
VERIZEXE: Decentralized Private Computation with Universal Setup

Alex Luoyuan Xiong1, Binyi Chen2, Zhenfei Zhang3, Benedikt Bünz4, Ben Fisch5, Fernando Krell6, and
Philippe Camacho7

1,2,3,4,5,6,7Espresso Systems
1National University of Singapore

4Stanford University
5Yale University

Abstract
Traditional blockchain systems execute program state tran-
sitions on-chain, requiring each network node participating
in state-machine replication to re-compute every step of the
program when validating transactions. This limits both scala-
bility and privacy. Recently, Bowe et al. introduced a primitive
called decentralized private computation (DPC) and provided
an instantiation called ZEXE, which allows users to execute
arbitrary computations off-chain without revealing the pro-
gram logic to the network. Moreover, transaction validation
takes only constant time, independent of the off-chain compu-
tation. However, ZEXE required a separate trusted setup for
each application, which is highly impractical. Prior attempts
to remove this per-application setup incurred significant per-
formance loss.

We propose a new DPC instantiation VERIZEXE that is
highly efficient and requires only a single universal setup to
support an arbitrary number of applications. Our benchmark
improves the state-of-the-art by 9x in transaction generation
time and by 3.4x in memory usage. Along the way, we also
design efficient gadgets for variable-base multi-scalar multi-
plication and modular arithmetic within the PLONK constraint
system, leading to a PLONK verifier gadget using only ∼ 21k
constraints.

1 Introduction

Distributed ledgers are replicated state machines maintained
by a network of potentially faulty nodes via a distributed
consensus algorithm. The state machine might range from a
specialized accounting system, as in Bitcoin [48], to a Turing
complete virtual machine, as in Ethereum [56], where any
user can instantiate a stateful program called a smart contract.
These platforms are resilient to failures or even malicious
behavior by a subset of the network nodes. This resilience
enables a new class of applications in cryptocurrencies, gover-
nance, digital collectibles, and more. Unfortunately, privacy,
which is paramount for many applications, is disregarded in
ledger systems like Bitcoin and Ethereum.

There is a rich literature of work attempting to improve pri-
vacy guarantees on distributed ledgers [6,17,22,23,43,49].The
Zerocash protocol [6] is a privacy-preserving payment system
that achieves user anonymity and amount confidentiality in
transactions. Hawk [43] proposes a smart-contract framework
that preserves program data privacy. Zether [17] enables con-
fidential transactions among publicly known smart contracts
and hides the identities of transacting parties within a small
anonymity set. All of these prior designs, however, are either
limited to a fixed functionality (e.g., payments) or lack func-
tion privacy, i.e. transactions do not hide which smart contract
is being executed. ZEXE [14] addresses this by proposing
a new cryptographic primitive called decentralized private
computation (DPC) scheme that achieves both data privacy
and function privacy for arbitrary user-defined programs. The
scheme hides from the network nodes both the states and the
logic of the programs being called in each transaction. Users
in DPC schemes execute computations offline and update
the ledger by sending a transaction with a publicly verifiable
cryptographic proof attached, attesting to the correctness of
the computation.

The core building block in a DPC construction is a Succinct
Non-interactive ARgument of Knowledge (SNARK) proving
system [9]. A SNARK system for a binary relationR provides
a prover algorithm P(x,w) that on any valid public inputs and
private witness pair (x,w) ∈ R outputs a valid and succinct
proof π, and a verifier algorithm V(x,π) that always accepts
valid proofs and rejects invalid proofs with overwhelming
probability. A zkSNARK proof additionally guarantees the
zero-knowledge property, thus leaking no information about
the witness w. We generally encodeR using “circuit" or var-
ious constraint systems, which outputs 1 on input (x,w) if
and only if (x,w) ∈R. The SNARK system may also require
a trusted setup procedure to generate a structured reference
string (SRS), which is an input to both P and V . A SNARK
system is universal if it has a single setup to generate a single
SRS that can be reused for all circuits, and non-universal if
it requires a new setup per circuit. The original ZEXE [14]
system uses a non-universal scheme [36, 38], thus requiring

1

Implementation Universal Setup Transaction Generation Memory Verification Proof Size

Original ZEXE [14] ✗ 14.3 s 6.56 GB 15 ms 0.482 KB
SnarkVM testnet-2 ✓ 151.4 s 22.81 GB 15 ms 0.482 KB
VERIZEXE (this work) ✓ 16.9 s 6.61 GB 18 ms 4.138 KB

Table 1: Comparison of three DPC implementations for 2-input-2-output transaction. Both verification time and proof size are constant and independent of transaction dimension
(number of input and output records), whereas transaction generation time and memory usage grow with larger transaction dimensions. Details in § 4.

a trusted setup for every application. As this is extraordi-
narily inconvenient in practice, the authors also suggest an
alternative instantiation from universal SNARKs [24], which
requires a one-time setup to support all future applications up
to maximum circuit complexity. However, the performance of
this alternative instantiation1 is significantly worse than the
original protocol due to the higher complexity of the universal
SNARK verification logic and the fact that ZEXE requires
producing a proof for a circuit that encodes the SNARK veri-
fication logic. Specifically, its transaction generation speed is
an order of magnitude slower than that in the original ZEXE.
Hence we ask the following question:

Problem 1. Can we obtain DPC with universal setup without
sacrificing transaction generation speed?

1.1 Our Contributions
We answer the above question in the affirmative. The contri-
butions of this paper are:

• VERIZEXE, a DPC scheme instantiation that supports
both one-time universal system setup and efficient trans-
action generation comparable to ZEXE (see Table 1),
while keeping constant on-chain verification cost inde-
pendent of offline computation.

• Constraint designs for efficient variable-base MSM and
modular arithmetics, leading to a PLONK verifier gadget
taking only ∼ 21k PLONK constraints2 which are of
independent interests.3

• Implementation (open-sourced4, written in Rust) and
evaluation of VERIZEXE showing its practicality and
most notably its 9x improvement on transaction genera-
tion time and 3.4x improvement on memory usage over
the prior state-of-the-art.

1https://github.com/AleoHQ/snarkVM/tree/testnet1
2The PLONK constraint system is very extensible from just add and mul

gate to customized gates (TURBOPLONK), to support the lookup argument
(ULTRAPLONK). These different flavors only affect the concrete encodings
of the same constraint logic. Technically we encode a TURBOPLONK verifier
in a ULTRAPLONK constraint system using 21k constraints.

3Another promising application of our PLONK verifier gadget is private
zkRollup protocols (such as Aztec [29]) which aggregates already private
transactions into a single rollup transaction with proof attesting to the correct-
ness of all private transactions, achieving higher computation compression
for the blockchain validator (who now only needs to verify the final rollup
proof) while maintaining privacy.

4https://github.com/EspressoSystems/veri-zexe

1.2 DPC Background and Use Cases

In a DPC scheme, the distributed ledger keeps track of records,
the basic unit of data, each consisting of a data payload (state),
a birth Φb and death Φd predicate governing the rules of its
creation and consumption (program logic). A transaction, by
consuming existing records and creating new records, repre-
sents the resulting state transition from some offline program
execution. Execution correctness is captured in relation Re
which enforces a the existence and rightful ownership of the
consumed records; b valid openings of new record commit-
ments and consumed records nullifiers; and c satisfiability of
death predicates of all consumed records and birth predicates
of newly created records. For efficiency reason, Re is split
intoRutxo for condition a and b , andRΦ for condition c .

