
1

ROMEO: Conversion and Evaluation of HDL

Designs in the Encrypted Domain
Charles Gouert, Nektarios Georgios Tsoutsos

{cgouert, tsoutsos}@udel.edu

University of Delaware

Abstract

As cloud computing becomes increasingly ubiquitous, protecting the confidentiality of data out-

sourced to third parties becomes a priority. While encryption is a natural solution to this problem,

traditional algorithms may only protect data at rest and in transit, but do not support encrypted processing.

In this work we introduce ROMEO, which enables easy-to-use privacy-preserving processing of data in

the cloud using homomorphic encryption. ROMEO automatically converts arbitrary programs expressed

in Verilog HDL into equivalent homomorphic circuits that are evaluated using encrypted inputs. For our

experiments, we employ cryptographic circuits, such as AES, and benchmarks from the ISCAS’85 and

ISCAS’89 suites.

I. INTRODUCTION

As corporations and individuals produce an ever-increasing amount of sensitive data, a high demand has

arisen for outsourcing these vast data sets to the cloud. Storing large amounts of data locally incurs high

monetary and time costs in order to develop and maintain the necessary hardware infrastructure. Even

though outsourcing large data sets to the cloud can be expensive, the benefits outweigh the disadvantages

in many situations. Nevertheless, there are glaring problems with this approach: the security of the

outsourced data is entirely dependent on the cloud service providers (CSPs), and curious CSPs can view

the sensitive data stored on their servers.

As more users outsource their data to the cloud, attackers devise new methodologies to compromise the

CSP servers hosting sensitive information. In fact, many research efforts have proposed and demonstrated

viable attacks in this area [1]–[4]. Several unique solutions have been proposed to combat various attacks

on cloud servers [5], [6], but have not seen widespread adoption. As the security of outsourced data lies

entirely in the hands of the CSP, users need to take measures to ensure the confidentiality of their data.



2

A natural solution to these major problems outlined above is encryption, which can protect data at

rest and in transit. Foe example, secure database frameworks such as Arx [7] and CryptDB [8] utilize

encryption to protect stored data. Encryption prevents CSPs from viewing plaintext data and ensures

privacy even if the cloud servers are compromised by attackers. However, these benefits come with a

serious drawback: if the outsourced data is dynamic and should change over time, standard encryption

remains limited. Indeed, to update and perform computations with the outsourced encrypted data, the data

must first be pulled from the cloud, decrypted, used for computation, re-encrypted, and then re-uploaded

to the cloud. This lengthy and computationally intensive process defeats the purpose of outsourcing in

the first place.

To allow the cloud to carry out operations on encrypted data, it is necessary to utilize special algorithms

that protect data in use. Fully homomorphic encryption (FHE), often referred to as the “holy grail”

of cryptography [9], enables arbitrary computation on encrypted data and can eliminate the lengthy

process previously discussed. FHE allows the cloud to carry out meaningful computations while remaining

completely oblivious to details about the plaintext data [10].

While open-source homomorphic encryption libraries are readily available today, they are prohibitively

difficult to use for non-crypto savvy programmers. Various parameters must be set properly to ensure

sufficient levels of security, complicated objects and variables must be initialized (and later properly

deleted), and a deep understanding of the library’s API is required to properly carry out computations

on ciphertexts. Also, for many libraries, ciphertext noise must be continuously monitored to determine

when special noise-reduction steps are required to ensure successful decryption.

In this work, we present ROMEO: a novel framework that eliminates the steep learning curve of FHE by

automatically converting arbitrary Verilog programs to equivalent homomorphic programs compatible with

the state-of-the-art TFHE library [11]. Security parameters, key generation and management, ciphertext

generation, and freeing memory are handled transparently and abstracted away from the user. Specifically,

our contributions can be summarized as follows:

• Automated conversion of algorithms expressed in Verilog into equivalent homomorphic circuits that

enable privacy-preserving processing of encrypted data on the cloud.

• A novel compiler that translates combinational and sequential netlists into standard C++ code

implementing equivalent fully homomorphic operations.

• A versatile execution engine that enables homomorphic evaluation of state machines and sequential

algorithms using encrypted clock signals.

