
Side-Channel Analysis of Saber KEM Using
Amplitude-Modulated EM Emanations

1st Ruize Wang
Department of Electronic Systems
KTH Royal Institute of Technology

Stockholm, Sweden
ruize@kth.se

2nd Kalle Ngo
Department of Electronic Systems
KTH Royal Institute of Technology

Stockholm, Sweden
kngo@kth.se

3rd Elena Dubrova
Department of Electronic Systems
KTH Royal Institute of Technology

Stockholm, Sweden
dubrova@kth.se

Abstract—In the ongoing last round of NIST’s post-quantum
cryptography standardization competition, side-channel analysis
of finalists is a main focus of attention. While their resistance
to timing, power and near field electromagnetic (EM) side-
channels has been thoroughly investigated, amplitude-modulated
EM emanations has not been considered so far. The attacks
based on amplitude-modulated EM emanations are more stealthy
because they exploit side-channels intertwined into the signal
transmitted by an on-chip antenna. Thus, they can be mounted
on a distance from the device under attack. In this paper, we
present the first results of an amplitude-modulated EM side-
channel analysis of one of the NIST PQ finalists, Saber key
encapsulation mechanism (KEM), implemented on the nRF52832
(ARM Cortex-M4) system-on-chip supporting Bluetooth 5. By
capturing amplitude-modulated EM emanations during decap-
sulation, we can recover each bit of the session key with 0.91
probability on average.

Index Terms—Public-key cryptography, Post-quantum cryp-
tography, Saber KEM, LWE/LWR-based KEM, Side-channel
attack, EM analysis, Deep learning

I. INTRODUCTION

Today’s public-key cryptographic schemes rely on the in-
tractability of mathematical problems such as integer factoriza-
tion or the discrete logarithm problem which can be efficiently
solved using the Shor algorithm [1] on a large-scale quantum
computer. Even if it may take many years for large-scale
quantum computers to become a reality, the need for long-
term security makes it necessary to investigate new solutions.

To address this issue, the National Institute of Standards and
Technology (NIST) launched a competition for standardizing
post-quantum cryptographic primitives (NIST PQ standardiza-
tion project) starting in 2016 [2]. Candidate primitives are
based on problems such as lattice problems and decoding prob-
lems for error correcting codes that are believed to be difficult
for quantum computers. In rounds 1 and 2, the main focus of
evaluation was on security and implementation aspects. Now
the project is in the final round 3, where resistance to side-
channel attacks is a main focus.

At present, lattice-based cryptography seems to be the
most promising area in post-quantum cryptography, as three
out of four finalists of NIST PQ for the primitive KEM
are lattice-based. These three finalists are: an NTRU-based
scheme NTRU [3], a Learning With Errors (LWE)-based

scheme Kyber [4], and a Learning With Rounding (LWR)-
based scheme Saber [5]. The hardness of these problems stems
from the introduction of unknown noise into otherwise linear
equations. In this paper, we focus on side-channel analysis on
Saber KEM.
Previous work: Timing, power and near field EM side-
channel attacks on software and hardware implementations of
NIST PQ candidates have been presented in the past. In [6],
a secret key recovery attack using a single power trace on
three NIST post-quantum lattice-based finalists was proposed.
In [7], a message (session key) recovery attack using a single
power trace from an unprotected encapsulation part of several
round 3 candidates, including Saber, was presented. In [8],
near field EM message recovery attacks on some round 3
candidates, including Saber, were described. In [9], a secret
key recovery attack on an unprotected Kyber using near field
EM side-channels was demonstrated. In [10] similar ideas for
timing attacks were considered.

In [11], near field EM secret key recovery attacks on
unprotected implementations of three NIST PQ finalists, in-
cluding Saber, were presented. It was also discussed how
masked implementations can be broken by attacking each
share individually. In [12], a deep learning-based side-channel
attack on a first-order masked software implementation of
Saber KEM which can recover the secret key from 24 power
traces was demonstrated. In [13], it was shown that Saber’s
secret key can be recovered from 61,680 power traces even
if masking is complemented with a shuffling countermeasure.
In [14], power/near field EM secret key recovery attack on
some round 3 candidates, including Saber, was described. This
attack uses side-channel leakage during execution of the re-
encryption step of decapsulation as a plaintext-checking oracle
that tells whether the PKE decryption results is equivalent to
the reference plaintext, or not.

While the resistance of NIST PQ finalists to timing, power
and near field EM side-channels has been thoroughly inves-
tigated, amplitude-modulated EM emanations have not been
considered so far. The attacks based on amplitude-modulated
EM emanations are more stealthy because they exploit side-
channels intertwined into the signal transmitted by an on-chip
antenna [15]. Thus, they can be carried out on a distance from
the device under attack. E.g. in [16], a successful attack on

AES-128 from 15 m distance was demonstrated.
Our contributions: In this paper, we present the first results
of an amplitude-modulated EM side-channel analysis of the
Saber KEM implemented in an ARM Cortex-M4 CPU in
nRF52832 system-on-chip (SoC) supporting Bluetooth 5. By
capturing amplitude-modulated EM emanations during the
PKE decryption step of decapsulation, we can recover each
bit of the session key with 0.91 probability on average. We
analyze the specifics of amplitude-modulated EM emanations
and discuss possibilities for improving the success probability.