The life cycle of transactions starts with 1 a user (or a
group collectively) executing programs offline by assembling
existing records, creating new records with updated payload,
and generating two zkSNARK proofs (one forRutxo and one
forRΦ) to testify the transaction validity. ForRΦ, users first
generate several inner proofs each attesting to the satisfiabil-
ity of one of the relevant predicates, then further generate a
single outer proofs attesting the correctness of all inner proofs.
Then 2 users submit their transactions, containing unlinkable
nullifiers of consumed records and hiding commitments of
new records together with two zkSNARK proofs which reveal
nothing about the program data or the predicates/programs in-
volved, to ledger maintainers. Upon receiving transactions, 3
ledger maintainers verify SNARK proofs and update global
states by inserting new record commitments and old record
nullifiers into the ledger.

A motivating use case is a permissionless multi-asset trad-
ing platform that minimizes front-running, censorship, and
traffic analysis. Trades on public blockchains like Ethereum
have no privacy, leading to front-running arbitrage by the min-
ers [25], and deanonymization as a service.5 For blockchains
with only data privacy, even though the exact amount and
trading accounts are hidden, the programs the transaction is
interacting with are still visible, which leaks the asset types
involved in a trade. This metadata alone can result in prefer-
ential censorship by miners who want to block transactions of
certain asset types, and traffic analysis with pattern associa-
tion of side information off-chain which compromises privacy.

5Companies like Chain Analysis and TRM Labs can track and
deanonymize real identities behind most Bitcoin and Ethereum addresses
and offer it as a service.

2

https://github.com/AleoHQ/snarkVM/tree/testnet1
https://github.com/EspressoSystems/veri-zexe

Luckily, DPC-based blockchains would guarantee both data
and function privacy of trading transactions, leaking no ex-
ploitable information to the miners or the public, thus greatly
eliminating the previous issues.

We refer to the original paper [14] for detailed definitions,
security properties of the DPC model, and more example
applications.

1.3 Our Techniques
ZEXE [14] instantiates both the outer proof and the in-
ner predicate proofs with SNARK schemes that require
predicate-specific trusted setups. Instead, we propose the
use of SNARKs with universal setup parameters that can
be reused for all predicates. To make VERIZEXE efficient
we need to overcome several obstacles when encoding the
verifier logic of a universal SNARK inside a circuit:

• Pairing checks: SNARKs that utilize pairing-based
Polynomial Commitment Scheme (PCS) (such as
KZG [40] and its variants [24], see definitions in
Appx. B.2) require some pairing operations in their ver-
ification logic, which is very expensive and requires a
large number of constraints in a circuit. 6

• Multi-Scalar Multiplications: There are more variable-
based MSM operations in the verification steps of uni-
versal SNARKs than their non-universal counterparts,
which results in high circuit complexity with naïve im-
plementation.

• Polynomial evaluations over non-native field: The
predicate (inner) proofs and final outer proof are gener-
ated in different circuits over different finite fields, thus
polynomial evaluations over the inner fields will be sim-
ulated in an outer circuit with a different field, which
involves high overheads.

• Fiat-Shamir transform: Unrolling all the challenges
generated by FS transform requires applying a hash func-
tion many times. However, commonly used hash func-
tions are not SNARK friendly and result in high circuit
costs.

We present an overview of our techniques that drastically
reduce the outer circuit complexity whose proof generation
dominates transaction generation cost.

Lightweight Verifier Circuit from Accumulation Scheme.
Inspired by Halo [16], we move out the expensive pairing
check from the SNARK verifier circuit and delay the final
proof verification step to ledger validators. Intuitively, the
verification logic of universal SNARKs with pairing-based

6Note that this is not a unique problem for universal SNARKs, as many
non-universal counterparts [36, 38] also need pairing checks.

PCS culminates in producing 2G1 points for the final bilinear
pairing check. Instead of carrying out the full proof verifica-
tion in the circuit, we output the 2G1 points as public inputs
and attach them to the transaction validity proof. To ensure
these two points reveal no information about the underlying
predicates, we further mask them by simultaneously applying
a blinding factor on both points so that the masked points
preserve the pairing check result. The actual pairing check
will be executed by the ledger maintainer who receives the
transaction validity proof and the two masked points.

Instance Merging. As briefly explained, the outer circuit
needs to verify m+n universal SNARK proofs for m death
predicates and n birth predicates in an m-input-n-output trans-
action (W.L.O.G. we assume m = n). We halve the number
of proofs the outer circuit needs to verify (from 2m to m) by
merging each pair of death predicate and birth predicate into
a single larger predicate. The critical precondition for this
technique to have positive net savings is that: verifying one
proof for a merged statement twice as large requires signif-
icantly fewer constraints than verifying two proofs for two
statements; which holds for SNARKs such as PLONK [31].

Assume that the original circuit size bound for birth/death
predicates is N, the merging technique simply left/right pad
another N dummy gates to birth/death predicate circuits re-
spectively before arithmetizing them into polynomials that
constitute the proving keys. The key observation is that
with additive homomorphic polynomial commitment schemes
(such as [40]), the commitment to the addition of two poly-
nomials is simply the addition of their polynomial commit-
ments.Therefore, by adding a pair of verification keys of any
padded birth predicate and any padded death predicate, the
verifier can obtain the verification key of the merged predicate
and thus be able to verify the proof for the merged predicate.

Notice that theoretically, one can merge more than two
predicates, but in the DPC context, merging a pair of birth
and death predicates hits the sweet spot of flexibility and
efficiency improvement. This is because circuit/predicate key
preprocessing happens beforehand in the offline phase, and
instance merging-then-proving happens later in the online
phase. For example, if we merge 3 predicates, then during the
circuit key generation phase, we will have to decide which
N-out-of-3N slots (in the merged circuit) should a particular
predicate be assigned to, which restricts it from merging with
other predicates that occupy the same N slots. In contrast, our
merging of a death and a birth predicate requires easy slot
allocation and allows for arbitrary assembly of death/birth
predicates in a transaction.

Proof Batching. Instead of generating and verifying m
proofs separately, we exploit the proof batching technique to
achieve a lower amortized cost. We leverage the fact that most
universal SNARKs are cryptographically compiled from a
Polynomial Interactive Oracle Proof (PIOP) using a PCS and

3

many choices of PCS support batch opening which reduces
opening proof size and amortizes verification cost. Thus, we
present a generic compiler in § 3.3 to transform a PIOP-based
SNARK into a batched prover and verifier for a list of NP
relations. In the case of KZG-PLONK, batching ℓ relations re-
duces the total proof size by 5(ℓ−1)G1 elements by sharing
the same quotient polynomial and the same opening polyno-
mials; reduces the number of MSM operation by 7(ℓ−1) and
the number of pairing operation by (ℓ−1). Batching TURBO-
PLONK with more selector polynomials and wire polynomials
leads to even greater savings. Since both the MSM gadget
and pairing gadget are expensive, we would noticeably re-
duce outer circuit complexity by batch verifying m merged
predicate.

Next, we present techniques that are tailored for (cus-
tomized) PLONK-based constraint systems that support
lookup gates.

Variable-base MSM via Online Lookup Table. Instead
of naïvely enforcing variable-base MSM computation, we
design a Pippenger-base MSM gadget and further reduce its
complexity by relying on a special variant of lookup argument
called online lookup table argument. Recall that Pippenger al-
gorithm [51] reduces a b-bit MSM into b/c instances of c-bit
MSMs (c < b) and finally sums them together. When com-
puting a c-bit MSM, instead of unrolling the exact Pippenger
algorithm in the circuit which is very expensive, we utilize
a lookup table containing all resulting points from the scalar
multiplications between the base point and all 2c−1 possible
scalar values. With such a lookup table, any c-bit scalar mul-
tiplication on this specific base point becomes a table query
rather than an elliptic curve group operation. Given that these
bases are unfixed, the lookup table cannot be pre-processed –
table values are only known during the online proving phase.
Such online lookup tables are already possible with [30] al-
though their presentation is limited to preprocessed query
tables whose values are known ahead of time. We provide
detailed gadget descriptions and circuit sizes in § 3.4.

