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Abstract. Zero-knowledge proof systems are usually designed to sup-
port computations for circuits over F2 or Fp for large p, but not for
computations over Z2k , which all modern CPUs operate on. Although
Z2k -arithmetic can be emulated using prime moduli, this comes with
an unavoidable overhead. Recently, Baum et al. (CCS 2021) suggested
a candidate construction for a designated-verifier zero-knowledge proof
system that natively runs over Z2k . Unfortunately, their construction re-
quires preprocessed random vector oblivious linear evaluation (VOLE)
to be instantiated over Z2k . Currently, it is not known how to efficiently
generate such random VOLE in large quantities.
In this work, we present a maliciously secure, VOLE extension protocol
that can turn a short seed-VOLE over Z2k into a much longer, pseudo-
random VOLE over the same ring. Our construction borrows ideas from
recent protocols over finite fields, which we non-trivially adapt to work
over Z2k . Moreover, we show that the approach taken by the QuickSilver
zero-knowledge proof system (Yang et al. CCS 2021) can be generalized
to support computations over Z2k . This new VOLE-based proof sys-
tem, which we call QuarkSilver, yields better efficiency than the previous
zero-knowledge protocols suggested by Baum et al. Furthermore, we im-
plement both our VOLE extension and our zero-knowledge proof system,
and show that they can generate 13–50 million VOLEs per second for
64 bit to 256 bit rings, and evaluate 1.3 million 64 bit multiplications per
second in zero-knowledge.

1 Introduction

Zero-knowledge (ZK) proofs allow a prover to convince a verifier that some
statement is true, without revealing any additional information. They are a
fundamental tool in cryptography with a wide range of applications. A common
way of expressing statements used in ZK is with circuit satisfiability, where the
prover and verifier hold some circuit C, and the prover proves that she knows a
witness w such that C(w) = 1. Typically, C is an arithmetic circuit defined over
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a finite field such as F2 or Fp for a large prime p, but the same idea works for
any finite ring.

A recent line of work [Wen+21; Yan+21; Bau+21b; DIO21] builds highly
scalable zero-knowledge proofs based on vector oblivious linear evalution, or
VOLE. VOLE is a two-party protocol often used in secure computation settings,
which allows a receiver holding ∆ to learn a secret linear function w −∆ · u =
v of a sender’s private inputs u,w. VOLE-based ZK protocols have the key
feature that the overhead of the prover is very small: compared with the cost of
evaluating the circuit C in the clear, few additional computational or memory
resources are needed. This allows proofs to scale to handle very large statements,
such as proving properties of complex programs. On the other hand, potential
drawbacks of using VOLE are that the communication complexity is typically
linear in the size of C – unlike SNARKs (e.g. [Mal+19; Ben+19]) and MPC-in-
the-head techniques (e.g. [Ame+17]), which can be sublinear – and proofs are
only verifiable by a single, designated verifier.

VOLE Constructions. In a length-n VOLE protocol over some ring R, the sender
has input two vectors u,w ∈ Rn, while the receiver has input ∆ ∈ R, and
receives as output v ∈ Rn as defined above. In applications such as ZK proofs,
it is actually enough to construct random VOLEs, or VOLE correlations, where
both parties’ inputs are chosen at random. The most efficient approaches for
generating random VOLE are based on the method of Boyle et al. [Boy+18],
which relies on an arithmetic variant of the learning parity with noise (LPN)
assumption. The protocol has the key feature that the communication cost is
sublinear in the output length, n.

The original protocol of [Boy+18] has only semi-honest security (or malicious
security using expensive, generic 2-PC techniques). Later, dedicated maliciously
secure protocols over fields were developed [Boy+19; Wen+21], which essentially
match the cost of the underlying semi-honest protocols, by using lightweight con-
sistency checks for verifying honest behavior. In general, these protocols assume
that R is a finite field.

ZK Based on VOLE. The state-of-the-art, VOLE-based protocol for proving
circuit satisfiability in zero-knowledge is the QuickSilver protocol. QuickSilver,
which builds upon the previous Line-Point ZK [DIO21] protocol, works for cir-
cuits over any finite field Fq, and has a communication cost of essentially 1 field
element per multiplication gate. Concretely, QuickSilver achieves a throughput
of up to 15.8 million AND gates per second for a Boolean circuit, or 8.9 million
multiplication gates for an arithmetic circuit over the 61-bit Mersenne prime
field. Another approach is the Mac’n’Cheese protocol [Bau+21b], which can also
achieve an amortized cost as small as 1 field element, but with slightly worse
computational costs and round complexity.

ZK Over Rings. While most ZK protocols are based on circuits over fields, it
can in certain applications be more desirable to work with circuits over a finite
ring such as Z2k . For instance, to prove a property of an existing program (such
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as proving a program contains a bug, or does not violate some safety property)
the program logic and computations must all be emulated using a circuit. Since
CPUs perform arithmetic in Z2k , this is a natural choice of ring that leads to a
simpler translation of program code into a satisfiable circuit C.

Unfortunately, not many existing ZK proof systems can natively support
computations over rings. The recent work of [Bau+21a] gave the first ZK proto-
col over Z2k based on VOLE over Z2k , obtaining a proof system with a communi-
cation cost of O(1) ring elements per multiplication gate (for large rings), asymp-
totically matching QuickSilver over large fields. However, a major drawback of
their protocols is that they require maliciously secure VOLE over Z2k , which
is much more expensive to build: the only known instantiation of this [Sch18]
would increase the concrete communication of their ZK protocol by 1–2 orders
of magnitude. Finally, another approach to zero-knowledge proof systems over
rings has been proposed based on SNARKs [GNS21]. When using Z2k , this work
obtains a designated-verifier SNARK, however, the scheme has not been imple-
mented, and suffers from a dependency on expensive, public-key cryptography,
as in many field-based SNARKs.

1.1 Contributions

In this work, we address the question of building efficient protocols for VOLE
and zero-knowledge proofs over Z2k . Firstly, we show how to build a maliciously
secure VOLE protocol over Z2k , with efficiency comparable to state-of-the-art
protocols over finite fields [Boy+19; Wen+21]. Our protocol introduces new con-
sistency checks for verifying correctness of VOLE extension, which are tailored
to overcome the difficulties of working with the ring Z2k . Secondly, using our
VOLE over Z2k , we show how to adapt the QuickSilver protocol [Yan+21] to
the ring setting, obtaining an efficient ZK protocol called QuarkSilver that is
dedicated to proving circuit satisfiability over Z2k . Here, we extend techniques
from the MPC world [Cra+18] to be suitable for our ZK proof. Finally, we im-
plemented and benchmarked both our VOLE and ZK protocols to demonstrate
their performance. In a high-bandwidth, low-latency setting, our implementation
achieves a throughput of 13–50 million VOLEs per second for 64 bit to 256 bit
rings with 40 bit statistical security while transmitting only ≈ 1 bit per VOLE.
Our QuarkSilver implementation is able to compute and verify 1.3 million 64 bit
multiplications per second.

1.2 Our Techniques

Below, we expand on our contributions, the techniques involved and some more
relevant background.

Challenge of Working in Z2k . Before delving into our protocols, we first
briefly recap the main challenges when working with rings like Z2k , compared
with finite fields. When using VOLE for zero-knowledge, VOLE is used to commit



4 C. Baum, L. Braun, A. Munch-Hansen, P. Scholl

the prover to its inputs and intermediate wire values in the circuit. This is
possible by viewing each VOLE output M [x] = ∆ · x+K[x] as an information-
theoretic homomorphic MAC in the input x.

When working over a finite field, it’s easy to see that if a malicious prover
can come up with a valid MAC M [x] on an input x ̸= x, for the same key K[x],
then the prover can recover the MAC key ∆ from the relation:

M [x]−M [x] = ∆ · (x− x)

However, this relies on x−x being invertible, which is usually not the case when
working over a ring such as Z2k . Indeed, if x − x = 2k−1, then the prover can
forge a MAC M [x] with probability 1/2, since M [x] −M [x] mod 2k now only
depends on the least significant bit of ∆.

The SPDZ2k protocol [Cra+18] for multi-party computation showed how to
work around this issue by extending the modulus to 2k+s, for some statistical
security parameter s. This way, it can be shown that the lower s bits of the key
∆ are still enough to protect the integrity of the lower k bits of the message x.

Indeed, this was exactly the type of MAC scheme used in the recent work
on conversions and ZK over rings [Bau+21a]. However, as in the SPDZ2k proto-
cols, further challenges arise when handling more complex protocols for verifying
computation on MACed values.

Maliciously Secure VOLE Extension in Z2k . Current state-of-the-art VOLE
protocols all stem from the approach of Boyle et al. [Boy+18], which builds a
pseudorandom correlation generator based on (variants of) the learning parity
with noise (LPN) assumption. This approach exploits the fact that sparse LPN
errors can be used to compress secret-sharings of pseudorandom vectors, allowing
the two parties to generate a long, pseudorandom instance of a VOLE correlation
in a succinct manner.

These protocols proceed by first constructing a protocol for single-point
VOLE, where the sender’s input vector has only a single non-zero entry. Then,
the single-point VOLE protocol is repeated t times, to obtain a t-point VOLE
where the sender’s input is viewed as a long, sparse, LPN error vector. Finally,
by combining t-point VOLE and the LPN assumption, the parties can locally
transform this into pseudorandom VOLE by appling a linear mapping.

Using this blueprint leads to (random) VOLE protocols with communication
much smaller than the output length. This can be seen as a form of VOLE
extension, where in the first step, a small “seed” VOLE of length m≪ n is used
to create the single-point VOLEs, and then extended into a longer VOLE of
length n. In the Wolverine protocol [Wen+21], it was additionally observed that
when repeating this process, it can greatly help communication if m of the n
extended outputs are reserved and used to bootstrap the next iteration of the
protocol, saving generation of fresh seed VOLEs.

With semi-honest security, the above approach can easily be instantiated over
rings, following the protocols of [Sch+19; Boy+19]. When adapting this protocol
to malicious security, our main technical challenge is that previous works over
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fields [Boy+19; Wen+21] used a consistency check to verify correctness of the
outputs, which involved taking random linear combinations over the field. Due
to the existence of zero divisors, this technique does not directly translate to
Z2k . One possible approach, similarly to the MAC scheme described above, is to
increase the size of the ring to, say, Z2k+s , and use computations in the larger
ring to ensure that the VOLEs are correct modulo 2k. However, the problem
is, it would then no longer be compatible with the bootstrapping technique
of [Wen+21]: to check consistency, the seed VOLE must be in the larger ring
Z2k+s , however, since the outputs are only in Z2k , they can’t then be used as a
seed for the next execution! One solution would be to start with an even larger
ring (Z2k+2s), and keep decreasing the ring size after each iteration, but this
would be far too expensive when done repeatedly.

Instead, we take a different approach. First, we adopt a hash-based check
from [Boy+19], which verifies correctness of a puncturable pseudorandom func-
tion based on a GGM tree, created during the protocol. This hash check (which
we optimize by using universal hashing instead of a cryptographic hash function)
works over rings as well as fields, however, it does not suffice to ensure consis-
tency of the entire protocol. On top of this, we incorporate a linear combination
check, however, one with binary coefficients instead of coefficients in the large
ring. This type of check can be used over a ring, but allows a cheating prover to
try to bypass the check and cheat successfully with probability 1/2. Neverthe-
less, we show that by allowing some additional leakage in the single-point VOLE
functionality, we can still simulate the protocol with this check. For our final
VOLE protocol, this leakage implies that a few noise coordinates of the LPN
error vector may have leaked.

While previous protocols also allowed a limited form of leakage [Boy+19;
Wen+21], in this case, ours is more serious since entire noise coordinates can
be leaked with probability 1/2. To counter this, we analyze the state-of-the-art
attacks on LPN, and show how to adjust the parameters and increase the noise
rate accordingly.

Similarly to [Wen+21], we focus on using the “primal” form of LPN, which
was also used for semi-honest VOLE over Z2k in [Sch+19]. While the “dual”
form of LPN, as considered in [Boy+18; Boy+19; CRR21], achieves lower com-
munication costs (and does not rely on bootstrapping), it involves a more costly
matrix multiplication, which is expensive to implement. In [Boy+19], dual-LPN
was instantiated using quasi-cyclic codes to achieve Õ(n) complexity, but this
approach does not readily adapt to rings instead of fields; it is plausible that
the fast, LDPC-based dual-LPN variant proposed in [CRR21] can be adapted
to work over rings, but the security of this assumption has not been analyzed
thoroughly.

Efficient Zero-Knowledge via QuarkSilver in Z2k . Given VOLE, the stan-
dard approach to obtaining a ZK proof is using the homomorphic MAC scheme
described above. There, the prover first commits to the input w as well as all
intermediate circuit wire values of C(w). Then, the prover must show consis-
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tency of all the wire values and that the output wire indeed contains 1. Since
the MACs are linearly homomorphic, the main challenge is verifying multipli-
cations. In QuickSilver [Yan+21], to verify that committed values x, y, z satisfy
x · y = z, the parties locally compute a quadratic function on their MACs and
MAC keys, obtaining a new value which has a consistent MAC only if the mul-
tiplication is correct.

The catch is that this new MAC relation being checked leads to a quadratic
equation in the secret key ∆, instead of linear as before, which is chosen by a
possibly dishonest prover. If this quadratic equation has a root in ∆, then the
check passes. In the field case, this is not a problem as there are no more than
two solutions to a quadratic equation, so we obtain a soundness error of 2/|F|.
However, with rings, there can be many solutions. For instance, with

f(X) = aX2 + bX + c (mod 2k),

if a = 2k/2 and b = c = 0 then any multiple of 2k/4 is a possible choice for
X, i.e. the check would erroneously pass for 23k/4 choices of ∆. To remedy this,
we reduce the number of valid solutions by working modulo 2ℓ for some ℓ > k,
and adding the constraint on the solution that ∆ ∈ {0, . . . , 2s − 1}, where s is a
statistical security parameter.

An additional challenge is that when checking a batch of multiplications, we
actually check a random linear combination of a large number of these equations,
which again leads to complications with zero divisors. By carefully analyzing the
number of bounded solutions to equations of this type, and extending techniques
from SPDZ2k [Cra+18] for handling linear combinations over rings, we show that
it suffices to choose ℓ ≈ k+2(σ+ log σ) to achieve 2−σ failure probability in the
check. Overall, we obtain a communication complexity of ℓ bits per input and
multiplication gate in the circuit.

2 Preliminaries

2.1 Notation

We use lower case, bold symbols for vectors x and upper case, bold symbols
for matrices A. We use κ as the computational and σ as the statistical security
parameter. In our UC functionalities and proofs, Z denotes the environment,
and S is the simulator, while A will refer to the adversary.

2.2 Vector OLE

Vector OLE (VOLE) is a two party functionality between a sender PS and a
receiver PR to obtain correlated random vectors of the following form: PS obtains
two vectors u,w, and PR gets a random scalar ∆ and a random vector v so that
w = ∆ · u+ v holds.

We parameterize the functionality with two values ℓ and s such that s ≤ ℓ.
The scalar ∆ is sampled from Z2s , and the vectors u,v,w are sampled from
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Zn
2ℓ where n denotes the size of the correlation. We require that the equation

w = ∆ ·u+ v holds modulo 2ℓ. The ideal functionality is described in Figure 1.
As in SPDZ2k [Cra+18], we can implement Fℓ,s

vole2k using the oblivious transfer
protocol (OT) of [Sch18]. Basing VOLE on OT has the drawback of quadratic
communication costs in the ring size, since it requires one OT of size ℓbit for
each of the ℓ bits of a ring element. Hence, we would use this approach only
once to create a set of base VOLEs. Then we can use the more efficient protocol
presented in Section 4 to repeatedly generate large batches to VOLEs.

VOLE for Z2k : F
ℓ,s
vole2k

Let ℓ ≥ s.

Init This method is the first to be called by the parties. On input (Init) from
both parties proceed as follows:
1. If PR is honest, sample ∆ ∈R Z2s and send ∆ to PR.

2. If PR is corrupt, receive ∆ ∈ Z2s from S.

3. ∆ is stored by the functionality.
All further (Init) queries are ignored.

Extend On input (Extend, n) from both parties proceed as follows:
1. If PR is honest, sample v ∈R Zn

2ℓ . Otherwise receive v ∈R Zn
2ℓ from S.

2. If PS is honest, sample u ∈R Zn
2ℓ and compute w := ∆ · u + v ∈ Z2ℓ .

Otherwise receive u ∈ Zn
2ℓ and w ∈ Zn

2ℓ from S and then recompute v :=
w −∆ · u ∈ Zn

2ℓ

3. Send (u,w) to PS and v to PR.

Global-key Query If PS is corrupted, receive (Guess, ∆′) from S with ∆′ ∈
Z2s . If ∆′ = ∆, send success to PS and ignore subsequent global-key queries.
Otherwise, send abort to both parties and abort.

Fig. 1. Ideal functionality VOLE over Z2k .

2.3 Equality Test

In our work, we use an equality test functionality FEQ (Figure 2) between two
parties P,V where V learns the input of P. The equality check functionality can
be implemented using a simple commit-and-open protocol, see e.g. [Wen+21].
When using a hash function with 2κbit output (modeled as random oracle) to
implement the commitment scheme, the equality check of ℓ bit values can be
implemented with ℓ+ 3κbit of communication.
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Equality Test: FEQ

On input VP from P and VV from V:

1. Send VP and (VP
?
= VV) to V.

2. If V is honest and VP = VV , or V is corrupted and sends continue, then
send (VP

?
= VV) to P

3. If V is honest and VP ̸= VV , or V is corrupted and sends abort, then send
abort to P.

Fig. 2. Ideal functionality for equality tests.

2.4 Zero-Knowledge Proofs of Knowledge

In Figure 3 we provide an ideal functionality for zero-knowledge proofs. The
functionality implies the standard definition of a ZKPoK as it is:

Complete because whenever C(w) = 1 then an honest verifier will accept.
Knowledge Sound because it outputs true iff P inputs, and thus knows, a

satisfying assignment w for C.
Zero-Knowledge because nothing beyond the check C(w)

?
= 1 is leaked to V.

