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Abstract

In this paper, we study (batch) private information retrieval with private preprocessing.
Private information retrieval (PIR) is the problem where one or more servers hold a database of
n bits and a client wishes to retrieve the i-th bit in the database from the server(s). In PIR with
private preprocessing (also known as offline-online PIR), the client is able to compute a private
r-bit hint in an offline stage that may be leveraged to perform retrievals accessing at most t
entries. For privacy, the client wishes to hide index i from an adversary that has compromised
some of the servers. In the batch PIR setting, the client performs queries to retrieve the contents
of multiple entries simultaneously.

We present a tight characterization for the trade-offs between hint size r and number of
accessed entries t during queries. For any PIR scheme that enables clients to perform batch
retrievals of k entries, we prove a lower bound of tr = Ω(nk) when r ≥ k. When r < k, we prove
that t = Ω(n). Our lower bounds hold when the scheme errs with probability at most 1/15 and
against PPT adversaries that only compromise one out of ℓ servers for any ℓ = O(1). Our work
also closes the multiplicative logarithmic gap for the single query setting (k = 1) as our lower
bound matches known constructions. Our lower bounds hold in the model where each database
entry is stored without modification but each entry may be replicated arbitrarily.

Finally, we show connections between PIR and the online matrix-vector (OMV) conjecture
from fine-grained complexity. We present barriers for proving lower bounds for two-server PIR
schemes in general computational models as they would immediately imply the OMV conjecture.

1 Introduction

Private information retrieval (also known as PIR) is a powerful cryptographic primitive that enables
privacy-preserving retrieval of entries from a database held by one or more servers where a subset
of the servers may be untrusted and colluding. For a database with n entries uniquely indexed by
integers from [n], PIR enables a client to retrieve the i-th entry of the database without revealing
the query index i to the subset of colluding adversarial servers. The primitive of PIR was first
introduced by Chor, Kushilevitz, Goldreich and Sudan [CKGS98] in the multi-server information-
theoretic setting where the adversary compromises a strict subset of the servers with many follow-
up work in this area (see [Amb97, CG97, BI01, BIKR02, Yek08, Efr12, DG16] and references
therein). Kushilevitz and Ostrovsky [KO97] first studied PIR in the single-server setting against
computationally bounded adversaries. Many further works have also studied single-server PIR
including [CMS99, BIKM99, DCMO00, KO00, GR05, OS07, AMBFK16, ACLS18, GH19, ALP+21,
MCR21] to list some examples.
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PIR is an important cryptographic tool due to its endless implications to real-world settings.
PIR has been used as a critical component in the design of many practical privacy-preserving
applications such as advertising [GLM16, SSHD21], communication [MOT+11, AS16], friend dis-
covery [BDG15], media consumption [GCM+16] and publish-subscribe systems [CSP+16] to list
some examples.

Despite the potential applicability of PIR, the computational overhead of PIR remains a signif-
icant bottleneck that hinders wide spread usage of PIR in large-scale real-world settings. Beimel,
Ishai and Malkin [BIM04] proved that linear server computation is always required even in the
multi-server setting where only a strict subset of servers is compromised.

In an attempt to surpass this barrier, many prior works have considered variants of PIR that
have successfully overcome the linear server computation obstacle. We present two of these suc-
cessful variants in PIR with preprocessing and batch PIR below.

PIR with Preprocessing. Beimel, Ishai and Malkin [BIM04] introduced the notion of PIR with
preprocessing where the server may compute a public r-bit hint in an offline, preprocessing stage.
During query time, the server will aim to leverage the hint to answer PIR queries with sub-linear
computational time t. We will denote this the public preprocessing setting as the hint is made
available to the adversary’s view. This model has also been studied under the name of public-
key doubly-efficient PIR [BIPW17]. For this model, Beimel, Ishai and Malkin [BIM04] presented
constructions that had O(n1/2+ϵ) server time during queries but required polynomial nO(1) sized
hints. On the other hand, Beimel, Ishai and Malkin [BIM04] proved a tr = Ω(n) lower bound
that was further improved to tr = Ω(n log n) in [PY22]. There remains a large gap between the
best upper and lower bounds for sub-linear server time t = o(n) as the best upper bounds still
require tr = nO(1). Furthermore, there is a significant obstacle to improving the lower bound of
tr = Ω(n log n) in [PY22] as any better lower bounds would imply currently unknown lower bounds
for branching programs (see [BIM04, BIPW17]).

As an analog, one can also consider the private preprocessing setting (also known as offline-
online PIR) where the r-bit private client hint H is computed and stored by the client hidden from
the adversary’s view. This model has been studied in many works including [DCIO01, BIPW17,
CHR17, PPY18, BHW19, HOWW19, SACM21]. Corrigan-Gibbs and Kogan [CK20] presented an
upper bound of tr = O(n). For example, this means that one can obtain sub-linear server time such
as t = Õ(

√
n) using a Õ(

√
n)-bit hint. The same work also proves a lower bound of tr = Ω̃(n). We

note that there remains a multiplicative logarithmic gap between known constructions and lower
bounds leading to the following question:

What is the optimal trade-off between hint size and server computation
for PIR with private preprocessing?

Batch PIR. Another approach to obtain sub-linear server computation for PIR is to consider
batch queries. In this setting, the client knows a batch of k entries that it wishes to retrieve ahead
of time. The goal is to obtain amortized sub-linear server time across all k queries to beat the
naive approach of executing k independent queries that results in t = O(nk). Batch PIR has
been studied in a large number of works including [BIM04, IKOS04, PSW09, GKL10, HHG13,
LG15, AS16, ACLS18]. Excitingly, it has been shown that one can execute batch PIR queries with
minimal overhead compared to single-query PIR. Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS04]
showed the existence of a batch PIR that uses total server time t = Õ(n) when retrieving k entries
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simultaneously. Therefore, the amortized time per query is Õ(n/k) that is sub-linear for sufficiently
large k.

Combining Batching and Preprocessing. An intriguing idea to further improve the computa-
tional overhead of PIR would be to combine the techniques from batching and private preprocessing.
First, we can take a look at what seems possible. As stated earlier, one can perform batch PIR
queries with almost no overhead compared to single-query PIR. The dream would be to obtain
the same result when performing batch queries for state-of-the-art PIR with private preprocess-
ing schemes. In more detail, this dream construction would enable performing batch queries to k
entries while maintaining the trade-off tr = Õ(n) that results in amortized sub-linear query time
Õ(n/(rk)) when using r-bit hints.

On the other hand, we can consider the efficiency achieved by straightforward approaches. The
simplest construction is to execute k queries in parallel by storing k hints and performing k query
algorithms resulting in tr = Õ(nk2). Another option is to perform k queries in sequence using a
construction that enables multiple queries for a single preprocessing stage (such as the two-server
schemes in [CK20, SACM21]). This results in tr = Õ(nk) but requires k rounds of client-server
interaction. There remains a gap between the potential dream construction and the straightforward
approaches. This leads to the following interesting question:

What is the optimal efficiency achievable by PIR schemes
that utilize both batch queries and private prepocessing?

In this work, we address this question by providing a tight characterization of the trade-offs between
the hint size and online server query time. We show that the dream construction is not possible
and known approaches already achieve the optimal trade-off.

1.1 Our Contributions

In this paper, we will prove a tight characterization of the trade-offs between the hint size and
the number of accessed (probed) entries during query time for PIR schemes that aim to combine
batching and offline private preprocessing techniques. Note that any lower bound on number of
probed entries is also a lower bound on server query time. We will present a lower bound that
encompasses a wide range of constructions and matches the overhead of prior works.

Lower Bound. As our main result, we will prove a trade-off between the size of the private
hint, r, computed in the offline preprocessing stage and the number of entries accessed (probed)
by the server during online query execution, t, that also acts as a lower bound on the server
time during queries. For a scheme that enables batches of k queries, we will show that tr =
Ω(nk). To enable wider applicability of our result, we prove our lower bound for constructions
with potentially multiple rounds of interaction during queries, non-zero error probabilities and/or
inefficient preprocessing algorithms. Additionally, we consider weak PPT adversaries that only
compromise one server. The following lower bounds are proven where the server(s) store the
database is an unencoded manner, but may arbitrarily replicate entries (see Section 2.2 for more
details).

Theorem 1 (Informal). For any ℓ = O(1) and any k-query, ℓ-server batch PIR with private
preprocessing scheme that errs with probability at most 1/15 and is secure against a PPT adversary
that compromises one server, it must be that tr = Ω(nk) when k ≤ r ≤ n/400. If r < k, it must be
that t = Ω(n).
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The condition that k ≤ r ≤ n/400 is necessary to rule out trivial edge cases. There is a trivial
setting where the entire database is stored in the hint using r = n. This would require t = 0 server
time to retrieve any entries circumventing our lower bound. We avoid this edge case by enforcing
that r ≤ n/400. The choice of n/400 was for convenience and one may re-do our proofs to prove
the same result for r ≤ n/c for constant c ≤ 400. In the case that r < k, one can ignore the hint
and execute a k-query batch PIR in Õ(n) time matching our lower bound.

As our lower bound is for multiple servers, it immediately applies to the single server setting.
Additionally, our result also applies to more powerful adversaries that compromise multiple (or all)
servers or use infinite computational power.

We note that our lower bound immediately applies to the single-query setting where k = 1. As
an immediate corollary, we get that:

Theorem 2 (Informal). For any ℓ = O(1) and any ℓ-server, single-query PIR with private prepro-
cessing scheme that errs with probability at most 1/15 and is secure against a PPT adversary that
compromises one server, it must be that tr = Ω(n) when r ≤ n/400.

This improves upon the previous known single query lower bounds [CK20] by multiplicative
logarithmic factors closing the gap for single-query setting (for example, see Appendix A of [PY22]
for a concrete matching instantiation). Our batch lower bound also improves upon the batch lower
bounds from a concurrent work [CGHK22] by multiplicative logarithmic factors.

Finally, we note that our lower bounds may be directly applied to PIR with public preprocessing.
The server may arbitrary store a r-bit hint encoding of the database. Then, our work proves a
tr = Ω(n) lower bound. However, we note that better lower bounds of tr = Ω(n log n) were proven
in [PY22].

Upper Bound. In terms of constructions, we note that our lower bound has already shown that
one of the straightforward approaches of performing k sequential queries is already optimal (up to
logarithmic factors). However, this construction requires k rounds of interaction between the client
and the server. To obtain a single-round optimal construction, one can use the pipelined queries
property of prior works [CK20, SACM21, KCG21] where each client query is independent of server
responses and the client can issue multiple queries simultaneously. We refer readers to Appendix A
for a more detailed description.

For completeness, we show that there also exists a blackbox reduction from single-query to batch
PIR with private preprocessing without requiring the pipelined query property. Our reduction
maintains a single round, but increases the overhead by additional logarithmic factors (unlike the
pipelined query approach described above).

