattice-based NIZKs may lead to more efficient blind signatures. For instance, if we were able to combine
the technique of Katsumata with the recent efficient lattice-based NIZKs [ALS20, ENS20], then we could

4This notion is also called online extractable in the literature.

4

potentially reduce the communication cost from 850 KB to roughly 100 KB. We leave further optimized
instantiations of our generic construction as an interesting future work.

1.3 Technical Overview
We give an overview of our techniques in two parts. In Part 1, we explain the high level idea of our generic
construction and in Part 2, we explain how to instantiate the building blocks.
Part 1. We first explain our generic construction tailored to lattices.
Blind Signature by Fischlin. Our starting point is the generic construction of blind signatures by
Fischlin [Fis06]. The blind signature is round optimal and supports polynomially many signatures. His
generic construction relies on general NIZKs for a complex statement and the proof overhead (i.e. signature
size) becomes prohibitively large when instantiated using known lattice-based NIZKs. Our goal is to replace
this complex statement with a lattice-friendly statement.

We first recall Fischlin’s construction. In his construction, the signer publishes a verification key of a
standard signature scheme as the verification key vk of the blind signature and keeps the corresponding
signing key sk secret. If a user wants the signer to blindly sign on message M, it submits a commitment
com ← Com(M; rand) to the signer and obtains a signature σ $← Sig(sk, com). The user then constructs a
ciphertext ct← Enc(ek, com‖rand‖σ; rand′) using a PKE scheme and constructs an NIZK proof π that proves

com = Com(M; rand) ∧ Verify(vk, σ, com) = > ∧ ct = Enc(ek, com‖rand‖σ; rand′), (1)

where the statement is (vk, ek, ct,M) and the witness is (com, rand, σ, rand′). Finally, the user outputs
Σ = (π, ct) as the blind signature. Here, we assume ek is pseudorandom and is generated as an output
of the random oracle. This ensures that nobody, including a malicious signer, knows the corresponding
decryption key dk of the PKE scheme in the real-world. dk is only used during the security proof of one-more
unforgeability, where the reduction uses dk to decrypt com‖rand‖σ from ct.

Although it is theoretically possible to instantiate Fischlin’s generic construction from lattices, the main
bottleneck is constructing an efficient lattice-based NIZK for Eq. (1). Agrawal et al. [AKSY21a] attempts
to heuristically5 instantiate Fischlin’s generic construction based on Dilithium [DKL+18], one of the most
efficient lattice-based signatures, but they estimated the signature to require at least 100KB with prover
complexity approaching 1 hour.
Lattice-Friendly Enc-then-Prove by del Pino et al. The main complexity of Eq. (1) comes from the
need to show possession of a valid signature on a hidden message (i.e. com). Roughly, this is because we
do not have a lattice-based signature whose verification algorithm is compatible with known efficient lattice-
based NIZKs. Now, although not exactly what we require, we observe that a technique used by del Pino et
al. [dLS18] for constructing efficient group signatures comes close to what we need.

A group signature allows a user to anonymously sign on behalf of a group, while a special entity called a
group manager can deanonymize the signer should the need arise. A typical recipe for constructing a group
signature is the enc-then-prove paradigm [Cam97]. Each group user is assigned an identity I ∈ [N], where
N = poly(λ) is the size of the group, and the group manager provides a signature σ $← Sign(sk, I); this
serves as a certificate for user I belonging to the group. To sign on behalf of the group, user I constructs a
ciphertext ct← Enc(ek, I; rand′) using a PKE scheme and constructs an NIZK proof π that proves

Verify(vk, σ, I) = > ∧ ct = Enc(ek, I; rand′), (2)

where the statement XGS is (vk, ek, ct) and the witness WGS is (σ, I, rand′). Note that NIZKs based on the
Fiat-Shamir paradigm allows to bind any message M to a proof π so π indeed serves as a signature for M.
Although Eq. (2) seems simpler than Eq. (1), it serves our purpose since it still includes the most complex
component, which is proving a valid signature on a hidden message (i.e. I).

5Their NIZK requires evaluating a hash function used by Dilithium which is modeled as a random oracle. Considering that
a random oracle does not have a function description in the ROM, this approach fails to provide any form of provable security.

5

We briefly go over the group signature by del Pino et al. [dLS18]. They use Boyen’s lattice-based
signature [Boy10, ABB10b] as the underlying signature scheme. In Boyen’s signature, the verification key
consists of a random element u ∈ Rq and vectors (a1,a2) ∈ Rkq × Rkq , where Rq is the polynomial ring
Zq[X]/(Xd + 1). The signing key sk is a short basis Ta1 ∈ Rk×k such that a1Ta1 = 0 mod q. To give out
a credential for user I ∈ [N], the group manager views I as a message and samples, using sk, a short vector
e ∈ R2k satisfying

[a1|a2 + I · g]e> = u, (3)

where g is the so-called gadget matrix [MP12]. It outputs e as the certificate for user I belonging to the
group. If I can be made public, then a user can simply use a standard lattice-based NIZK for proving
MSIS/MLWE relations to prove possession of the certificate e. That is, relations of the form a e> = u, where
(a, u) is the statement and e is the witness. On the other hand, if I needs to be kept private, which is the
case for group signatures, then Eq. (3) becomes a quadratic relation over the witness and we no longer know
how to prove it efficiently using lattice-based NIZKs.

The technical novelty of del Pino et al. was to linearize Eq. (3) by using the commitment scheme
by Baum et al. [BDL+18], a.k.a., the BDLOP commitment. The BDLOP commitment is of the form

com =
[
t0
t1

]
=
[
b0
b1

]
R +

[
0
I · g

]
, where b0,b1 ∈ Rkq is the commitment key, R ∈ Rk×k is the commitment

randomness, and I · g is the message. This commitment satisfies binding and hiding based on the MSIS and
MLWE assumptions. Using the lower half of the commitment t1, we can rewrite the left hand side of Eq. (3)
as

[a1|a2 + I · g]e> = [a1|a2 + b1R + I · g] e> − b1Re>2

= [a1|a2 + t1|b1]
[

e>
−Re>2

]
, (4)

where e = [e1|e2] ∈ R2k. Notice that [a1|a2 + t1|b1] consists only of public elements included in the
statement XGS. Specifically, Eq. (3) can now be expressed as an MSIS relation where the statement is
[a1|a2 + t1|b1] and the witness vector is [e| − e2R>] ∈ R3k. Thus, the user transforms Eq. (3) into Eq. (4),
constructs an efficient NIZK proof π for Eq. (4), and finally outputs the group signature Σ = (π, com).6

Reversing the Order for Blind Signatures. The technique of del Pino et al. [dLS18] can be seen as
transforming a Boyen signature on message M into a signature on a commitment com of M. This is a good
fit for the group signature functionality; a group authority signs the message M = I in the clear and the user
can later prove possession of the signature while hiding its identity I by planting a commitment com.

Our idea is to turn this technique around and use it for blind signatures. Blind signature has an opposite
functionality; the signer signs the message blindly through a commitment and the user later unblinds the
commitment to prove possession of a signature. Concretely, a user first constructs a BDLOP commitment
com for a message I ∈ [N] and sends it to the signer.7 The signer then pulls out t1 ∈ Rkq included in com
and signs t1 with the Boyen signature. Specifically, the signer samples a short vector e ∈ R2k satisfying

[a1|a2 + t1]e> = u.

The user then reverses the transformation in Eq. (4) to obtain

[a1|a2 + t1] e> = [a1|a2 + b1R + I · g] e> = [a1|a2 + I · g|b1]
[

e>
Re>2

]
, (5)

6To be precise, the user also needs to prove additional relations, e.g., com is a commitment to some I ∈ [N]. Since these
details are not relevant to the core idea, we omit them.

7A keen reader may notice that the message space (i.e. group size) [N] has to be polynomial large for the security proof
of [dLS18] to work. We later show how to support an exponentially large message space as required for blind signatures.

6

where notice the right hand side has the desired form of a public vector being multiplied by a short secret
vector. Therefore, the signature output by the user can be a standard NIZK proof π for the MSIS relation,
where the statement is [a1|a2 + I · g|b1] and the witness vector is [e|e2R>] ∈ R3k.

While the above construction satisfies correctness and blindness, it is not clear how to prove one-more
unforgeability. To explain why, let us first see how del Pino et al. showed the unforgeability of their group
signature. The reduction simulates the group manager by sampling a1

$← Rkq and programming a2 as
a2 = a1R∗ − I∗ · g for a random short matrix R∗, where I∗ ∈ [N] is a guess for the user on which the
adversary forges on. When the adversary queries the certificate for some user I 6= I∗, the reduction can use
standard techniques [ABB10a, CHKP10] to sample a short vector for [a1|a2 + I ·g] = [a1|a1R∗+ (I− I∗) ·g]
using the simulation trapdoor R∗ and the fact that (I − I∗) is invertible over Rq. Once the adversary
outputs a forgery, which consists of a proof π and commitment t1 satisfying Eq. (4), the reduction (roughly)
extracts a witness (I ′,R′, e′) via rewinding the adversary. By soundness of the NIZK, the witness satisfies
t1 = b1R′ + I ′ · g (i.e. a valid BDLOP commitment) and

[a1|a2 + t1|b1] e
′> = [a1|a1R∗ − I∗ · g + b1R′ + I ′ · g|b1] e

′> = [a1|b1]
[
e′>1 + R∗e′>2
R′e′>2 + e′>3

]
,

where e′ = [e′1|e′2|e′3] ∈ R3k and we assume the guess made by the reduction is correct, i.e. I∗ = I ′, which
happens with non-negligible probability when N = poly(λ). Thus, the reduction can break the MSIS problem
with respect to the public vector [a1|b1] if the adversary breaks unforgeability.

Unfortunately, this proof strategy fails in the blind signature setting. In the group signature setting, the
reduction only had to sample from the vector [a1|a2 + I · g] = [a1|a1R∗ + (I − I∗) · g], where I ∈ [N] was
the only component controlled by the adversary. However, in the blind signature setting, the reduction must
be able to sample from the vector [a1|a2 + t1] = [a1|a1R∗ − I∗ · g + t1] for an arbitrary t1. This change no
longer allows the reduction to rely on prior trapdoor sampling techniques [ABB10a, CHKP10] and it is not
obvious anymore how to simulate the real-world signer without the full trapdoor Ta1 .
Adding Proof of Wellformedness. To fix the above idea, we modify the user to also include an NIZK
proof πcom of the fact that com is well-formed, which in particular implies that t1 = b1R′ + I ′ · g for some
short R′ and I ′ ∈ [N]. However, this cannot be just any standard NIZK. When the reduction is given the
proof πcom and com from the adversary, it must extract (R′, I ′) from it without interrupting the simulation.
This is in contrast to rewinding-type extractions [PS00, BN06], where the reduction performs extraction only
after the adversary finished playing the security game. For example, recall above to see how the reduction
extracted an MSIS solution from the adversary’s forgery in the unforgeability proof of the group signature. To
this end, as we have already pointed to in Section 1.2, we rely on a stronger type of multi-proof straight-line
extractable NIZK [BDK+21]. Such NIZK allows the reduction to directly extract (R′, I ′) from the adversary
without altering its behavior.

In summary, the high level description of our blind signature is as follows. The user first constructs a
BDLOP commitment com for the message M and adds a multi-proof straight-line extractable NIZK proof
πcom of its well-formedness. The signer receives (πcom, com) from the user and then samples a short vector e
such that [a1|a2 + t1|b1]e> = u, where notice that we modify the public vector to also include b1. Given
e from the signer, the user transforms the signature verification equation into an MSIS relation following
almost the same computation as in Eq. (5), and outputs a standard NIZK proof π for the MSIS relation as
its signature.

In the security proof, the reduction uses the multi-proof straight-line extractable NIZK to extract (R′, I ′)
such that t1 = b1R′ + I ′ · g without rewinding the adversary. Then, it can rewrite [a1|a2 + t1|b1] as
[a1|a1R∗+ b1R′+ (I ′− I∗) ·g|b1]. Since (R∗,R′) serves as a simulation trapdoor for [a1|b1], the reduction
is able to sample a short vector using prior techniques [ABB10a, CHKP10] when I ′ 6= I∗. If the adversary
outputs a forgery on message I∗, the reduction can obtain an MSIS solution following an argument similar
to that of del Pino et al. This completes the high-level description of our blind signature.
Omitted Details. As we briefly mentioned in Footnote 7, the above proof only works when the message
space [N] is polynomially large, which was the only case required in the context of group signatures. Here,

7

if N was larger than polynomial, the probability that the reduction guesses the message I∗ output by the
adversary becomes negligible. To support an exponential message space, we hash the message I onto a
carefully chosen exponential-sized set and sign the hashed message instead. If the hash function is modeled
as a random oracle, then the reduction will be able to guess the hash of the message used in the forgery with
non-negligible probability. Although this simple idea no longer works in the QROM since the adversary can
query the entire input space in superposition, we rely on the programming technique of Zhandry [Zha12] to
prove security.

Another subtle yet important detail we glossed over is the fact that typical lattice-based NIZKs do not
allow for exact extraction/soundness. Namely, the reduction may only be able to extract a witness (R′, I ′)
such that ĉ · t1 = b1R′ + I ′ · g from the malicious user, where ĉ is some small invertible element in Rq.
In this case, [a1|a2 + t1|b1] can only be rewritten as [a1|a1R∗ + b1(R′/ĉ) + (I ′/ĉ − I∗) · g|b1], where ĉ−1

is in general not small. Then, since the trapdoor (R∗,R′/ĉ) is not necessarily small, it no longer fits
the description required by prior trapdoor sampling techniques [ABB10a, CHKP10]. We show that prior
sampling techniques can be naturally extended to work for this setting.

Part 2. Our generic construction relies on two NIZKs for different statements. One is a multi-proof straight-
line extractable NIZK used by the user to prove the well-formedness of the first message, i.e. BDLOP
commitment. The other is a standard NIZK for the MSIS relation that only needs to be single-proof ex-
tractable via rewinding, which is used by the user to construct the final blind signature. We only explain
the former as it is the more technically challenging NIZK to construct.

To construct a multi-proof straight-line extractable NIZK, we rely on the recent Katsumata trans-
form [Kat21]. At a high level, it provides a generic method to upgrade many of the known lattice-based
NIZKs proven to be secure in the classical ROM to NIZKs secure in the QROM. More precisely, this trans-
form can be seen as a technique to upgrade a single-proof rewinding-extractable lattice-based NIZK in the
classical ROM into a single-proof straight-line extractable NIZK in the QROM. We show that using a more
fine-grained analysis, we can further upgrade this transform to provide the desired multi-proof straight-line
extractable NIZK in the QROM. Thus, the question boils down to constructing a lattice-based NIZK in the
classical ROM that is compatible with the Katsumata transform.

Recall the statement we need to prove was roughly t1 = b1R + M · g with witness (R,M), where (R,M)
are short/small elements over Rq. A standard way to prove such relation is to first decompose the statement
into (t1,i = b1r>i + M · gi)i∈[k], where t1,i, gi and ri are the i-th elements and column of t1,g, and R,

respectively. By rewriting each b1r>i + M · gi into an MSIS relation as
[
b1|0
0|gi

] [
r>i
M

]
, we can prove that t1,i

has the correct form for some small (r′i,M′i) using standard NIZKs for MSIS relations. We can then further
prove that M′i = M′i+1 for all i ∈ [k − 1] by proving linear relations between t1,i and t1,i+1.

It turns out that for concrete efficiency, the extraction/soundness slack on R has a very large impact
on the final signature size. For instance, if we use Lyubashevsky’s NIZK [Lyu09, Lyu12] to prove the MSIS
relation, we are only able to extract a witness (R′, I ′) such that ĉ · t1 = b1R′ + I ′ · g for some small and
invertible ĉ. Although ĉ is relatively small, this negatively impacts the size of the short vector sampled
by the signer, which then negatively impacts the witness size used by the user to construct the final blind
signature. Due to the way the slackness propagates in each step, the blow-up in the parameter accumulates
and the final blind signature can become quite large.

To this end, we use the exact proof by Bootle et al. [BLS19] to prove the MSIS relation and glue the proof
of linear relation together. This allows the reduction to extract an exact witness with regards to R′ but a
relaxed witness with regards to the message I ′. This idea is somewhat similar to the very recent “hybrid
exact/relaxed” lattice proofs introduced in an independent and concurrent work by Esgin et al. [ESLR22].
We finish by showing that we can apply the Katsumata transform to this new protocol to obtain the desired
multi-proof straight-line extractable NIZK. Here, we highlight that while using a more complex NIZK has a
positive impact on the final blind signature size, it harms the communication cost from the user to the signer.
This is because the exact proof of Bootle et al. [BLS19] has a larger proof size compared to the standard
NIZK for MSIS/MLWE relations. If we wanted to minimize the sum of the communication cost and signature
size, then other NIZKs could be a better fit. We believe one of the benefits of our generic construction is that

8

one can choose different instantiations of the NIZKs to optimize the scheme concerning their specific metric.
We also note that we were not able to use the more recent efficient exact-proof NIZKs [ALS20, ENS20] since
it was non-trivial to apply the Katsumata transform. We leave it as an interesting open question to extend
the Katsumata transform to these efficient NIZKs.

Finally, the above NIZK gives us full straight-line extraction capability but we show that we can relax
this when considering the concrete proof of one-more unforgeability of our blind signature (in the classical
ROM). This allows us to reduce the proof size of our NIZK by roughly 40 folds (i.e. from 34 MB to 851 KB).
At a very high level, the Katsumata transform applied to the proof of the linear relation already allows us to
straight-line extract a relaxed relation with regards to R′ as well. If R′ is not the same as the R′′ extracted
from the exact relation of the proof of Bootle et al., then it turns out that we can solve the MSIS problem. In
other words, unless the adversary against the one-more unforgeability breaks the MSIS assumption, the R′
that the reduction straight-line extracts from the linear relation are exact, rather than being relaxed. Hence,
the reduction tries to straight-line extract from the linear proof, and if it fails to extract an exact witness
R′, then it can quit the simulation of the one-more unforgeability game. It then simply resorts to rewinding
the adversary to extract R′′ from the exact proof of Bootle et al. aiming to break the MSIS problem. Thus,
we can reduce the proof size by removing the Katsumata transform applied the exact proof of Bootle et al.
Details are provided in Section 4.4.

1.4 Related Work
Blind Signatures in the Standard Model. Blind signature have been the target of many theoreti-
cal works since they are a special case of a general two-party computation. Lindell [Lin08], Fischlin and
Schröder [FS10], and Pass [Pas11] all show some impossibility results on blind signatures in less than three
rounds in the standard model, i.e. without using a common reference string (CRS) or relying on the ROM.
Garg et al. [GRS+11] constructed the first round-optimal blind signature in the standard model, where they
circumvent the impossibility result by using complexity leveraging. Fuchsbauer et al. [FHS15] constructed an
efficient round-optimal blind signature in the standard model relying on interactive assumptions. Katsumata
et al. [KNYY21] constructed the first round-optimal blind signature in the standard model without using
complexity leveraging. They circumvent the impossibility result by using a quantum reduction to break
classical assumptions in the security proof.
Blind Signatures in the ROM/CRS from Classical Assumptions. Fischlin [Fis06] proposed a generic
construction of a round-optimal blind signature in the CRS model. Schnorr [Sch01] constructed an efficient
three-round blind signature based on the Schnorr signature [Sch90]. Although the Schnorr blind signature
was considered to be secure against poly-logarithmically many signature, it was not until recently that
provable security in the algebraic group model (AGM) and ROM was established [FPS20, KLX20]. Baldimtsi
and Lysyanskay [BL13] showed that proving the Schnorr blind signature only in the ROM is impossible.
Pointcheval and Stern [PS00] proved that the three-round Okamoto-Schnorr blind signature based on the
DDH assumption is secure for poly-logarithmically many signatures. Abe and Okamoto [AO00] introduced
the concept of partial blind signatures and constructed a three-round blind signature based on the DDH
assumption that is secure for poly-logarithmically many signatures. It was recently shown by Benhamouda et
al. [BLL+21] that there is a practical attack on [Sch01, PS00, AO00] when the number of signatures exceeds
the amount supported by their respective security proofs. Abe [Abe01],[KLX20] constructed a three-round
blind signature in the AGM that is secure for polynomially many signatures. Tessaro and Zhu [TZ22]
recently constructed a blind signature with similar properties but with signature size one-half of the Abe
blind signature.
Concurrent and Independent Work. In a recent series of work [BLS19, ALS20, LNS20, ENS20, LNP22b],
increasingly tight and efficient exact lattice-based zero-knowledge proofs have been constructed. In this paper
we do not use the latest of these improvements (we use [BLS19] and not the very recent [LNP22b]), first
because the efficiency of our exact NIZK does not affect the final signature size (as it is only necessary when
sending the first flow to the signer), and also because using more involved proofs of knowledge would make
the security proof more complicated and the paper less readable, we thus leave this task to a future work.

9

While, as mentioned, the efficiency of our exact proof does not impact the signature size, its tightness does.
In fact using [LNP22b] which proves tight bounds on the euclidean norm (rather than [BLS19] which proves
bounds on the infinity norm) would help improve the parameters of our scheme, it could even be worthwhile
to replace our second NIZK (which does not need to be exact for security) with this new proof, as having
a less efficient but tighter proof would result in even better parameters and potentially smaller signatures.
Agrawal et al. [AKSY21b] constructs a blind signature also based on the Fischlin blind signature relying on
a new assumption called one-more-SIS. After the submission of this paper, [AKSY21b] updated their paper
to include a parameter set achieving signature size 44KB using the new NIZK of [LNP22b]. The claimed
security is 109 bits and while the paper provides some potential attack directions, the new one-more-SIS
assumption warrants further cryptanalysis from the community.

2 Preliminaries
Notations. For sets X and Y, Func(X ,Y) denotes the set of all functions from X to Y. We view vectors a
in their row form. For two vectors a and b, [a>‖b>] denotes the vertical concatenation. We use PPT and
QPT as shorthand for probabilistic polynomial time and quantum polynomial time, respectively.

2.1 Blind Signature
We provide the definition of blind signatures. For simplicity, we give a definition focusing on round-optimal
(i.e. two-round) blind signatures.
Definition 2.1 (Blind Signature). A round-optimal blind signature scheme ΠBS with a message spaceM
consists of PPT algorithms (BSGen,U1,S2,Uder,BSVerify) defined as follows:
BSGen(1λ)→ (vk, sk): The key generation algorithm takes as input the security parameter 1λ and outputs a

verification key vk and a signing key sk.

U1(vk,M)→ (ρ1, stU): This is the user’s first message generation algorithm that takes as input a verification
key vk and a message M ∈M and outputs a first message ρ1 and a state stU .

S2(sk, ρ1)→ ρ2: This is the signer’s second message generation algorithm that takes as input a signing key
sk and a first message ρ1 as input and outputs a second message ρ2.

Uder(stU , ρ2)→ Σ: This is the user’s signature derivation algorithm that takes as input a state stU and a
second message ρ2 as input and outputs a signature Σ.

BSVerify(vk,M,Σ)→ > or ⊥: This is a deterministic verification algorithm that takes as input a verification
key vk, a message M ∈ M, and a signature Σ, and outputs > to indicate acceptance or ⊥ to indicate
rejection.

Definition 2.2 (Correctness). A blind signature is correct if for any λ ∈ N and M ∈M, we have

Pr


(vk, sk) $← BSGen(1λ)
(ρ1, stU) $← U1(vk,M)
ρ2

$← S2(sk, ρ1)
Σ $← Uder(stU , ρ2)

: BSVerify(vk,M,Σ) = >

 = 1− negl(λ).

Definition 2.3 (One-More Unforgeability). A blind signature is classically (resp. quantumly) one-more
unforgeable if for any Q = poly(λ) and PPT (resp. QPT) adversary A that makes at most Q classical
queries, we have

AdvOMU
ΠBS

(A) := Pr
[

(vk, sk) $← BSGen(1λ)
{(Mi,Σi)}i∈[Q+1]

$← AS2(sk,·)(vk)
: BSVerify(vk,Mi,Σi) = > for all i ∈ [Q + 1]
∧ {Mi}i∈[Q+1] is pairwise distinct

]
= negl(λ)

where we say that {Mi}i∈[Q+1] is pairwise distinct if we have Mi 6= Mj for all i 6= j.

10

Definition 2.4 (Blindness Under Malicious Keys). To define blindness, we consider the following game
between an adversary A and a challenger.

Setup. A is given as input the security parameter 1λ, and sends a verification key vk and a pair of messages
(M0,M1) to the challenger.

First Message. The challenger generates (ρ1,b, stU,b) $← U1(vk,Mb) for each b ∈ {0, 1}, picks coin $← {0, 1},
and gives (ρ1,coin, ρ1,1−coin) to A.

Second Message. The adversary sends (ρ2,coin, ρ2,1−coin) to the challenger.

Signature Derivation. The challenger generates Σb $← Uder(stU,b, ρ2,b) for each b ∈ {0, 1}. If BSVerify(vk,
Mb,Σb) = ⊥ for either b = 0 or 1, then the challenger gives (⊥,⊥) to A. Otherwise, it gives (Σ0,Σ1)
to A.

Guess. A outputs its guess coin′.

We say that A wins if coin = coin′. We say that a blind signature is classically (resp. quantumly) blind
against malicious senders if for any PPT (resp. QPT) adversary A, we have

Advblind
ΠBS

(A) :=
∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ = negl(λ).

Remark 2.5 (Blind Signature in the (Q)ROM). In the (Q)ROM, we assume all algorithms used to define ΠBS
and the adversary are provided oracle access to the random oracle. For instance, in the game of one-more
unforgeability, we assume A and S2 to have access to the random oracle. All probabilities are also taken
over the random choice of the random oracle.

2.2 Non-Interactive Zero-Knowledge Proofs in the (Q)ROM
We consider a non-interactive zero-knowledge proof of knowledge (or simply NIZK) in the (Q)ROM. We
chose to make the reliance on the (Q)ROM explicit for NIZKs unlike for other primitives considered in the
paper such as blind signatures since the definition deviates slightly from those in the standard model. We
also assume that the prover and verifier are provided with a common random string crs. Looking ahead, our
blind signature generates this crs as the output of another random oracle so it does not rely on any trusted
setup, thus making the blind signature also blind against malicious senders. Below, we define NIZKs with
respect to quantum adversaries but we can recover the classical definition by restricting the adversaries to
be classical.

Definition 2.6 (NIZK Proof System). A non-interactive zero-knowledge (NIZK) proof system ΠNIZK for
the relations R and Rgap (which are implicitly parameterized by the security parameter λ)8 and a common
random string crs with length `(λ) consists of oracle-calling PPT algorithms (Prove,Verify) defined as follows:

ProveO(crs,X,W)→ π/⊥ : The prover algorithm takes as inputs a common random string crs ∈ {0, 1}`,
statement and witness pair (X,W) ∈ R, and outputs a proof π or a special symbol ⊥ denoting abort.

VerifyO(crs,X, π)→ >/⊥ : The verifier algorithm takes as inputs a crs, a statement X and a proof π, and
outputs either > (accept) or ⊥ (reject).

We denote by LR := {X | ∃W, (X,W) ∈ R} the language induced by R.

We require an NIZK proof system to satisfy several properties. Below, we always assume probabilities
are also taken over the random choices of the random oracle. We first consider correctness.

8Unlike conventional definition of “gap” soundness, we do not require R ⊆ Rgap to hold. The NIZK is useful as long as Rgap
defines a hard language.

11

Definition 2.7 (Correctness). An NIZK proof system ΠNIZK is correct if for all λ ∈ N, crs ∈ {0, 1}` and
(X,W) ∈ R, the probability of ProveO(crs,X,W) outputting ⊥ is at most negl(λ), and we have

Pr
[
π

$← ProveO(crs,X,W) : VerifyO(crs,X, π) = >
∣∣∣π 6= ⊥] = 1.

We consider the standard notion of zero-knowledge, except that we assume that an adversary only obtains
at most two proofs per statement. This is sufficient for blind signatures and simplifies our proof for zero-
knowledge in the QROM (see Footnote 11 for more detail). Note that for (deterministic) Fiat-Shamir-based
signature schemes in the QROM [KLS18, Kat21], it suffices to assume that the adversary can receive a single
proof per statement.

Definition 2.8 (Zero-Knowledge). An NIZK proof system ΠNIZK is classically (resp. quantumly) zero-
knowledge if there exists a PPT zero-knowledge simulator Sim = (Sim0,Sim1) consisting of two algorithms
Sim0 and Sim1 with a shared state such that for any PPT (resp. QPT) adversary A, we have

AdvZK
ΠNIZK

(A) :=
∣∣∣Pr
[
A|O〉,Prove(crs) = 1

]
− Pr

[
A|Sim0〉,S(crs) = 1

]∣∣∣ = negl(λ),

where Prove and S are prove oracles that on input (X,W) return ⊥ if (X,W) 6∈ R and otherwise return
ProveO(crs,X,W) or Sim1(crs,X), respectively. The probability is also taken over the randomness of sampling
crs $← {0, 1}`. Here, we assume A queries the same statement X to Prove or S at most twice.

We define proof of knowledge which is a stronger property than soundness. Informally, we require the
existence of an extractor algorithm Extract such that for any adversary outputting a valid statement and proof
pair, Extract can extract a corresponding witness. We can consider several flavors for proof of knowledge.
Below, we consider two types: single-proof extractability and multi-proof (straight-line) extractability. While
the latter is a stronger property compared to the former, the former allows for more efficient constructions.

The following single-proof extractability definition is identical to the standard definition of (non-adaptive)
proof of knowledge.

Definition 2.9 (Single-Proof Extractability). An NIZK proof system ΠNIZK is classically (resp. quan-
tumly) single-proof extractable if there exists a PPT (resp. QPT) extractor Single-Extract, constants c1, c2,
e, and a non-negligible polynomial p(λ) such that for any crs ∈ {0, 1}`, any X ∈ LR, any QH = poly(λ), and
PPT (resp. QPT) adversary A that makes at most QH random oracle queries with

Pr[π $← A|O〉(crs,X) : VerifyO(crs,X, π) = >] ≥ µ(λ),

we have,

Pr
[

W $← Single-ExtractA(crs,X) : (X,W) ∈ Rgap

]
≥ 1
p(λ) · Qe

H
· µ(λ)c1 − negl(λ),

where the runtime of Single-Extract is upper bounded by c2 · Time(A) and we assume one oracle access to A
takes Time(A).

For instance, in the classical setting, if we compile a sigma protocol with the Fiat-Shamir transform,
then we have (c1, c2, e) = (2, 2, 1) and p(λ) = 1 via the forking lemma [PS00, BN06]. In the quantum
setting, [DFMS19, LZ19] showed that (c1, c2, e) = (3, 2, 6) for some non-negligible p(λ) if the sigma protocol
is additionally collapsing (see Appendix B for more details).

We additionally rely on a stronger type of extractability where we can directly extract from multiple
statement and proof pairs output by the adversary. Unlike the above definition, the adversary is further
allowed to chose the statement adaptively. To perform such strong form of extraction, the common random
string c̃rs is simulated and the extractor is provided with a special trapdoor corresponding to c̃rs.

12

Definition 2.10 (Multi-Proof Extractability). An NIZK proof system ΠNIZK is classically (resp. quan-
tumly) multi-proof extractable if there exists a PPT (resp. QPT) oracle simulator Scrs and a PPT (resp.
QPT) extractor Multi-Extract with the following properties:

CRS Indistinguishability. For any PPT (resp. QPT) adversary A, we have

Advcrs
ΠNIZK

(A) :=
∣∣∣Pr[crs $← {0, 1}` : A|O〉(crs) = 1]− Pr[(c̃rs, τ) $← Scrs(1λ) : A|O〉(c̃rs) = 1]

∣∣∣ = negl(λ).

Straight-Line Extractability. There exists constants c, e1, e2 and polynomial p(λ) such that for any QH =
poly(λ) and PPT (resp. QPT) adversary A that makes at most QH random oracle queries with

Pr
[
(c̃rs, τ) $← Scrs(1λ), {(Xi, πi)}i∈[QS]

$← A|O〉(c̃rs) : ∀i ∈ [QS],VerifyO(c̃rs,Xi, πi) = >
]
≥ µ(λ),

we have,

Pr
[

(c̃rs, τ) $← Scrs(1λ), {(Xi, πi)}i∈[QS]
$← A|O〉(c̃rs),

{Wi
$← Multi-Extract(1λ,QH,QS, 1/µ, τ,Xi, πi)}i∈[QS]

: ∀i ∈ [QS], (Xi,Wi) ∈ Rgap
∧ VerifyO(c̃rs,Xi, πi) = >

]
≥ 1

2 · µ(λ)− negl(λ).

Moreover, the runtime of Multi-Extract is upper bounded by Qe1
H · Q

e2
S ·

1
µc · p(λ).

We show that for our NIZK, we have (c, e1, e2) = (1, 1, 0) in the classical setting where p(λ) is roughly the
time it takes to perform a standard PKE decryption. In the quantum setting, we instead have (c, e1, e2) =
(1, 2, 1).

