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Secret key generation from Gaussian sources
using lattice-based extractors

Laura Luzzi, Cong Ling and Matthieu R. Bloch

Abstract

We propose a lattice-based scheme for secret key generation from Gaussian sources in the presence of an
eavesdropper, and show that it achieves the strong secret key capacity in the case of degraded source models, as
well as the optimal secret key / public communication rate trade-off. The key ingredients of our scheme are a
lattice extractor to extract the channel intrinsic randomness, based on the notion of flatness factor, together with
a randomized lattice quantization technique to quantize the continuous source. Compared to previous works, we
introduce two new notions of flatness factor based on L1 distance and KL divergence, respectively, which might be
of independent interest. We prove the existence of secrecy-good lattices under L1 distance and KL divergence, whose
L1 and KL flatness factors vanish for volume-to-noise ratios up to 2πe. This improves upon the volume-to-noise
ratio threshold 2π of the L∞ flatness factor.

Index Terms

Extractor, secret key generation, strong secrecy, lattice coding, flatness factor.

I. INTRODUCTION

Secret key generation (also known as key agreement) at the physical layer was first investigated by Maurer [3]
and Ahlswede and Csiszár [4], who showed that correlated observations of noisy phenomena could be used to distill
secret keys by exchanging information over a public channel. In recent years, this subject has received considerable
attention in literature (see, e.g., [5–10]). The setup has been extended to the vector case [11, 12], the multi-terminal
case [13–16], the quantum case [17] and the case with feedback [18]. Second-order asymptotics have been derived
in [19, 20]. Code constructions for the discrete memoryless case have been proposed, e.g. [21, 22].

Most existing secret key generation schemes rely heavily on the assumption of discrete random sources over finite
or countable alphabets. In order to apply these techniques to wireless communications, it is necessary to extend
the key generation framework to the case of continuous sources, such as Gaussian sources [11, 23–25]. In [25],
the authors study a multi-terminal scenario for secret key generation in the special case for which the eavesdropper
only has access to the public channel. Beside providing a characterization of the optimal strongly secret key rate,
the authors show that this optimal rate can be achieved using lattice codes (for information reconciliation only).

We consider here the problem of secret key generation between two terminals, Alice and Bob, who observe
correlated Gaussian sequences Xn and Yn, in the presence of an eavesdropper, Eve, who also obtains a correlated
sequence Zn. For simplicity, we suppose that a single round of unidirectional public communication takes place
in order to establish the key. Our main contribution is to show that, in the case of a degraded source model, the
strong secret key capacity can be achieved by a complete lattice-coding scheme considerably different from and
perhaps simpler than [25]. This extends our previous work [1], in which it was shown that a secret key rate up to
half a nat from the optimal was achievable.
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Typically, secret key generation consists of two distinct procedures: information reconciliation, in which public
messages are exchanged to ensure that Alice and Bob can construct the same data sequence with vanishing
error probability, and privacy amplification to extract from this shared sequence a secret key that is statistically
independent from Eve’s observation and from the public messages.

Privacy amplification and randomness extraction: Our privacy amplification strategy is based on the concept of
channel intrinsic randomness, or the maximum bit rate that can be extracted from a channel output independently
of its input [26–28]. We begin by considering a simplified scenario in which Bob and Alice share the same variable
Xn. In this case, the amount of randomness that can be extracted from Xn independently of Zn is precisely the
maximum available secret key rate. We propose a lattice-based extractor to extract the randomness, by reducing
the source modulo a suitable lattice. Although our main objective in this paper is to solve the problem of privacy
amplification, our lattice extractor is also an intriguing result in its own right, which could have other applications.

The flatness factor and its variants: In our previous work [1], we provided a characterization of the class
of lattices that are good for randomness extraction, which was based on a computable parameter, the flatness
factor, measuring the L∞ distance between the “folded” Gaussian distribution modulo the lattice and the uniform
distribution on the corresponding fundamental region. The concept of flatness factor is related to the smoothing
parameter used in lattice-based cryptography [29], and was first introduced in [30] in the context of physical-
layer network coding. In [31], two of the authors also showed the relevance of the flatness factor for secrecy and
introduced the notion of secrecy-good lattices for the wiretap channel. In this work, we consider two extended
notions of flatness factor by which the L∞ distance is replaced respectively by the L1 distance and the Kullback-
Leibler (KL) divergence. These new flatness conditions are satisfied by a wider range of variance parameters,
resulting in improved volume conditions for the chain of lattices under consideration, which allows us to achieve
the secret key capacity. The existence of lattices with vanishing L1 and KL flatness factors follows by leveraging
an existence result for resolvability codes for regular channels [32]. We note that the L1 smoothing parameter was
already considered in [33, 34], while L1 and KL flatness factors were used implicitly earlier in [35, p. 1656]. An
upper bound on the L1 flatness factor based on the Cauchy-Schwarz inequality was given in [36]. The independent
work [37] studied L1 smoothing parameters both for lattices and for codes, also based on the Cauchy-Schwarz
inequality. Our approach bypasses the Cauchy-Schwarz inequality, therefore leading to a tighter bound than [36].
We note however that [37] obtained a bound on the L1 smoothing parameter as tight as that in this paper, by
decomposing the discrete Gaussian distribution into a convex combination of uniform ball distributions.

Information reconciliation and Wyner-Ziv coding: Our strategy for information reconciliation follows the outline
of [23, 25]: first, the source Xn is vector quantized; then, a public message is generated in the manner of Wyner-Ziv
coding, so that Bob can decode the quantized variable using the sequence Yn as side information. The existence
of good nested lattices for Wyner-Ziv coding has been established in [38] (see also [39, 40]). We show that this
construction is compatible with the secrecy-goodness property to conclude our existence proof.

Randomized quantization technique: Unlike our previous work [1], the quantization performed at Alice’s side is
not deterministic. We introduce a new randomized quantization step inspired by the randomized rounding technique
in [41]. Essentially, this technique allows to round a continuous Gaussian into a discrete Gaussian distribution with
slightly larger variance, provided that the L∞ flatness factor of the lattice is small. We partially extend the result
of [41] under an L1 flatness factor criterion. We show that randomized quantization with uniform dithering (where
the dither is known by all parties, including the eavesdropper) achieves the optimal trade-off between public
communication rate and secret key rate established in [23]. The dithering technique is widely used to achieve
capacity in literature [42, 43].

Relation to fuzzy extractors: The lattice extractor proposed in this paper is related to fuzzy extractors in the
cryptographic literature, usually defined for discrete sources [44]. A fuzzy extractor allows one to extract a secret
key from a noisy measurement, which means that it is resilient to small measurement errors. Fuzzy extractors
for continuous signals were proposed in [45, 46]. Our proposed lattice code is also robust to measurement errors,
thanks to its channel coding component of Wyner-Ziv coding. A difference is that min-entropy is used in fuzzy
extractors, while Shannon entropy is used in our lattice extractor. In order to be consistent with the literature, we
change the terminology lattice hashing used in the conference version of this paper [1] to lattice extractor.

Organization: This paper is organized as follows. In Section II we provide basic definitions about lattices and
introduce the flatness factor and its variants, which allows us to define the notion of secrecy-good lattices. In Section
III, we focus on the extraction of channel intrinsic randomness over Gaussian channels using lattices. In Section
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IV, we introduce the Gaussian source model and describe our lattice-based secret key generation scheme. Finally,
in Section V we offer some conclusions and perspectives. The existence of sequences of nested lattices satisfying
the required conditions is proven in the Appendix.

II. LATTICES AND FLATNESS FACTOR

Notation: All logarithms in this paper are assumed to be natural logarithms, and information is measured in
nats. Given a set A, the notation UA stands for the uniform distribution over A. We denote the variational distance
between two (discrete or continuous) distributions p, q by V(p, q), and their KL divergence by D(p∥q).

A. Lattice definitions

In this section, we introduce the mathematical tools we use to describe and analyze our proposed scheme.
An n-dimensional lattice Λ in the Euclidean space Rn is the discrete set defined by

Λ = L (B) = {Bx : x ∈ Zn}

where the columns of the basis matrix B = [b1 · · ·bn] are linearly independent.
Given a lattice Λ, its dual lattice Λ∗ is defined as the set of vectors λ∗ in Rn such that ⟨λ∗, λ⟩ ∈ Z for all λ ∈ Λ.
A measurable set R(Λ) ⊂ Rn is called a fundamental region of the lattice Λ if the disjoint union ∪λ∈Λ(R(Λ)+

λ) = Rn. Examples of fundamental regions include the fundamental parallelepiped P(Λ) and the Voronoi region
V(Λ). All the fundamental regions have equal volume V (Λ).

Given a lattice Λ and a fundamental region R(Λ), any point x ∈ Rn can be written uniquely as a sum

x = λ+ x̄,

where λ ∈ Λ and x̄ ∈ R(Λ). The vector λ is the quantization of x with respect to R(Λ) and is denoted as
QR(Λ)(x), where boundary points are decided systematically. Thus we define

[x] modR(Λ) = x−QR(Λ)(x) = x̄. (1)

In particular, for any x ∈ Rn, the nearest-neighbor quantizer associated with Λ is given by

QΛ(x) = QV(Λ)(x) = argmin
λ∈Λ

∥λ− x∥

where ties are broken systematically. Note that x modV(Λ) = x−QΛ(x). The modulo lattice operation satisfies
the distributive law [47, Proposition 2.3.1], i.e., ∀λ ∈ Λ

[x+ λ] modR(Λ) = [x] modR(Λ). (2)

The following property [48, equation (35)] will also be used in the paper: given two lattices Λ ⊆ Λ1, x ∈ Rn,
and a fundamental region R(Λ),

[QΛ1
(x)] modR(Λ) = [QΛ1

([x] modR(Λ))] modR(Λ). (3)

Given a sublattice Λ′ ⊂ Λ, the quotient group Λ/Λ′ is defined as the group of distinct cosets λ+Λ′ for λ ∈ Λ.
It can be identified by a set of coset representatives Λ ∩ R(Λ′), where R(Λ′) is any fundamental region of Λ′.
Furthermore, R(Λ′) can be written as a disjoint union of translates of any fundamental region R(Λ) as follows
[47, equation (8.33)]:

R(Λ′) =
⋃

λ∈Λ∩R(Λ′)

(
[λ+R(Λ)] modR(Λ′)

)
. (4)

B. Gaussian distributions and the L∞ flatness factor

Suppose that Xn is an n-dimensional i.i.d. Gaussian random variable of variance σ2 with distribution

fσ(x) =
1

(
√
2πσ)n

e−
∥x∥2

2σ2 ,
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for x ∈ Rn. The following useful property of Gaussian distributions was proven in [41, Fact 2.1]1:
Lemma 1: Given σ1, σ2 > 0, let σ and σ̄ be such that σ2 = σ21+σ

2
2 , and 1

σ̄2 = 1
σ2
1
+ 1
σ2
2
. Moreover, let c1, c2 ∈ Rn,

and c̄ = σ̄2

σ2
1
c1 +

σ̄2

σ2
2
c2. Then ∀x ∈ Rn,

fσ1
(x− c1)fσ2

(x− c2) = fσ(c1 − c2)fσ̄(x− c̄).

