
Fiddling the Twiddle Constants - Fault Injection
Analysis of the Number Theoretic Transform

Prasanna Ravi1,2, Bolin Yang3, Shivam Bhasin1, Fan Zhang4 and Anupam
Chattopadhyay1,2

1 Temasek Laboratories, Nanyang Technological University, Singapore
2 School of Computer Science and Engineering, Nanyang Technological University, Singapore

3 College of Information Science and Electronic Engineering, Zhejiang University, China
4 Zhejiang University, China

prasanna.ravi@ntu.edu.sg yangbolin@zju.edu.cn sbhasin@ntu.edu.sg
anupam@ntu.edu.sg fanzhang@zju.edu.cn

Abstract.
In this work, we present the first fault injection analysis of the Number Theoretic
Transform (NTT). The NTT is an integral computation unit, widely used for polyno-
mial multiplication in several structured lattice-based key encapsulation mechanisms
(KEMs) and digital signature schemes. We identify a critical single fault vulnerability
in the NTT, which severely reduces the entropy of its output. This in turn enables
us to perform a wide-range of attacks applicable to lattice-based KEMs as well as
signature schemes. In particular, we demonstrate novel key recovery and message
recovery attacks targeting the key generation and encryption procedure of Kyber
KEM. We also propose novel existential forgery attacks targeting deterministic and
probabilistic signing procedure of Dilithium, followed by a novel verification bypass
attack targeting its verification procedure. All proposed exploits are demonstrated
with high success rate using electromagnetic fault injection on optimized implemen-
tations of Kyber and Dilithium, from the open-source pqm4 library on the ARM
Cortex-M4 microcontroller.
Keywords: No keywords given.

1 Introduction
The NIST standardization process for post-quantum cryptography is in its third and final
round, at the time of writing of this paper, with the first draft standards expected to be
released in 2023. While implementation performance and theoretical security guarantees
served as the main criteria in the initial rounds, resistance against side-channel attacks
(SCA) and fault injection attacks (FIA) emerged as an important criterion in the final
round, as also clearly stated by NIST at several instances [AH21,RR21]. More importantly,
it could serve as a key distinguisher for the final selection of candidates, especially amongst
those schemes with tightly matched security and efficiency.

Amongst the seven main finalists for key encapsulation mechanisms (KEMs) and
digital signatures, five schemes base their security on hard problems over structured lat-
tices [AASA+20]. These schemes are particularly attractive for constrained embedded
devices, owing to their relatively small public key sizes and highly competitive runtimes.
They typically operate over polynomials in polynomial rings, and notably, polynomial
multiplication is one of the most computationally intensive operations in practical implemen-
tations of these schemes. Among the several known techniques for polynomial multiplication
such as the schoolbook multiplier, Toom-Cook [Too63] and Karatsuba [Kar63], the Number

mailto:prasanna.ravi@ntu.edu.sg
mailto:yangbolin@zju.edu.cn
mailto:sbhasin@ntu.edu.sg
mailto:anupam@ntu.edu.sg
mailto:fanzhang@zju.edu.cn

2 Fault Injection Analysis of the Number Theoretic Transform

Theoretic Transform (NTT) based polynomial multiplication [CT65] is one of the most
widely adopted techniques, owing to its superior run-time complexity and a compact design.
Over the years, there has been a sustained effort by the cryptographic community to
improve the performance of NTT for lattice-based schemes on a wide-range of hardware
and software platforms [RVM+14,POG15,BKS19,ACC+22,CHK+21]. As a result, the
use of NTT for polynomial multiplication yields the fastest implementation for several
finalist candidates such as Kyber [ABD+20], Dilithium [LDK+17], Saber [DKSRV20] and
NTRU [CDH+19].

While NTT provides significant implementation benefits, it also manipulates sensitive
variables, thereby serving as an attractive target for SCA and FIA. While the side-channel
resistance of NTT has been studied by a number of works [PPM17, PP19, RPBC20],
its susceptibility to fault injection attacks has not recieved much attention. Given its
widespread use in lattice-based schemes, this raises a critical question whether the NTT or
more importantly its implementations contain hidden vulnerabilities that can be exploited
through FIA to compromise the security of lattice-based schemes.

Our Contribution: In this work, we answer this question positively, by presenting
the first fault injection analysis of the NTT. Our work relies on a key observation that ze-
roization of the twiddle contants significantly reduces the entropy in the NTT output, which
inturn severely impacts the security of lattice-based schemes. To analyze the feasibility of
such a fault, we perform a detailed study of the optimized implementations of NTT used
in Kyber (representative of KEMs) and Dilithium (representative of signature schemes) on
the ARM Cortex-M4 microcontroller using electromagnetic fault injection. We identified a
critical fault vulnerability in their implementations, which enables zeroization of all the
twiddle constants using a single targeted fault. This enables practical key/message recovery
attacks on Kyber KEM and forgery attacks on Dilithium. To the best of our knowledge,
we present first practical forgery attack on probabilistic variant1 and verification bypass
attack on the verification procedure of Dilithium.

Organization of the Paper

In Section 2, we provide a generic description of Kyber and Dilithium, and provide some
background about NTT as well as related prior work. In Section 3, we describe the
identified vulnerability in the NTT, and a detailed analysis of the same over practical
implementations of NTT in Kyber and Dilithium. In Sections 4 and 5, we demonstrate
exploitation of the identified vulnerability in Kyber and Dilithium respectively. In Section
6, we perform experimental validation of our attacks using EMFI, followed by conclusion
and mitigation in Section 7.

2 Background
2.1 Notation
Let q be a prime number, and the field of integers modulo q be denoted as Zq. Schemes
such as Kyber and Dilithium operate over polynomials in polynomial rings. The polynomial
ring Zq[x]/φ(x) is denoted as Rq where φ(x) = xn + 1 is a cyclotomic polynomial with n
being a power of 2. Polynomials in Rq are denoted using regular font letters (i.e.) a ∈ Rq.
The ith coefficient of a ∈ Rq is denoted as ai ∈ Zq. For a ∈ Rq, `∞(a) denotes the largest
absolute value of a coefficient of a in Zq. A vector of polynomials in Rq is denoted using
bold lower case letters (i.e.) a ∈ Rk

q with k > 1, and a matrix of polynomials in Rq

1Islam et al. [IMS+22] recently proposed a rowhammer based attack on deterministic and probabilistic
Dilithium but its final complexity still remains as 289, while we report a full break.

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 3

is denoted using bold upper case letters (i.e.) A ∈ Rk×`
q with (k, `) > 1. The element

A[i][j] denotes the polynomial in row i and j of A ∈ Rk×`
q . Transpose of a matrix A is

denoted as AT . Multiplication of polynomials (a, b) ∈ Rq is denoted as c = a · b ∈ Rq.
Pointwise/Coefficient-wise multiplication of two polynomials (a, b) ∈ Rq is denoted as
c = a ◦ b ∈ Rq. We denote B as a byte array, where the ith byte is denoted as B[i]. For
a given element a (Zq or Rq or Rk×`

q), its corresponding faulty value is denoted as a∗
and we utilize this notation for description of our attacks. The NTT representation of a
polynomial a ∈ Rq is denoted as â ∈ Rq, and the same notation also applies to modules of
higher dimension.

2.2 Kyber
Kyber is a Chosen-Ciphertext Attack (CCA) secure KEM based on the Module Learning
With Errors (M-LWE) problem. Computations are done over modules in dimension (k× k)
(i.e) Rk×k

q where Rq = Zq[x]/(xn + 1), q = 3329 and n = 256. Kyber comes in three
security levels, Kyber512 (NIST Level 1), Kyber-768 (Level 3) and Kyber-1024 (Level
5) with k = 2, 3 and 4 respectively. The parameters q, n and the modular polynomial
φ(x) = xn + 1 are chosen, so as to allow the use of the Number Theoretic Transform (NTT)
for polynomial multiplication in Rq.

The CCA-secure Kyber KEM contains in its core, a Chosen-Plaintext Attack (CPA)
secure PKE. Refer to Algorithm 1 for a simplified description of the key-generation and
encryption procedures of CPA secure PKE of Kyber. We do not describe the decryption
procedure, as it is not a target of our attacks. The function SampleU samples from a
uniform distribution, SampleB samples from a binomial distribution; Expand expands a
small seed into a uniformly random matrix in Rk×k

q . The function Compress(u, d) lossily
compresses u ∈ Zq into v ∈ Z2d with q > 2d, while Decompress(v, d) extrapolates v ∈ Z2d

into u′ ∈ Zq. The CPA secure PKE is converted into a CCA secure KEM using the
Fujisaki-Okamoto transformation [FO99]. The transformation enables to check for the
validity of the received ciphertext upon decryption, by performing a re-encryption of the
decrypted message. This enables to detect invalid ciphertexts, thereby offering concrete
theoretical security guarantees against chosen-ciphertext attacks. We refer the reader to
[ABD+20] for more details on CCA secure Kyber KEM.

2.3 Dilithium
Dilithium is a lattice-based signature scheme secure, whose security is based on the Module
LWE (M-LWE) and Module SIS (M-SIS) problem. Dilithium operates over the module
Rk×`

q with (k, `) > 1 where Rq = Z[x]/(xn + 1), n = 256 and q = 223− 217− 1. This choice
of parameters allows the use of NTT for polynomial multiplication in Rq. Dilithium also
comes in three security levels: Dilithium2 with (k, `) = (4, 4) at NIST Level 2, Dilithium3
with (k, `) = (6, 5) at NIST Level 3 and Dilithium5 with (k, `) = (8, 7) at NIST Level
5. There are two variants of Dilithium: (1) Deterministic (2) Probabilistic/Randomized,
which only subtly differ in the way randomness is used in the signing procedure. The
signing procedure of the deterministic Dilithium does not utilize external randomness and
can generate only a single signature for a given message. The randomized variant however
utilizes external randomness and thus generates a different signature, for a given message
in each execution.