The remainder of the paper is organized as follows: Section II provides a brief background on FHE,

modern implementations, and the TFHE library employed in this work. Section III presents an overview



3

of our ROMEO framework, while Section IV presents our experimental evaluation. Section V offers

comparisons with related works, and Section VI presents our concluding remarks.

II. PRELIMINARIES

A. Basics of Homomorphic Encryption

Homomorphic encryption (HE) allows users to perform operations on encrypted data without ever

exposing the plaintext. In particular, for an arbitrary function F on plaintexts “a” and “b” there is an

HE-equivalent function G on the encryptions of “a” and “b” so that F(a, b) = Dec(G(Enc(a),Enc(b)))

(i.e., decrypting the value of G on ciphertexts yields the value of F on plaintexts). Since HE schemes

never expose plaintext data while carrying out computations, this form of encryption enables companies

and individuals to outsource sensitive data to untrusted third parties, such as the cloud, and dictate them

to perform homomorphic operations on that data.

Various “partially” HE schemes, such as RSA [12], Paillier [13], and ElGamal [14], have existed for

several decades and support only certain homomorphic operations (such as addition or multiplication,

but not both). In addition, there exist “leveled” HE schemes that allow evaluating Boolean circuits up

to a certain depth [15]; the latter lacks a mechanism to deal with noise accumulated in ciphertexts after

each operation. In fact, as more operations are performed on ciphertexts, they could eventually become

non-decryptable and completely useless. Thus, the circuit depth must be restricted to keep the ciphertext

noise within acceptable levels.

In 2009, Gentry proposed a groundbreaking FHE scheme that enables evaluating Boolean circuits of

arbitrary depth without noise problems [10]. Specifically, Gentry was able to reset ciphertext noise using a

technique called bootstrapping, which entails evaluating a ciphertext decryption circuit homomorphically.

Surprisingly, this technique reduces ciphertext noise to safe levels and allows unlimited computations.

Gentry’s method paved the way for the first generation of FHE.

The implementations of first generation FHE schemes were much slower than today’s state-of-the-art

libraries. For example, one bootstrapping operation took between 30 seconds with weak security param-

eters and approximately 30 minutes with strong security parameters using one of the first available FHE

libraries [16]. In 2012, it was also demonstrated that the AES circuit could be evaluated homomorphically

within 36 hours [17]. At that time, homomorphic encryption was infeasible for use outside of the academic

sphere due to its slow speeds and low memory efficiency.

Over time, new FHE schemes have been proposed that drastically improved the speed of bootstrapping

and other homomorphic operations. Gentry, Sahai, and Waters started this trend with their seminal

2013 paper proposing a scheme known as the GSW cryptosystem, which reduced the execution time of



4

homomorphic addition and multiplication by transforming them into matrix addition and multiplication

respectively [18]. Notably, this scheme also does not require the untrusted third party carrying out

computations on ciphertexts to have an evaluation key. A novel scheme introduced in 2014 called FHEW

[19], built upon GSW to create a library that could execute bootstrapping procedures in less than one

second. Initially, FHEW supported only the FHE equivalent of a NAND operation with bootstrapping;

this was chosen because it is a functionally complete operation (i.e., it can implement any arbitrary

function). Building upon the principles of FHEW, in 2017 a new open source library called “TFHE: Fast

Fully Homomorphic Encryption over the Torus” has been proposed [11].

B. Homomorphic Encryption Libraries

To date, several open-source homomorphic encryption libraries are available. HElib [16], the first

publicly available HE library, performs mathematical operations on multi-bit ciphertexts and can compute

any polynomial function of arbitrary degree. However, this library has several drawbacks that make it

impractical for general purpose computation. First, bootstrapping speeds and evaluation times remain

high compared to newer libraries. In addition, HElib exposes a complex API that requires users to tune

multiple security parameters, as well as manually keep track of ciphertext noise and determine when

bootstrapping should be applied.

In 2018, Microsoft released their own homomorphic library called SEAL [20]. While this library

provides users with a simpler API that allows conducting additions and multiplications on ciphertexts,

it is not capable of FHE in its current state. Instead, SEAL provides leveled homomorphic encryption,

which does not offer a bootstrapping function and therefore allows for only a finite number of operations

on ciphertexts. While this may be suitable for some applications, it is not sufficient for general-purpose

computation (as in ROMEO) that requires support of circuits of arbitrary depth.