Polynomial Evaluation over Non-native Field. To facili-
tate polynomial evaluation over a non-native field, we device
efficient modular multiplication and modular addition gad-
gets by leveraging range check via lookup argument [30].
Compared to other modular arithmetic gadget designs, ours
take advantage of (a) clever ULTRAPLONK constraint system
design to do range-check with little to no additional circuit
cost; (b) specialized use case of two-chain curves for depth-2
proof recursion (instead of cycling curves for deeper proof
recursions), which allows us to safely assume finer-grained
requirements on the sizes of two fields to make our circuit
simpler. We provide detailed gadget descriptions in § 3.5.

SNARK-friendly Symmetric Primitives. To reduce the
number of non-algebraic operations in the circuit, we instanti-
ate symmetric primitives used such as commitment schemes,
Pseudorandom Function (PRF), and Collision-resistant Hash
(CRH) with SNARK-friendly candidates which are designed
to work natively with finite fields involving mostly algebraic
operations. We specify our concrete implementations in § 4.1,
most of which are based on Rescue hash functions [2]. More
importantly, we carefully design customized gates in our TUR-
BOPLONK (Def. 2) to optimize for these rescue operations.
Our Fiat-Shamir transcript uses Sponge-based hash from Res-
cue permutation so that verifier challenge derivation is much
cheaper in the circuit. We further designed an optimized pred-
icate commitment gadget in § 3.6 to ensure two circuits over
different fields are committing to the same list of predicates.
Particularly, the number of non-native hash operations in our
gadget does not grow with the number of predicates commit-
ted.

1.4 Related Works
We refer readers to Section 1.2 in [14] for a comprehensive lit-
erature review on privacy-preserving computation on ledgers.
Even though there are alternative private smart contract de-
signs proposed afterwards [4, 41, 52–54] with different trade-
offs and limitations, ZEXE remains the only concrete construc-
tion of DPC to date. DPC schemes like ZEXE and VERIZEXE
have both data privacy and function privacy while maintaining
high expressiveness. (see Appx. A).

Universal SNARKs. Our construction makes heavy use of
Universal SNARKs [37], which strikes a good balance be-
tween efficiency and acceptable trust assumption. These sys-
tems support a universal and constantly updatable SRS [37]
where anyone can contribute to the SRS in a verifiable way.
As long as one of the contributors is honest, then no trap-
door exists. SNARKs with fully transparent setups [5, 18, 20]
usually have worse performance or a much larger proof size.

We choose variants of PLONK [31] for our implementations
primarily due to their performance, customizable gates, and
importantly its support for lookup argument [13,30] that some
of our optimization techniques depend on. We provide a more
detailed literature review of Universal SNARKs in Appx. A.

2 Preliminaries

We denote [n] as the set {1, . . . ,n} ⊆ N, λ ∈ N as the security
parameter, negl(λ) as a negligible function in λ if it vanishes
faster than the inverse of any polynomial in λ. A probability
is overwhelming if it is 1−negl(λ) for a negligible function
negl(λ). Further, we use efficient algorithms to refer to proba-
bilistic polynomial time algorithms in λ.

We provide formal definitions and security properties of
Commitment Scheme, Polynomial Commitment Scheme (PCS),

4

indexed relation, (preprocessing) succinct non-interactive ar-
gument of knowledge (SNARK), and incrementally verifiable
computation (IVC), in Appx. B.

3 VERIZEXE: Practical ZEXE with Universal
SNARKs

To tackle the challenges of efficiently instantiating the DPC
scheme with universal SNARKs described in Sec. 1.3, we
propose numerous optimization techniques many of which
can be applied to protocols beyond DPC. With all optimiza-
tions applied, we expect to bring VERIZEXE to the realm of
practicality. Detailed benchmark is reported in Sec. 4.

3.1 Lightweight Verifier Circuit from Accumu-
lation Scheme

We apply a technique called Accumulation Scheme (AS), orig-
inally introduced in [16] and later generalized in [19], to move
the expensive pairing check out of the SNARK verifier circuit.
While the technique is not new, we try to cast part of the trans-
action generation procedure into an incrementally verifiable
computation (Appx. B) and show explicitly how accumulation
schemes can improve the performance of ZEXE.

The core observations are that (i) proving satisfiability of
user-defined predicates can be modeled as a two-step IVC,
and (ii) original ZEXE instantiated this IVC using SNARK
composition. To obtain a more lightweight IVC prover, we
construct this IVC using a SNARK with an accumulation
scheme. The key observation is that the verification of many
universal SNARKs under the PIOP+PCS paradigm is efficient
except for the final polynomial opening check. And with
the help of an AC for the PCS, these opening checks can
be separated from the SNARK verifier logic and delayed to
another decider algorithm executed much later.

Modeling DPC executions as IVCs. As introduced in § 1.2,
one of the proofs generated during transaction building is for
the NP relationRΦ (for condition c). As shown in Fig. 1, the
process of provingRΦ can be modeled as a two-step IVC. In
the first step, users produce SNARK proofs certifying all rele-
vant predicates are satisfied over some local data ldata of that
transaction. To achieve function privacy, SNARK proofs for
predicates-SAT are not directly posted on the ledger. Instead,
an outer proof πΦ is generated in the second step attesting
to the correctness of these predicate proofs, by taking predi-
cate proofs and their verification keys as secret witnesses and
running the SNARK verifier inside the outer circuit. Finally,
ledger maintainers run the IVC verifier to verify the outer
proof which reveals nothing about the actual predicates in-
volved in the transaction. To ensure consistency of records
used inRutxo andRΦ, commitments to the local data cmldata

and list of predicates cmΦ involved are returned as public

Figure 1: Casting RΦ proving into a two-step IVC (with different step function at each
step).

Figure 2: IVC from SNARK compositions (left) v.s. IVC from accumulation schemes
(right). Blue boxes are SNARK prover P and verifier V for the relation R, and orange
boxes are accumulation prover P, verifier V (more lightweight than a SNARK verifier)
and decider D. z1,z2,π1,π2 in both schemes are the same as those in Fig. 1 where
F is the step function that calculates the predicate commitment cmΦ using Pedersen
Commitment over the hashes of the predicate verifying keys. There are a few inputs
dropped from the diagram for visual clarity, e.g. witness w1 as an input to the IVC
prover in both diagrams; SNARK verifying key vkR for the SNARK verifier inside the
IVC verifier on the right diagram.

outputs. Note that when applying proof batching technique
(see § 3.3), the IVC proof from the first step will be a single
batched proof denoted as π⊛ instead of a list of predicate
proofs.

ZEXE: IVC from SNARK composition. Next, we explain
how the original ZEXE instantiates this IVC using SNARK
composition (see the left half of Fig. 2). For a general IVC,
at each step, the prover will receive the state z and an IVC
proof π from the last computation step, compute the next
state by applying the step function F to get the new state z′,
and create another IVC proof π′ for the statement “F(z) =
z′∧V (z,π) = 1” where V is a SNARK verifier. The fact that
we have to embed the entire SNARK verifier logic inside the
IVC prover’s circuit is where the complexity comes from.
For example, the pairing checks in KZG for any PIOP+KZG
universal SNARK are very expensive in the circuit and will
slow down the proof generation significantly.