Zero-Knowledge Functionality Fk
ZK

Prove: On input (prove, C, w) from P and (verify, C) from V where C is a
circuit over Z2k and w ∈ Zn

2k for some n ∈ N: Send true to V iff C(w) = 1, and
false otherwise.

Fig. 3. Ideal functionality for zero-knowledge proofs for circuit satisfiability.

2.5 The LPN Assumption Over Rings

The Learning Parity with Noise (LPN) assumption [Blu+94] states that, given
the noisy dot product of many public vectors ai with a secret vector s, the result
is indistinguishable from a vector of random values. Adding noise to indices is
done by adding a noise vector e at the end, consisting of random values.

We rely on the following arithmetic variant of LPN over a ring ZM , as also
considered in [Boy+18; Sch+19].

Definition 1 (LPN). Let DM
n,t be a distribution over Zn

M such that for any
t, n,M ∈ N, Im(DM

n,t) ∈ Zn
M . Let G be a probabilistic code generation algorithm
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such that G(m,n,M) outputs a matrix A ∈ Zm ×n
M . Let parameters m, n, t be

implicit functions of security parameter κ. The LPNG
m,n,t,M assumptions states

that:

{(A,x) | A← G(m,n,M), s ∈R Zm
M , e← DM

n,t,x := s ·A+ e}
≈C {(A,x) | A← G(m,n,M),x ∈R Zn

M}.

There exists two flavours of the LPN assumption; the primal (Definition 1)
and the dual (Definition 15, Appendix B).

Informally, the main advantage of the primal version of LPN is that there
exist practical (and implemented) constructions of the LPN-friendly codes re-
quired for this. Specifically, one can choose the code matrix A from a family
of codes G supporting linear-time matrix-vector multiplication, such as d-local
linear codes so that each column of A has exactly d non-zero entries. According
to [Ale03], the hardness of LPN for local linear codes is well-established. Its main
disadvantage however, is that its output size can be at most quadratic in the
size of the seed, as intuitively, a higher stretch would make it significantly easier
for an adversarial verifier to guess enough noiseless coordinates to allow efficient
decoding via Gaussian Elimination [AG11].

The main advantage of the dual variant is that it allows for an arbitrary
polynomial stretch. However, the compressive mapping used within the dual
variant cannot have constant locality and is more challenging to instantiate.
Recently, Silver [CRR21] proposed an instantiation of dual-LPN based on struc-
tured LDPC codes, which have been practically implemented over finite fields,
and may plausibly also work over rings.

Dealing with Reduction Attacks Over Rings. When working over a ring
ZM instead of a finite field, we must take care that the presence of zero divisors
does not weaken security. For instance, a simple reduction attack was pointed
out in [Liu+22], where noise values can become zero after reducing modulo a
factor of M (for instance, in Z2k , reducing the LPN sample modulo 2 cuts the
number of noisy coordinates in half, significantly reducing security). To mitigate
this attack, we always sample non-zero entries of the error vector e and matrix
A to be in Z∗

M , that is, invertible mod M .1 While [Liu+22] did not consider
the effect on the matrix A, we observe that if A is sparse then its important to
ensure that its sparsity cannot also be decreased through reduction.2 With these
countermeasures, we are not aware of any attacks on LPN in ZM that perform
better than the field case.

We elaborate below on our choice of primal-LPN distribution.

1 This countermeasure was missing from the original version of this paper, before
[Liu+22] was available.

2 On the other hand, the LPN secret s must not be chosen over Z∗
M , but instead

uniformly over ZM , since if e.g. s was known to be odd over Z2k then solving the
reduced instance modulo 2 would be trivial.
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Choice of Matrix over ZM . We choose a random, sparse matrix A with d
non-zero entries per column. We choose each non-zero entry randomly from Z∗

M ,
to ensure that it remains non-zero after reduction modulo any factor of M . We
fix the sparsity to d = 10, as in previous works [Boy+18; Sch+19; Wen+21],
which according to [App+17; Zic17] suffices to ensure that A has a large dual
distance, which implies the LPN samples are unbiased [CRR21].

Noise Distribution in ZM . The noise distribution DM
n,t is chosen to have t

expected non-zero coordinates. This can be done on expectation with a Bernoulli
distribution, where each coordinate is either zero, or non-zero (and uniform
otherwise) with probability t/n. In our applications, we instead use an exact
noise weight, where DM

n,t fixes t non-zero coordinates in the length-n vector.

Invertible Noise Terms. When working over a ring ZM , we sample the non-zero
noise values to be in Z∗

M , that is, invertible mod M . This prevents the reduction
attack mentioned above, which would otherwise reduce the expected noise weight
by a factor of two for M = 2k.

Uniform vs Regular Noise Patterns. For fixed-weight noise, we speak of two
types of error; regular or uniform. We call uniform errors the case where DM

n,t is
the uniform distribution over all weight-t vectors of Zn

M with non-zero values in
Z∗
M . Implementing LPN-based PCGs with uniform errors has previously been

investigated by [Yan+20; Sch+19]. It is commonly implemented by utilising a
sub-protocol to place a single non-zero value within a vector of length n′ ≪ n
and then using Cuckoo hashing to generate a uniform distribution over n from
several of these smaller vectors, ending up with the t points distributed randomly
across the n coordinates.

Our construction uses a regular noise distribution for the primal-LPN in-
stance. Here, the noise vector in Zn

M is divided into t blocks of length ⌊n/t⌋,
such that each block has exactly one non-zero coordinate. Generally, using LPN
with regular errors is practically more efficient than for uniform errors [Yan+20;
Wen+21].

3 Single-Point Vector OLE

Single-point VOLE is a specialized functionality that generates a VOLE corre-
lation w = ∆ ·u+v (see Section 2.2) where u has only one non-zero coordinate
α ∈ [n]. We consider a variant where uα is not only non-zero, but additionally
also required to be invertible.

We present an ideal functionality for single-point VOLE Fℓ,s
sp-vole2k in Figure 4.

In the functionality, PS obtains u,w ∈ Zn
2ℓ ×Zn

2ℓ , and PR gets ∆,v ∈ Z2s ×Zn
2ℓ .

As in the full VOLE functionality Fℓ,s
vole2k we allow PS to attempt to guess ∆.

Additionally, Fℓ,s
sp-vole2k also allows PR to obtain leakage on the non-zero index:
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Single-Point VOLE for Z2ℓ : F
ℓ,s
sp-vole2k

This functionality extends the functionality Fℓ,s
vole2k (Figure 1). In addition to

the methods (Init) and (Extend), it also provides the method (SP-Extend) and
a modified global-key query.

SP-Extend On input (SP-Extend, n) with n ∈ N from both parties the func-
tionality proceeds as follows:
1. Sample u ∈R Zn

2ℓ with a single entry invertible modulo 2ℓ and zeros every-
where else, v ∈R Zn

2ℓ , and compute w := ∆ · u+ v ∈ Zn
2ℓ .

2. If PS is corrupted, receive u ∈ Zn
2ℓ with at most one non-zero entry and

w ∈ Zn
2ℓ from S, and recompute v := w −∆ · u.

3. If PR is corrupted:
(a) Receive a set I ⊆ [n] from S. Let α ∈ [n] be the index of the non-zero

entry u, and let β := uα. If I = {α}, then send (success, β) to PR. If
α ∈ I and |I| > 1, then send success to PR and continue. Otherwise
send abort to both parties and abort.

(b) Receive either (continue) or (query, J) from S. If (continue) was re-
ceived, continue with Step 3c. If (query, J) with J ⊂ [n] and |J | = n

2

was received and α ∈ J , then send α to S. Otherwise, send abort to all
parties, and abort.

(c) Receive v ∈ Zn
2ℓ from S, and recompute w := ∆ · u+ v.

4. Send (u,w) to PS and v to PR.

Global-key Query If PS is corrupted, receive (Guess, ∆′, s′) from S with
s′ ≤ s and ∆′ ∈ Z2s

′ . If ∆′ = ∆ (mod 2s
′
), send success to PS. Otherwise, send

abort to both parties and abort.

Fig. 4. Ideal functionality for a leaky single-point VOLE.

1. PR is allowed to guess a set I ⊆ [n] that should contain the index α. Upon
correct guess, if |I| = 1 then it learns uα while if |I| > 1 the functionality
continues. If α /∈ I then the functionality aborts.

2. PR is also allowed a second query for a set J ⊂ [n] that might contain α
where |J | = n/2. If PR guesses correctly then the functionality outputs α,
while it aborts otherwise.

The leakage is somewhat inherent to our protocol which we use to realize Fℓ,s
sp-vole2k.

Protocol Overview. Our protocol Πℓ,s
sp-vole2k (Figure 5) achieves active se-

curity using consistency checks inspired by the constructions from [Boy+19]
and [Wen+21]. We now give a high-level overview.

As a setup, we assume functionalities Fℓ,s
vole2k, FOT and FEQ. For Fℓ,s

vole2k we
assume that PR called (Init) already, thus setting ∆. Additionally, we require two
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pseudorandom generators (PRGs; with certain extra properties that we clarify
in Section 3.1) to create a GGM tree. Recall, the GGM construction [GGM84]
builds a PRF from a length-doubling PRG, by recursively expanding a PRG
seed into 2 seeds, defining a complete binary tree where each of the n leaves is
one evaluation of the PRF. We use this to build a puncturable PRF, where a
subset of intermediate tree nodes is given out, enabling evaluating the PRF at
all-but-one of the points in the domain.

The sender PS begins by picking a random index α from [n], and β randomly
from Z∗

2ℓ . This defines the vector u where uα = β and every other index is 0.
PS and PR use a single VOLE from Fℓ,s

vole2k to authenticate β, resulting in the
receiver holding γ and the sender holding δ, β such that δ = ∆ · β + γ.

To extend this correlation to the whole vector u, PR computes a GGM tree
with 2n leaves. We consider all n leaves that are “left children” of their parent
as comprising the vector v. Using log2(n) instances of FOT, PS learns all “right
children” as well as all of the “left children” except the one at position α –
meaning that the sender learns v for all indices except α. PS now sets wi = vi

for i ̸= α. This gives a valid correlation on these n − 1 positions, because since
ui = 0 for i ̸= α, we have that wi = ∆ · ui + vi.

What remains in the protocol is for PS to learn wα = ∆ · uα + vα without
revealing α and β to PR. Using the output of the VOLE instance, if PR computes
d← γ −

∑n
j=1 vj and sends d to PS, then PS can compute

wα = δ − d−
∑

j∈[n]\{α}

wj

= δ −
(
γ −

∑
i∈[n]

vi

)
−

∑
j∈[n]\{α}

wj

= δ − γ + vα = ∆ · β + vα

which is exactly the missing value for the correlation. While this protocol can
somewhat easily be proven secure against a dishonest PS (assuming that the
hybrid functionalities are actively secure), a corrupted PR can cheat in two ways:

1. It can provide inconsistent GGM tree values to the FOT instances, thus lead-
ing to unpredictable protocol behavior.

2. It can construct d incorrectly.

To ensure a “somewhat consistent” GGM tree (and inputs to FOT) we use a
check that sacrifices all the leaves that are “right children”. Here, PR has to
send a random linear combination of these, over a binary extension field, with
PS choosing the coefficients. The check makes sure that if it passes, then the
“left children” are consistent for every choice of α that would have made PS

not abort. This reduces arbitrary leakage to an essentially unavoidable selective
failure attack (due to the use of FOT).

To prevent the second attack, the sender and receiver use an additional VOLE
from Fℓ,s

vole2k and perform a random linear combination check to ensure correct-
ness of the value d. Due to the binary coefficients used in the linear combination
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over Z2ℓ , our check only has soundness 1/2. This, however, suffices to prove
security if we relax the functionality by allowing a corrupt receiver to learn α
with probability 1/2. This way, in the simulation in our security proof, if the
challenge vector χ is such that the receiver passes the check despite cheating,
the simulator can still extract a valid input using its knowledge of α.

The full protocol is presented in Figure 5. Before proving security of it, we first
recap the Puncturable PRF from GGM construction and its security properties.

3.1 Checking Consistency of the GGM Construction

We use the GGM [GGM86] construction to implement a puncturable PRF F
with domain [n] and range {0, 1}κ.

In a puncturable PRF (PPRF), one party P1 generates a PRF key k, and
then both parties engage in a protocol where the second party P2 obtains a
punctured key k{α} for an index α ∈ [n] of its choice. With k{α}, it is possible
for P2 to evaluate F at all points [n]\{α} so that F (k, i) = F (k{α}, i) for i ̸= α,
while nothing about F (k, α) is revealed. More formally:

Definition 2 (Adapted from [Boy+19]). A puncturable pseudorandom func-
tion (PPRF) with keyspace K, domain [n] and range {0, 1}κ is a pseudorandom
function F with an additional keyspace Kp and 3 PPT algorithms KeyGen, Gen,
PuncEval such that

KeyGen on input 1κ outputs a random key k ∈ K.
Gen on input n, k outputs {F (k, i), k{i}}i∈[n] where k{i} ∈ Kp.
PuncEval on input n, α, k{α} outputs vα such that vα ∈ ({0, 1}κ)n.

where F (k, i) = vα
i for all i ̸= α and no PPT adversary A, given n, α, k{α} as

input, can distinguish F (k, α) from a uniformly random value in {0, 1}κ except
with probability negl(κ).

For simplicity, we describe the algorithms for domains of size n = 2h for
some h ∈ N. By pruning the tree appropriately, the procedures can be adapted
to support domain sizes that are not powers of two. Throughout the coming
sections, we let α1, . . . , αh be the bit decomposition of α =

∑h−1
i=0 2i · αh−i, and

let αi denote the complement. Let κ be a computational and σ be a statistical
security parameter. Define σ′ := σ + 2 log n and let G : {0, 1}κ → {0, 1}2κ and
G′ : {0, 1}κ → Z2ℓ × F2σ′ be two PRGs.

Recall that to achieve malicious security when generating a PPRF key in our
protocol, we use the redundancy introduced from extending the domain to size
2n, and check consistency by letting the receiver provide a hash of all the right
leaves of the GGM tree. In order for the right leaves of the GGM tree to fix a
unique tree, we require the PRG used for the final layer G′ : {0, 1}κ → Z2ℓ×F2σ′

to satisfy the right-half injectivity property3 as defined below.

3 As noted in [Boy+19], this can be replaced with a weaker notion of right-half collision
resistance, which is easier to achieve in practice.
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Single-Point VOLE for Z2ℓ : Π
ℓ,s
sp-vole2k

For the (Init) and (Extend) operations, the parties simply query Fℓ,s
vole2k.

SP-Extend For (SP-Extend, n): Let h := ⌈logn⌉ and σ′ := σ + 2h.
1. The parties send (Extend, 1) to Fℓ,s

vole2k. PS receives a, c ∈ Z2ℓ and PR

receives b ∈ Z2ℓ such that c = ∆ · a+ b (mod 2ℓ) holds.

2. PS samples α ∈R [n], β ∈R Z∗
2ℓ and lets u ∈ Zn

2ℓ be the vector with uα = β
and ui = 0 for all i ̸= α.

3. PS sets δ := c and sends a′ := β − a ∈ Z2ℓ to PR. PR computes γ :=
b−∆ · a′ ∈ Z2ℓ . Now, δ = ∆ · β + γ (mod 2ℓ).

4. PR computes k ← GGM.KeyGen(1κ), runs (v, t, (K
i
0,K

i
1)i∈[h],K

h+1
1 ) ←

GGM.Gen(n, k), and sends K
h+1

:= K
h+1
1 ∈ F2σ

′ to PS.

5. Write α =
∑h−1

i=0 2i · αh−i, for αi ∈ {0, 1}. For i ∈ [h], the parties call FOT

where PS, acting as the receiver, inputs αi and PR inputs (K
i
0,K

i
1)i∈[h] to

FOT. PS receives K
i
:= K

i
αi

.

6. Check the GGM tree:
(a) PS samples ξ ∈R Fn

2σ
′ and sends ξ to PR.a

(b) PR computes Γ := ⟨ξ, t⟩ ∈ F2σ
′ and sends Γ to PS.

(c) PS runs vα ← GGM.PuncEval(n, α, (K
i
)i∈[h+1]) followed by

GGM.Check(n, α, (K
i
)i∈[h+1], ξ, Γ ). If the latter returns ⊥, PS aborts.

Otherwise it has obtained (vj)j∈[n]\{α}.

7. PR sends d := γ −
∑n

j=1 vj ∈ Z2ℓ to PS. PS defines w ∈ Zn
2ℓ such that

wj := vj for j ∈ [n]\{α} and wα := δ−d−
∑

1≤j≤n
j ̸=α

wj . Then w = ∆ ·u+v.

8. Check consistency of d:
(a) The parties send (Extend, 1) to Fℓ,s

vole2k. PS receives x, z ∈ Z2ℓ and PR

receives y∗ ∈ Z2ℓ such that z = ∆ · x+ y∗ (mod 2ℓ) holds.

(b) PS samples χ ∈R {0, 1}n with HW(χ) = n
2

and sends it to PR.b

(c) PS computes x∗ := χα · β − x ∈ Z2ℓ and sends x∗ to PR. PR computes
y := y∗ −∆ · x∗ ∈ Z2ℓ . Then z = y +∆ · χα · β.

(d) PS computes VPS :=
∑n

i=1 χi ·wi−z, and PR computes VPR :=
∑n

i=1 χi ·
vi − y. They send VPS , VPR to FEQ. If it returns (abort), then abort.

9. PS outputs (u,w), and PR outputs v.

a Instead of sending the whole vector ξ, PS can send a κ bit random seed which
is then expanded with a PRG to obtain ξ.

b Again, PS can send a short seed instead of χ.

Fig. 5. Protocol instantiating Fℓ,s
sp-vole2k in the (Fℓ,s

vole2k, FOT, FEQ)-hybrid model.
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Definition 3. We say that a function f = (f0, f1) : {0, 1}κ → Z2ℓ × F2σ′ , x 7→
(f0(x), f1(x)) is right-half injective, if its restriction to the right-half of the out-
put space f1 : {0, 1}κ → F2σ′ is injective.

In order to achieve active security of our construction, we provide an addi-
tional algorithm Check, together with a finite challenge set Ξ. This algorithm,
on input n, α, k{α}, a challenge ξ and a checking value Γ outputs ⊤ or ⊥.