Theorem 3 (Informal). Assuming the existence of a single-query, ℓ-server PIR with private pre-
processing with tr = f(n), there exists a k-query batch, ℓ-server PIR with private preprocessing
scheme with a single-round query such that tr = Õ(k · f(n)).

Barriers to General Lower Bounds. Finally, we also study PIR lower bounds in general com-
putational models without any restrictions on database storage. To do this, we present connections
between PIR and the online matrix-vector OMV conjecture [HKNS15] from fine-grained complexity.
We show a barrier to proving lower bounds for PIR schemes in general models. If one is able to
prove a slightly weaker variant of our standard PIR model lower bounds in general models, it would
immediately imply the online matrix-vector OMV conjecture.
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Theorem 4 (Informal). For any constant ϵ > 0, suppose there exists no single-query, two-server
PIR with private preprocessing with tr = O(n1−ϵ). Then, the online matrix-vector OMV conjecture
is true.

1.2 Technical Overview

Lower Bound. As our main result, we will lower bound the product of the private client hint
size and the number of probed entries during query time. The core idea starts from considering
any batch PIR with private preprocessing scheme that probes a sub-linear number of entries in the
database. For simplicity, we will focus on the single-server setting with an information-theoretic
adversary. Consider any scheme Π that only probes at most half the database (that is, t ≤ n/2).
For a database D ∈ {0, 1}n, consider a batch query q ⊆ [n] to a random subset of k entries and
the subset of entries that are probed when executing q, denoted by P . Note that the adversary
sees the set of probed entries P . In the information-theoretic setting, it must be that the probed
set P must be independent of the query q. As a result, we should expect that only half of the k
random entries in q will also be probed (i.e., |P ∩ q| ≤ k/2). We show similar ideas still hold in the
multi-server setting against PPT adversaries.

The above statement ends up providing a powerful way to compress the database. By probing
and knowing the contents of at most t entries, the execution of query q will enable learning the
contents of approximately k/2 entries for free. In other words, we are able to design a compression
algorithm for database D using Π whose compression performance directly relates to the query
time of Π. As the query time t decreases, the rate of compression of our above algorithm increases.
If we take D to be a uniformly random n-bit string, we can immediately get lower bounds on
query time t and the hint size r as our algorithm should not be able to compress D beyond the
information-theoretic minimum.

Finally, we note that there is a technical obstacle in designing the compression algorithm as
described. The above description showed that one can compress using a single query to get the
contents of k/2 entries for free. To get a strong compression rate, we need that each query re-
covers Θ(k) new entries for free. In other words, these discovered-for-free entries must not have
been probed or queried by previous queries used by the compression algorithm. To overcome this
obstacle, we show that picking uniformly random queries will enable discovery of Θ(k) new entries
that were not previously probed or queried. As a result, it suffices for the compression algorithm to
try a set of random queries to find the necessary query sequence that enables strong compression.

Comparison with [CK20] and [CGHK22]. We highlight the improvements in our proof tech-
niques compared to the single-query lower bound in [CK20] and batch lower bound in [CGHK22].
Our lower bound works directly with (batch) PIR whereas the prior works [CK20, CGHK22] uses
abstractions through Yao’s box problem. Therefore, we are able to prove stronger properties about
(batch) PIR itself without worrying whether these properties also apply to the abstracted problem.
Prior works [CK20, CGHK22] focus on Yao’s box problem without utilizing any privacy properties
of PIR. In particular, there is a mismatch between the requirements of Yao’s box problem and the
guarantees from PIR protocols. In the former, the querier is forbidden from directly probing boxes
that are queried. For the latter, it is possible that all queried entries are probed directly but the
probability must be small (see Lemma 3). Both prior works first prove lower bounds on Yao’s box
problem with some error probability and translate it to PIR later which results in losing logarithmic
factors. In contrast, our work combines error probability directly with privacy properties of PIR
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enabling us to prove stronger lower bounds for (batch) PIR with private preprocessing.
Secondly, our paper proves stronger aggregate properties for multiple batch PIR queries. We

show that there exists a set of multiple batch PIR queries such that at least k/5 probes performed
by each query were not probed by any other batch PIR query in the set. As a result, we avoid
unnecessarily encoding batch PIR queries that do not provide a significant number of free entries
in our compression algorithms (see Step 5(b)ii in Figure 2). In contrast, [CGHK22] only proves
properties of probed entries overlapping with queried entries for a single query in the multi-box
extension of Yao’s box problem (roughly corresponding to a single batch PIR query). Afterwards,
the compression algorithm of [CGHK22] uses a greedy approach by adding the multi-box queries
that probe the most new entries. Unlike our proof, this does not guarantee that queries with a
small number of free entries are not encoded.

Upper Bound. For our single-round construction, we will leverage batch codes (introduced by
Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS04]) and any single-query PIR with private prepro-
cessing scheme. At a high level, our construction uses batch codes to split up the database D into
m buckets and perform a single-query PIR to each of the m buckets. We note this is a standard
technique done in the past (see [IKOS04, AS16, ACLS18] as some examples). Batch codes guaran-
tee that for any batch query q = {i1, . . . , ik} ⊆ [n], each of the ij-th entries may be found in one of
the m buckets. We will execute m parallel instances of single-query PIR with private preprocessing
scheme for each of the m buckets where each instance uses (r/m)-bit hints. As the queries are
done in parallel, we note our query algorithm uses a single-round of interaction. By plugging in a
state-of-the-art batch code construction and single-query PIR with private preprocessing scheme,
we obtain a single-round construction such that tr = Õ(n) matching our lower bound.

Connection to Online Matrix-Vector Conjecture. Finally, we show barriers to proving
lower bounds in general models of computation. To do this, we present a reduction from the
online matrix-vector OMV conjecture [HKNS15] to PIR with private preprocessing. To do this, we
start from the simple two-server, information-theoretic PIR with O(

√
n) communication [CKGS98]

where the database is represented as a
√
n×
√
n matrix M . During query time, the client uploads

vectors a, b ∈ {0, 1}
√
n to each server respectively and the servers respond with matrix-vector

multiplications Ma and Mb. We show that if there exists an efficient algorithm for solving OMV,
each server can use the same algorithm to also provide answers for PIR with similar overhead. As
a result, similar lower bounds that we have already proven for PIR with private preprocessing in
general computational models would immediately imply that the OMV conjecture is true. In other
words, this is a barrier as the OMV conjecture is a well-studied open problem and a core conjecture
in fine-grained complexity.

1.3 Related Works

Private Information Retrieval. PIR is a heavily studied cryptographic primitive first intro-
duced by Chor, Kushilevitz, Goldreich and Sudan [CKGS98] in the multi-server setting where it is
assumed only a strict subset of servers are compromised and colluding. Many follow-up works have
worked on improving the communication efficiency of multi-server PIR in the information-theoretic
setting including [Amb97, BI01, BIKR02, Yek08, Efr12]. The most communication-efficient scheme
is by Dvir and Gopi [DG16] using matching vector codes [DGY10]. Similar work has been done
for computationally-secure multi-server PIR [CG97, GI14, BGI15] where the most efficient con-
structions utilize function secret sharing techniques [BGI16]. Single-server PIR was introduced
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by Kushilevitz and Ostrovsky [KO97] with many follow-up works including [CMS99, BIKM99,
DCMO00, KO00, GR05, OS07] aiming to improve efficiency or utilize different assumptions. Recent
work has focused on optimizing the concrete efficiency of single-server schemes using lattice-based
homomorphic encryption [AMBFK16, ACLS18, GH19, ALP+21, MCR21].

PIR with Preprocessing. PIR with public preprocessing was first introduced by Beimel, Ishai
and Malkin [BIM04] where the hint is public and studied in several follow-up works [BIPW17,
PY22]. The PIR with private preprocessing model has been studied in many works and under
many different names including doubly-efficient PIR [BIPW17, CHR17, BHW19], private state-
ful information retrieval [PPY18], private anonymous data access [HOWW19] and offline-online
PIR [CK20, SACM21]. For private preprocessing, Corrigan-Gibbs and Kogan [CK20] presented a
construction with optimal trade-offs tr = Õ(n) that was later extended to handle blocklist lookups
efficiently [KCG21]. Shi, Aqeel, Chandrasekaran and Maggs [SACM21] presented logarithmic com-
munication two-server schemes with optimal trade-offs. Further follow-up works have aimed to
improve the efficiency in various dimensions [HHCG+23, DPC23].

Batch PIR. Several prior works have studied batch PIR to obtain efficient constructions using
matrix multiplication [BIM04, LG15], batch codes [IKOS04, PSW09, Hen16], the ϕ-hiding as-
sumption [GKL10] and list-decoding algorithms [HHG13]. Recent works have considered practical
constructions that utilize probabilistic batch codes [AS16, ACLS18] with error rates that are exper-
imentally analyzed. These works obtain asymptotically optimal batch code parameters, but err on
a subset of potential batch queries.

PIR Lower Bounds. Lower bounds for PIR have been studied for a variety of different complexity
measures. Beimel, Ishai and Malkin [BIM04] showed that server computation must be linear
without any preprocessing even in the multi-server setting. Prior works have proven communication
lower bounds for PIR [GKST02, WW05].

In the public preprocessing setting, Beimel, Ishai and Malkin [BIM04] showed that tr = Ω(n)
that was improved to tr = Ω(n log n) by Persiano and Yeo [PY22]. This is the highest lower bound
possible for PIR with public preprocessing without implying higher lower bounds for branching
programs (see [BIM04, BIPW17]). For the private preprocessing model, Corrigan-Gibbs and Ko-
gan [CK20] proved a lower bound tr = Ω̃(n) for a single query.

Compression Proofs. In our proof, we will use the incompressibility technique that has been
used widely in the past. These were also used in prior PIR lower bounds [PY22]. To list some
examples outside of PIR, incompressibility has been used in the studies of generic cryptographic
constructions [GGKT05], one-way functions and PRGs [DTT10], proofs of space [AAC+17], random
oracles [Unr07, DGK17, CDGS18], the discrete logarithm problem [CGK18] and oblivious data
structures [LN18, JLN19, PY19, HKKS19, PPY20, KL21, PY23].

2 Definitions

2.1 Batch PIR with Private Preprocessing

We start by defining batch PIR with private preprocessing (also known as batch offline-online PIR).
We present our formal definition:
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Definition 1 (Batch PIR with Private Preprocessing). A k-query batch PIR with private prepro-
cessing scheme Π is a triplet of efficient algorithms Π = (Π.Preprocess,Π.Encode,Π.Query) such
that

1. H ← Π.Preprocess(RH ;D) : The preprocessing algorithm is executed by the client and the
server(s). The client receives the coin tosses RH as input and the server(s) receives the
database D as input to compute a preprocessed r-bit hint H. The hint H is privately stored
by the client.