VERIZEXE: IVC from accumulation schemes. Finally,
we give a high-level intuition on leveraging an accumula-
tion scheme for SNARK to defer the heavy-lifting during
the SNARK verification to the IVC verifier, thus liberating
the IVC prover from a complex circuit (see the right half of
Fig. 2).At each step, the IVC prover receives an additional
accumulator acci (think of the tuple (acci,πi) as the new IVC

5

proof), and eventually, the accumulator will be validated by a
decider algorithm as part of the IVC verifier logic. The core
idea is: at the second step, the IVC prover will receive the
predicate proof π⊛ and an empty accumulator acc1 =⊥; then
instead of verifying the predicate proof entirely, we partially
verify it (e.g. compute everything except the pairing check in
case of PIOP+KZG SNARKs); the expensive steps in verifi-
cation are delayed to the IVC verifier via the accumulator (e.g.
acc2 would contain the final two G1 elements used in KZG
opening proof check). Informally, our accumulation prover
will compute the group elements for PCS opening proof check,
our accumulation verifier will ensure correct accumulations
(i.e. correct derivation of the two G1 elements in KZG), our
IVC prover only embeds the accumulation verifier’s logic in
its circuit which is much more lightweight than a SNARK
verifier, and finally, our IVC verifier (transaction verification
on-chain in ZEXE) will run a SNARK verifier for π2 := πΦ

and a decider algorithm which completes the PCS opening
proof check (e.g. the final pairing check in KZG).

We emphasize that the accumulation must be zero-
knowledge – the accumulator acc2 and the proof πV shouldn’t
reveal anything about the predicates being accumulated. In the
context of an AS for PLONK with KZG, this means the two G1
elements for pairing must be randomly masked and the ran-
domizer is an additional secret witness for the accumulation
verifier. Note that authors of [19] already showed how to make
accumulation schemes for inner-product-argument-based and
pairing-based PCSs zero knowledge in their Appendix A and
Section 8.

3.2 Instance Merging
Recall that a transaction builder needs to generate predicate
(inner) proofs for all death predicates of input records and
birth predicates of output records. We describe a method to
merge two proving instances (e.g. a birth predicate and a
death predicate) into one by exploiting the algebraic nature
of preprocessing in a SNARK (Appx. B) and the homomor-
phism of polynomial commitment schemes (Appx. B.2), thus
halving the number of proofs the outer circuit needs to verify.

Technique. In a SNARK based on polynomial IOP (such
as Algebraic Holographic Proof (AHP) in MARLIN, and ide-
alized low-degree protocol in PLONK), the preprocessing of
circuit involves an arithmetization process where constraints
in an algebraic circuit (or equivalent computational models)
are being transformed into constraints about polynomials.
The resulting proving key ipk usually contains these index
polynomials and the verifying key ivk contains the commit-
ments to these index polynomials. During arithmetization, for
a birth predicate circuit C1 of size n, we pad the circuit to size
of 2n, with C1 being right padded (last n gates are dummy),
and compute the proving key and verification key as usual;
for a death predicate circuit C2 of size n, we perform similar

operations but left pad the circuit (first n gates are dummy).
Subsequently, whenever we want to merge C1 and C2, we can
construct a merged circuit of size 2n just by adding the two
padded circuits while maintaining overall circuit satisfiability.
The merged proving key can be easily obtained via the addi-
tion of two polynomials of the same degree, and the merged
verification key (i.e. the commitments) can be similarly de-
rived thanks to the additive homomorphism of PCS (such as
KZG10 and its variants).

Syntax. We proceed to propose a slightly modified syntax
for SNARKs that support instance merging. A k-Mergeable
SNARK scheme

SNARKk
⊕ = (G,I,Mipk,Mivk,Mw,P,V)

supports merging k slotted instances into one single merged
instance, where a slotted instance is labeled with a slot ∈ [k],
and only a batch of non-overlapping instance {sloti} where
sloti ̸= slot j for any i ̸= j, i, j ∈ [k] can be merged together.
For simplicity, we present the variant we will use to improve
ZEXE with k = 2 which allows for the merging of a death and
a birth predicates into one.

• srs ← SNARK⊕.G(λ,N): same as SNARK.G except
N = 2n where n is the size bound for each instance.

• (ipkb, ivkb)← SNARK⊕.Isrs(Φb,b): Given circuit de-
scription Φb, slot number b ∈ [2], and oracle access to
SRS srs, it deterministically outputs the slotted prov-
ing key and verifying key (ipkb, ivkb). The relation
for the merged instance is R⊕ := {(x0||x1,w0||w1) :
φ0(x0,w0) = 1∧φ1(x1,w1) = 1}.

• ipk← SNARK⊕.Mipk(ipk0, ipk1): Given any two com-
plementarily slotted proving keys ipk0, ipk1, it outputs a
merged proving key ipk.

• ivk← SNARK⊕.Mivk(ivk0, ivk1): Given any two com-
plementarily slotted verifying keys ipk0, ipk1, it outputs
a merged verifying key ivk.

• w← SNARK⊕.Mw(w0,w1): Given any two witnesses
w0,w1 corresponding to relationsRΦ0 ,RΦ1 , it outputs
a merged witness w forR⊕.

• π← SNARK⊕.P(ipk,x,w): same as SNARK.P except
N = 2n.

• b← SNARK⊕.V(ivk,x,π): same as SNARK.V except
N = 2n.

We present a concrete construction of such a technique for
PLONK in Appx. E.

6

Analysis. A clear trade-off we make here is halving the
number of proving instances by doubling the circuit size of
each instance. Concretely in ZEXE’s context, given an m-
input-m-output transaction, we have 2m predicate proofs (m
death and m birth) to be verified in the outer circuit, which is
over a larger field with more expensive computation within
it. Now by merging each pair of (Φb,i,Φd,i)

m
i=1 7→ [φ′i]

m
i=1, we

reduce the number of inner predicate proofs to m, potentially
lowering the outer circuit complexity. The concrete net sav-
ing is dependent on the choice of SNARK proof system for
predicate circuits. Assume a circuit of size n, the proof for
the circuit satisfiability can be checked by a verifier gadget
using Cn constraints; while a verifier gadget for a circuit of
size 2n takes C2n = Cn + δ constraints. Our instance merg-
ing techniques effectively reduce the outer circuit complexity
from roughly 2m ·Cn to m ·C2n, which is a significant saving
as long as δ≪ Cn. In the case of a PLONK verifier gadget,
δ is very small and attributed to a few additional modular
arithmetic constraints from computing the polynomial evalu-
ations that are dependent on the doubled evaluation domain
size; whereas Cn is orders of magnitude larger. Meanwhile,
inevitably there is an additional cost associated with a larger
circuit per inner instance. The only noticeable cost boils down
to running polynomial interpolations using FFT over a do-
main size of 2n instead of n during inner proof generation
– effectively 2 FFT of the size n v.s. 1 FFT over the size of
2n. Given that the running time of FFT is O(n · log(n)), the
increased cost is really negligible compared to the efficiency
gain from a simpler outer circuit.

3.3 Proof Batching
We describe a generic compiler that transforms a public-coin
non-interactive argument that proves a single relation into an
argument that batch proves a list of relations while preserv-
ing all security properties. Notice that one could trivially run
multiple instances of the argument protocol independently in
parallel. Our compiler below is non-trivial as it reduces the to-
tal communication complexity (thus the final proof size) and
the total verification computation, which in turn ultimately
reduces the overall verifier circuit complexity in ZEXE com-
pared to verifying them individually.

Syntax. A SNARK that supports proof batching shares most
of the syntax from SNARK except that the proving and veri-
fication algorithm now accepts a list of instances, witnesses,
and proofs instead of one:

• π⊛ ← SNARK.P⊛([ipki]
ℓ
i=1, [xi]

ℓ
i=1, [wi]

ℓ
i=1): Given a

list of ℓ proving keys, instances and witnesses, it proves
them in batch and outputs a proof π⊛.

• b← SNARK.V⊛([ivki]
ℓ
i=1, [xi]

ℓ
i=1,π⊛): Given a list of

ℓ verifying keys, instances and an aggregated proof, it
outputs a success bit b.