FHEW, as described previously, initially implemented only NAND evaluations on encrypted bits, while

in 2017, increased functionality was added to the library, including NOR, OR, AND, and NOT evaluations.

While FHEW is fully homomorphic and provides fast bootstrapping speeds compared to prior schemes,

its successor, TFHE, boasts even faster speeds [21]. TFHE is a fast FHE library first released in 2017,

which is a successor to FHEW and operates exclusively on Boolean circuits. All ciphertexts are encrypted

as binary values: plaintext data is converted to binary, encrypted bit by bit, and stored in a ciphertext array

that has a size of approximately 2.2kB ∗N , where N is the number of bits in the plaintext. The TFHE

library offers the ability to carry out any logic gate function on ciphertexts and handles bootstrapping

automatically after each gate evaluation (except the NOT gate that does not need bootstrapping). Since

TFHE supports evaluation of all types of logic gates (i.e., it offers multiple functionally-complete sets



5

Fig. 1. ROMEO Outline. Verilog designs are converted to netlists and then passed to the ROMEO compiler. The compiler

administers keys, receives inputs from the user, and generates an encrypted circuit to the cloud for outsourcing. When the cloud

finishes the circuit evaluation, the resulting ciphertext is sent to the user.

of operations), it supports arbitrary computation on encrypted data. This property, as well as the fact

that it can evaluate circuits of arbitrary depth, classify it as fully homomorphic. TFHE provides very

competitive bootstrapping speeds and gate evaluation times. Thus, TFHE is an ideal candidate for use

with ROMEO.

III. THE ROMEO FRAMEWORK

ROMEO offers the following functionality: it consumes Verilog programs and outputs a homomorphic

circuit operating on encrypted data, which can be evaluated by an untrusted remote party. To accomplish

this, the first step is to use synthesis to convert Verilog programs to netlists consisting of logic gates and

primitive memory structures like flip flops. Next, the generated netlist serves as an input to ROMEO’s

special compiler that parses the circuit, determines the correct execution order of the gates, and generates

an equivalent and efficient homomorphic program. An outline of our framework is illustrated in Figure 1.

A. RTL Synthesis

To handle synthesis, ROMEO’s back-end uses the Yosys Open SYnthesis Suite [22], which is an

open source toolchain performing RTL synthesis along with basic circuit optimization functionality. Our

framework receives Verilog source code files as input and instructs the Yosys back-end to apply the

following:

1) perform optimizations including removing unused wires and replacing process blocks with flip-flops;

2) map cells to standard logic gates and small multiplexers;

3) write resulting netlist as an EDIF (Electronic Design Interchange Format) file.



6

B. Combinational Circuit Conversion

Once an EDIF netlist is generated by Yosys, ROMEO’s compiler transforms it into a standard C/C++

program composed of homomorphic operations exposed by TFHE’s API. First, the EDIF netlist is scanned

and the compiler identifies all gates and wires in the circuit. On a second pass, connections between gates

and wires are made and the circuit detailed in the EDIF file is now fully constructed. Finally, the C/C++

source file is created and all ciphertext structures required for the circuit (i.e., one ciphertext per wire)

are initialized.

To begin conversion, our compiler takes plaintext inputs from the user in binary and generates C++ code

that calls TFHE functions to encrypt them. The now encrypted inputs are loaded into their corresponding

input wires in the HE circuit using TFHE’s copy gate functionality, which introduces negligible overhead.

Next, ROMEO constructs a Directed Acyclic Graph (DAG) to determine the execution order of all gates

in the HE circuit. This is necessary as homomorphic gate evaluations are serialized and, for each gate,

all dependent gate evaluations must be completed before the current gate’s input wires are assigned the

correct ciphertext values. The DAG construction is outlined in Algorithm 1: the graph is traversed until

all gate operations have been written consecutively to the generated C++ file. Finally, the ciphertexts

corresponding to output wires are saved in a file and all ciphertext structures are destroyed.