2. E ← Π.Encode(D): The encoding algorithm is executed by each server. Each server receives
the database D and computes an encoding of the database E.

3. res ← Π.Query(q,H,R;E): The query algorithm is jointly executed by the client and the
server(s). The client receives as input the batch query of k entries q = {i1, . . . , ik} ⊆ [n], the
hint H and coin tosses R while the server(s) receives the encoded database E as input. Once
the query algorithm is complete, the client receives res, the algorithm’s attempted response to
query q.

In the above definition, the query algorithm may be interactive and use multiple client-server
roundtrips. We will prove our lower bound for query algorithms with unbounded round complexity
to encompass more constructions. For our upper bounds, we will focus on single-round schemes for
better efficiency.

Definition 2 (Standard PIR Model with Replications). A k-query batch PIR with private prepro-
cessing scheme Π = (Π.Preprocess,Π.Encode,Π.Query) is in the standard PIR model if it satisfies
Definition 1 and Π.Encode may replicate entries arbitraily and store a permutation of the replicated
entries.

Constructions in the above model ensure that the server stores each database entry without
encoding. Additionally, the server can replicate entries arbitrarily and store a permutation of the
copies thereafter. We will use the standard PIR model with replications for our lower bound (see
Section 2.2 for more details).

Next, we will define the correctness of constructions. We define a query as correct if the query
algorithm returns the correct contents for all k queried entries. If the contents of any of the k
queried entries is incorrect, the answer is deemed incorrect. The error probability is defined as
follows:

Definition 3 (Correctness). A batch PIR with private preprocessing scheme Π errs with probability
at most ϵ if, for every database D ∈ {0, 1}n and query q ⊆ [n], it holds that

Pr
RH ,R

[Π.Query(q,H,R;E) ̸= (Di)i∈q | H] ≤ ϵ

where E ← Π.Encode(D) and H← Π.Preprocess(RH ;D).

We move on to formally defining the security of batch PIR with private preprocessing schemes.
We consider adversaries A that compromise 1 ≤ ℓA ≤ ℓ out of the ℓ total servers. When a server is
compromised, the adversary A sees the request sent to the server as well as operations performed
by the server. For the i-th server, we denote the adversary’s view by transcript Ti. We define
security using the game in Figure 1. We denote pηA(D) as the probability that the adversary A
outputs 1 in the game IndGameηA(D) that is taken over the randomness of coin tosses RH and R
as well as any internal randomness of the adversary A. Using this we define security as:
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IndGameηA(D):

1. The challenger C runs E ← Π.Encode(D).

2. The adversary (q0, q1, S) ← A(D,E) on input the database D and encoded database
E outputs two batch queries q0 and q1 as well as subset S ⊆ [ℓ] of the ℓA servers to
compromise as the challenge.

3. The challenger C executes H ← Π.Preprocess(RH ;D) to obtain hint H using random
coin tosses RH and records transcripts T p

1 , . . . , T
p
ℓ .

4. The challenger C executes Π.Query(qη, H,R;E) using random coin tosses R and records
transcripts T1, . . . , Tℓ.

5. The challenger C sends transcripts for all compromised servers, {T p
i , Ti}i∈S , to the

adversary A.

6. The adversary A({T p
i , Ti}i∈S) outputs a bit b.

Figure 1: Security game for PIR with private preprocessing.

Definition 4 ((δ, ℓA, ℓ)-Security). A ℓ-server batch PIR with private preprocessing scheme is com-
putationally (δ, ℓA, ℓ)-secure if for all probabilistically polynomial time (PPT) adversaries A that
compromise at most ℓA servers and all sufficiently large databases D, the following holds:

|p0A − p1A| ≤ δ(|D|).

The above may be modified to consider statistical security by considering all computationally
unbounded adversaries A. We note that the private preprocessing is reflected by the fact that the
adversary A does not receive the hint H as input and only the server’s view of the interaction
during the preprocessing phase. In contrast, the adversary would receive the hint H as input in
the public preprocessing setting (see the definitions in [BIM04, PY22]).

Finally, we define the efficiency of batch PIR with private preprocessing schemes. We will
consider worst-case notions for all costs as follows:

Definition 5 ((r, t)-Efficiency). A batch PIR with private preprocessing scheme is (r, t)-efficient if
the following two properties hold:

1. For all databases D ∈ {0, 1}n and coin tosses RH , the hint H produced by Π.Preprocess(RH ;D)
is at most r bits.

2. For all databases D ∈ {0, 1}n, queries q ⊆ [n], random coin tosses RH and R, the running time
of Π.Query(q,H,R;E) is at most t where H ← Π.Preprocess(RH ;D) and E ← Π.Encode(D).

2.2 Lower Bound Model

Standard PIR Model with Replications. The standard PIR model has been used to prove
PIR lower bounds in prior works [BIM04, CK20, PY22]. In the standard PIR model, the database
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is stored by the server(s) without any encoding. In our work, we will consider an extension where
the server(s) may store an encoding of the database that consists of replicating various entries. We
will refer to this extension as the standard PIR model with replications. For example, the database
may permute the database a polynomial number of times and store a permutation thereafter. This
covers replications of databases over multiple servers and the usage of systematic batch codes (see
Section 4).

In the private preprocessing model, the client is able to store a r-bit hint that is computed in an
preprocessing stage before the query. When measuring query time, the only cost is the number of
entries that are probed or accessed. All other operations during query time can be performed free
of charge including computation, accessing and generating randomness and accessing the hint. We
only measure costs using server operations. So, our model enables clients to do all operations free of
charge. We also note that our model does not account for the computational time needed to compute
the hint. Therefore, our model applies to constructions even if their preprocessing algorithm is very
computationally expensive. In terms of adversaries, we will only consider PPT adversaries that
compromise one server. As we consider weak adversaries, our lower bound immediately implies to
more powerful adversaries that may compromise multiple servers or use unbounded computational
resources.

To our knowledge, the above model captures the most efficient constructions in many different
categories. For example, the standard PIR model with replications is utilized by the most concretely
efficient computational single-server PIR constructions using leveled FHE [AMBFK16, ACLS18,
ALP+21, MCR21], two-server PIR constructions using function secret sharing [BGI15, BGI16],
batch PIR [BIM04, IKOS04, PSW09, GKL10, HHG13, LG15, AS16, ACLS18] and all PIR with
private preprocessing schemes [CK20, SACM21, CGHK22]. Therefore, proving lower bounds in
this model is important to understand the limitations of current techniques.

Barriers to General Models. We note that more expressive models are currently unable to
prove high lower bounds for PIR. For example, we could consider the cell probe model that enables
arbitrary encoding. Unfortunately, the highest lower bounds in the cell probe model peak at
Ω̃(log2 n) [Lar12] that are too low to prove meaningful lower bounds for PIR currently. We also note
there are several barriers to proving similar lower bounds as ours with arbitrary server encoding. For
example, such lower bounds would be one way to rule out the existence of some variants of program
obfuscation. The constructions of Boyle, Ishai, Pass and Wootters [BIPW17] utilize server encoding
and obfuscation to obtain sub-linear query time without any client storage and, thus, would beat
our lower bound. In Section 5, we show that lower bounds in general models would also imply the
online matrix-vector conjecture that is a core pillar of fine-grained complexity.

3 Lower Bound

In this section, we prove our lower bound for batch PIR with private preprocessing that characterizes
the trade-offs between hint size and online query time for the server(s). We will prove the following
theorem:

Theorem 5. Let Π be a k-batch, ℓ-server PIR with private preprocessing scheme in the standard
PIR model with replications that uses r-bit hints and probes at most t entries during online query
time for any ℓ = O(1). Furthermore, suppose Π is computationally (δ, 1, ℓ)-secure for δ ≤ 1/(25ℓ)
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and Π errs with probability at most ϵ ≤ 1/15. If k ≤ r ≤ n/400, then tr = Ω(nk). Otherwise when
r < k, then t = Ω(n).

In our proof, we will assume that k ≤ r ≤ n/400. For the case when r < k, we will arbitrarily
pad the hint until r = k. Even with this padding, note that the lower bound of tr = Ω(nk)
immediately implies a lower bound of t = Ω(n). We note our lower bound applies for protocols with
any number of round-trips. Additionally, we note that the choice of δ ≤ 1/(25ℓ) and ϵ ≤ 1/15 was
for convenience. One can re-do our proofs for different constants. Our assumption of δ ≤ (1/25ℓ)
being a constant is to improve our lower bound as it also applies to standard settings of negligible
advantage for adversaries. Also, our results directly imply lower bounds against stronger adversaries
that may compromise more than one server. Finally, we note that the assumption r ≤ n/400 is
necessary to rule out the trivial case where the entire database is stored in the hint and online
queries do not need to probe any entries (i.e., t = 0). One can also re-do our proofs to also
encompass larger choices of r ≤ n/c for smaller constant 1 < c < 400.

To prove our main result, we will actually prove a variant of the theorem. Here, we will assume
that the number of queries in each batch is larger than some constant and no larger than n/10. We
formalize this in the following theorem:

Theorem 6. Let Π be a k-batch, ℓ-server PIR with private preprocessing scheme in the standard
PIR model with replications that uses r-bit hints and probes at most t entries during online query
time where ℓ = O(1) and kc ≤ k ≤ n/10 for some constant kc. Furthermore, suppose Π is
computationally (δ, 1, ℓ)-secure for δ ≤ 1/(25ℓ) and Π errs with probability at most ϵ ≤ 1/15. If
k ≤ r ≤ n/400, then tr = Ω(nk). Otherwise when r < k, then t = Ω(n).

It turns out this immediately implies our main theorem for any k ≥ 1. In particular, we show
that Theorem 6 immediately implies Theorem 5.

Proof of Theorem 5. To prove this, we show a reduction that any protocol Π for any k ≥ 1 can
be converted into a protocol Π′ where kc ≤ k′ ≤ n/10 without any asymptotic overhead. Suppose
there exists Π that beats Theorem 5. If kc ≤ k ≤ n/10, we are already done.

If k < kc, we can construct Π′ for k′ = kc from Π by executing O(kc/k) queries in parallel. This
means storing O(kc/k) hints and running the query algorithm O(kc/k) times for each hint. As a
result, t′ = t ·O(kc/k) and r′ = r ·O(kc/k). As k ≥ 1 and kc = O(1), we know that O(kc/k) = O(1)
and get that t′r′ = O(tr) with no additional asymptotic overhead to contradict Theorem 6.

When n/10 < k ≤ n, we construct Π′ for k′ = n/10 from Π by arbitrarily padding queried
entries that will be ignored. Then, execute a single query using Π. Note, this results in t′r′ = O(tr)
with no additional asymptotic overhead as k = Θ(k′) to contradict Theorem 6.