The remainder of this paper is organized as follows. Sec-
tion II gives background on the Saber design and EM em-
anations. In Section III presents details of the experimental
setup. Sections IV and V describe how we train DL models
and perform message recovery attack. Experimental results are
shown in Section VI. Section VII concludes the paper.

II. BACKGROUND

This section briefly describes Saber design and amplitude-
modulated EM emanations. We explain the difference between
the amplitude-modulated EM side-channels and power and
near field EM side-channels.

A. Saber design

Saber is a package of cryptographic algorithms whose
security relies on the hardness of the Module Learning With
Rounding problem (Mod-LWR) [5]. It contains a CPA-secure
public key encryption scheme, Saber.PKE, and a CCA-secure
key encapsulation mechanism, Saber.KEM, based on a post-
quantum version of the Fujisaki-Okamoto transform [17].

Pseudocodes of Saber.KEM and Saber.PKE are shown in
Fig. 1 and 2, respectively. We follow the notation of [12].

The term x ← χ(S) is used to denote sampling x from a
distribution χ over a set S. The uniform distribution is denoted
by U . The centered binomial distribution with parameter µ is
denoted by βµ, where µ is an even positive integer.

The functions F , G, and H are SHA3-256, SHA3-512
and SHA3-256 hash functions, respectively. The gen is an
extendable output function used to generate a pseudorandom
matrix A ∈ Rl×l

q from seedA. It is instantiated with SHAKE-
128.

The bitwise right shift operation is denoted by “≫”. By
performing the shift coefficient-wise, it is extended to polyno-
mials and matrices. To enable for an efficient implementation,
Saber design uses power of two moduli q, p, and T , namely
q = 2ϵq , p = 2ϵp , and T = 2ϵT . Three constants are utilized
to implement rounding operations using a simple bit shift:
polynomials h1 ∈ Rq and h2 ∈ Rq with all coefficients being
2ϵq−ϵp−1 and 2ϵp−2− 2ϵp−ϵT−1 +2ϵq−ϵp−1, respectively, and
a constant vector h ∈ Rl×1

q in which each polynomial equals
h1.

Saber uses parameters n = 256, l = 3, q = 213, p =
210, T = 24, and µ = 8. Its decryption failure probability is
bounded by 2−136.

B. Amplitude-modulated EM emanations

Near field EM side-channel attacks require a close proximity
to the target device. Acquiring good quality near field EM
emanations may require chip decapsulation [19]. Recently,
a new type of side-channels in mixed-signal circuits, called
screaming channels was discovered [15], which can be ex-
ploited at a distance from target device.

A mixed-signal circuit integrates a digital part and analog
part. Cryptographic algorithms are executed in the digital
part controlled by the internal system clock from the CPU,
resulting in direct EM emanations. These emanations may
propagate from the digital part to the analog part through
substrate coupling [20], get mixed with the radio carrier
inadvertently (amplitude-modulated), and then amplified and
transmitted by the antenna [15]. This makes it possible to
acquire EM emanations at a distance from the target device
and recover the secret key from implementations of some
cryptographic algorithms, e.g. AES-128 [15].

Such types of side-channels are difficult to mitigate because
traditional countermeasures against near field EM leakage,
such as shielding, do not cover an RF antenna. Hence, shield-
ing cannot stop amplitude-modulated EM emanations. Thus,
it is important to analyze NIST PQ finalists with respect to
these side-channels.

III. TRACE ACQUISITION

This section describes how we captured EM emanations and
located points of interest (PoI) in traces.

A. Experimental setup

At the transmitter side, the device under attack is an
nRF52832 chip supporting Bluetooth 5 with a data transmis-
sion rate of 2Mbps. The nRF52832 contains a 32-bits ARM
Cortex-M4 CPU running at 64MHz. It is mounted on an
Nordic Semiconductors nRF52 DK development board. We
use nRF5_SDK_14.2.0_17b948a for the radio setup.

The nRF52832 device is programmed to the C implemen-
tation of SABER from [18]. It does not contain any counter-
measures against power/EM analysis. In our experiments, we
use gcc-arm-none-eabi-8-2018-q4-major compiler
with two different optimization levels: no optimization (-O0)
and the highest level of optimization (-O3).

At the receiver side, we use an Ettus Research USRP
N210 software defined radio (SDR) with the center receiving
frequency set to 2fclock + fBluetooth = 2.528GHz, where
fBluetooth = 2.4GHz is the Bluetooth channel center frequency
and fclock = 64MHz is the frequency of the CPU clock. We
determined the center frequency of the receiver using the same
method as in [15].

In our experiments, we use three different sampling fre-
quencies: 5MHz, 12.5MHz and 25MHz. The latter is the
maximum sampling frequency of USRP N210 SDR (limited
by interface). The signal is transmitted to the receiver through
an SMA coaxial cable.

The total equipment cost for the experiments is approxi-
mately 3,000 e.