Given a lattice Λ, we define the Λ-periodic function

fσ,Λ(x) =
1

(
√
2πσ)n

∑
λ∈Λ

e−
∥x+λ∥2

2σ2 , (5)

for all x ∈ Rn. We denote by fσ,R(Λ) = fσ,Λ|R(Λ) its restriction to the fundamental region R(Λ). Note that fσ,R(Λ)

is the probability density of X̄n = [Xn] modR(Λ). Given c ∈ Rn, we will also use the notation

fσ,Λ,c(x) = fσ,Λ(x− c)

to denote a shifted Λ-periodic function.
Definition 1 (L∞ Flatness factor [31]): For a lattice Λ and for a parameter σ, the L∞ flatness factor is defined

by:
ϵΛ(σ) ≜ max

x∈R(Λ)
|V (Λ)fσ,Λ(x)− 1| .

In other words, ϵΛ(σ) characterizes the L∞ distance of fσ,Λ(x) to the uniform distribution UR(Λ) over R(Λ).
The L∞ flatness factor is independent of the choice of the fundamental region R(Λ) and can be computed from

the theta series of the lattice
ΘΛ(τ) =

∑
λ∈Λ

e−πτ∥λ∥
2

(6)

using the identity [31, Proposition 2]

ϵΛ(σ) =

(
γΛ(σ)

2π

)n

2

ΘΛ

(
1

2πσ2

)
− 1, (7)

where γΛ(σ) = V (Λ)
2
n

σ2 is the volume-to-noise ratio (VNR). Moreover, the following relation holds between the
flatness factor of Λ and the theta series of its dual lattice Λ∗ [31, Corollary 1]:

ΘΛ∗(2πσ2) = ϵΛ(σ) + 1. (8)

Remark 1: We have shown in [31] that ϵΛ is a monotonically decreasing function, i.e., for σ < σ′, we have
ϵΛ(σ

′) ≤ ϵΛ(σ).
The notion of secrecy-goodness characterizes lattice sequences whose L∞ flatness factors vanish exponentially

fast as n→ ∞.
Definition 2 (Secrecy-good lattices under L∞ flatness factor [31]): A sequence of lattices Λ(n) is secrecy-good

under L∞ flatness factor if ϵΛ(n)(σ) = e−Ω(n) for all fixed γΛ(n)(σ) < 2π.
In [31] we have proven the existence of sequences of secrecy-good lattices under L∞ flatness factor as long as

γΛ(σ) < 2π. (9)

Remark 2: In fact, we can show a concentration result: ∀η > 0 there exists a mod-p lattice ensemble such that
lattice sequences from this ensemble are secrecy-good with probability greater than 1− η (see [31, Appendix III]).

C. The mod-Λ channel and the mod-Λ/Λ′ channel

Following Forney et al. [49], given a fundamental region R(Λ) of Λ we can define the mod-Λ channel with
input Xn ∈ R(Λ) and output

Yn = [Xn +Wn] modR(Λ),

1Note that although the statement in [41] refers to (unnormalized) Gaussian functions, one can check that it also holds for Gaussian
distributions.
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where Wn is a noise vector. When Wn is i.i.d. Gaussian with variance σ2, this channel has capacity

C(Λ, σ2) = log V (Λ)− h(fσ,Λ).

In the above expression, with slight abuse of notation we denote by h(fσ,Λ) the differential entropy of fσ,R(Λ),
which does not depend on the choice of the region R(Λ).

The following result [50, Lemma 1] relates the L∞ flatness factor to the capacity of the mod Λ channel.
Lemma 2: The capacity C(Λ, σ2) of the mod-Λ channel is bounded by C(Λ, σ2) ≤ log(1 + ϵΛ(σ)) ≤ ϵΛ(σ).
Given two nested lattices Λ′ ⊂ Λ and a fundamental region R(Λ′), we can define the mod Λ/Λ′ channel with

discrete input Xn ∈ Λ ∩R(Λ′) and output

Yn = [Xn +Wn] modR(Λ′).

It was shown in [49] that this channel has capacity

C(Λ/Λ′, σ2) = log
∣∣Λ/Λ′∣∣+ h(fσ,Λ)− h(fσ,Λ′).

In particular, the following relation holds:

C(Λ/Λ′, σ) = C(Λ′, σ2)− C(Λ, σ2). (10)

Lemma 3: For any σ > 0,

C(Λ/Λ′, σ2) = D
(
fσ,R(Λ′)

∥∥∥ 1

|Λ/Λ′|
fσ,Λ|R(Λ′)

)
.

The proof of Lemma 3 can be found in Appendix A.

D. The L1 flatness factor and the KL flatness factor

In this section, we introduce a weaker notion of flatness based on the L1 distance.
Definition 3: Given a lattice Λ, a fundamental region R(Λ) and σ > 0, we define the L1 flatness factor as

follows:
ϵ1Λ(σ) =

∫
R(Λ)

∣∣∣∣fσ,Λ(x)− 1

V (Λ)

∣∣∣∣ dx = V(fσ,R(Λ),UR(Λ)). (11)

Similarly to the L∞ flatness factor, the L1 flatness factor does not depend on the choice of the fundamental region.
Remark 3: For any lattice Λ, ∀σ > 0, we have ϵ1Λ(σ) ≤ ϵΛ(σ).
The L1 flatness factor is related to the L1 smoothing parameter, which was discussed in [33, 34].
We also introduce yet another notion of flatness factor which replaces L1 distance with KL divergence.
Definition 4: Given a lattice Λ, a fundamental region R(Λ) and σ > 0, we define the KL flatness factor as

follows:
ϵKLΛ (σ) = D(fσ,R(Λ)||UR(Λ)). (12)

As before, the definition does not depend on the choice of the fundamental region.
Remark 4: By Pinsker’s inequality, ∀σ > 0,

ϵ1Λ(σ) ≤
√

2ϵKLΛ (σ).

Remark 5 (Relation to the capacity of the mod-Λ channel): Note that [35, p.1656]

D(fσ,R(Λ)||UR(Λ)) = log V (Λ)− h(fσ,Λ) = C(Λ, σ2).

By shift-invariance of the differential entropy, the KL flatness factor is also shift-invariant, i.e.

ϵΛ(σ) = D(fσ,Λ,c|R(Λ)||UR(Λ))

for all c ∈ Rn.
Thanks to Remark 5, we are able to prove the following
Lemma 4: The L1 and KL flatness factors are monotonic, i.e. for any lattice Λ, ∀σ′ > σ,

ϵ1Λ(σ
′) ≤ ϵ1Λ(σ), and ϵKLΛ (σ′) ≤ ϵKLΛ (σ).
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Proof: Let Wn ∼ N (0, σ2In) and Xn = Wn modR(Λ) ∼ fσ,R(Λ).
Given σ0 > 0, let Wn

0 ∼ N (0, σ20In) and consider

Yn = [Xn +Wn
0 ] modR(Λ) = [[Wn] modR(Λ)) +Wn

0 ] modR(Λ) = [Wn +Wn
0 ] modR(Λ) ∼ f√

σ2+σ2
0 ,R(Λ)

.

using the distributive property (2). Now consider the random variable Un ∼ UR(Λ). By the Crypto Lemma [47,
Lemma 4.1.1],

[Un +Wn
0 ] modR(Λ) ∼ UR(Λ).

Then using the data processing inequality for the variational distance,

ϵ1Λ

(√
σ2 + σ20

)
= V

(
f√

σ2+σ2
0 ,R(Λ)

,UR(Λ)

)
= V(Yn,Un) ≤ V(Xn,Un) = V(fσ,R(Λ),UR(Λ)) = ϵ1Λ(σ).

Similarly, from the data processing inequality for the KL divergence [51, Lemma 3.11], we have

ϵKLΛ

(√
σ2 + σ20

)
= D

(
f√

σ2+σ2
0 ,R(Λ)

||UR(Λ)

)
= D(Yn||Un) ≤ D(Xn||Un) = D(fσ,R(Λ)||UR(Λ)) = ϵKLΛ (σ).

Since this is true for any σ0 > 0, the conclusion follows.
We will next show that lattices that are good for secrecy in the KL sense exist and that the corresponding volume

condition is less stringent than the condition (9) for secrecy-goodness based on the L∞ metric.
Definition 5: A sequence of lattices {Λ(n)} is L1 secrecy-good if for all fixed γΛ(n)(σ) < 2πe, ∀c > 0, ϵ1Λ(n)(σ) =

o
(

1
nc

)
, i.e., the L1 flatness factor vanishes super-polynomially. It is KL secrecy-good if ϵKLΛ(n)(σ) = o

(
1
nc

)
.

By Remark 4, a sequence of KL secrecy-good lattices is also L1 secrecy-good. The following theorem, which
was presented in [2], is the first main result of this paper:

Theorem 1: If γΛ(σ) < 2πe is fixed, then there exists a sequence {Λ(n)} of lattices which are KL secrecy-good
(and also L1-secrecy good).

The proof of Theorem 1 is given in Appendix C. Our proof is information-theoretic and does not require the
knowledge of the theta series, in contrast to the L∞ flatness factor. We summarize the main idea here. We use the
standard Construction A to find the sought-after lattice Λ from a fine lattice Λf where Λ ⊆ Λnf . Using the chain
rule (10), we have

D(fR(Λ),σ||UR(Λ)) = C(Λ, σ2) = C(Λnf , σ
2) + C(Λnf/Λ, σ

2).