Definition 4 (PPRF consistency). Let F be a PPRF and let Ξ be a chal-
lenge set whose size depends on a statistical security parameter σ. Consider the
following game for Check:

1. (k{1}, . . . , k{n}, state)← A(1κ, n).
2. ξ ∈R Ξ
3. Γ ← A(1κ, state, ξ)
4. For all α ∈ [n], let vα ← PuncEval(1κ, α, k{α}).
5. Define I := {α ∈ [n] | ⊤ = Check(n, α, k{α}, ξ, Γ )}.
6. We say A wins the game if there exists α ̸= α′ ∈ I such that there is an

index i ∈ [n] \ {α, α′} with vαi ̸= vα
′

i .

We say that F has consistency if no algorithm A wins the above game with
probability more than 2−σ.

Our algorithms GGM.KeyGen,GGM.Gen, GGM.PuncEval, GGM.Check, which
are used to generate the key, set up the punctured keys, evaluate and check
consistency of the punctured keys in our protocol are then as follows:

1. GGM.KeyGen(1κ) samples k ∈ {0, 1}κ uniformly at random and outputs it.
2. GGM.Gen(n, k) where n = 2h and k ∈ {0, 1}κ is a key:

(a) Set K0
0 ← k.

(b) For each level i ∈ [h], and for j ∈ {0, . . . , 2i−1−1} compute (Ki
2j ,K

i
2j+1)←

G(Ki−1
j ).

(c) For i ∈ [h], set K
i

0 ←
⊕2i−1−1

j=0 Ki
2j and K

i

1 ←
⊕2i−1−1

j=0 Ki
2j+1.

(d) For j ∈ [2h] compute vj , tj ← G′(Kh
j−1), and set v := (v1, . . . , v2h) and

t := (t1, . . . , t2h).
(e) Compute K

h+1

1 ←
∑

j∈[2h] ti.

(f) Output (v, t, (K
i

0,K
i

1)i∈[h],K
h+1

1 ).
3. GGM.PuncEval(n, α, (K

i
)i∈[h+1]) where n = 2h, α ∈ [n], and K

i ∈ {0, 1}κ:
(a) Set K1

α1
← K

1
.

(b) For each level i ∈ {2, . . . , h}:
i. Let x :=

∑i−1
j=1 2

j−1 · αi−j

ii. For j ∈ {0, . . . , 2i−1 − 1} \ {x}, compute (Ki
2j ,K

i
2j+1)← G(Ki−1

j ).

iii. Compute Ki
2x+αi

← K
i ⊕
⊕

0≤j<2i−1

j ̸=x

Ki
2j+αi

.

(c) For the last level h+ 1:
i. For j ∈ [2h] \ {α} compute (vj , tj)← G′(Kh

j−1)
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(d) Output (vj)j∈[2h]\{α}.

4. GGM.Check(n, α, (K
i
)i∈[h+1], (ξi)i∈[n], Γ ) where n = 2h, and K

i ∈ {0, 1}κ,
ξi ∈ F2σ′ , and Γ ∈ F2σ′ :
(a) For j ∈ [2h] \ {α} recompute tj as in GGM.PuncEval.
(b) Compute tα ← K

h+1 −
∑

j∈[2h]\{α} tj .
(c) If Γ =

∑
i∈[n] ξi · ti, output ⊤. Otherwise, output ⊥.

In comparison to Definition 2 GGM.Gen computes a compressed version of all
keys. The pseudorandomness for GGM, as defined in Definition 2, follows from
the standard pseudorandomness argument of the GGM construction [Kia+13;
BW13; BGI14].

The following theorem shows that the check ensures that a corrupted P1

cannot create an inconsistent GGM tree, where P2 obtains different values de-
pending on α. We give the proof in Appendix C.

Theorem 5 (Consistency of the GGM Tree). Let n = 2h ∈ N, σ′ = σ+2h,
and G,G′ as above, and let A be any time adversary. If G′ is right-half injective,
then A can win the game in Definition 4 with probability at most 2−(σ+1).

3.2 Security of Πℓ,s
sp-vole2k

Theorem 6. The protocol Πℓ,s
sp-vole2k (Figure 5) securely realizes the functionality

Fℓ,s
sp-vole2k in the (Fℓ,s

vole2k, FOT, FEQ)-hybrid model: No PPT environment Z can
distinguish the real execution of the protocol from a simulated one except with
probability 2−(σ+1) + negl(κ).

In the proof, we construct simulators for a corrupted sender and receiver.
For the corrupted sender, the simulator follows the protocol by behaving like an
honest receiver, but additionally extracts α from the interactions of the dishonest
sender with FOT and β from the VOLE. Its choice of GGM tree as well as
other messages are used to define a consistent vector w that it sends to the
functionality. A subtlety here is simulating the equality check in Step 8d of the
protocol, as a corrupt sender can pass this with an ill-formed x∗ if it can guess
a portion of ∆ used in the VOLE-functionality correctly. The simulator must
make a key query to Fℓ,s

sp-vole2k to simulate the success event correctly. Another
issue is that d sent by an honest receiver has a different distribution than how
it is chosen in the simulation, but we show that any distinguisher can break the
pseudorandomness of the GGM PPRF.

In the simulation for the corrupted receiver, the simulator first translates
FOT inputs into leakage queries to the functionality. For this, we know that due
to Step 6c any adversarial choice leads to consistent GGM tree leaves, so the
simulator chooses the set of indices where the check in this Step would pass as
leakage input to the functionality Fℓ,s

sp-vole2k. This query then allows the simulator
to create a valid transcript: if the attacker guessed α exactly correct (the set is
of size 1), then the simulator obtains β from the functionality and can directly
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follow the protocol with the honest inputs. If the adversary instead guessed a set
of size > 1 correctly that contains the secret α, then the simulator can reconstruct
the whole GGM tree and thus a potential input v. This furthermore allows the
simulator to detect an inconsistent d that is sent by the corrupt receiver. An
inconsistent d can be shown to translate into a selective failure attack on the
equality check in Step 8d of the protocol, which requires the simulator to make
the second leakage query. If it succeeds, then it obtains α and can adjust vα

accordingly.
The full proof of Theorem 6, together with a summary of the protocol com-

plexity, can be found in Appendix C.

4 Vector OLE Construction

Given our single-point VOLE protocol, we build a protocol for random VOLE
extension over Z2ℓ by running t single-point instances of length n/t, and concate-
nating their outputs to obtain a weight t VOLE correlation of length n. Then,
these (together with some additional VOLEs) can be extended into pseudoran-
dom VOLEs by applying the primal LPN assumption over Z2ℓ with regular noise
vectors of weight t. Since our single-point protocol introduces some leakage on
the hidden point, we need to rely on a variant of LPN with some leakage on the
regular noise coordinates.

4.1 Leaky Regular LPN Assumption

The assumption, below, translates the leakage from the single-point VOLE func-
tionality (Figure 4) into leakage on the LPN error vector. Note that there are
two separate leakage queries: the first of these allows the adversary to try and
guess a single predicate on the entire noise vector, and aborts if this guess is
incorrect. This is similar to previous works [Boy+19; Wen+21], and essentially
only leaks 1 bit of information on average on the position of the non-zero en-
tries. The second query, in Step 5 is more powerful, since for each query made
by the adversary, the exact position of one noise coordinate is leaked with prob-
ability 1/2. Intuitively, this means that up to c coordinates of the error vector
can be leaked with probability 2−c. In Appendix B.3, we discuss how to select
parameters such as to mitigate the effect of this leakage.

Definition 7. Let A← G(m,n, 2ℓ) ∈ Zm×n
2ℓ

be a primal-LPN matrix, and con-
sider the following game Gb(κ) with a PPT adversary A, parameterized by a bit
b and security parameter κ:

1. Sample e = (e1, . . . , et) ← Zn
2ℓ , where each sub-vector ei ∈ Zn/t

2ℓ
has exactly

one non-zero entry in Z∗
2ℓ , in position αi, and sample s← Zm

2ℓ uniformly
2. A sends sets I1, . . . , It ⊂ [n/t]
3. If αj ∈ Ij for all j ∈ [t], send OK to A, otherwise abort. Additionally, for

any j where |Ij | = 1, send ej to A
4. A sends sets J1, . . . , Jt ⊂ [n/t]
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5. For each Ji where |Ji| = n/(2t): if αi ∈ Ji, send αi to A, otherwise abort
6. Let y0 = s ·A+ e and sample y1 ← Zn

2ℓ

7. Send yb to A
8. A outputs a bit b′ (if the game aborted, set the output to ⊥)

The assumption is that |Pr[AG0(κ) = 1]− Pr[AG1(κ) = 1]| is negligible in κ.

4.2 Vector OLE Protocol

Our complete VOLE protocol is given in Figure 6. It realises the functionality
Fℓ,s

vole2k (Figure 1), which is the same functionality used for base VOLEs in our
single-point protocol. This allows us to use the same kind of “bootstrapping”
mechanism as [Wen+21], where a portion of the produced VOLE outputs is
reserved to be used as the base VOLEs in the next iteration of the protocol.

In the Init phase of the protocol, the parties create a base VOLE of length m,
defining the random LPN secret u, given to the sender, and the scalar ∆, given
to the receiver. Then, in each call to Extend, the parties run t instances of
Fℓ,s

sp-vole2k to generate c = (c1, . . . , ct) and e = (e1, . . . , et) for the sender and b =
(b1, . . . , bt) for the receiver. The sender then simply computes x← u·A+e ∈ Zn

2r

and z← w ·A+ c ∈ Zn
2r and the receiver computes y = v ·A+ b ∈ Zn

2r . This
results in the sender holding x, z and the receiver holding y such that z = x·∆+y.
The first m entries of these are reserved to define a fresh LPN secret for the next
call to Extend, while the remainder are output by the parties.4

Theorem 8. The protocol Πℓ,s
vole2k in Fig. 6 securely realizes the functionality

Fℓ,s
vole2k in the Fℓ,s

sp-vole2k-hybrid model, under the leaky regular LPN assumption.

The proof, given in Appendix D, is straightforward for the malicious sender,
and for the malicious receiver we translate the protocol into an instance of primal
LPN from Definition 1, which yields indistinguishability.

Communication Complexity When we instantiate the single-point VOLE with
our protocol Πℓ,s

sp-vole2k from Section 3, use the equality test sketched in Sec-
tion 2.3, and Silent OT [Boy+19; Yan+20; CRR21], our VOLE extension pro-
tocol Πℓ,s

vole2k with LPN parameters, (m, t, n) requires m + 2t base VOLEs and
4tℓ+ 2tσ + 4t⌈log n/t⌉+ (5 + 2⌈log n/t⌉)tκbit of communication. The costs for
the single-point VOLE protocol are broken down in Appendix C.3.

5 QuarkSilver: QuickSilver Modulo 2k

We now construct the QuarkSilver zero-knowledge proof system, which is based
on a similar principle as the QuickSilver protocol. The main technique to achieve
soundness in QuickSilver [Yan+21], similar to LPZK [DIO21], is that a dishonest
4 In our implementation, we actually reserve m + 2t of the outputs, since we need 2

extra VOLEs for each execution of the protocol for Fℓ,s
sp-vole2k.
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VOLE for Z2k : Π
ℓ,s
vole2k

Parameters Fix some parameters:
– n: LPN output size

– m: LPN secret size

– t: number of error coordinates for LPN (assume that t | n)

– n/t: size of a block in regular LPN

– A ∈ Zm×n

2ℓ
is the generator matrix used in primal-LPN

Init This must be called by the parties first and is executed once.
1. PS and PR send (Init) to Fℓ,s

sp-vole2k, and PR receives ∆ ∈ Z2s .

2. PS and PR send (Extend,m) to Fℓ,s
sp-vole2k. PS receives u,w ∈ Zm

2ℓ , and PR

receives v ∈ Zm
2ℓ , such that w = ∆ · u+ v over Z2ℓ .

Extend This protocol can be executed multiple times.
1. For i ∈ [t], PS and PR send (SP-Extend, n/t) to Fℓ,s

sp-vole2k which returns ei, ci

to PS and bi to PR such that ci = ∆ · ei + bi over Zn/t

2ℓ
, and ei ∈ Zn/t

2ℓ
has

exactly one entry invertible modulo 2ℓ and zeros everywhere else.

2. Define e := (e1, . . . , et) ∈ Zn
2ℓ , c := (c1, . . . , ct) ∈ Zn

2ℓ , and b :=
(b1, . . . ,bt) ∈ Zn

2ℓ . Then PS computes x := u · A + e ∈ Zn
2ℓ , and

z := w ·A+ c ∈ Zn
2ℓ . PR computes y := v ·A+ b ∈ Zn

2ℓ .

3. PS updates u,w by setting u := x[0 : m) ∈ Zm
2ℓ and w := z[0 : m) ∈ Zm

2ℓ ,
and outputs (x[m : n), z[m : n)) ∈ Zℓ

2ℓ × Zℓ
2ℓ . PR updates v by setting

v := y[0 : m) ∈ Zm
2ℓ and outputs y[m : n) ∈ Zℓ

2ℓ .

Fig. 6. Protocol for VOLE over Z2k in the Fℓ,s
sp-vole2k-hybrid model. Based on [Wen+21].

prover can only cheat in multiplication checks if it can come up with a quadratic
polynomial of a certain form, which has a root ∆ unknown to the prover. This
is straightforward over fields, but over Z2k there might be many more than just
two roots for a polynomial. Before constructing the zero-knowledge protocol,
we therefore give upper-bounds on the number of roots of certain quadratic
polynomials over Z2k .

5.1 Bounded Solutions to Quadratic Equations in Z2k

We examine the roots of the following polynomial modulo 2ℓ:

f(x) = ax2 + bx+ c

We are only interested in the case where a ̸= 0 mod 2k, while b and c
may be chosen arbitrarily by the adversary. Finally, we also only look at roots
x ∈ {0, . . . , 2s − 1}, since the secret MAC key ∆ is sampled from this range.

Towards giving a bound, we will use the following basic fact about modular
square roots.
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Proposition 9. Let a ∈ Z be an odd number. Then x2 = a mod 2ℓ has at most
4 solutions.

The proof is standard and can be found in Appendix E.1.
We also use a version of Hensel’s lemma (see e.g. [Hac07]), which allows lifting

certain solutions to an equation modulo p up to solutions modulo pℓ.

Lemma 10 (Hensel’s lemma). Let p be prime, f(x) be a polynomial with
integer coefficients and f ′(x) its derivative. If there exists an integer x∗ such
that

f(x∗) = 0 mod pi and f ′(x∗) ̸= 0 mod p

then there is a unique integer y modulo pi+1 satisfying

f(y) = 0 mod pi+1 and x∗ = y mod pi

Note that any solution to f(x) = 0 modulo pℓ is also a solution modulo p.
Hence, if the derivatives of all the roots modulo p are non-zero, we are guaranteed
that there are no more than two solutions modulo higher powers. The challenging
case is when the derivative is zero. We now show the following.

Lemma 11. Let f(x) ∈ Z[x] be a quadratic equation such that 2r is the largest
power of 2 dividing all coefficients. Then for any ℓ, s, s′ ∈ N such that ℓ− r > s′

there are at most 2max{(2s−s′)/2,1} solutions to f(x) = 0 mod 2ℓ in {0, . . . , 2s −
1}.

Proof. First, we will divide f(x) by 2r, the largest power of two that divides all
coefficients, then redefine f accordingly and solve:

f(x) = ax2 + bx+ c = 0 mod 2ℓ−r

where now at least one of {a, b, c} is odd.

Case 1: a and b are odd. We can use Lemma 10, since the derivative f ′(x) =
2ax+b is odd and, therefore, non-zero modulo 2. This means any solution modulo
2 lifts to a unique solution modulo higher powers, so there are at most 2 solutions
modulo 2ℓ−r.

Case 2: a is odd and b is even. Since a is invertible modulo 2ℓ−r, we can complete
the square: Define g(y) := a · y2+ t with t := c− b2/4 · (a−1 mod 2ℓ−r). Then we
have f(x) = g(y) (mod 2ℓ−r) using the substitution y = x+b/2·(a−1 mod 2ℓ−r):

g(y) = a ·
(
x+ b/2 · (a−1 mod 2ℓ−r)

)2
+ c− b2/4 · (a−1 mod 2ℓ−r)

= a · x2 + b · x+ b2/4 · (a−1 mod 2ℓ−r) + c− b2/4 · (a−1 mod 2ℓ−r)

= ax2 + bx+ c = f(x) (mod 2ℓ−r)
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So, to solve for x we can now solve ay2 = −t mod 2ℓ−r for y, where the
original constraint for x now puts y in the interval {b/2·(a−1 mod 2ℓ−r), . . . , b/2·
(a−1 mod 2ℓ−r) + 2s − 1}. Since this substitution is just a constant shift, the
maximal number of possible solutions in any interval of length 2s for g directly
translates into an upper bound on the number of solutions for f in the solution
space.

Letting t′ = t · (a−1 mod 2ℓ−r), we now want to solve:

y2 = −t′ (mod 2ℓ−r) (1)

– Case (2a): t′ = 0 (mod 2ℓ−r). Then, the solutions y are all the multiples
of 2(ℓ−r)/2. In an interval of length 2s, there can be at most 2s/2(ℓ−r)/2 <
2s−s′/2 of these.

– Case (2b): t′ ̸= 0 (mod 2ℓ−r). Let 2v
′
be the largest power of two dividing

t′. Since −t′ is a square, v′ must be even so we can write v′ = 2v for some
v ≤ (ℓ− r− 1)/2. Write −t′ = u · 22v for some odd u ∈ Z, and let z = y/2v,
so we have

z2 = u (mod 2ℓ−r−2v). (2)

Any solution y for (1) satisfies y = z · 2v mod 2ℓ−r−2v for some z that is a
solution to (2). So, there is a k ∈ Z such that

y = z · 2v + k · 2ℓ−r−2v (3)

⇒ y2 = z2 · 22v + 2 · z · k · 2ℓ−r−v + k2 · 22(ℓ−r−2v)

⇒ y2 = −t′ + z · k · 2ℓ−r−v+1 (mod 2ℓ−r).