Saber.PKE.KeyGen()
1: seedA ← U({0, 1}256)
2: A = gen(seedA) ∈ Rl×l

q

3: r ← U({0, 1}256)
4: s← βµ(R

l×1
q ; r)

5: b = ((AT s+ h) mod q)≫ (ϵq − ϵp) ∈ Rl×1
p

6: return (pk := (seedA,b), sk := s)

Saber.PKE.Dec(s, (cm,b′))

1: v = b′T (s mod p) ∈ Rp

2: m′ = ((v + h2 − 2ϵp−ϵT cm) mod p)≫ (ϵp − 1) ∈ R2

3: return m′

Saber.PKE.Enc((seedA,b),m; r)
1: A = gen(seedA) ∈ Rl×l

q

2: if r is not specified then
3: r ← U({0, 1}256)
4: end if
5: s′ ← βµ(R

l×1
q ; r)

6: b′ = ((As′ + h) mod q)≫ (ϵq − ϵp) ∈ Rl×1
p

7: v′ = bT (s′ mod p) ∈ Rp

8: cm = ((v′ + h1 − 2ϵp−1m) mod p)≫ (ϵp − ϵT) ∈ RT

9: return (c := (cm,b′))

Fig. 1: Pseudocode of Saber.PKE from [5].

Saber.KEM.KeyGen()
1: (seedA,b, s) = Saber.PKE.KeyGen()
2: pk = (seedA,b)
3: pkh = F(pk)
4: z ← U({0, 1}256)
5: return (pk := (seedA,b), sk := (z, pkh, pk, s))

Saber.KEM.Encaps((seedA,b))
1: m← U({0, 1}256)
2: (K̂, r) = G(F(pk),m)
3: c = Saber.PKE.Enc(pk,m; r)
4: K = H(K̂, c)
5: return (c,K)

Saber.KEM.Decaps((z, pkh, pk, s),c)
1: m′ = Saber.PKE.Dec(s, c)
2: (K̂′, r′) = G(pkh,m′)
3: c′ = Saber.PKE.Enc(pk,m′; r′)
4: if c = c′ then
5: return K = H(K̂′, c)
6: else
7: return K = H(z, c)
8: end if

Fig. 2: Pseudocode of Saber.KEM from [5].

void indcpa_kem_dec(char *sk, char *ct, char m[])
uint16_t v[N];
uint16_t sksv[K][N];
1: BS2POLVECq(sk,sksv);
2: SABER_un_pack(&ct, v);
3: for (i = 0; i < N; ++i) do
4: v[i] = h2-(v[i]<<(EP-ET));
5: end for
6: VectorMul(ciphertext,sksv,v);
7: for (i = 0; i < N; ++i) do
8: v[i] = (v[i]&(P-1))>>(EP-1);
9: end for

/* pack decrypted message m */
10: POL2MSG(v,m);

void POL2MSG(uint16_t *v, char *m)
1: for (j = 0; j < BYTES; j++) do
2: m[j] = 0;
3: for (i = 0; i < 8; i++) do
4: m[j] = m[j]|(v[8*j+i]<<i);
5: end for
6: end for

Fig. 3: C code of Saber.PKE.Dec() from [18].

B. Locating points of interest

The vulnerabilities of unprotected LWE/LWR-based
PKE/KEMs have been investigated in previous work [7], [8],
[11], [21]. One of them is Incremental-Storage, discovered
in [11], which is caused by an incremental update of the
decrypted message in memory during message decoding. The
decoding operation (line 2 of Saber.PKE.Decrypt() at Fig. 1)
computes the decrypted message bit by bit, mapping each
polynomial coefficient into a corresponding message bit.

In Saber, two Incremental-Storage vulnerabilities are
known [11]. The first is in the message decoding operation
(line 8 of indcpa_kem_dec() at Fig. 3), where the mes-

sage bits are computed and stored in the memory location
v[i] in an unpacked fashion. The second is in POL2MSG()
procedure (line 4 of POL2MSG() at Fig. 3), where the message
bits are packed into a byte array in memory.

Fig. 4(a) shows an EM trace obtained by averag-
ing 10K measurements made during the execution of
Saber.KEM.Decaps() for random ciphertexts (complied with -
O0 optimization level). In the beginning, we can see a segment
representing the message decoding operation in which 256
message bits are decoded one-by-one. The segment following
it is the POL2MSG() procedure in which message bits are
packed into 32 bytes. By zooming in (Fig 4(b)), we can
see the repeated patterns representing one byte processing by
POL2MSG(). Note that different bytes look differently. This
is because the number of data points corresponding to the
processing of one byte by POL2MSG() differs for different
message bytes. Similarly, in the message decoding operation,
the number of points corresponding to the decoding of one bit
differs for different message bits. A reason for this is that the
sampling rate 25MHz is not a multiple of the CPU clock cycle
64 Mhz. Due to the differences among bits/bytes, we are not
using the cut-and-join technique of [12] at the profiling stage.

We verified leakage points using the Test Vector Leakage
Assessment (TVLA) method [22]. Fig. 6 shows the Welch’s
t-test results for the first eight message bits. We can see clear
peaks in both, message decoding operation and POL2MSG()
procedure, with POL2MSG() leakage being stronger. We can
also see that POL2MSG() leakage is word-wise, showing that
bytes are fetched from/loaded to the memory in groups of
four. This is not surprising since the CPU of the target device
is 32-bit.