Remark 2.11 (Regarding Common Random String). We only require a common random string crs for multi-
proof extraction, and thus omit crs from the syntax for simplicity when only requiring single-proof extraction.
Looking ahead, in the context of blind signatures, the crs is simply generated as an output of the random
oracle since it is a common random string.

2.3 Lattices
Rings and Gaussian Measures. For a power of 2 integer d and a prime q, let Rq denote the polynomial
ring Zq[X]/(Xd+ 1). Throughout this paper we view ring elements a =

∑d−1
i=0 αiX

i ∈ Z[X]/(Xd+ 1) as row
vectors (α0, · · · , αd−1) ∈ Zd interchangeably. For integers a and b such that a < b, [a, b]coeff ⊂ Rq denotes
the set of all polynomials in Rq with coefficients in [a, b]. For a positive real σ, let DZd,σ denote the discrete
Gaussian distribution over Zd. For any x ∈ Zd:

DZd,σ(x) = exp(‖x‖22/(2σ2))∑
y∈Zd

exp(‖y‖22/(2σ2))

To simplify notations, we occasionally use a $← Dσ to mean that the coefficient vector of a ∈ Rq is sampled
from DZd,σ. The definitions naturally extends to vectors a ∈ Rk by viewing a as a vector in Zkdq . Finally,
for a matrix R ∈ Zn×m, we denote by s1(R) its spectral norm. We extend the notion to matrices over R by
considering the coefficient embedding into Z.

The following is the rejection sampling lemma by [Lyu12, Lemmas 4.3, 4.6].

Lemma 2.12 (Rejection Sampling). Let V ⊂ Zm in which all elements have `2-norm less than T , h be
a probability distribution over V , φ a positive real, err a positive real smaller than 1, and set σ = φ · T . Now
sample e← h and r← DZm,σ, set z = e + r, and run b← Rej(z, e, φ, T, err) in Fig. 1. Then, the probability
that b = > is at least (1 − err)/µ(φ, err) for µ(φ, err) = exp

(√
−2 log err

log e · 1
φ + 1

2φ2

)
and the distribution of

(e, z) conditioned on b = > is within statistical distance of err/µ(φ, err) of the product distribution h×DZm,σ.

13

Rej(z, e, φ, T, err)
1: u $← [0, 1)
2: if u > 1

µ(φ,err) · exp
(
−2〈z,e〉+‖e‖22

2σ2

)
then return ⊥

3: else return >

Figure 1: Rejection sampling.

As a concrete example that is often used, by setting φ = 11 and err = 2−100 we get µ(φ, err) ≈ 3. We can
also set for example φ = 14 and err = 2−256 to obtain µ(φ, err) ≈ 4 if we want better statistical bounds.

The following establishes useful lemmas to bound the norm of an element sampled from some discrete
Gaussian distribution [MR04, Lyu12, ABB10a].

Lemma 2.13. For any real t > 0 and t′ > 1, we have

Pr[x $← DZn,σ : ‖x‖∞ > tσ] < 2n · 2−
log e

2 ·t
2
,

Pr[x $← DZn,σ : ‖x‖2 > tσ
√
n] < 2n·(

log e
2 (1−t2)+log t).

Lemma 2.14. Let k, q be positive integers larger than 2, a ∈ Rkq , u ∈ Rq, Ta ∈ Rk×k be an arbitrary
basis for Λ⊥(a), and σ > ‖Ta‖GS · ω(

√
log kd). Then, if we sample a vector e ← DΛ⊥u (a),σ, we have

Pr[‖e‖2 >
√
kdσ] < negl(d).

The following states that with overwhelming probability, the MSIS problem has several solutions. The
proof is a simple adaptation of [Lyu12, Lemma 5.2.] to the structured lattice setting.

Lemma 2.15. Let d, k, q,∆ be positive integers and Rq = Z[X]/(Xd + 1). For any a ∈ Rkq and s $←
[−∆,∆]kcoeff , the probability that there does not exist s′ ∈ [−∆,∆]kcoeff such that s′ 6= s and as> = as′> is at
most qd/(2 ·∆ + 1)kd.

Hardness Assumptions. We define several hardness assumptions used in this paper. We first define the
module short integer solutions (MSIS) and module learning with errors (MLWE) assumption. Below, we
assume the assumptions are difficult for QPT adversaries by default.

Definition 2.16 (MSIS). For integers d = d(λ), n = n(λ), k = k(d, n), q = q(d, n) > 2, B = B(d, n), and an
algorithm A, the advantage of the module short integer solutions MSISd,n,k,B,q problem of A is defined as
follows:

AdvMSISd,n,k,B,q (A) = Pr[A(A)→ e : 0 < ‖e‖2 ≤ B ∧Ae> = 0 mod q]

where A $← Rn×kq . We say the MSISd,n,k,B,q assumption holds if the above advantage is negligible for all
QPT A.

Definition 2.17 (MLWE). For integers d = d(λ), n = n(λ), k = k(d, n), q = q(d, n) > 2, an error distribution
χ = χ(d, n) over Rq = Zq[X]/(Xd + 1), and an algorithm A, the advantage of the module learning with
errors MLWEd,n,k,χ,q problem of A is defined as follows:

AdvMLWEd,n,k,χ,q (A) =
∣∣Pr[A(A,As> + e>)→ 1]− Pr[A(A,b>)→ 1]

∣∣ ,
where A $← Rn×kq , s $← χk, e $← χn, and b $← Rnq . We say the MLWEd,n,k,χ,q assumption holds if the above
advantage is negligible for all QPT A.

Finally, we define the decisional small matrix ratio (DSMR) assumption [CPS+20, Kat21] that generalizes
the decisional small polynomial ratio (DSPR) assumption used by [HPS98, LTV12, SXY18]. The latter
underlies the hardness of the NTRU encryption scheme.

14

Definition 2.18 (DSMR). For integers d = d(λ), k = k(d), p = p(d), q = q(d) > 2 such that p and q are
coprime, an error distribution χ = χ(d) over Rq = Zq[X]/(Xd + 1), and an algorithm A, the advantage of
the decisional small matrix ratio DSMRd,k,χ,q,p problem of A is defined as follows:

AdvDSMRd,k,χ,q,p(A) =
∣∣Pr[A(p · v · F−1)→ 1]− Pr[A(h)→ 1]

∣∣ ,
where (v,F) ← χk × χk×k conditioned on F being invertible over mod q and mod p, h ← Rkq . We say the
DSMRd,k,χ,q,p assumption holds if the above advantage is negligible for all QPT A.

Sampling Algorithms. Chuengsatiansup et al. [CPS+20] shows how to generate a lattice trapdoor
based on the DSMR assumption. Although we can generate a lattice trapdoor without any computational
assumptions or using only the MLWE assumption, e.g. [GPV08, MP12], relying on the DSMR assumption
results in better parameters.

Lemma 2.19 (Trapdoor Generation). Let Rq = Zq[X]/(Xd + 1) with d a power of 2, q a prime, and
k ≥ 2 a positive integer. Let χ := DZ,σ for σ . O(q1/k) for which the DSMRd,k−1,χ,q,1 assumption holds.
Then, there exists a randomized algorithm TrapGen(1kd, q) that outputs a vector a := [1 | a′] ∈ Rkq and a
full-rank matrix Ta ∈ Rk×k, where Ta is a basis for Λ⊥(a). Moreover, ‖Ta‖GS = O(q1/k) and a′ ∈ Rk−1

q is
indistinguishable from random based on the DSMRd,k−1,χ,q,1 assumption.

Using a lattice trapdoor, we can perform the following types of discrete Gaussian sampling [ABB10a,
CHKP10, CHKP12, MP12]. We modify SampleRight from [MP12] so that the so-called “MP-trapdoor” R∗
can be large in a controlled manner. We believe this may have other applications and provide a proof sketch
in Appendix A.1.

Lemma 2.20 (Trapdoor Sampling). Let Rq = Zq[X]/(Xd + 1) with d a power of 2, q a prime, and
k, k′, k1, k2 positive integers such that k, k′ ≥ 2 and k1 + k2 = k′. Then, we have the following.

− SampleLeft(a,b, u,Ta, σ) → e : There exists a randomized algorithm that, given vectors a ∈ Rkq and
b ∈ Rk

′

q with k′ = k1 + k2, a ring element u ∈ Rq, a basis Ta ∈ Rk×k for Λ⊥(a), and a Gaussian
parameter σ > ‖Ta‖GS · ω(

√
log kd), outputs a vector e ∈ Rk+k′ sampled from a distribution which is

negl(d)-close to DΛ⊥u ([a|b]),σ.

− SampleRight(a,g, (R, c,R′), t, u,Tg, σ) → e: There exists a randomized algorithm that, given vectors
a ∈ Rk

′

q , g ∈ Rkq , matrices R ∈ Rk1×k and R′ ∈ Rk2×k, invertible elements c, t ∈ Rq, a basis Tg for

Λ⊥(g), and a Gaussian parameter σ > s1(cR∗) · ‖Tg‖GS · ω(
√

log kd), where R∗ =
[

R
1
cR′

]
∈ Rk

′×k,

outputs a vector e ∈ Rk′+k sampled from a distribution which is negl(d)-close to DΛ⊥u ([a|aR∗+t·g]),σ.

In the above SampleRight algorithm, it is conventional to set g as the so-called “gadget matrix” [MP12].
For any integer b ≥ 2, g := [1 | b | · · · | bk−1] ∈ Rkq , where k = dlogb(q)e. The size of g is parameterized by b.
Moreover, there exists a public known trapdoor Tg ∈ Rk×k such that ‖Tg‖GS ≤

√
b2 + 1.

2.4 Commitments
We provide a minimal definition for a commitment scheme in the common random string model. Below, we
do not define the blinding property as it will be implicitly handled by the trapdoor-sampling-compatibility
notion that we define in Section 3.1.

Definition 2.21 (Commitment Scheme). A commitment scheme ΠCom with message spaceM, random-
ness space R and common random string crs with length `(λ) consists of the algorithm Com defined as
follows:

15

Com(crs,M; rand)→ com : The commitment algorithm takes as input the common random string crs, a mes-
sage M ∈M, and randomness rand ∈ R, and outputs a commitment com. We may omit rand when we
do not require the randomness to be explicit.

We require the commitment scheme to satisfy hiding.

Definition 2.22 (Hiding). A commitment scheme with message space M is classically (resp. quantumly)
hiding if for any PPT (resp. QPT) algorithm A, we have

Advhide
ΠCom

(A) :=

∣∣∣∣∣Pr
[

crs $← {0, 1}`, (M0,M1) $← A(crs), b $← {0, 1}
com $← Com(crs,Mb), b′ $← A(crs, com)

: b = b′

]
− 1

2

∣∣∣∣∣ = negl(λ).

2.5 Quantum Related Tools
Quantum Computation. We briefly give some background on quantum computation. We refer to [NC00]
for more details. A state |ψ〉 of n qubits is expressed as

∑
x∈{0,1}n αx |x〉 ∈ C2n where {αx}x∈{0,1}n is a

set of complex numbers such that
∑
x∈{0,1}n |αx|2 = 1 and {|x〉}x∈{0,1}n is an orthonormal basis on C2n

(which is called a computational basis). If we measure |ψ〉 in the computational basis, then the outcome
is a classical bit string x ∈ {0, 1}n with probability |αx|2, and the state becomes |x〉. The evolution of
a quantum state can be described by a unitary matrix U , which transforms |x〉 into U |x〉. A quantum
algorithm is composed of quantum evolutions described by unitary matrices and measurements. We also
consider a quantum oracle algorithm, which can quantumly access to certain oracles. The running time
Time(A) of a quantum algorithm A is defined to be the number of universal gates (e.g., Hadamard, phase,
CNOT, and π/8 gates) and measurements required for running A.
Useful lemmata. Zhandry [Zha12] has shown that a quantum random oracle can be simulated by a family
of 2Q-wise independent hash functions against an adversary that quantumly accesses the oracle at most Q
times.

Lemma 2.23. Any quantum algorithm A making quantum queries to random oracles can be efficiently sim-
ulated by a quantum algorithm B, which has the same output distribution, but makes no queries. Especially,
if A makes at most Q queries to a random oracle H : {0, 1}a → {0, 1}b, then Time(B) ≈ Time(A)+Q·T 2Q-wise

a,b

where T 2Q-wise
a,b denotes the time to evaluate a 2Q-wise independent hash function from {0, 1}a to {0, 1}b.

Throughout the paper, we omit the subscripts a and b when the context is clear. The following two
lemmata by Zhandry [Zha12] roughly states that we can modify the random oracle to have range with size
polynomially related to the number of (quantum) random oracle query an adversary performs.

Definition 2.24 (Small-Range Distributions). Fix a positive integer r and sets X and Y and a dis-
tribution D on Y. Let y = (y1, · · · , yr) $← Dr and let P : X → [r] be a random function. We define a
small-range distribution with r samples of D by the distribution on Func(X ,Y) induced by y and P defined
as H(x) = yP (x).

Lemma 2.25. There is a universal constant C0 = (8π2)/3 ≤ 27 such that, for any sets X and Y, distribution
D on Y, any positive integer r, and any quantum algorithm A making Q queries to an oracle H : X → Y,
the following two cases are indistinguishable, except with probability less than C0 · Q3/r:

• H(x) = yind(x), where y = (y1, · · · , y|X |) $← D|X | and ind is any bijective map from X to [|X |];

• H is drawn from the small-range distribution with r samples of D.

The following lemma by Zhandry [Zha12] states that if each output of two oracles are independent and
computationally indistinguishable, then an efficient adversary with quantum access to the oracles can still
not distinguish them,

16

Lemma 2.26. Let X and Y be arbitrary sets and let D0 and D1 be efficiently sampleable distributions on Y.
For b ∈ {0, 1}, let Hb be a distribution over Func(X ,Y) such that when we take Hb ← Hb, for each x ∈ X ,
Hb(x) is identically and independently distributed according to Db. Then if A is a QPT algorithm that makes
at most Q oracle queries such that∣∣∣Pr[A|H0〉(1λ)→ 1]− Pr[A|H1〉(1λ)→ 1]

∣∣∣ ≥ ε,
where Hb ← Hb for b ∈ {0, 1}, then we can construct a QPT algorithm B with runtime similar to A that
distinguishes D0 from D1 with probability at least ε2/(C · Q3) for some universal constant C > 0.

Finally, Kiltz, Lyubashevsky, and Schaffner [KLS18, Lemma 2.1] establishes that it is difficult even for
an adversary with quantum access to the random oracle to find an input that satisfies a sparse relation. For
any λ ∈ [0, 1], let Bλ denote the Bernoulli distribution, i.e., Prb←Bλ [b = 1] = λ.

Lemma 2.27 (Generic Search Problem with Bounded Probabilities). Let λ ∈ [0, 1] and X be any
set. For any (possibly unbounded) quantum algorithm A making at most Q quantum queries to its oracle,
consider the following game between a challenger:

1. A outputs a set of reals (λx)x∈X ;

2. The challenger checks if λx ≤ λ for all x ∈ X. If not, abort. Otherwise, it samples bx ← Bλx and
prepares the function G : X → {0, 1} such that G(x) = bx for all x ∈ X, and finally provides A oracle
access to G;

3. A|G〉 outputs x ∈ X. We say A wins if G(x) = 1.

Then, we have AdvGSBP(A) := Pr[A wins] ≤ 8 · λ · (Q + 1)2.

3 Lattice-based Blind Signature from Compatible Commitments
In this section, we provide our generic construction of a blind signature tailored to lattices. For a high level
overview of our construction, we refer the readers to Section 1.3. For simplicity, we first prove the scheme
against classical adversaries. The proof against quantum adversaries is provided in Section 5.1.

3.1 Trapdoor-Sampling-Compatible Commitments
We first explain the type of lattice-based commitments applicable to our generic construction, which we
call trapdoor-sampling-compatible commitments. For instance, the BDLOP commitment by Baum et al.
[BDL+18] is one specific instantiation. We keep this layer of abstraction as we believe this captures the
essential properties required by our generic construction and allows drop-in of different types of commitments.

Definition 3.1 (Trapdoor-Sampling-Compatibility). Let L and `com be positive integers. Let ΠCom be a
commitment scheme with message spaceM := RLq and an `com-bit common random string crs. ΠCom is (k, δ)-
trapdoor-sampling-compatible if there exists accompanying deterministic PT algorithms (ParseCom,ParseRand)
such that for any crs ∈ {0, 1}`com , rand ∈ R, ~M ∈M, and com = Com(crs, ~M; rand), we have the following:

• (bi)i∈[L] ⊆ crs9, t = ParseCom(com), and (ri)i∈[L] = ParseRand(rand), where bi ∈ Rkq , t ∈ RLq , and
ri ∈ Rk;

• for each i ∈ [L], ti = bir>i + Mi ∈ Rq, where ti is the i-th entry of t, Mi is the i-th entry of ~M, and ri
satisfies s1

(
[r>1 | . . . |r>L]

)
≤ δ;

9That is, we assume the bit-representation of each bi is included in crs. Without loss of generality, we can think instead
that crs lives in (Rkq)L × {0, 1}`. Although we could have considered an algorithm ParseCRS that outputs (bi)i∈[L] on input
crs, we did not chose so since it would complicate the security proof. (See Footnote 12)

17

• finally, the concatenated vector [b1 | · · · | bL] ∈ RLkq consists of elements in {0, 1} ⊂ Rq or uniform
random elements in Rq, where the probability is taken over the randomness of crs $← {0, 1}`com . Note
that when bi and bj contain duplicate entries, say the first entry of bi and bj are defined identically,
then we only consider randomness over one of them.

Roughly, δ dictates the “quality” of the randomness used to hide the message. The choice of s1(·) is
arbitrary, and for instance, we can use the two-norm.

3.2 Construction of Blind Signature
Parameters. For reference, we provide in Table 1 the parameters used in the scheme and in the security
proof. We require these parameters to satisfy certain conditions for the correctness and security to hold,
which are summarized in Section 3.3. As typical with many lattice-based constructions, the parameters are
quite dense so we advise the readers to refer Table 1 only when needed.

Looking ahead, the main parameters to keep in mind are (q, d, k1, k2, k3): q and d define the polynomial
ring Rq; k1 is the lattice dimension used to perform trapdoor sampling; k2 is the dimension of the message
spaceM of the commitment scheme ΠCom; and k3 is the length of (bi)i∈[L=k2] of ΠCom. We can simply set
k1, k2, and k3 to be equal to the maximum value of these three but we chose to parameterize them since it
allows us to fine-tune them for better concrete efficiency. For those only interested in the asymptotic, one
can safely assume they are the same value.

Parameter Explanation
Rq Polynomial ring Rq = Z[X]/(q,Xd + 1)
Binv Any a ∈ Rq s.t. ‖a‖2 ≤ Binv is invertible
k1 Size of lattice trapdoor T ∈ Rk1×k1 (see Lemmata 2.19 and 2.20)
k2 Size of the message spaceM = Rk2

q for ΠCom

(k3, δ) Parameters for the trapdoor-sampling-compatible ΠCom (see Definition 3.1)
σ Gaussian parameter for trapdoor sampling algorithms

(`m
NIZK, `com) Length of common random string crs for Πm

NIZK and ΠCom, respectively
δgap Spectral norm bound on the extracted commitment randomness used in gap relation Rm

gap

BSΣ,i, i ∈ [3] Two-norm bound on the vector (e1, e2, e3) := e sampled by the signer
BUΣ,i, i ∈ [3] Two-norm bound on the real secret vector (ẽ1, ẽ2, ẽ3) := ẽ for relation Rs

BU,gap
Σ,i , i ∈ [3] Two-norm bound on the extracted vector (ẽ1, ẽ2, ẽ3) := ẽ for gap relation Rs

gap

Schal ⊂ Rq Challenge set of the interactive proof system implicit in Πm
NIZK

Bc One-norm bound on c ∈ Schal used in gap relation Rm
gap

Shash ⊂ Rq Hashed message set with size > 2λ s.t. ∀(c, h) ∈ Schal × Shash, ‖c · h‖2 ≤ Binv/2
∆MLWE Bound on solution size of search MLWE s.t. the solution is not unique

(χMLWE, BMLWE) Noise distribution for decision MLWE, where R $← χk1×k2
MLWE ⇒ s1(R) ≤ BMLWE w.o.p

(χDSMR, BDSMR) Noise distribution χDSMR := DZ,BDSMR for DSMR
BMSIS Two-norm bound on the solution for MSIS

Table 1: Overview of parameters and notations. The rows following the second double horizontal line are
parameters mainly used in the security proof.

Building Blocks. Our blind signature ΠBS relies on the following building blocks. The norm bounds on
vectors and matrices are chosen with the later concrete parameter selection in mind. For the asymptotic
result, we could have simply used the two-norm.

• A commitment scheme ΠCom with message spaceM = Rk2
q (i.e., L := k2 in Definition 3.1), randomness

space R, and an `com-bit common random string crscom that satisfies hiding and (k3, δ)-trapdoor-
sampling-compatiblity.

18

• A NIZK proof system Πs
NIZK (without a common random string) for the relations Rs and Rs

gap that
satisfies correctness, zero-knowledge and single-proof extractability, where Rs and Rs

gap are defined as
follows:10

– Rs :=

X = (a1,a2, (bi)i∈[k2], u, h),W = ẽ

∣∣∣∣∣∣
(ẽ1, ẽ2, ẽ3) := ẽ ∈ Rk1+k2+k2·k3 ,

∀i ∈ [3], ‖ẽi‖2 ≤ BUΣ,i
∧ [a1 | a2 + h · g | b1 | · · · | bk2] ẽ> = u

;

– Rs
gap :=

X = (a1,a2, (bi)i∈[k2], u, h),W = (ẽ, c)

∣∣∣∣∣∣
(ẽ1, ẽ2, ẽ3) := ẽ ∈ Rk1+k2+k2·k3 ,

∀i ∈ [3], ‖ẽi‖2 ≤ BU,gap
Σ,i ∧ ‖c‖1 ≤ Bc

∧ [a1 | a2 + h · g | b1 | · · · | bk2] ẽ> = c · u

.

• A NIZK proof system Πm
NIZK (with a common random string comm

NIZK) for the relationsRm andRm
gap that

satisfies correctness, zero-knowledge and multi-proof extractability, where Rm and Rm
gap are defined as

follows:

– Rm :=
{

X = (crscom, com),
W = (h, rand)

∣∣∣∣ (h, rand) ∈ Shash ×R,
∧ com = Com(crscom, h · g; rand)

}
;

– Rm
gap :=

 X = (crscom, com),
W = (h′, c′, c, (ri)i∈[k2])

∣∣∣∣∣∣
‖h′‖2 ≤ Binv/2 ∧ ‖c′‖1, ‖c‖1 ≤ Bc

∧ s1
(
[r>1 | · · · |r>k2

]
)
≤ δgap

∧ ti = bi(ri/c)> + (h′/c′) · gi

,

where t = ParseCom(com), (bi)i∈[k2] ⊆ crscom, g = [1 | b | · · · | bk2−1] ∈ Rk2
q is the gadget matrix with

k2 = dlogb(q)e, and gi is the i-th element of g.

• Four hash functions Hcrs, HM, Hm, and Hs modeled as a random oracle in the security proof. The latter
two Hm and Hs are hash functions used by the NIZK proof systems Πm

NIZK and Πs
NIZK, respectively.

HM : {0, 1}∗ → Rq is a hash function used to map messages to ring elements. Hcrs is a special hash
function, for which we only use the input 0. Specifically, Hcrs(0) = (crsm

NIZK, crscom,a2) contains the
common random strings crsm

NIZK and crscom used by Πm
NIZK and ΠCom, respectively, and a random vector

a2 ∈ Rk2
q . Note that as standard practice, the four hash functions can be derived from a single hash

function by using appropriate domain separation.

Construction. The construction of our blind signature ΠBS is provided below. We assume Hcrs(0) =
(crsm

NIZK, crscom,a2) and (bi)i∈[k2] ⊆ crscom are derived correctly by all the algorithms and omit the process
of generating them.

BSGen(1λ) : It runs (a1,Ta1) $← TrapGen(1k1d, q), samples s $← [−∆MLWE,∆MLWE](k1+k2k3)
coeff and sets u =

[a1 | b1 | · · · | bk2] · s> ∈ Rq, where recall a1 ∈ Rk1
q , bi ∈ Rk3

q for i ∈ [k2]. It then outputs
(vk, sk) = ((a1, u),Ta1).

U1(vk,M) : It hashes h = HM(M), samples rand $← R, and computes com = Com(crscom, h · g; rand). It then
creates a proof πm $← ProveHm(crsm

NIZK, (crscom, com), (h, rand)) that proves the wellformedness of the
commitment com, and outputs the first message ρ1 = (com, πm). Finally, it sets its state as stU = rand.

S2(sk, ρ1) : It parses (com, πm) ← ρ1 and outputs ⊥ if VerifyHm(crsm
NIZK, (crscom, com), πm) = ⊥. Otherwise,

it computes t← ParseCom(com) and samples a short vector e ∈ Rk1+k2+k2k3 such that

[a1 | a2 + t | b1 | · · · | bk2] · e> = u, (6)

using e $← SampleLeft(a1, [a2 + t | b1 | · · · | bk2] , u,Ta1 , σ). It outputs the second message ρ2 = e.
10With an abuse of notation, when we write (ẽ1, ẽ2, ẽ3) = ẽ ∈ Rk1+k2+k2·k3 , we assume (ẽ1, ẽ2, ẽ3) ∈ Rk1 ×Rk2 ×Rk2·k3 .

19

Uder(stU , ρ2) : It parses (e1, e2, e3) := e← ρ2, rand← stU , and outputs ⊥ if either ∃i ∈ [3], ‖ei‖2 > BSΣ,i or
Eq. (6) does not hold. Otherwise, it computes t← ParseCom(comcrs) and (ri)i∈[k2] ← ParseRand(rand),
where h = HM(M), ti = bir>i + h · gi ∈ Rq, and ti and gi are the i-th entries of t and g, respectively.
It then rewrites the left hand side of Eq. (6) as follows:

[a1 | a2 + t | b1 | · · · | bk2] · e> =
[
a1 | a2 + [b1r>1 + h · g1 | · · · | bk2r>k2

+ h · gk2] | b1 | · · · | bk2

]
· e>

= [a1 | a2 + h · g | b1 | · · · | bk2]


e>1
e>2

e2,1 · r>1 + e>3,1
. . .

e2,k2 · r>k2
+ e>3,k2


︸ ︷︷ ︸

=:ẽ∈Rk1+k2+k2k3

,

where e3 = [e3,1 | · · · | e3,k2] ∈ Rk2k3 and e2 = [e2,1 | · · · | e2,k2] ∈ Rk2 are parsed intro appropriate
sizes. It then creates a proof πs $← ProveHs ((a1,a2, (bi)i∈[k2], u, h), ẽ) that proves knowledge of a short
vector ẽ. If ⊥ ← VerifyHs ((a1,a2, (bi)i∈[k2], u, h), πs), then it outputs Σ = ⊥. Otherwise, it outputs
Σ = πs as the signature.

BSVerify(vk,M,Σ) : It parses πs ← Σ, sets h = HM(M), and returns the output of VerifyHs ((a1,a2, (bi)i∈[k2],
u, h), πs).

Remark 3.2 (Variations of the Construction). We can consider slight variations of the above construction.
For instance, in case the commitment vectors satisfy b1 = · · · = bk2 , which is the case for our concrete
instantiation in Section 4.1, the signer can alternatively sample e such that [a1 | a2 + t | b1] ·e> = u instead
of Eq. (6). The user then parses

[a1 | a2 + t | b1] · e> = [a1 | a2 + h · g | b1 | · · · | bk2]

 e>1
e>2[

r>1 | · · · | r>k2

]
e>2 + e>3

 ,
where it reconstructs a vector with a slightly larger norm but shorter dimension compared to ẽ defined above.
Which variation offers the “best” blind signature highly depends on many factors: the criteria that we wish
to optimize (e.g., minimize the signature size, minimize the total communication cost); the concrete choice
of NIZKs and commitments we use; and other implicit parameter selections. However, regardless of which
variation is chosen, the following security proofs we provide remains identical.

3.3 Correctness and Condition on Parameters
Correctness. The following establishes the correctness of the above blind signature ΠBS.

Lemma 3.3. The blind signature ΠBS is correct if σ > ω(q1/k1 ·
√

log k1d), ∀i ∈ [3], BSΣ,i =
√
kidσ, ∀i ∈

[2], BUΣ,i = BSΣ,i, B
U
Σ,3 = δBSΣ,2 +BSΣ,3 and the two NIZKs Πs

NIZK and Πm
NIZK are correct.

Proof. By correctness of Πm
NIZK, the signer correctly processes the first message ρ1 sent from the user. By

Lemma 2.19, we have ‖Ta1‖GS = O(q1/k1). Combining this with Lemmata 2.14 and 2.20 and the bound
on the Gaussian parameter σ, the samples vector (e1, e2, e3) := e satisfies ‖ei‖2 ≤ BSΣ,i for all i ∈ [3]
with all but negligible probability. Then, we have ‖ẽ3‖2 ≤ ‖e3‖2 +

∑k2
i=1‖e2,i · ri‖2 ≤ ‖e3‖2 + ‖e2‖2 ·

s1([r>1 | . . . |r>k2
]) ≤ δBSΣ,2 +BSΣ,3 , where we use s1([r>1 | . . . |r>k2

]) ≤ δ which follows from the (k3, δ)-trapdoor-
sampling-compatibility of ΠCom. Hence, by correctness of Πs

NIZK, we conclude that ΠBS is correct with all
but negligible probability.

Conditions on Parameters. We summarize the conditions that our parameters in Table 1 must satisfy
for the correctness and security of our scheme. These conditions are only asymptotic and mainly provided
for concreteness. We show in Section 4.5 a set of concrete parameters.

20

- The MLWEd,1,k1−1,χMLWE,q, DSMRd,k1−1,χDSMR,q,1, and DSMRd,k2k3−1,χDSMR,q,1 assumptions hold, where for
any R $← χk1×k2

MLWE , we have s1(R) ≤ BMLWE with overwhelming probability;

- The MSISd,1,k1+k2k3,BMSIS,q assumption withBMSIS = BU,gapΣ,1 +BU,gapΣ,3 +BMLWE·BU,gapΣ,2 +Bc·∆MLWE
√
k1 + k2k3

holds;

- TrapGen operates properly (Lemma 2.19): that is, BDSMR . O(q1/k1).

- SampleLeft operates properly (Lemma 2.20): that is, σ > ω(q1/k1 ·
√

log k1d);

- SampleRight (in the security proof) operates properly (Lemma 2.20): that is, σ > s1(R′) · ‖Tg‖GS ·
ω(
√

log k2d), where s1(R′)2 ≤
√
Bc ·B2

MLWE + δgap2, and ‖Tg‖GS ≤ O(q1/k2);

- Vector s sampled by BSGen retains 1-bit of min-entropy (Lemma 2.15): that is, (2q)1/(k1+k2k3)/2 ≤ ∆MLWE;

- Correctness holds: that is BSΣ,i =
√
kidσ, ∀i ∈ [2], BUΣ,i = BSΣ,i, B

U
Σ,3 = δBSΣ,2 +BSΣ,3;

- BUΣ,i ≤ BU,gap
Σ,i and δ ≤ δgap that are required implicitly by the extractability of Πs

NIZK and Πm
NIZK, respec-

tively;

- Condition on (Binv, Shash, Schal) holds: that is, any a ∈ Rq s.t. ‖a‖2 ≤ Binv is invertible, |Shash| ≥ 2λ, and
for any (c, h) ∈ Schal × Shash, we have ‖c · h‖2 ≤ Binv/2.

3.4 Proof of Blindness
Theorem 3.4. The blind signature ΠBS is classically blind under malicious keys if the commitment scheme
ΠCom is classically hiding, and the two NIZKs Πs

NIZK for (Rs,Rs
gap) and Πm

NIZK for (Rm,Rm
gap) are classically

zero-knowledge.

Proof. Let A be a PPT adversary against the blindness game. Below, we consider a sequence of games,
where the challenger samples coin = 0 (resp. 1) in the first (resp. last) game. For each i, let εi denote
the probability that A outputs coin′ = 0 in Gamei. Blindness is established by showing that the differences
between the εi in each adjacent games are negligible.

Game1 : This is the real blindness game where the challenger samples coin = 0. Specifically, (ρ1,0, ρ1,1) is
given to A as the first message. By definition, A outputs coin′ = 0 with probability ε1.