To bound the number of solutions y, it suffices to bound the number of z and
k satisfying the above. For the y’s to be distinct mod 2ℓ−r, we need k < 22v,
which means there are 2v+1 possibilities for k, given by k = i · 2v−1 for all
i ∈ {0, . . . , 2v+1 − 1}. Since z is odd, from Proposition 9 there are no more
than 4 solutions to (2), which are of the form ±z0 and 2ℓ−r−2v−1 ± z0 for
some z0. However, it is easy to see that plugging z := z0 + 2ℓ−r−2v−1 into
(3) gives the same set of solutions for y as with z := z0, so we only need to
count ±z0. Overall, this shows there are at most 2v+2 solutions y to (3).
Since each solution in the set defined in Equation (3) (with k = i · 2v−1)
is spaced apart by 2ℓ−r−v−1, any interval of size 2s contains no more than
2s−ℓ+r+v+1 of these. From the fact that v ≤ (ℓ− r − 1)/2, we get

2s−ℓ+r+v+1 ≤ 2(ℓ−r−1)/2−ℓ+r+s+1) = 2(−(ℓ−r)+1+2s)/2 ≤ 2(2s−s′)/2

as required (where the last inequality holds since ℓ− r > s′).

Case 3: a is even, b is odd. In this case, f(x) = x+c mod 2 is linear, hence, the
unique solution x = c mod 2 gives a unique solution modulo 2ℓ−r via Lemma 10.
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Case 4: a, b are even, c is odd. Here, f(x) = 0 has no solutions modulo 2, so
also no solutions modulo any higher power.

5.2 Bounded Solutions for a Generalized Setting

In the previous subsection, we analyzed the setting that one would end up with
when constructing a soundness argument for our check for one multiplication.
In order to amortize this check to t multiplications, we generalize the security
game in the following theorem.

Theorem 12. Let ℓ, s, k ∈ N+ so that ℓ ≥ k + 2s and consider the following
game between a challenger C and an adversary A:

1. C chooses ∆ ∈ Z2s uniformly at random.
2. A sends δ0, . . . , δt ∈ Z such that not all δi for i > 0 are 0 mod 2k.
3. C chooses χ1, . . . , χt ← Z2s uniformly at random and sends these to A.
4. A sends b, c ∈ Z.
5. A wins iff (δ0 +

∑
i χiδi)∆

2 + b∆+ c = 0 mod 2ℓ.

Then A can win with probability at most (ℓ− k + 2) · 2−s+1.

The proof of Theorem 12 follows a similar way as Lemma 1 of [Cra+18].
The key observation is that Step 3 determines an upper-bound on r, the largest
number such that 2r divides all coefficients of the polynomial. This is because no
choice of b, c can increase r as it also must divide the leading coefficient, which
is randomized. By the random choice of the χi, one can show that the larger r
is, the smaller the chance that it divides δ0 +

∑
i χiδi.

Since a larger r leads to more roots of the polynomial, we can then bound
the overall attack success for each possible r. The full proof can be found in
Appendix E.2, and in Appendix E.3 we show the following corollary.

Corollary 13. Let σ ≥ 7 be a statistical security parameter. By setting s :=
σ+log σ+3 and ℓ := k+2s, any adversary A can win the game from Theorem 12
with probability at most 2−σ.

5.3 QuarkSilver

We now construct the QuarkSilver zero-knowledge proof system. Its main building
block are linearly homomorphic commitments instantiated from VOLEs over Z2ℓ .

Linearly Homomorphic Commitments. As in the A2B [Bau+21a] zero-
knowledge protocols, we use linearly homomorphic commitments from VOLE to
authenticate values in Z2k : Define a commitment [x] to a value x ∈ Z2k known
to the prover by a global key ∆ ∈R Z2s and values K[x],M [x] ∈R Z2ℓ with
ℓ ≥ k + s so that

K[x] = M [x] + x̃ ·∆ (mod 2ℓ) (4)
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holds for x̃ = x (mod 2k). Here the prover knows x̃ and M [x], and the verifier
knows ∆ and K[x]. To open the commitment, the prover reveals x̃,K[x] to the
verifier who checks that the aforementioned equalities hold.

The commitment scheme is linearly homomorphic, as no interaction is needed
to compute [a ·x+ b] from [x] for publicly known a, b ∈ Z2k : P,V simply update
x̃,K[x] and M [x] in the appropriate way modulo 2ℓ. The same linearity also holds
when adding commitments. Unfortunately, the upper ℓ − k bits of x̃ may not
be uniformly random when opening a commitment. To resolve this, the prover
instead opens [x+ 2ky] using a random commitment [y].

How QuarkSilver Works. QuarkSilver follows the established commit-and-
prove paradigm for zero-knowledge proofs. For the commitments, we use the
linearly homomorphic commitments described above. For a circuit with n inputs
and t multiplications, we start by generating n + t + 2 authenticated random
values [r1], . . . , [rn+t+2] with r̃i ∈R Z2ℓ for i ∈ [n + t + 2], i.e. commitments to
random values. For this, P and V call (Extend, n + t + 2) to Fℓ,s

vole2k. P then
commits to w using the first n random commitments. Next, the parties evaluate
the circuit topologically, computing commitments to the outputs of linear gates
using the homomorphism of [·]. For each multiplication gate, P commits to the
output using another unused random commitment. It then remains to show
that the commitment to the output of the circuit is a commitment to 1 and
that all commited outputs of muliplication gates are indeed consistent with the
committed inputs.

To verify the committed output wire, QuarkSilver uses the “blinded open-
ing” procedure that was introduced above. This procedure will consume another
random commitment. To check validity of a multiplication, observe that for 3
commitments [wα], [wβ ], [wγ ] with γ = α · β mod 2k it holds that

K[wα] ·K[wβ ]−∆ ·K[wγ ]︸ ︷︷ ︸
B

=

M [wα] ·M [wβ ]︸ ︷︷ ︸
A0

+∆ · (w̃α ·M [wβ ] + w̃β ·M [wα]−M [wγ ])︸ ︷︷ ︸
A1

,

where P can compute A0, A1 while V can compute B. Hence, by sending A0, A1

to V the latter can check that the relation on B,∆ holds. Instead of sending
these for every multiplication, we check all t relations simultaneously by having V
choose a string χ← Zt

2s , so that the prover instead sends (
∑

i χiA0,i,
∑

i χiA1,i)
while the verifier checks the relation on

∑
i χiBi and ∆. Since revealing these

linear combinations directly might leak information, P will first blind the opening
with the remaining random commitment from the preprocessing.

While the completeness and zero-knowledge of the aforementioned protocol
follows directly, we will explain the soundness in more detail in the security
proof. The full protocol is presented in Figure 7.

Security of the QuarkSilver Protocol
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QuarkSilver Πk
QS

The prover P and the verifier V have agreed on a circuit C over Z2k with n
inputs and t multiplication gates, and P holds a witness w ∈ Zn

2k so that
C(w) = 1.

Preprocessing phase The preprocessing phase is independent of C and just
needs upper bounds on the number of inputs and multiplication gates of C as
input.
1. P and V send (Init) to Fℓ,s

vole2k, and V receives ∆ ∈ Z2s .

2. P and V send (Extend, n + t + 2) to Fℓ,s
vole2k, which returns authenticated

values ([µi])i∈[n], ([νi])i∈[t], [o], and [π], where all µ̃i, ν̃i, õ, π̃ ∈R Z2ℓ .

Online phase
1. For each input wi, i ∈ [n], P sends δi := wi − µ̃i to V, and both parties

locally compute [wi] := [µi] + δi.

2. For each gate (α, β, γ, T ) ∈ C, in topological order:
– If T = Add, then P and V locally compute [wγ ] := [wα] + [wβ ].

– If T = Mul and this is the ith multiplication gate, then P sends di :=
wα · wβ − ν̃i, and both parties locally compute [wγ ] := [νi] + di.

3. For the ith multiplication gate, the parties hold ([wα], [wβ ], [wγ ]) with
K[wi] = M [wi] + w̃i ·∆ for i ∈ {α, β, γ}.
– P computes A0,i := M [wα] ·M [wβ ] ∈ Z2ℓ and A1,i := w̃α ·M [wβ ] +

w̃β ·M [wα]−M [wγ ] ∈ Z2ℓ .

– V computes Bi := K[wα] ·K[wβ ]−∆ ·K[wγ ] ∈ Z2ℓ .

4. P and V run the following check:
(a) Set A∗

0 := M [o], A∗
1 := õ, and B∗ := K[o] so that B∗ = A∗

0 +A∗
1 ·∆.

(b) V samples χ ∈R Zt
2s and sends it to P.

(c) P computes U :=
∑

i∈[t] χi ·A0,i+A∗
0 ∈ Z2ℓ and V :=

∑
i∈[t] χi ·A1,i+

A∗
1 ∈ Z2ℓ , and sends (U, V ) to V.

(d) V computes W :=
∑

i∈[t] χi · Bi + B∗ ∈ Z2ℓ , and checks that W =

U + V ·∆ (mod 2ℓ). If the check fails, V outputs false and aborts.

5. For the single output wire wh, both parties hold [wh]. They first compute
[z] := [wh] + 2k · [π]. Then P sends z̃ and M [z] to V who checks that z̃ = 1
(mod 2k) and K[z] = M [z] + z̃ ·∆. V outputs true iff the check passes, and
false otherwise.

Fig. 7. Zero-knowledge protocol for circuit satisfiability in the Fℓ,s
vole2k-hybrid model

with s := σ + log(σ) + 3 and ℓ := k + 2s for statistical security parameter σ.

Theorem 14. The protocol Πk
QS (Figure 7) securely realizes the functionality

Fk
ZK in the Fℓ,s

vole2k-hybrid model when instantiated with the parameters s := σ +
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log(σ)+3 and ℓ := k+2s: No unbounded environment Z can distinguish the real
execution of the protocol from a simulated one except with probability 2−σ+1.

As our protocol is an adaption of QuickSilver [Yan+21], the structure of our
proof is also similar. The main difference, lies in the proof of soundness of the
multiplication check. We will sketch the argument briefly, while the full proof of
Theorem 14 can be found in Appendix F.

For the ith multiplication gate (α, β, γ), let w̃γ = w̃α · w̃β + ei (mod 2ℓ),
where w̃α, w̃β , w̃γ ∈ Z2ℓ are the committed values in [wα], [wβ ], [wγ ] and ei ∈ Z2ℓ

is a possible error. Suppose that not all ei = 0 (mod 2k) for i ∈ [t]. Then

K[wγ ] = M [wγ ] + w̃γ ·∆ = M [wγ ] + (w̃α · w̃β) ·∆+ ei ·∆ (mod 2ℓ)

and (also modulo 2ℓ)

Bi = K[wα] ·K[wβ ]−∆ ·K[wγ ]

= (M [wα] ·M [wβ ]) + (w̃α ·M [wβ ] +M [wα] · w̃β −M [wγ ]) ·∆− ei ·∆2

= Ai,0 +Ai,1 ·∆− ei ·∆2

where Ai,0 and Ai,1 are as above the values that an honest P would send. The
equations for all gates are aggregated using a random linear combination:

W =
∑

i∈[t]
χi ·Bi +B∗

=
∑
i∈[t]

χi ·Ai,0 +A∗
0︸ ︷︷ ︸

U

+(
∑
i∈[t]

χi ·Ai,1 +A∗
1︸ ︷︷ ︸

V

) ·∆− (
∑
i∈[t]

χi · ei) ·∆2 (5)

Here, U, V denote the values that an honest P would send. The corrupted P∗

may choose to send U ′ := U + eU and V ′ := V + eV instead, and V accepts if
W = U ′ + V ′ ·∆ holds. Rearranging Equation 5, we get that V accepts if

0 = eU + eV ·∆+

(∑
i∈[t]

χi · ei
)
·∆2 (mod 2ℓ) (6)

holds. The key observation is that the steps in the protocol correspond exactly
to the game defined in Theorem 12 and the dishonest prover wins the game, i.e.,
cheats successfully, if Equation (6) holds. By Corollary 13 the probability that
this happens is at most 2−σ.

General Degree-2 Checks. Yang et al. [Yan+21] also provide zero-knowledge
proofs for sets of t polynomials of degree d in n variables (in total), where the
communication consists of n+d field element – independent of t. With the results
proved in Section 5.2, we can directly instantiate this protocol with d = 2. This
allows us to verify arbitrary degree-2 relations including the important use case
of inner products. Extending the check for higher-degree relations is principally
possible. However, the number of roots of the corresponding polynomials grows
exponentially with increasing degree. Hence, to achieve the same soundness, we
would need to increase the ring size further, which reduces the efficiency. We
give the full protocol and its security proof in Appendix G.
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6 Experiments

In this section we report on the performance of our VOLE protocol Πr,s
vole2k

(Section 4) and our zero-knowledge proof system QuarkSilver (Section 5). We
implemented the protocols in the Rust programming language using the swanky
framework5. Our implementation is open source and available on GitHub under
https://github.com/AarhusCrypto/Mozzarella.

Our implementation is generic, it allows to plugin any ring type that imple-
ments certain interfaces. We implement Z2ℓ based on 64, 128, 192 and 256 bit
integers. Depending on the size of ℓ, we choose the smallest of these types.
Hence, running the protocol with, e.g., ℓ = 129 and ℓ = 192 has exactly the
same computational and communication costs. In our experiments, we choose
one representative ring for each considered size. It is possible to further optimize
the communication cost of the implementation by transmitting exactly ℓ bits
instead of the complete underlying integer value at the additional cost for the
(un)packing operations.

6.1 Benchmarking Environment

All benchmarks were run on two servers with Intel Core i9-7960X processors
that have 16 cores and 32 threads. Each server has 128GiB memory available.
They are connected via 10 Gigabit Ethernet with an average RTT of 0.25ms.

We consider different network settings: For the LAN setting, we use the
network as described above without further restrictions. To emulate a WAN
setting, we configure Traffic Control in the Linux kernel via the tc (8) tool
to artificially restrict the bandwidth to 100Mbit/s, and increase the RTT to
100ms. Finally, to explore the bandwidth dependence of our VOLE protocol, we
consider a set of network settings with 20, 50, 100 and 500Mbit/s as well as 1
and 10Gbit/s bandwidth, and an RTT of 1ms.

6.2 VOLE Experiments

In this section, we evaluate the performance of our VOLE protocol Πℓ,s
vole2k (Sec-

tion 4). We consider the setting of batch-wise VOLE extension: Given set of nb

base VOLEs, we use our protocols to expand them to no+nb VOLEs to obtain a
batch of no VOLEs plus nb VOLEs that can be used as base VOLEs to generate
the next batch. We do not consider here how the initial set of base VOLEs are
created. As performance measure we use the run-time and communication per
generated VOLE correlation in one iteration of the protocol.

LPN Parameter Selection. For a triple of LPN parameters (m, t, n), our pro-
tocol extends nb = m+2 ·t base VOLEs to n new ones. Hence, for a target batch
size no, we need to find (m, t, n) such that n ≥ no + nb and the corresponding
LPN problem is still considered infeasible w.r.t. the security parameters.
5 swanky: https://github.com/GaloisInc/swanky

https://github.com/AarhusCrypto/Mozzarella
https://github.com/GaloisInc/swanky
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As suggested in prior work [Sch+19; Yan+20; Wen+21], we pick the public
LPN matrix A ∈ Zm×n

2ℓ
as a generator of a 10-local linear code (i.e. each column

of A contains exactly 10 uniform non-zero entries). As discussed in Section 2.5,
each non-zero entry is picked randomly from Z∗

2ℓ (i.e. odd), to ensure that re-
duction modulo 2 does not reduce sparsity. This results in fast computation of
the expansion u ·A (for some u ∈ Z2ℓ), as each entry involves only 10 positions
of u. We then pick (m, t, n) such that all known attacks on the LPN problem
require at least 2κ operations [Boy+19; Wen+21] (see also Appendix B.2). Note
that, as our variant of the regular LPN assumption (Definition 7) leaks blocks of
the noise vector, we must pick t such that our protocols are secure in advent of
leaking up to σ ∈ {40, 80} blocks. To do this, we assume that leaking the noisy
index within a single block of Πℓ,s

sp-vole2k directly gives an index of the secret and
then subtract the leaked block from the noise vector as well as the corresponding
index from the secret and make sure that the new problem is still infeasible to
solve.

For a given no we experimentally find the LPN parameter set (m, t, n) that
gives us the best performance while satisfying the above conditions.

We chose LPN parameters targeting a level of κ = 128 bits of computational
security, and used the approach of Boyle et al. [Boy+18] to estimate the hardness
of the LPN problem. Recently, Liu et al. [Liu+22] noted that this significantly
underestimates the hardness of the LPN problem. Using their estimation, our
parameters yield about 153–158 bits of security. Hence, we could reduce the
parameters to get a more efficient instantiation of our protocol. We chose to
use LPN with odd noise values in Z2k to resist the reduction attack of Liu et
al. [Liu+22], which otherwise reduces the effective noise rate by half. In case of a
potential future attack on LPN with odd noise, with the same impact, we would
still achieve 103–109 bits of security.

For more details regarding the choice of LPN parameters and how we estimate
the hardness of the leaky LPN problem, we refer to Appendix B.3.

General Benchmarks. For each statistical security level σ ∈ {40, 80}, we
selected two LPN parameter sets (m, t, n) targeting VOLE batch sizes of no ∈
{107, 108}. We execute the protocol in two different network settings with four
different ring sizes ℓ ∈ {64, 104, 144, 244} (one representative for each of the
underlying integer types) for each of the parameter sets. Table 1 contains the
results of our experiments.

With increasing ring size ℓ the costs increase as the arithmetic becomes more
costly and more data needs to be transferred. Moreover, with a larger batch size
the costs per VOLE decrease. In terms of run-time and communication costs, it
is more efficient to generate a larger amount of VOLEs at once. However, the
required resources, e.g., memory consumption, also increase with the batch size.
In the WAN setting, a larger batch size is especially more efficient, since the
effect of the higher latency is less pronounced on the amortized run-times.

Although the chosen LPN parameter sets worked well in our case, other
combinations of m and t can yield a similar performance with same security,
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while influencing the computation and communication cost slightly. Such an
effect can be noticed in the first parameter sets, where the communication cost
decreases when going from σ = 40 to σ = 80. It is a trade-off, and we deem
experimental verification necessary to choose the best-performing parameter set.