C. Sequential Circuit Conversion

Evaluating sequential circuits in the encrypted domain requires a more involved approach than purely

combinational circuits. For one, the incorporation of a clock signal poses an important challenge for

homomorphic evaluation: before using the clock signal as an input to an encrypted domain function,

the current clock state must be encrypted. It is not possible, however, to mix plaintext clock signals

with ciphertexts, and there are two approaches to address the requirement of encrypted clock signals:

the user could either encrypt a large number of 0’s and 1’s prior to circuit evaluation and upload these

values to the cloud, or instruct the cloud to encrypt these values as needed on-the-fly. In this work, we

employ the latter approach in order to minimize the computation on the user side, as well as reduce the

communication overhead between the user and remote cloud server.

In addition to the encrypted clock challenge, TFHE does not offer support for sequential circuit com-

ponents such as flip flops (FFs). Thus, to incorporate FF functionality into homomorphic circuits, ROMEO

implements a gate re-evaluation technique illustrated in Algorithm 2. First, we begin by instructing the

cloud to generate an encrypted clock signal that initializes to ’0’ (and inverts after every complete pass

through the circuit). Then, the cloud proceeds to evaluate the circuit like a combinational circuit; when

a FF is reached, the data input to the FF is stored for the next round and the output takes on the FF



7

Algorithm 1: Determine Order of Gate Evaluations

for gate in circuit do

for wire in gate.inputs do

if wire is output from other gate then

gate.dependsOn += wire.originator;

while unevaluated gates remain do

if gate.evaluated == True then

continue;

for gate in circuit do

if gate.dependsOn == ”” then

gate.evaluated = True;

write gate to file(gate);

else

ready = True;

for prevGate in gate.dependsOn do

if prevGate.evaluated == False then

ready = False;

if ready == True then

gate.evaluated = True;

write gate to file(gate);

return;

input from the previous round. On subsequent passes through the circuit, only gates that depend on the

output of FFs and gates upon which FFs are dependent are re-calculated. Purely combinational logic

networks separated from sequential components are only executed on the initial pass as their outputs will

not change over time.

Notably, the cloud remains oblivious to the number of clock cycles necessary to finish a circuit

evaluation. This stems from the fact that the cloud has no knowledge about the plaintext values assigned to

wires and signals in the circuit. Thus, users can define in advance how many clock cycles are necessary for

the circuit to complete its evaluation. While ROMEO’s compiler is generating the homomorphic circuit for

outsourcing, it will prompt the user for the number of timesteps required during evaluation. The compiler

will re-evaluate the necessary logic gates for each additional timestep. In ROMEO, combinational circuits

are treated as sequential circuits with a single timestep.



8

Algorithm 2: Optimized Circuit Re-evaluation

Function re-eval(gate):

if gate precedes flip-flop then

flag gate for re-evaluation;

for prevGate in gate.dependsOn do

re-eval(prevGate);

else if gate follows flip-flop then

flag gate for re-evaluation;

for nextGate in gate.next do

re-eval(nextGate);

return;

D. Circuit Verification using Debug Mode

The ROMEO framework provides users with a convenient method for testing the correctness of a

homomorphic circuit before outsourcing to a third party. This saves users from the cost and time required

to deploy potentially faulty code to the cloud. To add debugging functionality, the generated TFHE C++

code can contain additional verification elements: the user’s private key is read in by the program to assist

with decryption and users are prompted to directly input plaintext values that are immediately encrypted

with the private key and loaded into the circuit’s input wires. Once the circuit evaluation has completed,

the private key is used to decrypt all output wires and to print the corresponding plaintext outputs.

To rapidly verify the accuracy of the circuit in debug mode, ROMEO can encrypt circuit inputs using

the evaluation key instead of the private key. Normally, the former key is used to encrypt non-sensitive

constant values for computation with sensitive encrypted ciphertexts and TFHE treats such ciphertexts

generated with the evaluation key as “trivial”, assuming that both the third party and the user know

the corresponding plaintext values. The executing overhead for FHE gates processing these “trivial”

ciphertexts is very fast at approximately 10 microseconds per gate evaluation. This is three orders of

magnitude faster than the typical FHE gate evaluation speed of 13 ms [11]. Using this feature, users can

evaluate correctness of FHE circuits very efficiently. We remark that ROMEO’s debug mode can only be

used locally, as it is insecure to encrypt data with the evaluation key while outsourcing to the cloud.