Refer Alg.2 for the key generation, signing and verification procedures of Dilithium.
The functions SampleU , SampleB and Expand perform the same functions as in Kyber,
albeit with different parameters. Dilithium also uses a number of rounding functions such
as Power2Round, HighBits, LowBits, MakeHint and UseHint, whose details can be found in
[LDK+17]. The key generation procedure simply involves generation of an LWE instance
t (Line 4). Subsequently, the LWE instance is split into higher and lower order bits t1

4 Fault Injection Analysis of the Number Theoretic Transform

Algorithm 1 CPA Secure Kyber PKE (Simplified)
1: procedure CPA.KeyGen
2: seedA ∈ B ← SampleU () . Generate uniform SeedA

3: seedB ∈ B ← SampleU () . Generate uniform SeedB

4: Â = NTT(A) ∈ Rk×k
q ← Expand(seedA) . Expand seedA into Â in NTT domain

5: s ∈ Rk
q ← SampleB(seedB , coinss) . Sample secret s using (SeedB , coinss)

6: e ∈ Rk
q ← SampleB(seedB , coinse) . Sample error e using (SeedB , coinse)

7: ŝ ∈ Rk
q ← NTT(s) . NTT(s)

8: ê ∈ Rk
q ← NTT(e) . NTT(e)

9: t̂ = Â ◦ ŝ + ê . t = A · s + e in NTT domain
10: Return (pk = (seedA, t̂), sk = (ŝ))
11: end procedure

12: procedure CPA.Encrypt(pk,m ∈ {0, 1}256, seedR ∈ {0, 1}256)
13: Â ∈ Rk×k

q ← Expand(seedA)
14: r ∈ Rk

q ← SampleB(seedR, coins0) . Sample r using (SeedR, coins0)
15: e1 ∈ Rk

q ← SampleB(seedR, coins1) . Sample e1 using (SeedR, coins1)
16: e2 ∈ Rk

q ← SampleB(seedR, coins2) . Sample e2 using (SeedR, coins2)
17: r̂ ∈ Rk

q ← NTT(r) . NTT(r)
18: u ∈ Rk

q ← INTT(AT ◦ r̂) + e1 . u = AT · r + e1
19: v ∈ Rq ← INTT(t̂T ◦ r̂) + e2 + Decompress(m, 1) . v = tT · r + e2 + Encode(m)
20: Return ct = Compress(u, d1),Compress(v, d2)
21: end procedure

and t0 respectively (Line 5), where t1 forms part of the public key, while t0 becomes part
of the secret key.

The signing procedure of Dilithium is based on the “Fiat-Shamir with Aborts” frame-
work where the signature is repeatedly generated and rejected until it satisfies a given set
of conditions [Lyu09]. The message m is first hashed with a public value tr to generate µ
(Line 11). The abort loop (Line 18-31) starts by generating an ephemeral nonce y ∈ R`

q,
using a seed ρ. For the deterministic variant, the seed ρ is obtained by hashing µ with
a secret nonce K (Line 14), while the probabilistic variant randomly samples the seed ρ
from a uniform distribution (Line 16). This is the only differentiator between the two
variants. The nonce y along with the public key component A is then used to calculate a
sparse challenge polynomial c ∈ Rq (Line 22), whose 60 coefficients are either ±1, while
the other 196 coefficients are 0. Subsequently, the challenge c, nonce y and secret s1,
are used to compute the primary signature component z (Line 24). Then, a hint vector
h is generated and output as part of the signature σ. The abort loop contains several
conditional checks (Line 27), which should be simultaneously satisfied to terminate the
abort loop and generate the signature σ = (z,h, c).

The verification procedure utilizes the signature σ and the public key pk to recompute
the challenge polynomial c̄ (Line 38), which is then compared with the received challenge
c, along with other checks (Line 39). If all the checks are satisified, then the verification is
successful, else it is a failure.

2.4 Number Theoretic Transform
The Number Theoretic Transform (NTT) is utilized as a building block for polynomial
multiplication operation in several structured lattice-based schemes. While schemes such
as Kyber and Dilithium were designed with NTT-friendly parameters to allow use of
NTT, other schemes such as Saber, NTRU and NTRU Prime were designed with NTT-

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 5

Algorithm 2 Dilithium Signature scheme (Simplified)
1: procedure KeyGen
2: (seedA, seedS ,K) ∈ B ← SampleU (); s1, s2 ∈ (R`

q ×Rk
q)← SampleB(seedS)

3: A ∈ Rk×`
q ← Expand(seedA)

4: t = A · s1 + s2 . Generate LWE instance t
5: (t1, t0)← Power2Round(t) . Split t as t1 · 2d + t0
6: tr ∈ B ← H(seedA‖t1)
7: pk = (seedA, t1), sk = (seedA,K, tr, s1, s2, t0)
8: end procedure

9: procedure Sign(sk,M)
10: Â ∈ Rk×`

q ← Expand(seedA)
11: µ ∈ {0, 1}512 ← H(tr‖M) . Hash m with public value tr
12: κ← 0; (z,h)← ⊥
13: if Deterministic then
14: ρ ∈ R`

q ← H(K‖µ) . Generate seed ρ using message and secret seed K
15: else
16: ρ ∈ R`

q ← SampleU () . Generate uniform seed ρ
17: end if
18: while (z,h) = ⊥ do . Start of Abort Loop
19: y← SampleY (ρ‖κ)
20: ŷ = NTT(y) . NTT(y)
21: w← INTT(Â ◦ ŷ); w1 ← HighBits(w) . w1 = HighBits(A · y)
22: c ∈ Rq ← H(µ‖w1) . Generate Sparse Challenge c
23: ĉ = NTT(c) . NTT(c)
24: z = INTT(ĉ ◦ ŝ1) + y . z = s1 · c+ y
25: . . .
26: Compute Hint Vector h
27: if Conditional Checks Not Satisfied then
28: (z,h) = ⊥
29: κ = κ+ 1
30: end if
31: end while
32: σ = (z,h, c)
33: end procedure

34: procedure Verify(pk,M, σ = (z,h, c))
35: µ ∈ {0, 1}512 ← H(tr‖M)
36: ĉ = NTT(c) . NTT(c)
37: w′1 := UseHint(h,A · z− INTT(ĉ ◦ t̂1 · 2d, 2γ2)
38: c̄ = H(µ,w′1)
39: if (c̄ == c) and (norm of z and h are valid) then
40: Return Pass
41: else
42: Return Fail
43: end if
44: end procedure

unfriendly parameters, thereby relying on other techniques such as Toom-Cook [Coo66]
and Karatsuba [Kar63] for polynomial multiplication. However, recent works such as
[ACC+21, CHK+21, ACC+22] have shown that NTT can be indeed be used in these
schemes, which also leads to significant improvement in performance over non-NTT based

6 Fault Injection Analysis of the Number Theoretic Transform

approaches.
The NTT is simply a bijective mapping for a polynomial p ∈ Rq from a normal domain

into an alternative represetation p̂ ∈ Rq in the NTT domain as follows:

p̂j =
n−1∑
i=0

pi · ωi·j (1)

where j ∈ [0, n − 1] and ω is the nth root of unity in the operating ring Zq. The
corresponding inverse operation named Inverse NTT (denoted as INTT) maps p̂ in the
NTT domain back to p in the normal domain. The use of NTT requires either the nth

root of unity (ω) or 2nth root of unity (ψ) in the underlying ring Zq (ψ2 = ω), which can
be ensured through appropriate choices for the parameters (n, q). The powers of ω and ψ
that are used within the NTT computation are commonly referred to as twiddle constants.
NTT based multiplication of two polynomials a and b in Rq is typically done as follows:

c = INTT(NTT(a) ◦NTT(b)). (2)

The NTT over an n point sequence is performed using the well-known butterfly network,
which operates over several layers/stages. The atomic operation within the NTT computa-
tion is denoted as the butterfly operation. A butterfly operation takes as inputs (a, b) ∈ Z2

q

and a twiddle constant w, and produces outputs (c, d) ∈ Z2
q. There are two types of but-

terfly operations, which can be interchangeably used in the NTT/INTT: (1) Cooley-Tukey
(CT) butterfly [CT65] in Eqn.3 and (2) Gentleman-Sande (GS) butterfly [GS66] in Eqn.4.
An NTT/INTT of size n = 2k typically consists of k stages with each stage containing n/2
butterfly operations. Refer Fig.1 for the data-flow graph of a CT-butterfly based NTT for
an input sequence with length n = 8.

c = a+ b · w
d = a− b · w,

(3)
c = a+ b

d = (a− b) · w,
(4)

The underlying integer ring Zq of Dilithium contains both ω and ψ, ensuring complete
factorization of (xn + 1) into linear factors (degree 1). This enables to use a complete NTT
with k = log2(n) stages. However, the ring Zq of Kyber only contains ω, which implies
that (xn + 1) can only be factored into n/2 quadratic factors (degree 2). Thus, the last
stage of NTT/INTT in Kyber is skipped and the NTT output contains n/2 elements.
Thus, Kyber relies on the use of an incomplete NTT with k − 1 stages.

2.5 Prior Works
This subsection highlights notable works exploring vulnerability of lattice-based schemes
against fault-injection attacks.

2.5.1 Fault Attacks on Signature Schemes

Bindel et al. [BBK] reported the first fault analysis of lattice-based signatures, proposing
several fault attacks on signature schemes such as GLP [GLP12] and BLISS [DDLL13].
Their attacks target several operations across the key generation, signing and verification
procedures, assuming various fault models such as randomization faults, zeroization faults
and skipping faults. However, their attacks either rely on difficult-to-achieve fault models,
or require impractically high number of faults. Further, Espitau et al. [EFGT16] proposed
a novel loop abort fault attack on the signing procedure of BLISS, relying on only a single
fault to prematurely abort the generation of the nonce y (equivalent to Line 19 in Alg.2),
leading to key recovery with only a single fault. However, their attack assumes that