Game2 : In this game, instead of running ProveHs , the challenger simulates the signature using the zero-
knowledge simulator Sims = (Sims

0,Sims
1) for Πs

NIZK. Concretely, when A makes a random oracle query to Hs
the challenger runs Sims

0. When A submits (ρ2,0, ρ2,1) to the challenger, the challenger parses e2,b ← ρ2,b

for b ∈ {0, 1} and performs the check made by Uder. If it holds, it runs π̃s
b

$← Sims
1(a1,a2, (bi)i∈[k2], u, hb) for

b ∈ {0, 1}, where hb = HM(Mb). If the two simulated proofs π̃s are valid, then it outputs the two signatures
as (Σ0 := π̃s

0,Σ1 := π̃s
1) to A. Notice that by definition of the blindness game, the challenger runs Sims

1 at
most twice per statement as required by the definition of Sims

1.11

It can be checked that we can construct a PPT adversary Bs that has advantage |ε1 − ε2| in the zero-
knowledge game, where Bs internally executes A and simulates the challenger with its provided oracles
(O,Prove) or (Sim0,S). Note that Bs only queries valid statements to Prove or S due to the check performed
by Uder. Moreover, Bs can answer the random oracle queries to Hcrs,HM, and Hm in an on-the-fly manner.
Thus we have,

|ε1 − ε2| ≤ AdvZK
Πs

NIZK
(Bs).

11In standard proof of Fiat-Shamir-based signatures, this subtle condition is typically ignored since we can turn the signing
algorithm deterministic using a pseudorandom function. That is, Sims

1 only needs to generate one proof per statement. In the
context of blind signatures, this is no longer the case since even if two users use the same statement, the proofs generated with
different randomness will be different.

21

Game3 : In this game, instead of running ProveHm , the challenger modifies part of the first message ρ1
using the zero-knowledge simulator Simm = (Simm

0 ,Simm
1) for Πm

NIZK. In particular, when A makes a random
oracle query to Hm the challenger runs Simm

0 . Moreover, when A submits (M0,M1) to the challenger,
the challenger computes comb

$← Com(crscom, hb · g) for b ∈ {0, 1}, where hb = HM(Mb) as performed by
U1. It then runs π̃m

b
$← Simm

1 (crsm
NIZK, (crscom, comb)) for b ∈ {0, 1}, and outputs the first message pairs as

(ρ1,0 := (com0, π̃
m
0), ρ1,1 := (com1, π̃

m
1)) to A.

Following an identically argument to above and further programming the output of Hcrs(0) to use crsm
NIZK

provided by the zero-knowledge game of Πm
NIZK, we can construct a PPT adversary Bm such that

|ε2 − ε3| ≤ AdvZK
Πm

NIZK
(Bm).

Game4 : In this game, the challenger further modifies part of the first message ρ1. Rather than computing
comb

$← Com(crscom, hb · g) for b ∈ {0, 1}, the challenger computes comb
$← Com(crscom,0) for b ∈ {0, 1},

where 0 ∈ M = Rk2
q . By programming the output of Hcrs(0) to use crscom provided by the hiding game of

ΠCom, it is clear that we can construct a PPT adversary Bcom such that

|ε3 − ε4| ≤ 2 · Advhide
ΠCom

(Bcom).

At this point, the distribution of the first messages (ρ1,0, ρ1,1) and signatures (Σ0,Σ1) given to A are
independent of the distribution coin sampled by the challenger. In other words, the adversaries advantage
remains the same even if the challenger sends (ρ1,1, ρ1,0) as the first message.

Game5 : This is the real blindness game where the challenger samples coin = 1 and (ρ1,1, ρ1,0) is given to
A as the first message. By redoing the modifications made to move from Game1 to Game4 in reverse order,
while setting coin = 1, we have |ε4 − ε5| = |ε1 − ε4|.

Collecting all the bounds, we have |ε1 − ε5| = negl(λ) as desired. Moreover, Time(Bs),Time(Bm), and
Time(Bcom) are roughly the same as Time(A).

3.5 Proof of One-More Unforgeability
Theorem 3.5. The blind signature ΠBS is classically one-more unforgeable if the two NIZKs Πs

NIZK for
(Rs,Rs

gap) and Πm
NIZK for (Rm,Rm

gap) are classically single-proof and multi-proof extractable, respectively, and
the MSISd,1,k1+k2k3,BMSIS,q, MLWEd,1,k1−1,χMLWE,q, DSMRd,k1−1,χDSMR,q,1 and DSMRd,k2k3−1,χDSMR,q,1 problems
are hard.

Proof. Assume there exists a PPT adversary A with non-negligible advantage ε against the one-more un-
forgeability game that makes at most QS signature queries. Further assume A makes at most QHM (resp.
QHm ,QHs) random oracle queries to HM (resp. Hm, Hs), where we assume A never repeats the same query
without loss of generality. We consider a sequence of games, where we denote Ei as the event A wins in
Gamei and Ci as the challenger in Gamei.

Game1 : This is the real one-more unforgeability game. By definition, we have

Pr[E1] = ε.

Game2 : In this game, the challenger modifies the output of Hcrs(0) = (crsm
NIZK, crscom,a2). In the previous

game, crsm
NIZK

$← {0, 1}`m
NIZK . In this game, the challenger runs the CRS simulator Scrs provided by Πm

NIZK
and generates (c̃rsm

NIZK, τ) $← Scrs(1λ). It programs Hcrs(0) to output c̃rsm
NIZK instead of crsm

NIZK. Otherwise, it
proceeds identically to Game1.

It can be checked that Game1 and Game2 are indistinguishable by the CRS indistinguishability in Def-
inition 2.10. Specifically, there exists a PPT adversary Bcrsm

NIZK
against the CRS indistinguishability such

that
Pr[E2] ≥ Pr[E1]− Advcrs

Πm
NIZK

(Bcrsm
NIZK

),

22

where Time(Bcrsm
NIZK

) is Time(A) + Time(C2), which is roughly Time(A).

Game3 : In this game, the challenger uses the multi-proof extractor Multi-Extract provided by Πm
NIZK to extract

a witness in Rm
gap from all the proofs included in QS first messages (ρj,1)j∈[QS] submitted by A. Specifically,

whenA submits ρj,1 = (comj , π
m
j) to the challenger, the challenger runs Wj ← Multi-Extract(1λ,QHm ,QS, 1/µ,

τ,Xj , πm
j), where µ = Pr[E2] and Xj = (crscom, comj). We denote by Abortextract the event that there exists

j ∈ [QS] such that Wj /∈ Rm
gap. If Abortextract occurs, the challenger aborts the game and rewrites the forgery

of A to be ⊥. Otherwise, it proceeds identically to Game2. Conditioning on Abortextract not occurring,
the challenger extracts Wj = (h′j , c′j , cj , (rj,i)i∈[k2]) ∈ Rm

gap. We note that the challenger does not use the
extracted witness in this game.

We later show in Lemma 3.6 that

Pr[E3] ≥ 1
2 · Pr[E2]− negl(λ).

Note that the runtime of the challenger C3 becomes longer than that of C2 since it runs the multi-proof
extractor Multi-Extract. Due to Definition 2.10, we have Time(C3) = Time(C2) + Qe1

Hm
· Qe2+1

S · 1
µc · p(λ) for

some constants (c, e1, e2) and polynomial p(λ), where µ = Pr[E2] ≥ ε−negl(λ). Assuming ε is non-negligible,
Time(C3) is bounded by a polynomial.

Game4 : In this game, the challenger guesses the timing on which one of the messages included in the forgery
output by A is queried to the random oracle HM. Specifically, at the beginning of the game, the challenger
samples j∗ $← [QHM] and hj $← Shash for all j ∈ [QHM]. When A queries M′j as its j-th (j ∈ [QHM]) random
oracle query to HM, the challenger simply returns hj . The challenger performs two types of checks. First,
when the challenger extracts Wj = (h′j , c′j , cj , (rj,i)i∈[k2]) ∈ Rm

gap from the first message ρj,1 submitted to
by A (conditioned on Abortextract not occurring), the challenger checks if h′j/c′j 6= hj∗ , where note that by
definition c′j is invertible. Moreover, at the end of the game, when A outputs the forgery {(Mi,Σi)}i∈[QS+1],
the challenger checks if M′j∗ ∈ {Mi}i∈[QS+1] and if {HM(Mi)}i∈[QS+1] are pairwise distinct. We denote by
Abortguess the event that either of these checks do not hold. If Abortguess occurs, the challenger aborts and
rewrites the forgery of A to be ⊥. Otherwise, it proceeds identically to Game3.

We later show in Lemma 3.7 that

Pr[E4] ≥ 1
QHM

·

(
Pr[E3]−

Q2
HM

+ 1
|Shash|

)
.

Game5 : In this game, the challenger modifies the output of Hcrs(0) = (c̃rsm
NIZK, crscom,a2). Specifically, after

it samples j∗ $← [QHM] and hj $← Shash for all j ∈ [QHM] at the beginning of the game, it sets a2 = ã2−hj∗ ·g
where ã2

$← Rk2
q . It then programs Hcrs(0) to output this a2 rather than a2

$← Rk2
q as in the previous game.

It is clear that the distribution of both a2 are identical. Thus, we have

Pr[E5] = Pr[E4].

Game6 : In this game, the challenger gets rid of the trapdoor Ta1 included in the secret key sk and modifies
the way it samples the short vector e when A submits the first message ρ1. In particular, the challenger
modifies the output of Hcrs(0) and the two algorithms BSGen and S2 as follows, where the modification from
the previous game is underlined in red.

Hcrs(0) : It sample (c̃rsm
NIZK, τ) $← Scrs(1λ) and R $← χk1×k2

MLWE and sets ã2 = a1R, where a1 is defined in BSGen
below. It then sets the output of the random oracle to be (c̃rsm

NIZK, crscom,a2 = ã2 − hj∗ · g),

BSGen(1λ) : It samples a1
$← Rk1

q , s $← [−∆MLWE,∆MLWE]k1+k2+k2k3
coeff and sets u = [a1 | a2 | b1 | · · · |

bk2] · s> ∈ Rq. It then outputs (vk, s̃k) = ((a1, u), (τ,R)).

23

S2(s̃k, ρ1) : It parses (com, πm) $← ρ1 and outputs ⊥ if VerifyHm(c̃rsm
NIZK, (crscom, com), πm) = ⊥. Oth-

erwise, it runs W ← Multi-Extract(1λ,QHm ,QS, 1/µ, τ,X, πm), where µ is defined as in Game3 and
X = (crscom, com). Conditioning on event Abortextract not occurring, we have W = (h′, c′, c, (ri)i∈[k2]) ∈
Rm

gap. Recall that by definition of Rm
gap, we have ti = bi(ri/c)> + (h′/c′) · gi for all i ∈ [k2],

where t ← ParseCom(com), ‖h′‖2 ≤ Binv/2, and c′, c are guaranteed to be invertible and small, i.e.,
‖c′‖1, ‖c‖1 ≤ Bc. It then rewrites the vector as follows:

[a1 | a2 + t | b1 | · · · | bk2] =
[

a1 | a1R − hj∗ · g +
[

b1r>1
c

+ h′

c′
· g1 | · · · |

bk2r>k2

c
+ h′

c′
· gk2

]
| b1 | · · · | bk2

]

=
[

a1 | a1R + b̂R̂
c

+
(
h′

c′
− hj∗

)
· g | b̂

]

=
[
a1 | b̂ |

[
a1 | b̂

]
R′ +

(
h′

c′
− hj∗

)
· g
]
·Pperm,

where b̂ = [b1 | · · · | bk2] ∈ Rk2k3
q , R̂ = Ik2 ⊗ [r>1 | · · · | r>k2

] ∈ Rk2k3×k2 , R′ =
[

R
1
c R̂

]
∈ Rk2(k3+1)×k2 ,

and Pperm ∈ {0, 1}(k1+k2+k2k3)×(k1+k2+k2k3) is a permutation matrix that appropriately reorders the
columns. It then samples a short vector e′ ∈ Rk1+k2+k2k3 such that[

a1 | b̂ |
[
a1 | b̂

]
R′ +

(
h′

c′
− hj∗

)
· g
]
· e′> = u, (7)

using e′ $← SampleRight([a | b̂],g, (R, c, R̂), (h′/c′ − hj∗), u,Tg, σ), where note that invertibility of h
′

c′ −
hj∗ required by Lemma 2.20 can be checked as follows. First, we have 0 < ‖h′− c′ ·hj∗‖2 ≤ Binv based
on our parameter selection (see Table 1 and Rm

gap) and due to the condition that event Abortguess does
not occur. This shows that h′ − c′ · hj∗ is invertible. Then, since c′ ·

(
h′

c′ − hj∗
)

= h′ − c′ · hj∗ for an

invertible c′, h
′

c′ − hj∗ must be invertible as well. The signer algorithm S2 finally outputs the second
message ρ2 = e′(P−1

perm)>.

We later show in Lemma 3.8 that there exists PPT adversaries BMLWE, B′DSMR and BDSMR against the
MLWEd,1,k1−1,χMLWE,q, DSMRd,k1,χDSMR,q,1, and DSMRd,k2k3−1,χDSMR,q,1 problems, respectively, such that

Pr[E6] ≥ Pr[E5]−AdvMLWEd,1,k1−1,χMLWE,q (BMLWE)− AdvMLWEd,1,k1−1,χDSMR,q,1(B′DSMR)
− 2 · AdvDSMRd,k2k3−1,χDSMR,q,1(BDSMR)− negl(λ)

where Time(BMLWE), Time(B′DSMR), and Time(BDSMR) are roughly Time(A) + Time(C6). Assuming the hard-
ness of the MLWE and DSMR problems, we have Pr[E6] ≥ Pr[E5]− negl(λ).

At this point, the challenger in Game6 no longer relies on a trapdoor of a1. Therefore, we are now ready
to embed an MSIS instance in the public vectors and to simulate the view of A in Game6 in order to solve
the MSIS problem. We formally show in Lemma 3.9 that there exists a PPT adversary BMSIS against the
MSIS problem such that

AdvMSISd,1,k1+k2k3,BMSIS,q (BMSIS) ≥ 1
2p(λ) · Qe

Hs

· Pr[E6]c1 − negl(λ),

where p(λ) is a polynomial, and e and c1 are constants defined in Definition 2.9. Moreover, we have
Time(BMSIS) ≤ c2 · (Time(A) + Time(C6)), where c2 is also a constant defined in Definition 2.9.

Let us check that BMSIS has non-negligible advantage and runs in polynomial time to arrive at a contra-
diction. Collecting all the bounds, we have

Pr[E6] ≥ Pr[E1]
2QHM

− negl(λ) = ε

2QHM

− negl(λ),

24

where we used |Shash| ≥ 2λ. This in particular implies

AdvMSISd,1,k1+k2k3,BMSIS,q (BMSIS) ≥ 1
2p(λ) · Qe

Hs

·
(

ε

2QHM

)c1
− negl(λ)

which is non-negligible by assumption. Moreover, we have Time(C6) ≈ · · · ≈ Time(C3), Time(C3) =

Time(C2) + Qe1Hm
·Qe2+1

S
µc · p(λ), and Time(C2) ≈ Time(C1), where “≈” hides an insignificant blow up in the

runtime and µ = Pr[E2] ≥ ε− negl(λ). Since Time(A) can be assumed to be larger than Time(C1), we have

Time(C6) ≈ Time(A) + Qe1Hm
·Qe2+1

S
εc · p(λ), and thus, Time(BMSIS) / c2 ·O

(
Time(A) + Qe1Hm

·Qe2+1
S

εc · p(λ)
)
. Since

ε is non-negligible and Time(A) is polynomial, Time(BMSIS) is polynomially bounded as desired. Since this
implies a PPT adversary for the MSIS problem with non-negligible advantage, we arrive at a contradiction.
This establishes that for any PPT A, its advantage ε must be negligible.

To complete the proof of the main theorem, it remains to prove the following Lemmata 3.6 to 3.9.

Lemma 3.6. We have Pr[E3] ≥ 1
2 · Pr[E2]− negl(λ).

Proof. To analyze the success probability of using Multi-Extract, we first construct a PPT adversary BMulti-Ext
against the straight-line extractability game (see Definition 2.10). On input (1λ, c̃rsm

NIZK), BMulti-Ext runs the
Game3 challenger C3 and simulates the view of Game3 to A. When A makes a random oracle query to Hm,
BMulti-Ext relays it to the oracle O provided by the straight-line extractability game. It simulates the other
oracle queries on-the-fly as C3. BMulti-Ext also prepares a list L initially set to ∅, and when A submits the j-th
(j ∈ [QS]) first message ρj,1 = (comj , π

m
j), BMulti-Ext updates the list L← L ∪ (Xj = (crscom, comj), πm

j). If A
submits a valid forgery for the one-more unforgeability game, BMulti-Ext submits L as the [QS] statement and
proof pairs.

Since A succeeds with probability Pr[E2], we have

Pr
[
{L = (Xj , πj)}j∈[QS]

$← BOMulti-Ext(1λ, c̃rs) : ∀j ∈ [QS],VerifyO(c̃rs,Xj , πm
j) = >

]
≥ Pr[E2].

Then, by Definition 2.10, the probability that A outputs a valid forgery and Multi-Extract extracts a witness
Wj such that (Xj ,Wj) ∈ Rm

gap for all j ∈ [QS] is at least Pr[E2]
2 − negl(λ). This establishes that Multi-Extract

extracts all the witnesses if the challenger runs Multi-Extract at the end of the game. It remains to check
that the challenger can run Multi-Extract during the game to arrive at the description of C3 in Game3.

By noticing that the output of Multi-Extract is not used anywhere in Game3, it is clear that the timing on
which the challenger C3 runs Multi-Extract has no effect on the computed probability. It can run it during the
game, rather than at the end of the game. Moreover, the challenger C3 may abort as soon as Multi-Extract fails
to extract a witness without altering the success probability of A in Game3. This completes the proof.

Lemma 3.7. We have Pr[E4] ≥ 1
QHM
·
(

Pr[E3]−
Q2

HM
+1

|Shash|

)
.

Proof. Let us analyze Pr[Abortguess]. Firstly, we can assume every message in {Mi}i∈[QS+1] was queried to
HM. This is because the probability that A can create a valid signature for these messages without querying
HM is at most 1

|Shash| . Moreover, with all but probability
Q2

HM
|Shash| , we can assume no hash collision is found.

Conditioning on every messages in {Mi}i∈[QS+1] being queried to HM, we have hj∗ /∈ {h′j/c′j}j∈[QS] and
M′j∗ ∈ {Mi}i∈[QS+1] with probability at least 1

QHM
. This is because j∗ is uniform random from the view of

A and we may have HM(Mi) = h′j/c
′
j for QS-pairs of (i, j) ∈ [QS + 1] × [QS] in the worst case. In other

words, there must exist at least one M′j∗ = Mi∗ ∈ {Mi}i∈[QS+1] such that HM(Mi∗) /∈ {h′j/c′j}j∈[QS] assuming
there is no hash collision. Since the only differences between Game3 and Game4 are the abort condition, the
statement follows.

25

Lemma 3.8. We have Pr[E6] ≥ Pr[E5]− AdvMLWEd,1,k1−1,χMLWE,q (BMLWE)− AdvMLWEd,1,k1−1,χDSMR,q,1(B′DSMR)−
2 · AdvDSMRd,k2k3−1,χDSMR,q,1(BDSMR) − negl(λ), where BMLWE, B′DSMR, and BDSMR are adversaries against the
MLWEd,1,k1−1,χMLWE,q, DSMRd,k1,χDSMR,q,1, and DSMRd,k2k3−1,χDSMR,q,1 problems, respectively, with Time(BMLWE),
Time(B′DSMR), and Time(BDSMR) being roughly Time(A) + Time(C6).

Proof. The proof consists of several hybrid games defined as follows, where we define Game5-1 := Game5.
and Game5-7 := Game6.

Game5-2 : The challenger modifies crscom and embeds a trapdoor in (bi)i∈[k2] ⊆ crscom. For simplicity and
without loss of generality, we assume b̂ = [b1 | · · · | bk2] ∈ Rk2k3

q includes exactly one identity element
1 ∈ Rq and k2k3 − 1 elements that are uniform random over Rq. Although in general, b̂ may include more
0 and 1, and possibly contain duplicate entries, these have no effect on the concrete proof as long as the
number of uniform random elements are larger than k2 − 1, which is necessary for any commitment scheme
satisfying the hiding property.

Concretely, in this game, the challenger runs (b̂,Tb̂) $← TrapGen(1k2k3d, q) and sets crscom to include
them.12 The rest remains the same as in the previous game. Then, by Lemma 2.19, the two games remain
indistinguishable assuming the DSMRd,k2k3−1,χDSMR,q,1 assumption. Specifically, there exists a PPT adversary
BDSMR1 against the DSMRd,k2k3−1,χDSMR,q,1 problem such that

Pr[E5-2] ≥ Pr[E5-1]− AdvDSMRd,k2k3−1,χDSMR,q,1(BDSMR1),

where Time(BDSMR1) is roughly Time(A) + Time(C6).

Game5-3 : In this game, the challenger uses the trapdoor Tb̂ rather than Ta1 to sample the short vector e
such that [

a1 | a2 + t | b̂
]
· e> = u,

when it runs S2. Due to Lemma 2.20 and our parameter selection, we have

Pr[E5-3] ≥ Pr[E5-2]− negl(λ).

Game5-4 : In this game, the challenger modifies a1. Rather than generating a1 along with a trapdoor
Ta1 using TrapGen, the challenger simply samples a1

$← Rk1
q . Due to Lemma 2.19, this modification is

indistinguishable assuming the DSMRd,k1−1,χDSMR,q,1 assumption. Specifically, there exists a PPT adversary
B′DSMR against the DSMRd,k1−1,χDSMR,q,1 problem such that

Pr[E5-4] ≥ Pr[E5-3]− AdvDSMRd,k1−1,χDSMR,q,1(B′DSMR),

where Time(B′DSMR) is roughly Time(A) + Time(C6).

Game5-5 : In this game, the challenger modifies a2. Rather than computing a2 as ã2−hj∗ ·g where ã2
$← Rk2

q ,
the challenger samples R $← χk1×k2

MLWE and uses ã2 = a1R. Recall that the first entry of a1 is the identity 1 ∈ Rq
due to Lemma 2.19. Therefore, we can simply go through k2-games to move from Game5-4 to Game5-5, where
each adjacent games are indistinguishable assuming the MLWEd,1,k1−1,χMLWE assumption.13 Thus, there exists
a PPT adversary BMLWE against the MLWEd,1,k1−1,χMLWE,q problem such that

Pr[E5-5] ≥ Pr[E5-4]− k2 · AdvMLWEd,1,k1−1,χMLWE,q (BMLWE),

where Time(BMLWE) is roughly Time(A)+Time(C6). Here, note that the modification in Game5-3 and Game5-4
was crucial to construct BMLWE.

12This is where we implicitly use the fact that crscom directly includes (bi)i∈[k2], rather than assuming some efficient function
mapping crscom to (bi)i∈[k2].

13We note the proof works regardless of a1 including an identity element as long as it contains one invertible element in Rq ,
which we can assume without loss of generality.

26

Game5-6 : In this game, the challenger no longer uses Tb̂ to sample the short vector e. The challenger runs
S2 as defined in Game6, where it runs SampleRight using the extracted witness Wj instead of SampleLeft as
in the previous game. It can be checked that s1(cR′)2 ≤ s1(c)2 · s1(R)2 + s1(R̂)2 ≤ Bc · B2

MLWE + δgap2,
where we used the fact that s1(R) ≤ BMLWE with overwhelming probability and s1(R̂) is bounded by δgap

by definition of Rm
gap. Then, due to our parameter selection and Lemma 2.20, and conditioning on event

Abortextract and Abortguess not occurring, the distribution of the sampled vector remains negl(λ)-close to the
previous game. Therefore, we have

Pr[E5-6] ≥ Pr[E5-5]− negl(λ).

Game5-7 : We undo the change we made in Game5-2 and use a uniform random crscom (and (bi)i∈[k2]). This
game is identical to Game6. Following the same argument we made to move from Game5-1 to Game5-2, there
exists a PPT adversary BDSMR2 against the DSMRd,k2k3−1,χDSMR,q,1 problem such that

Pr[E5-7] ≥ Pr[E5-6]− AdvDSMRd,k2k3−1,χDSMR,q,1(BDSMR2).

where Time(BDSMR2) is roughly Time(A) + Time(C6).

Collecting the bounds and recalling Pr[E5] = Pr[E5-1] and Pr[E6] = Pr[E5-7], we arrive at the bound in
the statement.

Lemma 3.9. We have AdvMSISd,1,k2+k2k3,BMSIS,q (BMSIS) ≥ 1
2p(λ)·QeHs

· Pr[E6]c1 − negl(λ), where BMSIS is an
adversary against the MSISd,1,k2+k2k3,BMSIS,q problem with Time(BMSIS) ≤ c2 · (Time(A) + Time(C6)). Here,
p(λ) is a polynomial, and e, c1, and c2 are constants defined in Definition 2.9.

Proof. Before providing the description of BMSIS, we first construct an adversary BSingle-Ext against the single-
proof extractability game (see Definition 2.9). Looking ahead, BMSIS runs BSingle-Ext and Single-ExtractBSingle-Ext

in order to (roughly) extract a solution to the MSIS problem.
Consider the statement of the form X = (a1,a2, (bi)i∈[k2], u, h), where a1

$← Rk1
q , bi $← Rk3

q for i ∈ [k2],
h

$← Shash, and a2 and u are further set as in Game6. Denote this distribution as DX. Then, on input X,
BSingle-Ext runs the Game6 challenger C6 and simulates the view of Game6 to A, where C6 uses the contents
in X to run the game. In particular, C6 uses h ∈ X instead of sampling hj∗ on its own. If any of the
two events Abortextract and Abortguess occurred at some point during in the game, BSingle-Ext outputs ⊥.
Otherwise, when A outputs its forgery {(Mi,Σi)}i∈[QS+1], if the event Abortguess did not occur, then we have
M′j∗ ∈ {Mi}i∈[QS+1], where recall M′j∗ is the j∗-th (j∗ ∈ [QHM]) random oracle query to HM. Let us denote
i∗ ∈ [QS + 1] as the unique Mi∗ = M′j∗ such that HM(Mi∗) = h = hj∗ , and parse πs ← Σi∗ . Then, BSingle-Ext
outputs X = (a1,a2, (bi)i∈[k2], u, h) and π = πs.

It is easy to verify that BSingle-Ext simulates the view to A perfectly, and we have

Pr[E6] = E
X $←DX

[
Pr[(X, π) $← BHs

Single-Ext(X) : VerifyHs (X, π) = >]
]
, (8)

where the probability is taken over the randomness used by BSingle-Ext. Here, note that BSingle-Ext uses the
provided random oracle Hs to simulate oracle queries to Hs from A, and simulates the rest of the random
oracle queries on-the-fly using its randomness.

We are now ready to describe BMSIS. Given an MSIS instance d = [a1 | b1 | · · · | bk2] = [a1 | b̂] ∈
Rk2+k2k3
q , BMSIS prepares X = (a1,a2, (bi)i∈[k2], u, h), where a2, u, and h are sampled as described above.

It then executes (X,W) ← Single-ExtractBSingle-Ext(X). If (X,W) 6∈ Rs
gap, then BMSIS outputs ⊥. Otherwise, it

parses ((ẽ1, ẽ2, ẽ3) := ẽ, c)←W, where we have the following due to the definition of Rs
gap:

∀i ∈ [3], ‖ẽi‖2 ≤ BU,gap
Σ,i ∧ ‖c‖1 ≤ Bc ∧

[
a1 | a2 + h · g | b̂

]
ẽ> = c · u. (9)

27

Plugging in a2 = a1R−h·g and recalling u was generated in BSGen as [a1 | b̂]·s> for s $← [−∆MLWE,∆MLWE](k1+k2k3)
coeff ,

the right hand equation can be rewritten as[
a1 | b̂

] [ẽ>1 + Rẽ>2
ẽ>3

]
= c ·

[
a1 | b̂

] [s>1
s>3

]
,

where (s1, s3) := s ∈ Rk1+k2k3 . By subtracting both sides, we have[
a1 | b̂

] [(ẽ>1 + Rẽ>2)− c · s>1
ẽ>3 − c · s>3

]
︸ ︷︷ ︸

=:z∗

= 0.

BMSIS finally outputs z∗ ∈ Rk1+k2k3 as a solution to the MSISd,1,k1+k2k3,BMSIS problem. Notice that

‖z∗‖2 ≤‖ẽ1‖2 + ‖ẽ3‖2 + ‖Rẽ>2 ‖2 + ‖c · s1‖2 + ‖c · s3‖2
≤BU,gap

Σ,1 +BU,gap
Σ,3 + s1(R)BU,gap

Σ,2 + ‖c‖1 · ‖[s1 | s3]‖2
≤BU,gap

Σ,1 +BU,gap
Σ,3 +BMLWEB

U,gap
Σ,2 +Bc ·∆MLWE

√
k1 + k2k3 = BMSIS,

where the first inequality follows from the triangular inequality, the second inequality follows from the bounds
‖a · b‖2 ≤ ‖a‖1 · ‖b‖2, and ‖Ma‖2 ≤ s1(M) · ‖a‖2.

It remains to analyze that z∗ is a valid MSIS solution and that BMSIS outputs such z∗ with non-negligible
probability in polynomial time. For a fixed statement X, let us denote

µ(X) = Pr[(X, π) $← BHs
Single-Ext(X) : VerifyHs (X, π) = >].

By Eq. (8), we have Pr[E6] = E
X $←DX

[µ(X)]. Moreover, we have

1
p(λ) · Qe

Hs

·

(
E

X $←DX

[µ(X)]
)c1
− negl(λ)

≤ 1
p(λ) · Qe

Hs

· E
X $←DX

[µ(X)c1]− negl(λ)

≤ E
X $←DX

[
Pr
[

W $← Single-ExtractBSingle-Ext(X) : (X,W) ∈ Rs
gap

]]
− negl(λ)

= Pr[z∗ $← BMSIS(d) : ‖z∗‖2 ≤ BMSIS ∧ d · z∗> = 0]− negl(λ)

≤2 · Pr[z∗ $← BMSIS(d) : 0 < ‖z∗‖2 ≤ BMSIS ∧ d · z∗> = 0]− negl(λ),

where the first inequality is due to Jensen’s inequality, the second inequality is due to Definition 2.9, the
third follows from the definition of BMSIS and the bound we established on z∗, and the last inequality
follows from the fact that there exists at least two distinct s, s′ ∈ [−∆MLWE,∆MLWE](k1+k2k3)

coeff such that
u = [a1 | a2 | b̂] · s> = [a1 | a2 | b̂] · s′> due to our parameter selection. Specifically, from the view of A
(and C6 by further noticing that BMSIS generated u), s has at least 1-bit of min-entropy, and thus, we have
z∗ 6= 0 with probability at least 1/2. This establishes that BMSIS outputs a non-zero z∗ with the desired
probability in the statement. We further have Time(BMSIS) ≤ c2 · (Time(A) + Time(C6)) for some constant
c2 from Definition 2.9.

28

3.6 Extension: Partial Blind Signatures
We are able to obtain a partially blind signature [AO00] with a simple modification to our blind signature
without increasing the signature size. Partially blind signatures are an extension of blind signatures where
the message can contain a common message. This can be a message agreed between the user and the signer
before the execution or a message that the signer would like to include for better system design, e.g., add an
expiration date to revoke old signatures.

Our modification is simple. To bind the signature to a specific common message γ, the signer shifts the
public syndrome u ∈ Rq to u− HMc(γ), where HMc is a newly introduced hash function that is modeled as
a random oracle in the security proof. Since the construction and proof are almost identically, we refer the
interested readers to Appendix C for the full details.

4 Instantiating Our Generic Construction
In this section, we instantiate our generic construction of blind signature, which in particular involves con-
cretizing the building blocks laid out in Section 3.2. We respectively provide in Sections 4.1 to 4.3, our con-
crete choices for the underlying trapdoor-sampling-compatible commitment scheme ΠCom, the single-proof
extractable NIZK proof system Πs

NIZK, and the multi-proof extractable NIZK proof system Πm
NIZK. Finally,

in Section 4.5, we explain the details on how to set the parameters for each building blocks and provide a
concrete set of parameters for our resulting blind signature scheme.

4.1 Concrete Choice for Trapdoor-Sampling-Compatible Commitments
We rely on (a slight variant of) the BDLOP commitment by Baum et al. [BDL+18]. Below, we use two
different moduli q′ and q, where looking ahead, q is the modulus that explicitly shows up in the blind
signature construction in the previous section. Although we can chose q′ = q, it is better to chose them
differently since informally q′ and q are used by the MSIS and MLWE problems, respectively, and we can
obtain better parameters by tuning them independently.
Construction. The commitment scheme ΠCom has message space M = RLq and randomness space R =
[−1, 1]k3×L

coeff , where recall [−1, 1]coeff ⊂ Rq denotes the set of polynomials with {−1, 0, 1}-coefficients. We first
explain how the crscom is viewed.
crscom: We assume the common random string crscom is of the following form:

crscom := (b0,b1) :=
(

[1|b′0], [0|1|b′1]
)
∈ Rk3

q′ ×R
k3
q ,

where (b′0,b′1) $← Rk3−1
q′ × Rk3−2

q . Although we assumed crscom was a random binary string of length
`com in Section 3, we can assume crscom is structured as above without loss of generality.

Com(crscom,M) : On input crscom = (b0,b1) ∈ Rk3
q′ ×Rk3

q , and messages ~M = (M1, · · · ,ML) ∈ RLq , it samples
R $← [−1, 1]k3×L

coeff and outputs

com :=
([

b0
b1

]
R +

[
0

M1 | · · · | ML

]
mod q′

mod q

)
∈ RLq′ ×RLq .