Now, using a sufficiently fine lattice Λf , we can easily make C(Λnf , σ
2) → 0 thanks to the flatness phenomenon

(cf. Lemma 2). The non-trivial part of the proof is to exhibit a lattice Λ such that C(Λnf/Λ, σ
2) → 0 as well. Here,

opposite to the usual goal of achieving channel capacity in information theory, we use a code (∼= Λnf/Λ) whose
“capacity” is vanishing. Such a code can be a linear resolvability code. More precisely, because the Λnf/Λ channel
is regular, its capacity is attained by the uniform input distribution. Thus

C(Λnf/Λ, σ
2) = I(M;Yn),

the mutual information for uniform input M ∈ Λnf/Λ. This means that if M is encoded by a linear code achieving
strong secrecy over the Λnf/Λ channel, then I(M;Yn) → 0 and accordingly C(Λnf/Λ, σ

2) → 0. However, making
the above argument rigorous involve certain technicalities, which are sorted out in Appendix C.

Remark 6: It is worth mentioning that as soon as the VNR exceeds 2π, the L∞ flatness factor increases
exponentially. In fact, it is easy to see that the bound γΛ(σ) < 2π is sharp: the L∞ flatness factor of a lattice
cannot vanish for any γΛ(σ) > 2π. This is simply because (7) implies that

ϵΛ(σ) >

(
γΛ(σ)

2π

)n

2

− 1

since ΘΛ(τ) > 1 for any τ > 0. Thus, as the VNR approaches 2πe, the L∞ flatness factor ≈ en/2, but the L1

flatness factor can still be brought under control. This demonstrates the advantage of the L1 flatness factor.
Also note that the VNR of a secrecy-good lattice approaches 2πe from below, while that of an AWGN-good lattice

approaches 2πe from above. Recall that the normalized second moment of a quantization-good lattice approaches
1/(2πe), so all three types of lattices finally share the same VNR threshold 2πe.



7

Remark 7: In the following, we discuss the implication of Theorem 1 on the smoothing parameter2 that is
commonly used in lattice-based cryptography.

Definition 6 (Smoothing parameter): For a lattice Λ and for ε > 0, the L∞ and L1 smoothing parameters ηε(Λ)
and η1ε(Λ), respectively, are the smallest σ > 0 such that ϵΛ(σ), ϵ1Λ(σ) ≤ ε.

Theorem 1 implies the existence of lattices whose smoothing parameters η1ε(Λ) =
V 1/n(Λ)√

2πe
. This improves upon

the result ηε(Λ) =
V 1/n(Λ)√

2π
.

From the Cauchy-Schwarz inequality, the following bound was proven in [36]3

ϵ1Λ(σ) ≤
√
ϵΛ

(√
2σ
)

(13)

which implies the bound η1ε(Λ) ≤
V 1/n(Λ)
2
√
π

. However, this bound is not optimal.

E. Discrete Gaussians and randomized rounding

Given an n-dimensional lattice Λ in Rn and a vector c ∈ Rn, we define the discrete Gaussian distribution over
Λ centered at c as the following discrete distribution taking values in λ ∈ Λ:

DΛ,σ,c(λ) =
fσ,c(λ)

fσ,c(Λ)
∀λ ∈ Λ,

where fσ,c(Λ) ≜
∑

λ∈Λ fσ,c(λ). We write DΛ,σ = DΛ,σ,0.
Extending Peikert [41, Section 4.1], we introduce the notion of randomized rounding:
Definition 7 (Randomized rounding): Given an input vector Xn, we define

⌊Xn⌉Λ,σ ∼ DΛ,σ,Xn .

It was shown in [41] that when Xn is i.i.d. Gaussian with variance σ2, the randomly rounded variable ⌊Xn⌉Λ,σQ

is close in L1 distance to the discrete Gaussian DΛ,σ̃, where σ̃2 = σ2 + σ2Q, provided that the L∞ flatness factor
ϵΛ(σQ) is small:

Proposition 1 (Adapted from Theorem 3.1 of [41]): Let Xn ∼ N (0, σ2In) and µ ∈ Rn, and consider XQ =
⌊Xn + µ⌉Λ,σQ

. If ϵΛ(σQ) < 1/2, then
V(pXQ

, DΛ,σ̃,µ)) ≤ 4ϵΛ(σQ),

where σ̃2 = σ2 + σ2Q.
In the following, we prove a partial generalization of this result under an L1 flatness factor condition, for

randomized rounding with uniform dithering, which may be of independent interest.
Theorem 2: Let Xn ∼ N (0, σ2In), and U ∼ UR(Λ) uniform over a fundamental region R(Λ) and independent

of Xn. Given µ ∈ Rn, let XQ = ⌊Xn + U+ µ⌉Λ,σQ
. Then

EU

[
V
(
pXQ|U, DΛ,σ̃,U+µ

)]
≤ 2ϵ1Λ(σQ).

In order to prove Theorem 2, we need the following Lemma, which will be used several times throughout the
paper.

Lemma 5: Under the same hypotheses as in Theorem 2,∑
xQ∈Λ

∫
R(Λ)

∣∣∣∣∫
Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx− fσ̃(xQ − u− µ)

∣∣∣∣ du ≤ ϵ1Λ(σQ).

Proof of Lemma 5: By Lemma 1,

fσQ
(xQ − x− u)fσ(x− µ) = fσ̃(xQ − u− µ)fσ̄(x− c̄(xQ,u,µ)), (14)

2We remark that this definition differs slightly from the one in [29], where σ is scaled by a constant factor
√
2π (i.e., s =

√
2πσ).

3A similar bound was given in [37] using the statistical distance, which differs from the L1 distance by a factor 1
2

.
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where 1
σ̄2 = 1

σ2 + 1
σ2
Q

and c̄(xQ,u,µ) =
σ̄2

σ2
Q
(xQ − u) + σ̄2

σ2µ. Then we can write∑
xQ∈Λ

∫
R(Λ)

∣∣∣∣∫
Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx− fσ̃(xQ − u− µ)

∣∣∣∣ du
(a)
=
∑
xQ∈Λ

∫
R(Λ)

∣∣∣∣∫
Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx− fσ̃(xQ − u− µ)

∫
Rn

fσ̄(x− c̄(xQ,u,µ))dx

∣∣∣∣ du
(b)
=
∑
xQ∈Λ

∫
R(Λ)

∣∣∣∣∫
Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx−
∫
Rn

fσQ
(xQ − x− u)fσ(x− µ)dx

∣∣∣∣ du
≤
∫
R(Λ)

∫
Rn

∑
xQ∈Λ

fσ(x− µ)fσQ
(xQ − x− u)

fσQ
(Λ− x− u)

∣∣∣∣ 1

V (Λ)
− fσQ

(Λ− x− u)

∣∣∣∣ dxdu
=

∫
Rn

fσ(x− µ)

∫
R(Λ)

∣∣∣∣ 1

V (Λ)
− fΛ,σQ

(x+ u)

∣∣∣∣ dudx
=

∫
Rn

fσ(x− µ)

∫
R(Λ)

∣∣∣∣ 1

V (Λ)
− fΛ,σQ

(u)

∣∣∣∣ dudx = ϵ1Λ(σQ),

where (a) follows from the fact that
∫
Rn fσ̄(x− c̄(xQ,u,µ))dx = 1, and (b) follows from (14).

Proof of Theorem 2: We have

EU

[
V
(
pXQ|U, DΛ,σ̃,U+µ

)]
=

=

∫
R(Λ)

1

V (Λ)

∑
xQ∈Λ

∣∣pXQ|U(xQ|u)−DΛ,σ̃,u(xQ)
∣∣ du

=
∑
xQ∈Λ

∫
R(Λ)

1

V (Λ)

∣∣∣∣∫
Rn

fσ(x− µ)fσQ
(xQ − x− u)

fσQ
(Λ− x− u)

dx−
fσ̃(xQ − u− µ)

fσ̃(Λ− u− µ)

∣∣∣∣ du
(a)

≤
∑
xQ∈Λ

∫
R(Λ)

1

V (Λ)

∣∣∣∣∫
Rn

fσ(x− µ)fσQ
(xQ − x− u)

fσQ
(Λ− x− u)

dx− fσ̃(xQ − u− µ)V (Λ)

∣∣∣∣ du (15)

+
∑
xQ∈Λ

∫
R(Λ)

1

V (Λ)

∣∣∣∣fσ̃(xQ − u− µ)V (Λ)−
fσ̃(xQ − u− µ)

fσ̃(Λ− u− µ)

∣∣∣∣ du, (16)

where (a) follows from the triangle inequality. The term (15) is bounded by ϵ1Λ(σQ) because of Lemma 5. The
term (16) is equal to ∑

xQ∈Λ

∫
R(Λ)

fσ̃(xQ − u− µ)

fσ̃(Λ− u− µ)

∣∣∣∣fσ̃(Λ− u− µ)− 1

V (Λ)

∣∣∣∣ du
=

∫
R(Λ)

∣∣∣∣fσ̃(Λ− u− µ)− 1

V (Λ)

∣∣∣∣ du = ϵ1Λ(σ̃)
(b)

≤ ϵ1Λ(σQ),

where (b) follows from Lemma 4.

III. LATTICE EXTRACTOR FOR GAUSSIAN SOURCES

In this section, we present a primitive called lattice extractor to extract the randomness of a source, without
dithering.

Consider a source model for secret key generation with public discussion, in the presence of an eavesdropper.
For simplicity, we first assume that Alice and Bob observe the same i.i.d. Gaussian random variable Xn = Yn of
variance σ2x per dimension. Eve observes a correlated i.i.d. random variable Zn. We assume that Xn and Zn are
jointly Gaussian, according to the following model

Xn = Zn +Wn, (17)
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where Wn is an i.i.d. zero-mean Gaussian random vector of variance σ2 per dimension, and is independent of Zn.
Our aim is to extract from Xn a random number that is almost uniform on R(Λ) and almost independent of Zn.

To do this, we apply the mod R(Λ) operation in Eq. (1). Recall that

pX̄n(x̄) = fσx,Λ(x̄)1R(Λ)(x̄).

The conditional density of X̄n = Xn modR(Λ) given Zn is

pX̄n|Zn(x̄|z) =
∑

x: x̄=x modR(Λ)

pXn|Zn(x|z)

=
∑

x∈x̄+Λ

pXn|Zn(x|z) =
∑
λ∈Λ

1

(
√
2πσ)n

e−
∥x̄+λ−z∥2

2σ2

= fσ,Λ(x̄− z)1R(Λ)(x̄) = fσ,Λ,z(x̄)1R(Λ)(x̄).