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 7

ψ4

ψ2

ψ2

ψ6

ψ

ψ

Stage 1 Stage 2 Stage 3

ψ4

ψ4

ψ4 ψ6

1

5

ψ3

ψ7

Addition
Subtraction

Multiplication

x0

<latexit sha1_base64="X58lhKK9tzQhV1TsPC9ADPitADw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48VTFtoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqeNUMfRZLGLVDqlGwSX6hhuB7UQhjUKBrXB8O/Nbj6g0j+WDmSQYRHQo+YAzaqzkP/Uyd9orV9yqOwdZJV5OKpCj0St/dfsxSyOUhgmqdcdzExNkVBnOBE5L3VRjQtmYDrFjqaQR6iCbHzslZ1bpk0GsbElD5urviYxGWk+i0HZG1Iz0sjcT//M6qRlcBxmXSWpQssWiQSqIicnsc9LnCpkRE0soU9zeStiIKsqMzadkQ/CWX14lzYuqV6te3tcq9Zs8jiKcwCmcgwdXUIc7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8f0VmOsw==</latexit>

x1

<latexit sha1_base64="/tmWf31NXYXzivIEGtxSdkh9a2Y=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48VTFtoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqeNUMfRZLGLVDqlGwSX6hhuB7UQhjUKBrXB8O/Nbj6g0j+WDmSQYRHQo+YAzaqzkP/Uyb9orV9yqOwdZJV5OKpCj0St/dfsxSyOUhgmqdcdzExNkVBnOBE5L3VRjQtmYDrFjqaQR6iCbHzslZ1bpk0GsbElD5urviYxGWk+i0HZG1Iz0sjcT//M6qRlcBxmXSWpQssWiQSqIicnsc9LnCpkRE0soU9zeStiIKsqMzadkQ/CWX14lzYuqV6te3tcq9Zs8jiKcwCmcgwdXUIc7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8f0t6OtA==</latexit>

x2

<latexit sha1_base64="0OScJCDxxlPdBuQQlU3tO+RRUlU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4rmFZoQ9lsp+3SzSbsbsQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMfRZLGL1EFKNgkv0DTcCHxKFNAoFtsPxzcxvP6LSPJb3ZpJgENGh5APOqLGS/9TLatNeueJW3TnIKvFyUoEczV75q9uPWRqhNExQrTuem5ggo8pwJnBa6qYaE8rGdIgdSyWNUAfZ/NgpObNKnwxiZUsaMld/T2Q00noShbYzomakl72Z+J/XSc3gKsi4TFKDki0WDVJBTExmn5M+V8iMmFhCmeL2VsJGVFFmbD4lG4K3/PIqadWqXr16cVevNK7zOIpwAqdwDh5cQgNuoQk+MODwDK/w5kjnxXl3PhatBSefOYY/cD5/ANRjjrU=</latexit>

x3

<latexit sha1_base64="cqTCs61Mkaq/NyRRMm8YRES6+qQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9nVih6LXjxWsB/QLiWbZtvYbLIkWbEs/Q9ePCji1f/jzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2MbzK//UiVZlLcm0lM/QgPBQsZwcZKrad+ej4t9csVt+rOgJaJl5MK5Gj0y1+9gSRJRIUhHGvd9dzY+ClWhhFOp6VeommMyRgPaddSgSOq/XR27RSdWGWAQqlsCYNm6u+JFEdaT6LAdkbYjPSil4n/ed3EhFd+ykScGCrIfFGYcGQkyl5HA6YoMXxiCSaK2VsRGWGFibEBZSF4iy8vk9ZZ1atVL+5qlfp1HkcRjuAYTsGDS6jDLTSgCQQe4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gAMDY7K</latexit>

x4

<latexit sha1_base64="3TEKFhqmTSdX/qYNSbhn7UYPnqM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVFj0WvXisYD+gXUo2zbax2WRJsmJZ+h+8eFDEq//Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeY3GR+55EqzaS4N9OY+hEeCRYygo2V2k+DtDYrDcoVt+rOgVaJl5MK5GgOyl/9oSRJRIUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SgSOq/XR+7QydWWWIQqlsCYPm6u+JFEdaT6PAdkbYjPWyl4n/eb3EhFd+ykScGCrIYlGYcGQkyl5HQ6YoMXxqCSaK2VsRGWOFibEBZSF4yy+vkvZF1atV63e1SuM6j6MIJ3AK5+DBJTTgFprQAgIP8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwANk47L</latexit>

x7

<latexit sha1_base64="ZmgyYgPrr7aKsasj5HIaKFc1jBg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVSj0WvXisYD+gXUo2zbax2WRJsmJZ+h+8eFDEq//Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeY3GR+55EqzaS4N9OY+hEeCRYygo2V2k+DtD4rDcoVt+rOgVaJl5MK5GgOyl/9oSRJRIUhHGvd89zY+ClWhhFOZ6V+ommMyQSPaM9SgSOq/XR+7QydWWWIQqlsCYPm6u+JFEdaT6PAdkbYjPWyl4n/eb3EhFd+ykScGCrIYlGYcGQkyl5HQ6YoMXxqCSaK2VsRGWOFibEBZSF4yy+vkvZF1atVL+9qlcZ1HkcRTuAUzsGDOjTgFprQAgIP8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwASJY7O</latexit>

x5

<latexit sha1_base64="GPC0l/0BYAnmfzVAG3PbpxhdWWg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Ae0oWy2k3bp7ibsbsRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEAturOt+O4W19Y3NreJ2aWd3b/+gfHjUMlGiGTZZJCLdCahBwRU2LbcCO7FGKgOB7WB8m/ntR9SGR+rBTmL0JR0qHnJGbSY99WulfrniVt05yCrxclKBHI1++as3iFgiUVkmqDFdz42tP6XaciZwVuolBmPKxnSI3ZQqKtH40/mtM3KWKgMSRjotZclc/T0xpdKYiQzSTkntyCx7mfif101seO1PuYoTi4otFoWJIDYi2eNkwDUyKyYpoUzz9FbCRlRTZtN4shC85ZdXSeui6l1Wa/eXlfpNHkcRTuAUzsGDK6jDHTSgCQxG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwBJdI3A</latexit>

x6

<latexit sha1_base64="iWHHCR93PjwtW/ceuh0S0HpJoWk=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEmYns8mQmdllplcMIb/gxYMiXv0hb/6Nu8keNLGgoajqprsriKWw6LrfTmFldW19o7hZ2tre2d0r7x80bZQYxhsskpFpB9RyKTRvoEDJ27HhVAWSt4LRbea3HrmxItIPOI65r+hAi1Awipn01Lss9coVt+rOQJaJl5MK5Kj3yl/dfsQSxTUySa3teG6M/oQaFEzyaambWB5TNqID3kmppopbfzK7dUpOUqVPwsikpZHM1N8TE6qsHasg7VQUh3bRy8T/vE6C4bU/ETpOkGs2XxQmkmBEssdJXxjOUI5TQpkR6a2EDamhDNN4shC8xZeXSfOs6p1XL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Rle4c1Rzovz7nzMWwtOPnMIf+B8/gBK+Y3B</latexit>

x̂0

<latexit sha1_base64="79eDNyJnpzZ3NBxfsAk3r85wAw8=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAdklzA7mSRDZh/M9Iph2d/w4kERr/6MN//G2WQPmljQUFR1093lx1JotO1vq7S2vrG5Vd6u7Ozu7R9UD486OkoU420WyUj1fKq5FCFvo0DJe7HiNPAl7/rT29zvPnKlRRQ+4CzmXkDHoRgJRtFIrjuhmD4NUjvLKoNqza7bc5BV4hSkBgVag+qXO4xYEvAQmaRa9x07Ri+lCgWTPKu4ieYxZVM65n1DQxpw7aXzmzNyZpQhGUXKVIhkrv6eSGmg9SzwTWdAcaKXvVz8z+snOLr2UhHGCfKQLRaNEkkwInkAZCgUZyhnhlCmhLmVsAlVlKGJKQ/BWX55lXQu6k6jfnnfqDVvijjKcAKncA4OXEET7qAFbWAQwzO8wpuVWC/Wu/WxaC1Zxcwx/IH1+QPeE5GU</latexit>

x̂1

<latexit sha1_base64="EeX/S9DxCKSQJ67XIuAdWQ/xOpI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0WPRi8cK9gOaUDbbbbt0swm7E7GE/A0vHhTx6p/x5r9x0+agrQ8GHu/NMDMviAXX6DjfVmltfWNzq7xd2dnd2z+oHh51dJQoyto0EpHqBUQzwSVrI0fBerFiJAwE6wbT29zvPjKleSQfcBYzPyRjyUecEjSS500Ipk+D1M2yyqBac+rOHPYqcQtSgwKtQfXLG0Y0CZlEKojWfdeJ0U+JQk4FyypeollM6JSMWd9QSUKm/XR+c2afGWVojyJlSqI9V39PpCTUehYGpjMkONHLXi7+5/UTHF37KZdxgkzSxaJRImyM7DwAe8gVoyhmhhCquLnVphOiCEUTUx6Cu/zyKulc1N1G/fK+UWveFHGU4QRO4RxcuIIm3EEL2kAhhmd4hTcrsV6sd+tj0Vqyiplj+APr8wffmpGV</latexit>

x̂2

<latexit sha1_base64="7RMOEymaSV39DwXsDGoZSXsR7QM=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2FZoQtlsN+3SzQe7E7GE/g0vHhTx6p/x5r9x0+agrQ8GHu/NMDPPT6TQaNvfVmltfWNzq7xd2dnd2z+oHh51dZwqxjsslrF68KnmUkS8gwIlf0gUp6Evec+f3OR+75ErLeLoHqcJ90I6ikQgGEUjue6YYvY0yBqzWWVQrdl1ew6ySpyC1KBAe1D9cocxS0MeIZNU675jJ+hlVKFgks8qbqp5QtmEjnjf0IiGXHvZ/OYZOTPKkASxMhUhmau/JzIaaj0NfdMZUhzrZS8X//P6KQZXXiaiJEUescWiIJUEY5IHQIZCcYZyaghlSphbCRtTRRmamPIQnOWXV0m3UXea9Yu7Zq11XcRRhhM4hXNw4BJacAtt6ACDBJ7hFd6s1Hqx3q2PRWvJKmaO4Q+szx/hIZGW</latexit>

x̂3

<latexit sha1_base64="dGwe2h7p+4a5G3zOVddbdlKVOOo=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8lUQreix68VjBfkATyma7bZduNmF3IpaQv+HFgyJe/TPe/Ddu2hy09cHA470ZZuYFseAaHefbWlldW9/YLG2Vt3d29/YrB4dtHSWKshaNRKS6AdFMcMlayFGwbqwYCQPBOsHkNvc7j0xpHskHnMbMD8lI8iGnBI3keWOC6VM/vciycr9SdWrODPYycQtShQLNfuXLG0Q0CZlEKojWPdeJ0U+JQk4Fy8peollM6ISMWM9QSUKm/XR2c2afGmVgDyNlSqI9U39PpCTUehoGpjMkONaLXi7+5/USHF77KZdxgkzS+aJhImyM7DwAe8AVoyimhhCquLnVpmOiCEUTUx6Cu/jyMmmf19x67fK+Xm3cFHGU4BhO4AxcuIIG3EETWkAhhmd4hTcrsV6sd+tj3rpiFTNH8AfW5w/iqJGX</latexit>

x̂4

<latexit sha1_base64="AfRuLaNDN1sbeucBAHmm4AWhHsk=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ac0oWy223bpZhN2J2IJ+RtePCji1T/jzX9j0uagrQ8GHu/NMDPPj6QwaNvfVmltfWNzq7xd2dnd2z+oHh51TBhrxtsslKHu+dRwKRRvo0DJe5HmNPAl7/rT29zvPnJtRKgecBZxL6BjJUaCUcwk151QTJ4GSSNNK4Nqza7bc5BV4hSkBgVag+qXOwxZHHCFTFJj+o4doZdQjYJJnlbc2PCIsikd835GFQ248ZL5zSk5y5QhGYU6K4Vkrv6eSGhgzCzws86A4sQse7n4n9ePcXTtJUJFMXLFFotGsSQYkjwAMhSaM5SzjFCmRXYrYROqKcMspjwEZ/nlVdK5qDuN+uV9o9a8KeIowwmcwjk4cAVNuIMWtIFBBM/wCm9WbL1Y79bHorVkFTPH8AfW5w/kL5GY</latexit>