Here, the randomness used by the algorithm is rand := R.
The commitment scheme satisfies the following. We note that we do not explicitly require binding since

this is implicitly handled by the soundness of the NIZKs.
Lemma 4.1. The commitment scheme ΠCom is quantumly hiding and (k3, δ)-trapdoor-sampling-compatible.
Proof. The hiding property is shown to hold under the MLWEd,2,k3−2,S3,max(q,q′) assumption in [BDL+18].
It remains to check that ΠCom satisfies all the properties provide in Definition 3.1. ParseCom(com) simply
outputs the bottom half of com, i.e., t = b1R + [M1 | · · · | ML] ∈ RLq , and ParseRand(rand) outputs the
columns of R. Since R $← [−1, 1]k3×L

coeff , we have that s1(R) ≤ δ =
√
k3L · d.

29

4.2 Concrete Choice for Single-Proof Extractable NIZK
The single-proof extractable NIZK is based on the basic Lyubashevsky’s sigma protocol [Lyu09, Lyu12],
where soundness is argued through rewinding (or the forking lemma [PS00, BN06] to be precise). One minor
difference is that we take advantage of the fact that the witness vector ẽ ∈ Rk1+k2+k3 has unbalanced size;
the first (k1 + k2)-entries are smaller than the last k3 entries.
Construction. The prove and verify algorithms of Πs

NIZK for the relations (Rs,Rs
gap) are provided in Figs. 2

and 3, respectively. For reference, we recall below the relations (Rs,Rs
gap) where we additionally take into

consideration the unbalanced size of ẽ.

• Rs :=
{

X = (a1,a2,b1, u, h) ∈ Rk1
q ×Rk2

q ×Rk3
q ×Rq ×Rq

W = ẽ = (ẽ1, ẽ2, ẽ3) ∈ Rk1 ×Rk2 ×Rk3

∣∣∣∣ ∀i ∈ [3], ‖ẽi‖2 ≤ BUΣ,i ∧
[a1 | a2 + h · g | b1] ẽ> = u

}
;

• Rs
gap :=

 X = (a1,a2,b1, u, h) ∈ Rk1
q ×Rk2

q ×Rk3
q ×Rq ×Rq

W = (c, ẽ) = (c, (ẽ1, ẽ2, ẽ3)) ∈ R×Rk1 ×Rk2 ×Rk3

∣∣∣∣∣∣
∀i ∈ [3]‖ẽi‖2 ≤ BU,gap

Σ,i
∧ ‖c‖1 ≤ Bc ∧

[a1 | a2 + h · g | b1] ẽ> = c · u

.

Πs
NIZK : ProveHs (X,W) (Implicit Verifier): X

X := (a1,a2,b1, u, h) ∈ Rk1
q ×Rk2

q ×Rk3
q ×Rq ×Rq,

W := ẽ = (ẽ1, ẽ2, ẽ3) ∈ Rk1 ×Rk2 ×Rk3 s.t ∀i ∈ [3], ‖ẽi‖2 ≤ BUΣ,i ∧ [a1 | a2 + h · g | b1] ẽ> = u

For i ∈ [3] : yi $← Dki
γyi

w := [a1 | a2 + h · g | b1]

y>1
y>2
y>3

 α := w
−−−→

c
←−−−

c := Hs(X,α) ∈ Schal ⊂ Rq

For i ∈ [3] : zi := c · ẽi + yi
If Rej(z1, c · ẽ1, φ, T1, err) = ⊥
∨ Rej(z2, c · ẽ2, φ, T2, err) = ⊥
∨ Rej(z3, c · ẽ3, φ, T3, err) = ⊥

then restart
πs := (c, (z1, z2, z3))

πs

−−−−−→

Figure 2: Prove algorithm for the single-proof NIZK for the relations (Rs,Rs
gap). For better readability, we illustrate

the interactive protocol that underlies the NIZK. The dotted lines are internal to the prover, where it simulates the
verifier of the interactive protocol (denoted as implicit verifier) using the hash function Hs. The solid line is the
concrete output.

Security. The correctness of Πs
NIZK can be verified through a routine check. Below, we prove that Πm

NIZK
is classically zero-knowledge and single-proof extractable. The proof for the quantum setting is provided in
Section 5.2.
Zero-Knowledge.

Theorem 4.2. The NIZK Πs
NIZK in Figs. 2 and 3 is classically zero-knowledge.

Proof Sketch. The proof follows from those of the multi-proof NIZK, which we show later, since the single-
proof NIZK is a major simplification of it. Moreover, the theorem is subsumed by prior results that show
quantum zero-knowledge (or the stronger notion of simulation soundness) of the NIZK based on Lyuba-
shevsky’s sigma protocol, e.g., [KLS18, Kat21]. Here, unlike Theorem 4.4, we have statistical zero-knowledge
since the underlying sigma protocol satisfies statistical honest-verifier zero-knowledge.

Single-Proof Extractability.

30

Πs
NIZK : VerifyHs (X, πs)

X := (a1,a2,b1, u, h) ∈ Rk1
q ×Rk2

q ×Rk3
q ×Rq ×Rq,

πs := (c, (z1, z2, z3)) ∈ R×Rk1 ×Rk2 ×Rk3

w := [a1 | a2 + h · g | b1]

[z1
z2
z3

]
− c · u

If


‖z1‖2 ≥ BΣ,1
∨ ‖z2‖2 ≥ BΣ,2
∨ ‖z3‖2 ≥ BΣ,3
∨ c 6= Hs(X, w)

then return ⊥

return >

Figure 3: Verify algorithm for the simplified single-proof NIZK for the relations (Rs,Rs
gap).

Theorem 4.3. The NIZK Πs
NIZK in Figs. 2 and 3 is classically single-proof extractable with (c1, c2, e) =

(2, 2, 1) and p(λ) = 1.

Proof. By assumption, we have a PPT adversary A that makes at most QHs random oracle queries such that
for any X ∈ LRs ,

Pr[πs $← AHs (1λ,X) : VerifyHs (X, πs) = >] ≥ µ(λ). (10)

Before describing the single-proof extractor Single-Extract, let us construct an adversary B against the
forking lemma, i.e., Lemma A.1. B is given as input par = X and (c1, · · · , cQHs

) $← Schal, and internally
runs AHs (1λ,X), where it uses ci to answer the i-th random oracle query made by A. When A outputs
πs, B checks if πs is valid and if c ∈ (ci)i∈[QHs], where (c, (z1, z2, z3)) := πs. If not, it outputs (0, σ = ⊥).
Otherwise, it retrieves the smallest J ∈ [QHs] such that c = cJ and outputs (J, σ = (w, cJ , (z1, z2, z3))),
where w = [a1 | a2 + h · g | b1] · [z1|z2|z3]> − c · u. By Eq. (10), we have

acc = Pr[(c1, · · · , cQH) $← Schal, (J, σ) $← B(X, c1, · · · , cQH) : J ≥ 1] ≥ µ(λ).

We are now ready to specify Single-Extract. Single-Extract on input X ∈ LRs , runs (b, σ1, σ2) $← ForkB(X)
from Lemma A.1, which it can do with only black-box access to A. If b = 0, then output ⊥. Otherwise,
if (b, σ1, σ2) = (1, (w, cI , (z1, z2, z3)), (w′, c′I , (z′1, z′2, z′3))) for some I ∈ [QHs], it outputs W, where W =
(cI − cI′ , z1 − z′1, z2 − z′2, z3 − z′3). We first check that W for b = 1 is a valid witness. If A outputs a forgery
with respect to the I-th random oracle query, then by definition of ForkB, the input w and w′ to the random
oracle must be the same since all the random oracle queries are answered identically in both runs up to the
I-query. Since both proofs are valid, we have

[a1 | a2 + h · g | b1] · [z1|z2|z3]> − cI · u = [a1 | a2 + h · g | b1] · [z′1|z′2|z′3]> − cI′ · u.

Specifically, we have

[a1 | a2 + h · g | b1] · [z1 − z′1|z2 − z′2|z3 − z′3]> = (cI − cI′) · u.

Hence, W = (cI − cI′ , z1 − z′1, z2 − z′2, z3 − z′3) satisfies (X,W) ∈ Rs
gap, where we can set the bounds for each

elements appropriately.
Finally, by Lemma A.1, the probability that Single-Extract outputs W 6= ⊥ is frk ≥ acc · (acc

QHs
− 1
|Schal|) ≥

µ(λ)2

QHs
− negl(λ), if Schal is exponentially large. Hence, (c1, c2, e) = (2, 2, 1) and p(λ) = 1 in Definition 2.9 as

desired.

31

4.3 Concrete Choice for Multi-Proof Extractable NIZK

The statement we want to handle is of the form
[
t1
t2

]
=
[
b0
b1

]
R +

[
0

h · g

]
for private R and h. As explained

in the technical overview, we first (implicitly) construct a single-proof rewinding NIZK by combination of
the exact proof of Bootle et al. [BLS19] and a proof for linear relations. This allows us to prove exact
soundness of R and relaxed soundness of h. We note that it is unclear how to prove exact soundness of h
using Bootle et al.

We then rely on the Katsumata transform [Kat21] to add multi-proof straight-extractability to this base
single-proof rewinding protocol. This transform uses an extractable linear homomorphic commitment, which
is in other words, a linear homomorphic PKE with pseudo-random public keys. At a high level, the idea
is to modify the prover to further encrypt/commit the witness W = (R, h) and randomness rand used by
the underlying base protocol. Then, during in the security proof, the reduction generates the public key
with an associated decryption key and tries to decrypt the ciphertext ctW, ctrand. Unfortunately, this simple
reduction fails since the prover never proves that the ciphertexts ctW and ctrand really encrypt the witness
and randomness during the real protocol. That is, there is no guarantee that the cheating prover encrypted
something useful. However, the prover does prove that the added ciphertext c · ctW + ctrand is well formed,
where c is a challenge output by the random oracle. Informally, this means that given, possibly maliciously
generated, ciphertexts ctW and ctrand, there should intuitively exist a non-negligible fraction of challenges
c for which c · ctW + ctrand is a valid ciphertext. Therefore, at a high level, the reduction samples many
challenges c and attempts to decrypt c ·ctW +ctrand rather than trying to individually decrypt ctW and ctrand.
When decryption succeeds several times, it can rely on the underlying base protocols special soundness to
extract a witness.

Although the intuition is clear, turning this idea into a formal proof requires a careful probability analysis
on the adversary’s success probability. This section includes the most non-trivial proof techniques and we
believe it has independent interest.
Preparation. Let us prepare some notations. Let Rq′ = Zq′/(Xd + 1) be a ring that fully splits and
consider the NTT over the ring Rq′ with NTT : Rq′ → (Zdq′)>, and NTT−1 : (Zdq′)> → Rq′ . Here, we make
it explicit that NTT and NTT−1 operates over column vectors. These notions extend naturally to matrices
over Rq′ , where NTT−1 is only well-defined when the column length of the matrix is divisible by d. We
define Φ : Rq′ 7→ (Zdq′)> to be the map that sends a polynomial to its (column) coefficient vector. We
define Rot : Rq′ 7→ Zd×dq′ to be the map that sends a polynomial a ∈ Rq′ to a matrix whose i-th column is
Φ
(
a ·Xi mod (Xd + 1)

)
. It can be checked that for a, b ∈ Rq′ , we have Rot(a)Φ (b) = Φ (a · b). We extend

the definition of Rot to vectors in Rq′ , where we have Rot(b)Φ (a) = Φ (a · b) for (a,b) ∈ Rq′ × Rnq′ . Here,
note that Rot(b) ∈ Zdn×dq′ and Φ (a) ∈ Zdq′

>. We use ◦ for the component-wise product of matrices over Rq′ .
Finally, we define the matrix ∆ ∈ RL×Lq such that the first column of ∆ is g and all the diagonal entries
except for the (1, 1)-th entry is −1. Specifically, ∆ is invertible over Rq and we have g∆ = [1|0| · · · |0].
Construction. We consider the relations (Rm,Rm

gap) defined as follows:

• Rm :=

 X = (crscom := (b0,b1), com),
W = (h, rand := R)

∣∣∣∣∣∣
h ∈ Shash ∧R ∈ [−1, 1]k3×L

coeff ,

∧ com =
([

b0
b1

]
R +

[
0

h · g

]
mod q′

mod q

) ;

• Rm
gap :=

{
X = (crscom := (b0,b1), com),

W = (h′, c, (ri)i∈[L])

∣∣∣∣ ‖h′‖2 ≤ Binv/2 ∧ ‖c‖1 ≤ Bc ∧ t = ParseCom(com)
∧ R ∈ [−1, 1]k3×L

coeff ∧ ∀i ∈ [L], ti = b1r>i + (h′/c) · q i−1
L

}
,

where recall g = [1 | q 1
L | · · · | q L−1

L] ∈ RLq is the gadget matrix. Notice the gap relation Rm
gap has no

slack for the commitment randomness. It can be checked that we recover Rm
gap in Section 3.2 by setting

δgap =
√
k3L ·d. That is, any R with {−1, 0, 1}-coefficient polynomial entries has spectral norm smaller than

δgap.
The prove and verify algorithms of Πm

NIZK for the relations (Rm,Rm
gap) are provided in Figs. 4 and 5,

respectively. For better readability of the proof and following prior conventions [BLS19, Kat21], we prove that

32

R ∈ [0, 2]k3×L
coeff instead, i.e., R consists of {0, 1, 2}-coefficient polynomials. This is without loss of generality

since we can add the all one matrix 1 to any R ∈ [−1, 1]k3×L
coeff to obtain a matrix in [0, 2]k3×L

coeff . The protocol
uses three polynomial rings: Rq′ = Zq′/(Xd+1) is a fully splitting ring that is used for Bootle et al’s [BLS19]
exact proof; Rq = Zq/(Xd+1) is a ring where any small element is invertible and is used for the linear proof;
RQ = ZQ/(Xd+1) is used for the the multi-proof straight-line extractability as in [Kat21], and in particular,
we require the NTRU assumption to hold over this ring. The interactive protocol implicit in our NIZK is
defined with respect to two challenge spaces. The challenge space used in the second (resp. fourth) flow is
Zτq′ (resp. Cττ

′

X × Cham, where CX := {Xi | i ∈ [2d]} and Cham is the set of {0, 1}-coefficient polynomials
in Rq with Hamming weight smaller than Bc). Specifically, we require any element with two-norm smaller
than 2Bc to be invertible over Rq. Here, τ and τ ′ are set so that qτ ≈ (2d)ττ ′ ≈ 2128 or asymptotically
1/qτ ≈ 1/(2d)ττ ′ = negl(λ). Our protocol also relies on several different Gaussian distributions. They are
used either to perform rejection sampling or to invoke the MLWE and DSMR assumptions. The concrete
parameter selection is provided in Section 4.5.
Security. Keeping in mind that any r ∈ Rq′ with coefficients in {0, 1, 2} satisfy Φ (r)◦(Φ (r)−1)◦(Φ (r)−2) =
0, the correctness of Πm

NIZK can be verified through a routine (but tedious) check. Below, we prove that Πm
NIZK

is classically zero-knowledge and multi-proof extractable. The proof for the quantum setting is provided in
Section 5.3.
Zero-Knowledge.

Theorem 4.4. The NIZK Πm
NIZK in Figs. 4 and 5 is classically zero-knowledge if the MLWEd,1,1,γD̄,Q

,
MLWEd,1,1,γd̄′ ,Q, MLWEd,1,1,γD̄′ ,Q

, and MLWEd,4k3+1,k4−(4k3+1),γE,Q problems are hard.

Proof. The proof consists of two parts. In the first part, we show that the interactive protocol that underlies
our NIZK is honest-verifier zero-knowledge. That is, if we use an honest verifier instead of the hash function
Hm to generate the challenges, then it is zero-knowledge. We then show that if the underlying interactive
protocol is (non-abort) honest-verifier zero-knowledge, then the resulting NIZK is zero-knowledge. More
precisely, we first show the following.

Lemma 4.5. Consider an interactive protocol as defined in Fig. 4 except that the verifier samples the chal-
lenges (c1, c2) $← Zτq′ ×

(
Cτ ·τ

′

X × Cham
)
and the prover responds with a1 and a2 in the first and third flows,

respectively, and the following resp in the fifth flow:

resp :=
(
(Zi,j ,F1,i,j ,F2,i,j)i,j∈[τ]×[τ ′], ζ,Z′, f ′1, f ′2,F′1,F′2

)
.

Here resp is the same as πm after removing the redundant elements included in (a1, c1, a2, c2). Let D 6⊥trans(crsm
NIZK,

X,W) be the distribution of a transcript trans := (a1, c1, a2, c2, resp) from the honest interactive protocol with
prover input (crsm

NIZK,X,W) conditioned on not restarting/aborting. Then there exists a simulator Simint such
that for any (X,W) ∈ Rm and PPT (or possibly a QPT) A, we have∣∣∣∣∣Pr

[
(c1, c2) $← Zτq′ ×

(
Cτ ·τ

′

X × Cham
)
,

(a1, a2, resp) $← Simint(crsm
NIZK,X, c1, c2)

: A(crsm
NIZK, (a1, c1, a2, c2, resp)) = 1

]
− Pr

[
trans $← D 6⊥trans(crsm

NIZK,X,W) : A(crsm
NIZK, trans) = 1

]∣∣∣ = negl(λ),

where the probability is also taken over the randomness of sampling crsm
NIZK = (H,a0, (Ak)k∈[4]).

Proof. Below, we show in a sequence of games that the output of Simint is indistinguishable from an honest
non-aborting transcript. Observe the real prover algorithm in Fig. 4. At a high level, we modify this in
three steps: we first simulate the text highlighted in gray corresponding to the straight-line extractability;
we then simulate the texts in gray corresponding to the exact sound proof; finally, we simulate the texts in
black without any highlights corresponding to the proof for linear relations.

Game0 : In this game, the adversary A is given the real transcript trans. We denote by ε0 the probability
that A outputs 1.

33

Πm
NIZK : ProveHm (crsm

NIZK,X,W), where crsm
NIZK = (H,a0, (Ak)k∈[4]) ∈ RQ ×Rk4

q′ ×
(
Rk3×k4
q′

)4

X := (crscom := (b0,b1), com := T) ∈ Rk3
q′ ×R

k3
q × (RLq′ ×RLq),

W := (h, rand := R) ∈ Shash × [0, 2]k3×L
coeff s.t T =

[
b0
b1

]
R +

[
0

h · g

]
mod q′

mod q

For i ∈ [τ]:

Yi
$← R

k3×L
q′

Ei
$← D

k4×L
γE

u0,i := a0Ei
U1,i := A1Ei + Yi
U2,i := A2Ei + NTT−1 (Φ (R))
U3,i := A3Ei + Yi ◦ (2NTT−1 (Φ (R)) − 3)
U4,i := A4Ei + Yi ◦Yi ◦ (NTT−1 (Φ (R)) − 3)

Wi := Rot(b0)NTT
(

Yi
)
∈ Zd×L

q′

(D1,i,D2,i)
$←
(
D
k4×L
γD

)2

Vi := HD1,i + pD2,i + Ei ∈ R
k4×L
Q

For j ∈ [τ′] :
Si,j ← D

k4×L
γS

(D̄1,i,j , D̄2,i,j) ←
(
D
k4×L
γD̄

)2

V̄i,j := HD̄1,i,j + pD̄2,i,j + Si,j ∈ R
k4×L
Q

h′ $← Dγ
h′

Y′ $← D
k3×L
γY′

w′1 := b0Y′ ∈ RLq
w′2 := b1Y′∆ + [h′|0| . . . |0] ∈ RLq

(d′1, d
′
2, d
′
1, d
′
2) $←

(
Dγ
d′

)2
×
(
Dγ
d̄′

)2

(D′1,D′2, D̄′1, D̄′2) $←
(
D
k3×L
γD′

)2
×
(
D
k3×L
γD̄′

)2

v′ := Hd′1 + pd′2 + h ∈ RQ
v′ := Hd

′
1 + pd

′
2 + h′ ∈ RQ

V′ := HD′1 + pD′2 + R ∈ Rk3×L
Q

V̄′ := HD̄′1 + pD̄′2 + Y′ ∈ Rk3×L
Q

a1:=


u0,i,U1,i,U2,i,
U3,i,U4,i,Wi,

Vi, V̄i,j ,

w′1,w′2,

v′, v′,V′, V̄′ ,


i,j

−−−−−−−−−−−−−−−→

c1 := (ci)i
←−−−−−−−−−−

(ci)i∈[τ]:= Hm(X, 1, a1) ∈ Zτ
q′

For i ∈ [τ]:
Z0,i := ci · NTT−1 (Φ (R)) + Yi
For j ∈ [τ′]:

x0,i,j := a0Si,j
X1,i,j := (A1 + ci ·A2)Si,j
X2,i,j := (Z0,i − ci) ◦ (Z0,i − 2ci) ◦ (A2Si,j)

−Z0,i ◦ (A3Si,j) + A4Si,j

a2:=

(
Z0,i, x0,i,j ,
X1,i,j ,X2,i,j

)
i,j

−−−−−−−−−−−−−−−→

c2 := (β, β′)
←−−−−−−−−−−

(β := (βi,j)(i,j)∈[τ]×[τ′], β
′)

:= Hm(X, 2, a1, c1, a2) ∈ Cτ·τ
′

X
× Cham

For i ∈ [τ]:
For j ∈ [τ′]:

Zi,j := βi,j · Ei + Si,j
F1,i,j := βi,j ·D1,i + D̄1,i,j
F2,i,j := βi,j ·D2,i + D̄2,i,j

ζ := β′ · h + h′

Z′ := β′ ·R + Y′

(f′1, f
′
2) := (β′ · d′1 + d

′
1, β
′ · d′2 + d

′
2)

(F′1,F′2) := (β′ ·D′1 + D̄′1, β
′ ·D′2 + D̄′2)

If Rej((Zi,j)i,j , (βi,j · Ei)i,j , φ, Br,Z, err) = ⊥
∨ Rej(Z′, β′ ·R, φ, B

r,Z′ , err) = ⊥
∨ Rej(ζ, β′ · h, φ, Br,ζ, err) = ⊥
∨ Rej((F1,i,j ,F2,i,j)i,j ,

(βi,j ·D1,i, βi,j ·D2,i)i,j , φ, Br,F, err) = ⊥
∨ Rej((f′

b
,F′
b
)b∈[2], (β

′ · d′
b
, β′ ·D′

b
)b∈[2], φ, Br,F′ , err) = ⊥

then restart

πm := ((u0,i, (Uk,i)k∈[4], Vi)i∈[τ], v
′,V′ , c1, (Z0,i)i∈[τ],

c2, (Zi,j , F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ′], ζ,Z′, (f′
b
,F′
b
)b∈[2])

πm
−−−−−−−−−−−−−−−−−−−−−−−→

Figure 4: Prove algorithm for the multi-proof NIZK Πm
NIZK for the relations (Rm,Rm

gap). The crs for Πm
NIZK consists of a random

element H (used for extraction) and random matrices (a0, (Ak)k∈[4]) (used for committing), and the crs for ΠCom is a random
tuple (b0, b1). For better readability, we illustrate the 5-round interactive protocol that implicitly underlies the NIZK. The
dotted lines are internal to the prover, where it simulates the verifier of the interactive protocol using the hash function Hm.
The solid line is the concrete output of the NIZK. The texts in gray are used by the exact proof of [BLS19], the texts in
black without highlight are used to prove linear relations, and finally the texts highlighted in gray are used for multi-proof
straight-line extractability as in [Kat21].

34

Πm
NIZK : VerifyHm (crsm

NIZK,X, πm), where crsm
NIZK = (H,a0, (Ak)k∈[4]) ∈ RQ ×Rk4

q′ ×
(
Rk3×k4
q′

)4

X := (crscom := (b0,b1), com := T) ∈ Rk3
q′ ×R

k3
q × (RLq′ ×RLq),

πm := ((u0,i, (Uk,i)k∈[4], Vi)i∈[τ], v
′,V′ , c1, (Z0,i)i∈[τ], c2, (Zi,j , F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ ′],Z′, ζ, (f ′b,F′b)b∈[2])[

t1
t2

]
:= T ∈ RLq′ ×RLq

For i ∈ [τ]:
Wi := Rot(b0)NTT (Z0,i)− ci · Φ (t1) ∈ Zd×L

q′

For j ∈ [τ ′]:
V̄i,j := HF1,i,j + pF2,i.j + Zi,j − βi,j ·Vi ∈ Rk4×L

Q

x0,i,j := a0Zi,j − βi,j · u0,i ∈ RLq′
X1,i,j := (A1 + ci ·A2)Zi,j + βi,j ·

(
Z0,i − (U1,i + ci ·U2,i)

)
∈ Rk4×L

q′

X2,i,j := (Z0,i − ci) ◦ (Z0,i − 2ci) ◦ (A2Zi,j)− Z0,i ◦ (A3Zi,j) + A4Zi,j
−βi,j ·

(
(Z0,i − ci) ◦ (Z0,i − 2ci) ◦U2,i − Z0,i ◦U3,i + U4,i

)
∈ Rk4×L

q′

w′1 := b0Z′ − β′ · t1 ∈ ZLq′
w′2 := b1Z′∆ + [ζ|0| . . . |0]− β′ · t2∆ ∈ ZLq′
v′ := Hf ′1 + pf ′2 + ζ − β′ · v′ ∈ RQ

V̄′ := HF′1 + pF′2 + Z′ − β′ ·V′ ∈ Rk3×L
Q

a1 :=
(

(u0,i,U1,i,U2,i,U3,i,U4,i,Wi,Vi, (V̄i,j)j∈[τ ′])i∈[τ],w′1,w2, v
′, v′,V′, V̄′

)
a2 :=

(
Z0,i, (x0,i,j ,X1,i,j ,X2,i,j)j∈×[τ ′]

)
i∈[τ]

If



‖ζ‖2 ≥ B
∨ ‖Z′‖2 ≥ BZ′

∨ ∃(i, j) ∈ [τ]× [τ ′], ‖Zi,j‖2 ≥ BZ

∨ ‖F′1‖∞ ≥ B1,F′

∨ ‖F′2‖∞ ≥ B2,F′

∨ ∃(i, j) ∈ [τ]× [τ ′], ‖F1,i,j‖∞ ≥ B1,F

∨ ∃(i, j) ∈ [τ]× [τ ′], ‖F2,i,j‖∞ ≥ B2,F

∨ c1 6= Hm(X, 1, a1)
∨ c2 6= Hm(X, 2, a1, c1, a2)

then return ⊥

return >

Figure 5: Verify algorithm for the multi-proof NIZK for the relations (Rm,Rm
gap). The texts in gray are used by the

exact proof of [BLS19], the texts in black without highlight are used to prove linear relations, and finally the texts
highlighted in gray are used for multi-proof straight-line extractability as in [Kat21].

35

Simint(crsm
NIZK,X, c1, c2) , where crsm

NIZK = (H,a0, (Ak)k∈[4]) ∈ RQ ×Rk4
q′ ×

(
Rk3×k4
q′

)4

X := (crscom := (b0,b1), com := T) ∈ Rk3+1
q′ ×Rk3+1

q × (RLq′ ×RLq)[
t1
t2

]
:= T ∈ RLq′ ×RLq

(ci)i∈[τ] := c1
(β = (βi,j)i,j∈[τ]×[τ ′], β

′) := c2

(ζ,Z′) $← Dγh′ ×D
k3×L
γY′

w′1 := b0Z′> − β′t1
w′2 := b1Z′>∆− β′t2∆− [ζ‖0‖ . . . ‖0]
(f ′1, f ′2) $←

(
Dγd̄′

)2
(F′1,F′2) $←

(
Dk3×L
γD̄′

)2
(v′,V′) $← RQ ×Rk3×L

Q

v′ := Hf ′1 + pf ′2 + ζ − β′ · v′
V̄′ := HF′1 + pF′2 + Z′ − β′ ·V′
For i ∈ [τ]:

Z0,i
$← Zk3×L

q′

u0,i
$← RLQ

(Uk,i)k∈[4]
$←
(
Rk4×L
Q

)4
Vi

$← Rk4×L
Q

Wi := Rot(b0)NTT (Z0,i)− ci · Φ (t1) ∈ Zd×L
q′

For j ∈ [τ ′]:
Zi,j $← Dk4×L

γS

(F1,i,j ,F2,i,j) $←
(
Dk4×L
γD̄

)2
V̄i,j := HF1,i,j + pF2,i.j + Zi,j − βi,j ·Vi

x0,i,j := a0Zi,j − βi,j · u0,i

X1,i,j := (A1 + ci ·A2)Zi,j + βi,j ·
(
Z0,i − (U1,i + ci ·U2,i)

)
X2,i,j := (Z0,i − ci) ◦ (Z0,i − 2ci) ◦ (A2Zi,j)− Z0,i ◦ (A3Zi,j) + A4Zi,j

−βi,j ·
(
(Z0,i − ci) ◦ (Z0,i − 2ci) ◦U2,i − Z0,i ◦U3,i + U4,i

)
a1 :=

((
u0,i,U1,i,U2,i,U3,i,U4,i,Wi, Vi, (V̄i,j)j∈[τ ′]

)
i∈[τ]

,w′1,w′2, v′, v′,V′, V̄′
)

a2 :=
(
Z0,i,x0,i,j , (X1,i,j ,X2,i,j)j∈[τ ′]

)
i∈[τ]

resp := ((Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ ′], ζ,Z′, f ′1, f ′2,F′1,F′2)
return (a1, a2, resp)

Figure 6: Simulator for the interactive protocol underlining the multi-proof NIZK for the relations (Rm,Rm
gap). The

texts in gray are used by the exact proof of [BLS19], the texts in black without highlight are used to prove linear
relations, and finally the texts highlighted in gray are used for multi-proof straight-line extractability as in [Kat21].

36

Game1 : In this game, we modify the texts highlighted in gray in Fig. 4. We sample (F1,i,j ,F2,i,j)i,j∈[τ]×[τ ′]
$←(

Dk4×L
γD̄

)2 for (i, j) ∈ [τ] × [τ ′], (f ′1, f ′2) $←
(
Dγd̄′

)2, and (F′1,F′2) $←
(
Dk3×L
γD̄′

)2. We then set
(
v′,V′,

(Vi,j)(i,j)∈[τ]×[τ ′]
)
as in Fig. 6. Namely, we set these terms in reverse order while maintaining consis-

tency of the verification algorithm in Fig. 5. Due to a standard argument using the rejection sampling
(cf. Lemma 2.12), we have

|ε0 − ε1| ≤ negl(λ).

Game2 : In this game, we further modify the texts highlighted in gray in Fig. 4. We sample
(
v′,V′, (Vi)i∈[τ]

)
uniformly random over their respective domains instead of setting them as MLWE instances. Since(
(D1,i,D2,i)i∈[τ], d

′
1, d
′
2,D′1,D′2

)
are now distributed independently from

(
(F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ ′], f

′
1, f
′
2,

F′1,F′2
)
due to the modification we made in Game1, we can construct PPT adversaries BMLWE,1,BMLWE,2,

and BMLWE,3 against the MLWEd,1,1,γD̄,Q
,MLWEd,1,1,γd̄′ ,Q, and MLWEd,1,1,γD̄′ ,Q

problems, respectively,
such that

|ε1 − ε2| ≤ 2 · AdvMLWEd,1,1,γ
d̄′ ,Q(BMLWE,1)

+ L · k3 · AdvMLWEd,1,1,γD̄′ ,Q(BMLWE,2)

+ τ · L · k4 · AdvMLWEd,1,1,γD̄,Q(BMLWE,3).

Game3 : In this game, we modify part of the text in gray in Fig. 4. We sample Z0,i
$← Rk3×L

q′ and
Zi,j $← Dk4×L

γS
for (i, j) ∈ [τ] × [τ ′]. We then set

(
Wi,x0,i,j , (X1,i,j ,X2,i,j)j∈[τ ′]

)
i∈[τ] as in Fig. 6.

Namely, we set these terms in reverse order while maintaining consistency of the verification algorithm
in Fig. 5. Due to the modification we made in the previous game and by a standard argument using
the rejection sampling (cf. Lemma 2.12), we have

|ε2 − ε3| ≤ negl(λ).

Game4 : In this game, we change the rest of the text in gray as in Fig. 6. Specifically, the only differ-
ence between the prior game is that (u0,i, (Uk,i)k∈[4]) are now sampled uniformly random, rather
than being generated as an MLWE instance. Since (Ei)i∈[τ] are distributed independently from(
Vi, (Vi,jZi,j)j∈[τ ′]

)
i∈[τ] due to the modifications we made in Game2 and Game3, we can construct

a PPT adversary BMLWE,4 against the MLWEd,4k3+1,k4−(4k3+1),γE,Q problem, such that

|ε3 − ε4| ≤ τ · L · AdvMLWEd,4k3+1,k4−(4k3+1),γE,Q(BMLWE,4).