Table 1. Benchmark results of our VOLE protocol. We measure the run-time of the
Extend operation in ns per VOLE and the communication cost in bit per VOLE. The
benchmarks are parametrized by the ring size ℓ (i.e., using Z2ℓ). The computational
security parameter is set to κ = 128. For statistical security σ ∈ {40, 80}, we target
batch sizes of no = 107 and no = 108, and use the stated LPN parameters (m, t, n).

σ ℓ
Run-time Communication

LAN WAN PS → PR PR → PS total

40

m = 553 600, t = 2186, n = 10 558 380

64 27.3 190.8 0.467 0.927 1.394
104 40.7 186.7 0.509 0.955 1.464
144 55.2 212.6 0.551 0.983 1.534
244 80.7 255.0 0.593 1.011 1.604

m = 773 200, t = 15 045, n = 100 816 545

64 20.1 46.0 0.318 0.636 0.954
104 33.2 58.9 0.347 0.655 1.002
144 46.7 75.1 0.376 0.674 1.050
244 76.7 102.8 0.405 0.694 1.098

80

m = 830 800, t = 2013, n = 10 835 979

64 27.6 171.9 0.431 0.853 1.284
104 42.6 194.1 0.469 0.879 1.349
144 59.4 217.1 0.508 0.905 1.413
244 89.3 277.4 0.547 0.931 1.477

m = 866 800, t = 18 114, n = 100 913 094

64 21.4 48.2 0.383 0.765 1.148
104 34.3 61.0 0.418 0.789 1.206
144 49.2 76.0 0.453 0.812 1.264
244 79.8 106.8 0.487 0.835 1.322

Comparison with Wolverine. We compare the efficiency of our VOLE exten-
sion protocol with that of Wolverine [Wen+21]. While we use different hardware,
we try to replicate their benchmarking setup by restricting our benchmark to
maximal 5 threads and up to 64GiB memory, and select LPN parameters to
generate no ≈ 107 VOLEs. The results are given in Table 2, where we list our
run-times in different bandwidth settings with the corresponding numbers given
in [Wen+21]. Note that Wolverine uses the prime field F261−1, whereas we in-
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stantiate our protocol with different larger rings Z2ℓ . In network settings with
at least 50Mbit/s bandwidth, we achieve similar or better performance for the
ring sizes up to 128 bit.

Table 2. Run-times in ns per VOLE in different bandwidth settings, when generating
ca. 107 VOLEs with 5 threads and statistical security σ ≥ 40. The parameter ℓ denotes
the size of a ring or field element. The numbers for Wolverine are taken from [Wen+21].

ℓ 20Mbit/s 50Mbit/s 100Mbit/s 500Mbit/s 1Gbit/s 10Gbit/s

this work

64 110.0 68.7 55.0 50.2 50.6 50.4
104 142.0 95.2 80.1 73.2 71.5 73.6
144 178.6 134.7 119.3 111.6 112.6 113.3
244 266.3 219.1 201.7 194.5 193.7 196.5

Wolverine 61 101.0 87.0 85.0 85.0 85.0 —

Bandwidth Dependence. Table 2 also shows how the available bandwidth
affects the performance of our protocol. We observe that increasing the network
bandwidth beyond 100Mbit/s does not improve the run-time significantly. This
indicates that the required computation is the bottleneck above this point.

6.3 Zero-Knowledge Experiments

We explore at what rate our QuarkSilver protocol (Section 5) is able to verify the
correctness of multiplications. In our experiments we check for N ≈ 107 triples
of the form ([wi,α], [wi,β ], [wi,γ ]) for i ∈ [N ] that wi,α · wi,β = wi,γ (mod 2k)
holds. Assuming the prover has already committed to 2N values ([wi,α], [wi,β ]),
we execute the following three steps:

1. vole: Perform the Extend operation of Πs,ℓ
vole2k to create the necessary amount

of VOLEs (at least N + 1).
2. mult: Step 2 of Πk

QS (Figure 7) to commit to the results wi,γ := wi,α ·wi,β of
the multiplications.

3. check: Steps 3 and 4 of Πk
QS to verify that the multiplications are correct

modulo 2k.

While the execution of Πs,ℓ
vole2k in Step 1 is parallelized, the further steps are

executed in a single thread, and there is still room for optimizations, e.g., using
smaller integers for the coefficients of the random linear combination and better
interleaving computation and communication.

For statistical security levels of σ = 40 and σ = 80, we run the protocol with
ring sizes ℓ = 162 and ℓ = 244, respectively. This corresponds to the required
ring size ℓ to enable zero-knowledge proof over Z2k with k = 64. It also covers
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the k = 32 setting, since the corresponding rings (with ℓ ∈ {130, 212}) are
implemented in the same way.

In Table 3 we list the achieved run-times and communication costs per multi-
plication and show how they are distributed over the three steps of the protocol.
We clearly see that the costs are dominated by Step 2, where the majority of
the communication happens (one Z2ℓ element per multiplication). Additional
benchmarks show that increasing the bandwidth to more than 500Mbit/s does
not increase the performance.

Table 3. Benchmark results of our QuarkSilver protocol. We measure the run-time of
a batch of ≈ 107 multiplications and their verification in ns per multiplication and the
communication cost in bit per multiplication. The benchmarks are parametrized by
the statistical security parameter σ, and the computational security parameter is set
to κ = 128. For σ = 40, we use the ring of size ℓ = 162, for σ = 80, we use ℓ = 244.

σ
Run-time Communication

LAN WAN PS → PR PR → PS total

40

vole 78.5 265.5 0.5 1.0 1.5
mult 663.2 2 101.5 192.0 0.0 192.0
check 28.2 38.2 0.0 0.0 0.0

total 769.9 2 405.2 192.5 1.0 193.5

80

vole 125.3 345.6 0.5 0.9 1.5
mult 680.7 2 767.2 256.0 0.0 256.0
check 42.3 52.4 0.0 0.0 0.0

total 848.3 3 165.2 256.5 0.9 257.5

With a completely single-threaded implementation (including single-threaded
VOLEs), we can verify about 0.9 million multiplications per second for statis-
tical security parameter σ = 40 and ring Z2162 , compared to (single-threaded)
QuickSilver’s up to 4.8 million multiplications per second over the field F261−1,
as reported by Yang et al. [Yan+21]. This is a factor 5.3 difference.

When looking at the performance of Z2162 compared to F261−1, we see that
Z2162 ring elements are represented by three 64 bit integers compared to F261−1

field elements which fit into a single integer. While this results in 3× more
communication, the computational costs are also higher: In microbenchmarks,
arithmetic operations in Z2162 are 2.1−2.5× slower compared to the correspond-
ing operations in F261−1 (e.g., Z2162 multiplications require 6 IMUL/MULX in-
structions, F261−1 multiplications need one MULX instruction). Moreover, the
compiler can automatically vectorize element-wise computations on vectors of
field elements with AVX instruction due to the smaller element size, but this is
(at least currently) not possible with the larger ring. Computation on rings also
results in a slightly higher rate of cache misses, which we attribute to the fact
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that more field elements than ring elements fit in a cache line, simply due to
their size.

We want to stress that this direct comparison is not necessarily fair, though:
The Mersenne prime modulus p = 261 − 1 has been chosen because it allows to
implement the field arithmetic very efficiently. The plaintext space has roughly
the same size in both settings (64 vs. 61 bit), but the arithmetic on the secrets
is entirely different which is the main difference of our work to the field-based
approach of QuickSilver. While QuarkSilver supports 64 bit arithmetic natively
(which is one of the main points of considering Z2k protocols), things are more
complicated with fields. To emulate 64 bit arithmetic in a prime field, the prime
modulus has to have size ≥ 128 bit (so no modular wraparound occurs during
multiplications) which means more communication and more complicated arith-
metic. Then, one also has to commit to the correct reduction modulo 264 and
prove that the reduction is computed correctly, e.g., with range proofs or using
the truncation protocols of Baum et al. [Bau+21a] – both are not cheap, in
particular given they are needed for each multiplication mod 264 (and possibly
additions, too). Moreover, with a prime modulus of this size one cannot take ad-
vantage of a Mersenne prime (the nearest Mersenne primes would be p = 2127−1
(too small) and p = 2521−1 (much larger)) to increase computational efficiency.
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A Interesting Ring Sizes for VOLE

Table 4. Overview of the required ring size ℓ and size s of ∆ that different zero-
knowledge proofs require to verify circuits over Z2k with σ bits of statistical security.

σ k
Π

Z
2k

ComZK-a [Bau+21a] Π
Z
2k

ComZK-b [Bau+21a] QuarkSilver (this work)

s := σ ℓ := k + s s := σ ℓ := k + 2s s := σ + log(σ) + 3 ℓ := k + 2s

40 32 40 72 40 112 49 130
64 40 104 40 144 49 162

80 32 80 112 80 192 90 212
64 80 144 80 224 90 244

B Choosing LPN Parameters

B.1 Dual-LPN

Definition 15 (Dual-LPN). Let DM
n,t and G be defined as in Definition 1. Let

n′, n ∈ N be defined so that n′ > n and then let G⊥ be a probabilistic code
generation algorithm such that G⊥(n′, n,M) outputs a matrix in {H ∈ Zn′×n

M |
rank(H) = n ∧ ∃A ∈ Im(G(n′ − n, n′,M)) .A ·H = 0}. Let parameters n, n′, t
be implicit functions of security parameter κ. The dual-LPNG

n′,n,t,M assumption
states that:

{(H,x) | H← G⊥(n′, n,M), e← DM
n,t,x := e ·H}

≈C {(H,x) | H← G⊥(n′, n,M),x ∈R Zn
M}.

B.2 Attacks on LPN

We recall the main attacks on LPN, following the analysis of [EKM17; Boy+18;
Boy+19]. We refer to [EKM17] for a more thorough overview. Let DM

n,t be the
noise distribution with Hamming weight t. Recall that the LPN secret dimension
is m, while the number of samples is n. We define the average noise rate to be
r = t/n.

Pooled Gaussian Elimination This attack recovers x from b = x · A + e
by guessing m non-noisy coordinates of b, performs Gaussian elimination
to find x and verifies that the guess of the m non-noisy coordinates was
correct. [EKM17] introduced Pooled Gaussian elimination in order to reduce
the samples required by regular Gaussian elimination. In Pooled Gaussian
elimination, the adversary guesses m non-noise samples by picking them at
random from a pool of fixed N = m2 log2 m LPN samples in each iteration,
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and then inverts the corresponding subsystem to get a potential solution x′

and then checks if x′ = x. For LPN with noise rate r, this attacks recovers
the secret in time m3 log2 m

(1−r)m using m2 log2 m samples.
Information Set Decoding (ISD) [Pra62] Breaking LPN is equivalent to

breaking its dual variant, which may be interpreted as the task of decod-
ing a random linear code from its syndrome. The best algorithms for this
are improvements of Prange’s ISD algorithm, which tries to find a size-t sub-
set of the rows of B (the parity-check matrix of the code used within the
Dual-LPN assumption) that spans e ·B.

The BKW Algorithm [BKW03] This is a variant of Gaussian elimination
which achieves subexponential complexity, even for high-noise LPN. It re-
quires a subexponential number of samples and can solve LPN over F2 in
time 2O(m/ log(m/r)) using 2O(m/ log(m/r)) samples.

Combinations of the above [EKM17] The authors of [EKM17] conducted
an extended study of the security of LPN and they described combinations
and refinements of the previously mentioned attack (called well-pooled Gauss
attack, hybrid attack and the well-pooled MMT attack). All of these attacks
achieve subexponential time complexity, but require as many samples as
their time complexity.

Scaled-down BKW [Lyu05] This is a variant of the BKW algorithm, tailored
to LPN with polynomially-many samples. It solves the LPN problem in
time 2O(m/ log log(m/r)), using m1+ϵ samples (for any ϵ > 0) and has worse
performance in time and number of samples for larger fields.

Statistical Decoding [DT17]6 The goal of all of the previous attacks is to
recover the secret x, whereas this attack directly attempts to distinguish b =
x ·A+ e from random. By the singleton bound, the minimal distance of the
dual code of C is at most m+1, hence there must be a parity-check equation
for C of weight m + 1, that is, a vector v such that A · vT = 0. Then, if b
is random, b · vT = 0 with probability at most 1/|F|, whereas if b is a noisy
encoding, it goes to zero with probability roughly ((n−m−1)/n)rn [Boy+18].

Note that some of the above attacks are specialized to LPN over F2, while
others work for more general fields. When working in Z2ℓ , though, one can always
reduce the LPN instance modulo 2 and run the distinguisher for the problem
in F2.

B.3 Implications of the Leaky Regular LPN Assumption

We now discuss how the additional leakage in our leaky variant of the LPN
assumption (Definition 7) affects the hardness of the problem and the choice of
parameters.

The Security Game. Recall the security game from Definition 7 where the
adversary A can make two queries for the indices of the non-zero entries in the
error vector e, an I-query (Step 2) and a J-query (Step 4).
6 Statistical Decoding is also known as Low-Weight Parity Check [App+17; Zic17].
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For each query, A sends a collection of sets I1, . . . , It ⊆ [nt ] (resp. Ji1 , . . . , Jih
⊆ [nt ] with h ∈ [0, t] and all ij ∈ [t] different) to the challenger. The adversary
then learns whether αi ∈ Ii for all i ∈ [t] (resp. αij ∈ Jij for all j ∈ [h]) where
αi is the index of the non-zero entry in the subvector ei. If this is not the case,
i.e., there is an index i ∈ [t] such that αi ̸∈ Ii (resp. ij such that αij ̸∈ Ji), then
the game aborts.

The I-query is similar to previous works [Boy+19; Wen+21], and essentially
only leaks 1 bit of information on average on the position of the non-zero entries:
The adversary then learns whether αi ∈ Ii for all i ∈ [t]. In the case that one of
the sets contain only the correct index Ii = {αi}, our variant additionally reveals
the non-zero value βi. Compared to previous works, the adversary is then able
to remove the noise and, thus, learns n

t instead of n
t − 1 noiseless equations.

The J-query is more powerful: For each i ∈ [t], the adversary has the option
to make a guess by sending a subset Ji ⊆ [nt ] of size n

2t (sets of other sizes are
ignored). In contrast to the I-query, the adversary learns the correct index αi

for each successful guess Ji of this form. If there is a guess Ji of this form such
that αi ̸∈ Ji, the game aborts. However, due to the size restriction, every guess
independently succeeds with probability 1/2. Hence, except with probability at
most 2−σ, the adversary will not learn more than σ noisy coordinates αi without
without the game aborting.

Estimating Security of Leaky LPN. Let h(i, j) := (i − 1) · (nt ) + j be an
index function which computes the index of a length n vector that corresponds
to the jth entry of the ith subvector of length n

t . We use Ak to denote the kth
column of A.

Suppose the adversary has received an LPN sample y = s ·A+e and learned
the position αi of the noise in block ei. Then it knows that yh(i,αi) = s·Ah(i,αi)+
βi holds for the (unknown) noise value βi. It also knows that yh(i,j) = s ·Ah(i,j)

holds for all other indices in this block j ∈ [nt ]\{αi}, i.e., it now has n
t −1 linear

equations of the secret vector s without noise. In the worst case, these could be
used to recover n

t − 1 entries of s.
Now the adversary can to learn up to σ noisy coordinate except with neg-

ligible probability. Therefore, we must tolerate the leakage of up to σ · (nt − 1)
noise-free equations or the same number of entries of s. Hence, it can transform
the given LPN instance into a smaller instance where the σ affected blocks are
removed and the secret is σ · (nt − 1) entries smaller. and we require that it is
still infeasible for the adversary to solve this smaller LPN instance.

To summarize, we assume that an instance of the leaky LPN problem with
parameters (m, t, n) is as hard as a standard LPN instance (Definition 1) with
reduced parameters (m′, t′, n′) = (m − σ · (nt − 1), t − σ, n − σ · nt ). Hence, we
must choose (m, t, n) such that n is large enough for our application and that
the (standard) regular LPN problem with parameters (m′, t′, n′) is hard to solve.

Estimating Security of Standard LPN. We initially estimated the security
of standard regular LPN (Definition 1) with the reduced parameters (m′, t′, n′)
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following Boyle et al. [Boy+18] as

log2

(
m′ + 1

(1− m′

n′ )t
′

)
bits,

based on their estimation of the cost of the low-weight parity-check attack.
Recently, Liu et al. [Liu+22] found that the above estimate is very conserva-

tive, and the pooled Gauss attack performs better for all practical parameters.
They provide a script to compute more precise estimates, and we refer to their
work for more details. As mentioned in Section 2.5, by choosing the LPN noise
values to be odd, we avoid the reduction attack from Liu et al., which would
otherwise halve the noise rate.

Choosing LPN Parameters for VOLE Extension. We start by selecting a
number no of VOLEs that we want to produce in each iteration. Then we search
for parameters (m, t, n) for the leaky LPN problem that gives us κ = 128 bits of
security (see above) such that additionally n ≥ no + (m+ 2t) holds. The latter
allows us to generate no usable VOLEs in each iteration while keeping m + 2t
values to run the next execution of our extension protocol.

In our experiments (Section 6.2), we set no ∈ {107, 108}. We then tried
different secret sizes m in the interval [105, 106], computed the required number
of noise coordinates t so that the leaky LPN problem is sufficiently hard, and
benchmarked our protocol. This gave us parameter sets with the same security
properties and output size, out of which we selected the best performing one.

If we fix some values of m and no (in the ranges stated above) and compare
the required noise coordinates with and without the extra leakage, then we need
about 1.5× (resp. 2.1×) more noise coordinates to compensate for the leakage
for σ = 40 bits (resp. 80 bits) of statistical security.

For the concrete parameter sets used the in experiments and the achieved
security level in context of the discussion above, we refer to Section 6.2.

C Proof of the Single-Point VOLE protocol & Protocol
complexity

C.1 GGM Tree Analysis

Lemma 16. For n, σ ∈ N, the set Hn
σ := {z 7→ ⟨z, ξ⟩ | ξ ∈ Fn

2σ} of functions
Fn
2σ → F2σ is a universal family of hash functions, i.e., for any two x ̸= y ∈ Fn

2σ ,
we have Prh∈RHn

σ
[h(x) = h(y)] = 2−σ.