x̂5

<latexit sha1_base64="fjGSpVaRm1I7x+/ThwNfIUUwbew=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Ac0oWy2m3bpZhN2J2IJ/RtePCji1T/jzX9j0uagrQ8GHu/NMDPPj6UwaNvfVmltfWNzq7xd2dnd2z+oHh51TJRoxtsskpHu+dRwKRRvo0DJe7HmNPQl7/qT29zvPnJtRKQecBpzL6QjJQLBKGaS644ppk+DtDGbVQbVml235yCrxClIDQq0BtUvdxixJOQKmaTG9B07Ri+lGgWTfFZxE8NjyiZ0xPsZVTTkxkvnN8/IWaYMSRDprBSSufp7IqWhMdPQzzpDimOz7OXif14/weDaS4WKE+SKLRYFiSQYkTwAMhSaM5TTjFCmRXYrYWOqKcMspjwEZ/nlVdK5qDuX9cb9Za15U8RRhhM4hXNw4AqacActaAODGJ7hFd6sxHqx3q2PRWvJKmaO4Q+szx/ltpGZ</latexit>

x̂6

<latexit sha1_base64="kBRPEVm/wbzZsCUIz2xpKwb1wgU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HoxWMF+wFNKJvttl262YTdiVhC/oYXD4p49c9489+4aXPQ1gcDj/dmmJkXxIJrdJxvq7Syura+Ud6sbG3v7O5V9w/aOkoUZS0aiUh1A6KZ4JK1kKNg3VgxEgaCdYLJbe53HpnSPJIPOI2ZH5KR5ENOCRrJ88YE06d+eplllX615tSdGexl4hakBgWa/eqXN4hoEjKJVBCte64To58ShZwKllW8RLOY0AkZsZ6hkoRM++ns5sw+McrAHkbKlER7pv6eSEmo9TQMTGdIcKwXvVz8z+slOLz2Uy7jBJmk80XDRNgY2XkA9oArRlFMDSFUcXOrTcdEEYompjwEd/HlZdI+q7vn9Yv781rjpoijDEdwDKfgwhU04A6a0AIKMTzDK7xZifVivVsf89aSVcwcwh9Ynz/nPZGa</latexit>

x̂7

<latexit sha1_base64="0NYvXA+dOQ5J7V3VhXQlJvfQIrA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRSqceiF48V7Ae2oWy2m3bpZhN2J2IJ/RdePCji1X/jzX/jps1BWx8MPN6bYWaeHwuu0XG+rcLa+sbmVnG7tLO7t39QPjxq6yhRlLVoJCLV9YlmgkvWQo6CdWPFSOgL1vEnN5nfeWRK80je4zRmXkhGkgecEjTSQ39MMH0a1GelQbniVJ057FXi5qQCOZqD8ld/GNEkZBKpIFr3XCdGLyUKORVsVuonmsWETsiI9QyVJGTaS+cXz+wzowztIFKmJNpz9fdESkKtp6FvOkOCY73sZeJ/Xi/B4MpLuYwTZJIuFgWJsDGys/ftIVeMopgaQqji5labjokiFE1IWQju8surpH1RdWvVy7tapXGdx1GEEziFc3ChDg24hSa0gIKEZ3iFN0tbL9a79bFoLVj5zDH8gfX5Ax30kI8=</latexit>

ψ

ψ

ψ

ψ

5

7

3

1

ψ2

ψ2

ψ6

ψ6

ψ4

ψ4

ψ4

ψ4

Stage 1 Stage 2 Stage 3

Addition
Subtraction

Multiplication

Figure 1: Data flow graphs of CT-butterfly based NTT for size n = 8.
the nonce is initialized with a 0 value, which always might not hold true, as shown in
[RJH+19].

Bruinderink and Pessl [BP18] presented a novel and powerful differential fault attack on
deterministic Dilithium and qTESLA. Their attack could recover the secret key with only
a single random fault, injected anywhere within 68% of the execution time of the signing
procedure. Subsequently, Ravi et al. proposed skip-addition fault attacks on deterministic
Dilithium, targeting the final addition operation to generate the signature component
z (Line 24 in Alg.2). Their attack however requires a few hundred faulty signatures to
recover the secret key. More recently, Islam et al. [IMS+22] proposed a signature correction
attack, applicable to both the deterministic and probabilistic variants of Dilithium. It
works by injecting bit flips on the secret key stored in memory, and subsequently utilizing
a correction algorithm to recover the value of the flipped secret bits, one at a time. While
they utilize Rowhammer as an attack vector on the AVX2 optimized implementation of
Dilithium, the feasibility of injecting precise bit flips in memory, on constrained embedded
targets such as ours (ARM Cortex-M4) is not clear, and atleast non-trivial at best.

2.5.2 Fault Attacks on KEMs

Ravi et al. [RRB+19] proposed the first practical fault attack on lattice-based KEMs such
as Kyber, NewHope and Frodo. Their attack forces nonce reuse through EMFI, resulting
in generation of weak LWE instances in the key generation and encryption procedure,
that leads to trivial key recovery and message recovery attacks. Other reported fault
attacks on lattice-based KEMs mainly target the decapsulation procedure, to recover the
long-term secret key. Pessl and Prokop proposed a novel fault-assisted chosen-ciphertext
attack [PP21] on Kyber KEM. Their attack works by injecting targeted faults in the message
decoding procedure, and subsequently utilizing information about the success/failure of
decapsulation, as a decryption failure oracle. This results in key recovery in a few thousand
chosen-ciphertexts. While this attack can be thwarted by shuffling the message decoding
operation, Hermelink et al. [HPP21] proposed an improved attack that can defeat the
shuffling protection, but relies on a slightly stronger fault model of injecting targeted bit
flip faults in memory.

Delvaux and Pozo [DDP21] further improved the attack of Hermelink et al. by expanding
the attack surface to several operations within the decapsulation procedure, while also
working with a variety of more relaxed fault models. Xagawa et al. [XIU+21] recently
demonstrated that the obvious target of the final equality check in the decapsulation
procedure can be easily skipped in several lattice-based KEMs, thereby downgrading from

8 Fault Injection Analysis of the Number Theoretic Transform

CCA security to CPA security for key recovery through chosen-ciphertext attacks.

2.5.3 Motivation

The reported fault attacks on KEMs and signature schemes have predominantly been
orthogonal in nature, with most attacks being specific either to KEMs or signature schemes.
In this respect, we identify the Number Theoretic Transform (NTT) as a commonality, as
it is used in both KEMs and signature schemes. While the side-channel resistance of NTT
has been studied by a number of works [PPM17,PP19,RPBC20], there are no known fault
attacks that exploit the inherent nature of the NTT. Given its widespread usage in several
schemes, it becomes imperative to analyze its susceptibility to FIA and identify suitable
countermeasures for protection. Thus, we perform the first fault injection analysis of the
NTT, and identify a critical vulnerability in practical implementations of NTT, which can
be exploited to mount a wide variety of attacks on lattice-based KEMs as well as signature
schemes.

3 Fault Vulnerability of NTT
3.1 Intuition
We start by analyzing a single CT butterfly operation (described in Eqn.3), commonly
used to implement the forward NTT. Its inputs are (x0, x1) ∈ Zq, twiddle constant w, and
outputs are (y0, y1) = ((x0 + x1 ·w), (x0 − x0 ·w)). We consider the possibility of injecting
faults to zeroize the twiddle factor w. As a result, the faulty outputs of the butterfly are
(y∗0 , y∗1) = (x0, x0), with no effect of x1 on the faulty output. We now extend the same
fault to all the butterflies in a single stage of NTT (Refer to Stage-1 of NTT in Fig.1). Let
the input to the stage be xi for i ∈ [0, n− 1] and its output be yi for i ∈ [0, n− 1]. If all of
its twiddle constants are 0, then the output is given as:

yi =
{
xi, for i < n/2
xi−(n/2), otherwise

(5)

We observe that the entropy of the output is reduced by half. If we extend the same
fault to the entire NTT, then the final output of NTT x̂ is simply x̂i = x0 ∀ i ∈ [0, n− 1].
In essence, the entropy of the output is reduced by half for every stage, with the final
output only containing a single element x0 repeated n times. Thus, zeroizing the twiddle
constants produces a faulty output with very low entropy. If this faulty NTT output is
utilized for polynomial multiplication with z ∈ Rq (i.e.) x · z ∈ Rq, then the faulty product
is x∗ · z ∈ Rq where x∗ is given as,

x∗i =
{
x0, if i = 0
0, otherwise

(6)

Thus, faulting the NTT of x in this manner has the effect of implicitly changing x to x∗
with low entropy, with only a single non-zero coefficient. While this applies for schemes
such as Dilithium which utilize a complete NTT, Kyber utilizes an incomplete NTT with
last stage skipped. The implicitly modified faulty input x∗ in case of Kyber KEM is given
as:

x∗i =
{
xi, for i = {0, 1}
0, otherwise

(7)

with two non-zero coefficients. Thus, the entropy of the faulty input x∗ depends upon
the number of stages in the NTT. While zeroization of all the twiddle constants comes

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 9

across as a strong assumption, we have identified a critical fault vulnerability in practical
implementations of NTT in several schemes, which enables zeroization of twiddle constants
with only a single targeted fault.

3.2 Analysing Practical NTT Implementations

Algorithm 3 Assembly Optimized NTT of Kyber in pqm4 library [KRSS19] (Simplified)
1: ldr r1, [pc, #4] . Loading twiddle-ptr from address (pc+4) to register r1
2:
3: ***Start of NTT Assembly Routine***
4:
5: n← 16
6: while n > 0 do . First stage (Stage 1,2,3)
7: load poly
8: ldrh twiddle, [twiddle-ptr] . Loading twiddle from twiddle-ptr
9: doublebutterfly (poly, twiddle)
10: ldr twiddle, [twiddle-ptr, #2] . Loading twiddle from (twiddle-ptr+2)
11: doublebutterfly (poly, twiddle)
12: · · ·
13: n−−
14: end while
15: add twiddle-ptr, #14 . Incrementing twiddle-ptr by 14 for next stage
16: n← 8
17: while n > 0 do . Second stage (Stage 4,5,6)
18: m← 2
19: while m > 0 do
20: load poly
21: ldrh twiddle, [twiddle-ptr] . Loading twiddle from twiddle-ptr
22: doublebutterfly (poly, twiddle)
23: ldr twiddle, [twiddle-ptr, #2] . Loading twiddle from (twiddle-ptr+2)
24: doublebutterfly (poly, twiddle)
25: · · ·
26: m−−
27: end while
28: add twiddle-ptr, #14 . Incrementing twiddle-ptr by 14 for next stage
29: n−−
30: · · · . Last stage (Stage 7)
31: end while

We utilize the optimized implementation of Kyber KEM from the pqm4 library for
32-bit ARM Cortex-M4 based microcontrollers [KRSS19] for our analysis2. We compiled
our implementations using the arm-none-eabi-gcc compiler, with the highest compiler
optimization level -O3. We analyzed the compiled assembly code using an On-Chip
Debugger to better understand the utilization of twiddle constants within the NTT/INTT
computation.