Game5 : In this game, we modify the texts in black without the gray highlights in Fig. 4. We sample
(ζ,Z′) $← Dγh′ ×D

k3×L
γY′

and then set (w′1,w′2) as is Fig. 6. Due to the modification we made in Game2
and by a standard argument using the rejection sampling (cf. Lemma 2.12), we have

|ε4 − ε5| ≤ negl(λ).

Notice that the simulator in Game5 is identical to Simint provided in Fig. 6. Moreover, the proof remains
exactly the same even against QPT adversaries. Thus, this completes the proof of Lemma 4.5.

To finish the proof of Theorem 4.4, we provide in Fig. 7 the zero-knowledge simulator Sim = (Sim0,Sim1)
for Πm

NIZK that internally runs Simint. Recall Sim0 simulates the hash function Hm, and Sim1 simulates
the NIZK proof. At a high level, we use the simulator Simint of the underlying interactive protocol to
simulate the proof. For every statement X ∈ LR, we sample a random challenge (c1, c2) and then execute
(a1, a2, resp) $← Simint(crsm

NIZK,X, c1, c2). We then “patch” the random oracle (simulated by Sim0) so it
outputs c1 and c2 on input (X, 1, a1) and (X, 2, a1, c1, a2), respectively.

37

More formally, in Fig. 7, we introduce an algorithm GetTrans, which internally runs Simint. Recalling
that the adversary can obtain at most two proofs per statement (see Definition 2.8), the bit b taken as input
to GetTrans controls which proof to provide. The randomness used to run Simint is generated by a QH-P-wise
independent hash function ĤQH-P-wise

m , where QH-P is the total number of queries the adversary makes to Hm
and Prove. Here, note that using ĤQH-P-wise

m remains perfectly indistinguishable from a random function from
an adversary making at most QH-P queries.14 Sim0 and Sim1 are defined in the natural way using GetTrans,
where Sim0 uses an additional QH-P-wise independent hash function HQH-P-wise

m to output random elements
when it is not queried on the patched point.15

The only difference between having oracle access to (Sim0,S) and (Hm,Prove) is whether the proof is
generated honestly or by Simint. Hence, since the view of any PPT adversary A is altered (either implicitly
or explicitly) by at most QH-P proofs, we have AdvZK

ΠNIZK
(A) = negl(λ) due to Lemma 4.5. Here, note that

Simint is only indistinguishable from a “non-aborting” honest prover Prove. However, since the probability
of Prove outputting ⊥ is negligible, this only negligibly alters the adversary’s advantage.

This completes the proof of Theorem 4.4.

Sim0(crsm
NIZK,X, flow,a)

X := (crscom := (b0,b1), com := T)
For b ∈ {0, 1}

(c∗b,1, c∗b,2, randb,int)← ĤQH-P-wise
m (X, b)

(a∗b,1, a∗b,2, resp∗b)← Simint(crsm
NIZK,X, c∗b,1, c∗b,2; randb,int)

If flow = 1 then
If a = a∗0,1 then return c∗0,1
ElseIf a = a∗1,1 then return c∗1,1

If flow = 2 then
If a = (a∗0,1, c∗0,1, a∗0,2) then return c∗0,2
ElseIf a = (a∗1,1, c∗1,1, a∗1,2) then return c∗1,2

Else return HQH-P-wise
m (X, flow, a)

Sim1(crsm
NIZK,X;L)

X := (crscom := (b0,b1), com := T)
If L[X] = φ then
L[X] := >
return GetTrans(crsm

NIZK,X, 0)
Else

return GetTrans(crsm
NIZK,X, 1)

GetTrans(crsm
NIZK,X, b)

X := (crscom := (b0,b1), com := T)

(cb,1, cb,2, randb,int)← ĤQH-P-wise
m (X, b)

(a∗b,1, a∗b,2, resp∗b)← Simint(crsm
NIZK,X, c∗b,1, c∗b,2; randint)((

u0,i,U1,i,U2,i,U3,i,U4,i,Wi,Vi, (V̄i,j)j∈[τ ′]
)
i∈[τ]

,w′1,w′2, v′, v′,V′, V̄′
)

:= ab,1(
Z0,i,x0,i,j , (X1,i,j ,X2,i,j)j∈[τ ′]

)
i∈[τ]

:= ab,2

((Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ ′], ζ,Z′, f ′1, f ′2,F′1,F′2) := respb
return πm := ((u0,i, (Uk,i)k∈[4],Vi)i∈[τ], v

′,V′, cb,1, (Z0,i)i∈[τ],
cb,2, (Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ ′],Z′, ζ, f ′1, f ′2,F′1,F′2)

Figure 7: Zero-knowledge simulator Sim = (Sim0, Sim1) of the multi-proof NIZK for the relations (Rm,Rm
gap).

HQH-P-wise
m and ĤQH-P-wise

m are two QH-P-wise independent hash functions: the former maps to Zτq′ ; the latter maps
to Cτ ·τ

′
X × Cham and the randomness space used by simulator Simint for the simplified interactive protocol. List L,

initially set to empty, stores the number of time the adversary queries X to Sim1, which is at most 2 by Definition 2.8.

Multi-Proof Extractability.

14We can rely on standard lazy-sampling strategies where the simulator samples the output of the random oracle only when
it is queried. We rely on a proof strategy that fixes the description of the ROM once and for all to make the proof consistent
with those in the QROM.

15Formally, we would need to define two QH-P-wise independent hash functions since the output space of Hm(X, 1, a1) and
Hm(X, 2, a1, c1, a2) are different. We omit this subtlety without loss of generality to maintain readability.

38

Theorem 4.6. The NIZK Πm
NIZK in Figs. 4 and 5 is classically multi-proof extractable with (c1, e1, e2) =

(1, 1, 0) and p(λ) = poly(λ) if the DSMRd,1,χDSMR,Q,p, MSISd,1,k4,16BZ,q′ , and MSISd,1,k3,2(BZ′+Bcδgap),q′ prob-
lems are hard.

Proof. CRS Indistinguishability. The simulator Scrs samples (f, v) $← χ2
DSMR and (a0, (Ak)k∈[4]) $← RQ ×

Rk4
q′ ×

(
Rk3×k4
q′

)4 conditioned on f being invertible over RQ, and then outputs c̃rsm
NIZK = (H,a0, (Ak)k∈[4])

and τ = (f, v), where H = p · v · f−1 ∈ RQ. This is indistinguishable from the random distribution of the
real crsm

NIZK based on the DSMRd,1,χDSMR,Q,p assumption.
Straight-Line Extractability. The proof consists of three parts. We first show in Lemma 4.7 that (roughly)
if the adversary A outputs a valid proof, then A must have been able to succeed on many challenges.
That is, the probability that A succeeds in forging a proof without a witness by guessing the output of the
random oracle is at most µ

2 − negl(λ), where µ is the advantage of A outputting a valid proof. We then
show in Lemma 4.10 a specific form of special soundness where an extractor Extractss given the purported
proof output by A along with several specific challenges, extracts a witness in Rm

gap. We finally provide the
description of our straight-line extractor Multi-Extract that internally runs Extractss and bound its success
probability.

We present our first lemma which shows that if A outputs a valid proof, then there must have been
multiple challenges for which it could have succeeded on. Formally, we define the sets {Γ1,i}i∈[τ] and Γ2
that count for how many challenges there exists a valid response, and argue that they cannot be too small.
More specifically, Γ1,i counts the number of second flow challenges ci for which there exists at least two
distinct βi,j ’s included in the fourth flow challenge with a corresponding valid response. Γ2 on the other
hand counts the number of β′ included in the fourth flow challenge with a corresponding valid response.
Roughly, the former (resp. latter) set is the set of challenges for which A was able to complete the exact
proof of Bootle et al. (resp. proof of linear relation).

Lemma 4.7. Consider an interactive protocol as defined implicitly in Fig. 4. That is, the transcript is
(a1, c1, a2, c2, resp), where c1, c2 are the challenges the (honest) verifier samples uniformly at random and
resp is the response

(
(Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ ′],Z′, ζ, f ′1, f ′2,F′1,F′2

)
sent by the prover. For any statement

X, first, second, third, and fourth flows a1, c1, a2, and c2, respectively, we define the following sets for all
i ∈ [τ]:

Γ1,i(a1, c1, a2, c2) :=


ci ∈ Zq′

∣∣∣∣∣∣∣∣∣∣∣∣∣

(ci′)i′∈[τ] ← c1, c1 := (ci) ∪ (ci′)i′∈[τ]\{i},
(β = (βi′,j′)(i′,j′)∈[τ]×[τ ′], β

′)← c2

∃j ∈ [τ ′], distinct
(
βi,j , β

′
i,j

)
∈ (CX)2,

β := (βi,j) ∪
(
βi′,j′

)
(i′,j′)6=(i,j),β

′ := (β′i,j) ∪
(
βi′,j′

)
(i′,j′)6=(i,j),

∃(a2, a
′
2), (resp, resp′) s.t. (a1, c1, a2, c2 :=

(
β, β′

)
, resp) and

(a1, c1, a
′
2, c2 :=

(
β
′
, β′
)
, resp′) are valid


Γ2(X, a1, c1, a2, c2) :=

{
β
′ ∈ Cham | (β, β′)← c2,∃resp s.t. (a1, c1, a2, c2 := (β, β′), resp) is valid

}
,

where we say a transcript (a1, c1, a2, c2, resp) is valid if the proof πm implicitly defined by (a1, c1, a2, c2, resp)
is valid for statement X.

Then, for any QH = poly(λ) and PPT adversary A that makes at most QH random oracle queries with

Pr
[

(c̃rsm
NIZK, τ) $← Scrs(1λ),

{(Xk, πm
k)}k∈[QS]

$← AHm(1λ, c̃rsm
NIZK),

: ∀k ∈ [QS],VerifyHm(c̃rs,Xk, πm
k) = >

]
≥ µ(λ),

we have,

Pr

 (c̃rsm
NIZK, τ) $← Scrs(1λ),

{(Xk, πm
k)}k∈[QS]

$← AHm (1λ, c̃rsm
NIZK),

:
∀k ∈ [QS],VerifyHm (c̃rsm

NIZK,Xk, πm
k) = >

∧ ∃i ∈ [τ], |Γ1,i(Xk, a1,k, c1,k, a2,k, c2,k)| ≥ 3
∧ |Γ2(Xk, a1,k, c1,k, a2,k, c2,k)| ≥ µ

2QH
· |Cham|

 ≥ 1
2 · µ(λ)− negl(λ).

39

Proof. For notational simplicity, we denote Γ(k)
1,i := Γ1,i(Xk, a1,k, c1,k, a2,k, c2,k) and Γ(k)

2 := Γ2(Xk, a1,k, c1,k,
a2,k, c2,k) for each (k, i) ∈ [QS]× [τ]. Let T2 be a positive integer, which we define shortly after. We denote
by ValidProofs the event that VerifyHm(c̃rsm

NIZK,Xk, πm
k) = > for all k ∈ [QS] and, when the context is clear,

we omit the sampling probability space. Then, we can rewrite A’s advantage as follows:

µ ≤ Pr[ValidProofs]

= Pr
[
ValidProofs ∧

(
∀k ∈ [QS],

(
∃i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ ≥ 3
)
∧
(∣∣∣Γ(k)

2

∣∣∣ ≥ T2

))]
+ Pr

[
ValidProofs ∧

(
∃k ∈ [QS],

(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)
∨
(∣∣∣Γ(k)

2

∣∣∣ < T2

))]
≤ Pr

[
ValidProofs ∧

(
∀k ∈ [QS],

(
∃i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ ≥ 3
)
∧
(∣∣∣Γ(k)

2

∣∣∣ ≥ T2

))]
+
∑
k∈[QS]

Pr
[
ValidProofs ∧ ∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
]

(11)

+
∑
k∈[QS]

Pr
[
ValidProofs ∧

∣∣∣Γ(k)
2

∣∣∣ < T2

]
(12)

≤ Pr
[
ValidProofs ∧

(
∀k ∈ [QS],

(
∃i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ ≥ 3
)
∧
(∣∣∣Γ(k)

2

∣∣∣ ≥ T2

))]
+ Q2

H
2 ·

(
2
q

+ 1
(2d)τ ′

)τ
+ QH ·

T2

|Cham|
,

where the second inequality follows from the union bound, and the third inequality is due to Corollar-
ies 4.8 and 4.9 that establish upper bounds on Eqs. (11) and (12), respectively. We first finish the proof of
Lemma 4.7.

By plugging in T2 := µ
2QH
· |Cham| in the above inequality, we obtain the following

Pr
[
ValidProofs ∧

(
∀k ∈ [QS],

(
∃i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ ≥ 3
)
∧
(∣∣∣Γ(k)

2

∣∣∣ ≥ T2

))]
≥ µ

2 −
Q2

H
2 ·

(
2
q′

+ 1
(2d)τ ′

)τ
.

Due to our parameter setting (i.e., q
′

2 ≈ (2d)τ ′ and 1/(2d)τ ·τ ′ = negl(λ)), for any QH = poly(λ), QH ·
(2
q +

1
(2d)τ′

)τ is negligible. Thus we obtain the desired bound.
It remains to prove the following Corollaries 4.8 and 4.9.

Corollary 4.8. We have
∑
k∈[QS] Pr

[
ValidProofs ∧ ∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
]
≤ Q2

H
2 ·
(

2
q′ + 1

(2d)τ′
)τ

.

Proof. We further modify the equation as follows,∑
k∈[QS]

Pr
[
ValidProofs ∧

(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)]

=
∑
k∈[QS]

∑
Jk∈[0:τ]

∑
S⊆[τ]

s.t. |S|=Jk

Pr
[

ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
) ∧ (∀i ∈ S, c1,k,i ∈ Γ(k)

1,i
∀i ∈ [τ]\S, c1,k,i /∈ Γ(k)

1,i

)]

≤
∑
k∈[QS]

∑
Jk∈[0:τ]

∑
S⊆[τ]

s.t. |S|=Jk

Pr
[(∀i ∈ S, c1,k,i ∈ Γ(k)

1,i
∀i ∈ [τ]\S, c1,k,i /∈ Γ(k)

1,i

)∣∣∣∣∣ ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)]

≤
∑
k∈[QS]

∑
Jk∈[0:τ]

∑
S⊆[τ]

s.t. |S|=Jk

Pr
[(
∀i ∈ S, c1,k,i ∈ Γ(k)

1,i

)∣∣∣∣∣ ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)]

40

· Pr
[(
∀i ∈ [τ]\S, c1,k,i /∈ Γ(k)

1,i

)∣∣∣∣∣ ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)] (13)

where c1,k,i is the i-th element in the k-th second-flow challenge c1,k included in πm
k output by adversary .

The first inequality follows from taking the conditional probability and the second inequality follows from
the fact that the output of the random oracle is uniform and thus the distributions of each (c1,k,i)i∈[τ] are
independent (even though A can freely chose which (c1,k,i)i∈[τ] to output). In other words, for each k ∈ [QS]
and c1,k = (c1,k,i)i∈[τ], c1,k,i is either in Γ(k)

1,i of size at most 2 or not, and Jk counts the number of c1,k,i ∈ Γ(k)
1,i

in ci,k.
We first consider the probability that c1,k,i ∈ Γ(k)

1,i for all i ∈ S. Let us fix k ∈ [QS], Jk ∈ [0 : τ], and
S ⊆ [τ] such that |S| = Jk. Since c1,k ∈ Zτq′ is only defined once after the adversary queries the random
oracle on input (Xk, a1,k), {c1,k,i}i∈S is distributed uniformly random over ZJkq′ before the adversary queries
the random oracle. For simplicity, we assume without loss of generality that the adversary always queries
(Xk, a1,k) to the random oracle before outputting its purported proofs and each statement Xk are different.

Then, the probability that c1,k,i ∈ Γ(k)
1,i for all i ∈ S is QH,k ·

∏
i∈S

∣∣Γ(k)
1,i

∣∣
q′ ≤ QH,k ·

(2
q′

)Jk , where QH,k denotes

the number of random oracle queries that include (Xk, 1) as a prefix and we use the fact
∣∣∣Γ(k)

1,i

∣∣∣ ≤ 2.

We next consider the probability that c1,k,i /∈ Γ(k)
1,i for all i ∈ [τ]\S. By definition of Γ(k)

1,i , this is equivalent
to the fact that there exists only a unique (βk,i,j)j∈[τ ′] such that the transcript is valid. Similarly to above,
((βk,i,j)j∈[τ ′])i∈[τ]\S is distributed uniformly random over Cτ

′(τ−Jk)
X before the adversary queries the random

oracle. Then, the probability that c1,k,i /∈ Γ(k)
1,i for all i ∈ [τ]\S is QH,k ·

(1
(2d)τ′

)τ−Jk , where QH,k denotes the
number of random oracle queries that include (Xk, 2, a1,k, c1,k) as a prefix and we use the fact that |CX | = 2d.

Combining the two arguments, we upper bound Eq. (13) as follow:

∑
k∈[QS]

∑
Jk∈[0:τ]

∑
S⊆[τ]

s.t. |S|=Jk

QH,k ·
(

2
q′

)Jk
· QH,k ·

(
1

(2d)τ ′
)τ−Jk

=
∑
k∈[QS]

∑
Jk∈[0:τ]

(
τ

Jk

)
QH,k · QH,k ·

(
2
q′

)Jk
·
(

1
(2d)τ ′

)τ−Jk
=
∑
k∈[QS]

QH,k · QH,k

(
2
q′

+ 1
(2d)τ ′

)τ
≤Q2

H
2 ·

(
2
q′

+ 1
(2d)τ ′

)τ
,

where the second equality follows from the binomial expansion and the last inequality follows from
∑
k∈[QS](QH,k+

QH,k) ≤ QH. This completes the proof.

Corollary 4.9. We have
∑
k∈[QS] Pr

[
ValidProofs ∧

∣∣∣Γ(k)
2

∣∣∣ < T2

]
≤ QH · T2

|Cham| .

Proof. Similarly to the proof of Corollary 4.8, β′k is distributed uniformly random over Cham before the
adversary queries (Xk, 2, a1,k, c1,k, a2,k) to the random oracle. Therefore,

∑
k∈[QS]

Pr
[
ValidProofs ∧

∣∣∣Γ(k)
2

∣∣∣ < T2

]
≤
∑
k∈[QS]

QH,k ·

∣∣∣Γ(k)
2

∣∣∣
|Cham|

≤ QH ·
T2

|Cham|
,

where QH,k denotes the number of random oracle queries that include (Xk, 2, a1,k, c1,k) as a prefix.

41

We next show a restricted notion of the standard special soundness for interactive protocols. Typically,
an extractor for special soundness is provided multiple valid transcripts containing the same commitments
and is asked to extract a witness from it. Below, we show that for our particular interactive protocol,
the extractor only requires one valid transcript along with several challenges for which existence of a valid
response is guaranteed. Put differently, rather than taking multiple valid transcripts as input, our extractor
only requires one transcript and the challenges included in the remaining valid transcripts. As explained in
the beginning of this section, the crux of the proof is that given a valid challenge, the extractor can extract
parts of the response by using the trapdoor τ (i.e., NTRU decryption key).

Lemma 4.10. Consider the following 7 valid transcripts for a statement X:

• For (η, b) ∈ [3]× [2],
trans(η,b) :=

(
a1, c(η)

1 := (c(η)
i)i∈[τ], a

(η)
2 , c(η,b)

2 := (β(η,b) := (β(η,b)
i,j)(i,j)∈[τ]×[τ ′], β

′), resp(η,b)),
• t̂rans(1,0) := (a1, c(1)

1 , a
(1)
2 , ĉ(1,b)

2 := (β(1,0), β̂′), r̂esp(1,0)),

such that there exists (i∗, j∗1 , j∗2 , j∗3) ∈ [τ] × [τ ′]3 that (c(1)
i∗ , c

(2)
i∗ , c

(3)
i∗) are pairwise distinct, (β(1,0)

i∗,j∗1
, β

(1,1)
i∗,j∗1

),
(β(2,0)
i∗,j∗2

, β
(2,1)
i∗,j∗2

), and (β(3,0)
i∗,j∗3

, β
(3,1)
i∗,j∗3

) are each pairwise distinct, and β′ 6= β̂′.
Then, there exists a deterministic PT special sound extractor Extractss such that given a trapdoor τ to

c̃rsm
NIZK, any statement X and

(
trans(1,0),

(
β

(η,0)
i∗,j∗η

, β
(η,1)
i∗,j∗η

)
η∈[3],

(
β′, β̂′

))
included in any of the 7 valid transcripts

of the above form, Extractss outputs a witness W such that (X,W) ∈ Rm
gap or a solution to the MSISd,1,k4,16BZ,q′

problem with respect to a0 ∈ Rk4
q′ included in c̃rsm

NIZK or a solution to the MSISd,1,k3,2(BZ′+Bcδgap),q′ problem
with respect to b0 ∈ Rk3

q′ included in crscom.

Proof. For reference, we recall what trans(1,0) contains:

• a1 :=
(

(u0,i,U1,i,U2,i,U3,i,U4,i,Wi,Vi, (V̄i,j)j∈[τ ′])i∈[τ],w′1,w′2, v′, v′,V′, V̄′
)
,

• c(1)
1 := (c(1)

i)i∈[τ] ∈ Zτq′ ,

• a(1)
2 :=

(
Z(1)

0,i , (x
(1)
0,i,j ,X

(1)
1,i,j ,X

(1)
2,i,j)j∈[τ ′]

)
i∈[τ]

,

• c(1,0)
2 := (β(1,0) := (β(1,0)

i,j)(i,j)∈[τ]×[τ ′], β
′) ∈ Cτ ·τ ′X × Cham,

• resp(1,0) :=
(
(Z(1,0)

i,j ,F(1,0)
1,i,j ,F

(1,0)
2,i,j)(i,j)∈[τ]×[τ ′],Z(1,0)′ , ζ(1,0), f

(1,0)′
1 , f

(1,0)′
2 ,F(1,0)′

1 ,F(1,0)′
2

)
.

The proof consists of three parts: in Part (A), we extract a witness that proves the linear relation (i.e.,[
t1
t2

]
=
[
b0
b1

]
R′ +

[
0
hg

]
); in Part (B), if the extracted witness from Part (A) is not in Rm

gap, then we further

extract a different witness that proves the exact relation for t1 (i.e., t1 = b0R′′); in Part (C), we show that
given two different openings to t1, we can extract a solution to an MSIS problem. Looking ahead, if Extractss
does not succeed in outputting a valid witness for Rm

gap in Part (A), then it will only output a solution to
the MSIS solution in the following Parts (B) and (C). This subtle observation will be used in Section 4.4 to
optimize the proof size of our multi-proof extractable NIZK in the classical ROM.

Part (A). First observe that from trans(1,0), we have

V̄′ + β′ ·V′ = HF(1,0)′
1 + pF(1,0)′

2 + Z(1,0)′ (over RQ).

Notice the right hand side is a valid NTRU ciphertext. Namely, by using the trapdoor τ = (f, v) such that
H = p ·v ·f−1 (i.e., secret key for the NTRU encryption scheme), Extractss can decrypt V̄′+β′ ·V′ to recover

42

the “message” Z(1,0)′ . Formally, Z(1,0)′ = f−1 · (f · (V̄′ + β′ ·V′) mod Q) mod p. Moreover, by setting the
parameters appropriately, the NTRU encyption scheme will have no decryption error. Thus, if V̄′ + β′ ·V′
is guaranteed to be in the above form, then the possible Z(1,0)′ that can be included in resp(1,0) is unique.
In other words, there can not exist a distinct Ẑ(1,0)′ in resp(1,0) such that verification still holds. The same
argument holds for the ζ(1,0) component since we have v′ + β′ · v′ = Hf

(1,0)′
1 + pf

(1,0)′
2 + ζ(1,0).

With this observation in mind, given trans(1,0) and β̂′, Extractss first performs NTRU decryption as follows,
which is guaranteed to succeed by assumption:

Ẑ(1,0)′ := f−1 · (f · (V̄′ + β̂′ ·V′) mod Q) mod p,

ζ̂(1,0) := f−1 · (f · (v′ + β̂′ · v′) mod Q) mod p.

As argued above, this Ẑ(1,0)′ and ζ̂(1,0) are guaranteed to be included in t̂rans(1,0), where note that t̂rans(1,0)

is not provided to Extractss as input. Since trans(1,0) and t̂rans(1,0) are valid and share the same first flow a1,
they also satisfy the same verification equations regarding w′1 and w′2 (see Fig. 5). Extractss subtracts these
equations to remove w′1 and w′2, and obtains the following:

(β′ − β̂′) · t1 = b0
(
Z(1,0)′ − Ẑ(1,0)′) (over Rq′), (14)

(β′ − β̂′) · t2∆ = b1
(
Z(1,0)′ − Ẑ(1,0)′)∆ + [ζ(1,0) − ζ̂(1,0) | 0 | · · · | 0] (over Rq).

By multiplying ∆−1 from both sides in the later equation, Extractss obtains

(β′ − β̂′) · t2 = b1
(
Z(1,0)′ − Ẑ(1,0)′)+ (ζ(1,0) − ζ̂(1,0)) · g. (15)

Due to our parameter selection, (β′ − β̂′) is small and is guaranteed to be invertible over Rq. Extractss

then checks if R′ :=
(
Z(1,0)′ − Ẑ(1,0)′)/(β′ − β̂′)−1 consists of polynomials with {0, 1, 2}-coefficients. If so,

W := ((ζ(1,0) − ζ̂(1,0)), (β′ − β̂′),R′) is a valid witness for Rm
gap and thus Extractss outputs W. If this is not

the case, Extractss proceeds as follows. We highlight again that if Extractss does not succeed in outputting a
valid witness for Rm

gap in Part (A), then it will only output a solution to the MSIS problem in the following
Parts (B) and (C).

Part (B). Following the argument from the previous part, Extractss first performs the following NTRU de-
cryption for (η, b) ∈ [3]× [2], which is guaranteed to succeed by assumption:

Z(η,b)
i∗,j∗η

:= f−1 · (f · (V̄i∗,j∗η
+ β

(η,b)
i∗,j∗η

·Vi∗) mod Q) mod p.

Fix η ∈ [3]. Then, since trans(η,0) and trans(η,1) are valid transcripts, they satisfy the same verification
equation regarding x(η)

0,i∗,j∗η (see Fig. 5). Subtracting both sides, Extractss thus obtains the following for all
η ∈ [3]:

a0
(
Z(η,0)
i∗,j∗η

− Z(η,1)
i∗,j∗η

)︸ ︷︷ ︸
=:Z̃(η)

i∗,j∗η

= (β(η,0)
i∗,j∗η

− β(η,1)
i∗,j∗η

)︸ ︷︷ ︸
=:β̃(η)

i∗,j∗η

·u0,i∗ (over Rq′).

By [BCK+14, Lemma 2.1], any difference of distinct challenges in CX is small and invertible over Rq′ .
Here, we note that we do not care if the inverse is small. Thus, if there exists η1, η2 ∈ [3] such that
Z̃(η1)
i∗,j∗η1

/β̃
(η1)
i∗,j∗η1

6= Z̃(η2)
i∗,j∗η2

/β̃
(η2)
i∗,j∗η2

, then Extractss outputs

S := β̃
(η2)
i∗,j∗η2

· Z̃(η1)
i∗,j∗η1

− β̃(η1)
i∗,j∗η1

· Z̃(η2)
i∗,j∗η2

as an MSISd,1,k4,16BZ,q′ solution for a0. Otherwise, Extractss computes Mk,i∗ := Uk,i∗ − AkZ̃(η)
i∗,j∗η

/β̃
(η)
i∗,j∗η

over Rq′ for all k ∈ [4], which is in particular independent from the choice of η ∈ [3]. Before finishing

43

explaining the description of Extractss, which we provide in Part (C), we make a detour and claim that
t1 = b0Φ−1 (NTT (M2,i∗)) and Φ−1 (NTT (M2,i∗)) ∈ Rk3×L consists of {0, 1, 2}-coefficient polynomials.

Although Extractss is not given (c(η)
i∗ ,Z

(η)
0,i∗ ,X

(η)
1,i∗,j∗η)η∈{2,3} as input, it is guaranteed that such elements

exist and satisfy the following verificaton equations regarding X(η)
1,i∗,j∗η for (η, b) ∈ [3]× [2] by assumption (see

Fig. 5).

(A1 + c
(η)
i∗ ·A2)Z(η,b)

i∗,j∗η
+ β

(η,b)
i∗,j∗η

· Z(η)
0,i∗ = X(η)

1,i∗,j∗η + β
(η,b)
i∗,j∗η

· (U1,i∗ + c
(η)
i∗ ·U2,i∗)

For each η ∈ [3], we can subtract the equations for b = 1 and 2 to remove (the unknown) X(η)
1,i∗,j∗η as follows:

(A1 + c
(η)
i∗ ·A2)Z̃(η)

i∗,j∗η
+ β̃

(η)
i∗,j∗η

· Z(η)
0,i∗ = β̃

(η)
i∗,j∗η

· (U1,i∗ + c
(η)
i∗ ·U2,i∗)

Further substituting the commitment openings for U1,i∗ and U2,i∗ with the appropriate choice of η ∈ [3],
we obtain

(A1 + c
(η)
i∗ ·A2)Z̃(η)

i∗,j∗η
+ β̃

(η)
i∗,j∗η

· Z(η)
0,i∗ = A1Z̃i∗,j∗η + β̃

(η)
i∗,j∗η

·M1,i∗,j∗η + c
(η)
i∗ ·

(
A2Z̃i∗,j∗η + β̃

(η)
i∗,j∗η

·M2,i∗,j∗η
)
.

Routine calculation shows that Z(η)
0,i∗ = M1,i∗ + c

(η)
i∗ · M2,i∗ . Performing the exact same argument on the

verification equations regarding X(η)
2,i∗,j∗η (see Fig. 5), we obtain the following for each η ∈ [3].

(Z(η)
0,i∗ − c

(η)
i∗) ◦ (Z(η)

0,i∗ − 2c(η)
i∗) ◦ (A2Z̃(η)

i∗,j∗η
)− Z(η)

0,i∗ ◦ (A3Z̃(η)
i∗,j∗η

) + A4Z̃(η)
i∗,j∗η

= β̃
(η)
i∗,j∗η

·
(
(Z(η)

0,i∗ − c
(η)
i∗) ◦ (Z(η)

0,i∗ − 2c(η)
i∗) ◦U2,i∗ − Z(η)

0,i∗ ◦U3,i∗ + U4,i∗
)

By substituting the commitment openings for U2,i∗ , U3,i∗ , U4,i∗ with the appropriate choice of η ∈ [3] and
Z(η)

0,i∗ = M1,i∗ + c
(η)
i∗ ·M2,i∗ , we further obtain(

M1,i∗ ◦M1,i∗ ◦M2,i∗ −M1,i∗ ◦M3,i∗ + M4,i∗
)

+ c
(η)
i∗ ·

(
(M1,i∗ ◦ (2M2,i∗ − 3)−M3,i∗) ◦M2,i∗

)
+
(
c
(η)
i∗

)2 · (M2,i∗ ◦ (M2,i∗ − 1) ◦ (M2,i∗ − 2)
)

= 0 (over Rq′).

Since this degree two polynomial evaluates to zero on three distinct (c(η)
i∗)η∈[3] ⊂ Zq′ , we must have M2,i∗ ◦

(M2,i∗−1)◦(M2,i∗−2) = 0 over Rq′ . Applying the NTT transform, this implies NTT (M2,i∗) ∈ {0, 1, 2}dk3×L.
Finally, from the verification equation regarding Wi∗ , we have

Rot(b0)
(
NTT(Z(1)

0,i∗)− NTT(Z(2)
0,i∗)

)
= (c(1)

i∗ − c
(2)
i∗) · Φ (t1) (over Zq′).

Plugging in Z(η)
0,i∗ = M1,i∗ + c

(η)
i∗ ·M2,i∗ and dividing by (c(1)

i∗ − c
(2)
i∗) 6= 0 (over Zq), we obtain

Rot(b0)NTT (M2,i∗) = Φ (t1) (over Zq′),

which is equivalent to b0Φ−1 (NTT (M2,i∗)) = t1. Since we established that NTT (M2,i∗) ∈ {0, 1, 2}dk3×L,
this implies that Φ−1 (NTT (M2,i∗)) ∈ Rk3×L consists of {0, 1, 2}-coefficient polynomials as desired.