So, if the flatness factor ϵKLΛ (σ) = D(fσ,R(Λ)||UR(Λ)) = D(fσ,Λ,z|R(Λ)||UR(Λ)) is small, pXn|Zn=z is almost uniform
over R(Λ) for any z ∈ Rn. Note that

h(X̄n) = h(fσx,Λ),

h(X̄n|Zn = z) = −
∫
R(Λ)

pX̄n|Zn(x̄|z) log pX̄n|Zn(x̄|z)dx̄ = −
∫
R(Λ)

fσ,Λ(x̄− z) log fσ,Λ(x̄− z)dx̄

= −
∫
R(Λ)−z

fσ,Λ(x̄) log fσ,Λ(x̄)dx̄ = h(fσ,Λ)

since fσ,Λ is Λ-periodic and R(Λ)− z is a fundamental region.
One can now bound the mutual information

I(X̄n;Zn) = h(X̄n)− h(X̄n|Zn)

= h(fσx,Λ)−
∫
Rn

pZn(z)h(X̄n|Zn = z)dz = h(fσx,Λ)− h(fσ,Λ)

= log V (Λ)− h(fσ,Λ)− (log V (Λ)− h(fσx,Λ)) = ϵKLΛ (σ)− ϵKLΛ (σx) ≤ ϵKLΛ (σ).

By Theorem 1, if γΛ(σ) < 2πe, there exists a sequence of lattices {Λ(n)} such that limn→∞ I(X̄n;Zn) = 0.
Observe that depending on the choice of Λ, the rate of extracted randomness can be arbitrarily large (as expected

for the case of continuous random variables).
Remark 8: The asymptotic differential entropy rate of X̄n is

r = lim inf
n→∞

1

n
h(X̄n) = lim inf

n→∞

1

n
(log V (Λ)− ϵKLΛ (σx)) = lim inf

n→∞

1

n
log V (Λ) <

1

2
log 2πeσ2.

since, by monotonicity of the KL flatness factor (Lemma 4), ϵKLΛ (σx) ≤ ϵKLΛ (σ) → 0. Taking a sequence of
KL secrecy-good lattices, we can obtain the asymptotic rate r = log(

√
2πeσ), which is equal to the asymptotic

differential entropy rate of the Gaussian noise Wn. Hence, we have used the mod operation to extract the intrinsic
randomness [26]. This improves upon our previous result for continuous lattice extractors [1, Section III] using the
L∞ flatness factor, which was 1

2 nat from the optimal differential entropy rate.
Remark 9: It is worth mentioning that unlike other works that use dithering or the high-resolution assumption

[38], in this section we have obtained uniformity and independence from the flatness factor. Moreover, nearest-
neighbor quantization is not needed in our continuous lattice extractor scheme, and we only need to implement
the mod R(Λ) operation, which can be performed in polynomial time for many fundamental regions R(Λ). In
particular, we can choose the fundamental parallelepiped.

However, in the next section, both dithering and nearest-neighbor quantization will be required for our secret
key generation scheme.
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ALICE BOB

KEY
GENERATION

QUANTIZER pXYZ DECODER

EVE

K K̂

XnXn
Q Yn

ZnS S

S

public channel (noiseless)

Fig. 1. Secret key generation in the presence of an eavesdropper with communication over a public channel.

IV. SECRET KEY GENERATION

A. System model

We consider the same model as in [1], illustrated in Figure 1, in which Alice, Bob and Eve observe the random
variables Xn, Yn, Zn respectively, generated by an i.i.d. memoryless Gaussian source pXYZ whose components are
jointly Gaussian with zero mean. The distribution is fully described by the variances σ2x, σ2y , σ2z and the correlation
coefficients ρxy, ρxz , ρyz . We can write [23, Eq. (6)]:

Xn = ρxy
σx
σy

Yn +Wn
1 ,

Xn = ρxz
σx
σz

Zn +Wn
2 ,

(18)

where Wn
1 and Wn

2 are i.i.d. zero-mean Gaussian noise vectors of variances

σ21 = σ2x(1− ρ2xy), σ22 = σ2x(1− ρ2xz), (19)

respectively. Further, Wn
1 is independent of Yn, and Wn

2 is independent of Zn.
To simplify notation, we define Ŷn = ρxy

σx

σy
Yn and Ẑn = ρxz

σx

σz
Zn, so that{

Xn = Ŷn +Wn
1 ,

Xn = Ẑn +Wn
2 ,

(20)

where Ŷn and Wn
1 are independent, and Ẑn and Wn

2 are independent. We denote the variances of Ŷn and Ẑn by
σ̂y = ρxyσx =

√
σ2x − σ21 and σ̂z = ρxzσx =

√
σ2x − σ22 respectively.

The secret key capacity of the Gaussian source model (18) is given by [52, 23]

Cs =
1

2
log

σ22
σ21
.

We assume that only one round of one-way public communication (from Alice to Bob) takes place. More
precisely, Alice computes a public message S and a secret key K from her observation Xn; she then transmits S
over the public channel (see Fig. 1). From this message and his own observation Yn, Bob reconstructs a key K̂.
Let Kn and Sn be the sets of secret keys and public messages respectively. A secret key rate - public rate pair
(RK , RP ) is achievable if there exists a sequence of protocols with

lim inf
n→∞

1

n
log |Kn| ≥ RK , lim sup

n→∞

1

n
log |Sn| ≤ RP ,
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such that the following properties hold:

lim
n→∞

log |Kn| −H(K) = 0 (uniformity)

lim
n→∞

P
{
K ̸= K̂

}
= 0 (reliability)

lim
n→∞

I(K; S,Zn) = 0 (strong secrecy).

To define our key generation scheme, we use the lattice partition chain Λ1/Λ2/Λ3, where
• Λ1 is L1 secrecy-good with respect to σQ, and serves as the “source-code” component of Wyner-Ziv coding;
• Λ2 is AWGN-good with respect to σ̃1 =

√
σ21 + σ2Q, and serves as the “channel-code” component in Wyner-Ziv

coding;
• Λ3 is L1 secrecy-good with respect to σ̃2 =

√
σ22 + σ2Q, and serves as the extractor of randomness.

The existence of such a chain of lattices will be established in Appendix D.
In addition, we assume that U is a uniform dither over a fundamental region R(Λ1), which is known by Alice,

Bob and Eve4.

B. Secret key generation protocol

The secret key generation proceeds as follows:
• Alice quantizes Xn to

XQ = ⌊Xn + U⌉Λ1,σQ
.

That is, XQ ∼ DΛ1,σQ,x+u if Xn = x, U = u, or equivalently

pXQ|Xn,U(xQ|x,u) =
fσQ

(xQ − x− u)

fσQ
(Λ1 − x− u)

. (21)

Alice then computes the public message S and the key K as follows:

S = XQ modV(Λ2),

K = QΛ2
(XQ) modR(Λ3),

and transmits S to Bob over the public channel.
• Upon receiving S, Bob reconstructs

X̂Q = S+QΛ2

(
ρxy

σx
σy

Yn + U− S

)
.

He then computes his version of the key:

K̂ = QΛ2
(X̂Q) modR(Λ3).

Let X̄Q = XQ modR(Λ3) ∈ Λ1/Λ3, where the quotient Λ1/Λ3 is identified with the set of coset representatives
Λ1 ∩R(Λ3). By definition, X̄Q = S+ K. Note that K and S are both functions of X̄Q:

K = QΛ2
(XQ) modR(Λ3)

(a)
= QΛ2

(XQ modR(Λ3)) modR(Λ3) = QΛ2
(X̄Q) modR(Λ3) = f(X̄Q). (22)

where (a) follows from equation (3). Similarly,

X̄Q modΛ2 = X̄Q −QΛ2
(X̄Q) = XQ −QR(Λ3)(XQ)−QΛ2

(XQ −QR(Λ3)(XQ)) = XQ −QΛ2
(XQ)

= XQ modΛ2 = S = g(X̄Q). (23)

Remark 10: Because of the previous relations, we can conclude that there exists a bijection (f, g) : Λ1/Λ3 →
Λ1/Λ2 × Λ2/Λ3 that sends X̄Q into the corresponding pair (S,K).

We now state the main result of the paper, which will be proven in the following sections:

4If Alice and Bob already share a secret source of randomness, there is no need for secret key generation. Hence, Eve should know U to
avoid trivializing the problem.
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Theorem 3: For the Gaussian source model (18), for any secret key rate RK < Cs = 1
2 log

σ2
2

σ2
1
, there exists a

sequence of nested lattices Λ
(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1 such that the previous secret key generation protocol achieves the

rate RK .

C. Reliability

We want to show that the error probability Pe = P{K ̸= K̂} → 0 as n→ ∞.
Note that K = K̂ if X̂Q = XQ. Since XQ = S+QΛ2

(XQ), we have

X̂Q = XQ ⇔ QΛ2
(Ŷn + U− S) = QΛ2

(XQ).

Observe that

QΛ2
(Ŷn + U− S) = QΛ2

(
Ŷn + U− XQ +QΛ2

(XQ)
)
= QΛ2

(Ŷn + U− XQ) +QΛ2
(XQ).

Therefore
X̂Q = XQ ⇔ QΛ2

(Ŷn + U− XQ) = 0 ⇔ Ŷn ∈ XQ − U+ V(Λ2). (24)

The error probability is bounded by

Pe ≤ P{X̂Q ̸= XQ} =

∫
Rn

∫
R(Λ1)

P{X̂Q ̸= XQ | Ŷn = y,U = u}
pŶn(y)

V (Λ1)
dudy

=

∫
Rn

∫
Rn

∫
R(Λ1)

P{X̂Q ̸= XQ | Ŷn = y,Xn = x,U = u}
pXn|Ŷn(x|y)pŶn(y)

V (Λ1)
dudydx

=
∑

xQ∈Λ1

∫
Rn

∫
Rn

∫
R(Λ1)

pXQ|XnU(xQ|x,u)P{X̂Q ̸= xQ | Ŷn = y,U = u,XQ = xQ}
pXn|Ŷn(x|y)pŶn(y)

V (Λ1)
dudydx.