Refer Alg.3 for a simplified pseudo-code of the assembly optimized NTT routine of
Kyber. The twiddle constants are pre-computed and stored as a constant array at a

2Our analysis and experiments were carried out on the NTT implementations of Kyber and Dilithium
corresponding to the commit hash cf6f358c05db8a4e416561801bb4920d05b3bbb1, and were available in
the pqm4 library until Jan 31, 2022. However, our attacks also apply in the same manner to the most
recent NTT implementations in the pqm4 library.

10 Fault Injection Analysis of the Number Theoretic Transform

particular address in the flash memory (during compile time), denoted as T. This base
address T of the twiddle constant array is also stored as a 32-bit value at a given location
in the flash memory. Once the NTT routine is called, the base address T is first loaded
from flash memory (in our case, the address is (pc + 4) where pc is the program counter)
into register r1 using the ldr instruction (Line 1 colored in red). The base address T in
r1 is then used as a pointer to reference different constants in the twiddle constant array
(Lines 8,10,15,21,23,28 colored in orange). We therefore refer to T as the twiddle pointer.

We make a key observation that the address for all the twiddle constants are calculated
using the twiddle pointer T. If an attacker can fault the twiddle pointer from T to T∗
(Line 1), then all the twiddle constants for the NTT are retrieved from a modified address
T∗. If T∗ points to a memory location filled with zeros, then all the twiddle constants
are essentially zeroized with only a single fault. This, therefore serves as a single point
of failure to zeroize all the twiddle constants of a target NTT, which we refer to as the
twiddle-pointer vulnerability of the NTT. We also observe that the same vulnerability also
exists in the optimized NTT implementations of Dilithium and Saber in the pqm4 library.
To zeroize the twiddle constants using a single fault, there are two main conditions:

1. Condition-1: Fault the twiddle pointer T to T∗, when loaded from flash memory.

2. Condition-2: The faulty twiddle pointer T∗ points to an array filled with zeros.

3.2.1 Condition-1: Faulting Data Loaded from Flash Memory

Faulting the data loaded from flash memory to the register was first reported by Menu
et al. [MBD+19] using Electromagnetic Fault Injection (EMFI) on an ARM Cortex-M3
based microcontroller. They demonstrated the ability to perform both bit-set and bit-reset
faults on the fetched data, at a byte-level precision with upto 100% repetability. The same
fault model has also been used in a recent work by Soleimany et al. [SBH+22] on the ARM
Cortex-M4 microcontroller, to demonstrate Persistant Fault Analysis on block ciphers
using EMFI. As we show later in Sec.6, we were also able to achieve the same fault model
on a similar ARM Cortex-M4 device with a very high repeatability (upto 100%).

3.2.2 Condition-2: Retrieving Zero Data from Memory Access

We also require that the memory accesses from the faulty twiddle pointer T∗ results in fetch
of a zero twiddle constant array. This naturally raises a question of how many locations in
the target’s addressable memory result in fetch of a zero array. We therefore performed
an empirical memory analysis on our DUT, (i.e.) STM32F407VG microcontroller (ARM
Cortex-M4), to estimate the probability of fetching a zero array from a random 32-bit
address. For each memory access, there are three possible outcomes: (1) Zero array -
Success (2) Non-zero array - Failure and (3) Hard Fault due to illegal memory access -
Failure. In several instances, we also observe that the CPU can fetch zero data, even if the
faulty address is not mapped to a physical memory such as Flash/SRAM. For 10k random
memory accesses, we obtained a reasonably high success rate of ≈ 25% to retrieve a zero
twiddle constant array.

After identifying fault parameters that satisfy both the conditions with high repeata-
bility, during an initial profiling, the attacker can achieve 100% attack success as shown
later in Sec. 6. Our practical experiments yield a very high fault repeatability (upto 100%)
to zeroize all the twiddle constants using a single fault in both Kyber and Dilithium.

Remark on targeting the NTT input: Our analysis of the NTT implementations in
Kyber and Dilithium revealed that coefficients of the NTT input are also accessed using
a single pointer variable (denoted as input pointer P). On first glance, it might appear
that a single fault on the input pointer P can also zeroize the entire NTT input. However,

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 11

this pointer is not susceptible to EMFI, atleast in the same manner as the twiddle pointer.
Unlike the constant twiddle array, whose pointer/address is fetched from the flash memory,
the NTT input is a variable whose address P is calculated on the fly using arithmetic
instructions, and not fetched from flash memory. Thus, the input pointer P is not exposed
to EMFI in the same way as the twiddle pointer T. Moreover, it is not clear how P can be
faulted using EMFI or other attack vectors.

Even if the attacker can fault the input pointer, there are significant challenges. The
input pointer P is dynamically computed several times within a single execution of the
target procedure in Kyber/Dilithium. All these computations need to be faulted to ensure
that the faulty value is used throughout the computation. This is difficult to achieve in
practice, and even otherwise requires very precise knowledge about the implementation
at the assembly level. Given these challenges, we argue that the NTT’s twiddle pointer
serves as a much more realistic target for fault injection attacks.

4 Practical Attacks on Kyber
In this section, we propose novel key recovery and message recovery attacks on Kyber
exploiting the twiddle-pointer fault vulnerability. Our analysis utilizes the algorithm of
CPA secure PKE of Kyber in Alg.1 for explanation.

4.1 Key Recovery Attack
Our key recovery attack targets the NTTs in the key generation procedure, to generate
public keys whose secret keys have a very low entropy. We propose to fault the NTT
operation on the secret s ∈ Rk

q (Line 7). Let the faulty NTT output be denoted as ŝ∗.
Since ŝ∗ is utilized to generate the LWE instance (Line 9), the LWE instance is implicitly
created using a low-entropy secret s∗. If all the k NTTs of s are faulted, then only the
first two coefficients of every polynomial of s∗ are non-zero, while all the other coefficients
are zeros. For Kyber768 with k = 3 and the span of the coefficients in [−2, 2], the faulty
secret key s∗ can be recovered from the public key with a brute-force complexity of 56 (=
15,625). We can utilize the following approach to arrive at the exact value of s∗. For each
guess of s∗, we can compute the difference d = t−A · s∗. The difference d for the correct
guess will have a short span equal to that of the error of the LWE instance (i.e.) [−2, 2].
Once the target NTTs are faulted, the secret key can be recovered with a 100% success
rate. We henceforth refer to this as the Kyber-Key-Recovery attack.

Since the secret key of Kyber is stored in the NTT domain, the same faulty secret
is also used in the decryption procedure. Thus, the injected fault in the key generation
procedure also propagates to the decryption procedure. Moreover, the faulty secret s∗
is also valid, since `∞(s∗) respects that of a valid secret of Kyber. Thus, key recovery is
successful while also maintaining the correctness of the scheme. Since the faulty public
key is a valid LWE instance, it is indistinguishable from random, making it difficult to
detect our attack, simply from analyzing the public key.

4.2 Message Recovery Attack
Our message recovery attack targets the encryption procedure of Kyber KEM. The aim is
to recover the message from a valid ciphertext corresponding to a key-exchange between
two parties (Alice and Bob). We propose to target the NTT of r in the encryption
procedure (Line 17), which ensures use of a low-entropy r∗ to generate the ciphertext.
Similar to our key recovery attack, the brute-force complexity to guess r∗ for Kyber768
is 56. If the correct r can be recovered, the secret message m can be recovered from the

12 Fault Injection Analysis of the Number Theoretic Transform

Alice Bob

Eve

ct* = Encrypt*(pk,m)
SSA = Genkey(ct*,m)

m=Recovery(pk,ct*)
ct = Encrypt(pk,m)
SSA = Genkey(ct*,m)
SSB = Genkey(ct,m)

m=Decrypt(sk,ct)
ct’ = Encrypt(pk,m)
If (ct’ == ct):

SSB = Genkey(ct,m)
Else: SSB = RandomKey

Su
cc

es
s!

Su
cc

es
s!

ct’ ct’

Fault
X

Interrupted by Eve

Figure 2: Fault assisted MITM attack on CCA Secure KEM scheme
faulty ciphertext (ct∗ = (u∗, v∗)) as follows:

m = Compress(v∗ − INTT(t̂ ◦ NTT(r)), 1)

Among the 56 possibilities for r∗, the correct value of r∗ can be recovered as follows. For a
given guess of r∗, the erronous message polynomial can be calculated as,

m = v∗ − INTT(tT ◦ r∗)

For the correct guess, the coefficients of m are clustered around 0 and q/2 with a short
span, while for all other guesses, the coefficients are uniformly distributed in Zq. Once the
target NTTs are faulted, the secret key can be recovered with a 100% success rate. We
henceforth refer to this as the Kyber-Message-Recovery attack. The impact of our message
recovery attack depends upon whether the attacker targets the (1) CPA Secure PKE or
(2) CCA secure KEM of Kyber.

4.2.1 Attacking CPA secure Kyber PKE

The CPA secure PKE is typically used for ephemeral key exchanges. Faulting its encryption
procedure results in creation of a faulty ciphertext. However, the faulty ephemeral secret
r∗ used to generate the ciphertext is valid, since `∞(r∗) respects that of a valid ephemeral
secret. Since the decryption procedure does not check for the validity of the ciphertext,
the correctness of key exchange is maintained, while also resulting in message recovery.

4.2.2 Attacking CCA secure Kyber KEM

The decapsulation procedure of CCA secure Kyber can detect the validity of a ciphertext
with a very high probability. Thus, the faulty ciphertext is rejected by the decapsulation
procedure. This is because the ephemeral secret r used in the encryption procedure (Alice)
differs from that used in the re-encryption procedure after decryption (Bob). This leads to
failure of the key exchange, thereby rendering message recovery useless. The attack only
works if the attacker can fault the NTT of r in both the encapsulation and decapsulation
procedure. However, this is a very strong assumption since the attacker requires access to
both the communicating devices for a successful attack.