Fig. 4: An EM trace representing the execution of message decoding and POL2MSG() procedure.

TrainModels(N, in size)
1: m = {mi ∈ {0, 1}256 | mi is random, ∀i ∈ {1, . . . , N}}
2: c = {ci | ci = Saber.PKE.Enc(pk,mi; ri), ∀i ∈ {1, . . . , N}}
3: Tinit = {Ti | Ti ⇐ Saber.KEM.Decaps(ci), ∀i ∈ {1, . . . , N}}
4: for each j ∈ {0, 1, . . . , 255} do
5: interval = SelectPoI(j)
6: T = Tinit[:, interval]
7: L = { l(Ti) ∈ {0, 1} | l(Ti) = mi[j],∀i ∈ {1, . . . , N}}
8: Train Nj : Rin size → I on (T ,L)
9: end for

10: return N0,N1, . . . ,N255

Fig. 5: Pseudocode of TrainModels() algorithm.

IV. PROFILING STAGE

This section describes how we train neural networks at
the profiling stage. Let m = {m1,m2, . . . ,mN} be a set of
messages mi ∈ {0, 1}256 and c = {c1, c2, . . . , cN} be the set
of corresponding ciphertexts ci = Saber.PKE.Enc(pk,mi; ri).
Let T = {T1, T2, . . . , TN} be a set of traces Ti ∈ R|Ti|

captured during the execution of Saber.KEM.Decaps() with
ci as input, i ∈ {1, 2, . . . , N}.

A. Training strategy

The pseudocode of the profiling algorithm TrainModel() is
shown in Fig. 5. It takes as input the number of training traces,
N and the neural network’s input size, in size.

For each message bit j ∈ {0, 1, . . . , 255}, we train an
individual model Nj : R|Ti| → I2, I := {x ∈ R | 0 ≤ x ≤ 1},
which takes as input a trace Ti ∈ T and produces as output
a score vector Si = Nj(Ti) in which the value of the lth
element, si,l, for l ∈ {0, 1}, is the probability that mi[j] = l
when the ciphertext ci is applied as input. Message bits mi[j]
are used as labels for training traces Ti ∈ T for Nj .

The trace in Fig. 4(a) has 9500 data points, including 3013
points for message decoding operation and 4954 points for
POL2MSG() procedure. As the input interval to Nj , interval,

TABLE I: The MLP architecture; in size = 720 for -O0 and
75 for -O3.

Layer (Type) Output Shape Parameter #
Input in size 0
BatchNormalization1 in size 2880
Dense1 128 92288
Dense2 128 16512
Dense3 32 4128
Dense4 16 528
Dropout1 16 0
Output 2 34
Total Parameters: 116,370

we use a concatenation of two segments of the trace corre-
sponding to the decoding of the message bit j and processing
of the bit j by POL2MSG(). These segments are determined
from the t-test. For the message decoding part, we use the
segment containing the byte ⌊j/8⌋. For the POL2MSG() part,
we use the segment containing the word ⌊j/32⌋. For -O0
optimization level, these segments contain 100 and 620 points,
respectively.

B. Training details

The multilayer perceptron (MLP) architecture shown in
Table I is used to train the neural networks in all experiments.
We use categorical cross-entropy as a loss function. No trace
normalization is applied for the input layer because all traces
are captured through a coaxial cable, thus the amplitude
deterioration during transmission can be neglected. Nadam op-
timizer with the learning rate 0.00005 and numerical stability
constant epsilon=1e-8 is used. The batch size is set to 128,
the number of epoch is 100 and the dropout rate is 0.2. We
test all models and keep the best one only.

V. ATTACK STAGE

At the attack stage, majority voting is used to determine
the final result. Majority voting is a known technique for

Fig. 6: T-test results for the message bits 0-7.

RecoverMessage(N0, . . . ,N255, c,M)

1: T = {Ti | Ti ⇐ Saber.KEM.Decaps(c), ∀i ∈ {1, . . . ,M}}
2: for each j ∈ {0, 1, . . . , 255} do
3: interval = SelectPoI(j)
4: m[j] = MajorityVoting(Nj(T [interval]))
5: end for
6: return m = (m[0], . . . ,m[255])

Fig. 7: Pseudocode of RecoverMessage() algorithm.

improving the success rate of side-channel attacks [12]. If pj
is the probability of recovering a message bit j from a single
trace and errors are mutually independent, then the probability
of recovering the bit j from M traces captured for the same
input is given by:

pj,M =

M∑
i=⌈M/2⌉

(
M
i

)
pij(1− pj)

M−i,

where K is odd. For example, majority voting with the
degree M = 23 can boost the probability from pj = 0.71
to pj,23 = 0.98 if the errors are mutually independent. In
reality, however, there is a dependency between errors in
traces captured multiple times for the same input. This limits
possibilities for improving the success rate by majority voting.

The pseudocode of the algorithm RecoverMessage() is
shown in Fig. 7. In line 1, the set T = {T1, . . . , TM} is a
set of traces captured for the same ciphertext c. To recover
the message m encrypted in c, for each bit j ∈ {0, . . . , 255},
we first recover each mi[j] from the score vector Si = Nj(Ti)
as mi[j] = argmax(Si), and then decide the final bit m[j] by
majority voting on M bits mi[j]:

m[j] =

{
1, if 1

M

∑M
i=1 mi[j] > 0.5

0, otherwise.