Proof. Halevi and Krawczyk [HK97] give the proof for ∆-universality for prime
fields, but it works in the same way for normal universality and other finite fields:
Let x ̸= y ∈ Fn

2σ , and let zh denote the vector corresponding to h ∈ Hn
σ . W.l.o.g.
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assume x1 ̸= y1. Then

Pr
h∈RHn

σ

[h(x) = h(y)] = Pr
h∈RHn

σ

[⟨zh,x⟩ = ⟨zh,y⟩]

= Pr
h∈RHn

σ

[
zh,1 · (x1 − y1) = −

n∑
i=2

zh,i · (xi − yi)
]
= 2−σ,

since zh,1 ·(x1−y1) is uniform in F2σ and independent of the right-hand side.

Lemma 17. For n, σ ∈ N, and any z1, . . . , zn ∈ F2σ , the collision probability is

Pr
h∈RHn

σ

[
∃i, j ∈ [n] . zi ̸= zj ∧ h(zi) = h(zj)

]
≤ n(n− 1)

2
· 2−σ ≤ 2−(σ−2 log(n)+1).

Proof. We first apply the union bound and then use thatHn
σ is a universal family

of hash functions:

Pr
h∈RHn

σ

[∃i, j ∈ [n] . zi ̸= zj ∧ h(zi) = h(zj)]

= Pr
h∈RHn

σ

 ∨
i,j∈[n]

zi ̸= zj ∧ h(zi) = h(zj)


≤

∑
1≤i<j≤n

Pr
h∈RHn

σ

[zi ̸= zj ∧ h(zi) = h(zj)] =
n(n− 1)

2
· 2−σ

≤ n2

2
· 2−σ =

(2logn)2

2
· 2−σ = 22 log(n)−1 · 2−σ = 2−(σ−2 log(n)+1)

Theorem 18 (Theorem 5, restated). Let n = 2h ∈ N, σ′ = σ+2h, and G,G′

as above, and let A be any time adversary. If G′ is right-half injective, then A
can win the game in Definition 4 with probability at most 2−(σ+1).

Proof. If A wins, then there exists indices α ̸= α′ ∈ I such that vα and vα′
are

not consistent. So we have an index i ∈ [n] \ {α, α′} with vαi ̸= vα
′

i . The values
vαi and vα

′

i were derived from the keys Kh,α
i and Kh,α′

i using G′:

G′(Kh,α
i ) = (vαi , c

α
i ) G′(Kh,α′

i ) = (vα
′

i , cα
′

i )

Since vαi ̸= vα
′

i , we have Kh,α
i ̸= Kh,α′

i . Due to the right-half injectivity of G′ it
follows cαi ̸= cα

′

i and, thus, also tα ̸= tα
′
. Finally, ⟨ξ, tα⟩ = ⟨ξ, tα′⟩ = Γ must

hold.
By Lemma 16, the function h(t) := ⟨ξ, t⟩ is a universal hash function sampled

uniformly from the family {t 7→ ⟨ξ, t⟩ | ξ ∈ Fn
2σ′}. Note that Step 4 is determin-

istic and the (vα, tα) depend only on the values that A produced in Step 1. This
implies that ξ is independent of the tα. So the adversary can only win the game
if there is a collision among the tα under the randomly sampled hash function h.
By Lemma 17, we can bound this probability by 2−(σ′−2h+1) = 2−(σ+1).
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C.2 Proof of Theorem 6

Proof of Theorem 6. First we cover the case of a corrupted sender, then that of
a corrupted receiver.

Malicious Sender. The simulation is setup as follows: S simulates a party PS
∗

in its head and gives control to Z, and sends (corrupt, PS) to Fℓ,s
sp-vole2k. It also

simulates instances of Fℓ,s
vole2k, FOT, and FEQ. Since the calls to (Init) and (Extend)

are simply forwarded to Fℓ,s
vole2k, S can just simulate the interaction with the ideal

functionality. The main part of proof is the simulation of (SP-Extend, n). Let
h := ⌈log n⌉.

1. S simulates the call (Extend, 1) to Fℓ,s
vole2k and receives a, c ∈ Z2ℓ from PS

∗.
2. Receive a′ ∈ Z2ℓ from PS

∗. Compute β := a′ + a and set δ := c.
3. Compute k ← GGM.KeyGen(1κ) and execute (v, t, (K

i

0,K
i

1)i∈[h],K
h+1

1 ) ←
GGM.Gen(n, k).

4. Send K
h+1

1 to PS
∗.

5. Simulate invocation of FOT: Record PS
∗’s inputs α1, . . . , αh, and send K

i

αi

for i ∈ [h] to PS
∗. Compute α :=

∑h−1
i=0 2i · αh−i ∈ [n].

6. Receive ξ ∈ Fn
2s′

from PS
∗ with s′ := σ + 2h.

7. Compute Γ := ⟨ξ, t⟩ and send Γ to PS
∗.

8. Define u ∈ Zn
2ℓ such that uα = β and ui = 0 for i ∈ [n] \ {α}.

9. Sample d ∈R Z2ℓ and send it to PS
∗.

10. Define w ∈ Zn
2ℓ such that wi = vi for i ∈ [n] \ {α} and wα = δ − d −∑

i∈[n]\{α} wi.
11. S simulates the second call (Extend, 1) to Fℓ,s

vole2k and receives x, z ∈ Z2ℓ from
PS

∗.
12. Receive χ ∈ {0, 1}n from PS

∗. If HW(χ) ̸= n
2 , abort.

13. Receive x∗ ∈ Z2ℓ from PS
∗, and compute x′ := x+x∗ (for an honest sender,

we have x′ = χα · β).
14. Compute VPS

:=
∑

i∈[n] χi ·wi− z ∈ Z2ℓ (the honest PS’s input to FEQ), and
record PS

∗’s actual input V ′
PS

= VPS
+ ε to FEQ.

15. If x′ = χα · β:
– If V ′

PS
= VPS

: Simulate successful equality check, and send u,w as PS’s
outputs to Fℓ,s

sp-vole2k.
– If V ′

PS
̸= VPS

: Simulate failing equality check and abort.
16. If x′ = χα · β + η with η ̸= 0 (mod 2ℓ): Let v ∈ N be maximal such that

2v | η. It must be v < r.
– If 2v ∤ ε, then simulate a failing equality check and abort.
– If 2v | ε, then compute

∆′ :=
ε

2v
·
( η

2v

)−1

∈ Z2r−v

where the division is computed over Z. If r − v > s and ∆′ ≥ 2s, then
simulate a failing equality check and abort. Otherwise set s′ := min(s, r−
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v) and send (Guess, ∆′, s′) to Fℓ,s
sp-vole2k. If it returns success, then simulate

a successful equality check. If it aborts, then simulate a failing equality
check and abort.

17. If PS
∗ sends (Guess, ∆̃) to the simulated Fℓ,s

vole2k, then S sends (Guess, ∆̃, s)
to Fℓ,s

sp-vole2k and returns the answer to PS
∗. If Fℓ,s

sp-vole2k aborts, then S also
aborts.

Claim (Indistinguishability of the Simulation for Corrupted Sender). No PPT
environment Z that chooses to corrupt the sender PS can distinguish the real
execution of the protocol from the simulation described above, except with prob-
ability negl(κ).

Proof of Claim. The simulation of (Init) and (Extend), i.e., sending (Init) and
(Extend) to Fℓ,s

vole2k, is identical to what would happen in the real protocol. Now
we consider the simulation of (SP-Extend, n):

The call (Extend, 1) to the simulated Fℓ,s
vole2k results in PS

∗ obtaining two
values of its choice a, c ∈ Z2ℓ – as in the real protocol. S creates the GGM tree
honestly. Hence, the message K

h+1

1 from the simulated receiver and the outputs
that PS

∗ receives from FOT are consistent and distributed as in the real protocol,
and Γ is computed in the same way the real receiver would do it.

We leave the message d aside for a while, and focus on the remaining protocol
first. From the second call (Extend, 1) to the simulated Fℓ,s

vole2k, PS
∗ again obtains

two values of its choice x, z ∈ Z2ℓ .
Finally, we must make sure that the simulated FEQ behaves as in the real

protocol:
The honest PS would input VPS

:=
∑

i∈[n] χi · wi − z ∈ Z2ℓ to FEQ, whereas
the corrupted sender can send some arbitrary V ′

PS
= VPS

+ ε. The PR normally
computes its input as VPR

:=
∑

i∈[n] χi · vi − y ∈ Z2ℓ , where y was computed as
y := y∗ −∆ · x∗, ∆ and y∗ were received from Fℓ,s

vole2k and x∗ from PS
∗. So, in

the simulation S does not know the right values of y∗ and ∆.
S computes x′ := x + x∗ (Step 13) and as noted above, we would have

x′ = χα · β if PS
∗ behaved honestly. We obtain α ∈ [n] from the simulation

of FOT (Step 5) and have received χ from PS
∗ (Step 12), so we know χα. S

computes β := a′ + a from PS
∗’s output a from Fℓ,s

vole2k and its message a′ to PR

(Step 2). While an honest PS would compute a′ := β − a, sending an arbitrary
a′ is just equivalent to choosing a different value for β. Hence, S knows χα · β
and can check whether x′ = χα · β (⋆) holds.

If the equality (⋆) holds (Step 15), PR would input VPR
= VPS

to FEQ. Hence,
we can simulate a successful equality check if V ′

PS
= VPS

, and a failing equality
check with an abort otherwise – as in the real protocol.

On the other hand, if the equality (⋆) does not hold (Step 16), define η ̸= 0
mod 2ℓ such that x′ = χα · β + η. This means, PS

∗ has send a corrupted x∗,
but the equality check might nevertheless pass if the errors ε in V ′

PS
and η in x′

cancel out.
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On one hand, we have PR’s input VPR
to FEQ which depends on η:

VPR
=
∑
i∈[n]

χi · vi − y

=
∑
i∈[n]

χi · vi − y∗ +∆ · x∗

=
∑
i∈[n]

χi · vi − y∗ +∆ · (x′ − x)

=
∑
i∈[n]

χi · vi − y∗ +∆ · (χα · β + η − x)

= VPS
+∆ · η

On the other hand, we have PS
∗’s input V ′

PS
= VPS

+ ε. So the equality test
should pass if and only if

∆ · η = ε (mod 2ℓ) (7)

holds. While S does not know the right value of ∆, it can use the global key
query of Fℓ,s

sp-vole2k.
As above, define v ∈ N such that 2v is the largest power of two that divides

η. For Equation (7) to hold, 2v must also divide ε. If this is not the case, S can
safely simulate a failing equality test. Assuming 2v divides both η and ε, we can
divide both sides of Equation (7) by 2v and reduce the modulus accordingly.

∆ · η
2v

=
ε

2v
(mod 2r−v)

Since η
2v must be odd, we can solve for ∆.

∆ =
ε

2v
·
( η

2v

)−1

(mod 2r−v)

Let ∆′ := ε
2v ·
(

η
2v

)−1
mod 2r−v be the result of the computation. We know that

∆ ∈ Z2s . So, if r− v ≥ s, then it must be ∆′ = ∆ for the equality check to hold,
and the abort in case ∆′ ≥ 2s is safe. If r − v < s, then ∆′ must consist of the
lower r − v bits of ∆ for the check to hold. Hence, the global key query (Guess,
∆′, min(s, r− v)) of S results in an abort of Fℓ,s

sp-vole2k exactly when the equality
test would fail.

To summarize, all messages (and abort) are distributed perfectly indistin-
guishable in protocol and simulation, except for d. We now show that any dis-
tinguisher Z for malicious senders can break the pseudorandomness (Defini-
tion 2) of the PPRF. For this, consider that in the real protocol PR computes
d := γ −

∑n
j=1 vj ∈ Z2ℓ , where γ := b−∆ · a′ and PR received ∆, b from Fℓ,s

vole2k
and a′ from PS. On the other hand, in the simulation it is sampled uniformly at
random as d ∈R Z2ℓ . The reason is that in the simulation, S never learns the
secret key ∆ that the ideal Fℓ,s

sp-vole2k has generated for the honest PR – only the
environment learns it.
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We can now use any PPT environment Z that can distinguish both to break
pseudorandomness as follows: First, observe that Z is fixed and that a reduction
can make manipulations to the inner state of its security game. We construct a
special simulator Ŝ. Consider an execution of Z using Ŝ and let it first extract
the point α where PS will puncture the PPRF in the protocol from the hybrid
FOT.
Ŝ forwards α to the PPRF security game as in Definition 2 and obtains all

seeds K
i

for keys that it will input into the FOT to deliver to the sender.
It also obtains a point v∗α which by the security game is either F (k, α) or

uniformly random. Since our reduction can control the security experiment of
Z and therefore controls Fℓ,s

sp-vole2k it has access to ∆ that is generated by the
functionality. It computes d as d = γ−v∗α−

∑n
j=1,j ̸=α vj and uses d as its message

to PS. For all other purposes, Ŝ just acts like S.
By construction, if v∗α is uniformly random then d is distributed as in the

simulation, while if v∗α = F (k, α) then d is identical to the real protocol. Hence
any Z that distinguishes both breaks Definition 2. By assumption, any PPT
algorithm (in κ) can only do so with probability at most negl(κ). ■

Malicious Receiver. The simulation is setup as follows: S simulates a party PR
∗

in its head and gives control to Z, and sends (corrupt, PR) to Fℓ,s
sp-vole2k. It also

simulates instances of Fℓ,s
vole2k, FOT, and FEQ.

For the call to (Init), S receives ∆ ∈ Z2s from PR
∗, and sends ∆ to Fℓ,s

sp-vole2k.
Calls to (Extend) are simply forwarded to Fℓ,s

vole2k, and S can just simulate the
interaction with the ideal functionality. The main part of proof is the simulation
of (SP-Extend, n). Let h := ⌈log n⌉.

1. S simulates the call (Extend, 1) to Fℓ,s
vole2k and receives b ∈ Z2ℓ from PR

∗.
2. Send a′ ∈R Z2ℓ to PR

∗.
3. Receive K

h+1

1 from PR
∗.

4. Simulates the calls to FOT and records PR
∗’s inputs (K

i

0,K
i

1)i∈[h].
5. Sample ξ ∈R Fn

2s′
with s′ := σ + 2h, and send ξ to PR

∗.
6. Receive Γ from PR

∗.
7. For α ∈ [n], compute vα ← GGM.Eval(n, α, (K

1

α1
, . . . ,K

h

αh
,K

h+1
)).

8. Define

I :=
{
α ∈ [n] | GGM.Check(n, α, (K

1

α1
, . . . ,K

h

αh
,K

h+1
), ξ, Γ ) = ⊤

}
.

S sends I to Fℓ,s
vole2k. If it aborts, then simulate the abort of PS.

9. If the outputs vα are not consistent, i.e., vαj ̸= vα
′

j for some α ̸= α′ ∈ I
and j ∈ [n] \ {α, α′}, then abort the simulation (by Theorem 5, this should
happen with negligible probability).

10. Case |I| = 1: Fℓ,s
sp-vole2k sends (success, β). With this information, we can

basically follow the remaining protocol:
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(a) Note that we now know the real α that Fℓ,s
sp-vole2k has chosen since I =

{α}. Hence, we can compute u ∈ Zn
2ℓ such that uα = β and ui = 0 for

all i ̸= α.
(b) Moreover, compute a := β − a′, and δ := ∆ · a+ b.
(c) Receive d′ ∈ Z2ℓ from PR

∗.
(d) Compute w ∈ Zn

2ℓ such that wi := vi for all i ̸= α, and wα := δ − d′ −∑
i ̸=α wi.

(e) S simulates the second call (Extend, 1) to Fℓ,s
vole2k and receives y∗ ∈ Z2ℓ

from PR
∗.

(f) Sample x ∈R Z2ℓ and set z := ∆ · x+ y∗.
(g) Sample χ ∈R {0, 1}n with HW(χ) = n

2 and compute x∗ := χα · β − x
and send them to PR

∗.
(h) Compute VPS

:=
∑n

i=1 χi · wi − z. Record the value V ′
PR

that PR
∗ sends

to FEQ.
(i) If VPS

̸= V ′
PR

: Make Fℓ,s
sp-vole2k abort by sending (query, ∅), and simulate

failing equality test with VPS
as PS’s input.

(j) If VPS
= V ′

PR
: Send (continue) to Fℓ,s

vole2k and simulate successful equality
test.

(k) Compute v := w −∆ · u, and send v to Fℓ,s
sp-vole2k as PR’s output.

11. Case |I| > 1: Fℓ,s
sp-vole2k sends (success)

(a) Let v1, . . . , vn denote the leaves of the GGM tree. (We can recover these
from (vαj )j∈[n]\{α} and (vα

′

j )j∈[n]\{α′} for two different α, α′ ∈ I.
(b) Define d := (b −∆ · a′) −

∑n
j=1 vj ∈ Z2ℓ , i.e., the value that an honest

PR would send. Receive d′ = d + ε ∈ Z2ℓ from PR
∗, where ε denotes a

possible error added by PR
∗.

(c) S simulates the second call (Extend, 1) to Fℓ,s
vole2k and receives y∗ ∈ Z2ℓ

from PR
∗.

(d) Sample χ ∈R {0, 1}n with HW(χ) = n
2 and x∗ ∈R Z2ℓ and send them

to PR
∗.

(e) Compute VPR
:=
∑n

i=1 χi ·vi−(y∗−∆·x∗) ∈ Z2ℓ , i.e., the value an honest
PR would send to FEQ. Record the actual value V ′

PR
that PR

∗ sends to
FEQ.

(f) If ε = 0:
– If V ′

PR
= VPR

: Send (continue) to Fℓ,s
vole2k and simulate successful equal-

ity test.
– If V ′

PR
̸= VPR

: Send (query, ∅) to Fℓ,s
vole2k and simulate failing equality

test with VPR
as PS’s input.

(g) If ε ̸= 0:
– If V ′

PR
= VPR

, define J := {i ∈ [n] | χi = 0} and V ∗ := VPR
− ε.