But, we observe that a Man-In-The-Middle (MITM) attacker can perform message
recovery, while still ensuring the correctness of key-exchange between Alice and Bob. Refer
to Fig.2 for a high-level illustration of the fault assisted MITM attack on CCA secure
Kyber, with Eve as the MITM. The same setup was also utilized by Ravi et al. [RRB+19]
for their message recovery attack on the encryption procedure. The function GenKey is
used to derive a secret key from message m. The faulty encryption procedure is denoted

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 13

as Encrypt∗. The attack is carried out as follows: Eve faults the encapsulation procedure
of Alice, resulting in a faulty ciphertext ct∗ for message m and the corresponding shared
key being SSA. Eve can recover m from the faulty ciphertext and thus compute the shared
secret SSA generated by Alice. Eve can now simply perform a valid key exchange with
Bob whose shared secret key is SSB. With the knowledge of both SSA and SSB, Eve can
decrypt all communication between Alice and Bob.

4.2.3 Applicability to Saber:

We verified that the twiddle-pointer vulnerability is also present in the NTT implementations
of Saber. Given the similarlity of Kyber and Saber, it is possible that our proposed
key/message recovery attacks are also applicable to Saber in a straightforward manner.
For brevity, we do omit our analysis of Saber in this paper.

5 Practical Attacks on Dilithium
In this section, we demonstrate two types of attacks on Dilithium exploiting the twiddle-
pointer vulnerability: (1) Existential Forgery Attack and (2) Verification Bypass Attack.
We utilize the algorithm of Dilithium in Alg.2 for our analysis.

5.1 Existential Forgery Attack
An attacker can forge signatures of Dilithum, if he/she is able to retrieve its primary
secret s1. A close observation of the signing procedure reveals that the primary signature
component z is closely dependent on s1, and thus faulting the generation of z can reveal
information about s1. Generation of z (Line 24) is done as follows:

z = INTT(NTT(s1) ◦ NTT(c)) + y
= INTT(ŝ1 ◦ ĉ) + y

(8)

Essentially, z is nothing but the ephemeral nonce y, additively masked by the product
s1 · c, where c is public and is part of the signature. For brevity, we refer to s1 as s. For
simplicity, our analysis assumes all operands in Eqn.8 are single polynomials in Rq. Since
the polynomials in each operand are handled independently of each other, our analysis
can be easily extended to all the polynomials in a straightforward manner. We present
two novel key recovery attacks on both the deterministic and probabilistic/randomized
variants of Dilithium. We assume that the attacker can trigger the target device to generate
signatures for any message of his/her choice.

5.1.1 Attack-1: Targeting Deterministic Dilithium

Our first attack is a differential style fault attack targeting the signing procedure of
deterministic Dilithium. Our target is the NTT of the challenge polynomial c. We recall
that the challenge polynomial c is sparse with coefficients in {−1, 0, 1}, and the coefficients
of c are represented as (c0, c1, c2, . . . , cn−1). Our attack is carried out as follows: The
attacker lets the target sign the message m, whose correct signature is σ = (z,h, c). The
message m is chosen such that the first coefficient of challenge c is 0 (i.e.) c0 = 0. The
attacker yet again lets the target sign m, but this time, the NTT of c is faulted to zeroize
all its twiddle constants. As a result, the faulty c∗ = (c0, 0, 0, . . . , 0). Since c0 = 0, the
faulty challenge c∗ = 0. As a result, the faulty signature z∗ is given as:

z∗ = s · c∗ + y
= y (∵ c∗ = 0)

(9)

14 Fault Injection Analysis of the Number Theoretic Transform

which is nothing but the ephemeral nonce y. Thus, the difference between z and z∗ (∆z)
simply yields the product s · c. Since c is known, s can be easily calculated as ∆z · c−1 ∈ Rq.

The signing procedure follows the Fiat-Shamir with Aborts framework and thus presents
additional challenges. Successful key recovery requires that both the valid and faulty
signatures utilize the same number of iterations (κ) before exiting the abortion loop (i.e.)
∆(κ) = κ∗−κ = 0. However, the use of faulty intermediate values do not always guarantee
termination at the same iteration. Thus, not all successful faults result in key recovery.

We therefore performed empirical fault simulations using 1000 secret keys, assuming
a perfect fault on the NTT of c. We observed that an average of ≈ 13 signatures are
enough to recover the secret key with 100% success rate. We henceforth refer to this as the
Deterministic-Dilithium-Forgery attack. Since the generated faulty signatures are invalid,
verification after sign serves as an effective countermeasure against this attack.

5.1.2 Attack-2: Targeting Probabilistic Dilithium

The probabilistic signing procedure of Dilithium samples a random ephemeral nonce y for
every execution (independent of the message m). This makes it impossible to know apriori,
the number of iterations of the signing procedure for a given message m. Combined with
the influence of non-constant time rejection checks, the operations in the signing procedure
are temporally randomized, which makes it very difficult to perform injected targeted
faults. Moreover, differential style fault attacks do not apply, since the computations
are also randomized. Thus, mounting practical fault injection attacks on probabilistic
Dilithium is very challenging, especially using targeted faults. We however show that the
twiddle-pointer vulnerability can be exploited for key recovery over probabilistic Dilithium
in certain settings.

The main target of our attack is the NTT over the ephemeral nonce y (Line 20).
However, we observe that the current implementations of Dilithium calculate the primary
signature z using y in the normal domain (Line 24). Thus, faulting the NTT of y does
not reveal any information about s1. However, computing z in this manner is merely an
implementation choice and it is possible that z can be alternatively computed as

z = INTT(NTT(s1) ◦ NTT(c) + NTT(y))
= INTT(ŝ1 ◦ ĉ+ ŷ)

(10)

Generating z in this manner also has an advantage of not requiring to retain/store y in
memory, thereby reducing dynamic memory consumption by about 3.68 KB for Dilithium3.
Thus, this alternative approach is attractive for a designer as a memory optimization. We
however identify that this alternate approach makes it possible to perform key recovery in
the following manner.

Firstly, operations in the probabilistic signing procedure are temporally randomized.
We however observe that the NTT of y (Line 20) is performed before the first rejection
check (Line 27). Thus, NTT of y in the first iteration, always occurs at a fixed time, from
the start of the signing procedure, thereby making it possible to be targeted through fault
injection. By faulting NTT of y, z is computed using a low-entropy y∗ and the faulty
signature z∗ is given as:

z∗[i] =
{

sc[i] + y[i], for i = 0
sc[i], for 1 ≤ i < n− 1

(11)

where sc is the product s · c. Thus, all but the first coefficient of sc are exposed as part
of the faulty signature z∗. An attacker can simply guess the first coefficient of sc and
subsequently calculate s for each guess, until he/she finds out the correct s. The correct s
can be found out by simply checking if the span of the recovered s (i.e.) `∞(s) satisfies

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 15

the bounds of a valid secret. A wrong guess will simply yield an s with a very large `∞
norm. For successful key recovery, the faulty signature and its associated intermediate
variables should also satisfy all the rejection checks of the abortion loop.

We performed empirical fault simulations using 1000 secret keys and an average of ≈ 3
signatures are sufficient to recover the secret key with 100% success rate. To the best of
our knowledge, we have presented the first practical fault injection attack applicable to
the probabilistic variant of Dilithium, resulting in full key recovery without requiring any
brute-force search. We henceforth refer to this attack as Probabilistic-Dilithium-Forgery.
The faulty signature generated using the low entropy nonce y∗ is valid and thus passes
verification. Thus, the verification after sign countermeasure does not work against this
attack, which makes it a more stealthier attack compared to the Deterministic-Dilithium-
Forgery attack.

5.2 Verification Bypass Attack
While the aforementioned attacks target the signing procedure, the verification procedure
also serves as a good target for fault injection attacks. One of the main motivation being,
forceful acceptance of invalid signatures through faults, for any message of the attacker’s
choice. One of the obvious and known targets for fault injection is to simply skip the final
comparison operation that decides the validity of the receieved signatures (Line 39). So,
it is possible that the designer fortifies the comparison operation to protect against such
trivial attacks. Bindel et al. [BBK] proposed a novel zeroing fault attack on the verification
procedure of GLP and BLISS signature schemes. They show that zeroizing the challenge c
during verification can force acceptance of invalid signatures. However, faulting an entire
polynomial to zero is very difficult to achieve in practice. Moreover, the applicability of
their attack to Dilithium is also not clear, considering the underlying differences between
the signature schemes. In the following, we demonstrate exploitation of the twiddle-pointer
fault vulnerability to present the first practical zeroing fault attack on the verification
procedure of Dilithium.

For a given signature σ = (z,h, c), the verification procedure computes w1
′ (Line 37),

which is further hashed with the message µ to recompute the challenge c̄ (Line 38). Then,
c̄ is compared with the received challenge polynomial c, and the result of comparison
determines validity of the signature. The main target of our attack is the NTT operation
over c (Line 36). If c0 = 0, then faulting NTT of c ensures that a faulty ĉ∗ = 0 is used to
compute a faulty w1

∗, which is given as:
w1
∗ = UseHint(h,A · z)
c∗ = H(µ‖w1

∗)
(12)

We observe that faulty w1
∗ is only dependent on (h, z), which an attacker is free to

choose. We therefore propose to generate a malicious signature in the following manner:
Algorithm 4 Malicious Signing Procedure for Verification Bypass Attack
1: procedure Malicious-Sign(sk,M)
2: Â ∈ Rk×`

q ← Expand(seedA)
3: µ ∈ {0, 1}512 ← H(tr‖M)
4: while c0 = 0 do . Start of Abort Loop
5: z∗ ← SampleZ()
6: h∗ ← Sampleh()
7: w∗1 = UseHint(h∗,A · z∗)
8: c = H(µ,w∗1)
9: end while
10: σ = (z,h, c)
11: end procedure

16 Fault Injection Analysis of the Number Theoretic Transform

the attacker samples a random (z∗,h∗) whose respective norms respect the conditions for
successful verification. For a chosen message µ, he/she computes w1

∗ and c∗ as in Eqn.12,
and repeats as until c∗0 = 0. Then, the attacker’s crafted signature for µ is σ∗ = (z∗,h∗, c∗).
Refer Alg.4 for an algorithmic description to create a malicious signature for our verification
bypass attack.