VI. EXPERIMENTAL RESULTS

This section presents our experimental results. To determine
the best settings for the analysis, we first assess the effect of
different sampling rates on side-channel leakage, as well as
the need for pre-processing techniques such as trace averaging.
Subsections VI-A and VI-B describe the findings, respectively.
Subsection VI-C presents a message recovery attack based
on the selected settings. We evaluate the impact of different

compiler optimization levels, trace expansion and bit-level ma-
jority voting on the success rate. Finally, in subsection VI-D,
we discuss why the our amplitude-modulated EM analysis of
Saber KEM cannot achieve as high per-bit message recovery
probability as power analysis of Saber KEM presented in [12].

A. The impact of sampling rate

The aim of this experiment is to investigate the side-
channel leakage at different sampling rates. On one hand,
the clock frequency of the ARM Cortex-M4 32-bit CPU in
the nRF52832 device is 64MHz. On the other hand, the
maximum SDR sampling rate achieved in our experiments
is 25MHz. Thus, side-channel information about some clock
cycles is lost. However, in previous work [15] the same type
of SDR is used for amplitude-modulated EM analysis of a
tiny AES-128 implementation on the same target device and
sampling at 5MHz is sufficient to successfully recover the key.
In this section, we analyse whether a 5MHz sampling rate
is sufficient for Saber KEM and also consider 12.5MHz and
25MHz sampling rates.

Using the equipment described in Section III-A, we captured
three 100K sets of traces T5MHz , T12.5MHz and T25MHz ,
containing the executions of both message decoding and
POL2MSG() for random ciphertexts and a fixed secret key.
There are 2000, 4500 and 8500 data points in each trace
sampled at 5MHz, 12.5MHz and 25MHz respectively. The
traces are captured from the implementation of Saber complied
with the optimization level -O0.

We applied the t-test to the resulting sets of traces. For a
given message bit j ∈ {0, 1, . . . , 255}, each of the three sets
was partitioned into two subsets, T0 and T1, containing traces
Ti for which mi[j] = 0 and mi[j] = 1, respectively.

Table II lists the maximum sum of squared pairwise t-
differences (SOST) values for the first eight message bits at
different sampling rates. The average SOST at 25MHz is the
largest, therefore, we use the sampling rate 25MHz in the rest
of the experiments.

B. The effect of averaging

The aim of this experiment is to investigate how repeating
the same measurement multiple times affects the signal-to-
noise ratio (SNR). It is known that the random noise in
measurements decreases as the square root of the number of
averaged samples [23]. Thus, it is possible to enhance the SNR

TABLE II: Maximum SOST for the first 8 message bits.

bit 0 1 2 3 4 5 6 7 avg

5MHz 3.43 3.25 2.97 2.73 2.65 2.40 2.07 4.64 3.02
12.5MHz 2.71 3.08 2.65 2.21 1.73 2.90 3.00 9.91 3.52
25MHz 3.61 3.90 3.68 3.36 3.79 2.90 2.92 4.94 3.64

TABLE III: Maximum SNR (×10−3) for the first 8 message
bits.

bit 0 1 2 3 4 5 6 7 avg

10K × 1 1.11 0.83 1.49 1.16 1.01 0.94 2.07 1.60 1.28
10K × 10 1.30 1.61 2.16 1.14 1.34 0.88 1.69 10.78 2.61
10K × 100 3.10 4.14 2.54 2.35 1.97 2.39 1.18 40.14 7.23

by averaging the measurements. We use the method of [24]
to calculate the SNR as:

SNR =
(E[T0(t)]− E[T (t)])2 + (E[T1(t)]− E[T (t)])2

V ar[T0(t)] + V ar[T1(t)]
,

where E[T l(t)] and V ar[T l(t)] are the mean and variance of
the set of traces T l with labels l ∈ {0, 1} at the data point t.

We captured 10K traces with no averaging, T10K×1, with
averaging 10, T10K×10, and averaging 100, T10K×100, for the
same input ciphertext and a fixed key. The SNR results for the
first eight message bits are shown in Table III. We can see that
10K traces with 100 repetitions give the best result. Therefore,
we use ×100 averaged traces for training and testing of neural
networks.

C. Message/session key recovery attack

In this section we evaluate the empirical probability of
successful message recovery from EM emanations. In Saber
KEM, a message recovery attack is easily turned into session
key recovery. Given a recovered message m′, one first com-
putes (K̂ ′, r′) = G(pkh,m′) and then obtains the session key
as K = H(K̂ ′, c) (see steps 2 and 5 of Saber.KEM.Decaps()
in Fig. 2).

1) The impact of compiler optimization level: First, we
evaluate the impact of different compiler optimization levels
on the success rate. We compare two cases:

• Implementation without optimization (-O0).
• Implementation with the highest optimization level (-O3).
For each case, an MLP model with the architecture listed in

Table I was trained using the method described in Section IV-A
on a training set of size 14K containing the executions of both
message decoding operation and POL2MSG() procedure. The
traces were captured for random ciphertexts and a fixed secret
key and pre-processed with ×100 averaging. The resulting
models were tested by recovering the message from 20 traces
(pre-processed with ×100 averaging) captured for the same
ciphertext and applying the bit-wise majority voting. Table IV
shows the results for the first eight bits.