Proof Overview. The rest of this section will be devoted to prove Theorem 6. Our proof of
Theorem 6 will proceed in three steps:

1. First, we will characterize the relationship between queried and probed entries. Our goal is to
show that not all queried entries can also be probed by leveraging the privacy requirements
of PIR (Section 3.1).

2. Secondly, we show that random coin tosses and random batch queries allow for great com-
pression by enabling to determine the contents of entries without ever requiring to probe the
entry directly (Section 3.2).
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3. Finally, we present an impossible compression scheme leveraging the above two facts that
contradicts Shannon’s source coding theorem to complete the proof (Section 3.3).

Additional Notation. For convenience, we will introduce additional notation that will be used
throughout our proof. We will denote the set of entries probed by the set Π.Probes(q,D,H,R) ⊆ [n]
for a batch query q, database D, hint H and coin tosses R. That is, i ∈ Π.Probes(q,D,H,R)
if and only if the i-th entry of D is probed by at least one of the ℓ servers. Secondly, we
will use H to represent a hint that is randomly generated by the preprocessing stage. That is,
H ← Π.Preprocess(D,RH) where RH are uniformly random coin tosses. We will frequently write
probabilities of the form PrH,R[i ∈ Π.Probes(q,D,H,R)] that denotes whether the i-th entry is
probed on any of the ℓ servers over the probabilities of randomly generated hints and coin tosses.
In particular, this will be shorthand for the formal probability statement:

Pr
H,R

[i ∈ Π.Probes(q,D,H,R)] = Pr
RH ,R

[i ∈ Π.Probes(q,D,H,R) | H]

where H← Π.Preprocess(RH ;D). Additionally, we will use similar shorthand when analyzing error
probabilities:

Pr
H,R

[Π.Query(q,H,R;D) ̸= (Di)i∈q] = Pr
RH ,R

[Π.Query(q,H,R;D) ̸= (Di)i∈q | H]

where H ← Π.Preprocess(RH ;D). In general, we will use H to represent a hint generated by
providing random coin tosses RH to Π.Preprocess(RH ;D).

3.1 Characterizing Queried and Probed Entries

The main goal in this section is to characterize the set of probed entries and their relationship with
the batch of k queried entries. At a high level, consider any Π that does not probe every entry in
the database. For simplicity, suppose that Π probes only half the entries. Is it possible that the
set of probed entries can be heavily correlated with the original set of k queries? For example, is it
possible that Π can probe the entries corresponding to all k queries without being detected by an
adversary? We resolve these questions here by providing a formal characterization between queried
and probed entries.

To do this we start by making the following assumption:

t ≤ n/(100ℓ). (1)

This is without loss of generality as otherwise our proof will already be complete as t > n/(100ℓ)
immediately implies tr = Ω(nk) since r ≥ k and ℓ is constant.

Consider the t probed entries across all ℓ servers. For any of the n entries in the database, we will
consider the i-th entry to be probed if the entry is probed by at least one of the ℓ servers. Therefore,
we know that at most n/(100ℓ) unique entries are probed for each online query. Intuitively, there
should be a large fraction of the n entries that are probed only with 1/(100ℓ) probability. We
formalize this for a fixed k-batch query as follows:

Lemma 1. Let D ∈ {0, 1}n be any database. Fix k-batch query {1, . . . , k} ⊆ [n]. Then, there exists
a subset S ⊆ [n] such that |S| ≥ n/2 and for all i ∈ S, then

Pr
H,R

[i ∈ Π.Probes({1, . . . , k}, D,H,R)] ≤ 1

50ℓ
.
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Proof. Towards a contradiction, suppose that this is false. That means, there exists strictly more
than n/2 entries that are probed with probability at least 1/(50ℓ). Then, we get that

t = EH,R[|Π.Probes({1, . . . , k}, D,H,R)|] > n

2
· 1

50ℓ
=

n

100ℓ
.

This is a contradiction as we had assumed t ≤ n/(100ℓ) in Equation 1.

Next, we construct a polynomial time adversary A to distinguish queries to {1, . . . , k} and any
other batch query. More formally, we construct a family of adversaries Ai,q, for all i ∈ [n] and
q ⊆ [n] below.

Adversary Ai,q:

• Challenge Phase Ai,q(D):

1. Return ({1, . . . , k}, q, {x}) for uniformly random x from [ℓ].

• Output Phase Ai,q(T p
x , Tx):

1. Retrieve Π.Probes from Tx specifying all entries probed on the compromised server.

2. Return 1 if and only if i ∈ Π.Probes.

In other words, Ai,q is defined such that it compromises one of the ℓ servers uniformly at random,
picks challenge queries q and {1, . . . , k} and returns 1 if and only if the i-th entry is probed. We
prove the following lemma using Ai,q.

Lemma 2. Suppose that Π is computationally (δ, 1, ℓ)-secure. Fix any k-batch query q ⊆ [n] and
database D ∈ {0, 1}n. Let S ⊆ [n] be as stated in Lemma 1 and suppose index i ∈ S. If δ ≤ 1/(25ℓ),
then

Pr
H,R

[i ∈ Π.Probes(q,D,H,R)] ≤ 1

25
.

Proof. Towards a contradiction, suppose that the statement is false. Consider adversary Ai,q. For
query {1, . . . , k}, we know that Ai,q outputs 1 with probability at most 1/(50ℓ) by Lemma 1 as
i ∈ S. On the other hand, consider the probed entries on any query q. We know the probability
that i is probed on at least one of the ℓ servers is strictly larger than 1/25. As Ai,q compromises one
server at random, we know that Ai,q observes that the i-th entry is probed with probability strictly
greater than 1/(25ℓ). Therefore, Ai,q outputs 1 with probability strictly greater than 1/(25ℓ).
This contradicts the fact that any computational adversary has distinguishing advantage at most
δ ≤ 1/(25ℓ) as the advantage is strictly greater than 1/(25ℓ) − 1/(50ℓ) = 1/(25ℓ) to derive our
contradiction.

Finally, we use the above lemma to prove our main characterization of probed entries in relation
to the set of entries that are queried. In particular, we will prove an upper bound on the number
of queried entries that are also probed.

Lemma 3. Fix any database D ∈ {0, 1}n and any k-batch query q ⊆ [n]. Let S ⊆ [n] be as defined
in Lemma 1. Then,

Pr
H,R

[∣∣q ∩ S ∩Π.Probes(q,D,H,R)
∣∣ ≤ |q ∩ S|

5

]
≥ 4

5
.
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Proof. Let q = {i1, . . . , ik} be the query to k indices i1, . . . , ik. By Lemma 2,

Pr
H,R

[ij ∈ Π.Probes(q,D,H,R)] ≤ 1

25

whenever ij ∈ S. Let Xj = 1 if and only if ij ∈ S ∩ Π.Probes(q,D,H,R) and 0 otherwise. Note
that EH,R[Xj | ij ∈ S] ≤ 1/25. If we let X be the total number of queried entries of S that are
also probed, that is X = |q ∩ S ∩ Π.Probes(q,D,H,R)|, then we know that EH,R[X] ≤ |q ∩ S|/25
by linearity of expectation as X = X1 + . . .+Xj . By Markov’s inequality, we get that

Pr
H,R

[∣∣q ∩ S ∩Π.Probes(q,D,H,R)
∣∣ ≥ |q ∩ S|

5

]
= Pr

H,R

[
X ≥ |q ∩ S|

5

]
= Pr

H,R

[
X ≥ 5 · |q ∩ S|

25

]
≤ 1

5

since EH,R[X] ≤ |q ∩ S|/25 to complete the proof.

The above lemma formally shows that at most (1/5)-fraction of queried entries that appear in
S will also be probed with high probability.

Discussion about Model. For our lower bound, we design an adversary that must detect whether
the i-th entry of the database is probed. This is possible in the standard PIR model with replications
as the adversary knows the relationship between each probed entry and its original index in the
database. If the database is encoded arbitrarily, this adversarial strategy is no longer possible. This
is the main challenge in extending our result to general models.

3.2 Discovering Good Batch Queries

In this section, we will prove results about finding batch queries that will enable good compression
of the database. At a high level, these good batch queries q = {i1, . . . , ik} ⊆ [n] are ones that enable
computing a large fraction of queried entries, Dij , without probing the ij-th entry directly. That
is, ij /∈ Π.Probes(q,D,H,R) for the used hint H and coin tosses R.

To formalize the above, we will aim to identify good sets for various entities. We start by defining
the notion of goodness for sets of queries and randomness. We start by saying that a triplet of a
k-batch query q ⊆ [n], hint H and coin tosses R are good if and only if the following two properties
hold:

1. (Correctness.) Π.Query(q,H,R;D) = (Di)i∈q.

2. (Discovery.) |q ∩Π.Probes(q,D,H,R)| ≤ 4k/5.

We denote a triplet being good by Eq(q,H,R) = 1 if the above two conditions holds for the
given triplet (q,H,R). Otherwise, we say Eq(q,H,R) = 0. Note, that the first property ensures
correctness of retrieving the contents of all queried entries. The second property enables discovery.
That is, at least k/5 of the queried entries are not probed directly during query execution.

Next, we move onto pairs of hints H and coin tosses R. In particular, we are interested in
finding pairs (H,R) that enable the above properties for most queries. For this, we will focus on
the query set Q that consists of all k-batch queries that aim to retrieve k distinct entries. We will

14



denote q as the random variable that draws a query uniformly at random from Q. We say that
pair of hint and coin toss H and R are good if and only if the following condition holds:

Pr
q
[Eq(q, H,R) = 1] ≥ 1

30
.

We denote a pair H and R to be good by ER(H,R) = 1 and ER(H,R) = 0 for when it is not good.
In other words, we say that a hint H and coin tosses R are good if and only if (1/30)-th of the
queries q ∈ Q exists such that q returns the correct answer and at most (4/5)-th of queried entries
are probed when using the fixed hint H and coin toss R. In the next lemma, we show that a large
fraction of pairs (H,R) are good and satisfy the above property.

Lemma 4. Fix any database D. Then, we get that

Pr
H,R

[ER(H,R) = 1] ≥ 1

50
.

Proof. Thoughout the proof, we will denote q as being drawn uniformly from the query set Q. As
Π errs with probability at most ϵ ≤ 1/15, we know that

Pr
q,H,R

[Π.Query(q,H,R;D) ̸= (Di)i∈q] = ϵ ≤ 1

15
.

By Lemma 3, we know that

Pr
q,H,R

[
|q ∩ S ∩Π.Probes(q, D,H,R)| ≤ |q ∩ S|

5

]
≥ 4

5
.