In the last step we have used the Markov chain Xn−(Ŷn,XQ,U)−X̂Q. Replacing the expression for the conditional
distribution in equation (21), we obtain

Pe =
∑

xQ∈Λ1

∫
Rn

∫
R(Λ1)

(∫
Rn

fσQ
(xQ − x− u)

fσQ
(Λ1 − x− u)

fσ1
(x− y)

V (Λ1)
dx

)
1{y/∈xQ−u+V(Λ2)}fσ̂y

(y)du dy

(a)

≤
∑

xQ∈Λ1

∫
Rn

∫
R(Λ1)

∣∣∣∣∫
Rn

fσQ
(xQ−x−u)fσ1

(x−y)

fσQ
(Λ1 − x− u)V (Λ1)

dx− fσ̃1
(xQ−u−y)

∣∣∣∣1{y/∈xQ−u+V(Λ2)}fσ̂y
(y)du dy (25)

+
∑

xQ∈Λ1

∫
Rn

∫
R(Λ1)

fσ̃1
(xQ − u− y)1{y/∈xQ−u+V(Λ2)}fσ̂y

(y)du dy (26)

where (a) follows from the triangle inequality.
The term (25) is upper bounded by∫

Rn

∑
xQ∈Λ1

∫
R(Λ1)

∣∣∣∣∫
Rn

fσQ
(xQ − x− u)fσ1

(x− y)

fσQ
(Λ1 − x− u)V (Λ1)

dx− fσ̃1
(xQ − u− y)

∣∣∣∣ dufσ̂y
(y)dy

≤
∫
Rn

ϵ1Λ1
(σQ)fσ̂y

(y)dy = ϵ1Λ1
(σQ)

using Lemma 5. This tends to 0 provided that Λ1 is L1 secrecy-good and

V (Λ1)
2/n

σ2Q
< 2πe. (27)
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With the change of variables y′ = y − xQ + u, the term (26) can be rewritten as∑
xQ∈Λ1

∫
R(Λ1)

∫
Rn

fσ̃1
(y′)1{y′ /∈V(Λ2)}fσ̂y

(y′ + xQ − u)dy′du

=
∑

xQ∈Λ1

∫
R(Λ1)

∫
Rn\V(Λ2)

fσ̃1
(y′)fσ̂y

(y′ + xQ − u)dy′du

=

∫
Rn\V(Λ2)

fσ̃1
(y′)

∫
R(Λ1)

fσ̂y,Λ1
(y′ − u)dudy′

(b)
=

∫
Rn\V(Λ2)

fσ̃1
(y′)dy′

where (b) follows from the fact that
∫
R(Λ1)

fσ̂y,Λ1
(y′−u)du = 1. This tends to 0 provided that Λ2 is AWGN-good

and
V (Λ2)

2/n

σ̃21
> 2πe. (28)

D. Uniformity

We want to show that the key is asymptotically uniform when n→ ∞. First, we want to bound the L1 distance
between pX̄Q

and the uniform distribution over Λ1/Λ3. Given x ∈ Rn, x̄Q ∈ Λ1/Λ3, we have

pX̄Q|XnU(x̄Q|x,u) =
∑
λ3∈Λ3

pXQ|Xn,U(x̄Q + λ3|x,u) =
∑
λ3∈Λ3

fσQ
(x̄Q + λ3 − x− u)

fσQ
(Λ1 − x− u)

. (29)

Then

pX̄Q
(x̄Q) =

∫
R(Λ1)

∫
Rn

pX̄Q|Xn,U(x̄Q|x,u)
pXn(x)

V (Λ1)
dx du =

∑
λ3∈Λ3

∫
R(Λ1)

∫
Rn

fσQ
(x̄Q + λ3 − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dx du.

Using the previous expression, we find∥∥∥pX̄Q
− UΛ1/Λ2

∥∥∥
L1

=
∑

x̄Q∈Λ1/Λ3

∣∣∣∣pX̄Q
(x̄Q)−

V (Λ1)

V (Λ3)

∣∣∣∣
=

∑
x̄Q∈Λ1/Λ3

∣∣∣∣∣
∫
R(Λ1)

∑
λ3∈Λ3

∫
Rn

fσQ
(x̄Q + λ3 − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dxdu− V (Λ1)

V (Λ3)

∣∣∣∣∣
(a)

≤
∑

x̄Q∈Λ1/Λ3

∣∣∣∣∣
∫
R(Λ1)

∑
λ3∈Λ3

∫
Rn

fσQ
(x̄Q + λ3 − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dxdu−
∑
λ3∈Λ3

∫
R(Λ1)

fσ̃x
(x̄Q + λ3 − u)du

∣∣∣∣∣ (30)

+
∑

x̄Q∈Λ1/Λ3

∣∣∣∣∣
∫
R(Λ1)

∑
λ3∈Λ3

fσ̃x
(x̄Q + λ3 − u)du− V (Λ1)

V (Λ3)

∣∣∣∣∣ (31)

where (a) follows from the triangle inequality, and σ̃2x = σ2x + σ2Q. The term (30) is upper bounded by∑
x̄Q∈Λ1/Λ3

∑
λ3∈Λ3

∫
R(Λ1)

∣∣∣∣∫
Rn

fσQ
(x̄Q + λ3 − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dx− fσ̃x
(x̄Q + λ3 − u)

∣∣∣∣ du
≤
∑

xQ∈Λ1

∫
R(Λ1)

∣∣∣∣∫
Rn

fσQ
(xQ − x− u)fσx

(x)

fσQ
(Λ1 − x− u)V (Λ1)

dx− fσ̃x
(xQ − u)

∣∣∣∣ du ≤ ϵ1Λ1
(σQ)
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by Lemma 5. This vanishes as o
(
1
n

)
if Λ1 is L1 secrecy-good and the condition (27) is satisfied.

The term (31) is equal to ∑
x̄Q∈Λ1/Λ3

∣∣∣∣∣
∫
R(Λ1)

fσ̃x,Λ3
(x̄Q − u)du−

∫
R(Λ1)

1

V (Λ1)
du
V (Λ1)

V (Λ3)

∣∣∣∣∣
≤

∑
x̄Q∈Λ1/Λ3

∫
R(Λ1)

∣∣∣∣fσ̃x,Λ3
(x̄Q − u)− 1

V (Λ3)

∣∣∣∣ du.
Setting v = x̄Q − u modR(Λ3), and recalling that R(Λ3) =

⋃
x̄Q∈Λ1∩R(Λ3)

([x̄Q +R(Λ1)] modR(Λ3)) by (4),
where the union is disjoint, the last expression is equal to∫

R(Λ3)

∣∣∣∣fσ̃x,Λ3
(v)− 1

V (Λ3)

∣∣∣∣ dv = ϵ1Λ3
(σ̃x) ≤ ϵ1Λ3

(σ̃2)

where σ̃22 = σ22 +σ
2
Q ≤ σ2x+σ

2
Q = σ̃2x. Thus, the term (31) vanishes as o

(
1
n

)
if Λ3 is L1-secrecy good and satisfies

the volume condition
V (Λ3)

2/n

σ̃22
< 2πe. (32)

We now show that the distribution of the key is close to the uniform distribution UK over K = Λ2/Λ3:

V(pK,UK) =
∑
k∈K

∣∣∣∣pK(k)− V (Λ2)

V (Λ3)

∣∣∣∣ =∑
k∈K

∣∣∣∣∣∣
∑

s∈Λ1/Λ2

pX̄Q
(s⊕ k)−

∑
s∈Λ1/Λ2

V (Λ1)

V (Λ3)

∣∣∣∣∣∣
≤
∑
k∈K

∑
s∈Λ1/Λ2

∣∣∣∣pX̄Q
(s⊕ k)− V (Λ1)

V (Λ3)

∣∣∣∣
=

∑
x̄Q∈Λ1/Λ3

∣∣∣∣pX̄Q
(x̄Q)−

V (Λ1)

V (Λ3)

∣∣∣∣ = V(pX̄Q
,UΛ1/Λ3

)

which tends to 0 as shown previously. Using [51, Lemma 2.7], we have that if V(pK,UK) ≤ 1
2 ,

|H(pK)−H(UK)| ≤ −V(pK,UK) log
V(pK,UK)

|K|
= V(pK,UK) log

2nRK

V(pK,UK)

= nRKV(pK,UK)− V(pK,UK) logV(pK,UK).

This vanishes as long as V(pK,UK) ∼ o
(
1
n

)
, which is indeed the case.

E. Strong secrecy

Using [53, Lemma 1], we can bound the leakage as follows:

I(K;S,Zn,U) = I(K;S, Ẑn,U) ≤ dav log
|K|
dav

, (33)

where

dav =
∑
k∈K

pK(k)V(pSẐnU|K=k, pSẐnU)

≤
∑
k∈K

pK(k)
∑

s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

∣∣∣∣pSẐnU|K=k(s, z,u|k)−
pẐn(z)

V (Λ2)

∣∣∣∣ dz du (34)

+
∑
k∈K

pK(k)
∑

s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

∣∣∣∣pẐn(z)

V (Λ2)
− pSẐnU(s, z,u)

∣∣∣∣ dz du (35)
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by the triangle inequality.
Due to Remark 10, we can write

pSẐnU|K=k(s, z,u|k) =
pSẐnUK(s, z,u, k)

pK(k)
=
pẐn(z)

V (Λ1)

pX̄Q|Ẑn,U(k + s|z,u)
pK(k)

=
pẐn(z)

V (Λ1)pK(k)

∑
λ3∈Λ3

pXQ|Ẑn,U(k + s+ λ3|z,u),

and so the term (34) is equal to∑
k∈K

∑
s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

pẐn(z)

∣∣∣∣∣ ∑
λ3∈Λ3

pXQ|Ẑn,U(k + s+ λ3|z,u)
V (Λ1)

− pK(k)

V (Λ2)

∣∣∣∣∣ dzdu
≤
∑
k∈K

∑
s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

pẐn(z)

∣∣∣∣∣ ∑
λ3∈Λ3

pXQ|Ẑn,U(k + s+ λ3|z,u)
V (Λ1)

−
∑
λ3∈Λ3

fσ̃2
(k + s+ λ3 − u− z)

∣∣∣∣∣ dzdu (36)

+
∑
k∈K

∑
s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

pẐn(z)

∣∣∣∣∣ ∑
λ3∈Λ3

fσ̃2
(k + s+ λ3 − u− z)− pK(k)

V (Λ2)

∣∣∣∣∣ dzdu, (37)

where σ̃22 = σ22 + σ2Q. Recalling that

pXQ|Ẑn,U(xQ|z,u) =
∫
Rn

pXQ|Xn,U(xQ|x,u)pXn|Ẑn(x|z)dx =

∫
Rn

fσQ
(xQ − x− u)

fσQ
(Λ1 − x− u)

fσ2
(x− z)dx,

the term (36) can be upper bounded by∫
Rn

pẐn(z)

∫
R(Λ1)

∑
k∈K

∑
s∈Λ1/Λ2

∑
λ3∈Λ3

∣∣∣∣∫
Rn

fσQ
(k + s+ λ3 − x− u)

V (Λ1)fσQ
(Λ1 − x− u)

fσ2
(x− z)dx− fσ̃2

(k + s+ λ3 − u− z)

∣∣∣∣ du dz
=

∫
Rn

pẐn(z)

∫
R(Λ1)

∑
xQ∈Λ1

∣∣∣∣∫
Rn

fσQ
(xQ − x− u)

V (Λ1)fσQ
(Λ1 − x− u)

fσ2
(x− z)dx− fσ̃2

(xQ − u− z)

∣∣∣∣ du dz ≤ ϵ1Λ1
(σQ)

by Lemma 5. This vanishes as o
(
1
n

)
assuming the condition (27).