In the attack phase, the attacker queries the verification procedure with (σ∗, µ) and
faults the NTT over c∗. Since c∗0 = 0, the injected fault zeroizes the challenge c and
thus computes the same w1

∗ and challenge c∗, thereby resulting in successful verification.
We performed empirical fault simulations using 1000 random messages and were able
to enforce acceptance of invalid signatures for all the messages, thereby demonstrating
a 100% success rate for our verification bypass attack. We henceforth refer to this as
Dilithium-Verification-Bypass attack.

6 Experimental Validation
6.1 Experimental Setup
Our experiments are performed on the optimized implementations of Kyber and Dilithium,
taken from the pqm4 library, a benchmarking and testing framework for PQC schemes on
the ARM Cortex-M4 family of microcontrollers [KRSS19]. Our DUT is the STM32F407VG
microcontroller mounted on the STM32F4DISCOVERY board. The implementations are
compiled using the arm-none-eabi-gcc compiler (with compilation options -O3 -mthumb
-mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16) and run at a clock frequency
of 168 MHz. The DUT contains cache lines for both instruction and data fetched from
flash memory, to accelerate code execution and literal access. Both the instruction and
data caches are therefore enabled to maximize performance. The communication with the
DUT is done using UART.

We rely on Electromagnetic Fault Injection as our attack vector. Our EMFI setup
comprises of three main components: (1) a high-voltage pulse generator capable of
generating pulses up to 200V (in either polarity) with a very low rise time under 4ns;
(2) a hand-crafted electromagnetic probe designed as a simple loop antenna; and (3) a
motorised XYZ table to position the probe over the DUT. An optional oscilloscope is used
for verification of pulse strength and timing characteristics. A software synchronizes the
operation of the DUT and the EMFI setup, with faults injected based on a feedback signal
from the DUT. Relay switches are also used for automated power-on reset of the DUT.

6.2 Performing Targeted Fault Injection
For our attack evaluation, we utilize a trigger signal from the DUT to signal the start of
the target NTT to fault. However, an attacker can also utilize EM/power side-channel
information to approximately narrow down the time window for fault injection.

6.2.1 Using Power/EM Analysis for Identification of Time Window

We utilize EM measurements acquired from the same DUT using a near-field EM probe,
collected using a Lecroy 610Zi oscilloscope at a sampling rate of 500MSam/sec. The
repetitive nature of operations in Module-LWE/LWR based schemes, as well as a prelimi-
nary knowledge of the implementation allows us to distinguish different operations. Refer
Fig.3(a) for the EM trace from execution of the key generation procedure of Kyber768,
where we annotate the trace with names of different operations. Refer Fig.3(b) for a
zoomed-in-view of the trace which clearly shows the repeating patterns corresponding to
the k = 3 NTTs of s. We also confirmed through experiments that a similar technique

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 17

Start of
KeyGen

End of
KeyGen

Genseeds
Sample(s)

NTT(s)

t[0] = Acc(A[0][:],s) + e[0] t[1] = Acc(A[1][:],s) + e[1] t[2] = Acc(A[2][:],s) + e[2]

PackSK Hash(PK)

(a)
NTT(s[0]) NTT(s[1]) NTT(s[2])Time Window of

target for EMFI

Start of
NTT(s)

End of
NTT(s)

(b)

Figure 3: Visual Inspection of EM trace from key generation procedure of Kyber768 on
the ARM Cortex-M4 microcontroller (a) Identification of repeating patterns and mapping
to different operations (b) zoomed-in-view of trace corresponding to the k = 3 NTTs of s
can be applied to the Kyber’s encryption procedure as well as the signing and verification
procedures of Dilithium (waveforms are omitted for brevity).

Upon roughly identifying the time window of the target NTTs, the attacker’s main
target is the twiddle-pointer loading operation that occurs just before the start of the NTT
operation. Our EM side-channel analysis allows to narrow the time window to about
100-200 ns for fault injection.

6.2.2 Faulting Multiple NTTs in a Single Execution:

Our proposed attacks barring Deterministic-Dilithium-Forgery and Dilithium-Verification-
Bypass, require to fault multiple NTT instances in a single execution. For instance,
the Kyber-Key-Recovery attack requires to fault k = 3 NTTs of s in the key generation
procedure, which would typically require 3 faults, one in each NTT. However, we observed
through practical experiments that a single fault on the first NTT of a given module s (i.e.)
s[0] propagates to the NTTs on all the other polynomials of s (i.e.) s[i] for i ∈ [1, k − 1].
The same effect is also observed on Dilithium, when faulting y ∈ R`

q with ` = 5 NTTs.
Moreover, the fault only propagates to the NTTs of the the same module, while not
affecting the NTT over other modules.

We hypothesize that the aforementioned fault propagation behaviour could be due to
reuse of the twiddle-pointer for NTTs of the same module. We recall that the data cache
to the flash memory is enabled on our DUT. Hence, it is possible that the twiddle-pointer
first retrieved from flash memory for NTT of s[0] is stored within the data cache, and the
subsequent NTTs reuse the cached twiddle-pointer, without actually fetching from the flash
memory. Thus, faulting the first fetch of the twiddle-pointer from flash memory ensures
that a faulty value is also used for the subsequent NTTs of the same module. Thus, all our
proposed attacks on both Kyber and Dilithium, require to inject only a single targeted fault
in the target computation. This therefore serves as a best case scenario for an attacker,
where a single fault is sufficient to fault multiple NTTs of the same module.

18 Fault Injection Analysis of the Number Theoretic Transform

316 318 320 322 324 326 328 330 332
Time (ns)

0

2000

4000

6000

8000

10000

12000

No
. o

f F
au

lts

0 1 2

0

1

2

3

3 4 5 6

1.0

0.8

0.6

0.4

0.2

0.0
4

(a) (b)

317 319 321 323 325 327 329 331 333
Time (ns)

0

2000

4000

6000

8000

10000

12000

14000

16000

No
. o

f F
au

lts

0 1 2

0

1

2

3

3 4 5

4

1.0

0.8

0.6

0.4

0.2

0.0

(c) (d)

Figure 4: EMFI Results for Kyber-Key-Recovery (a,b) and Kyber-Message-Recovery (c,d) for
Kyber768. (a,c) denotes sensitive time window, while (b,d) denotes best fault repetability
achievable at different sensitive locations (XY) for the corresponding attacks.
6.3 Fault Injection Results

We consider the case of a profiled attacker who can profile the device and obtain the
ideal set of fault injection parameters (i.e.) voltage (v), pulse-width (w), delay (d), x-y
coordinate of the probe on chip (xy), that yields high repetability. We refer to a given set
of values for the parameters (i.e.) (vi, wi, di, xyi) as an injection instance. The number
of repeated experiments performed at each injection instance is denoted as the repetition
count.

To obtain injection instances that yield the best fault repeatability, we follow a two-step
approach. We first perform a preliminary fault injection campaign, sweeping coarsely over
a range of values for all the fault injection parameters, covering the entire area of the chip,
and running 5 repetitions at each injection instance. Based on results from the preliminary
campaign, we narrowed down the area for high fault repeatability, and run a more detailed
campaign with 100 repetitions at each selected instance to calculate concrete numbers for
fault repeatability. Results from the latter are presented in the following.

6.3.1 Kyber-Key-Recovery

We performed a total of 69300 fault injection experiments (i.e.) 100 experiments each at
693 favourable injection instances, to zeroize the twiddle constants of all the k = 3 NTTs of
s in the key generation procedure of Kyber768. Among them, we obtained 46281 successful
faults (≈ 66%) and the number of successful faults against the injection delay is shown in
Fig.4(a). We observe a narrow time window of about 7 ns in which we can observe a very
high number of successful faults. Refer Fig.4(b) for the best fault repetability achievable
(across voltage, pulse width and injection delay) as a function of the xy location of the
injection probe on the chip’s surface. We can observe that there are several fault injection
instances (in a 1 mm × 1.5 mm area) that yield a high fault repetability upto 100%. We
also tested our key recovery attack on 100 random faulty public keys obtained from one
such fault injection instance. We were able to recover the secret key with 100% success
rate, while the faulty public keys also resulted in correct key exchanges.

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 19

420 422 424 426 428 430 432 434 436 438 440 442
Time (ns)

0

200

400

600

800

1000
No

. o
f F

au
lts

0 1 2

0

1

2

3

3 4 5

1.0

0.8

0.6

0.4

0.2

0.0

(a) (b)

404 408 412 416 420 424 428 432 436 440 444 448 452
Time (ns)

0

250

500

750

1000

1250

1500

1750

No
. o

f F
au

lts

0 1 2

0

1

2

3

3 4 5 6 7

1.0

0.8

0.6

0.4

0.2

0.0

(c) (d)

395 397 399 401 403 405 407 409 411 413 415 417
Time (ns)

0

500

1000

1500

2000

2500

3000

3500

4000

No
. o

f F
au

lts

0 1 2

0

1

2

3

3 4 5

1.0

0.8

0.6

0.4

0.2

0.0

(e) (f)

Figure 5: EMFI Results for Deterministic-Dilithium-Forgery (a,b) and Probabilistic-Dilithium-
Forgery (c,d) and Dilithium-Verification-Bypass (e,f) for Dilithium3. (a,c,e) denotes Sensitive
Time window, while (b,d,f) denotes best fault repetability achievable at different sensitive
locations (XY) for the corresponding attacks.
6.3.2 Kyber-Message-Recovery

We performed 64600 fault injections to fault the k = 3 NTTs of the ephemeral secret r of
Kyber’s encryption procedure, among which we obtained 53844 successful faults (≈ 83%).
Refer Fig.4(c)-(d) for the corresponding fault injection results which very closely resembles
the results of our Kyber-Key-Recovery attack. We yet again observe very high repetability
of upto 100% at several fault injection instances. We also experimentally verified our
message recovery attack on 100 random faulty ciphertexts, which yielded 100% success
rate for recovering the message and the corresponding shared secret.

6.3.3 Deterministic-Dilithium-Forgery

We performed a total of 10100 fault injection experiments to fault the NTT of the challenge
polynomial c in the signing procedure of deterministic Dilithium. We obtained a total of
5234 successful faults (≈ 51%), all observed within a narrow time window of 13 ns (Refer
Fig.5(a)). Refer Fig.5(b) for the cartography of the best achievable fault repetability (in a
1.5 mm × 2.5 mm area) on the DUT. This clearly shows several locations that yield high
fault repetability upto 100%. We tested our attack on about 100 random faulty signatures
and obtained a 100% success rate for key recovery.