IV. EXPERIMENTAL EVALUATION

The ROMEO framework was used to convert all combinational and sequential circuits from the ISCAS

’85 [23] and ISCAS ’89 [24] benchmark suites to the encrypted domain. In addition, we converted



9

Fig. 2. Encrypted circuit evaluation times for the ISCAS ’85 benchmark suite.

five encryption benchmark circuits to demonstrate the robustness of our framework. These benchmarks

were chosen due to their widespread use, the broad range of circuit sizes, and the inclusion of both

combinational and sequential circuits. All experiments were performed on an Ubuntu 18.10 host with 8

GBs of RAM and an i7-8650U CPU. The TFHE security parameter (λ) was set at the default value for

110 bits of security. Lastly, the reported times were averaged over 10 executions per circuit and each

execution was assigned one exclusive processor core.

A. ISCAS Combinational Circuits

The homomorphic circuit evaluation times for the ISCAS ’85 combinational benchmarks are presented

in Figure 2. Our results show an approximately linear increase in execution time with the number of

evaluated gates. Nevertheless, the evaluation time for different gates are not the same: for instance,

inverters are evaluated much faster than other logic gates because no bootstrapping is required for this

operation. As illustrated in the graph, the c5315 circuit incurs longer evaluation times than the two largest

circuits despite its smaller size. This deviation from expected behavior is attributed to the proportion of

inverter gates to the overall number of gates in the circuit. Indeed, the two largest circuits contain

approximately 34% inverters while c5315 contains about 25% inverters.

B. ISCAS Sequential Circuits

The results for the ISCAS ’89 sequential circuit benchmarks are presented in Figure 3. These numbers

show the amortized execution cost per cycle (i.e., one complete circuit evaluation). This cost was amortized

over ten clock cycles. As with the combinational results, a roughly linear increase in execution time is

observed with increasing numbers of gates as anticipated. However, more variance is observed due to

the varying number of gates that need to be re-evaluated for each cycle. This is entirely dependent on

the circuit configuration.



10

Fig. 3. Amortized evaluation time per cycle (over 10 cycles) for encrypted circuits from the ISCAS ’89 benchmark suite.

C. Encryption Circuits

To further illustrate the robustness of the ROMEO framework, we tested its performance using five

circuits implementing the following well-known encryption algorithms: DES [25], AES [26], PRESENT

[27], SIMON and SPECK [28]. The last three algorithms are lightweight block ciphers and their circuits

are suited for homomorphic evaluation. In more details, PRESENT has an 80-bit key and a 64-bit block

size, while SIMON and SPECK ciphers [28] support a variety of block and key sizes (in this work, we

implemented the 128/128 variants with 128-bit block size and 128-bit key size). Moreover, DES uses 56

bit keys (with 8 parity bits added for a total of 64 bits) and a 64 bit block size. Finally, AES, the most

widely used encryption cipher today, uses a 128 bit key and a 128 bit block size [26]. Our experimental

results in Figure I show that the homomorphic evaluation of PRESENT was the fastest, with SIMON and

SPECK being slightly slower. Conversely, the homomorphic evaluation of DES took approximately 24

minutes and AES required 13.5 minutes due to the complexity and larger size of these circuits. In the

case of DES, we attribute the slow speed due to the substitution step, which is implemented with look-up

tables; since it is not possible to branch on encrypted data, all possible outputs must be computed for

each look-up table evaluation.

TABLE I

EVALUATION TIMES FOR STANDARD ENCRYPTION ALGORITHMS

Cipher
Evaluation

Time (s)
Cycles

Gate Eval-

uations

Input

Wires

Output

Wires

PRESENT 107.35 31 12256 144 64

SIMON 129.28 68 13698 256 128

SPECK 152.70 32 17821 256 128

DES 1461.29 16 167058 120 64

AES 810.65 10 61113 256 128



11

D. Scheme Hopping on Cloud Servers

The lightweight ciphers in Section IV-C enable practical applications of encrypted computation, such as

scheme-hopping. With scheme-hopping, users first encrypt their sensitive data with a symmetric encryption

algorithm (e.g., compute SIMON ciphertexts that are much smaller than TFHE ciphertexts) and then