Part (C). If Extractss has yet to output anything, then it has computed from Part (A), (β′ − β̂′) and
(Z(1,0)′ − Ẑ(1,0)′) such that Eq. (14) holds but

(
Z(1,0)′ − Ẑ(1,0)′)/(β′ − β̂′)−1 does not consist of {0, 1, 2}-

coefficient polynomials. Moreover, from Part (B), it has computed M2,i∗ such that Φ−1 (NTT (M2,i∗)) consists
of {0, 1, 2}-coefficient polynomials and t1 = b0Φ−1 (NTT (M2,i∗)). Combining the two, we get

b0

((
Z(1,0)′ − Ẑ(1,0)′)− (β′ − β̂′) · Φ−1 (NTT (M2,i∗))

)
︸ ︷︷ ︸

=:S′

= 0 (over Rq′),

44

Assume S′ = 0 over Rq′ . Then,
(
Z(1,0)′ − Ẑ(1,0)′) = (β′ − β̂′) ·Φ−1 (NTT (M2,i∗)) over Rq′ . Since both sides

consist only of small elements, this equation holds over Z. Thus, it also holds over Rq. Since (β′ − β̂′) is
invertible over Rq, we can divide both sides to obtain

(
Z(1,0)′−Ẑ(1,0)′)/(β′− β̂′)−1 = Φ−1 (NTT (M2,i∗)) over

Rq. However, this contradicts what we have established in Part (A);
(
Z(1,0)′ − Ẑ(1,0)′)/(β′ − β̂′)−1 does not

consist of {0, 1, 2}-coefficient polynomials. Therefore, we must have S′ 6= 0 over Rq′ . Since we established
that S′ has a small norm, Extractss simply outputs S′ 6= 0 as a solution to the MSISd,1,k3,2(BZ′+Bcδgap),q′

problem for b0.

Multi-Extract(1λ,QH,QS, 1/µ, τ,X, πm)
τ = (f, v) ∈ [−BNTRU, BNTRU]d such that p · v · f−1 = H ∈ c̃rsm

NIZK,

X := (crscom := (b0,b1), com := T) ∈ Rk3
q′ ×R

k3
q × (RLq′ ×RLq),

πm := ((u0,i, (Uk,i)k∈[4],Vi)i∈[τ], v
′,V′, c1, (Z0,i)i∈[τ], c2, (Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ ′],Z′, ζ, (f ′b,F′b)b∈[2])

// Recover (a1, a2) by running VerifyHm (crsm
NIZK,X, πm) (cf. Fig. 5)

// and proceed as follows using the computed (w′1,w′2, (Vi,j)(i,j)∈[τ]×[τ ′], v
′,V′)

(GoodChall1,GoodChall2) := {β′} × ∅
BadChall1 := {β′}
resp :=

(
(Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ ′],Z′, ζ, f ′1, f ′2,F′1,F′2

)
trans := (a1, c1 = (ci)i∈[τ], a2, c2 = (β = (βi,j)(i,j)∈[τ]×[τ ′], β

′), resp)
t := 0
While t ≤ Tmax := λ·2QH

µ
∨ |GoodChall1| ≤ 1

β′t
$← Cham\BadChall1

ζt := f−1 · (f · (v′ + β′t · v′) mod Q) mod p

Z′t := f−1 · (f · (V̄′ + β′t ·V′) mod Q) mod p
If ‖ζt‖2 < B ∧ ‖Z′t‖2 < BZ ∧ w′1 = b0Z′t − β′t · t1

∧ w′2 = b1Z′t∆ + [ζt|0| · · · |0]− β′t · t2∆ then
GoodChall1 ← GoodChall1 ∪ {β′t}

Else
BadChall← BadChall ∪ {β′t}

t← t+ 1
If |GoodChall1| = 1 then

return = ⊥
For i′ ∈ [τ]

For j′ ∈ [τ ′]
For β ∈ CX

Zβ,i′,j′ := f−1 · (f · (V̄i′,j′ + β ·Vi′) mod Q) mod p
If ‖Zβ,i′,j′‖2 < BZ then

GoodChall2[i′]← GoodChall2[i′] ∪ {β}
If |GoodChall2[i′]| ≥ 2 then

For
(
β

(η,0)
i′,jη

, β
(η,1)
i′,jη

)
η∈[3]

⊆ GoodChall2[i′] s.t. ∀η ∈ [3], β(η,0)
i′,jη

6= β
(η,1)
i′,jη

W← Extractss
(
τ,X,

(
β

(η,0)
i′,jη

, β
(η,1)
i′,jη

)
η∈[3]

,GoodChall1
)

If (X,W) ∈ Rm
gap then

return W
Else return ⊥

Figure 8: The multi-proof straight-line extractor. We assume without loss of generality that πm is a valid proof.

We are finally ready to finish the proof of Theorem 4.6. The full description of our multi-proof extractor
Multi-Extract is provided in Fig. 8. The goal of Multi-Extract is to collect the necessary inputs to invoke
Extractss defined in Lemma 4.10.

At a high level, Multi-Extract first goes over the challenges in Cham to find another β′t for which there
exists a valid response. Concretely, it decrypts (v′+β′t ·v′) and (V′+β′t+V′) and searches for a pair (ζt,Z′t)

45

that satisfies ‖ζt‖2 < B ∧ ‖Z′t‖2 < BZ′ ∧ w′1 = b0Z′t − β′t · t1 ∧ w′2 = b1Z′t∆ + [ζt|0| · · · |0] − β′t · t2∆.
If this is satisfied, respt =

(
(Zi,j ,F1,i,j ,F2,i,j)(i,j)∈[τ]×[τ ′],Z′t, ζt, f ′1, f ′2,F′1,F′2

)
is guaranteed to be another

valid response where the fourth flow challenge is c2,t = (β, β′t). Note that this corresponds to r̂esp(1,0) and β̂′

in Lemma 4.10. In the following argument, we condition on |GoodChall1| 6= 1; that is GoodChall1 = {β′, β̂′}
for some β̂′ 6= β′.

Multi-Extract then goes over all the challenges in CX , which it can do since |CX | = 2d = poly(λ).
Concretely, for all β ∈ CX , it decrypts (V̄i′,j′ + β ·Vi′) for all (i′, j′) ∈ [τ] × [τ ′], and checks if it correctly
decrypts to some “message” Zβ,i′,j′ such that ‖Zβ,i′,j′‖2 < BZ. Note that unlike for the above set of
challenges in Cham, this check itself does not guarantee that there exists a valid transcript for challenge
β ∈ CX . This is because the fact that a valid Zβ,i′,j′ exists does not imply that there exists an associated
valid third flow a2. However, the main observation is that if a valid transcript for challenge β ∈ CX exists,
then (V̄i′,j′ + β · Vi′) must decrypt to Zβ,i′,j′ such that ‖Zβ,i′,j′‖2 < BZ. Specifically, GoodChall2[i′] is
guaranteed to collect all the β ∈ CX for which there exists a corresponding valid transcript (and some β
such that ‖Zβ,i′,j′‖2 < BZ but does not have an associated valid transcript).

Finally, Multi-Extract is ready to run Extractss. It runs through all three pairs of distinct challenges(
β

(η,0)
i′,jη

, β
(η,1)
i′,jη

)
η∈[3] from GoodChall2[i′] (where each pair can be the same), and executes Extractss

(
τ,X,

(
β

(η,0)
i′,jη

,

β
(η,1)
i′,jη

)
η∈[3],GoodChall1

)
. We show that with non-negligible probability, one of the set of inputs to Extractss

must be in the specified form explained in Lemma 4.10. Thus, assuming the MSIS problem is difficult,
Extractss (and thus Multi-Extract) extracts a witness W in Rm

gap as desired.
It remains to analyze the success probability and runtime of Multi-Extract. We first analyze the success

probability. From Lemma 4.7, with probability at least µ
2 − negl(λ), we have |Γ2(Xk, a1,k, c1,k, a2,k, c2,k)| ≥

µ
2QH
· |Cham|. By the above argument, we have β′t ∈ GoodChall1 if and only if β′t ∈ Γ2(Xk, a1,k, c1,k, a2,k, c2,k).

Therefore, if Tmax = λ·2QH
µ , the probability that |GoodChall1| = 2 for all k ∈ [QS] is at least 1 − QS · 2−λ.

We also have that for all k ∈ [QS], |Γ1,i(Xk, a1,k, c1,k, a2,k, c2,k)| ≥ 3. Then, by definition of Γ1,i and
our above argument, Extractss must be invoked on the required inputs specified by Lemma 4.10 for at
least one i′ ∈ [τ]. That is, for some i′ ∈ [τ], we have |Γ1,i′(Xk, a1,k, c1,k, a2,k, c2,k)| ≥ 3, and for each
ci ∈ Γ1,i′(Xk, a1,k, c1,k, a2,k, c2,k), Multi-Extract succeeds in extracting all the possible βi′,j′ ’s that can be
included in a valid transcript, which by definition of Γ1,i′ is more than two. Therefore, by Lemmata 4.7
and 4.10, with probability at least µ2−negl(λ), Multi-Extract extracts a witness W ∈ Rm

gap or an MSIS solution.
Assuming the MSIS problem is difficult, Multi-Extract extracts a witness W ∈ Rm

gap with probability at least
µ
2 − negl(λ) as desired.

We finish by analyzing the runtime of Multi-Extract. Multi-Extract takes at most time Tmax · polyNTRU(λ)
when running through the challenges in Cham, where Tmax = λ·2QH

µ and polyNTRU(λ) is roughly the time it
takes to perform an NTRU decryption. Moreover, it takes τ · τ ′ · polyNTRU(λ) to compute GoodChall2, and
since GoodChall2[i′] has size at most |CX | = 2d for each i′, Multi-Extract executes Extractss at most (2d)6-
times. Since it takes polyExtractss (λ) to run Extractss, which is in particularly independent of the runtime of the
adversary A, the total runtime of Multi-Extract is bounded by (λ·2QH

µ +τ ·τ ′) ·poly(λ)+polyExtractss (λ) ·τ ·(2d)6.
Hence, the runtime of Multi-Extract is upper bounded by QH

µ · p(λ) for some polynomial p(λ) independent of
A as desired.

4.4 Optimization in the Classical ROM
In the context of blind signatures, we notice that we do not require the full straight-line extraction ca-
pability of our multi-proof Πm

NIZK . Specifically, we can reduce the proof size by removing the Katsumata
transform [Kat21] applied to the exact proof of Bootle et al. [BLS19]. These components are the first
block of texts highlighted in gray in Fig. 4, where the prover commits to (Ei, (Si,j)j∈[τ ′])i∈[τ] by the NTRU
commitment/encryption scheme.

To explain why we can remove this part, we first recall Lemma 4.10 where we constructed a restricted
special sound extractor Extractss. As we mentioned during in the proof of Lemma 4.10 Extractss can only
extract a valid witness in Rm

gap during Part (A). After Part (A), we know Extractss can only extract an MSIS

46

solution. Moreover, notice in Part (A) that we never used components related to the exact proof of Bootle
et al. [BLS19]. Namely, focusing only on Part (A), we can think of another extractor Extract′SS that only
takes (trans(1,0), (β′, β̂′)) as input, rather than

(
trans(1,0),

(
β

(η,0)
i∗,j∗η

, β
(η,1)
i∗,j∗η

)
η∈[3],

(
β′, β̂′

))
.

Now, looking back at our blind signature, the only moment we used the straight-line extraction property
was during in the proof of one-more unforgeability in Theorem 3.5. Taking a closer look, the only reason
why we required a straight-line extractor was because the simulation needed to extract the witness in Rm

gap
to perform the simulation. If it failed to extract a witness in Rm

gap, then there is no point for the reduction
to continue simulating the rest of the game to the adversary.

Combining the two observations, it is easy to see that during the proof of one-more unforgeability, the
reduction only needs the capability of running Extract′SS rather than Extractss. In case Extract′SS fails, then
by the observation made during in the proof of Lemma 4.10, we know that Extractss would have failed to
output a witness for Rm

gap as well. Therefore, once Extract′SS fails, the reduction terminates the simulation
of the one-more unforgeability proof and then switches to extract an MSIS solution from the adversary via
rewinding as it is done in the original proof of Bootle et al. [BLS19].

In summary, the reduction only needs to collect the inputs required to run Part (A) of Extractss in a
straight-line fashion. If Part (A) fails, then it can resort to rewinding-type extractions. This allows to
remove all the components related to the Katsumata transform [Kat21] applied to the exact proof of Bootle
et al. [BLS19], which is a huge efficiency gain. We chose to provide the NIZK with full straight-line extraction
capability since it is not obvious if this idea works against quantum adversaries in the QROM. This is mainly
because rewinding quantum adversaries is generally a non-trivial process and the reduction requires to also
extract the MSIS solution without rewinding. We leave it as an interesting question whether this optimization
applies in the quantum setting.

4.5 Putting Everything Together

Parameter Value
q ∼ 260

q′ ∼ 224

p ∼ 232

Q ∼ 266

τ 6
τ ′ 2
κ 2
d 2048
k1 3
k2 5
k3 4
k4 19
Bc 36
σ 226

γDSMR, γD, γD′ , γE 1

Table 2: Concrete parameters for our scheme.

For reference, we give, in Figure 9, an instantiation of the blind signature of Section 3 using the primitives
defined in this section. Note that instead of considering a straight line extractor which relies on RLWE we will
consider one that relies on MLWE, e.g. we will encrypt randomness R by computing V′ =

∑κ
j=1HjD′1,j +

pD′2 +R this way we can argue zero-knowledge using MLWE in dimension κ and use a much smaller modulus
Q. To set parameters we consider all the constraints listed in Annexe D. For 128 bits of security we use
a root-Hermite factor of δ0 = 1.00454 to be consistent with the LWE-Estimator from [APS15]. When

47

ΠBS : SH(vk = (a1, u), sk = Ta1) UH(vk,M)
(crsm

NIZK, crscom,a2) := H(‘crs’‖0), where (a1,a2, u) ∈ Rk1
q ×Rk2

q ×Rq
crscom := (b0,b1) ∈ Rk3

q′ ×R
k3
q

(com, πm)
←−−−−−

h := Hm(M)
R $← [−1, 1]k3×k2

coeff

com :=
[

t0
t

]
:=
[

b0
b1

]
R +

[
0

h · g

]
πm $← ProveHm (crsm

NIZK, (crscom, com), (h,R + 1))
If VerifyHm (crsm

NIZK, (crscom, com), πm) = ⊥
then return ⊥

e $← SampleLeft(a1, [a2 + t | b1] , u,Ta1 , σ)
e

−−−−−→

(e1, e2, e3) := e ∈ Rk1
q ×Rk2

q ×Rk3
q

Check:
∀i ∈ [3], ‖ei‖2 ≤ BSΣ,i
and [a1 | a2 + t | b1] · e> = u

ẽ> :=

 e>1
e>2

Re>2 + e>3


πs $← ProveHs ((a1,a2,b1,u, h), ẽ)
return πs

Figure 9: Blind signature protocol using the building blocks of Section 4. In above, 1 denotes the all one matrix.

estimating the hardness of the MSISd,n,k,B,q problem we use the root-Hermite factor defined as

δ0 := (Bq nk) 1
dk

It should be noted that by ignoring some columns in the MSIS instance one can consider any dimension
k′ ≤ k when computing the root-Hermite factor. We thus use the value obtained by considering the maximal
δ0 obtained when varying the dimension k, which is

δ0 = 2
log2 B

4dn log q .

We first set the modulus q as well as the dimensions (d, k1, k2, k3) by considering the constraints on the
hiding property of the commitment, the unforgeability of the blind signature and the quality of the three
corresponding trapdoors, while taking into account that R must only split once modulo q to ensure that
small messages will be invertible. The parameters of Figure 2 give δ0 = 1.00262 and δ0 = 1.00443 for
the corresponding MLWEd,2,k3−2,S3,q and MSISd,1,k1+k3,BMSIS,q problems resulting in respectively 242 and 131
bits of security, where S3 is the uniform distribution over [−1, 1]coeff ⊂ Rq. We then fix p and Q so that
decryption of the NTRU encryption (used by the straight-line extractor) always succeeds, consequently we
set κ and k4 so that the MLWE instances corresponding to the zero-knowledge property of the multi-proof
extractable NIZK are hard. With the parameters of Table 2 we obtain a root-Hermite factor of δ0 = 1.00286
for the aforementioned MLWEd,1,κ,γD̄/γD̄′/γ

′
d̄
,Q instances corresponding to 218 bits of security. We can then

set q′, τ, τ ′ to guarantee that the multi-proof extractable NIZK is sound, while making sure that R splits
completely modulo q′, we obtain MSISd,1,k4,16BZ,q′ and MSISd,1,k3,2(BZ′+Bcδgap),q′ instances with δ0 ≤ 1.0021,
corresponding to 320 bits of security. We also check that the hiding property of the commitment holds for
the modulus q′ which is clear since q′ < q.

We recall that the matrix
[
a1 | a2 + hg | b1

]
contains two one elements corresponding to the two NTRU

instances and a zero element in b1. Using the technique of Bai-Galbraith [BG14] we can reduce the dimension
of the signature by 2. We consider that Gaussians can be encoded in log(2σ) bits by using the encoding of

48

e.g. [PFH+18]. The size of the resulting signature is

102.6 KB.

We note that the first flow does not need to explicitly contain t since it is already part of the zero-knowledge
proof. We get a first flow of size 34 MB, but considering the optimization presented in Section 4.4 we can
reduce this first flow to 851 KB.

Possible optimizations. We first consider optimizations to obtain a smaller signature size. As one can
observe reading this section, the hardness of the various problems given varies from 128 bits to more than
300 bits of security. Ideally we would like to reduce the appropriate parameters to obtain problems which all
give similar security guarantees and smaller signatures. We could reduce the signature size by reducing k1
and k3 to get a tighter MLWE security than the 242 bits given above, however taking k1 = 2 or k3 = 3 lowers
this security directly to less than 100 bits. We could circumvent this issue by using matrices A1,A2,B1
instead of a1,a2,b1 and lowering the degree d to e.g. 512, this way we would have better granularity when
modifying parameters, however we would need a module-NTRU trapdoor on the matrix A1 which is not
constructed in [CPS+20] and seems nontrivial to obtain. Another solution would be to lower the size of
the randomness R to get an MLWE instance of hardness around 128 bits, but the analysis of such a very
sparse randomness has not been studied well enough to have reasonable security estimates (for example the
LWE-Estimator from [APS15] gives 141 bits of security for a standard deviation of 10−4 which in practice
would clearly be insecure since the matrix R would be all zeroes with overwhelming probability). Even
assuming we could use a very sparse randomness R this would only slightly improve parameters since the
bound δgap would be unchanged. To get a real improvement on the multi-proof extractable NIZK, we would
need to additionally prove the sparseness of R, which we could consider by proving statements about the
hamming weight of R but that would make the protocol much more complicated. Using either of these
improvements we could lower the signature size to around 50 KB.

Another possible avenue for improvement would be reducing the size of the first flow by considering a
better exact ZKP. In particular Esgin et al. [ENS20] successfully divide the size of the proof of Bootle et
al. [BLS19] nearly by a factor 8. In all likelihood using the same proof would give the same improvement
and bring the size of the first flow down to around 120 KB. However using this zero-knowledge proof is not
completely straightforward as extraction is more complicated and the arguments used in Lemma 4.10 might
not apply any more, especially when considering extraction in the QROM.

We leave further optimized instantiation of our generic construction as an interesting future work.

5 Security in the QROM
In this section, we show that our blind signature ΠBS in Section 4 is also secure in the QROM. In particular,
we show the following three items in the subsequent subsections.

1. The (semi-)generic construction in Section 3 is also secure in the “QROM”.

2. The single-proof extractable NIZK Πs
NIZK provided in Section 4.2 is also secure against a “QPT” adver-

sary.

3. The multi-proof extractable NIZK Πm
NIZK provided in Section 4.3 is also secure against a “QPT” adver-

sary.

5.1 Item 1: QROM Security of the Generic Construction
The blind signature ΠBS in Section 3 can be shown to be secure in the QROM following a similar proof assum-
ing the underlying NIZKs are secure against QPT algorithms. The main noticeable difference lies in the proof
of the one-more-unforgeability game. In the classical setting, the challenger guessed the hashed message hj∗
included in the forgery (see Game4 of Theorem 3.5) with probability 1/QHM but the same naive argument

49

no longer holds in the QROM since the probability that the guess succeeds becomes 1/ |Rq| � 1/2λ. Note
that the previous proof will not hold even under the subexponential hardness of the MLWE problem since
the complexity leveraging we need to perform depends on the parameter used by the MLWE problem.

We first show that ΠBS is quantumly blind under malicious keys.

Theorem 5.1. The blind signature ΠBS in Section 3.2 is quantumly blind under malicious keys if the com-
mitment scheme ΠCom is quantumly hiding, and the two NIZKs Πs

NIZK for (Rs,Rs
gap) and Πm

NIZK for (Rm,Rm
gap)

are quantumly zero-knowledge.

Proof Sketch. Assuming the underlying NIZKs are quantumly zero-knowledge, the proof of blindness under
malicious keys is almost identical to the classical case. The only difference is that we modify the challenger
to use 2QHcrs/2QHM/2QHs/2QHm-wise independent hash functions with appropriate domains and codomains
to implement the QROs Hcrs/HM/Hs/Hm, respectively, where QHcrs/QHM/QHs/QHm are the respective numbers
of random oracle queries performed by the adversary. By Lemma 2.23, this produces the same distribution
to the adversary, while the challenger’s runtime slightly increases since it needs to compute the Q-wise
independent hash functions. The reason for this modification is so that the adversary against the hiding of
ΠCom and the zero-knowledge of Πs

NIZK and Πm
NIZK can efficiently simulate the challenger. Observe that unlike

a classical RO, a QRO cannot be lazily simulated since the adversary may query the entire input space in a
superposition. Other than this modification, the proof is exactly identical to that of Theorem 3.4.

We next show that ΠBS is quantumly one-more-unforgeable.

Theorem 5.2. The blind signature ΠBS is quantumly one-more unforgeable if the two NIZKs Πs
NIZK for

(Rs,Rs
gap) and Πm

NIZK for (Rm,Rm
gap) are quantumly single-proof and multi-proof extractable, respectively, and

the MSISd,1,k1+k2k3,BMSIS,q, MLWEd,1,k1−1,χMLWE,q, DSMRd,k1−1,χDSMR,q,1 and DSMRd,k2k3−1,χDSMR,q,1 problems
are hard.

Proof. The high level structure of the proof remains the same as for the classical case but there are several
subtle differences. Below, we provide the full proof for completeness.

Assume there exists a QPT adversary A with non-negligible advantage ε against the one-more unforge-
ability game that makes at most QS (classical) signature queries. Further assume A makes at most QHm

(resp. QHcrs , QHm ,QHs) (quantum) random oracle queries to HM (resp. Hcrs, Hm, Hs). We consider a sequence
of games, where we denote Ei as the event A wins in Gamei and Ci as the challenger in Gamei.

Game1 : This is the real one-more unforgeability game. By definition, we have

Pr[E1] = ε.

Game2 : In this game, the challenger uniformly samples 2QHcrs/2QHM/2QHs/2QHm -wise independent hash
functions to implement the QROs Hcrs/HM/Hs/Hm, respectively. Throughout the proof, we assume without
loss of generality that these Q-wise independent hash functions are sampled from a set of all possible functions
with an appropriate domain and codomain. We denote these hash functions simply as Hcrs/HM/Hs/Hm. By
Lemma 2.23, this produces the same distribution to the adversary. Thus we have,

Pr[E2] = Pr[E1].

Moreover, we have Time(C2) = Time(C1) +
∑

str∈{crs,M,m,s}Qstr · T 2Qstr-wise, where recall TQ-wise denotes the
time to evaluate a Q-wise independent hash function, which is O(Q) for a typical choice.

Game3 : In this game, the challenger modifies the description of the function Hcrs. It first samples a random
2QHcrs -wise independent hash function H′crs as in the previous game and further runs the CRS simulator Scrs
provided by Πm

NIZK and generates (c̃rsm
NIZK, τ) $← Scrs(1λ). It then sets the function Hcrs as

Hcrs(x) =
{

(c̃rsm
NIZK, crscom,a2) if x = 0,

H′crs(x) otherwise. (16)

50

Otherwise, the challenger proceeds identically to Game1.
It can be checked that Game2 and Game3 are indistinguishable by the CRS indistinguishability in Def-

inition 2.10. Specifically, there exists a QPT adversary Bcrsm
NIZK

against the CRS indistinguishability such
that

Pr[E3] ≥ Pr[E2]− Advcrs
Πm

NIZK
(Bcrsm

NIZK
),

where Time(Bcrsm
NIZK

) is Time(A) + Time(C2). Note that Bcrsm
NIZK

can efficiently simulate C2 due to the modifi-
cation made in Game2. Assuming CRS indistinguishability, we have Pr[E3] ≥ Pr[E2]− negl(λ).

Game4 : In this game, the challenger uses the multi-proof extractor Multi-Extract provided by Πm
NIZK to extract

a witness in Rm
gap from all the proofs included in QS first messages (ρj,1)j∈[QS] submitted by A. Specifically,

whenA submits ρj,1 = (comj , π
m
j) to the challenger, the challenger runs Wj ← Multi-Extract(1λ,QHm ,QS, 1/µ,

τ,Xj , πm
j), where µ = Pr[E3] and Xj = (crscom, comj). We denote by Abortextract the event that there exists

j ∈ [QS] such that Wj /∈ Rm
gap. If Abortextract occurs, the challenger aborts the game and rewrites the forgery

of A to be ⊥. Otherwise, it proceeds identically to Game3. Conditioning on Abortextract not occurring,
the challenger extracts Wj = (h′j , c′j , cj , (rj,i)i∈[k2]) ∈ Rm

gap. We note that the challenger does not use the
extracted witness in this game.

An identical argument to the classical case (see Lemma 3.6) shows that

Pr[E4] ≥ 1
2 · Pr[E3]− negl(λ).

In this game, the runtime of the challenger C4 becomes longer than that of C3 since it runs the multi-proof
extractor Multi-Extract. Due to Definition 2.10, we have Time(C4) = Time(C3) + Qe1

Hm
· Qe2+1

S · 1
µc · p(λ) for

some constants (c, e1, e2) and polynomial p(λ), where µ = Pr[E3] ≥ ε−negl(λ). Assuming ε is non-negligible,
Time(C4) is bounded by a polynomial.

Game5: In this game, the challenger checks if all the messages {Mi}i∈[QS+1] in the adversary’s forgery satisfy
HM(Mi) 6= HM(Mj) for i 6= j ∈ [QS + 1], where we denote the event that a collision is found by Abort′guess.
If Abort′guess occurs, the challenger aborts the game and rewrites the forgery of A to be ⊥. Otherwise,
it proceeds identically to Game4. By [Zha15], any (possibly unbounded) quantum algorithm making QHM

queries can find a collision with probability at most C ′ · (QHM + 1)3/ |Shash| for some universal constant C ′.
Therefore, we have

Pr[E5] ≥ Pr[E4]− C ′ · (QHM + 1)3

|Shash|
.

Game6 : In this game, the challenger replaces the function HM : M → Shash ⊂ Rq by a small-range distri-
bution. Specifically, it sets r =

2·C0·Q3
HM

µ′ , where µ′ = Pr[E5] and C0 is defiend as in Definition 2.24. It then
samples h = (h1, · · · , hr) $← (Shash)r and P $← Func(M, [r]), and defines HM as HM(x) = hP (x). Since HM is
drawn from the small-range distribution with r samples from the set D = Shash, Lemma 2.25 asserts that

Pr[E6] ≥ Pr[E5]−
C0 · Q3

HM

r
= 1

2 · Pr[E5].

Here, since sampling and computing P takes time |M|, which is in general exponential in λ, the challenger
instead uses a T 2QHM -wise independent hash function HP to simulate P . By Lemma 2.23, HM(x) = hHP (x)
produces the same distribution to the adversary, and thus, the above bound on Pr[E5] remains the same.
Moreover, we have Time(C6) = Time(C5) + r · poly(λ), where r =

2·C0·Q3
HM

µ′ , µ′ = Pr[E5], and poly(λ) is the
time it takes to uniformly sample from Shash. Note that the time to compute HP does not show up explicitly
since C5 also computes a similar hash function. Assuming µ′ is non-negligible and Time(C5) is polynomial,
Time(C6) is also polynomial.

Game7 : In this game, the challenger samples a uniformly random index j∗ $← [r] at the beginning of the game
and performs two types of checks. First, when the challenger extracts Wj = (h′j , c′j , cj , (rj,i)i∈[k2]) ∈ Rm

gap

51

from the first message ρj,1 submitted to byA (conditioned on Abortextract not occurring), the challenger checks
if h′j/c′j 6= hj∗ , where note that by definition c′j is invertible. Moreover, at the end of the game, when A
outputs the forgery {(Mi,Σi)}i∈[QS+1], the challenger checks if hj∗ ∈ {H(Mi)}i∈[QS+1] and if {HM(Mi)}i∈[QS+1]
are pairwise distinct. We denote by Abortguess the event that either of these checks do not hold, where note
that event Abortguess includes event Abort′guess. If Abortguess occurs, the challenger aborts and rewrites the
forgery of A to be ⊥. Otherwise, it proceeds identically to Game6.

We later show in Lemma 5.3 that
Pr[E7] ≥ 1

2r · Pr[E6],

where recall r =
2·C0·Q3

HM
µ′ and µ′ = Pr[E5]. Finally, it can be checked that Time(C7) = Time(C6).

Game8 : In this game, the challenger modifies a2 in the output Hcrs(0) = (crsm
NIZK, crscom,a2). Specifically,

after it samples j∗ $← [r] at the beginning of the game, it sets a2 = ã2−hj∗ ·g where ã2
$← Rkq , and sets Hcrs

as in Eq. (16). Since the distribution of a2 in both games are uniform over Rkq , we have

Pr[E8] = Pr[E7].

Game9 : In this game, the challenger gets rid of the trapdoor Ta1 included in the secret key sk and modifies
the way it samples the short vector e when A submits the first message ρ1. We omit the details as it is defined
identically to Game6 of the classical case in Theorem 3.5. Following the same argument as in the classical case
(see Lemma 3.8), there exists PPT adversaries BMLWE, B′DSMR and BDSMR against the MLWEd,1,k1−1,χMLWE,q,
DSMRd,k1,χDSMR,q,1, and DSMRd,k2k3−1,χDSMR,q,1 problems, respectively, such that

Pr[E9] ≥ Pr[E8]−AdvMLWEd,1,k1−1,χMLWE,q (BMLWE)− AdvMLWEd,1,k1−1,χDSMR,q,1(B′DSMR)
− 2 · AdvDSMRd,k2k3−1,χDSMR,q,1(BDSMR)− negl(λ)

where Time(BMLWE), Time(B′DSMR), and Time(BDSMR) are roughly Time(A) + Time(C9). Assuming the hard-
ness of the MLWE and DSMR problems, we have Pr[E9] ≥ Pr[E8]− negl(λ).

At this point, the challenger in Game9 no longer relies on a trapdoor for a1. Therefore, we are now ready
to embed an MSIS instance in the public vectors and to simulate the view of A in Game9 in order to solve
the MSIS problem. Following an identical proof to the classical case (see Lemma 3.9), there exists a QPT
adversary BMSIS against the MSIS problem such that

AdvMSISd,1,k1+k2k3,BMSIS,q (BMSIS) ≥ 1
2p(λ) · Qe

Hs

· Pr[E9]c1 − negl(λ),

where p(λ) is a polynomial, and e and c1 are constants defined in Definition 2.9. Moreover, we have
Time(BMSIS) ≤ c2 · (Time(A) + Time(C9)), where c2 is also a constant defined in Definition 2.9.

Let us check that BMSIS has non-negligible advantage and runs in polynomial time to arrive at a contra-
diction. Collecting all the bounds, we have

Pr[E9] ≥ 1
8r · Pr[E1]− negl(λ) = µ′

16 · C0 · Q3
HM

· ε− negl(λ) ≥ ε2

432 · Q3
HM

− negl(λ),

where we used the fact |Shash| ≥ 2λ, r =
2·C0·Q3

HM
µ′ , µ′ = Pr[E5], Pr[E5] ≥ 1

2 · ε − negl(λ), and C0 < 27 from
Lemma 2.25. This in particular implies

AdvMSISd,1,k1+k2k3,BMSIS,q (BMSIS) ≥ 1
2p(λ) · Qe

Hs

·

(
ε2

432 · Q3
HM

)c1
− negl(λ)

52

which is non-negligible by assumption. Moreover, we have Time(C9) ≈ · · · ≈ Time(C6), Time(C6) =
Time(C5)+r ·poly(λ), Time(C5) = Time(C4)+Qe1

Hm
·Qe2+1

S · 1
µc ·p(λ), Time(C4) = Time(C1)+

∑
str∈{crs,M,m,s}Qstr ·

T 2Qstr-wise, where µ = Pr[E3] ≥ ε − negl(λ) and “≈” hides an insignificant blow up in the runtime. Since
Time(A) can be assumed to be larger than Time(C1), we have

Time(C9) ≈ Time(A) +
4 · C0 · Q3

HM

ε
· poly(λ) +

Qe1
Hm
· Qe2+1

S
εc

· p(λ) +
∑

str∈{crs,M,m,s}

Qstr · T 2Qstr-wise,

where recall poly(λ) is the time it takes to uniformly sample from Shash. Assuming ε is non-negligible,
Time(C9) is polynomial. Combining this with Time(BMSIS) ≤ c2 · (Time(A) + Time(C9)) for constant c2, we
have Time(BMSIS) is polynomial as desired. Since this implies a QPT adversary for the MSIS problem with
non-negligible advantage, we arrive at a contradiction.

To complete the proof of the main theorem, it remains to prove the following Lemma 5.3.