For the traces captured without optimization, for bit 7 we
can reach 100% accuracy. The average accuracy for the first

TABLE IV: Empirical probability of recovering a message bit
from 20 traces for different compiler optimization levels.

bit 0 1 2 3 4 5 6 7 avg

-O0 0.90 0.93 0.83 0.79 0.78 0.75 0.83 1.00 0.851
-O3 0.73 0.79 0.81 0.78 0.77 0.69 0.69 0.70 0.745

TABLE V: Empirical probability of recovering a message bit
from 20 traces with and without training set expansion.

bit 0 1 2 3 4 5 6 7 avg

Without
expansion

14K 0.91 0.82 0.81 0.84 0.88 0.88 0.86 1.00 0.875
23K 0.91 0.95 0.85 0.81 0.82 0.77 0.88 1.00 0.874
32K 0.95 0.94 0.83 0.82 0.82 0.76 0.90 1.00 0.878

With
expansion

14K 0.96 0.95 0.86 0.79 0.82 0.78 0.87 1.00 0.879
23K 0.94 0.96 0.87 0.85 0.82 0.75 0.85 1.00 0.880
32K 0.95 0.97 0.88 0.83 0.83 0.79 0.87 1.00 0.890

TABLE VI: Empirical probability of recovering a message bit
from M traces.

M 1 10 20 30 40 50

14K 0.710 0.853 0.879 0.886 0.899 0.911
23K 0.700 0.840 0.890 0.898 0.915 0.921
32K 0.708 0.865 0.890 0.904 0.908 0.921

average 0.706 0.853 0.883 0.896 0.907 0.918

eight bits is 85.1%. However, the average accuracy drops to
74.5% if the highest optimization level is used. In the latter
case, none of the bits are higher than 90% accuracy.

2) Training set expansion: We found it useful to expand the
training set T in the following way. For every pair of traces
(Ti, Tj)i ̸=j ∈ T with the same label l, we create a new trace
Tk =

Ti+Tj

2 and add Tk to T with the label l. In this way,
we can expand sets of size 14K, 23K, 32K to 400K, 1M and
2M, respectively. This technique can be viewed as a type of
data augmentation [25].

The MLP models were trained and tested as in the previous
experiment. Table V shows the results for the implementation
without optimization (-O0). The choice of implementation
does not seem to matter for this experiment. We can see that
trace expansion improves the empirical probability of recov-
ering a message bit by 0.4%, 0.6% and 1.2%, respectively.

3) Bit-level majority voting: Table VI summarizes the em-
pirical probability of recovering a message bit by the MLP
models trained with the trace sets of size 14K, 23K and 32K
and tested with a different majority voting degree M . We can
see that M = 50 gives the highest accuracy, 0.921. After
M = 50, the curve flattens and there is no significant improve-
ment. In the Appendix we show the empirical probabilities of
recovering all 256 message bits by the MLP models trained
with the expanded 32K trace set and tested with M = 50
majority voting degree. The average accuracy is 0.91.

D. PoIs analysis

The SDR used in our experiments is capable of a maximum
sampling rate of 50Mhz, but due to interface limitations, we

Fig. 8: (a) The weights of the input layer of the model trained on poly_A2A(); (b) The average test accuracy with single-bit
erasures.

Fig. 9: (a) The weights of the input layer of the model trained on POL2MSG(); The average test accuracy: (b) with single-bit
erasures; (c) with double-bit erasures; (d) with triple-bit erasures.

were limited to 25Mhz. This means that we sample 0.39 points
per clock cycle from a CPU running at 64MHz. In this section
we analyse whether this is a reason why we cannot reach a
higher message recovery probability. For a comparison, in the
attack on Saber in [12], the empirical probability of recovering
a message bit from a single power trace is 0.997.

We used the publicly available trace data set and neural
network models from [12] captured from a masked Saber
KEM implementation run on the same target processor, ARM
Cortex-M4, but another device, CW308T-STM32F4. In the
experiments in [12], one point per clock cycle is captured.
Thus, the traces contain side-channel information from each
clock cycle. The trace data set from [12] includes segments
representing the execution of POL2MSG() and poly_A2A()
procedures. The implementation of POL2MSG() is the same
as in the unprotected implementation which we use. The pro-
cedure poly_A2A() is a masked counterpart of the message

decoding operation.
To evaluate the importance on PoIs in these procedures, we

tested the models NP2M and NA2A trained on POL2MSG()
and poly_A2A() traces segments, respectively, as follows.
Let T be a test set in which each trace Ti has n data points,
Ti = (τ1, . . . , τn), where τt ∈ R for all t ∈ {1, . . . , n}. Let
Ti|τt=0 denote Ti with the data point τt being set to 0. In
other words we “erase” from Ti the side-channel information
captured at the time point (clock cycle) t. We do this to
evaluate the contribution of each data point to the attack’s
success probability.