upload these encryptions to a cloud server; in turn, the cloud server encrypts for a second time each bit

of these ciphertext with TFHE. The users also encrypt each bit of their symmetric key (i.e., the SIMON

key) with TFHE and upload these encryptions to the cloud server as well. Using ROMEO, the cloud

server can generate and evaluate the FHE circuit corresponding to symmetric decryption (e.g., SIMON

decryption) using the TFHE ciphertexts of the symmetric key and the user data. This process “peels off’

the symmetric encryption and result in a TFHE ciphertext on the cloud server. Depending on the size of

the initial plaintext, this can drastically reduce the communication overhead between the user and cloud,

as uploaded user data are symmetrically encrypted (only the key bits are encrypted with FHE).

To demonstrate this method, we utilized an Amazon EC2 instance with 48 vCPUs and 384 GiB of

memory to perform scheme-hopping using SIMON. The local host computed a Simon ciphertext for a

128-bit plaintext, as well as the TFHE encryption of SIMON’s key (this resulted in a 128 * 2.2 KB

ciphertexts). The TFHE-encrypted Simon key and the 128-bit Simon ciphertext were uploaded to the

EC2 instance (this step took 2.1 seconds) and the Amazon server was able to “peel-off” the symmetric

encryption and compute a TFHE ciphertext corresponding to the original 128-bit plaintext. This evaluation

took 19.63 seconds on the EC2 server, and minimized upload overhead of the local host.

E. User Overhead for TFHE Encryption and Decryption

From the user’s perspective, there is a one time cost to generate a keypair (which can be used for

multiple circuits) and encrypt inputs with the secret key. On average, key generation takes approximately

770 milliseconds with 110 bits of security and the cost of encryption is 22 microseconds per bit of

plaintext. The decryption operation time is negligible at less than 1 microsecond per bit.

V. RELATED WORKS

While fully homomorphic encryption has garnered a great deal of attention in the years since its

inception, the majority of research efforts in this field focus on acceleration, improving existing schemes,

and specific applications of homomorphic encryption. For instance, recent works have explored the

potential of neural network training and inferencing in the encrypted domain [29] [30]. To the best

of the authors’ knowledge, there is no framework that supports complete conversion of arbitrary HDL



12

designs to encrypted circuits. However, past research efforts have been made to make homomorphic

encryption more usable for the average programmer.

The E3 framework [21] provides users with an API that allows them to flag sensitive variables as

“secure” in C/C++ programs. These variables are homomorphically encrypted and each program statement

involving these variables will generate a corresponding homomorphic circuit. In addition, E3 offers users

the choice of HElib, FHEW, or TFHE 1.0. However, this approach requires users to modify their source

code and does not support arbitrary functionality (e.g., can’t process conditionals on encrypted data).

The Cingulata compiler toolchain [31] allows for conversion of C/C++ programs to homomorphic

circuits and provides similar functionality to E3 with some caveats. It requires users to modify their

programs to work with the toolchain and, while providing a simpler API than many homomorphic

encryption libraries, it requires significant effort on behalf of the user to understand the nuances of

the Cingulata library and its associated structures and data types. Conversely, ROMEO abstracts this

complexity and enables automated conversion of HDL code into C++ executables.

VI. CONCLUSION

In this work, we have proposed a novel framework for automated conversion from arbitrary synthesiz-

able Verilog HDL designs to encrypted circuits for privacy outsourcing applications. First, Verilog designs

are converted to netlists through the process of synthesis. Next, the ROMEO custom compiler creates an

internal construction of the circuit outlined in the netlist and determines the correct execution order for

the homomorphic gate evaluations. The resulting homomorphic circuit is written to a C++ source code

file that employs the TFHE library and can be sent to the cloud for evaluation along with encrypted

inputs. For the user’s peace of mind, ROMEO provides a debug mode capable of fully simulating the

homomorphic circuit locally to verify correct operation.

We tested ROMEO with circuits from the ISCAS ’85 and ’89 benchmark suites as well as five well-

known cryptographic circuits. In all cases, we observed a roughly linear increase in encrypted circuit

evaluation time with a growing number of gate evaluations. On a final note, it is possible for users

to enhance the usability of this framework further by incorporating high level synthesis (HLS) tools

into the toolchain. This would allow for assisted conversion from high level languages such as C/C++ to

homomorphic circuits. The ROMEO framework is open source and is available at the following repository:

https://github.com/TrustworthyComputing/Romeo.