20 Fault Injection Analysis of the Number Theoretic Transform

6.3.4 Probabilistic-Dilithium-Forgery

We performed a total of 50300 fault injection experiments to fault all the ` = 5 NTTs of
the ephemeral nonce y in the signing procedure of probababilistic Dilithium. We obtained
a total of 9155 successful faults (≈ 26%), all observed within a slightly wider time window
of 30 ns (Refer Fig.5(c)). Refer Fig.5(d) for the cartography of the best achievable fault
repetability (in a 0.75 mm × 2 mm area), which again shows multiple locations that yield
high fault repetability upto 100%. We tested our attack on about 100 random faulty
signatures and obtained a 100% success rate for key recovery, while all the faulty signatures
successfully passed the verification procedure.

6.3.5 Dilithium-Verification-Bypass

We performed a total of 35000 fault injection experiments the NTT of the challenge
polynomial c in the verification procedure. We obtained a total of 22487 successful faults
(≈ 64%), all observed within a time window of 23 ns (Refer Fig.5(e)). Refer Fig.5(f) for
the best fault repetability achievable as a function of the location injection probe on the
chip’s surface (in a 1.5 mm × 2.5 mm area), which again shows several locations that yield
high fault repetability upto 100%. We also experimentally verified that invalid signatures
for attacker’s chosen messages were successfully verified with a 100% success rate.

6.3.6 Summary of Results

Thus, for all our targets, we observed between 26%-83% faults, that were successful when
performing a detailed fault injection campaign for selected fault injection instances. The
existence of yellow spots in Fig.4,5 clearly demonstrates the possibility to achieve high
fault repeatibility for all of our presented attacks. Once an adversary has identified one
such fault injection instance, the attack success rate is 100%.

7 Conclusion and Mitigation
In this paper, we have shown critical vulnerability in the implementation of NTT on pqm4
library. Exploiting this vulnerability, termed as twiddle-pointer, we present practical and
efficient attacks on Kyber and Dilithium. Few implementation-level countermeasures to
eliminate the twiddle-pointer vulnerability can be considered.

On-the-fly Computation of Twiddle Factors: Instead of pre-computing the twiddle
constants, one can adopt an on-the-fly approach to compute the twiddle constants for
NTT/INTT, thereby eliminating the twiddle-pointer vulnerability. However, on-the-fly
computation of the twiddle constants could impose a heavy performance penalty on the
NTT/INTT.

Using Multiple Pointers for Twiddle Constants: Instead of relying on a single
pointer to access the twiddle constants, one can utilize multiple twiddle pointers within
the NTT, by splitting the array into multiple smaller arrays. While this increases the
attacker’s effort, it does not completely eliminate the vulnerability.

Utilization of Twiddle Constant Array in SRAM: Instead of using the twiddle
constant array in the flash memory, one can simply copy the twiddle constants from
flash into SRAM upon bootup/reset. Subsequently, all NTT/INTT computations utilize
the twiddle constants in the RAM. However, this still leaves opportunity for potential
persistent fault attacks.

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 21

Checking Entropy of NTT Output: The output of a valid NTT is typically uni-
formly random, while the output of our faulty NTT is heavily biased. Thus, checks on the
distribution of the NTT outputs could help detect faults injected on the NTT computation.

Finally, while we demonstrate our attacks only on Kyber and Dilithium, we believe our
analysis can be extended to other schemes such as Saber, NTRU and NTRU Prime, which
also utilize NTT for polynomial multiplication. Our work stresses the need for concrete
countermeasures against fault injection attacks for practical implementations of NTT,
especially in embedded devices.

References
[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh

Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the second round of the NIST post-quantum cryptography
standardization process. US Department of Commerce, NIST, 2020.

[ABD+20] Roberto Avanzi, Joppe W. Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint,
Vadim Lyubashevsky, John Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Kyber (version 3.0): Algorithm specifications
and supporting documentation (October 1, 2020). Submission to the NIST
post-quantum project, 2020.

[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wälde, et al. Polynomial multiplication in ntru prime:
Comparison of optimization strategies on cortex-m4. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 217–238, 2021.

[ACC+22] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang,
Matthias J Kannwischer, and Bo-Yin Yang. Multi-moduli ntts for saber
on cortex-m3 and cortex-m4. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 127–151, 2022.

[AH21] Daniel Apon and James Howe. Attacks on NIST PQC 3rd Round Candidates,
2021. Invited talk at Real World Crypto 2021, https://iacr.org/submit/
files/slides/2021/rwc/rwc2021/22/slides.pdf.

[BBK] Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based signa-
ture schemes and their sensitivity to fault attacks. In Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2016 Workshop on, pages 63–77. IEEE.

[BKS19] Leon Botros, Matthias J Kannwischer, and Peter Schwabe. Memory-efficient
high-speed implementation of kyber on cortex-m4. In International Conference
on Cryptology in Africa, pages 209–228. Springer, 2019.

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential Fault Attacks on Deter-
ministic Lattice Signatures. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(3), 2018. https://eprint.iacr.org/2018/
355.pdf.

[CDH+19] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijn-
eveld, John M Schanck, Peter Schwabe, William Whyte, and Zhenfei Zhang.
NTRU: Algorithm specifications and supporting documentation (March 20,
2019). Submission to the NIST post-quantum project, 2019.

https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/22/slides.pdf
https://eprint.iacr.org/2018/355.pdf
https://eprint.iacr.org/2018/355.pdf

22 Fault Injection Analysis of the Number Theoretic Transform

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J Kannwischer, Gre-
gor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. Ntt multiplication for ntt-
unfriendly rings: New speed records for saber and ntru on cortex-m4 and
avx2. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 159–188, 2021.

[Coo66] SA Cook. On the minimum computation time for multiplication. Doctoral
diss., Harvard U., Cambridge, Mass, 1, 1966.

[CT65] James Cooley and John Tukey. An Algorithm for the Machine Calculation of
Complex Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lat-
tice signatures and bimodal gaussians. In Advances in Cryptology–CRYPTO
2013, pages 40–56. Springer, 2013.

[DDP21] Jeroen Delvaux and Santos Merino Del Pozo. Roulette: Breaking kyber with
diverse fault injection setups. Cryptology ePrint Archive, 2021.

[DKSRV20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. SABER: Mod-LWR based KEM (Round 3 Submission).
Submission to the NIST post-quantum project, 2020.

[EFGT16] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Loop abort faults on lattice-based fiat-shamir & hash’n sign signatures. IACR
ePrint Archive, page 449, 2016.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Side-Channel Attacks on BLISS Lattice-Based Signatures: Exploiting Branch
Tracing Against strongSwan and Electromagnetic Emanations in Microcon-
trollers. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Annual International Cryptology
Conference, pages 537–554. Springer, 1999.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 530–547. Springer, 2012.

[GS66] W. Morven Gentleman and G. Sande. Fast fourier transforms: for fun
and profit. In American Federation of Information Processing Societies:
Proceedings of the AFIPS ’66 Fall Joint Computer Conference, November
7-10, 1966, San Francisco, California, USA, volume 29 of AFIPS Conference
Proceedings, pages 563–578. AFIPS / ACM / Spartan Books, Washington
D.C., 1966.

[HPP21] Julius Hermelink, Peter Pessl, and Thomas Pöppelmann. Fault-enabled
chosen-ciphertext attacks on kyber. In Avishek Adhikari, Ralf Küsters, and
Bart Preneel, editors, Progress in Cryptology - INDOCRYPT 2021 - 22nd
International Conference on Cryptology in India, Jaipur, India, December
12-15, 2021, Proceedings, volume 13143 of Lecture Notes in Computer Science,
pages 311–334. Springer, 2021.

P. Ravi, B.Yang, S. Bhasin, F. Zhang, A. Chattopadhyay 23

[IMS+22] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar.
Signature correction attack on dilithium signature scheme. arXiv preprint
arXiv:2203.00637, 2022.

[Kar63] Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In
Sov. Phys. Dokl., volume 7, pages 595–596, 1963.

[KRSS19] Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M4. In Second
PQC Standardization Conference: University of California, Santa Barbara
and co-located with Crypto 2019, pages 1–22, 2019.

[LDK+17] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. Crystals-dilithium. Submission to
the NIST Post-Quantum Cryptography Standardization [NIST], 2017.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 598–616. Springer,
2009.

[MBD+19] Alexandre Menu, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud,
and Jean-Luc Danger. Precise spatio-temporal electromagnetic fault injections
on data transfers. In 2019 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 1–8. IEEE, 2019.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-Performance
Ideal Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers. In
Progress in Cryptology - LATINCRYPT 2015 - 4th International Confer-
ence on Cryptology and Information Security in Latin America, Guadalajara,
Mexico, August 23-26, 2015, Proceedings, pages 346–365, 2015.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In International Conference on Cryptology and
Information Security in Latin America, pages 130–149. Springer, 2019.

[PP21] Peter Pessl and Lukas Prokop. Fault attacks on cca-secure lattice kems. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 37–60,
2021.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 513–533. Springer,
2017.

[RJH+19] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Exploiting determinism in lattice-based signatures:
practical fault attacks on pqm4 implementations of nist candidates. In Pro-
ceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, pages 427–440, 2019.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopad-
hyay. On configurable sca countermeasures against single trace attacks for
the ntt. In International Conference on Security, Privacy, and Applied Cryp-
tography Engineering, pages 123–146. Springer, 2020.

24 Fault Injection Analysis of the Number Theoretic Transform

[RR21] Prasanna Ravi and Sujoy Sinha Roy. Side-channel analysis of lattice-based
pqc candidates. Round 3 Seminars, NIST Post Quantum Cryptography, 2021.

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. Number "not used" once-practical fault attack
on pqm4 implementations of nist candidates. In International Workshop
on Constructive Side-Channel Analysis and Secure Design, pages 232–250.
Springer, 2019.

[RVM+14] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, and Ingrid Verbauwhede. Compact ring-LWE cryptoprocessor. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 371–391. Springer, 2014.

[SBH+22] Hadi Soleimany, Nasour Bagheri, Hosein Hadipour, Prasanna Ravi, Shivam
Bhasin, and Sara Mansouri. Practical multiple persistent faults analysis.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
367–390, 2022.

[Too63] Andrei L Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. In Soviet Mathematics Doklady, volume 3, pages
714–716, 1963.

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.
Fault-injection attacks against nist’s post-quantum cryptography round 3 kem
candidates. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 33–61. Springer, 2021.

	Introduction
	Background
	Notation
	Kyber
	Dilithium
	Number Theoretic Transform
	Prior Works

	Fault Vulnerability of NTT
	Intuition
	Analysing Practical NTT Implementations

	Practical Attacks on Kyber
	Key Recovery Attack
	Message Recovery Attack

	Practical Attacks on Dilithium
	Existential Forgery Attack
	Verification Bypass Attack

	Experimental Validation
	Experimental Setup
	Performing Targeted Fault Injection
	Fault Injection Results

	Conclusion and Mitigation