On the other hand, by the triangle inequality the term (37) can be bounded by∑
k∈K

∑
s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

pẐn(z)

∣∣∣∣∣ ∑
λ3∈Λ3

fσ̃2
(k + s+ λ3 − u− z)− 1

V (Λ3)

∣∣∣∣∣ dzdu (38)

+
∑
k∈K

∑
s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

pẐn(z)

∣∣∣∣ 1

V (Λ3)
− pK(k)

V (Λ2)

∣∣∣∣ dzdu. (39)

Setting v = k + s− u modR(Λ3) and using the property (4), the term (38) can be written as∫
Rn

pẐn(z)

∫
R(Λ3)

∣∣∣∣fσ̃2,Λ3
(v − z)− 1

V (Λ3)

∣∣∣∣ dvdz = ϵ1Λ3
(σ̃2),

which vanishes as o
(
1
n

)
assuming the condition (32). Finally, (39) is equal to

V (Λ2)
∑
k∈K

∣∣∣∣ 1

V (Λ3)
− pK(k)

V (Λ2)

∣∣∣∣ =∑
k∈K

|UK − pK(k)| = V(UK, pK) = o

(
1

n

)
→ 0
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as already shown in Section IV-D.
We now come back to the expression (35), which is equal to∑

s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

∣∣∣∣pẐn(z)

V (Λ2)
− pSẐnU(s, z,u)

∣∣∣∣ dzdu
≤

∑
s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

∣∣∣∣∣pẐn(z)

V (Λ2)
−
∑
k′∈K

∑
λ3∈Λ3

pẐn(z)fσ̃2
(k′ + s+ λ3 − u− z)

∣∣∣∣∣ dzdu (40)

+
∑

s∈Λ1/Λ2

∫
R(Λ1)

∫
Rn

∣∣∣∣∣∑
k′∈K

∑
λ3∈Λ3

pẐn(z)fσ̃2
(k′ + s+ λ3 − u− z)− pSẐnU(s, z,u)

∣∣∣∣∣ dzdu (41)

by the triangle inequality.
The term (40) is upper bounded by∫

Rn

pẐn(z)
∑

s∈Λ1/Λ2

∑
k′∈K

∫
R(Λ1)

∣∣∣∣ 1

V (Λ3)
− fσ̃2,Λ3

(k′ + s− u− z)

∣∣∣∣ dudz
=

∫
pẐn(z)

∫
R(Λ3)

∣∣∣∣ 1

V (Λ3)
− fσ̃2,Λ3

(v − z)

∣∣∣∣ dv dz = ϵ1Λ3
(σ̃2)

and vanishes as o
(
1
n

)
if condition (32) is satisfied.

Observe that

pSẐnU(s, z,u) =
∑
k′∈K

pSKẐnU(s, k
′, z,u) =

∑
k′∈K

pẐn(z)

V (Λ1)
pX̄Q|ẐnU(s+ k′|z,u)

=
∑
k′∈K

pẐn(z)

V (Λ1)

∑
λ3∈Λ3

pXQ|ẐnU(s+ k′ + λ3|z,u) =
∑
k′∈K

pẐn(z)

V (Λ1)

∑
λ3∈Λ3

∫
Rn

fσQ
(s+ k′ + λ3 − x− u)fσ2

(x− z)

fσQ
(Λ1 − x− u)

dx.

Thus the term (41) can be bounded by∫
Rn

pẐn(z)

∫
R(Λ1)

∑
k′∈K

∑
s∈Λ1/Λ2

∑
λ3∈Λ3

∣∣∣∣fσ̃2
(k′+s+λ3−u−z)−

∫
Rn

fσQ
(s+k′+λ3−x−u)fσ2

(x−z)

V (Λ1)fσQ
(Λ1 − x− u)

dx

∣∣∣∣ du dz
=

∫
Rn

pẐn(z)

∫
R(Λ1)

∑
xQ∈Λ1

∣∣∣∣fσ̃2
(xQ − u− z)−

∫
Rn

fσQ
(xQ − x− u)fσ2

(x− z)

V (Λ1)fσQ
(Λ1 − x− u)

dx

∣∣∣∣ dudz ≤ ϵ1Λ1
(σQ)

by Lemma 5, which again vanishes as o
(
1
n

)
under condition (27).

In conclusion, dav ∼ o
(
1
n

)
and thus from (33), we find that the leakage vanishes asymptotically as n→ ∞.

Remark 11: Although in Section IV-D we only showed that the key is close to uniform on average over the
dither U, using the results in this section we see that

H(UK)−H(K|U) = H(UK)−H(K) + I(K;U) ≤ H(UK)−H(K) + I(K;S,Zn,U) → 0.

F. Achievable strong secrecy rate and optimal trade-off

Recall that in the previous sections we have imposed the conditions (27), (28) and (32) on the volumes of Λ1,
Λ2 and Λ3 respectively, i.e.

V (Λ1)
2/n

σ2Q
< 2πe,

V (Λ2)
2/n

σ̃21
> 2πe,

V (Λ3)
2/n

σ̃22
< 2πe.

Therefore, the achievable secret key rate is upper bounded by

RK =
1

n
log

V (Λ3)

V (Λ2)
<

1

2
log

σ̃22
σ̃21

=
1

2
log

σ22 + σ2Q
σ21 + σ2Q

(42)
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As σQ → 0,

RK → 1

2
log

σ22
σ21
,

which is the optimal secret key rate. This improves upon our previous work [1] in which the achievable secrecy
rate had a 1/2 nat gap compared to the optimal.

Remark 12: The optimal scaling of the lattice Λ3 requires the noise variance σ2 to be known by Alice; if only
a lower bound for σ2 is available, positive secret key rates can still be attained.

The public communication rate is lower bounded by

RP =
1

n
log

V (Λ2)

V (Λ1)
>

1

2
log

σ21 + σ2Q
σ2Q

.

Equivalently, we have σ2Q >
σ2
1

e2RP −1 . Replacing this expression in the bound (42) for RK , and observing that (42)
is a decreasing function of σ2Q, we find

RK <
1

2
log

(
e−2RP +

σ22
σ21

(1− e−2RP )

)
.

which corresponds to the optimal public rate / secret key rate tradeoff [23] (see Appendix E for details.)

V. CONCLUSIONS AND PERSPECTIVES

To conclude, we have proposed a lattice extractor to extract a secret key from correlated Gaussian sources against
an eavesdropper. Using L1 distance and KL divergence, we have proved the existence of lattices with a vanishing
flatness factor for all VNRs up to 2πe. This improves upon the previous result for VNRs up to 2π, based on L∞

distance. Together with dithering and randomized rounding, it has enabled us to achieve the optimal trade-off with
one-way public communication. In the same way, it may be possible to remove the 1

2 -nat gap, associated to the
L∞ flatness factor, to the secrecy capacity of wiretap channels [31].

An immediate step for future work is to turn the existence result of this paper into a practical scheme. For
example, one may instantiate the lattices using polar codes. Another problem is to see if it is possible to modify the
design of this paper to yield a fuzzy extractor, which would require redesigning a lattice with respect to other entropy
measures. Other open problems include identifying whether is is possible to remove dithering and/or randomized
quantization, characterizing the second-order asymptotics and the extension of the proposed key-agreement protocol
to multi-terminal systems. Furthermore, the reconciliation technique based on Wyner-Ziv coding may be extended
to key-encapsulation mechanisms (KEM) in lattice-based cryptography, due to the similarity between KEM and
secret key agreement. Finally, it is interesting to explore the applications of L1 and KL smoothing parameters in
other cryptographic and mathematical problems [33, 34].
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APPENDIX A
PROOF OF LEMMA 3

By definition,

D
(
fσ,R(Λ′)

∥∥∥ 1

|Λ/Λ′|
fσ,Λ|R(Λ′)

)
=

∫
R(Λ′)

fσ,Λ′(y) log
fσ,Λ′(y) |Λ/Λ′|

fσ,Λ(y)
dy

= −h(fσ,Λ′) +

∫
R(Λ′)

fσ,Λ′(y) log
|Λ/Λ′|
fσ,Λ(y)

dy

= −h(fσ,Λ′) + log
∣∣Λ/Λ′∣∣− ∫

R(Λ′)
fσ,Λ′(y) log fσ,Λ(y)dy.
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The conclusion follows by observing that

−
∫
R(Λ′)

fσ,Λ′(y) log fσ,Λ(y)dy = −
∑

λ∈Λ/Λ′

∫
R(Λ)+λ

fσ,Λ′(y) log fσ,Λ(y)dy

=−
∑

λ∈Λ/Λ′

∫
R(Λ)

fσ,Λ′(y − λ) log fσ,Λ(y)dy = −
∫
R(Λ)

fσ,Λ(y) log fσ,Λ(y)dy = h(fσ,Λ).

APPENDIX B
RESOLVABILITY CODES

In this section we review some results from [32] about resolvability codes for regular channels, which are needed
for the proof of Theorem 1.