We can bound the intersection size of q and S as follows. Let X be the number of indices in q \ S.
As we know that q is chosen as a random k subset of [n] and |S| ≥ n/2, we get that E[X] ≤ k/2.
By Markov’s inequality, we know that Pr[X ≥ 3k/4] = Pr[X ≥ 3/2 · k/2] ≤ 2/3. Therefore, we get
that

Pr
q

[
|q ∩ S| ≥ k

4

]
= 1− Pr

q

[
X ≥ 3k

4

]
≥ 1

3
.

Then, we can see that if |q∩S| ≥ k/4 and |q∩S∩Π.Probes(q,D,H,R)| ≤ |q∩S|/5, this immediately
implies that |q ∩ Π.Probes(q,D,H,R)| ≤ |q \ S| + |q ∩ S|/5 ≤ 3k/4 + k/20 = 4k/5. Therefore, we
get that

Pr
q,H,R

[
|q ∩Π.Probes(q, D,H,R)| ≤ 4k

5

]
≥ Pr

q,H,R

[
|q ∩ S| ≥ k

4
∧ |q ∩Π.Probes(q, D,H,R)| ≤ |q ∩ S|

5

]
≥ Pr

q,H,R

[
|q ∩ S| ≥ k

4

]
− Pr

q,H,R

[
|q ∩Π.Probes(q, D,H,R)| > |q ∩ S|

5

]
=

1

3
− 1

5
=

2

15
.
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Then, we get that

Pr
q,H,R

[Eq(q,R,H) = 1]

≥ Pr
q,H,R

[
|q ∩Π.Probes(q, D,H,R)| ≤ 4k

5

]
− Pr

q,H,R
[Π.Query(q,H,R;D) ̸= (Di)i∈q]

≥ 1

15
.

Towards a contradiction, suppose that PrH,R[E(H,R) = 1] < 1/50. This contradicts the prior
inequality as we get that:

Pr
q,H,R

[Eq(q,H,R) = 1]

≤
∑

x∈{0,1}

Pr
H,R

[EH(H,R) = x] Pr
q,H,R

[Eq(q,H,R) = 1 | EH(H,R) = x]

<
1

50
+

(
49

50
· Pr
q,H,R

[Eq(q,H,R) = 1 | EH(H,R) = 0]

)
<

1

50
+

49

50
· 1
30

<
1

15
.

As a result, we know that PrH,R[E(H,R) = 1] ≥ 1/50.

Next, we will consider the intersection of a random query with an arbitrary subset X of at
most n/100 entries. In particular, we expect that if we pick a random k-batch query from Q, then
approximately (1/100)-th fraction of the chosen queries would also appear in X. Later, we will use
X to model previously probed and queried entries. In other words, we are aiming to show that a
random query will not query too many entries that have been previously probed or queried. We
formalize this in the following lemma:

Lemma 5. For any subset X ⊂ [n] such that |X| ≤ n/100,

Pr
q

[
|q ∩X| > k

10

]
≤ 1

60

where q is drawn uniformly at random from Q.

Proof. Note that we can model the choice of q as picking a random subset of size k from [n]. For
any fixed X ⊂ [n], we can see that

Pr[|q ∩X| > k/10] ≤

(n/100
k/10

)
·
(

n
9k/10

)(
n
k

) ≤
(

en
10k

)k/10 · (10n9k

)9k/10(
n
k

)k
≤

(
e

10
·
(
10

9

)9
)k/10

≤ 1

60

where we use Stirling’s approximation of binomial coefficients (a/b)b ≤
(
a
b

)
≤ (ea/b)b and assuming

that k is a sufficiently large constant
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3.3 An Impossible Encoding

Next, we use the characterization of probe probabilities from the prior two sections to construct an
impossible compression for databases drawn from our hard distribution that we define below:

Hard Distribution. Our hard distribution for databases, that we denote by D, will be
a uniformly random n-bit string. In other words, each of the n entries will be a uniformly
random bit.

At a high level, our compression algorithm will leverage Π to efficiently recover as many queried
entries without needing to probe the corresponding physical entry. We are able to do this by lever-
aging the formal characterization of Lemma 3 that shows that only a constant fraction of queried
entries will also be probed with reasonably high probability. Then, we will leverage Lemmata 4
and 5 to find these good queries amongst random queries. In more detail, the compression algo-
rithm will perform in rounds. In each round, the goal is to find a good k-batch query amongst
a set of random k-batch queries such that a large portion of the contents of queried entries are
unknown and will not be probed. Before going into more detail, we start by formalizing the model
for presenting our compression scheme.

One-Way Communication Protocols. To formally prove our lower bound, we will consider a
one-way communication protocol between parties Alice (the encoder) and Bob (the decoder). Alice
will receive the input database. The goal of Alice is to send a single message to Bob that will
enable Bob to always successfully decode the input database. Additionally, Alice and Bob will also
receive the same shared randomness as input that will be used to help encode and decode the input
database. In particular, the shared randomness will consist of the random coin tosses Rshared

needed to execute Π and will be independent of the input database D.
Next, we prove a lemma that shows that the length of Alice’s encoding cannot be much smaller

than the minimum number of random bits stored in a database drawn from the hard distribution.
We will consider prefix-free encodings where one possible message is not a prefix of another possible
message.

Lemma 6. For any one-way communication protocol where Alice’s encodings are prefix-free and
Bob is always able to decode the database D, it must be that

E[|Enc(D)|] ≥ n

where the randomness is over the hard distribution of databases D, the shared random coin tosses
Rshared and internal randomness of Alice’s encoding algorithm.

Proof. To prove this lemma, we will utilize Shannon’s source coding theorem that states the ex-
pected length of any prefix-free encoding scheme must be at least the entropy of the input condi-
tioned on any shared inputs. In other words,

E[|Enc(D)|] ≥ H(D | Rshared) = H(D) = n.

The first equality is from the fact Rshared are random coin tosses independent of D. The second
equality uses that D is a uniformly random n-bit string.
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Discussion about Errors. In Lemma 6, we require that the encoding enables perfect decoding. How-
ever, this does not mean that we only prove lower bounds for schemes with zero error probability.
In fact, we will utilize constructions that may err with probability as high ϵ ≤ 1/15 to build a
perfect encoding scheme. To do this, our encoding will only rely on the PIR scheme for correct
queries.

Encoding and Decoding Algorithms. We now formally present the encoding and decoding
algorithms for our one-way communication protocol. Note that there are no computational bounds
on the encoding and decoding algorithms. In particular, we will only care that Alice’s encoding
length is short in expectation and Bob is always able to decode the database.

First, we will formally describe the shared randomness Rshared. In particular, Rshared will be
broken into two parts. The first part will consist of random coin tosses R to execute a query. The
second part will consist of uniformly random queries chosen from the query set Q. In particular,
the second part will look of the form (q1, . . . ,qs) where s = 20n/(t+ k/10). In other words, there
will be s random batch queries from Q. Note that all of this shared randomness is independent of
the database D.

Next, we describe Alice’s encoding algorithm. The main goal of Alice is to compress the database
D using Π. Alice will go through the random queries qi with the goal of finding a query in the
set that enables extracting entries in D without ever probing them. To do this, Alice aims to find
queries that are correct with the caveat that the queried entries should not have been previously
discovered and they will not be probed by the query itself when using random coin tosses RH and
R. When Alice finds such a good query that enables a high discovery rate, Alice will encode the
identity of these queries and all necessary probed entries to let Bob simulate the queries as well. To
do this, Alice will only encode contents of entries that were not previously discovered. Once Alice
is able to find enough queries to encode at least n/100 of the entries in D, Alice will complete the
encoding by sending the remaining undiscovered entries in D trivially. Alice’s encoding algorithm
is provided in Figure 2.

Next, we describe Bob’s decoding algorithm. The goal of Bob is to simulate queries identically
to Alice. To do this, Bob keeps track of all entries whose contents have been discovered. For each
query encoded by Alice, Bob will aim to execute the query without knowing the input database D.
To do this, Bob performs probes one at a time. For any entries whose contents are known to Bob,
Bob can simply use their contents and continue executing. For any probed entry that is unknown
to Bob, Bob will use Alice’s encoding to determine the contents. As we ensure Alice and Bob use
the same hint H coin tosses R, it can be guaranteed that Alice and Bob execute queries identically.
After executing all queries, Bob will simply decode all remaining unknown entries using the trivial
encoding sent by Alice. Bob’s decoding algorithm is provided in Figure 3.

Correctness. To see that the one-way communication protocol always enables Bob to decode the
database, we will show that Alice and Bob simulate queries in the exact same way. In particular,
Bob will only execute queries qi that satisfy the conditions that are checked by Alice. For each
of these queries, Bob will execute them identically to Alice as they use the same hint H and coin
tosses R and any entries that are not known to Bob will be encoded by Alice. As a result, Alice
and Bob will execute all of these queries identically. Furthermore, Alice and Bob will maintain
identical sets A throughout the execution of their entire algorithms and Bob will be able to get the
contents of all entries in A. Finally, as all entries outside of A are encoded trivially, we get that
Bob is able to decode the database successfully.
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Alice’s Encoding: Alice receives database D and randomness Rshared = (R, q1, . . . , qs) where
s = 20n/(t+ k/10).

1. Set H ← Π.Preprocess(RH ;D) using random coin tosses RH .

2. Set A← ∅ to keep track of probed and queried entries.

3. Set P to be an empty string recording probed entries.

4. Set S ← ∅ to keep track of indices of successful query sets.

5. For i = 1, . . . , s:

(a) If |S| ≥ s/2000:

i. Terminate loop.

(b) Check if qi satisfies the following properties:

i. (Correctness.) Π.Query(qi, H,R;D) = (Dx)x∈qi .

ii. (Overlap with Known Entries.) |qi ∩A| ≤ k/10.

iii. (Overlap with Probes.) |qi ∩Π.Probes(qi, D,H,R)| ≤ 4k/5.

(c) If qi does satisfies the above:

i. Set U ← Π.Probes(qi, D,H,R) \A to be all probed entries that were not previously
probed or queried in the order they were first probed.

ii. If |U | < t, add entries in [n] \ U to U in increasing index order until U contains t
entries.

iii. Set S ← S ∪ {i}.
iv. Set P ← (P, (Du)u∈U ). That is, all entries in U in the order they were first probed

followed by added entries in increasing order.

v. Set A← A ∪ U .

vi. Add the smallest k/10 indexed entries in qi \A to A.

6. If |S| < s/2000, return the encoding (0, D) as a 0-bit followed by a trivial n-bit encoding of
D.

7. Set Enc ← (1, H, S, P ) to be a 1-bit, the hint H using r bits and set S of successful query
indices and P from the above loop. Note S requires log

(
s

s/2000

)
bits and P requires ts/2 bits

to encode.

8. Set Enc ← (Enc, {Dx}x∈[n]\A). That is, the contents of all entries with indices in [n] \ A in
increasing index order. Note, each of the s/2000 successful queries adds exactly t + k/10
entries into A. So, the size of A at the end is s/2000 · (t + k/10) = n/100 and this step
requires 99n/100 bits.