– If V ′
PR

= VPR
− ε, define J := {i ∈ [n] | χi = 1} and V ∗ := VPR

.
– If V ′

PR
̸∈ {VPR

, VPR
− ε}, define J := ∅. Sample b ∈R {0, 1} and set

V ∗ := VPR
− b · ε. Although the equality check will never pass, we

cannot abort directly, since PR
∗ learns PS’s input. Hence, we need to

supply a value that looks right, where the error ε is subtracted with
1/2 probability corresponding to the probability that χα = 1.
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Send (query, J) to Fℓ,s
vole2k. If it aborts, simulate failing equality test with

V ∗ as PS’s input and simulate PS aborting. Otherwise, receive α ∈ [n]

from Fℓ,s
vole2k and simulate successful equality test.

(h) We now know the correct value α chosen by the ideal functionality. Let
v′ ∈ Zn

2ℓ such that v′α = vα − ε and v′i = vi for i ∈ [n] \ {α}. S sends v′

as PR’s output to F2,s
vole2k.

Claim (Indistinguishability of the Simulation for Corrupted Receiver). No PPT
environment Z that chooses to corrupt the receiver PR can distinguish the real
execution of the protocol from the simulation described above except with prob-
ability 2−(σ+1).

Proof of Claim. The simulation of Init, i.e., sending (Init) to Fℓ,s
vole2k, results again

in a view of PR
∗ which is identical to that in the real protocol. Note that S now

learns the global key ∆ since it is chosen by PR
∗.

Now we consider the simulation of (Extend, n) with n = 2h.
The call (Extend, 1) to the simulated Fℓ,s

vole2k results in PR
∗ obtaining a value

of its choice b ∈ Z2ℓ – as in the real protocol.
The first difference already occurs in Step 2, where the simulator sends a

randomly samples a′ ∈R Z2ℓ , whereas the real sender PS would compute a′ :=
β − a. In the simulation we don’t know β, but a is distributed uniformly at
random. Hence, from V ∗’s view a′ is distributed identically in both cases.

If we learn the correct β from Fℓ,s
sp-vole2k later on (we will, e.g., in Step 10),

then we can compute a := β−a′ and c := ∆ ·a+ b and pretend that we received
(a, c) from Fℓ,s

sp-vole2k during the first call to (Extend, 1), and these values will still
be consistent with the view of PR

∗.
The next Steps 3-6 simulate the transfer of the punctured PRF key. The

message ξ send in Step 5 is sampled in the same way as the real PR would do it.
Now we need to make sure that S simulates an abort if and only iff the

consistency check of the GGM tree fails. In the simulation, we don’t know the
real value of α that the ideal functionality chooses, but we can collect all possible
values of α for which the check passes in the set I. In the real execution, PS would
abort if and only if the real α is not contained in this set. Hence, in Step 8 we
use the first query and send I to Fℓ,s

sp-vole2k.
In the case that PR

∗ has managed to create an inconsistent GGM tree which
passes the check, then S aborts the simulation in Step 9, but by Theorem 5, this
happens only with probability 2−(σ+1). Therefore, we assume in the following
that the GGM tree is consistent.

In case |I| = 1 (Step 10), we have recovered the correct value of α since it
must be I = {α}, and Fℓ,s

sp-vole2k sends use the correct value of β. So we can
compute PS’s output u (Step 10a) and values a and δ which are consistent with
the simulation (Step 10b). Then S can behaves in the same way as the real PS,
and simulate the equality test accordingly. Since S can compute w in Step 10d
and already knows ∆ and u, it can successfully recover v (Step 10k) and send
it to Fℓ,s

sp-vole2k to select PR’s output.
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In case |I| > 1 (Step 11), we do not learn α and β from the query. We can,
however, compute v in Step 11a, since we have (at least) two different vα, vα′

.
This allows us to compute the value d that an honest PR would send, when we
receive the (possibly maliciously chosen) message d′ = d+ε from PR

∗ (Step 11b).
If ε ̸= 0, then we know that PR

∗ is cheating, but we can only abort the simulation
if PR

∗ is also caught by the check in the real protocol.
From the simulation of the (Extend, 1) call to Fℓ,s

vole2k, we learn the value y∗

that PR
∗ has chosen. The coefficient vector χ is sampled uniformly at random

as in the real protocol.
Since PS uses the received d to compute the value of w at position α, the

error ε is propagated and PS instead computes w′
α = wα − ε, and PS’s input to

FEQ is V ′
PS

= VPS
− χα · ε. Hence, to make the equality check pass, PR

∗ needs to
adjust its input value V ′

PR
to account for the error ε iff χα = 1. Otherwise, it need

to send the same value VPR
that the honest PR would send. We can compute this

value (Step 11e).
If ε = 0 (PR

∗ has sent the correctly computed d, covered in Step 11f), we
know that the sender’s input VPS

matches the honest PR’s input VPR
. Hence,

we can simulate a successful equality test if PR
∗’s actual input V ′

PR
= VPR

, and
simulate an abort otherwise.

If ε ̸= 0 (PR
∗ has sent an incorrect value d′ = d + ε, covered in Step 11g),

then we know that it must be VPS
= VPR

− χα · ε for the check to pass. So, if
V ′
PR
̸∈ {VPR

, VPR
− ε}, we can simulate a failing equality test, where the sender

used either of the values as input with probability 1/2. Since we do not know
α, we cannot just lookup the value of χα in χ, but we can make a query to the
ideal Fℓ,s

sp-vole2k whether α ∈ J for some index set J . If V ′
PR

= VPR
, we set J as

the set of indices where χ is 0, and if V ′
PR

= VPR
− ε, we set J as the set of

indices where χ is 1. Hence, J will contain exactly those values for α for which
the the equality check would pass: if V ′

PR
= VPR

, then it must be χα = 0 so that
the error ε disappears, and if V ′

PR
= VPR

− ε, then it must be χα = 1 so that ε
is propagated. Hence, the equality test passes iff α ∈ J . So we query the ideal
Fℓ,s

sp-vole2k and simulate a failing test if it aborts. Otherwise, it sends us the value
of α, and we can adjust the position α in PR

∗’s output v corresponding to the
error ε (Step 11h).

The simulation is perfect unless S aborts it, which happens with probability
at most 2−(σ+1) if PR

∗ manages to create an inconsistent GGM tree which passes
the check. ■

Theorem 6 follows from the combination of the two claims stating the indis-
tinguishability of the simulations.

C.3 Protocol Complexity

Let n ∈ N, h := ⌈log n⌉, and σ′ := σ + 2h. For one call to (SP-Extend, n), we

– use 2× VOLE (of length 1× Z2ℓ),
– use h× OT (on strings of length κ),
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– use 1× EQ for Z2ℓ elements,
– transfer 3× Z2ℓ elements,
– transfer 2× F2σ′ elements, and
– transfer 2× {0, 1}κ PRG seeds.

Overall, using the equality test sketched in Section 2.3 and Silent OT [Boy+19;
Yan+20; CRR21], we transfer 4ℓ + 2σ + 4⌈log n⌉ + (5 + 2⌈log n⌉)κbit plus the
costs of 2 VOLEs.

D Proof of Theorem 8

Proof of Theorem 8. We first consider the case of a corrupt sender, and then
separately a corrupt receiver.

Malicious sender. We construct a simulator as follows. In the Init phase, the
simulator first forwards (Init) to Fℓ,s

vole2k, and then receives u,w from A, as its
input to the (Extend) command of Fℓ,s

sp-vole2k.
In the Extend phase, the simulator receives vectors ei, ci from A, for i ∈ [t],

and defines e = (e1, . . . , et), c = (c1, . . . , ct). The simulator then computes
x, z as in the protocol, updates the vectors u,w accordingly, and finally sends
(x[m : n), z[m : n)) ∈ Zℓ

2ℓ × Zℓ
2ℓ as input to the Fℓ,s

vole2k functionality.
Whenever A sends a key query command to Fℓ,s

sp-vole2k, the simulator sends the
query to Fℓ,s

vole2k and forwards its response to A. If Fℓ,s
vole2k aborts, the simulator

aborts.

Indistinguishability. Since there is no interaction in the protocol, and in the ideal
world, the outputs of both parties are computed the exact same way as the real
protocol, it is clear that the two executions are perfectly indistinguishable.

Malicious receiver. To simulate the Init phase, the simulator first receives ∆
from A and forwards this to Fℓ,s

vole2k, and then receives v ∈ Zm
2ℓ from A.

In the Extend phase, the simulator samples a random noise vector (e1, . . . , et),
and uses this to respond to the leakage queries from A, just as Fℓ,s

sp-vole2k would. If
any query aborts, it sends abort to Fℓ,s

vole2k and aborts. If the queries are successful,
it receives bi from A, for i ∈ [t], then defines b = (b1, . . . ,bt). It then computes
y = v ·A+b, updates v as an honest PR would, and sends the last n−m entries
of y to Fℓ,s

vole2k.

Indistinguishability. First, note that the probability of abort is identical in both
the real and ideal executions, since the simulator responds to the leakage queries
using a random noise vector, just as Fℓ,s

sp-vole2k does in the real execution. It re-
mains to show that the distribution of the parties’ outputs in the ideal execution
is indistinguishable from the actual protocol.

For simplicity, we consider the case of a single call to Extend; handling mul-
tiple calls follows with a standard hybrid argument, and the fact that the LPN
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secret used in subsequent calls is independent of previous outputs. Suppose there
is an environment Z who controls an adversary A corrupting the receiver, and
Z can distinguish between the two executions. We construct a distinguisher D
for the leaky LPN assumption, as follows. D starts by simulating an execution
of Πℓ,s

vole2k, as in the above simulation, until it reaches the leakage queries in the
Fℓ,s

sp-vole2k instances. Here, D receives t queries I1, . . . , It ⊂ [n/t], forwards these to
the leaky LPN challenger and uses its response to respond to A. For the second
set of leakage queries, it sends the sets J1, . . . , Jt to the challenger, and again
uses its response to simulate the response to A. If the LPN challenger aborts, the
simulation is aborted. Finally, D receives the vector yb from the LPN challenger,
and uses its last n −m entries to define the honest sender’s output x, which is
given to Z; the output z is defined to be ∆ · x+ y.

Notice that the way the leakage queries are simulated is identical to the ideal
functionality Fℓ,s

sp-vole2k. It follows that if b = 0 in the leaky LPN game, then the
view of Z is identical to the real execution, while if b = 1, the view is the same as
the ideal world. Therefore, the distinguishing advantage of D is the leaky LPN
game is the same as that of Z.

E Solutions for Quadratic Equations Modulo 2k

In this appendix, we provide some of the proofs for statements in Sections 5.1
& 5.2.

E.1 Proof of Proposition 9

Proof of Proposition 9. Clearly, if there exists one solution x then there are 3
more solutions −x, x + 2ℓ−1 and −x + 2ℓ−1. We now show that these are the
only such solutions.

For the sake of contradiction, let y be such that y2 = a mod 2ℓ. Then

x2 − y2 = (x− y)(x+ y) = 0 mod 2ℓ.

Both x, y must be odd as a is odd, hence both x + y and x − y are a multiple
of 2. If x + y = 0 or x − y = 0 then x = ±y. Assuming this is false, then there
exist odd numbers f, g as well as positive i, j such that

x+ y = f2i , x− y = g2j and i+ j ≥ ℓ.

Since these equations hold over the integers, we additionally get that

(x+ y) + (x− y) = 2x = f2i + g2j ⇒ x = f2i−1 + g2j−1

where in the last step we divide over the integers. Since x must be odd, we have
that either i or j must be 1. If i = 1 then

x− y = g2ℓ−1 ⇒ x = y mod 2ℓ−1

whereas we get x = −y mod 2ℓ−1 if j = 1.
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E.2 Proof of Theorem 12

In the proof of Theorem 12, we will use the following statement.

Proposition 19. Let ℓ, k, s ∈ N+ so that ℓ ≥ k+ s, and δ0, . . . , δt ∈ Z be values
such that not all δi for i > 0 are 0 mod 2k. Then for any j ∈ {0, . . . , ℓ− k}

Pr

δ0 +∑
i∈[t]

χi · δi = 0 mod 2k+j

∣∣∣∣∣∣ χ1, . . . , χt ← Z2s

 ≤ 2−min(j,s).

The proof is an adaptation of the proof of Part iii of Lemma 1 of [Cra+18].

Proof of Proposition 19. Let j ∈ {0, . . . , ℓ − k} be arbitrary. Without loss of
generality assume that δt ̸= 0 (mod 2k). Let v ∈ N be maximal such that 2v | δt.
This implies v < k. Define S := δ0+

∑
i∈[t] χi ·δi and S′ := −δ0−

∑
i∈[t−1] χi ·δi,

and let W := min(ℓ, e) where e ∈ N is maximal such that 2e | S.
Suppose W = k + j. By definition, 2W | S which is equivalent to S = 0

(mod 2k+j). Rewrite the equation as χt · δt = S′ (mod 2k+j). By the definition
of v, both sides must be multiples of 2v. So we can divide by 2v over the integers
and reduce the modulus accordingly. Then δ/(2v) is odd and, thus, invertible
modulo 2k+j−v. Since v < k, we have k+ j− v > j, and can reduce the modulus
further to 2j :

χt =
S′

2v
·
(
δt
2v

)−1

(mod 2j). (8)

The left-hand side χt is distributed uniformly at random in Z2s and independent
of the right-hand side. Hence, if j < s, then Equation (8) holds with probability
at most 2−j . For j ≥ s, it holds with probability at most 2−s. The proposition
follows.

Proof of Theorem 12. Let a = δ0 +
∑

i χiδi mod 2ℓ, then A wins iff f(∆) =
a∆2 + b∆ + c = 0 mod 2ℓ. Let r be the largest value such that 2r divides all
a, b, c. We have that

Pr[A wins] ≤
ℓ∑

i=0

Pr[A wins, r = i]

=Pr[A wins | r ∈ {0, . . . , k − 1}] · Pr[r ∈ {0, . . . , k − 1}]

+

ℓ∑
i=k

Pr[A wins, r = i]

≤Pr[A wins | r ∈ {0, . . . , k − 1}] +
ℓ∑

i=k

Pr[A wins, r = i]

≤2−min{(ℓ−k)/2,s−1} +

ℓ−k∑
j=0

Pr[A wins, r = k + j]

(9)
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Here, in the last step we use Lemma 11 where we set ℓ := ℓ and s′ := ℓ− k.
By definition of r, if r = k+j and A wins, then 2k+j must divide a. Therefore

Pr[A wins, r = k + j]

=Pr[A wins, r = k + j, 2k+j divides a]

=Pr[A wins, r = k + j | 2k+j divides a] · Pr[2k+j divides a].

Claim. For j ∈ {0, . . . , ℓ−k}, the following inequalities holds (with λ := ℓ−k−s):

a) Pr[2k+j divides a] ≤ 2−min{j,s},
b) Pr[A wins, r = k + j | 2k+j divides a] ≤ 2−min{(s+λ−j)/2,s}+1,
c) Pr[A wins, r = k + j] ≤ 2−s+1.

Proof of Claim.
a) Follows directly from Proposition 19.
b) By Lemma 11 for ℓ := ℓ, r := k + j, s′ := ℓ− r − 1 = s+ λ− j − 1 and any

j ∈ {0, . . . , ℓ − k}, there are at most 2max{(2s−s′)/2,1} ≤ 2max{(s+j−λ)/2,0}+1

solutions in the range {0, . . . , 2s − 1} to the equation f(x) = 0 (mod 2ℓ).
Since there are 2s choices for ∆, this means that

Pr[A wins, r = k + j | 2k+j divides a] ≤ 2max{(s+j−λ)/2,0}+1

2s

= 2max{(−s+j−λ)/2,−s}+1 = 2−min{(s+λ−j)/2,s}+1.

c) Combining the previous two parts, we obtain

Pr[A wins, r = k + j]

= Pr[A wins, r = k + j | 2k+j divides a] · Pr[2k+j divides a]

≤ 2−min{(s+λ−j)/2,s}+1 · 2−min{j,s}

= 2−min{(s+λ−j)/2,s}+1−min{j,s}.

For j ∈ {0, . . . , s}, this can be simplified to

Pr[A wins, r = k + j] = 2−min{(s+λ−j)/2,s}+1−j

= 2−min{(s+λ+j)/2,s+j}+1

(⋆)

≤ 2−min{(2s+j)/2,s+j}+1

= 2−min{s+j/2,s+j}+1

= 2−s−j/2+1

≤ 2−s+1,

where we use the fact that λ ≥ s at step (⋆), which follows from the assump-
tion ℓ− k ≥ 2s and the definition of λ. For j ∈ {s, . . . , ℓ− k}, we obtain the
bound directly from Part a):
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Pr[A wins, r = k + j]

= Pr[A wins, r = k + j | 2k+j divides a] · Pr[2k+j divides a]

≤ Pr[A wins, r = k + j | 2k+j divides a] · 2−min{j,s}

≤ 2−min{j,s} = 2−s ≤ 2−s+1. ■

Continuing from Equation (9), we use the Claim proved above and the fact
that ℓ ≥ k + 2s to get

Pr[A wins]
(9)
≤ 2−min{(ℓ−k)/2,s−1} +

ℓ−k∑
j=0

Pr[A wins, r = k + j]

≤ 2−min{s,s−1} +

ℓ−k∑
j=0

2−s+1

≤ 2−s+1 +

ℓ−k∑
j=0

2−s+1

≤ (ℓ− k + 2) · 2−s+1.

E.3 Proof of Corollary 13

Proof of Corollary 13. Plugging in the values of s and ℓ into the winning prob-
ability stated in the theorem gives us:

Pr[A wins] ≤ (ℓ− k + 2) · 2−s+1

= (k + 2s− k + 2) · 2−s+1

= (2s+ 2) · 2−s+1

= (2σ + 2 log σ + 8) · 2−σ−log σ−2.

By taking the logarithm of both sides, we get

log Pr[A wins] ≤ log(2σ + 2 log(σ) + 8)− σ − log(σ)− 2

(⋆)

≤ log(4σ)− σ − log(σ)− 2

= log(σ) + 2− σ − log(σ)− 2

= −σ,

where we use that 2σ+2 log(σ)+8 ≤ 4σ (⋆) holds for all σ ≥ 7. Hence, we have
bounded the winning probability as Pr[A wins] ≤ 2−σ.
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F Proof of Theorem 14

Proof of Theorem 14. We divide the proof of security into two parts. First we
cover the case of a corrupted prover, then that of a corrupted verifier. In each
case we define a PPT simulator S.