First, we need some preliminary definitions. In the following, we assume X is a finite abelian group and Y is a
measurable space. Given a channel W : X → Y , we use the notation Wx(y) =W (y|x) for x ∈ X , y ∈ Y .

Definition 8 (Rényi Entropy): Given a discrete distribution pA on A and ρ ≥ 0, we define

H1+ρ(A) = −1

ρ
log
∑
a∈A

pA(a)
1+ρ.

Definition 9: Given a channel W : X → Y and a probability distribution pX on X , we define ∀ρ ≥ 0

ψ(ρ|W,pX) = log
∑
x∈X

pX(x)

∫
Y
Wx(y)

1+ρ(W ◦ pX)(y)−ρdy.

This function has the following properties:

ψ(0|W,pX) = 0, (43)

ψ(ρ|Wn, p⊗nX ) = nψ(ρ|W,pX), (44)

lim
ρ→0

ψ(ρ|W,pX)
ρ

= I(X;Y). (45)

We also compute the second derivative in 0 which will be needed in the next section.
Lemma 6:

ψ′′(0) =
∑
x∈X

pX(x)

∫
Y
Wx(y)

(
log

Wx(y)

(W ◦ pX(y))

)2

dy −

(∑
x∈X

pX(x)

∫
Y
Wx(y) log

Wx(y)

(W ◦ pX)(y)
dy

)2

.

The proof of Lemma 6 can be found in Appendix F.
Definition 10 (Regular channel): The channel W : X → Y is called regular if X acts on Y by permutations

{πx}x∈X such that πx(π′x(y)) = πx+x′(y) ∀x, x′ ∈ X , and there exists a probability density pY on Y such that
Wx(y) = pY(πx(y)) ∀x ∈ X , ∀y ∈ Y .

In particular, a regular channel is symmetric [49, 54] in the sense of Gallager [55], and its capacity is achieved
by the uniform distribution.

The following theorem was stated for discrete memoryless channels [32, Corollary 18] but can be extended to
continuous outputs [32, Appendix D] as follows:

Theorem 4: Let M and X be a finite-dimensional vector spaces over Fp and Y a measurable space. Consider
a uniform random variable F taking values over the set of linear mappings f : M → X and a distribution pM on
M. If W : X → Y is regular, then ∀ρ > 0,

EF

[
eρD(W◦F◦pM||W◦UX )

]
≤ 1 + e−ρH1+ρ(M)eψ(ρ|W,UX ).

Theorem 4 is a one-shot result, but we can apply it to n uses of an i.i.d. channel to get the following.
Corollary 1: Let X be a finite-dimensional vector space over Fp and Y a measurable space, and W : X → Y

a regular channel. Let R > I(X;Y), where X ∼ UX and Y ∼ W ◦ UX . Consider Cn ⊂ X n chosen uniformly at
random in the set of (n, k) linear codes in X n, where k = ⌈nR⌉

log p . Denote by UCn
the uniform distribution over the

codewords in Cn. Then
ECn

[D(Wn ◦ UCn
||Wn ◦ U⊗n

X )] → 0
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exponentially fast as n→ ∞.
Proof: Note that Wn : X n → Yn is still a regular channel with respect to the set of permutations {πx}x∈Xn ,

where we define πx(y1, . . . , yn) = (πx1
(y1), . . . , πxn

(yn)) for x = (x1, . . . , xn).
Applying Theorem 4 to this channel, and taking M = Fkp with k = ⌈nR⌉

log p and pM = UM, for Fn representing a
random linear encoder fn : M → X n we have

EFn

[
eρD(W

n◦Fn◦UM||Wn◦U⊗n
X )
]
≤ 1 + e−ρH1+ρ(M)eψ(ρ|W

n,U⊗n
X ).

By Jensen’s inequality,

EFn
[D(Wn ◦ Fn ◦ UM||Wn ◦ U⊗n

X )] ≤ 1

ρ
log
(
1 + e−ρH1+ρ(M)eψ(ρ|W

n,U⊗n
X )
)
≤ 1

ρ
e−ρH1+ρ(M)+ψ(ρ|Wn,U⊗n

X ).

Note that H1+ρ(M) = nR since M is uniform. Using (44), we find that ∀ρ > 0,

EFn
[D(Wn ◦ Fn ◦ UM||Wn ◦ U⊗n

X )] ≤ 1

ρ
e−n(ρR−ψ(ρ|W,UX )). (46)

From (43) and (45), we have ψ(ρ|W,pX) = ρI(X;Y) + η(ρ), where limρ→0
η(ρ)
ρ = 0. Given R > I(X;Y), ∃ρ̄

sufficiently small such that δ = R− I(X;Y)− η(ρ̄)
ρ̄ > 0. Therefore

EFn
[D(Wn ◦ Fn ◦ UM||Wn ◦ U⊗n

X )] ≤ 1

ρ̄
e−nρ̄δ → 0 (47)

as n→ ∞.

APPENDIX C
PROOF OF THEOREM 1

For a given dimension n, we will construct Λ as a scaled mod-p lattice [56] of the form Λ = α(pZn + Cn),
where Cn is an (n, k)-linear code over Fp.

We will consider the asymptotic behavior as n → ∞, α → 0, p → ∞ while satisfying the volume condition
αnpn−k = V (Λ) = (γσ2)n/2. Here, γ is the volume-to-noise ratio, which is assumed to be fixed.

By construction, Λnc ⊂ Λ ⊂ Λnf , where Λc = αpZ and Λf = αZ are one-dimensional lattices.
From Remark 5 and the relation (10), we have

D(fσ,R(Λ)||UR(Λ)) = C(Λ, σ2) = C(Λnf , σ
2) + C(Λnf/Λ, σ

2).

We want to show that both terms in the sum tend to zero when n→ ∞.
1) First, we will show that C(Λnf , σ

2) = C((αZ)n, σ2) → 0 if α = o
(

1
nc

)
for some c > 0. We follow the same

approach as in [50, Appendix A]. From Lemma 2 we have that C(Λnf , σ
2) ≤ ϵΛn

f
(σ). Furthermore, it was

shown in [57, Lemma 3] that
ϵΛn

f
(σ) = (1 + ϵΛf

(σ))n − 1. (48)

Finally, one can show that [50, Appendix A]

ϵΛf
(σ) = ϵαZ(σ) ≤ 4e−

2π2σ2

α2 . (49)

Then
ϵΛn

f
(σ) ≤

(
1 + 4e−

2π2σ2

α2

)n
− 1 ≤ 4ne−

2π2σ2

α2 + o(e−
2π2σ2

α2 ) → 0.

since (1 + x)n = 1 + nx+ o(x) when x→ 0.
2) Next, we want to show that there exists a sequence of lattices Λ of the form α(pZn + Cn) such that

C(Λnf/Λ, σ
2) → 0 as n→ ∞.

Consider the mod-(Λf/Λc) channel W : Λf ∩R(Λc) → R(Λc). This channel is regular (see Definition 10 in
Appendix B) with respect to the set of permutations πx(y) = [y − x] mod Λc for x ∈ X = Λf ∩ R(Λc),
y ∈ R(Λc). In fact,

Wx(y) =W (y|x) = fσ,Λc
(y − x) = fσ,Λc

([y − x] modΛc) = fσ,Λc
(πx(y)).
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Being regular, the mod Λf/Λc channel is symmetric and the uniform distribution over X achieves capacity
(see Appendix B). Moreover, Λf/Λc ∼= Fp. We consider the required rate condition in Corollary 1:

R =
1

n
log |Cn| =

1

n
log |Λ/Λnc | =

1

n
log

αnpn

V (Λ)
> I(X;Y) = C(Λf/Λc, σ

2). (50)

We have

C(Λf/Λc, σ
2) = log |Λf/Λc|+ h(fσ,Λf

)− h(fσ,Λc
) = log p+ h(fσ,Λf

)− h(fσ,Λc
)

= log p+ logα− C(Λf , σ
2)− h(fσ,Λc

).

Therefore, the condition (50) is equivalent to

1

n
log V (Λ) < h(fσ,Λc

) + C(Λf , σ
2).

In the asymptotic limit for α→ 0, p→ ∞ while keeping αnpn−k = V (Λ) = (γσ2)n/2, we have C(Λf , σ2) →
0. Moreover, αp → ∞, and so h(Λc, σ

2) → 1
2 log 2πeσ

2. So asymptotically, the rate condition is satisfied
when

V (Λ)2/n

2πeσ2
< 1. (51)

In this case we have

R− I(X;Y) = − 1

n
log V (Λ) + C(Λf , σ

2)− h(fσ,Λc
) → δ0 =

1

2
log

2πeσ2

V (Λ)2/n
=

1

2
log

2πe

γΛ(σ)
> 0 (52)

as n→ ∞.
Remark 13: Note that we cannot directly apply Corollary 1 in Appendix B to this setting, since the definition
of the channel W depends on α and p which are not fixed but are a function of n. However, we will show
that the proof of the Corollary can be extended to this channel since the convergence in (47) is uniform.
Proof of Remark 13: Let X be a uniformly distributed variable on Λf ∩R(Λc) and Y the corresponding output
distribution. Consider the function ψ(ρ) = ψ(ρ|W,UX ) in Definition 9. From (43) and (45), it follows that its
Taylor expansion in 0 is given by

ψ(ρ) = ρI(X;Y) + ρ2ψ′′(0) + o(ρ2), (53)

where ψ′′(0) is given in Lemma 6. Noting that

(W ◦ UX )(y) =
∑
x∈X

1

|X |
Wx(y) =

∑
x∈Λf∩R(Λc)

1

|Λf/Λc|
fσ,Λc

(y − x) =
1

|Λf/Λc|
fσ,Λf (y),

we find

ψ′′(0) =
∑

x∈Λf∩R(Λc)

1

|Λf/Λc|

∫
R(Λc)

fσ,Λc
(y − x)

(
log

fσ,Λc
(y − x)

1
|Λf/Λc|fσ,Λf

(y)

)2

dy

−

 ∑
x∈Λf∩R(Λc)

1

|Λf/Λc|

∫
R(Λc)

fσ,Λc
(y − x) log

fσ,Λc
(y − x)

1
|Λf/Λc|fσ,Λf

(y)
dy

2

≤
∑

x∈Λf∩R(Λc)

1

|Λf/Λc|

∫
R(Λc)

fσ,Λc
(y − x)

(
log

fσ,Λc
(y − x)

1
|Λf/Λc|fσ,Λf

(y)

)2

dy

=

∫
R(Λc)

fσ,Λc
(y′)

(
log

fσ,Λc
(y′)

1
|Λf/Λc|fσ,Λf

(y′)

)2

dy′

with the change of variables y′ = y−x modR(Λc). From the definition of flatness factor and the bound (49),
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we find that ∀y′ ∈ R(Λc),

fσ,Λf
(y′) ≥

1− ϵΛf
(σ)

V (Λf )
≥ 1− 4e−

2π2σ2

α2

α
.