9. Return Enc.

Figure 2: Description of Alice’s encoding algorithm.
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Bob’s Decoding: Bob receives Alice’s encoding and randomness Rshared = (R, q1, . . . , qs) where
s = 20n/(t+ k/10).

1. If the encoding starts with a 0-bit, decode D trivially and return D.

2. Decode H using the next r bits.

3. Decode S ⊆ [s] using the next log
(

s
s/2000

)
bits.

4. Decode P using the next st/2 bits.

5. Set B to be the decoded database.

6. Set A← ∅ to keep track of all indices that have been either probed or queried.

7. For i ∈ S in increasing order:

(a) Execute Π.Query(qi, H,R;D). Even though Bob does not know the database entirely,
Bob can complete this execution using Alice’s encoding in the following way:

(b) If Bob attempts to probe an entry x /∈ A:

i. Bob will use the next bit of P to decode Dx.

ii. Set B[x]← Dx.

iii. Set A← A ∪ {x}.
(c) If Bob attempts to probe an entry x ∈ A:

i. Use B[x] as the contents of the entry.

(d) Set B[x] to be the answer given by Π.Query(qi, H,R;D) for x ∈ qi.

(e) If Bob probes less than a < t entries outside of A, Bob uses the next t− a bits in P to
decode the smallest t − a indexed entries outside of A. Then, Bob adds their contents
into B and their indices in A.

(f) Add the smallest k/10 indexed entries in qi \A to A.

8. Decode {Dx}x∈[n]\A. Set B[x]← Dx for all x ∈ [n] \A.

9. Return B.

Figure 3: Description of Bob’s decoding algorithm.
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Prefix-Free Encoding. Note any encoding starting with a 0-bit cannot be a prefix of an encoding
starting with a 1-bit and vice versa. Therefore, it suffices to show the set of 0-bit encodings and
1-bit encodings are prefix-free independently. All encodings starting with a 0-bit are the same
length of 1 + n and, thus, prefix-free. Similarly, all encodings prefixed with a 1-bit are the same
length of 1 + r + log

(
s

s/2000

)
+ st/2000 + 99n/100 bits and, also, prefix-free.

Encoding Length. Next, we analyze the length of Alice’s encoding in bits. Our goal is to prove
an upper bound on the expected encoding length. We break this down into two cases. The first
case is when Alice’s encoding starts with a 0-bit. In this case, Alice’s encoding uses 1 + n bits.
Next, we upper bound the probability that Alice’s encoding starts with a 0-bit. This only occurs
when |S| < s/2000. Consider any set of random queries q1, . . . ,qs. For each single query qi, we
note that the probability that qi satisfies the conditions of Step 5b of Alice’s algorithm is at least

Pr
qi

[Eq(qi, H,R) = 1]− Pr
qi

[|qi ∩A| > k/10].

If we assume that the inputRH andR satisfy property that ER(H,R) = 1 whereH = Π.Preprocess(D,RH),
then we get that qi satisfies the conditions of Step 5b of Alice’s algorithm with probability at least

Pr
qi

[Eq(qi, H,R) = 1 | ER(H,R) = 1]− Pr
qi

[|qi ∩A| > k/10] ≥ 1

30
− 1

60
=

1

60

by using Lemma 5 and the definition of ER(H,R) = 1. Therefore, the probability that qi satisfies
the conditions of Step 5b is at least 1/60. Then, we know that E[|S|] ≥ s/60. Denote the probability
of less than s/2000 queries succeeding by f , then

f = Pr
[
|S| < s

2000
| ER(H,R) = 1

]
= Pr

[
|S| <

(
1− 97

100

)
· s

60
| ER(H,R) = 1

]
≤ e

− (97)2s

(100)2602 <
4

5

using Chernoff’s bound, s ≥ 1000 and the fact that the failure of each query set is an independent
event. We get that s ≥ 1000 by our assumptions that t ≤ n/(100ℓ) ≤ n/100 as ℓ ≥ 1 and k ≤ n/10
implying that t+ k/10 ≤ n/50. Therefore, Alice’s encoding starts with a 0-bit with probability at
most

Pr
H,R

[ER(H,R) = 0] + Pr
H,R

[ER(H,R) = 1] · Pr[|S| < s/2000 | ER(H,R) = 1]

≤ 49

50
+

1

50
· f < 1

where we use Lemma 4 to bound PrH,R[E
R(H,R) = 0] ≤ 49/50.

Next, we will analyze the case when Alice’s encoding starts with a 1-bit. First, we show that it
is always guaranteed that the condition |A| = n/100 will be true once Alice reaches the end of the
encoding algorithm. Note that each successful query increases A by t+ k/10 entries. Furthermore,
Alice executes exactly s/2000 = n/(100(t+ k/10)) queries. So, |A| = s(t+ k/10)/2 = n/100.

All successful queries encode t probed entries. Encoding the indices of successful queries requires
log
(

s
s/2000

)
. Then, the encoding length is at most

1 + r + log

(
s

s/2000

)
+

st

2000
+ (n− |A|) ≤ 1 + r +

s log(2000e)

2000
+

st

2000
+ (n− |A|)

≤ 1 + r +
n

100
· t+ log(2000e)

t+ k/10
+

99n

100
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using the fact that
(
a
b

)
≤ (ea/b)b. Then, we get that Alice’s expected encoding length is at most

1 + fn+ (1− f) ·
(
r +

n

100
· t+ log(2000e)

t+ k/10
+

99n

100

)
.

Completing the Proof. Finally, we complete the proof by combining the above analysis of Alice’s
expected encoding length combined with Lemma 6.

Proof of Theorem 6. By Lemma 6, we know that Alice’s expected encoding length must be at least
n bits. Therefore, we get the inequality

1 + fn+ (1− f) ·
(
r +

n

100
· t+ log(2000e)

t+ k/10
+

99n

100

)
≥ n

⇐⇒ (1− f) ·
(
r +

n

100
· t+ log(2000e)

t+ k/10
+

99n

100

)
≥ (1− f)n− 1

⇐⇒ r +
n

100
· t+ log(2000e)

t+ k/10
≥ n

100
−O(1)

⇐⇒ r(t+ k/10) ≥ nk

2000
−O(t+ k)

⇐⇒ rt ≥ nk

2000
−O(t+ k)− rk

10

where we will assume that k ≥ 20 log(2000e) and use the fact that 1/(1 − f) = O(1) as f < 4/5.
We use that r ≤ n/400 to see that rk/10 ≤ nk/4000 and get

(r +Θ(1))(t+Θ(1)) ≥ nk

4000

where we also use that r ≥ k ≥ kc for some sufficiently large but constant kc. We assume that n is
sufficiently large to get that tr = Ω(nk).

4 Upper Bound

In this section, we present upper bounds for batch PIR with private preprocessing. As a reminder,
we recall two ways to obtain optimal constructions matching our lower bound. First, one can
execute k queries in sequence with any known single-query scheme [CK20, SACM21] that uses k-
rounds. Another option is to use pipelined queries approach utilizing a specific property of previous
constructions [CK20, SACM21, KCG21] where client queries do not depend on server responses.
In other words, clients may issue k queries simultaneously (see Appendix A for more details). In
this section, we show that one can construct blackbox reductions from single-query to batch PIR
without assuming any other properties of the single-query scheme.

4.1 Blackbox Single-Query to Batch Reduction

In the rest of this section, we will present constructions with single-round query algorithms. Our
schemes will make blackbox usages of batch codes and single-query PIR with private preprocessing
schemes. We note our described constructions make standard usage of batch codes for enabling
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batch PIR (see [IKOS04, AS16, ACLS18] for example) from any single-query PIR protocol. Our
main adaptation is replacing the single-query PIR protocol with any single-query PIR with private
preprocessing protocol.

Batch Codes. Batch codes are a primitive first introduced by Ishai, Kushilevitz, Ostrovsky and
Sahai [IKOS04] that studies the problem of distributing a database of n bits into m buckets. The
goal of the distribution is to enable any user to retrieve any batch of k entries by only querying at
most t bits from each of the m buckets. Typically, the goal of batch codes is to minimize the total
size of the encoding denoted by N .

There are several variants of batch codes that have been studied in the past. For our con-
struction, we will focus on systematic batch codes that handle non-multiset queries. Systematic
batch codes require that each symbol of the codeword to be an entry in the original database.
Note, this ensures that our construction uses the same conditions as our lower model. Some batch
codes handle the more difficult setting of multiset queries where the same entry may be retrieved
multiple times. For our protocol, we only require handling queries that retrieve k distinct entries.
It is straightforward to handle batch PIR queries with duplicate entries using only non-multiset
queries.

Additionally, we will only use systematic batch codes with t = 1. This means that only a single
symbol in each bucket will be accessed. In other words, the decoding algorithm A is trivial as it
will simply read one of the k desired entries from each of the m buckets. These codes have been
referred to as replication-based batch codes [IKOS04] or combinatorial batch codes [PSW09] in the
past. Furthermore, we will assume that the decoding algorithm can obtain correct buckets and
entries within the bucket without needing the database. This is a feature that is used for most
usages of batch codes for batch PIR (such as [IKOS04, AS16, ACLS18]).

Definition 6 ([PSW09]). A (n,N, k,m, 1) combinatorial batch code C is a set system (X,B) where
X is a set of n elements, B = (B1, . . . , Bm) is a collection of m subsets of X and a decoding
algorithm CA such that:

1. N =
∑

i∈[m] |Bi|. That is, the total length of all m subsets is at most N (where the length of
each bucket is independent of x).

2. For each subset {x1, . . . , xk} ⊆ X, CA({x1, . . . , xk}) = ((i1, j1), . . . , (ik, jk)) such that xa is
the ja-the entry of Bia for all a ∈ [k] and all of (i1, . . . , ik) are distinct.

Protocol. We will formally present our single-round protocol in this section. At a high level,
we will assume the existence of a (n,N, k,m, 1) combinatorial batch code C that can handle non-
multiset queries. Additionally, we will assume the existence of a single-query PIR with private
preprocessing scheme that uses r-bit hints and t online query time. We will use both C and Π in
a blackbox manner to construct our protocol.

Our protocol will first apply the batch code C to split up the database D ∈ {0, 1}n into
m buckets to get C(D) = (B1, . . . , Bm) where each bucket contains a subset of entries from D,
Bj ⊆ D, since C is systematic. By the guarantees of batch codes, we know that for every subset
{i1, . . . , ik} ⊆ [n], there exists a subset {j1, . . . , jk} ⊆ [m] such that Dix ∈ Bjx for all x ∈ [k]. Next,
instantiate m parallel instances of Π on each of the m buckets, B1, . . . , Bm, using hint lengths of
r/m bits for all m instances. During query time for batch query {i1, . . . , ik} ⊆ [n], use the batch
code to identify the subset {j1, . . . , jk} ⊆ [m] such that Dix ∈ Bjx for all x ∈ [k]. For each of these
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Preprocess(D):

1. Compute C(D) = (B1, . . . , Bm).

2. For all i = 1, . . . ,m:

(a) Execute Hi ← Π.Preprocess(Bi).