13

REFERENCES

[1] A. J. Duncan, S. Creese, and M. Goldsmith, “Insider attacks in cloud computing,” in IEEE TrustCom, June 2012, pp.

857–862.

[2] Z. Tari et al., “Security and privacy in cloud computing: Vision, trends, and challenges,” IEEE Cloud Computing, vol. 2,

pp. 30–38, Mar 2015.

[3] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache attacks,” in ASIACCS ’16. New York, NY, USA: ACM,

pp. 353–364.

[4] Y. Xiao et al., “One bit flips, one cloud flops: Cross-VM row hammer attacks and privilege escalation,” in USENIX Security,

2016, pp. 19–35.

[5] F. Liu et al., “Catalyst: Defeating last-level cache side channel attacks in cloud computing,” in IEEE HPCA, 2016, pp.

406–418.

[6] Y. Han et al., “Using virtual machine allocation policies to defend against co-resident attacks in cloud computing,” IEEE

Transactions on Dependable and Secure Computing, vol. 14, no. 1, pp. 95–108, 2015.

[7] R. Poddar, T. Boelter, and R. A. Popa, “ARX: A strongly encrypted database system,” Cryptology ePrint Archive, Report

2016/591.

[8] R. A. Popa et al., “CryptDB: Protecting Confidentiality with Encrypted Query Processing,” in SOSP. ACM, 2011, pp.

85–100.

[9] D. Micciancio, “A first glimpse of cryptography’s holy grail,” Communications of the ACM, vol. 53, no. 3, p. 96, 2010.

[10] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford University, 2009.

[11] I. Chillotti et al., “TFHE: Fast fully homomorphic encryption over the torus,” Journal of Cryptology, pp. 1–58, 2018.

[12] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,”

Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[13] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in EUROCRYPT. Springer, 1999,

pp. 223–238.

[14] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE Transactions on

Information Theory, vol. 31, no. 4, pp. 469–472, 1985.

[15] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on ciphertexts,” in IACR TCC. Springer, 2005, pp.

325–341.

[16] S. Halevi and V. Shoup, “Algorithms in HElib,” in CRYPTO. Springer, 2014, pp. 554–571.

[17] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the AES circuit,” in CRYPTO. Springer, 2012, pp.

850–867.

[18] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based,” in CRYPTO. Springer, 2013, pp. 75–92.

[19] L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic encryption in less than a second,” in EUROCRYPT.

Springer, 2015, pp. 617–640.

[20] “Microsoft SEAL (release 3.4),” https://github.com/Microsoft/SEAL, Oct. 2019, Microsoft Research, Redmond, WA.

[21] E. Chielle et al., “E3: A framework for compiling C++ programs with encrypted operands,” Cryptology ePrint Report

2018/1013.

[22] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.

[23] F. Brglez, “A neutral netlist of 10 combinatorial benchmark circuits and a target translator in FORTRAN,” in IEEE ISCAS,

1985, pp. 663–698.



14

[24] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential benchmark circuits,” in IEEE ISCAS, 1989,

pp. 1929–1934.

[25] “Data Encryption Standard,” in FIPS PUB 46, Federal Information Processing Standards Publication, 1977.

[26] “Advanced Encryption Standard (AES),” in FIPS PUB 197, Federal Information Processing Standards Publication, 2001.

[27] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,” in CHES. Springer, 2007, pp. 450–466.

[28] R. Beaulieu et al., “The SIMON and SPECK lightweight block ciphers,” in DAC. IEEE/ACM, 2015, pp. 1–6.

[29] K. Nandakumar et al., “Towards deep neural network training on encrypted data,” in IEEE CVPRW, 2019.

[30] R. Dathathri et al., “CHET: an optimizing compiler for fully-homomorphic neural-network inferencing,” in PLDI. ACM,

2019, pp. 142–156.

[31] CEA-LIST, “Cingulata compiler toolchain,” https://github.com/CEA-LIST/Cingulata.