We explain the high-level techniques below and present a
concrete construction in Appx. E.

Technique. MARLIN presents a compiler that combines any
public-coin AHP/PIOP for a relation R and an extractable
polynomial commitment scheme to obtain a public-coin pre-
processing argument with universal SRS for the same relation
(see Theorem 1 in [24]). The universal SNARKs we use
also fit into this construction paradigm, and we summarize it
schematically in Fig. 3. To extend the above paradigm and
support batching, the core idea is to leverage the batch open-
ing of PCS, which reduces opening proof size and amortizes
verification costs. We observe that many existing PCSs have
a linear combination scheme, and thus support batch open-
ings of multiple polynomials at multiple points (proven in
Theorem 3 of [12] on private aggregation scheme).

Next, we summarize the general paradigm and its batching
extension in Fig. 3. On the left side of Fig. 3 is an interactive
argument between a Prover P and a Verifier V both of whom
are running an information-theoretic PIOP as a sub-protocol.
The prover starts by running the PIOP prover with the given
instance x and witness w, where in each round it produces
a polynomial pi to be committed into cmi and sent over to
the verifier. Meanwhile, the verifier V who internally runs
the PIOP verifier randomly samples a coin ri in each round,
and at the end of n-th round, outputs a query set Q containing
algebraic queries such as “evaluate {pi} at point r j” or some
polynomial identity testing. Upon receiving the queries, P
calculates the replies as a list of evaluated values [v] and
returns to V who will decide whether the replied values are
acceptable. Additionally, P has to prove that the replies to
algebraic queries are consistent with committed polynomials
by running PCS.Eval.P as a sub-procedure whose opening
proof will be verified by V who runs PCS.Eval.V .

On the right side of Fig. 3 is an interactive argument, com-
piled from the one on the left, for a list of relations {Ri}ℓi=1
with the same size bound. In j-th round (j ∈ [n]), the i-th
PIOP prover (i ∈ [ℓ]), sends over the committed polynomial
for that round {pi, j} and the PIOP verifier would replied with
a random coin r j after it receives all polynomials from ℓ PIOP
provers. After n rounds of polynomial commitments and coin
flips, the PIOP verifier outputs a single query set Q for all ℓ
relations, and the size of this set should be the same as that
of a single PIOP run. Finally, P and V run batch opening of
PCS over all polynomials at those query points.

Note that a strawman (yet non-trivial) compiler would run
ℓ PIOP instances in parallel, where the verifier produces ℓ
random challenges {ri, j}n

j=0 (in total ℓ ·n challenges) and ℓ
query set Qi. Subsequently the PCS.Open will proceed to

prove opening of polynomials
{
{pi, j}n

j=1

}ℓ

i=1
at different

subsets in Q :=
⋃
{Qi}. In contrast, our compiler utilizes the

same random challenges (in total n) and the same query set
Q, independent of the number of batched relations ℓ, so that

7

Figure 3: Generic compiler for batching PIOP-based SNARKs.

the batched opening of PCS is even simpler. Intuitively our
compiler preserves security since these random challenges are
only sent after receiving the committed polynomials (for that
round) from all of the ℓ PIOP provers, and the query set is con-
structed after finishing the n rounds of all PIOPs, thus there
won’t be any knowledge soundness compromise (although
the knowledge extractor requires slight modifications).

3.4 Variable-base Multi-Scalar Multiplication
via Online Lookup Table

We generalize the lookup table argument in [30] by enabling
a variant we call online lookup table to constrain MSM in the
circuit more efficiently.

Motivation. Recall that a b-bit multi-scalar multiplication
(MSM) problem of size n∈N is to compute Q= Σi∈[n](si ·Pi)

where si ∈ [0,2b) are scalars, Pi ∈ G are bases, · is scalar
multiplication, and + is group addition. When all bases are
fixed and known in advance, we call such instance a fixed-base
MSM (fMSM); otherwise variable-base MSM (vMSM).

During verification of inner proofs in the outer circuit in
ZEXE, there are some vMSM computations where the bases
are commitments to witness polynomials inside proofs or com-
mitments to preprocessed circuit descriptions inside verifying
keys (note that verifying keys for user-defined predicates are
dynamic). On a high level, we employ Pippenger-like [51]7

strategy by reducing a b-bit MSM into b/c instances of c-bit
MSMs (c < b), and finally summing them together. Particu-
larly, when computing a c-bit MSM, instead of unrolling the
exact Pippenger algorithm in the circuit which is very expen-
sive,8 we utilize a lookup table containing all resulting points

7We only use a special case of a simplified Pippenger algorithm which is
sometimes referred to as “the bucket method”. For a detailed literature review
and comparisons among different variants of Pippenger’s predecessors, please
see [7].

8For each c-bit MSM, there are 2c−1 buckets each representing a possible
non-zero scalar. We need to compute the “bucket sum” {S1, . . . ,S2c−1 ∈G}
by adding all base points that are supposed to multiply with that the scalar (e.g.
Si is computed by adding all bases that multiply with i, with i ∈ [1,2c−1]),
then finally the MSM result is computed as ∑i∈[2c−1] i ·Si. We note that
the main circuit complexity does not come from point additions, but from

from the scalar multiplications between the base point and all
2c−1 possible scalar values. With such a lookup table, any
c-bit scalar multiplication on this specific base point becomes
a table query rather than an elliptic curve group operation.
Given that these bases are unfixed, the lookup table cannot be
pre-processed – table values are only known during the online
proving phase which gives rise to our following technique.

Pre-processed v.s. Online Lookup Table. PLOOKUP [30]
presents a polynomial IOP (PIOP) protocol for checking val-
ues of a query table f := (f1, . . . , fn) ∈ Fn are contained in
the values of a lookup table t := (t1, . . . , td) ∈ Fd . They fur-
ther generalize the protocol to support vector lookup where
each entry in the query table and lookup table is a vector
(i.e. fi, ti ∈ Fw); and to support multiple tables by adding an
additional column for table index and concatenating multiple
tables into one. However, the presentation in [30] only con-
siders pre-processed lookup tables where values in the lookup
tables are predefined and fixed. The key observation is that the
PIOP protocol for lookup relations works regardless of how
the query table and the lookup table are constructed – whether
those values are known in advance or determined during the
online phase of the protocol run. Intuitively, the PIOP for
online lookup tables still preserves soundness because online
columns constructed by the prover are committed first (sent
to the verifier for oracle access), before any verifier-initiated
checks are carried out.

Optimized MSM Circuit. With the online lookup table in
our toolbox, we proceed to present an optimized circuit for
MSM.

We denote an elliptic curve point addition gadget ⊙add,
point doubling gadget ⊙double, linear combination gadget ⊙lc

for k terms, lookup gadget (for either filling entry in query or
lookup table) ⊙lookup. Then our overall circuit size (number
of gates) is dominated by:

maintaining 2c−1 bucket sums and selectively updating the correct bucket
sum for each base and its scalar – which is trivial outside the circuit, but
expensive to enforce inside the circuit.

8

Inputs: Base point variables: [P1, . . . ,Pn], scalar variables: [s1, . . . ,sn] where scalar values ∈ [0,2b).
Outputs: A point variable Q = ∑i∈[n] si ·Pi.
Circuit: We break b-bit MSM into m := b/c instances of c-bit MSM and finally summing over m points.

1. For i ∈ {1 . . .n}:

(a) Compute (2 ·Pi, . . . ,(2c−1) ·Pi) using repeated point addition from Pi.

(b) Create online lookup table: Ti = [(0,0G),(1,Pi),(2,2 ·Pi), . . . ,(2c−1,(2c−1) ·Pi)].