3. Return (H1, . . . ,Hm).

Encode(D):

1. Compute and return C(D) = (B1, . . . , Bm).

Query({i1, . . . , ik}, (H1, . . . ,Hm); (B1, . . . , Bm)):

1. Compute CA({i1, . . . , ik}) = ((a1, b1), . . . , (ak, bk)).

2. For x = 1, . . . ,m:

(a) If x = aj for some j ∈ [k], execute Dij ← Π.Query(Hx, bj ;Bx).

(b) Otherwise, execute Π.Query(Hx, 1;Bx) and ignore result.

3. Return (Di1 , . . . , Dik).

Figure 4: Description of our batch PIR with private preprocessing construction where C is a
(n,N, k,m, 1) systematic batch code and Π is a single-query scheme.

k buckets, perform a query to retrieve Dix . For the remaining m−k buckets, retrieve any arbitrary
entry. We describe our construction formally in Figure 4.

Theorem 7. Let C be a systematic (n,N, k,m, 1) batch code and Π be a single-query PIR with
private preprocessing scheme that is (δ, ℓA, ℓ)-secure with error probability ϵ and uses r-bit hints and
online query time t(n, r). Then, there exists a k-query batch PIR with private preprocessing scheme
that is (mδ, ℓA, ℓ)-secure with error probability kϵ. If this construction uses r′-bit hints, then

t′(n, r′) = O(t(N1, r
′/m) + . . .+ t(Nm, r′/m))

where Ni is the number of bits in the i-th bucket of the encoding by C.

Proof. By properties of the batch code, we know that our construction will always be able to
identify k buckets that contain the k queried entries. By the properties of Π, we know that that the
probability that any of these k queries result in the wrong answer is at most k times the probability
that Π returns the wrong answer resulting in error probability kϵ. Finally, as the transcript seen by
the adversarial server is identical to the transcript seen by executing Π m parallel times, we know
that our scheme is (mδ, ℓA, ℓ)-secure when Π is (δ, ℓA, ℓ)-secure. For efficiency, note that each of
the m instances is allocated r′/m bits for its own hint. As the database for the i-th bucket contains
Ni entries, we know that the i-th instance of Π requires t(Ni, r

′/m) online query time. So, we see
that the online query time for our scheme is t′(n, r′) = t(N1, r

′/m) + . . .+ t(Nm, r′/m).
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Relation to Lower Bound Model. Note that our lower bound model assumes that there is
no encoding of the database beyond arbitrary replication. As systematic batch codes only require
replication, the construction is compatible with our lower bound model.

Instantiations. Next, we pick different options for batch codes C and single-query PIR with
private preprocessing Π to instantiate our construction. In this case, we do not require the feature
that a single preprocessing stage handles multiple queries. As a result, we can use either any of the
constructions in [CK20, SACM21] to get the following constructions from batch codes.

Theorem 8. Assuming the existence of a systematic (n,N, k,m, 1) batch code and a single-query
PIR with private preprocessing scheme that is (δ, 1, ℓ)-secure where δ is negligible and ℓ ∈ {1, 2}
such that tr = Õ(n) and is correct except with negligible probability, then there exists a single-
round, k-query batch PIR with private preprocessing that is (δ, 1, ℓ)-secure where δ is negligible and
ℓ ∈ {1, 2}, uses r-bit hints and online query time t such that tr = Õ(N ·m) and returns the correct
answer except with negligible probability.

Proof. We can apply Theorem 7 to get the security and correctness properties. For efficiency,
let N1, . . . , Nm be the number of entries encoded in each of the m buckets. Then, we know that
t = Õ(N1 ·m/r) + Õ(Nm ·m/r) = Õ(N ·m/r).

For instantiating batch codes, many prior works (see [IKOS04, PSW09, Hen16, AS16, ACLS18]
and references therein) have studied batch codes that may be used with PIR. For our purposes,
we can use the (n,O(n log n), k, O(k), 1) batch code presented by Ishai, Kushilevitz, Ostrovsky and
Sahai [IKOS04] that is built from unbalanced expanders. Using this batch code, we get the a
construction with tr = Õ(nk) that matches our lower bound (up to logarithmic factors).

Non-Explicit vs Explicit Batch Codes. As a caveat, the above used batch code is non-explicit.
One can plug-in other explicit batch codes or explicit constructions of unbalanced expanders into
the Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS04] batch code to obtain an explicit batch PIR
with private preprocessing. However, these explicit constructions will result in worse parameters.

Batch Codes with Experimental Evaluation. In terms of practical constructions for batch
codes, several prior works [AS16, ACLS18] have presented schemes that aim for concrete efficiency
with only experimental analysis. In particular, both papers present probabilisitic batch codes from
hashing schemes that result in O(n) total codeword size and O(k) buckets. In other words, these
are the batch codes with the best possible asymptotic parameters of (n,O(n), k, O(k), 1). Plugging
such a batch code into our scheme would result in a construction matching our lower bound of
tr = Õ(nk). However, these constructions have the property that subset of queries will not be
able to decode and always err. Note, this is different from the natural notion of error probabilities
considered in our work where the probability is over the internal randomness of the algorithm.
Additionally, to our knowledge, the only error analysis are done through experimental evaluation.
Regardless, these constructions probably remain the best approach for constructions that aim for
concrete efficiency and practical application.

5 Barriers for General Lower Bounds

In the prior sections, we prove all our lower bounds in a restricted model as done in prior works
(such as [BIM04, CK20, PY22]). In the standard PIR model with replications, the database of n
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entries must be stored without any modification, but each entry may be replicated arbitrarily. A
more ambitious goal would be to prove lower bounds without restrictions on the underlying PIR
algorithms. For example, a natural goal is to extend the above lower bounds to the case where the
PIR algorithm may encode and store the database of n entries arbitrarily but using only a bounded
amount of preprocessing time such as polynomial nO(1) time. We denote this the general PIR model
where the PIR construction may store the database of n entries in any encoded manner. During
query time, we denote the online time as the total amount of online computation performed by the
server to process client queries. See Appendix B for more details on the general PIR model.

We will study connections between PIR and the online matrix-vector OMV conjecture from
fine-grained complexity. We show barriers for proving lower bounds in general models as we show
that such lower bounds would immediately imply the OMV conjecture that is a well-studied open
problem in the theoretical computer science community and a core pillar of fine-grained complexity.

5.1 Online Matrix-Vector OMV Conjecture

At a high level, the OMV problem receives a single matrix n × n matrix M as input that may be
preprocessed in polynomial time. Afterwards, n vectors v1, . . . , vn will be given in an online fashion
such that the multiplication fo Mvi must be output before receiving the next vector in the stream.
We formally define the online matrix-vector problem below:

Definition 7 (Online Matrix-Vector Multiplication). The online matrix-vector multiplication prob-
lem OMV takes as input a matrix M ∈ {0, 1}n×n and a stream of vectors v1, . . . , vn ∈ {0, 1}n. The
goal is to output Mvi over F2 before seeing any input vectors vi+1, . . . , vn.

As matrix-vector multiplication is a fundamental problem in algorithms, the problem has been
well-studied. A trivial algorithm would be to perform no preprocessing and simply answer each
Mvi naively requiring O(n3) total time. To date, the best known algorithm requires total time
n3/2Ω(

√
logn) by Larsen and Williams [LW17]. However, this algorithm specifically requires using

properties of the Boolean semiring. To our knowledge, there remains no better algorithm for OMV
over any field including F2. Due to lack of progress, it has been conjectured [HKNS15] that there is
no algorithm for solving the OMV problem in truly sub-cubic O(n3−ϵ) time. We formally present
the OMV conjecture below:

Definition 8 (Online Matrix-Vector Conjecture [HKNS15]). For any constant ϵ > 0, there does
not exist any algorithm with total online query time O(n3−ϵ) that can solve the online matrix-vector
multiplication problem with error probability at most 1/3 even with nO(1) preprocessing time of the
matrix M .

The online matrix-vector OMV conjecture is a very important conjecture in the area of fine-
grained complexity that aim to quantify hardness within P along with other important conjectures
such as the strong exponential time hypothesis (SETH), the 3SUM conjecture and the all-pairs
shortest path (APSP) problem. The OMV conjecture has been used to prove the tight conditional
lower bounds for several dynamic data structure problems including reachability and single-source
shortest paths in directed graphs [HKNS15].

Boolean Semiring vs. F2. The standard definition of OMV is defined over the Boolean semiring
where addition and multiplication are replaced by Boolean OR and AND operations (see [HKNS15,
LW17] for example). In our work, we focus on the matrix-vector multiplication over F2. However,
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we note that the Boolean semiring variant of OMV is not easier than the F2 version of OMV. In
Appendix B, we present a reduction showing that any algorithm solving OMV over F2 may be used
to solve OMV over the Boolean semiring for completeness.

5.2 Barriers for General PIR Lower Bounds

We start by showing that we can construct efficient PIR constructions using efficient algorithms
for online matrix-vector multiplication OMV. The result of this reduction is a barrier to proving
lower bounds for PIR in more general bounds. In particular, we show that if one were able to prove
lower bounds of tr = Ω(n) from Section 3 without the restrictions of the standard PIR model, this
would immediately imply that the online matrix-vector conjecture is true.

We present a reduction from OMV that enables constructing efficient two-server PIR with public
preprocessing schemes. Note that we had only focused on private preprocessing schemes. The main
difference is that public preprocessing enables the adversary to view the execution and output of
the preprocessing algorithm. We highlight that any lower bound for PIR with private preprocessing
immediately implies the identical lower bound for public preprocessing. See Appendix B for formal
definitions on public preprocessing.

Theorem 9. If an online matrix-vector multiplication algorithm running in total time t(n) with
p(n) preprocessing time and error probability at most ϵ(n), then there exists a single-round, perfectly-
secure, two-server PIR with public preprocessing with O(p(n)) preprocessing time, O(t(

√
n)/
√
n)

amortized online time over
√
n queries, O(

√
n) communication and error probability at most ϵ(n).

Proof. For this reduction, we start from a slight adaptation of the O(
√
n) communication two-

server PIR scheme [CKGS98]. We arrange the database of n entries into a
√
n ×
√
n matrix M .