Fig 8 shows the results for the model NA2A tested on the
message bit 1. The top picture illustrates the distribution of
weights of the input layer of NA2A. The weights determine
relative contribution of each input to the model’s decision.
The bottom picture shows the average test accuracy for
NA2A(Ti|τt=0) for all t ∈ {1, . . . , n}. Without any erasures,

the test accuracy of NA2A(Ti) is 0.992. We can see that there
is one data point, 71 (with the largest weight), whose erasure
drops the the test accuracy to 0.531, close to a random guess.
The erasure of its neighbours, 70 and 72, drop the test accuracy
to 0.881 and 0.747, respectively.

Fig 9 shows similar results for the model NP2M tested
on the message bit 1, except that here we also show erasures
affecting two and three adjacent data points in Fig 9(c) and (d)
respectively. Without any erasures, the average test accuracy
of NP2M (Ti) is 0.995. The single-bit erasures reduce the
test accuracy at most by 7%, at point 88. Double-bit erasures
reduce the test accuracy to 0.601 at the point 24. Only triple-
bit erasures drop the test accuracy to 0.512 at the point 24.

From Fig. 8 we can conclude that, in order to fully exploit
leakage from the message decoding operation of Saber, it is
necessary to capture at least one data points per clock cycle.
The interface limit of the SDR in our current experiments
does not allow for this. Note that an SDR with the sampling
frequency higher than 64MHz, such as USRP-2944R, costs
about 9,000e i.e. it is beyond the reach of a low-budget
attacker.

From Fig. 9 it also becomes evident why in Fig 6 we
get higher t-test peaks for POL2MSG() than for the message
decoding (in [12] it is the opposite). Since we capture 0.39
points per clock cycle, we obtain at least one of the three
essential leakage points of POL2MSG().

VII. CONCLUSION

We demonstrated a side-channel attack on a software imple-
mentation of the Saber KEM based on amplitude-modulated
EM emanations and discussed several ways for improving the
success probability. Future work includes finding methods to
mitigate amplitude-modulated EM side channels.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the Swedish Civil Con-
tingencies Agency (grant No. 2020-11632) and the Swedish
Research Council (grant No. 2018-04482).

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[2] NIST, “Submission requirements and evaluation criteria for the
post-quantum cryptography standardization process,” 2016, https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf.

[3] C. Chen et al., “NTRU algorithm specifications and supporting docu-
mentation,” 2020.

[4] P. Schwabe et al., “CRYSTALS-Kyber algorithm specifications and
supporting documentation,” https://csrc.nist.gov/projects/postquantum-
cryptography/round-3-submissions, 2020.

[5] J. D’Anvers et al., “Saber algorithm specifications and supporting
documentation,” 2020.

[6] E. Karabulut, E. Alkim, and A. Aysu, “Single-trace side-channel attacks
on ω-small polynomial sampling: With applications to NTRU, NTRU
Prime, and CRYSTALS-Dilithium,” in 2021 IEEE International Sympo-
sium on Hardware Oriented Security and Trust (HOST). IEEE, 2021,
pp. 35–45.

[7] B.-Y. Sim, J. Kwon, J. Lee, I.-J. Kim, T.-H. Lee, J. Han, H. Yoon,
J. Cho, and D.-G. Han, “Single-trace attacks on message encoding in
lattice-based KEMs,” IEEE Access, vol. 8, pp. 183 175–183 191, 2020.

[8] P. Ravi, S. Sinha Roy, A. Chattopadhyay, and S. Bhasin, “Generic side-
channel attacks on CCA-secure lattice-based PKE and KEMs,” vol.
2020, pp. 307–335, Jun. 2020.

[9] Z. Xu, O. M. Pemberton, S. S. Roy, D. Oswald, W. Yao, and Z. Zheng,
“Magnifying side-channel leakage of lattice-based cryptosystems with
chosen ciphertexts: The case study of Kyber,” IEEE Transactions on
Computers, 2021.

[10] Q. Guo, T. Johansson, and A. Nilsson, “A key-recovery timing attack
on post-quantum primitives using the Fujisaki-Okamoto transformation
and its application on FrodoKEM,” in Annual International Cryptology
Conference. Springer, 2020, pp. 359–386.

[11] P. Ravi, S. Bhasin, S. S. Roy, and A. Chattopadhyay, “On exploiting
message leakage in (few) NIST PQC candidates for practical message
recovery attacks,” IEEE Transactions on Information Forensics and
Security, 2021.

[12] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson, “A side-channel attack
on a masked IND-CCA secure Saber KEM implementation,” IACR
Trans. on Cryptographic Hardware and Embedded Systems, pp. 676–
707, 2021.

[13] K. Ngo, E. Dubrova, and T. Johansson, “Breaking masked and shuffled
CCA secure Saber KEM by power analysis,” in Proc. of the 5th
Workshop on Attacks and Solutions in Hardware Security, 2021, pp.
51–61.

[14] R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma,
“Curse of re-encryption: A generic power/em analysis on post-quantum
KEMs,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 296–322, 2022.

[15] G. Camurati, S. Poeplau, M. Muench, T. Hayes, and A. Francillon,
“Screaming channels: When electromagnetic side channels meet radio
transceivers,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 163–177.

[16] G. Camurati, A. Francillon, and F.-X. Standaert, “Understanding scream-
ing channels: From a detailed analysis to improved attacks,” IACR Trans.
on Cryptographic Hardware and Embedded Systems, pp. 358–401, 2020.