Lemma 5.3. We have Pr[E7] ≥ 1
2r · Pr[E6].

Proof. Let us analyze Pr[Abortguess]. Notice the worst case is achieved whenA outputs a forgery {(Mi,Σi)}i∈[QS+1],
where {h′j/c′j}j∈[QS] ⊂ {HM(Mi)}i∈[QS+1]. Conditioned on event Abort′guess, we are guaranteed that {HM(Mi)}i∈[QS+1]
is of size QS + 1. Therefore, since j∗ is distributed uniformly random over [r] from the view of A, we have

Pr[Abortguess] ≥
(

1− 1
r

)QS

· 1
r
≥ 1
r
− QS
r2 ≥

1
2r ,

where we use the fact r ≥ 2QS. This is without loss of generality since we can always include in QHM the
number of hash queries performed by the challenger to run the verification algorithm, which is QS + 1. Since
the only differences between Game6 and Game7 are the abort conditions, the statement follows.

5.2 Item 2: QROM Security of Πs
NIZK

We consider the same single-proof extractable NIZK Πs
NIZK for relations (Rs,Rs

gap) provided in Section 4.2.
The following is the main theorem of this section.

Theorem 5.4. The NIZK Πs
NIZK in Figs. 2 and 3 is quantumly single-proof extractable with (c1, c2, e) =

(3, 2, 6) and p(λ) = poly(λ). Moreover, it is quantumly zero-knowledge.

Since zero-knowledge against quantum adversaries follows from previous work (see the discussion in
Theorem 4.2), we only focus on proving single-proof extractability against quantum adversaries.

Unlike in the classical case, we cannot simply rewinding the cheating prover to extract the witness since it
may disrupt the quantum prover’s internal state. That is, we cannot rely on the standard argument to lower
bound the probability that the prover succeeds again after being rewound with similar advantage. We thus
rely on recent results on QROM secure NIZKs based on the Fiat-Shamir transform [LZ19, DFMS19, DFM20].

For completeness, we provide all the necessary tools to argue single-proof extractability of Πs
NIZK in Ap-

pendix B. In short, if the underlying sigma protocol implicit in Πs
NIZK (see Fig. 2) has an associated instance

generator IGen (see Definition B.1) and a (τ, ν)-compatible separable function CSF.Gen (see Definition B.5),
then Πs

NIZK with an associated IGen is single-proof extractable with parameters (c1, c2, e) = (3, 2, 6) and
p(λ) = (τ − ν)2/4 by Theorem B.4. This establishes Theorem 5.4.

Informally, IGen generates a statement-witness pair for which the adversary must provide a proof. In the
context of blind signature, IGen is supposed to output a statement X which is distributed as DX, as used in
the proof of Lemma 3.9. Concretely, for Πs

NIZK to be useful in our context, we define IGen as follows, where
recall the parameters are defined in Table 1.

53

• IGen(1λ) : On input the security parameter 1λ, it samples a1
$← {1} × Rk1−1

q ,b $← Rk3
q , R $← χk1×k2

MLWE ,
u

$← Rq, and h
$← Shash. It further samples (possibly inefficiently) a random ẽ := (ẽ1, ẽ2, ẽ3) ∈

Rk1+k2+k3 such that for all i ∈ [3], ‖ẽi‖2 ≤ BUΣ,i, and [a1 | a2 + h · g | b] ẽ> = u. It finally output a
statement-witness pair (X = (a1,a2,b, u, h),W = ẽ) such that (X,W) ∈ (Rs,Rs

gap).

It remains to show that the sigma protocol for relations (Rs,Rs
gap) with an associated instance generator

IGen has a (τ, µ)-compatible separable function. The following proof follows closely [LZ19, Section 5] which
showed that Lyubashevsky’s sigma protocol [Lyu09, Lyu12] over non-structured lattices has a compatible
separable function. We extend their results to the case of structured lattices.

Lemma 5.5. The sigma protocol for relations (Rs,Rs
gap) (implicit in Fig. 2) with an associated instance

generator IGen has a (τ(λ), ν(λ))-compatible separable function, where τ(λ) = 0.19 and ν(λ) = 1/q2 (resp.
ν(λ) = 0) when q is odd (resp. even) assuming the hardness of the MLWEd,1,k1+k2+k3,χMLWE,q, where χMLWE :=
DZ,σ and σ ·

∑
i∈[3]
√
kiBΣ,i < q/5.

Proof. The sigma protocol implicit in Fig. 2 uses α := w ∈ Rq, β := c ∈ Schal, and γ := z ∈ Rk1+k2+k3 as the
first, second, and third flow, respectively. We define the compatible separable function CSF.Gen as follows:

• CSF.Gen(1λ,X, α = w, β = c,mode = preserving): When mode is preserving, it samples (s,x) $←
χMLWE × χk1+k2+k3

MLWE and d $← Rq, and outputs the function f : Rk1+k2+k3 → {0, 1} defined as

f(z) :=
⌊
coeff1

(
(s · [a1 | a2 + h · g | b] + x) z> + d

)⌋
bq/2e ,

where coeff1 (a) outputs the first coefficient a1 of a ∈ Rq, when viewing a as a polynomial of degree d
with coefficients in {0, 1, . · · · , q−1}, and ba1cbq/2e outputs ba1/ bq/2ec ∈ {0, 1} for a1 ∈ Zq and q ≥ 2.
Here, bxe outputs the nearest largest integer, e.g., b1.5e = b2.4e = 2, and bxc outputs the nearest
integer x′ such that 0 ≤ bxc − x′ < 1, e.g., b1c = b1.9c = 1.

• CSF.Gen(1λ,X, α = w, β = c,mode = separating): When mode is separating, it samples v $← Rk+k′+kcom
q

and d $← Rq, and outputs the function f : Rk1+k2+k3 → {0, 1} defined as

f(z) :=
⌊
coeff1

(
vz> + d

)⌋
bq/2e .

Now, for any (α, β) = (w, c) ∈ Rq × Schal, the set of all valid third flow VX,α,β is defined as

VX,α,β :=
{
γ = z = (z1, z2, z3)

∣∣∣∣ [a1 | a2 + h · g | b] z> = w + c · u
∧ ∀i ∈ [3], ‖zi‖2 ≤ BΣ,i

}
⊂ Rk1+k2+k3 .

Below we prove the properties required from compatible separable functions defined in Definitions B.5
and B.6.
Preserving Mode. Fix any X ∈ LRs and (α, β) = (w, c) ∈ Rq × Schal such that |VX,α,β | ≥ 1. For a random
choice of f $← CSF.Gen(1λ,X, w, c, preserving) and for any γ = z ∈ VX,α,β , we have

f(z1, z2) =
⌊
coeff1

(
(s · [a1 | a2 + h · g | b] + x) z> + d

)⌋
bq/2e

=

coeff1

s · (w + c · u) + d︸ ︷︷ ︸
=:pub

+ xz>︸︷︷︸
=:err



bq/2e

.

By definition of a valid third flow z, pub is identical for z ∈ VX,α,β . Let ∆ = σ ·
∑
i∈[3]
√
kiBΣ,i, which is

smaller than q/5 by assumption. Since coeff1 (pub) is distributed uniformly random over Zq for a randomly
chosen f , coeff1 (pub) falls into [∆, bq/2e −∆] or [bq/2e + ∆, q −∆] with probability 1 − 4∆/q ≥ 1/5. By

54

Lemma 2.13, we have
∣∣xz>

∣∣ ≤ σ ·
∑
i∈[3]
√
kiBΣ,i for all z ∈ VX,α,β with probability at least 1 − negl(λ),

where x $← χk1+k2+k3
MLWE . Hence, we have |{f(z) | z ∈ VX,α,β}| = 1 with probability at least 1

5 − negl(λ) > 0.19.
Separating Mode. For any distinct z, z′ ∈ VX,α,β , the differences between coeff1

(
vz>

)
and coeff1

(
vz′>

)
are

uniform over Zq for v $← Rk1+k2+k3
q . Then, further considering the randomness over d $← Rq, (coeff1

(
vz> + d

)
,

coeff1
(
vz′> + d

)
) is distributed uniform over Zq × Zq. Therefore, for any distinct z, z′ ∈ VX,α,β , we have

Pr [f(z) = f(z′)] = 1− 2 · bq/2e · (q − bq/2e)
q2 =

{
1
2 if q is even

1+(1/q2)
2 if q is odd

,

where the probability is take over f $← CSF.Gen(1λ,X, α, β, separating). Therefore, when q is even, ν(λ) =
ξ(λ) = 0 and when q is odd, then ν(λ) = ξ(λ) = 1

q2 as desired.
Mode Indistinguishability. This is a direct consequence of the MLWEd,1,k1+k2+k3,χMLWE,q assumption.

5.3 Item 3: QROM Security of Πm
NIZK

We consider the same multi-proof extractable NIZK Πs
NIZK for relations (Rm,Rm

gap) provided in Section 4.3.
The following is the main theorem of this section.

Theorem 5.6. The NIZK Πm
NIZK in Figs. 4 and 5 is quantumly multi-proof extractable with (c1, c2, e) =

(1, 2, 1) and p(λ) = poly(λ). Moreover, it is quantumly zero-knowledge.

The proof is a consequence of the following Theorems 5.7 and 5.8.
Zero-Knowledge.

Theorem 5.7. The NIZK Πm
NIZK in Figs. 4 and 5 is quantumly zero-knowledge if the MLWEd,1,1,γD̄,Q

,
MLWEd,1,1,γd̄′ ,Q, MLWEd,1,1,γD̄′ ,Q

, and MLWEd,4k3+1,k4−(4k3+1),γE,Q problems are hard.

Proof. Assume there exists a QPT adversary A with advantage ε, where the zero-knowledge simulator
Sim := (Sim0,Sim1) is as defined in Fig. 7. Let us define two distributions H0 and H1 over X and Y,
respectively, such that X := Rm × {0, 1}, where Rm is the space of statement-witness pair, and Y is the
space of all possible transcripts (a1, c1, a2, c2, resp) of the implicit 5-round interactive protocol of Πm

NIZK (see
Lemma 4.5 to recall their definition). Concretely, we define H0 and H1 as follows:

• When we take H0
$← H0, for each (X,W, b) ∈ X , H0(X,W, b) is identically and independently distributed

according to the distribution D 6⊥trans(crsm
NIZK,X,W) defined in the statement of Lemma 4.5.

• When we take H1
$← H1, for each (X,W, b) ∈ X , H1(X,W, b) is identically and independently distributed

according to the distribution Dsim(crsm
NIZK,X) defined as sampling (c1, c2) $← Zτq′ × (Cτ ·τ ′X × Cham) and

(a1, a2, resp) $← Simint(crsm
NIZK,X, c1, c2), and outputting (a1, c1, a2, c2, resp).

We now consider a QPT adversary B with oracle access to either H0 or H1 that simulates the view to A.
Notice that B can plug in H0 and H1 in place of the GetTrans algorithm in Fig. 7, where observe that the
description of Sim0 can be rewritten using GetTrans rather than Simint. If B is provided H0, then it perfectly
simulates (Hm,Prove) to A.16 On the other hand, If B is provided H1, then it perfectly simulates (Sim0,S)
to A. B outputs whatever A output.

Then, B makes at most QH-P queries and satisfies∣∣∣Pr[B|H0〉(1λ)→ 1]− Pr[B|H1〉(1λ)→ 1]
∣∣∣ ≥ ε,

16To be precise, we require H0 to output ⊥ with negligible probability to be consistent with the real-world prover that may
abort with negligible probability. However, we omit this for simplicity as it makes negligible difference.

55

where QH-P is the total number of queries A makes to Hm and Prove. Then, by Lemma 2.26, we can
construct a QPT algorithm B′ that distinguishes D 6⊥trans from Dsim with probability at least ε2/(C · QH-P)
for some universal constant C > 0. However, by Lemma 4.5, we must have ε2/(C · QH-P) = negl(λ), which
establishes ε = negl(λ) as desired.

Multi-Proof Extractability.

Theorem 5.8. The NIZK Πm
NIZK in Figs. 4 and 5 is quantumly multi-proof extractable with (c1, e1, e2) =

(1, 2, 1) and p(λ) = poly(λ) if the MLWEd,1,1,γD̄,Q
, MLWEd,1,1,γd̄′ ,Q, MLWEd,1,1,γD̄′ ,Q

, and MLWEd,4k3+1,k4−(4k3+1),γE,Q

problems are hard.

Proof. Due to the way we organized the proof of Theorem 4.6 in the classical ROM, we are able to reuse
most parts of the proof. To start, the proof of CRS indistinguishability is identical to those provided in
Theorem 4.6.

Regarding the proof of straight-line extractability, the only part that requires a tailored argument for
QROM security is in the proof of Lemma 4.7, which established that if a classical PPT adversary A outputs
a valid proof, then there must have been multiple challenges for which it could have succeeded on. For a
quantum polynomial time adversary A, we must take into account that it can make quantum random oracle
queries to the hash function. Otherwise, the proof of Lemma 4.10 and the rest of the proof of straight-line
extractability remains intact since they are purely statistical arguments which hold regardless of being in
the classical or quantum ROM.

Our goal is to thus to modify the proof of Lemma 4.7 to the following Lemma 5.9 so that the claim holds
even against QPT adversaries. We note that since the lower bound on Γ2 is altered, the runtime of our
straight-line extractor Multi-Extract will be proportional to O(QS·Q2

H
µ) rather than O(QH

µ) as in the classical
setting.

Lemma 5.9. Let us define the transcript (a1, c1, a2, c2, resp) and sets (Γ1,i)i∈[τ] and Γ2 as in Lemma 4.7.
Then, for any QH = poly(λ) and QPT adversary A that makes at most QH (quantum) random oracle queries
with

Pr
[

(c̃rsm
NIZK, τ) $← Scrs(1λ),

{(Xk, πm
k)}k∈[QS]

$← A|Hm〉(1λ, c̃rsm
NIZK),

: ∀k ∈ [QS],VerifyHm(c̃rs,Xk, πm
k) = >

]
≥ µ(λ),

we have,

Pr

 (c̃rsm
NIZK, τ) $← Scrs(1λ),

{(Xk, πm
k)}k∈[QS]

$← A|Hm〉(1λ, c̃rsm
NIZK),

:
∀k ∈ [QS],VerifyHm (c̃rsm

NIZK,Xk, πm
k) = >

∧ ∃i ∈ [τ], |Γ1,i(Xk, a1,k, c1,k, a2,k, c2,k)| ≥ 3
∧ |Γ2(Xk, a1,k, c1,k, a2,k, c2,k)| ≥ µ

16·QS·(QH+1)2 · |Cham|

 ≥ 1
2 · µ(λ)− negl(λ).

Proof. The only difference between the proof in the classical and quantum setting is how we upper bound
Corollaries 4.8 and 4.9 in Lemma 4.7. For notational simplicity, we denote Γ(k)

1,i := Γ1,i(Xk, a1,k, c1,k, a2,k, c2,k)
and Γ(k)

2 := Γ2(Xk, a1,k, c1,k, a2,k, c2,k) for each (k, i) ∈ [QS] × [τ]. Let T2 be a positive integer, which we
define shortly after. We denote by ValidProofs the event that VerifyHm(c̃rsm

NIZK,Xk, πm
k) = > for all k ∈ [QS],

and when the context is clear, we omit the sampling probability space. Then, we can rewrite A’s advantage
as follows:

µ ≤ Pr[ValidProofs]

= Pr
[
ValidProofs ∧

(
∀k ∈ [QS],

(
∃i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ ≥ 3
)
∧
(∣∣∣Γ(k)

2

∣∣∣ ≥ T2

))]
+ Pr

[
ValidProofs ∧

(
∃k ∈ [QS],

(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)
∨
(∣∣∣Γ(k)

2

∣∣∣ < T2

))]
≤ Pr

[
ValidProofs ∧

(
∀k ∈ [QS],

(
∃i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ ≥ 3
)
∧
(∣∣∣Γ(k)

2

∣∣∣ ≥ T2

))]
56

+
∑
k∈[QS]

Pr
[
ValidProofs ∧ ∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
]

(17)

+
∑
k∈[QS]

Pr
[
ValidProofs ∧

∣∣∣Γ(k)
2

∣∣∣ < T2

]
(18)

≤ Pr
[
ValidProofs ∧

(
∀k ∈ [QS],

(
∃i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ ≥ 3
)
∧
(∣∣∣Γ(k)

2

∣∣∣ ≥ T2

))]
+ 64 · QS · (QH + 1)4 ·

(
2
q′

+ 1
(2d)τ ′

)τ
+ 8 · QS · (QH + 1)2 · T2

|Cham|
,

where the second inequality follows from the union bound, and the third inequality is due to Corollaries 5.10
and 5.11 that establish upper bounds on Eqs. (17) and (18), respectively. We first finish the proof of
Lemma 5.9.

By plugging in T2 := µ
16·QS·(QH+1)2 · |Cham| in the above inequality, we obtain the following

Pr
[

ValidProofs ∧
(
∀k ∈ [QS],

(
∃i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ ≥ 3
)
∧
(∣∣∣Γ(k)

2

∣∣∣ ≥ T2

))]
≥ µ

2 − 64 · QS · (QH + 1)4 ·
(

2
q′

+ 1
(2d)τ ′

)τ
.

Due to our parameter setting (i.e., q′

2 ≈ (2d)τ ′ and 1/(2d)τ ·τ ′ = negl(λ)), for any QS = poly(λ) and
QH = poly(λ), the term being subtracted from µ

2 is negligible. Thus we obtain the desired bound.
It remains to prove the following Corollaries 5.10 and 5.11.

Corollary 5.10. We have
∑
k∈[QS] Pr

[
ValidProofs ∧ ∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
]
≤ 64 ·QS ·(QH +1)4 ·

(
2
q′ + 1

(2d)τ′
)τ

.

Proof. We further modify the equation as follows,∑
k∈[QS]

Pr
[
ValidProofs ∧

(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)]

=
∑
k∈[QS]

∑
Jk∈[0:τ]

∑
S⊆[τ]

s.t. |S|=Jk

Pr
[

ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
) ∧ (∀i ∈ S, c1,k,i ∈ Γ(k)

1,i
∀i ∈ [τ]\S, c1,k,i /∈ Γ(k)

1,i

)]

≤
∑
k∈[QS]

∑
Jk∈[0:τ]

∑
S⊆[τ]

s.t. |S|=Jk

Pr
[(∀i ∈ S, c1,k,i ∈ Γ(k)

1,i
∀i ∈ [τ]\S, c1,k,i /∈ Γ(k)

1,i

)∣∣∣∣∣ ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)]

≤
∑
k∈[QS]

∑
Jk∈[0:τ]

∑
S⊆[τ]

s.t. |S|=Jk

Pr
[(
∀i ∈ S, c1,k,i ∈ Γ(k)

1,i

)∣∣∣∣∣ ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)]

· Pr
[(
∀i ∈ [τ]\S, c1,k,i /∈ Γ(k)

1,i

)∣∣∣∣∣ ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)] (19)

where c1,k,i is the i-th element in the k-th second-flow challenge c1,k included in πm
k output by adversary

A. The first inequality follows from taking the conditional probability and the second inequality follows
from the fact that the output of the random oracle is uniform and thus the distributions of each (c1,k,i)i∈[τ]
are independent (even though A can freely chose which (c1,k,i)i∈[τ] to output). In other words, for each
k ∈ [QS] and c1,k = (c1,k,i)i∈[τ], c1,k,i is either in Γ(k)

1,i of size at most 2 or not, and Jk counts the number of
c1,k,i ∈ Γ(k)

1,i in ci,k.
We use Lemma 2.27 to bound Eq. (19). That is, given a (possibly unbounded) quantum adversary A, we

construct quantum adversaries B1 and B2 against the generic search problem with bounded probabilities.

57

Constructing B1. Let us fix (k, Jk, S) in the summand. We first bound the probability that c1,k,i ∈ Γ(k)
1,i for

all i ∈ S. We assume the domain D of the function G, which B1 will be given oracle access to, to be the
same as that of Hm. B1 then prepares the set of reals (λz)z∈D as follows: if z = (X, 1, a1), then define

λz :=
∏
i∈S
∣∣Γk1,i∣∣

ZJkq′
≤
(

2
q′

)Jk
,

otherwise, λz := 0, where we use the fact
∣∣Γk1,i∣∣ ≤ 2 for all i ∈ S. It then outputs (λz)z∈D to the challenger.

By setting λ :=
(2
q′

)Jk , it is clear that this is a valid input for the generic search problem. Define the sets
I := ⊗i∈[τ]Zq′ and Ibad := (⊗i∈SΓ(k)

i,1)⊗ (⊗i∈[τ]\SZq′), where we assume the latter is properly reordered with
respect to i ∈ [τ]. B1 then samples random functions RF1, RF2, and RF3 with domain D and range the same
as Hm conditioned on RF1(z) ∈ I\Ibad and RF2(z) ∈ Ibad for all inputs z of the form (X, 1, a1). Finally, B1
simulates A by using its oracle G. Specifically, to simulate an oracle query to Hm(z), if z is not of the form
(X, 1, a1), then it returns RF3(z). Otherwise, it returns RF1(z) if 0← G(z) and returns RF2(z) if 1← G(z).
Here, note that B1 can perform this computation on superpositions

∑
z αz |z〉, where αz is the amplitude.

When A outputs a proof πm
k , B1 extracts (Xk, ak) and then outputs z = (Xk, 1, ak).

Let us analyze B1. First of all, it can be checked that B1 simulates the view to A perfectly since the
output distribution of Hm is perfectly simulated using G. Moreover, if A succeeds in outputting a valid proof
πm
k such that (ci, k, i) ∈ Γ(k)

1,i for all i ∈ S, then the z that B1 extracts must satisfy Hm(z) = RF2(z) ∈ Ibad.
Therefore, by definition G(z) = 1, and in particular, the success probability of B1 is the same as A. Then,
assuming the hardness of the generic search problem with bounded probabilities, we must have

Pr
[(
∀i ∈ S, c1,k,i ∈ Γ(k)

1,i

)∣∣∣∣∣ ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)] ≤ 8 · (QH + 1)2 · λ = 8 · (QH + 1)2 ·

(
2
q′

)Jk
.

Constructing B2. We next bound the probability that c1,k,i /∈ Γ(k)
1,i for all i ∈ [τ]\S. By definition of Γ(k)

1,i ,
if c1,k,i /∈ Γ(k)

1,i , then there is only one set of βi := (βk,i,j)j∈[τ ′] ∈ Cτ
′

X that can be included in a valid
transcript containing c1,k,i. That is, if trans := (a1, c1 = (ci)i∈[τ], a2, c2 = (β, β′), resp) is a valid transcript,
then βi is guaranteed to be included in β. Let (βi)i∈[τ]\S ⊆ C

(τ−Jk)·τ ′
X denote those unique challenges

corresponding to {c1,k,i}i∈[τ]\S . We are now ready to describe B2 against the generic search problem with
bounded probabilities. Let us fix (k, Jk, S). We assume the domain D of the function G, which B2 will
be given oracle access to, to be the same as that of Hm. B2 then prepares the set of reals (λ′z)z∈D as
follows: if z = (X, 1, a1, c1, a2) and c1,k,i /∈ Γ(k)

1,i for all i ∈ [τ]\S, then define λ′z :=
(1

(2d)τ′
)τ−Jk , and

otherwise, λ′z := 0, where recall |CX | = 2d. It then outputs (λ′z)z∈D to the challenger. Define the sets
I ′ :=

(
⊗i∈[τ]

(
⊗j∈[τ ′]CX

))
and I ′bad :=

(
⊗i∈S

(
⊗j∈[τ ′]CX

))
⊗
(
⊗i∈[τ]\S{βi}

)
, where we assume the latter

is properly reordered with respect to i ∈ [τ]. B2 then samples random functions RF1, RF2, and RF3 with
domain D and range the same as Hm conditioned on RF1(z) ∈ I ′\I ′bad and RF2(z) ∈ I ′bad for all inputs z of the
form (X, 1, a1, c1, a2) such that c1,k,i /∈ Γ(k)

1,i for all i ∈ [τ]\S. Finally, B2 simulates A by using its oracle G.
Specifically, to simulate an oracle query to H(z), if z is not of the form (X, 1, a1, c1, a2) and c1,k,i /∈ Γ(k)

1,i for all
i ∈ [τ]\S, then it returns RF3(z). Otherwise, it returns RF1(z) if 0← G(z) and returns RF2(z) if 1← G(z).
Here, note that B2 can perform this computation on superpositions

∑
z αz |z〉, where αz is the amplitude.

When A outputs a proof πm
k , B1 extracts (Xk, ak, c1,k, a2) and then outputs z = (Xk, 1, ak, c1,k, a2).

Let us analyze B2. First of all, it can be checked that B2 simulates the view to A perfectly since the
output distribution of Hm is perfectly simulated using G. Moreover, if A succeeds in outputting a valid proof
πm
k such that (ci, k, i) /∈ Γ(k)

1,i for all i ∈ [τ]\S, then the z that B1 extracts must satisfy Hm(z) = RF2(z) ∈ I ′bad.
Therefore, by definition G(z) = 1, and in particular, the success probability of B2 is the same as A. Then,
assuming the hardness of the generic search problem with bounded probabilities, we must have

Pr
[(
∀i ∈ [τ]\S, c1,k,i /∈ Γ(k)

1,i

)∣∣∣∣∣ ValidProofs
∧
(
∀i ∈ [τ],

∣∣∣Γ(k)
1,i

∣∣∣ < 3
)] ≤ 8 · (QH + 1)2 · λ′ = 8 · (QH + 1)2 ·

(
1

(2d)τ ′
)τ−Jk

.

58

Combining the two arguments, we upper bound Eq. (19) as follow:

∑
k∈[QS]

∑
Jk∈[0:τ]

∑
S⊆[τ]

s.t. |S|=Jk

64 · (QH + 1)4 ·
(

2
q′

)Jk
·
(

1
(2d)τ ′

)τ−Jk

=
∑
k∈[QS]

64 · (QH + 1)4

 ∑
Jk∈[0:τ]

(
τ

Jk

)(
2
q′

)Jk
·
(

1
(2d)τ ′

)τ−Jk
=
∑
k∈[QS]

64 · (QH + 1)4 ·
(

2
q′

+ 1
(2d)τ ′

)τ
≤64 · QS · (QH + 1)4 ·

(
2
q′

+ 1
(2d)τ ′

)τ
,

where the second equality follows from the binomial expansion. This completes the proof.

Corollary 5.11. We have
∑
k∈[QS] Pr

[
ValidProofs ∧

∣∣∣Γ(k)
2

∣∣∣ < T2

]
≤ 8 · QS · (QH + 1)2 · T2

|Cham| .

Proof. Similarly to the proof of Corollary 5.10, we can use the generic search problem with bounded proba-
bilities to clam the following:∑

k∈[QS]

Pr
[
ValidProofs ∧

∣∣∣Γ(k)
2

∣∣∣ < T2

]
≤
∑
k∈[QS]

8 · (QH + 1)2 · T2

|Cham|
= 8 · QS · (QH + 1)2 · T2

|Cham|
.

Acknowledgements. Shuichi Katsumata was partially supported by JSPS KAKENHI Grant Number
22K17892, Japan and JST AIP Acceleration Research JPMJCR22U5, Japan.

References
[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model.

In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer,
Heidelberg, May / June 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension
and shorter-ciphertext hierarchical IBE. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 98–115. Springer, Heidelberg, August 2010.

[Abe01] Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures. In
Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 136–151. Springer,
Heidelberg, May 2001.

[AEB20a] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. BLAZE: Practical
lattice-based blind signatures for privacy-preserving applications. In Joseph Bonneau and Na-
dia Heninger, editors, FC 2020, volume 12059 of LNCS, pages 484–502. Springer, Heidelberg,
February 2020.

59

[AEB20b] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. On lattice-based
interactive protocols: An approach with less or no aborts. In Joseph K. Liu and Hui Cui, editors,
ACISP 20, volume 12248 of LNCS, pages 41–61. Springer, Heidelberg, November / December
2020.

[AHJ21] Nabil Alkeilani Alkadri, Patrick Harasser, and Christian Janson. Blindor: An efficient lattice-
based blind signature scheme from or-proofs. In CANS, pages 95–115. Springer, 2021.

[AKSY21a] Shweta Agrawal, Elena Kirshanova, Damien Stehle, and Anshu Yadav. Can round-optimal
lattice-based blind signatures be practical? Cryptology ePrint Archive, 2021.

[AKSY21b] Shweta Agrawal, Elena Kirshanova, Damien Stehle, and Anshu Yadav. Practical, round-optimal
lattice-based blind signatures. Cryptology ePrint Archive, Paper 2021/1565, 2021. https:
//eprint.iacr.org/2021/1565.

[ALS20] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical product proofs for lattice
commitments. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 470–499. Springer, Heidelberg, August 2020.

[AO00] Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, Heidelberg,
August 2000.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof
systems: The hardness of quantum rewinding. In 55th FOCS, pages 474–483. IEEE Computer
Society Press, October 2014.

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and Gregory
Neven. Better zero-knowledge proofs for lattice encryption and their application to group sig-
natures. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of
LNCS, pages 551–572. Springer, Heidelberg, December 2014.

[BDK+21] Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico Pintore. Group
signatures and more from isogenies and lattices: Generic, simple, and efficient. To Appear at
EUROCRYPT, 2021.

[BDL+18] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris Peikert. More
efficient commitments from structured lattice assumptions. In Dario Catalano and Roberto De
Prisco, editors, SCN 18, volume 11035 of LNCS, pages 368–385. Springer, Heidelberg, September
2018.

[BFW15] David Bernhard, Marc Fischlin, and Bogdan Warinschi. Adaptive proofs of knowledge in the
random oracle model. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages
629–649. Springer, Heidelberg, March / April 2015.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based
on learning with errors. In Josh Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages
28–47. Springer, Heidelberg, February 2014.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. On the security of one-witness blind signature
schemes. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270
of LNCS, pages 82–99. Springer, Heidelberg, December 2013.

60

https://eprint.iacr.org/2021/1565
https://eprint.iacr.org/2021/1565

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On
the (in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg, October 2021.

[BLS19] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er)
exact lattice-based zero-knowledge proofs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 176–202. Springer, Heidelberg,
August 2019.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short
signatures and more. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume
6056 of LNCS, pages 499–517. Springer, Heidelberg, May 2010.

[Bra94] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer, Heidelberg,
August 1994.

[Cam97] Jan Camenisch. Efficient and generalized group signatures. In Walter Fumy, editor, EURO-
CRYPT’97, volume 1233 of LNCS, pages 465–479. Springer, Heidelberg, May 1997.

[CFN90] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser,
editor, CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer, Heidelberg, August 1990.

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA,
1982.

[Cha88] David Chaum. Elections with unconditionally-secret ballots and disruption equivalent to break-
ing RSA. In C. G. Günther, editor, EUROCRYPT’88, volume 330 of LNCS, pages 177–182.
Springer, Heidelberg, May 1988.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
523–552. Springer, Heidelberg, May / June 2010.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a
lattice basis. Journal of Cryptology, 25(4):601–639, October 2012.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May 2001.

[CPS+20] Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre Wallet, and Keita Xa-
gawa. ModFalcon: Compact signatures based on module-NTRU lattices. In Hung-Min Sun,
Shiuh-Pyng Shieh, Guofei Gu, and Giuseppe Ateniese, editors, ASIACCS 20, pages 853–866.
ACM Press, October 2020.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique 2.0:
Multi-round fiat-shamir and more. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 602–631. Springer, Heidelberg, August
2020.

61

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-Shamir
transformation in the quantum random-oracle model. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 356–383. Springer,
Heidelberg, August 2019.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR
TCHES, 2018(1):238–268, 2018. https://tches.iacr.org/index.php/TCHES/article/view/
839.

[dLS18] Rafaël del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-based group signatures and
zero-knowledge proofs of automorphism stability. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 574–591. ACM Press, October
2018.

[ENS20] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact proofs from
lattices: New techniques to exploit fully-splitting rings. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 259–288. Springer, Heidel-
berg, December 2020.

[ESLR22] Muhammed F. Esgin, Ron Steinfeld, Dongxi Liu, and Sushmita Ruj. Efficient hybrid ex-
act/relaxed lattice proofs and applications to rounding and vrfs. Cryptology ePrint Archive,
2022.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind sig-
natures in the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 233–253. Springer, Heidelberg, August
2015.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer,
Heidelberg, August 2006.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large
scale elections. In AUSCRYPT, pages 244–251. Springer, 1992.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 63–95. Springer, Heidelberg, May
2020.

[FS10] Marc Fischlin and Dominique Schröder. On the impossibility of three-move blind signature
schemes. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 197–215.
Springer, Heidelberg, May / June 2010.

[Goo22] Vpn by google one, explained. https://one.google.com/about/vpn/howitworks, 2022. Ac-
cessed: 2022-02-02.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008.

[GRS+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh. Round
optimal blind signatures. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 630–648. Springer, Heidelberg, August 2011.