Suppose that we wish to query for an entry (i, j) in the i-th row and j-th column of M . The
client will generate a uniformly random vector a ∈ {0, 1}

√
n where each entry is either 0 or 1 with

probability 1/2. Next, the client will compute b = a ⊕ 1j that flips the bit in the j-th entry of a.
The vector a is sent to the first server and the vector b is sent to the second server. Afterwards,
each server will compute the matrix-vector multiplication a′ = Ma and b′ = Mb over F2. Note that
a′[i]⊕ b′[i] = M [i][j] and, thus, the client can retrieve the desired entry. For privacy, note that each
vector a and b are identical to uniformly random vectors meaning the scheme is perfectly-secure.

Now, suppose that we have an algorithm A for the OMV problem with total time t(n) over n
queries and preprocessing time p(n). We instantiate A with the

√
n ×
√
n matrix M represent-

ing the n entries of the database in each of the two servers requiring 2p(n) preprocessing time.
When responding to queries, each server will utilize A to compute the matrix-vector multiplica-
tion. Therefore, the total time to answer

√
n queries is 2 · t(

√
n) and, thus, the amortized time is

O(t(
√
n)/
√
n). Note, the client is unable to retrieve the desired entry only when at least one of

the responses from the server is not correct. By parallel repetition and taking the majority answer,
we can drive down the error probability to be at most ϵ(n) without affecting the overall overhead
except by constant factors. Finally, the query algorithm requires a single round completing the
proof.

Next, we present the corollary of the above theorem showing that lower bounds for PIR with
private preprocessing would immediately prove that the OMV conjecture is true.

Corollary 1. For any constant ϵ > 0, suppose there does not exist any two-server computationally-
secure PIR with private preprocessing scheme in the general model that uses nO(1) preprocessing
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time, r-bit hints, amortized online time t over
√
n queries and error probability at most 1/3 such

that tr = O(n1−ϵ). Then, the online matrix-vector OMV conjecture is true.

Proof. Towards a contradiction, suppose that the OMV conjecture is false. Then, there exists an
algorithm that solves OMV in total time O(n3−ϵ) for some constant ϵ > 0 and nO(1) preprocessing
time with error probability at most 1/3. By Theorem 9, this immediately implies a perfectly-
secure two-server PIR with public preprocessing with amortized online time O(n1−ϵ/2) over

√
n

queries and the same preprocessing time and error probability. Note that any PIR with public
preprocessing scheme is also a PIR with private preprocessing scheme. As a result, the above is a
PIR with private preprocessing scheme with tr = O(n1−ϵ/2) for some constant ϵ > 0 contradicting
the original lower bound.

We note that the above was presented to focus on PIR with private preprocessing. One can
generalize the above theorem in several ways. First, the above corollary still holds even if we only
considered PIR with public preprocessing time with truly sub-linear t = O(n1−ϵ) time. Secondly,
the result still holds even if the lower bound applied only to perfectly-secure two-server PIR schemes.
Finally, the result also holds for any k-server scheme where k ≥ 2.

Discussion about Public Preprocessing. Prior works have also proven lower bounds for public
preprocessing including [BIM04, PY22]. All these lower bounds are also proven in the standard
PIR model. The results in this section also show that proving lower bounds for PIR with public
preprocessing in more general models would immediately imply that the OMV conjecture is true.

Discussion about Communication. In the above reductions, we did not focus on reducing the
communication. In particular, the current lower bounds are unable to capture the communication
costs of PIR beyond logarithmic factors (see [GKST02, WW05] for the best communication lower
bound). For example, our lower bounds only consider online query time t and the bit size of the
private hint r. Therefore, we did not focus on optimizing communication in our reductions.

Discussion about Single-Server PIR. In the reductions above, we only succeeded in building
two-server schemes from OMV. For the single-server setting, we can try the same reduction using
fully homomorphic encryption (FHE). In more detail, we can try to upload an FHE encryption
of a bit vector denoting the column of the desired entry. Afterwards, we can execute the OMV
algorithm using FHE ciphertexts. However, the computational overhead would be the circuit
size of the algorithm and it is already known that circuits for solving OMV require Ω(n2/ log n)
size [MM66]. However, we still view the barrier for lower bounds in the two-server setting as
a barrier for the single-server setting as all lower bound techniques to date cannot separate the
single- and two-server settings (including the proof techniques in this paper).

6 Conclusions and Open Problems

In this paper, we present a tight characterization of the trade-offs between the hint size and online
query time for batch PIR with private preprocessing. In particular, we present a tr = Ω(nk) lower
bound when retrieving k entries. On the other hand, we show the existence of a tr = Õ(nk) single-
round query construction. In other words, our results show that one can only reap the benefits of
the techniques from one of batch PIR or PIR with private preprocessing. When ignoring private
preprocessing (i.e. r < k), we can apply known batch PIR techniques and get that t = Θ̃(n).
For optimal PIR with private preprocessing schemes with tr = Θ̃(n) and r ≥ k, one cannot

28



beat the efficiency of the naive approach of performing k queries sequentially to get tr = Θ̃(nk).
Additionally, we show the same efficiency may be achieved with a single-round query algorithm
using batch codes. We leave the following high-level open question:

What techniques may be combined with private preprocessing
to further improve the efficiency of PIR?

In this work, we ruled out using batch PIR techniques to further speed up PIR with private
preprocessing. One way to improve PIR efficiency may be use more complex encodings of databases
beyond replication.
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A Batch PIR from Pipelined Queries Approach

We start by summarizing the constructions in [CK20, KCG21, SACM21] that enable multiple
queries for a single preprocessing stage in the two-server setting. In the offline phase, the client
will generate r pseudorandom subsets S1, . . . , Sr ⊂ [n] each of size t. These will be sent to the
first (offline) server that will return the r parities of the form bi = ⊕s∈SiDs for database D.
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The hint becomes b1, . . . , br. To query for any index i, the client first finds a set Sj such that
i ∈ Sj . With probability approximately 1 − 1/

√
n, the client uploads Sj \ {i} to the second

(online) server that computes and returns b = ⊕s∈Sj\{i}Ds. Otherwise, the client removes a random
index from Sj and will fail to retrieve the desired entry Di correctly. Finally, the client retrieves
Di = b⊕ bj . With parallel repetition, the error probability can be driven down to negligible. Prior
works [CK20, KCG21, SACM21] have shown that this is secure and can be extended to refresh the
bit bj with O(t) time such that more queries can be handled without re-running the preprocessing
stage. Here, the pipelined query property [CK20, SACM21, KCG21] refers to the fact that the
client can issue multiple queries simultaneously without waiting for server responses.

Using the above property, one can construct a single-round batch PIR scheme. At a high level,
the client will issue all k queries simultaneously in a single round. The description of previous
constructions supposed that one would need to wait for the response to refresh the hint before
continuing to the next query. However, this is not necessary as, even though the user does not
know the next hint, it can proceed with the query as it is independent of the server’s response. As
long as the client and server can co-ordinate the ordering of the queries and responses, the client
will be able to decode each of the resulting answers. In particular, the client will, first, compute the
next hint and then decode the response that was queried using the hint. The property guarantees
that the client can generate future queries without knowledge of the exact hint.

B Supplementary Material for Section 5

B.1 Definitions

We present formal definitions of the general PIR model as well as PIR with public preprocessing
in this section.

Definition 9 (General PIR Model). A k-query batch PIR with private preprocessing scheme
Π = (Π.Preprocess,Π.Encode,Π.Query) is in the standard PIR model if it satisfies Definition 1
and Π.Encode runs in polynomial time.

The main difference compared to the standard PIR model is that the encode algorithm may
perform arbitrary preprocessing of the database, but is required to run in polynomial time.

Definition 10 (Batch PIR with Public Preprocessing). A k-query batch PIR with private prepro-
cessing scheme Π is a triplet of efficient algorithms Π = (Π.Preprocess,Π.Encode,Π.Query) satisfy-
ing Defintiion 1 and Π.Preprocess must be an empty algorithm that returns ⊥.

The main difference between private and public preprocessing is that the client is no longer able
to compute and store a hint H hidden from the view of the adversary. Note that any PIR with
public preprocessing scheme is immediately a PIR with private preprocessing scheme as well.

B.2 OMV Conjecture over F2

We show that OMV conjecture over the Boolean semiring implies the OMV conjecture over F2.

Theorem 10. Assuming the online matrix-vector OMV conjecture over the Boolean semiring, then
the online matrix-vector OMV conjecture over F2 is also true.
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Proof. Let A be an algorithm for solving OMV over F2 in time t(n) with nO(1) preprocessing time
and error probability at most 1/3. We show that we can construct an algorithm A′ for solving
OMV over the Boolean semiring in time O(t(n) · log n · log logn). As a result, the OMV conjecture
over the Boolean semiring would immediately imply the OMV conjecture over F2.

First, we modify A to reduce the error probability. In particular, we can run O(log log n) parallel
copies of A and return the majority answer. As a result, we can reduce the error probability to
Θ(1/ log n). Moving forward, we will refer to A as this version with lower error probability.

Consider an input matrix M ∈ {0, 1}n×n and a query vector v ∈ {0, 1}n. Suppose we run A
with input matrix M and vector v. We show that we can construct a ∈ {0, 1}n that is equal to
Mv over the Boolean semiring using multiple answers from A. First, consider the answer Mv over
F2 that is returned by A. If the i-th entry (Mv)[i] = 1, then we know that a[i] = 1. Therefore, it
remains to handle the entries where (Mv)[i] = 0. To do this, we will use q = O(log n) queries to
A with slightly modified versions of v. To generate a query, we take each entry j ∈ [n] such that
v[i] = 1 and flip it to 0 with probability 1/2. Let the answers to these queries from A be x1, . . . , xq.
For any i ∈ [n] such that (Mv)[i] = 0, we will set a[i] = 1 if and only if there exists j ∈ [q] such
that xj [i] = 1. Otherwise, we set a[i] = 0.

For any entry i ∈ [n], suppose that (Mv)[i] = 0 over the Boolean semiring. Then, we note
that (Mv)[i] = 0 over F2. Furthermore, it will be the case that the i-th entry of all q answers will
also be 0. Next, suppose that (Mv)[i] = 1 over the Boolean semiring. Then, we can see that for
any j ∈ [q], the i-th entry of the j-th answer will be 1, xj [i] = 1, with probability exactly 1/2.
Therefore, a[i] will be incorrect if and only if all xj [i] = 0 for all j ∈ [q] that occurs with probability
(1/2)q = 1/(100n) for sufficiently large q = O(log n). Taking a Union bound over all n entries, we
see that a will be incorrect with probability 1/100 assuming that all the q + 1 = O(log n) answers
from A are correct. By ensuring a sufficiently large, but O(log log n), number of parallel copies of
A, we can see that the probability that one answer is incorrect is at most 1/100. Therefore, our
algorithm for OMV over the Boolean semiring has error probability at most 1/50. Finally, for the
overhead, note that our algorithm executes queries to O(log n · log logn) parallel copies of A.
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