(c) Decompose si into m chunks of c-bit value [si,0, . . . ,si,m−1], such that si = ∑
m−1
j=0 si, j ·2c j (we don’t need to further range-check si, j , as it is

implicitly constrained later in lookup gates).

2. For j = {0 . . .m−1}:

(a) For i = {0 . . .n}:
i. Create a point variable Qi, j for the value si, j ·Pi.

ii. Add an entry to query table (si, j,Qi, j) (lookup argument will check if (si, j,Qi, j) ∈ Ti).

(b) Compute window sum: wsum j = ∑i∈[n] Qi, j .

3. Compute Q = ∑
m−1
j=0 wsum j ·2c j .

Figure 4: Optimized variable-base MSM using online lookup tables.

n ·

(2c−2)⊙add︸ ︷︷ ︸
step 1a

+2c ⊙lookup︸ ︷︷ ︸
step 1b

+
m−1

k
⊙lc︸ ︷︷ ︸

step 1c

+m ·

n⊙lookup︸ ︷︷ ︸
step 2(a)ii

+n⊙add︸ ︷︷ ︸
step 2b

+m ⊙add+b⊙double︸ ︷︷ ︸

step 3

As a point of reference, with the TURBOPLONK circuit
used to generate benchmark number in § 4, which supports
linear combination of k = 4 terms using 1 gate, elliptic curve
point addition and doubling using 2 gate, a lookup entry or
query using 1 gate, a 256-bit vMSM of size 128 takes only
around 34,516 gates with chosen chunk size c = log(n)≈ 5.
In contrast with the naïve circuit implementation, the expected
number of gates required is around 230,0009 – our optimized
circuit is more than 6.5 factors smaller.

Remark 1. Step 1b and 2(a)ii in Fig. 4 involves creating
multiple online lookup tables and later querying from one
of them. To achieve this, we implicitly apply the multiple
table techniques presented in [30] by adding an extra domain
separator column both in the merged lookup table and the
merged query table. Furthermore, we note that in a TUR-
BOPLONK constraint system, with 3 (preprocessed) selector
polynomials (2 domain separator polynomials and 1 polyno-
mial for the fixed scalar value in the online lookup table) and
5 wire polynomials (2 for point variables in the lookup table,
3 for the key-value tuple in the query table), we can do an
entry creation for both the lookup table and query table in
a single gate, thus reducing the total number of constraints
required. (at the cost of longer proving and verifying keys).

9Roughly, a naïve variable-base MSM can be done by decomposing the
scalars to binary representation, then performing conditional addition based
on each bit, then finally adding all points together. The decomposing scalars
takes nb/k ⊙lc; the multiplication takes 6bn⊙add and final combining takes
n⊙add which adds up to 229,632.

Specifically, instead of (n ·2c +m ·n)⊙lookup, we could just
use max(n ·2c,m ·n)⊙lookup.

3.5 Polynomial Evaluation over Non-native
Field

Inner proofs for predicate satisfiability and outer proofs for
inner proof correctness are generated by circuits over different
finite fields. Therefore, when running the inner proof verifier
in the outer circuit, any polynomial evaluations would require
modular arithmetics over a non-native field. In this section,
we present efficient gadgets for two main building blocks:
modular multiplications for evaluating each monomial and
modular additions for summing over evaluations of all mono-
mials. The stepping stone of our modular arithmetic gadgets
is a range proof gadget that uses a lookup table introduced
in [30].

Let p,q be the sizes of two fields where p2 > q > p, we
want to show how to emulate modular arithmetics over Fp in
a circuit over the field Fq. The common theme behind our
design is enforcing: (a) an equivalent equation over integers
expressing the congruence relation of the modular equation
and (b) both sides of the equation won’t overflow or underflow
the native field size q at any intermediate step. For example,
to constrain modular operation z′ ≡ x · y (mod p), we ensure
there exist witnesses w such that (i) z′+ pw= xy over integers,
and (ii) arithmetic operations that simulate computations of
z′+ pw,xy never exceeds the range [0,q).

Assume that we already have a linear combination gad-
get ⊙lc for klc terms, and a preprocessed range table (with
size K := 2k) that enables us to constrain a variable x to be
in the range [0,K). We start by constructing a more gen-
eral range-check circuit and then build the modular addi-
tion/multiplication gadgets on top of it.

9

Public Parameters: K ∈ [0,q), ℓ ∈ N where Kℓ < q
Input: x ∈ Fq
Relation: x ∈ [0,Kℓ)
Circuit:

1. Create variables x0, . . . ,xℓ−1 and constrain x = x0 +K · x1 +K2 ·
x2 + . . .+Kℓ−1 · xℓ−1.

2. Range check variables x0, . . . ,xℓ−1 ∈ [0,K).

Figure 5: Range proof gadget.

Range proofs. We present a range proof gadget with the
circuit size: nrange(ℓ) := ⌈ ℓ−1

klc
⌉ ⊙lc+ℓ⊙rg.

Modular multiplications. Since we assume p2 > q, we
can’t directly multiply x,y ∈ Fp in circuits over Fq. Instead
we choose to break each Fp element into two limbs with
a splitting parameter m such that 22m ≥ p, so that we can
represent any x ∈ Fp as (x0,x1) ∈ [0,2m)2 such that x = x0 +
2mx1. With the range proof gadget for the range [0,Kℓ) in
mind (where K = 2k), we recommend fixing m by finding
the minimum ℓ ∈ N such that 22ℓk ≥ p (namely we denote
m := ℓk).

The intuition for proving x · y = z (mod p) is to find a
witness w ∈ Fp such that x · y = z+ p ·w holds over integers
and that both sides won’t overflow Fq. Specifically:

(x0 +2m · x1) · (y0 +2m · y1) = z0 +2m · z1 +(w0 +2m ·w1) · (p0 +2m · p1)

⇕
z0 +w0 · p0− x0 · y0 +2m · (z1 +w0 · p1 +w1 · p0− x0 · y1− x1 · y0)

+22m · (w1 · p1− x1 · y1) = 0

⇕
z0 +w0 · p0− x0 · y0−2m · c′0 = 0
z1 +w0 · p1 +w1 · p0− x0 · y1− x1 · y0 + c′0−2m · c′1 = 0
w1 · p1− x1 · y1 + c′1 = 0

for some c′0,c
′
1 carriers bounded by −2m ≤ c′0 < 2m+1 and

−2m+1≤ c′1 < 2m+2.10 We present the modular multiplication
gadget in Fig. 6 with the following notes:

• To optimize gadget circuit size, we assume that the limbs
of input x,y are already in the range [0,2m) without fur-
ther checking.

• We shift the actual carriers c′0,c
′
1 to c0,c1 in order to

have a positive range and upper-bounded by a power of
K to utilize our range proof gadget.

• Witness w ∈ Fp must exist since we assume both x,y ∈
Fp even though we only constrain them to range [0,22m)
which is bigger than [0, p).

10Since z0 +w0 · p0 ∈ [0,2m +22m),x0 · y0 ∈ [0,22m), we know 0−22m

2m =

−2m ≤ c′0 <
2m+22m−0

2m = 2m +1 < 2m+1.
Similarly since z1 +w0 · p1 +w1 · p0 + c′0 ∈ [−2m,2m +22m+1 +2m+1),x0 ·
y1+x1 ·y0 ∈ [0,22m+1), we know −2m−22m+1

2m =−1−2m+1 <−2m+1 < c′1 <
2m+22m+1+2m+1−0

2m < 2m+2.

Public Parameters:
• predefined field sizes: p2 > q > p.