Corrupted Prover: The simulation is set up as follows: S simulates a
party P∗ in its head and gives control to Z, and sends (corrupt, P) to Fk

ZK. It
also simulates an instance of Fℓ,s

vole2k. We assume that the circuit C is known.

1. Simulation of the preprocessing phase: S simulates the (Init) and (Extend,
n+t+2) calls to Fℓ,s

vole2k. For (Init), it samples ∆ ∈R Z2s . Since P∗ acts as the
sender PS towards Fℓ,s

vole2k, it is allowed to choose the sender’s output of the
(Extend) call. Hence, S receives (µ̃i,M [µi]), (ν̃j ,M [νj ]), (õ,M [o]), (π̃,M [π]) ∈
Z2ℓ × Z2ℓ for i ∈ [n] and j ∈ [t] from P∗. Then S can compute matching
values K[µi],K[νj ],K[o],K[π] ∈ Z2ℓ according to Equation (4).

2. To simulate the online phase, S executes the steps of V while also keeping
track of P∗’s wire values:
– For every circuit input i ∈ [n] it receives δi ∈ Z2ℓ from P∗ and computes
V’s part of [wi] := [µi] + δi, as well as w̃i := µ̃i + δi ∈ Z2ℓ .

– For every addition gate (α, β, γ) it computes V’s part of [wγ ] := [wα] +
[wβ ], as well as w̃γ := w̃α + w̃β ∈ Z2ℓ and M [wγ ] := M [wα] +M [wβ ].

– For the ith multiplication gate (α, β, γ) it receives di ∈ Z2ℓ from P∗ and
computes V’s part of [wγ ] := [νi] + di, as well as w̃γ := ν̃i + di ∈ Z2ℓ .
Additionally it computes Bi := K[wα] ·K[wβ ] +∆ ·K[wγ ].

– S sends χ ∈R Zt
2s to P∗ and receives two values U ′, V ′ ∈ Z2ℓ as response.

It computes W :=
∑

i∈[t] χi ·Bi +B∗ ∈ Z2ℓ where B∗ := K[o].
– If W ̸= U ′ + V ′ · ∆ (mod 2ℓ), then S sends (Prove, C, ⊥) on behalf of
P∗ to Fk

ZK and simulates an aborting V.
– For the single output wire wh, S already holds K[wh] and computes

K[z] := K[wh] + 2k · K[π]. Then it receives two values z̃,M [z] ∈ Z2ℓ

from P∗ and checks if K[z]
?
= M [z] + z̃ ·∆ holds and z̃ = 1 (mod 2k). If

this is the case, then S sends (Prove, C, w) with w := (w̃i mod 2k)i∈[n]

on behalf of P to Fk
ZK.

Since S behaves like an honest V towards P∗, the view of P in the simulation
perfectly matches its view in the real protocol. Now we need to show that V
outputs the same in the simulation and in the real execution, except with neg-
ligible probability. If the honest V rejects the proof in the protocol, then also
V’s output of the ideal Fk

ZK is false. Now we need to bound the probability that
the honest V accepts the proof, but the ideal Fk

ZK still outputs false, i.e., P∗ has
successfully fooled V into accepting a proof of a wrong statement.

A corrupted P∗ not knowing a valid witness for the circuit can try to cheat
in two ways: It can try to circumvent the multiplication check in Step 4 or it can
try to open [z] in Step 5 to an invalid value. The latter succeeds with probability
at most 2−s [Bau+21a].
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Now we consider the former case: For the ith multiplication gate (α, β, γ), let
w̃γ = w̃α · w̃β + ei (mod 2ℓ), where w̃α, w̃β , w̃γ ∈ Z2ℓ are the values contained in
the commitments [wα], [wβ ], [wγ ] and ei ∈ Z2ℓ is a possible error. Suppose that
not all ei = 0 (mod 2k) for i ∈ [t], i.e., there is an error in the lower k bits that
we care about.

Then we have (all over Z2ℓ)

K[wγ ] = M [wγ ] + w̃γ ·∆
= M [wγ ] + (w̃α · w̃β + ei) ·∆
= M [wγ ] + (w̃α · w̃β) ·∆+ ei ·∆,

and

Bi = K[wα] ·K[wβ ]−∆ ·K[wγ ]

= (M [wα] + w̃α ·∆) · (M [wβ ] + w̃β ·∆)−∆ · (M [wγ ] + w̃γ ·∆)

= (M [wα] + w̃α ·∆) · (M [wβ ] + w̃β ·∆)−∆ · (M [wγ ] + (w̃α · w̃β + ei) ·∆)

= (M [wα] ·M [wβ ]) + (w̃α ·M [wβ ] +M [wα] · w̃β −M [wγ ]) ·∆− ei ·∆2

= Ai,0 +Ai,1 ·∆− ei ·∆2,

where Ai,0 and Ai,1 denote the values that an honest P would compute. So now
Bi is the result of evaluating a quadratic polynomial at ∆ instead of a linear one.
The equations for all gates are aggregated using the random linear combination:

W =
∑
i∈[t]

χi ·Bi +B∗

=
∑
i∈[t]

χi ·
(
Ai,0 +Ai,1 ·∆− ei ·∆2

)
+A∗

0 +A∗
1 ·∆

=

∑
i∈[t]

χi ·Ai,0 +A∗
0

+

∑
i∈[t]

χi ·Ai,1 +A∗
1

 ·∆−
∑

i∈[t]

χi · ei

 ·∆2

= U + V ·∆−

∑
i∈[t]

χi · ei

 ·∆2

(10)

Here, U, V denote the values that an honest P would send to V. The corrupted
P∗ may choose to send some values U ′ := U+eU and V ′ := V +eV instead. Note
that V accepts the proof if W = U ′+V ′ ·∆ holds. By subtracting Equation (10)
from this, we get that V accepts if

0 = eU + eV ·∆+

∑
i∈[t]

χi · ei

 ·∆2 (mod 2ℓ). (11)

holds.
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The steps in the protocol corresponding exactly to the game defined in The-
orem 12: Initially, ∆ ∈R Z2s is sampled. When committing to the results of the
multiplications, P∗ defines the error values e1, . . . , et ∈ Z2ℓ where not all of the
ei are 0 modulo 2k if P∗ tries to cheat. After P∗ has committed itself on the ei,
V samples the coefficients χ1, . . . , χt ∈R Z2s of the random linear combination.
Finally, the prover responds by choosing values eU , eV ∈ Z2ℓ , and wins the game,
i.e., cheats successfully, if Equation (11) holds. Hence, we can apply Corollary 13
to bound the probability that this happens with 2−σ.

By the union bound, no adversary can break the soundness of the protocol
except with probability at most 2−s + 2−σ ≤ 2−σ+1.

Corrupted Verifier: The simulation of the verifier’s view is straightfor-
ward: S simulates a party V∗ in its head and gives control to Z, and sends
(corrupt, V) to Fk

ZK. It also simulates an instance of Fℓ,s
vole2k. We assume that the

circuit C to prove is known.

1. Simulation of the preprocessing phase: S simulates the (Init) and (Extend,
n+ t+ 2) calls to Fℓ,s

vole2k. Since V∗ acts as the sender PS towards Fℓ,s
vole2k, it

is allowed to choose its outputs. For (Init), S receives ∆ ∈ Z2s from V∗, and
K[µi],K[νj ],K[o],K[π] ∈ Z2ℓ for i ∈ [n] and j ∈ [t] from V∗.

2. To simulate the online phase, S proceeds as follows:

– For every circuit input i ∈ [n] it sends a random δi ∈R Z2ℓ to V∗, and
computes K[wi] := K[µi]− δi ·∆.

– For the ith multiplication gate (α, β, γ) it sends a random di ∈R Z2ℓ to
V∗, and computes K[wγ ] := K[νi] − di · ∆ and Bi := K[wα] ·K[wβ ] +
∆ ·K[wγ ] ∈ Z2ℓ as the honest V would do.

– S receives χ ∈ Zt
2s from V∗.

– It computes W :=
∑

i∈[t] χi · Bi + B∗ ∈ Z2ℓ where B∗ = K[o]. Then it
samples V ′ ∈R Z2ℓ and sets U ′ := W − V ′ ·∆, and sends (U ′, V ′) to V∗.

– For the output wire wh, S already holds K[wh]. It samples π̃ ∈R Z2ℓ ,
and computes z̃ := 1+ 2k · π̃ ∈ Z2ℓ and K[z] := K[wh] + 2k ·K[π] ∈ Z2ℓ .
Finally it sends z̃ as well as M [z] := K[z]−∆ · z̃ ∈ Z2ℓ to V∗.

The view of V∗ is distributed exactly as in the real execution of the protocol:
The values δi and di are distributed uniformly in Z2ℓ and therefore completely
mask the circuit inputs and the output values of the multiplication gates, respec-
tively. Moreover, the values U, V computed by the honest P are also distributed
uniformly at random due to the masking with A∗

0 and A∗
1, respectively, under

the condition that W = U + V ·∆ holds. Hence, the values U ′, V ′ sent to V∗ by
S are distributed identically, since we can recover the value W ′ that an honest V
would compute. Finally, the last message is a valid opening of a commitment [1]
where the upper ℓ− k bits have been randomized using [π].
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Zero-Knowledge Functionality Fk
ZK-2

Prove: On input (Prove, {f1, . . . , ft}, w) from P and (Verify, {f1, . . . , ft})
from V where f1, . . . , fn are polynomials of degree ≤ 2 in n variables over Z2k

and w ∈ Zn
2k : Send true to V iff fi(w) = 0 for all i ∈ [t], and false otherwise.

Fig. 8. Ideal functionality for zero-knowledge proofs for sets of degree-2 polynomials.

QuarkSilver for general degree-2 relations Πk
QS-2

The prover P and the verifier V have agreed on a set of polynomials in n
variabled f1, . . . , ft ∈ Z2k [X1, . . . , Xn]

≤2, and P holds a witness w ∈ Zn
2k so

that fi(w) = 0 for all i ∈ [t]. Write fi = fi,0 + fi,1 + fi,2 where fi,h contains
the degree-h terms of fi.

Preprocessing phase The preprocessing phase is independent of C and just
needs upper bounds on the number of inputs and multiplication gates of C as
input.
1. P and V send (Init) to Fℓ,s

vole2k, and V receives ∆ ∈ Z2s .

2. P and V send (Extend, n + 1) to Fℓ,s
vole2k, which returns authenticated values

([µi])i∈[n] and [o], where all µ̃i, õ,∈R Z2ℓ .

Online phase
1. P commits to its witness w by sending δi := wi − µ̃i for i ∈ [n] to V, and

both parties locally compute [wi] := [µi] + δi.

2. For each fi, i ∈ [t]:
– V computes Bi :=

∑
h∈[0,2] fi,h(K[w1], . . . ,K[wn]) ·∆2−h

– P defines gi(X) ∈ Z2ℓ [X] as gi(X) :=
∑

h∈[0,2] fi,h(M [w1] + w̃1 ·
X, . . . ,M [wn] + w̃n · X) · X2−h and computes coefficients Ai,h ∈ Z2ℓ

such that gi(X) = Ai,0 + Ai,1 · X + Ai,2 · X2. Note that Ai,2 =
fi(w1, . . . , wn) = 0 if P is honest.

3. P and V run the following check:
(a) Set A∗

0 := M [o], A∗
1 := õ, and B∗ := K[o] so that B∗ = A∗

0 +A∗
1 ·∆.

(b) V samples χ ∈R Zt
2s and sends it to P.

(c) P computes U :=
∑

i∈[t] χi ·A0,i+A∗
0 ∈ Z2ℓ and V :=

∑
i∈[t] χi ·A1,i+

A∗
1 ∈ Z2ℓ , and sends (U, V ) to V.

(d) V computes W :=
∑

i∈[t] χi · Bi + B∗ ∈ Z2ℓ , and accepts iff W =

U + V ·∆ (mod 2ℓ) holds.

Fig. 9. Zero-Knowledge protocol for circuit satisfiability in the Fℓ,s
vole2k-hybrid model

with s := σ + log(σ) + 3 and ℓ := k + 2s for statistical security parameter σ.
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We formally specify the ideal zero-knowledge functionality for degree-2 relations
in Figure 8, and prove in the following that protocol Πk

QS-2 (Figure 9) realizes
this functionality.

Theorem 20. The protocol Πk
QS-2 (Figure 9) securely realizes the functionality

Fk
ZK-2 in the Fℓ,s

vole2k-hybrid model when instantiated with the parameters s :=
σ+log(σ)+3 and ℓ := k+2s: No unbounded environment Z can distinguish the
real execution of the protocol from a simulated one except with probability 2−σ+1.

Proof. The proof is similar to the proof of Theorem 14 in Appendix F. We di-
vide the proof of security into two parts. First we cover the case of a corrupted
prover, then that of a corrupted verifier. In each case we define a PPT simulator
S.

Corrupted Prover: The simulation is set up as follows: S simulates a
party P∗ in its head and gives control to Z, and sends (corrupt, P) to Fk

ZK-2. It
also simulates an instance of Fℓ,s

vole2k. We assume that the circuit C is known.

1. Simulation of the preprocessing phase: S simulates the (Init) and (Extend,
n+ 1) calls to Fℓ,s

vole2k. For (Init), it samples ∆ ∈R Z2s . Since P∗ acts as the
sender PS towards Fℓ,s

vole2k, it is allowed to choose the sender’s output of the
(Extend) call. Hence, S receives (µ̃i,M [µi]), (õ,M [o]) ∈ Z2ℓ × Z2ℓ for i ∈ [n]
from P∗. Then S can compute matching values K[µi],K[o] ∈ Z2ℓ according
to Equation (4).

2. To simulate the online phase, S executes the steps of V while also keeping
track of P∗’s values:
– For every input i ∈ [n] it receives δi ∈ Z2ℓ from P∗ and computes V’s

part of [wi] := [µi]+δi, as well as w̃i := µ̃i+δi ∈ Z2ℓ and M [wi] := M [µi].
– For the ith polynomial fi it computes Bi, Ai,0, and Ai,1 as in Step 2.
– S sends χ ∈R Zt

2s to P∗ and receives two values U ′, V ′ ∈ Z2ℓ as response.
It computes W :=

∑
i∈[t] χi ·Bi +B∗ ∈ Z2ℓ where B∗ := K[o].

– If W ̸= U ′ + V ′ ·∆ (mod 2ℓ), then S sends (Prove, {f1, . . . , ft}, ⊥) on
behalf of P∗ to Fk

ZK-2 and simulates an aborting V.
– Otherwise S sends (Prove, {f1, . . . , ft}, w) with w := (w̃i mod 2k)i∈[n]

on behalf of P to Fk
ZK-2.

Since S behaves like an honest V towards P∗, the view of P in the simulation
perfectly matches its view in the real protocol. Now we need to show that V
outputs the same in the simulation and in the real execution, except with negli-
gible probability. If the honest V rejects the proof in the protocol, then also V’s
output of the ideal Fk

ZK-2 is false. Now we need to bound the probability that
the honest V accepts the proof, but the ideal Fk

ZK still outputs false, i.e., P∗ has
successfully fooled V into accepting a proof of a wrong statement.
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A corrupted P∗ not knowing a valid witness for the circuit can try to cir-
cumvent the check in Step 3: For the ith polynomial fi, let 0 = f(w̃1, . . . , w̃n)
(mod 2ℓ) + ei, where w̃j ∈ Z2ℓ is the value contained in the commitment [wj ],
for j ∈ [n], and ei ∈ Z2ℓ is a possible error. Suppose that not all ei = 0 (mod 2k)
for i ∈ [t], i.e., there is an error in the lower k bits that we care about.

Then we have (over Z2ℓ)

Bi =
∑

h∈[0,2]

fi,h(K[w1], . . . ,K[wn]) ·∆2−h

=
∑

h∈[0,2]

fi,h(M [w1] + w̃1 ·∆, . . . ,M [wn] + w̃n ·∆) ·∆2−h

= gi(∆) = Ai,0 +Ai,1 ·∆− ei ·∆2

where Ai,0 and Ai,1 denote the values that an honest P would compute. So Bi

is the result of evaluating a quadratic polynomial at ∆.
By the exact same argument as in the proof of Theorem 14 (see Appendix F),

we can can conclude theat no adversary can break the soundness of the protocol
except with probability at most 2−σ.

Corrupted Verifier: The simulation of the verifier’s view is straightfor-
ward: S simulates a party V∗ in its head and gives control to Z, and sends
(corrupt, V) to Fk

ZK. It also simulates an instance of Fℓ,s
vole2k. We assume that the

circuit C to prove is known.

1. Simulation of the preprocessing phase: S simulates the (Init) and (Extend,
n + 1) calls to Fℓ,s

vole2k. Since V∗ acts as the sender PS towards Fℓ,s
vole2k, it is

allowed to choose its outputs. For (Init), S receives ∆ ∈ Z2s from V∗, and
K[µi],K[o] ∈ Z2ℓ for i ∈ [n] from V∗.

2. To simulate the online phase, S proceeds as follows:
– For every input i ∈ [n] it sends a random δi ∈R Z2ℓ to V∗, and computes

K[wi] := K[µi]− δi ·∆.
– For the ith polynomial fi, it computes Bi as the honest V would do in

Step 2.
– S receives χ ∈ Zt

2s from V∗.
– It computes W :=

∑
i∈[t] χi · Bi + B∗ ∈ Z2ℓ where B∗ = K[o]. Then it

samples V ′ ∈R Z2ℓ and sets U ′ := W − V ′ ·∆, and sends (U ′, V ′) to V∗.

The view of V∗ is distributed exactly as in the real execution of the protocol:
The values δi are distributed uniformly in Z2ℓ and therefore completely mask the
inputs. Moreover, the values U, V computed by the honest P are also distributed
uniformly at random due to the masking with A∗

0 and A∗
1, respectively, under

the condition that W = U + V ·∆ holds. Hence, the values U ′, V ′ sent to V∗ by
S are distributed identically, since we can recover the value W ′ that an honest
V would compute.
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