62

https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://one.google.com/about/vpn/howitworks

[HKLN20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signatures,
revisited. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 500–529. Springer, Heidelberg, August 2020.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public key cryp-
tosystem. In International Algorithmic Number Theory Symposium, pages 267–288. Springer,
1998.

[Kat21] Shuichi Katsumata. A new simple technique to bootstrap various lattice zero-knowledge proofs
to QROM secure NIZKs. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II,
volume 12826 of LNCS, pages 580–610, Virtual Event, August 2021. Springer, Heidelberg.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 552–586. Springer, Heidel-
berg, April / May 2018.

[KLX20] Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature schemes in the
algebraic group model. To Appear at PKC, 2020.

[KNYY21] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Round-optimal
blind signatures in the plain model from classical and quantum standard assumptions. In Anne
Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of
LNCS, pages 404–434. Springer, Heidelberg, October 2021.

[Lin08] Yehuda Lindell. Lower bounds and impossibility results for concurrent self composition. Journal
of Cryptology, 21(2):200–249, April 2008.

[LNP22a] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon. Efficient lattice-based blind
signatures via gaussian one-time signatures. To Appear at PKC, 2022.

[LNP22b] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon. Lattice-based zero-knowledge
proofs and applications: Shorter, simpler, and more general. To Appear at Crypto, 2022.

[LNS20] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical lattice-based zero-
knowledge proofs for integer relations. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1051–1070. ACM Press, November 2020.

[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter lattice-based zero-
knowledge proofs via one-time commitments. In Juan Garay, editor, PKC 2021, Part I, volume
12710 of LNCS, pages 215–241. Springer, Heidelberg, May 2021.

[LSK+19] Huy Quoc Le, Willy Susilo, Thanh Xuan Khuc, Minh Kim Bui, and Dung Hoang Duong. A
blind signature from module latices. In Dependable and Secure Computing (DSC), pages 1–8.
IEEE, 2019.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann
Pitassi, editors, 44th ACM STOC, pages 1219–1234. ACM Press, May 2012.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–
616. Springer, Heidelberg, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Hei-
delberg, April 2012.

63

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 326–355.
Springer, Heidelberg, August 2019.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 700–718. Springer, Heidelberg, April 2012.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press, October 2004.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[OO92] Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 324–337. Springer, Heidelberg, August 1992.

[Pas11] Rafael Pass. Limits of provable security from standard assumptions. In Lance Fortnow and
Salil P. Vadhan, editors, 43rd ACM STOC, pages 109–118. ACM Press, June 2011.

[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 80–97. Springer, Heidelberg, August 2010.

[PFH+18] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon:
Fast-fourier lattice-based compact signatures over ntru. Technical report, 2018. Available at
https://falcon-sign.info/.

[PHBS19] D. Papachristoudis, D. Hristu-Varsakelis, F. Baldimtsi, and G. Stephanides. Leakage-resilient
lattice-based partially blind signatures. Cryptology ePrint Archive, Report 2019/1452, 2019.
https://eprint.iacr.org/2019/1452.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology, 13(3):361–396, June 2000.

[Rüc10] Markus Rückert. Lattice-based blind signatures. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 413–430. Springer, Heidelberg, December 2010.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

[Sch01] Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In
Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS,
pages 1–12. Springer, Heidelberg, November 2001.

[SG98] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext
attack. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 1–16. Springer,
Heidelberg, May / June 1998.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation
mechanism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rij-
men, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 520–551. Springer,
Heidelberg, April / May 2018.

[TZ22] Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with exponential security.
In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276
of LNCS, pages 782–811. Springer, Heidelberg, May / June 2022.

64

https://falcon-sign.info/
https://eprint.iacr.org/2019/1452

[YL19] Xun Yi and Kwok-Yan Lam. A new blind ECDSA scheme for bitcoin transaction anonymity.
In Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin Kirda, and
Zhenkai Liang, editors, ASIACCS 19, pages 613–620. ACM Press, July 2019.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages 679–687.
IEEE Computer Society Press, October 2012.

[Zha15] Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Informa-
tion & Computation, 15(7-8):557–567, 2015.

A Omitted Preliminaries
A.1 Proof Sketch of Modified Trapdoor Sampling
Let us rewrite a ∈ Rk′q as [a1|a2], where a1 ∈ Rk1

q and a2 ∈ Rk2
q . Let I ∈ Rk′×k′q denote the identity matrix.

Then observe we have

[a|aR∗ + t · g]

−c ·R−R′
c · I

 =
[
a1

∣∣∣∣a2

∣∣∣∣[a1|a2]
[

R
1
c ·R

′

]
+ t · g

]−cR−R′
c · I

 = c · t · g.

This has the desired form required to run the almost identical sampling algorithm provided in [MP12,
Section 5.4]. At a high level, given any u ∈ Rq, we can sample a short vector z ∈ Rk

′ such that gz> =
(c · t)−1 · u by using the public trapdoor Tg of g, where recall c and t are invertible over Rq. Then,

e′ =

−c ·R−R′
c · I

 z> is short and satisfies [a|aR∗+ t ·g]e′> = u. However, since e′ does not yet have a spherical

Gaussian distribution, we cannot output this. [MP12] shows how to correct this idea by using the convolution
technique from [Pei10]. It can be checked that all the arguments made in [MP12] holds for our case, where
the only difference is that our Gaussian parameter increases by a factor of c.

A.2 Forking Lemma
The forking lemma was originally introduced by Pointcheval and Stern [PS00] in the context of signature
schemes. The lemma was later reformulated by Bellare and Neven [BN06] which extracts the purely proba-
bilistic nature of the forking lemma.

Lemma A.1 (Forking Lemma). Fix an integer q ≥ 1 and a set H of size h ≥ 2. Let A be a randomized
algorithm, where on input par, h1, · · · , hq, algorithm A returns a pair; the first element is an integer in the
range (0, · · · , q) and the second element σ is what we refer to as a side output. Let IG be a randomized
algorithm called the input generator. The accepting probability of A, denoted acc, is defined below:

acc = Pr[par $← IG, (h1, · · · , hq) $← Hq, (J, σ) $← A(par, h1, · · · , hq) : J ≥ 1].

The forking algorithm ForkA associated to A is a randomized algorithm that takes input par and proceeds as
in Fig. 10, where ε1 and ε2 are arbitrary strings. Let

frk = Pr[par $← IG; (b, (σ1, σ2)) $← ForkA(par) : b = 1].

Then,

frk ≥ acc ·
(

acc
q
− 1
h

)
. (20)

65

Algorithm ForkA(par)
Pick coin ρ for A at random.
(h1, · · · , hq) $← Hq
(I, σ) := A(par, h1, · · · , hq; ρ)
If I = 0 then
return (0, (⊥,⊥))

(h′I , · · · , h′q)
$← Hq−I+1

(I ′, σ′) := A(par, h1, · · · , hI−1, h
′
I , · · ·h′q; ρ)

If I = I ′ ∧ hI 6= h′I then
return (1, (σ1, σ2))

Else
return (0, (⊥,⊥))

Figure 10: Description of the forking algorithm ForkA.

A.3 Partially Blind Signature
We provide the definition of partially blind signatures [AO00]. For simplicity, we give a definition focusing
on round-optimal (i.e., two-round) partially blind signatures.

Definition A.2 (Partially Blind Signature). A round-optimal partially blind signature scheme ΠBS with
message spaceM and common message spaceMc consists of PPT algorithms (BSGen,U1,S2,Uder,BSVerify)
defined as follows:

BSGen(1λ)→ (vk, sk): The key generation algorithm takes as input the security parameter 1λ and outputs a
verification key vk and a signing key sk.

U1(vk, γ,M)→ (ρ1, stU): This is the user’s first message generation algorithm that takes as input a verifica-
tion key vk, a common message γ ∈Mc, and a message M ∈M and outputs a first message ρ1 and a
state stU .

S2(sk, γ, ρ1)→ ρ2: This is the signer’s second message generation algorithm that takes as input a signing
key sk, a common message γ ∈Mc, and a first message ρ1 as input and outputs a second message ρ2.

Uder(stU , ρ2)→ Σ: This is the user’s signature derivation algorithm that takes as input a state stU and a
second message ρ2 as input and outputs a signature Σ.

BSVerify(vk, γ,M,Σ)→ > or ⊥: This is a deterministic verification algorithm that takes as input a verifi-
cation key vk, a common message γ ∈ Mc, a message M ∈ M, and a signature Σ, and outputs > to
indicate acceptance or ⊥ to indicate rejection.

Definition A.3 (Correctness). A partially blind signature is correct if for any λ ∈ N, γ ∈ Mc, and
M ∈M, we have

Pr


(vk, sk) $← BSGen(1λ)
(ρ1, stU) $← U1(vk, γ,M)
ρ2

$← S2(sk, γ, ρ1)
Σ $← Uder(stU , ρ2)

: BSVerify(vk, γ,M,Σ) = >

 = 1− negl(λ).

Definition A.4 (One-More Unforgeability). A partially blind signature is one-more unforgeable if for
any Q = poly(λ) and QPT adversary A that for each common message γ, it makes at most Q (classical)
queries containing the same γ to the singer oracle, we have

AdvOMU
ΠBS

(A) := Pr
[

(vk, sk) $← BSGen(1λ)
(γ, {(Mi,Σi)}i∈[Q+1]) $← AS2(sk,·,·)(vk)

66

: BSVerify(vk, γ,Mi,Σi) = > for all i ∈ [Q + 1]
∧ {Mi}i∈[Q+1] is pairwise distinct

]
= negl(λ)

where we say that {Mi}i∈[Q+1] is pairwise distinct if we have Mi 6= Mj for all i 6= j.

Definition A.5 (Partial Blindness Under Malicious Keys). To define partial blindness, we consider
the following game between an adversary A and a challenger.

Setup. A is given as input the security parameter 1λ, and sends a verification key vk, a common message
γ, and a pair of messages (M0,M1) to the challenger.

First Message. The challenger generates (ρ1,b, stU,b) $← U1(vk, γ,Mb) for each b ∈ {0, 1}, picks coin $←
{0, 1}, and gives (ρ1,coin, ρ1,1−coin) to A.

Second Message. The adversary sends (ρ2,coin, ρ2,1−coin) to the challenger.

Signature Derivation. The challenger generates Σb $← Uder(stU,b, ρ2,b) for each b ∈ {0, 1}. If BSVerify(vk, γ,
Mb,Σb) = ⊥ for either b = 0 or 1, then the challenger gives (⊥,⊥) to A. Otherwise, it gives (Σ0,Σ1)
to A.

Guess. A outputs its guess coin′.

We say that A wins if coin = coin′. We say that a partially blind signature is partially blind against malicious
senders if for any QPT adversary A, we have

Advblind
ΠBS

(A) :=
∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ = negl(λ).

B Tools to Argue Single-Proof Extractability of NIZKs in the QROM
In this section, we provide known techniques to argue single-proof extractability of NIZKs in the QROM.
Unlike the classical case, we cannot simply rewind the cheating prover to extract the witness since it may
disrupt the quantum prover’s internal state. Specifically, we cannot rely on the standard argument to lower
bound the probability that the prover also succeeds after being rewound with non-negligible advantage. The
contents of this section are prior results but we decided to create a new section rather than including it in
Appendix A for better readability.

B.1 Sigma Protocol
We recall the definition of sigma protocol. In the following, we consider the statement X to be generated by
some instance generator IGen. We note that a sigma protocol defined with respect to an instance generator
IGen can be thought of as an identification protocol (with slightly different security definitions).

Definition B.1 (Sigma-Protocol). A sigma-protocol ΠΣ for relations (R, Rgap) is defined by a tuple of
algorithms (Prove = (Prove1,Prove2),Verify), where Verify is a deterministic polynomial time algorithm. We
assume the relation R defines the set of all commitments ComSet, challenges ChSet, and responses ResSet.
A sigma-protocol proceeds as follows:

1. The prover, on input (X,W) ∈ R, runs (α, st) $← Prove1(X,W) and returns α ∈ ComSet to the verifier;

2. The verifier then samples a challenge β $← ChSet and returns it to the prover;

3. The prover sends a response γ $← Prove2(X,W, (α, β, st)) to the verifier, where γ ∈ ResSet ∪ {⊥} and
⊥ 6∈ ResSet is a special symbol indicating failure. Finally, the verifier runs Verify(X, (α, β, γ)) and
outputs > for acceptance and ⊥ for rejection.

67

The transcript (α, β, γ) is called a valid transcript if Verify(X, (α, β, γ)) = >. Finally, we define an instance
generator IGen such that on input the security parameter 1λ, it outputs a pair (X,W) ∈ R.

We typically require a sigma-protocol to satisfy correctness, (non-abort) honest-verifier zero-knowledge,
and special soundness. Below we only define special soundness since the implicit sigma protocols appearing
in our NIZK constructions are indirectly proven to satisfy correctness and (non-abort) honest-verifier zero-
knowledge.

Definition B.2 (Relaxed Two-Special Soundness). A sigma-protocol ΠΣ has relaxed two-special sound-
ness if there is a deterministic PT algorithm Extractss such that given any two valid transcripts (α, {(βi, γi)}i∈[2])
for any statement X ∈ LR with β1 6= β2, it outputs a witness W such that (X,W) ∈ Rgap.

We can use the Fiat-Shamir transform to make a sigma protocol non-interactive. Formally, the prover
generates the challenge β by H(X, α) and finishes the sigma protocol on its own. Classically, we know that
if the if the underlying sigma protocol is (relaxed) two-special sound, then the resulting NIZK is single-proof
extractable [PS00, BN06]. Unfortunately, it is known that in general, this does not hold true in the quantum
setting [ARU14]. We define a stronger property for sigma protocol below.

Definition B.3 (Quantum Proof of Knowledge). A sigma-protocol ΠΣ has a quantum proof of knowl-
edge with respect to an instance generator IGen, if there exists a QPT extractor ExtractΣ, constants c1, c2,
and polynomial p(λ) such that for any QPT adversary A (that may output a quantum state st) with

Pr


(X,W) $← IGen(1λ)

(α, st) $← A(X)
β

$← ChSet
γ

$← A(X, α, β, st)

: Verify(X, (α, β, γ)) = >

 ≥ µ(λ),

we have

Pr
[

(X,W) $← IGen(1λ)
W′ $← ExtractAΣ (X)

: (X,W′) ∈ Rgap

]
≥ 1
p(λ) · µ(λ)c1 − negl(λ),

where the runtime of ExtractΣ is upper bounded by c2 ·Time(A) and we assume one oracle access to A takes
Time(A).

It was shown in [LZ19, DFMS19] (which was further refined in [DFM20]) that if a sigma protocol is
a quantum proof of knowledge, then the Fiat-Shamir transform provides an NIZK that is single-proof ex-
tractable even against quantum cheating provers.

Theorem B.4 (Sigma Protocol with QPoK to NIZK with Single-Proof Extractability). Let us
define a slight variant of the single-proof extractability provided in Definition 2.9, where the statement is
not quantified for all X ∈ LR but rather a random X sampled by the instance generator IGen. Then, if a
sigma-protocol ΠΣ for relations (R,Rgap) with an associated instance generator IGen is a quantum proof of
knowledge with parameters (c1, c2) and p(λ), then the NIZK proof system ΠNIZK obtained by performing the
Fiat-Shamir transform on ΠΣ is single-proof extractable in the QROM with parameters (c1, c2, 2 · c1) and
p(λ).

B.2 Compatible Separable Function
In general, it is not an easy task to check whether a sigma protocol is a quantum proof of knowledge. Liu
and Zhandry [LZ19] provided a tool called compatible separable function that allows to prove certain type
of sigma protocols to be quantum proofs of knowledge in a “classical” fashion.

68

Definition B.5 (Compatible Separable Function). Let ΠΣ be a sigma-protocol for relations (R,Rgap)
with an associated instance generator IGen. Let (τ(λ), ν(λ)) be polynomials such that τ(λ) and τ(λ)−ν(λ) are
non-negligible. Then, a (τ, ν)-compatible separable function for ΠΣ consists of the PPT algorithm CSF.Gen17

defined as follows:

CSF.Gen(1λ,X, α, β,mode) → f : The algorithm, on input the security parameter 1λ, statement X ∈ LR,
a first flow commitment α ∈ ComSet, a challenge β ∈ ChSet, and a mode ∈ {preserving, separating},
outputs a description of an (classically) efficiently computable function f with binary outputs.

Moreover, depending on the mode, we have the following, where VX,α,β is defined as the set of all valid third
flow {γ | Verify(X, (α, β, γ)) = >} (which is possibly empty):

• (mode = preserving) For any X ∈ LR and (α, β) ∈ ComSet× ChSet such that |VX,α,β | ≥ 1, we have

Pr
[
f

$← CSF.Gen(1λ,X, α, β, preserving) : |{f(γ) | γ ∈ VX,α,β} = 1|
]
≥ τ(λ).

• (mode = separating) For any X ∈ LR, (α, β) ∈ ComSet×ChSet, there exists a (possibly negative valued)
polynomial ξ(λ) such that ξ(λ) ≤ ν(λ) and for every pair of distinct γ, γ′ ∈ VX,α,β, we have

Pr
[
f

$← CSF.Gen(1λ,X, α, β, separating) : f(γ) = f(γ′)
]

= 1 + ξ(λ)
2

Definition B.6 (Mode Indistinguishability). To define mode indistinguishability, we consider the fol-
lowing game between an adversary and a challenger.

• The challenger generates (X,W) $← IGen(1λ) and sends X to A.

• A sends a pair (α, β) ∈ ComSet× ChSet to the challenger.

• The challenger choses a random bit coin $← {0, 1} and gives A the function f
$← CSF.Gen(1λ,X, α, β,

preserving) if coin = 0, and f $← CSF.Gen(1λ,X, α, β, separating) otherwise.

• A outputs its guess coin′.

We say that A wins if coin = coin′. We say that a (τ, ν)-compatible separable function is mode indistinguish-
able if for any QPT adversary A, we have

Advmode
ΠΣ

(A) :=
∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ = negl(λ).

The following proves that a sigma protocol with a compatible separable function is a quantum proof of
knowledge. Combining this with Theorem B.4, it suffices to show that a sigma protocol has a compatible
separable function to check if the resulting NIZK is single-proof extractable in the QROM. The following
is a compilation of [LZ19, Lemma 1, Lemma 3, Theorem 1, Theorem 2]. Note that our definition of a
sigma protocol is akin to the definition of an identification protocol in [LZ19] since we consider an instance
generator IGen. However, unlike identification protocols, we require a proof of knowledge (thus the following
is a result of merging the proof of [LZ19, Theorem 1, Theorem 2]).

Theorem B.7. Let ΠΣ be a sigma protocol for relations (R,Rgap) with an associated instance generator IGen
and a (τ, ν)-compatible separable function, where (τ(λ), ν(λ)) are functions such that τ(λ) and τ(λ) − ν(λ)
are non-negligible. Then, if ΠΣ has relaxed two-special soundness, then it is a quantum proof of knowledge
with respect to IGen, where (c1, c2) = (3, 2) and p(λ) =

(
τ(λ)−ν(λ)

2

)2
.

17The original definition of CSF.Gen given in [LZ19] also takes as input the witness W. However, we observe that this is not
used anywhere in the proof so we intentionally remove it.

69

C Lattice-based Partially Blind Signature
In this section, we show how to slightly modify our blind signature in Section 3 to turn it into a partially
blind signature. The construction is almost identical to our blind signature construction, where the only
difference is how we bind the signature to the common message γ ∈Mc by a hash function.

C.1 Construction of Partially Blind Signature
Construction. We use all the building blocks provided in Section 3.2 with two minor differences. The hash
function HM used to hash messages M ∈ {0, 1}∗ to ring elements h ∈ Rq is modified to take a message and
common message pair as input (M, γ) ∈ {0, 1}∗ ×Mc instead. Moreover, we introduce a new hash function
HMc : Mc → Rq. As with the hash functions in Section 3.2, they are modeled by a random oracle in the
security proof with appropriate domain separation.

In the following, we highlight by a red underline the differences between the partially and non-partially
blind signature constructions.

BSGen(1λ) : It runs (a1,Ta1) $← TrapGen(1k1d, q), samples s $← [−∆MLWE,∆MLWE](k1+k2k3)
coeff and sets u =

[a1 | b1 | · · · | bk2] · s> ∈ Rq, where recall a1 ∈ Rk1
q , bi ∈ Rk3

q for i ∈ [k2]. It then outputs
(vk, sk) = ((a1, u),Ta1).

U1(vk,M) : It hashes h = HM(M), samples rand $← R, and computes com = Com(crscom, h · g; rand). It then
creates a proof πm $← ProveHm(crsm

NIZK, (crscom, com), (h, rand)) that proves the wellformedness of the
commitment com, and outputs the first message ρ1 = (com, πm). Finally, it sets its state as stU = rand.

S2(sk, ρ1) : It parses (com, πm) $← ρ1 and outputs ⊥ if VerifyHm(crsm
NIZK, (crscom, com), πm) = ⊥. Otherwise,

it computes t← ParseCom(com) and samples a short vector e ∈ Rk1+k2+k2k3 such that

[a1 | a2 + t | b1 | · · · | bk2] · e> = u− HMc(γ), (21)

using e $← SampleLeft(a1, [a2 + t | b1 | · · · | bk2] , u− HMc(γ),Ta1 , σ). It outputs the second message
ρ2 = e.

Uder(stU , ρ2) : It parses (e1, e2, e3) := e← ρ2, rand← stU , and outputs ⊥ if either ∃i ∈ [3], ‖ei‖2 > BSΣ,i or
Eq. (6) does not hold. Otherwise, it computes t← ParseCom(comcrs) and (ri)i∈[k2] ← ParseRand(rand),
where h = HM(γ,M) and ti = bir>i +h·gi ∈ Rq, where ti and gi are the i-th entry of t and g, respectively.
It then rewrites the left hand side of Eq. (6) as follows:

[a1 | a2 + t | b1 | · · · | bk2] · e> =
[
a1 | a2 + [b1r>1 + h · g1 | · · · | bk2r>k2

+ h · gk2] | b1 | · · · | bk2

]
· e>

= [a1 | a2 + h · g | b1 | · · · | bk2]


e>1
e>2

e2,1 · r>1 + e>3,1
. . .

e2,k2 · r>k2
+ e>3,k2


︸ ︷︷ ︸

=:ẽ∈Rk1+k2+k2k3

,

where e3 = [e3,1 | · · · | e3,k2] ∈ Rk2k3 and e2 = [e2,1 | · · · | e2,k2] ∈ Rk2 are parsed intro appropriate
sizes. It then creates a proof πs $← ProveHs ((a1,a2, (bi)i∈[k2], u− HMc(γ), h), ẽ) that proves knowledge
of a short vector ẽ. If ⊥ ← VerifyHs ((a1,a2, (bi)i∈[k2], u− HMc(γ), h), πs), then it outputs Σ = ⊥.
Otherwise, it outputs Σ = πs as the signature.

BSVerify(vk,M,Σ) : It parses πs $← Σ, sets h = HM(γ,M), and returns the output of VerifyHs ((a1,a2, (bi)i∈[k2],
u− HMc(γ), h), πs).

70

Correctness. We omit the proof of the following lemma as it can be argued to be almost identically to
Lemma 3.3.

Lemma C.1. The partial blind signature ΠBS is correct if σ > ω(q1/k1 ·
√

log k1d), ∀i ∈ [3], BSΣ,i =
√
kidσ,

∀i ∈ [2], BUΣ,i = BSΣ,i, B
U
Σ,3 = δBSΣ,2 +BSΣ,3 and the two NIZKs Πs

NIZK and Πm
NIZK are correct.

C.2 Security of Partially Blind Signature
In this section, we show that the partially blind signature satisfies partial blindness under malicious keys
and one-more unforgeability. Partial blindness is established by the following theorem.

Theorem C.2. The blind signature ΠBS is classically (resp. quantumly) blind under malicious keys if the
commitment scheme ΠCom is classically (resp. quantumly) hiding, and the two NIZKs Πs

NIZK for (Rs,Rs
gap)

and Πm
NIZK for (Rm,Rm

gap) are classically (resp. quantumly) zero-knowledge.

Proof Sketch. Observing that the common message γ is provided in the clear, the proof for partial blindness
is almost identical to that of the blind signature (cf. Theorem 3.4 for the classical proof and Theorem 5.1
for the quantum proof). The only difference is that the reduction replaces all occurrence of u by u−Hmc(γ)
in the security proof.

One-more unforgeability is established by the following theorem.

Theorem C.3. The blind signature ΠBS is classically (resp. quantumly) one-more unforgeable if the two
NIZKs Πs

NIZK for (Rs,Rs
gap) and Πm

NIZK for (Rm,Rm
gap) are classically (resp. quantumly) single-proof and multi-

proof extractable, respectively, and the MSISd,1,k1+k2k3,BMSIS,q, MLWEd,1,k1−1,χMLWE,q, DSMRd,k1−1,χDSMR,q,1 and
DSMRd,k2k3−1,χDSMR,q,1 problems are hard.

Proof Sketch. The classical (resp. quantum) proof is almost identical to those in Theorem 3.5 (resp. The-
orem 5.2). Below, we provide a proof sketch of the classical proof. We only highlight the games that are
different from those in Theorem 3.5, where we further make the assumption that A makes at most QHMc
random oracle query to HMc.

Game1 to Game3: These are defined identically to those of Thm. 3.5 of the full version.

Game4: This is almost identical to that of Thm. 3.5 of the full version. The only difference is that we
take into consideration the common message γ. When A queries (γ′,M′j) as its j-th (j ∈ [QHM]) random
oracle query to HM, the challenger returns hj . Moreover, at the end of the game, when A outputs the
forgery {γ, (Mi,Σi)}i∈[QS+1], the challenger checks if (γ,M′j∗) ∈ {(γ,Mi)}i∈[QS+1] and if {HMγ,Mi}i∈[QS+1]
are pairwise distinct. Otherwise, the game is identical to that of Thm. 3.5 of the full version. It is easy to
check that Lem. 3.7 of the full version holds without any modification.

Game5 to Game6: These are defined identically to those of Thm. 3.5 of the full version.

Game7: This is the only part that deviates from the proof of Thm. 3.5 of the full version. In this game, when
A queries the random oracle HMc, the challenger samples s′ $← χk1

MLWE and returns u = a1s′> ∈ Rq rather
than u $← Rq. Recalling that a1 = [1 | a′1] ∈ Rkq (see Lemma 2.19), it is clear that the Game6 and Game7
are indistinguishable assuming the MLWE assumption. Namely, there exists an efficient adversary B′MLWE
against the MLWE problem such that

Pr[E7] ≥ Pr[E6]− QHMc
· AdvMLWEd,1,k1−1,χMLWE,q (B′MLWE)

where Time(B′MLWE) is roughly Time(A) + Time(C7).

Using an almost identical proof to Lemma 3.9, we are able to turn A in Game7 into an MSIS solver. The
only difference is that we get the following instead of Eq. (9).

∀i ∈ [3], ‖ẽi‖2 ≤ BU,gap
Σ,i ∧ ‖c‖1 ≤ Bc ∧

[
a1 | a2 + h · g | b̂

]
ẽ> = c · (u− HMc(γ)). (22)

71

where γ is the common message included in the forgery. Due to the modification we made in Game7,
HMc(γ) = a1s′> for some s′ ∈ Rk1 such that ‖s′‖2 ≤ BMLWE. The procedure of extracting an MSIS solution
from Eq. (22) is identical to that of Lemma 3.9, where the bound on the extracted solution is increased by
Bc ·BMLWE due to s′.

This completes the proof of the classical version of the theorem. We note that the proof of the quantum
version is almost identical. The only difference is that we use Lemma 2.26 to program the output of HMc to
be MLWE instances rather than uniform random elements over Rq.

D Reference for Setting the Parameters
We list all the constraints on the various parameters and derive concrete parameters from them in Section 4.5.
Trapdoor-Sampling-Compatible Commitments.

• Correctness: δ ≥
√
k3d+

√
k2d.

• Hiding: MLWEd,2,k3−2,S3,max(q,q′), where S3 is the uniform distribution over [−1, 1]coeff ⊂ Rq.

• Binding: The requirements on binding are subsumed by the MSIS instance extracted in the multi-proof
extractable NIZK.

Single-Proof Extractable NIZK.

• Correctness: ∀i ∈ [3], BU,gap
Σ,i = 11Bc

√
kidB

U
Σ,i.

• Zero-knowledge: Holds statistically.

• Soundness: Subsumed by the constraint for the one-more unforgeability of the blind signature.

Multi-Proof Extractable NIZK.

• Correctness: BZ =
√
k4dγS, BZ′ =

√
k3dγY′ , B =

√
dγh′ , B1,F = B2,F = 12γD̄, B1,F′ = B2,F′ =

12γD̄′ . With γS = 11Br,Z = 11
√
k4k3dγE, γY′ = 11Br,Z′ = 11BcBR, γh′ = 11Br,ζ = 11BcBh,

γD̄ = 11Br,F = 11
√
k4k3dγD, γD̄′ = 11Br,F′ = 11Bc

√
k3k3dγD′ . Where BR and Bh are upper bounds

on the norm of R and h and can be taken as
√
k2k3d and 2

√
d to be always true or can be smaller if

we assume that the prover samples R and h until they are below the appropriate bounds. We consider
BR =

√
k2d +

√
k3d, Bh =

√
d, we verify experimentally that the prover has probability more than

1/2 that both of these bounds are correct. We also require δgap to be an upper bound on the spectral
norm of any ternary matrix in Rk3×k2 , hence δgap =

√
k2k3d.

• Zero-knowledge: MLWEd,4k3+1,k4−(4k3+1),γE,Q, MLWEd,1,1,γD̄,Q
, MLWEd,1,κ,γD̄′ ,Q

, MLWEd,1,κ,γd̄′ ,Q.

• Soundness: DSMRd,1,χDSMR,Q,p. MSISd,1,k4,16BZ,q′ . MSISd,1,k3,2(BZ′+Bcδgap),q′ . The decryption of the
NTRU encryption requires that ‖pvF′1 + pfF′2‖∞ < Q

2 where H = pv/f with f, v $← DγDSMR . Hence
we need Q > 4d(B1,F′ + B2,F′)pγDSMR (similarly we need Q > 4d(B1,F′ + B2,F′)pγDSMR). For correct
decryption we also require that ‖vZ′‖∞ < p

2 , hence we take p > 5γDSMR
√
k3dBZ′ (similarly we need

p > 5γDSMR
√
k4dBZ).

Blind Signature.

• Trapdoor sampling: σ = max(1.17ηεq
1
k1 , 1.17ηεq

1
k3 , ηε

√
δ2

MLWE + δ2
gapq

1/k2). With δMLWE = γMLWE(
√
k1d+

√
k2d), δgap =

√
k2k3d and ηε the smoothing parameter which we consider to be ηε = 2 using the anal-

ysis of e.g., [CPS+20] .

• Relation between e and ẽ: ∀i ∈ [2], BUΣ,i = BSΣ,i, BUΣ,3 = δBSΣ,2 + BSΣ,3. This results in the bounds on
the norm of e: ∀i ∈ [3], BSΣ,i =

√
kidσ.

72

• Blindness: Holds based zero-knowledge of the single-proof and multi-proof extractable NIZKs.

• One-more unforgeability: MSISd,1,k1+k3,BMSIS , with BMSIS = BU,gap
Σ,1 + δBU,gap

Σ,2 + BU,gap
Σ,3 + Bc∆(

√
k1d +√

k3d).

• Lemma 3.9: MLWEd,1,k1−1,χMLWE,q, DSMRd,k3,χDSMR,q.

Note that since b1 = [0|1|b′1] ∈ Rk3
q , for many parameters we can consider the dimension of b1 to be k3 − 1

instead of k3 (e.g. when bounding s1(R)). This is reflected in the chosen parameters.

73

	Introduction
	Background
	Our Contribution
	Technical Overview
	Related Work

	Preliminaries
	Blind Signature
	Non-Interactive Zero-Knowledge Proofs in the (Q)ROM
	Lattices
	Commitments
	Quantum Related Tools

	Lattice-based Blind Signature from Compatible Commitments
	Trapdoor-Sampling-Compatible Commitments
	Construction of Blind Signature
	Correctness and Condition on Parameters
	Proof of Blindness
	Proof of One-More Unforgeability
	Extension: Partial Blind Signatures

	Instantiating Our Generic Construction
	Concrete Choice for Trapdoor-Sampling-Compatible Commitments
	Concrete Choice for Single-Proof Extractable NIZK
	Concrete Choice for Multi-Proof Extractable NIZK
	Optimization in the Classical ROM
	Putting Everything Together

	Security in the QROM
	 item:qromone: QROM Security of the Generic Construction
	 item:qromtwo: QROM Security of NIZKs
	 item:qromthree: QROM Security of NIZKm

	Omitted Preliminaries
	Proof Sketch of Modified Trapdoor Sampling
	Forking Lemma
	Partially Blind Signature

	Tools to Argue Single-Proof Extractability of NIZKs in the QROM
	Sigma Protocol
	Compatible Separable Function

	Lattice-based Partially Blind Signature
	Construction of Partially Blind Signature
	Security of Partially Blind Signature

	Reference for Setting the Parameters