• range of ⊙rg: K = 2k ∈ [0,q)

• splitting parameter m such that 22m = 22ℓk ≥ p for a minimum
ℓ ∈ N

• limbs of prime (p0, p1) such that p = p0 +2m · p1

• additional requirement: k ≥ 3 ∧ q > 22m+k+1

Input: (x0,x1),(y0,y1) ∈ [0,2m)2 such that x = x0 +2m · x1 ∈ Fp,y =
y0 +2m · y1 ∈ Fp
Witness: (w0,w1),(z0,z1)
Relation: (x0 +2m · x1) · (y0 +2m · y1) = z0 +2m · z1 +(w0 +2m ·w1) ·
(p0 +2m · p1) over integers
Circuit:

1. Range check w0,w1,z0,z1 ∈ [0,2m)

2. Compute carrier c′0 and c0 = c′0 +2m,
range check c0 ∈ [0,2m+k) and constrain z0 +w0 · p0 = x0 · y0 +
2m · (c0−2m)

3. Compute carrier c′1 and c1 = c′1 +2m+1,
range check c1 ∈ [0,2m+k) and constrain
z1 +w0 · p1 +w1 · p0 +(c0− 2m) = x0 · y1 + x1 · y0 + 2m · (c1−
2m+1)

4. Constrain w1 · p1 +(c1−2m+1) = x1 · y1

Figure 6: Modular multiplication gadget. In circuit description, blue texts are actual
circuit constraints whereas black normal text is computation outside the circuit.

• The prover must set witness z to be in the range [0, p) in
order to continue feeding z as an input to the next modu-
lar multiplication gadget, even though another represen-
tation such as z+ p might still satisfy the current gadget.
This is because our modular multiplication gate is only
composable when the inputs are strictly within [0, p)
bound to guarantee the existence of witness w ∈ Fp.11

Proposition 1. The modular multiplication gadget in Fig. 6
satisfies

• Completeness: Given public parameters, for any in-
puts and their valid witnesses, the circuit for the relation
should always be satisfied.

• Soundness: Given public parameters, for any inputs and
invalid witnesses, the circuit should never be satisfied.

See the proofs in Appx. F.
Using the ULTRAPLONK constraint system specified in

Def. 3, the circuit size of the modular multiplication gadget is:
5+4 ·nrange(ℓ)+2 ·nrange(ℓ+1) ULTRAPLONK constraints.
With k = 15,klc = 4, range-check of [0,K) for free, and Fq,Fp
be the base field and scalar field of BLS12-377 curve, our
gadget uses only 23 constraints.

Remark 2 (On circuit complexity of range checks). In an
ULTRAPLONK constraint system, by adding a dedicated input

11Our circuit constrains z,w ∈ [0,22m), hence z+ p ·w should be in range
[0,22m + 22m · p) with p a fixed public parameter. Suppose inputs x,y ∈
[0,22m) exceed p and x · y exceeds 22m +22m · p (which is possible as 22m >
p), then it’s impossible to find a proper witness w such that x · y = z+ p ·w.

10

Public Parameters:
• predefined field sizes: p2 > q > p.

• range of ⊙rg: K = 2k ∈ [0,q)

• splitting parameter m such that c · p ≥ 22m ≥ p for a minimum
c ∈ N

• maximal number of summards allowed: N < K−1
c +1

• additional requirement: q
p > c+K

Input: x1, . . . ,xN ∈ [0,22m)
Witness: w,y
Relation: y+ p ·w = x1 + . . .+ xN over integers
Circuit:

1. Range check y ∈ [0,22m),w ∈ [0,K)

2. Constrain y+ p ·w = x1 + . . .+ xN

Figure 7: Modular addition gadget.

wire to each gate (an additional wire polynomial), we can
piggyback the range-checking of a variable on any existing
gate instead of requiring a dedicated new gate. As long as
the number of range checks is fewer than the total number
of gates used for the rest of the proof relation, we don’t have
to increase circuit size, in which case we effectively support
range checks “for free”.

Remark 3. While there are alternative designs for emulating
non-native modular multiplication such as [28], those designs
usually are more general and applicable for any p,q even
when q< p. In contrast, we have a specialized use case of two-
chain curves for depth-2 proof recursion (instead of cycling
curves for deeper proof recursions) in mind, therefore we can
safely assume finer-grained requirements on p,q to make our
circuit more efficient.

Modular additions. The intuition for proving y = x1+ . . .+
xN (mod p) is to find a witness w ∈ Fp such that y + p ·
w = x1 + . . .+ xN over integers and that both sides won’t
overflow Fq. Assume we take the splitting parameter m from
the foregoing modular multiplication gadget, we present the
modular addition gadget in Fig. 7.

Proposition 2. The modular addition gadget in Fig. 7 satisfies
completeness and soundness.

See the proofs in Appx. F.
The circuit size of our modular addition gadget is:

naddmod = ⌈ N
klc
⌉ ⊙lc+1⊙rg+nrange(2m). With k = 15,klc = 4,

range-check of [0,K) for free, and Fq,Fp be the base field and
scalar field of BLS12-377 curve, our gadget uses only ⌈N

4 ⌉+6
constraints for simulating an addition of N terms.

3.6 SNARK-friendly Symmetric Primitives
Recall that the circuit for relation Re, which governs the
rules of valid record creation and consumption, requires con-
straining some symmetric cryptographic primitives such as

commitment schemes, pseudo-random functions (PRF), and
collision-resistant hashes (CRH). However, some standard im-
plementations of these primitives involve many non-algebraic
operations (e.g. bit-wise XOR, rotate in SHA256) which take
lots of gates to constrain in an algebraic circuit. There are
two main ways to constrain these primitives inside the circuit
more efficiently:

1. precompute a lookup table containing legitimate (in-
put, output) tuples12 and the prover argues the witnesses
(input and output of intermediate, non-algebraic steps)
belong to the table [30].

2. use SNARK-friendly primitives specifically designed to
work natively with finite field elements by using mostly
algebraic computations (notably new hash functions:
Rescue and Vision [2], Poseidon [34], MiMC [1]).

Generally, the latter approach produces smaller circuits at
the cost of reliance on newer, less time-tested designs which
are often much slower outside the circuit due to a lack of
hardware acceleration. The former approach may allow better
candidates with better security bounds or relies on weaker
cryptographic assumptions.

Fiat-Shamir Transcript. Many SNARKs are made non-
interactive by applying Fiat-Shamir transformation [27] on
a public-coin interactive argument where random challenges
sent from the verifier are deterministically simulated by hash-
ing all previous transcripts between the prover and the verifier.
The heuristic security of these SNARKs assumes these hash
functions as random oracles. In practice, these random oracles
are instantiated using Blake2s or the keccak permutation in
SHA3, all of which incur high circuit complexity as their inter-
nals entail many non-algebraic operations. Since the verifier
logic includes deriving the verifier challenges in the transcript
which should be constrained in the outer circuit, we are moti-
vated to use one of the techniques above to reduce its circuit
complexity.

As a point of reference, Halo2 [26] designed a highly opti-
mized circuit for SHA256 using lookup table with an overall
cost of 2099 TURBOPLONK constraints; whereas CAP pro-
tocol [44] designed a CRH gadget by using Rescue permuta-
tion in a sponge construction with only 148 TURBOPLONK
constraints. Granted that the arithemtizations in those two
TURBOPLONK designs are slightly different, such numbers
can only be used for informal comparison. We decide to use
a Rescue-based hash when constraining verifier challenges
derivation from the transcripts for its better circuit efficiency,
knowing that it is still a philosophical question whether these
SNARK-friendly hashes suffice as random oracles.

12For instance, to assist bit-wise XOR between any two 8-bit integers, we
can build a table of size 216 of all possible two integer inputs and their XOR
outputs – namely each entry is a tuple (x,y,x⊕ y).