Recalling the definition of the theta series of a lattice in (6) and the relation (8), we have ϵΛ(σ) = ΘΛ∗(2πσ2)−
1, where Λ∗ is the dual lattice of Λ. Then by [31, Remark 1], ∀y′ ∈ V(Λc)

fσ,Λc
(y′) ≤ fσ,Λc

(0) =
1√
2πσ

ΘΛc

(
1

2πσ2

)
=

1√
2πσ

(
1 + ϵΛ∗

c

(
1

2πσ

))
.

Again using the bound (49), we have

ϵΛ∗
c

(
1

2πσ

)
= ϵ 1

αp
Z

(
1

2πσ

)
≤ 4e−

α2p2

2σ2 .

Then, since α→ 0 and αp→ ∞ when n→ ∞, for sufficiently large n we have

fσ,Λc
(y′)

1
|Λf/Λc|fσ,Λf

(y′)
≤ 1√

2πσ

αp(1 + 4e−
α2p2

2σ2 )

1− 4e−
2π2σ2

α2

≤ Cαp

for some constant C > 0. Consequently, for large enough n, ∃C ′ > 0 such that

ψ′′(0) ≤ C ′(logαp)2.

Then, from the Taylor expansion (53) we obtain the bound

ψ(ρ) ≤ ρI(X;Y) + ρ2C ′′(logαp)2

for another suitable constant C ′′ > 0. In particular, we can bound the exponent in equation (46) as follows:

ρR− ψ(ρ|W,UX ) ≥ ρ(R− I(X;Y)− ρC ′′(logαp)2) > ρ
δ0
2

for sufficiently large n, where δ0 is defined in (52), as long as ρ = o
(

1
(logαp)2

)
and the VNR condition (51)

is satisfied. In particular if we choose the scaling5

p = ξn3/2, αp = 2
√
n, (54)

where ξ is the smallest number in the interval [1, 2) such that p is prime [58, Section IV], we have convergence
in (47) with ρ̄ = 1

(log 2
√
n)2+η for some η > 0 since

1

ρ̄
e−nρ̄

δ0
2 = (log 2

√
n)2+ηe

− nδ0
2(log 2

√
n)2+η → 0.

This concludes the proof of Remark 13.
Then according to Corollary 1, for Cn chosen uniformly in the set of (n, k) linear codes over Fp of rate
R = k

n log p,

ECn

[
D(Wn ◦ UCn

∥Wn ◦ U⊗n
X )

]
≤ 1

ρ̄
e−nρ̄

δ0
2 → 0

as n→ ∞. In particular, there exists at least one code Cn such that D(Wn ◦ UCn
∥Wn ◦ U⊗n

X ) → 0. Note that

(Wn ◦ UCn
)(y) =

∑
c∈Cn

1

|Cn|
fσ,Λn

c
(y − αc) =

∑
c∈Cn

∑
λc∈Λn

c

1

pk
fσ(y − αc− λc) =

1

pk

∑
λ∈Λ

fσ(y − λ)

=
1

pk
fσ,Λ(y), (55)

(Wn ◦ U⊗n
X )(y) =

∑
x∈Λn

f∩R(Λn
c )

1

pn
fσ,Λn

c
(y − x) =

1

pn
fσ,Λn

f
(y). (56)

5This choice of scaling is compatible with the existence of a suitable sequence of nested lattices, see Appendix D.
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Since both (Wn ◦ UCn
) and (Wn ◦ U⊗n

X ) are Λ-periodic, we can write

D(Wn ◦ UCn
∥Wn ◦ U⊗n

X ) =

∫
R(Λn

c )
p−kfσ,Λ(y) log

p−kfσ,Λ(y)

p−nfσ,Λn
f
(y)

dy

=

∫
R(Λ)

fσ,Λ(y) log
fσ,Λ(y)

p−(n−k)fσ,Λn
f
(y)

dy = D(fσ,R(Λ)∥p−(n−k)fσ,Λn
f |R(Λ)

) = C(Λnf/Λ, σ
2) → 0

using Lemma 3. This concludes the proof.
Remark 14: With a standard argument based on Markov’s inequality, we can also show that the set of KL-secrecy

good lattices has large measure, since ∀ξ > 0,

P
{
D(Wn ◦ UCn

∥Wn ◦ U⊗n
X ) > ξ

}
≤ 1

ξ
ECn

[
D(Wn ◦ UCn

∥Wn ◦ U⊗n
X )

]
.

Given 0 < c < 1/2, we can take ξ = 1
c
e−nρ̄δ0

ρ̄ and we obtain

P
{
D(Wn ◦ UCn

∥Wn ◦ U⊗n
X ) > ξ

}
≤ c.

APPENDIX D
EXISTENCE OF A SEQUENCE OF NESTED LATTICES FOR SECRET KEY GENERATION

In this section, we show the existence of a sequence of nested lattices Λ
(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1 such that Λ3 is KL

secrecy-good, Λ2 is AWGN-good and Λ1 is KL secrecy-good. Note that we don’t need covering-goodness, which
requires more stringent conditions on the parameters [59].

We will follow the construction in [58]. We denote by VB,n the volume of the n-dimensional ball of radius 1.
Given P3 > P2 > P1 > 0, let ai = log 1

Pi
for i = 1, 2, 3. We consider the dimensions k3 < k2 < k1 ≤ n defined

as follows:

ki =

 n

2 log p

log

 4

V
2/n
B,n

+ ai

 , i = 1, 2, 3,

where p = ξn3/2, and ξ is taken to be the smallest number in the interval [1, 2) such that p is prime [58, Section
IV]6. Let C1 be uniformly sampled from the set of all linear (n, k1) codes over Fp, with generator matrix G1 (in
column notation). We denote by G2 and G3 the submatrices of G1 corresponding to the first k2 and k3 columns
respectively, and by C2, C3 the corresponding linear codes. Finally, we define the lattices Λ̃i = 1

pCi + Zn and

Λi = αpΛ̃i for i = 1, 2, 3, where α = 2
√
n
p . Then by [58, Theorem 1 and Theorem 6], the matrices G1, G2, G3

are full rank and the nested lattices Λ
(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1 obtained in this way are good for quantization and coding

with probability that tends to 1 when n→ ∞ and

lim
n→∞

V 2/n(Λ
(n)
i ) = 2πePi, i = 1, 2, 3.

Note that we have taken the same scaling as in (54). In particular, when n → ∞ we have p → ∞, α → 0 and
αp→ ∞.

Moreover, α = 2
ξn satisfies the condition α = o

(
1
nc

)
in Appendix C. Therefore, due to Remark 14 the lattices

Λ3 and Λ1 are also KL secrecy-good with probability close to 1, which concludes the proof.

APPENDIX E
OPTIMAL PUBLIC RATE / SECRET KEY RATE TRADE-OFF

In this section, we derive the optimal trade-off between public rate and secret key rate from [23] for the setting in
our paper. Note that Theorem 4 in [23] doesn’t directly apply to our model because our source doesn’t necessarily
satisfy X → Y → Z. However, the proof of Lemma 6 in [23] shows how to obtain a new source (X̄, Ȳ, Z̄) which is

6Note that the conclusions of [58] still hold for any p = Θ(n
1
2
+δ) with δ > 0, see Remark 7 in that paper.
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degraded (X̄ → Ȳ → Z̄) and has the same achievable region (R(X,Y,Z) = R(X̄, Ȳ, Z̄)). In particular, translating
the proof into our notation, we can take X̄ = X, Ȳ = Y and

Z̄ =
σzρxz
σyρxy

Y + N̂,

where N̂ is independent of all other random variables and has variance σ2z
(
1− ρ2xz

ρ2xy

)
.

From elementary computations we see that σz̄ = σz , ρxz̄ = ρxz and ρyz̄ = ρxz

ρxy
.

In our notation, the optimal trade-off given by Theorem 4 of [23] is given by

RK ≤ 1

2
log

(1− ρ2ȳz̄)(1− ρ2x̄z̄)− (ρx̄ȳ − ρȳz̄ρx̄z̄)
2e−2RP

(1− ρ2ȳz̄)(1− ρ2x̄z̄)− (ρx̄ȳ − ρȳz̄ρx̄z̄)2
.

In terms of the original variables X,Y,Z, after simplifying the expression we obtain the optimal trade-off

RK ≤ 1

2
log

(1− ρ2xz)− (ρ2xy − ρ2xz)e
−2RP

1− ρ2xy
.

(Recall that ρxy > ρxz in our setting). Using the notation σ21 = σ2x(1− ρ2xy), σ22 = σ2x(1− ρ2xz) from our paper, this
is equal to

RK ≤ 1

2
log

(
e−2RP +

σ22
σ21

(1− e−2RP )

)
. (57)

APPENDIX F
PROOF OF LEMMA 6

The first derivative of the function ψ(ρ) = ψ(ρ|W,pX) is

ψ′(ρ) =

∑
x∈X pX(x)

∫
Y

Wx(y)
1+ρ

((W◦pX)(y))ρ log
Wx(y)

(W◦pX)(y)dy∑
x∈X pX(x)

∫
Y

Wx(y)1+ρ

((W◦pX)(y))ρdy
=
f(ρ)

g(ρ)
.

Then we have

g(0) = 1,

f(0) =
∑
x∈X

pX(x)

∫
Y
Wx(y) log

Wx(y)

(W ◦ pX)(y)
dy = g′(0),

f ′(0) =
∑
x∈X

pX(x)

∫
Y
Wx(y)

(
log

Wx(y)

(W ◦ pX)(y)

)2

dy.

The conclusion follows since

ψ′′(0) =
f ′(0)g(0)− f(0)g′(0)

g2(0)
.
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