[17] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Annual international cryptology
conference. Springer, 1999, pp. 537–554.

[18] M. V. Beirendonck, J.-P. D’anvers, A. Karmakar, J. Balasch, and
I. Verbauwhede, “A side-channel-resistant implementation of Saber,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 17, no. 2, pp. 1–26, 2021.

[19] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in International workshop on cryptographic hardware
and embedded systems. Springer, 2001, pp. 251–261.

[20] S. Bronckers, G. Van der Plas, and Y. Rolain, Substrate noise coupling
in analog/RF circuits. Artech House, 2010.

[21] D. Amiet, A. Curiger, L. Leuenberger, and P. Zbinden, “Defeating
NewHope with a single trace,” in International Conference on Post-
Quantum Cryptography. Springer, 2020, pp. 189–205.

[22] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for
side-channel resistance validation,” in NIST Mon-Invasive Attack Testing
Workshop, 2011.

[23] A. V. Oppenheim, J. R. Buck, and R. W. Schafer, Discrete-time signal
processing. Vol. 2. Upper Saddle River, NJ: Prentice Hall, 2001.

[24] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep
learning for side-channel analysis and introduction to ASCAD database,”
J. of Cryptographic Engineering, vol. 10, no. 2, pp. 163–188, 2020.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://www.deeplearningbook.org

APPENDIX

TABLE VII: Empirical probability to recover a message bit
from 50 traces (average for 100 messages).

bit

byte 0 1 2 3 4 5 6 7 avg

0 0.98 0.98 0.88 0.88 0.87 0.84 0.93 1.00 0.92
1 0.94 0.91 0.89 0.87 0.88 0.89 0.91 1.00 0.91
2 0.93 0.90 0.94 0.83 0.91 0.85 0.89 1.00 0.91
3 0.92 0.90 0.91 0.85 0.90 0.87 0.91 1.00 0.91
4 0.98 0.99 1.00 0.88 0.92 0.84 0.88 1.00 0.94
5 0.94 0.95 0.89 0.91 0.89 0.82 0.89 1.00 0.91
6 0.91 0.94 0.91 0.90 0.92 0.90 0.90 1.00 0.92
7 0.88 0.97 0.84 0.86 0.89 0.82 0.92 1.00 0.90
8 0.98 0.91 0.92 0.97 0.90 0.90 0.85 1.00 0.93
9 0.95 0.94 0.95 0.84 0.93 0.82 0.86 1.00 0.91

10 0.89 0.89 0.82 0.86 0.89 0.84 0.96 1.00 0.89
11 0.90 0.91 0.88 0.81 0.86 0.88 0.93 1.00 0.90
12 0.98 0.96 0.95 0.83 0.87 0.85 0.87 1.00 0.91
13 0.91 0.88 0.86 0.86 0.94 0.86 0.88 1.00 0.90
14 0.91 0.93 0.93 0.84 0.93 0.83 0.93 1.00 0.91
15 0.90 0.89 0.88 0.83 0.89 0.85 0.91 1.00 0.89
16 0.97 1.00 0.95 0.87 0.97 0.87 0.89 1.00 0.94
17 0.91 0.91 0.96 0.86 0.90 0.91 0.90 1.00 0.92
18 0.88 0.91 0.92 0.82 0.89 0.88 0.91 1.00 0.90
19 0.86 0.88 0.86 0.81 0.75 0.80 0.71 1.00 0.83
20 0.97 0.99 0.97 0.90 0.96 0.89 0.91 1.00 0.95
21 0.92 0.89 0.91 0.86 0.87 0.84 0.91 1.00 0.90
22 0.86 0.91 0.92 0.84 0.86 0.86 0.97 1.00 0.90
23 0.92 0.92 0.91 0.85 0.85 0.87 0.94 1.00 0.91
24 0.94 0.97 0.92 0.87 0.91 0.86 0.93 1.00 0.93
25 0.94 0.92 0.94 0.77 0.91 0.89 0.83 1.00 0.90
26 0.91 0.90 0.89 0.82 0.88 0.86 0.94 1.00 0.90
27 0.93 0.95 0.92 0.85 0.87 0.88 0.93 1.00 0.92
28 0.97 0.99 0.96 0.90 0.89 0.88 0.92 1.00 0.94
29 0.91 0.87 0.89 0.89 0.90 0.85 0.89 1.00 0.90
30 0.91 0.90 0.85 0.90 0.92 0.80 0.89 1.00 0.90
31 0.92 0.93 0.86 0.88 0.88 0.85 0.94 1.00 0.91

avg 0.93 0.93 0.91 0.86 0.89 0.86 0.90 1.00 0.91

	Introduction
	Background
	Saber design
	Amplitude-modulated EM emanations

	Trace acquisition
	Experimental setup
	Locating points of interest

	Profiling stage
	Training strategy
	Training details

	Attack stage
	Experimental results
	The impact of sampling rate
	The effect of averaging
	Message/session key recovery attack
	The impact of compiler optimization level
	Training set expansion
	Bit-level majority voting

	PoIs analysis

	Conclusion
	Acknowledgements
	References
	Appendix