11

Predicate Commitments. To ensure that death/birth predi-
cates involved inRutxo andRΦ are consistent, [14] proposes
to make the hiding commitment cmΦ to the predicates in a
transaction as a public input for both circuits so that the veri-
fier can check their equality. Concretely, the original ZEXE
instantiates CRH with Pedersen hash, COM with Blake2s
hash where the message is appended with a randomizer for
the hiding property. The primary circuit cost comes from con-
straining non-algebraic Blake2s hash on a message size of
m+n+1 for an m-input-n-output transaction.

We emphasize that directly switching Blake2s to a SNARK-
friendly hash is not immediately more advantageous, since
we need to constrain this hash function in two different fields
(over Fr forRutxo and over Fp forRΦ), and constraining al-
gebraic hashes over non-native fields is probably more expen-
sive as it requires many range checks and modular arithmetics.
Worse, the number of non-native operations grows linearly
with the message size since longer messages require more
invocations of the hash function.

In Appx. G, we propose an efficient solution whose non-
native operations do not grow regardless of the number of
predicates committed.

4 Implementation and Evaluation

4.1 System Implementation
We implemented the DPC scheme and applied all optimiza-
tions (§ 3) except the predicate commitment technique.The
resulting system is a ZEXE that only requires a one-time uni-
versal setup to produce the system parameter required for all
future user-defined predicates which we affectionately call
VERIZEXE. Our code base, written in Rust, follows the stack
shown in Fig. 8: we utilized arkworks library [3] as the un-
derlying algebra backend for finite fields, elliptic curves, and
polynomial operations; necessary cryptographic primitives
including zkSNARKs and their circuit constraints are built
on top; finally, a VERIZEXE library that instantiates the DPC
scheme using all building blocks below.

We break down our concrete instantiations of cryptographic
building blocks used to generate benchmarks in § 4.2 in Appx.
H.

4.2 Experimental Evaluation
Metrics and evaluation methodology. As an instantiation
of the DPC scheme, our measurements focus on the resources
required (including time, memory usage, and storage) during
the execution of the three main algorithms of a DPC scheme
(namely system setup, transaction generation, and verifica-
tion). Particularly, the primary target of our optimization has
been the circuit complexity of the NP relation RΦ (namely
the outer circuit) whose SNARK proof generation dominates
the cost of transaction generation – which directly affects the

Algebra (ark-ff, ark-ec, ark-poly)

Cryptography
primitives

(Rescue, KZG, . . .)

Transcript
(merlin,

rescue-trans.)

zkSNARK and its constraint systems
(jf-plonk)

Gadgets for crypto. primitives

veri-zexe

Figure 8: Stack of libraries comprising VERIZEXE.

usability and practicality of the final private computation sys-
tem. To wit, we also provide microbenchmarks on the circuit
costs of important cryptographic building blocks used. Note
that we do not provide evaluations on dimensions or parts
that our optimizations have mild or no effect on, such as the
transaction size besides its validity proof size.

All our reported data are measured on an AWS EC2 in-
stance running Ubuntu 20.04. The server has 64 cores (AMD
EPYC 7R13 at 2.65 GHz) and 128 GB of RAM.

General benchmark. We first compare our system against
other DPC implementations on important metrics. To the best
of our knowledge, the most efficient and actively maintained
implementation is snarkVM by the Aleo team many of whom
are the co-authors of [14]. While there are a few versions of
DPC instantiations inside snarkVM, we focus on its testnet-1
(the same implementation in Section 9 of [14]) and testnet-2
versions (see Table 1). 13

Here we outline the technical difference between our
system and snarkVM’s. First, snarkVM chooses to verify
SNARK proof for Rutxo together with predicate SNARK
proofs inside its outer circuit, thus producing only a single
outer proof instead of the two proofs per transaction as de-
scribed in Section 7 of the ZEXE paper. To ensure a fair
comparison, we have modified their code to accurately reflect
the original paper as our VERIZEXE does. SnarkVM testnet-
1 uses GM17 [38] for birth/death predicates each of which
requires a trusted setup. SnarkVM testnet-2 uses universal
SNARK Marlin [24] for predicates and this will serve as the
primary benchmark to gauge the improvements gained from
our optimizations.

As shown in Table 2, we achieve a 10.6∼ 11.8x improve-
ment on outer proof generation, and a 9 ∼ 10x on overall

13We note that snarkVM had shifted away from the original DPC design by
removing the notion of death/birth predicates altogether since their testnet-3,
therefore we only use their earlier testnet-2 version when it still faithfully
instantiates the DPC model in the original paper. The design and performance
of this new DPC model are outside the scope of this paper.

12

System Setup Transaction Generation Verification

RΦ (outer circuit)

Tx. Dim. Time (s) SRS size (MB) Constraints Prover (s) Time (s) Memory (GB) Verifier (ms) Proof Size (KB)

snarkVM testnet-2 R1CS
2×2 176.8 5,254.2 4,235,068 138.5 151.4 22.8 15 0.482
3×3 246.0 7,056.6 6,330,496 202.7 223.0 26.8 21 0.482
4×4 370.1 10,454.9 8,447,588 293.2 321.1 40.6 21 0.482

VERIZEXE ULTRAPLONK
2×2 11.8 33.1 87,176 13.1 16.9 6.6 18 4.138
3×3 18.4 66.2 126,076 24.7 29.2 8.8 18 4.138
4×4 19.1 66.2 141,492 24.8 32.4 9.3 18 4.138

Table 2: Performance comparison against the state-of-the-art DPC implementation across different transaction dimensions (e.g. 2×2 means 2-input-2-output transaction). The “Prover”
column refers to the prover time for the outer circuit whereas the “Time” column refers to the overall transaction generation time. snarkVM uses Groth16 for both Rutxo and RΦ,
Marlin for birth/death predicates; whereas VERIZEXE uses TURBOPLONK for both Rutxo and birth/death predicates, ULTRAPLONK for RΦ. Notice that the SRS size for snarkVM
contains the universal SRS of Marlin and preprocessed Groth16 proving keys of the inner and outer circuits; whereas that for VERIZEXE only contains two universal SRS, one for
Rutxo and predicate circuits, the other for the outer circuit. Further note that the number of constraints reported for snarkVM are referring to R1CS constraints whereas the number for
VERIZEXE are ULTRAPLONK constraints. All death and birth predicates require 215 constraints in their respective constraint systems.

transaction generation speed; the latter is the most impor-
tant bottleneck and the determining factor of the usability of
a DPC system. Notwithstanding the impossible task of di-
rectly comparing numbers of R1CS constraints to numbers of
PLONK constraints, it is evident that our optimizations have
kept the outer circuit complexity is relatively low which re-
sults in faster proof generations. We also observe a 3∼ 4.3x
improvement in memory usage during transaction generation,
this helps alleviates the hardware requirements for users.

Astute readers may notice the non-linear slowdown in VER-
IZEXE’s performance from 2×2 to 3×3. This is caused by
the large number of range checks invoked by non-native res-
cue permutation pushing the evaluation domain size for FFT
to a higher power-of-two, thus effectively increasing the cost
across the board from universal SRS generation to proving
key indexing to proving14.

For the Setup algorithm, our VERIZEXE is also notably
faster. We note that it is a one-time, universal setup for both
candidates, thus it is arguably less important in practice. We
do want to highlight another significant difference in SRS size
– snarkVM has a much larger SRS since it requires storing pre-
processed proving keys of theRutxo andRΦ (outer) circuits
(Groth16’s trusted setups are circuit-dependent), whereas
VERIZEXE only contains two universal SRS. We stress that
SRS size matters in practice as they are the (partial) size of
the system parameter a user needs to download from ledger
maintainers when he first joins the system.

Microbenchmarks. Since most of our techniques are at-
tempts to reduce the outer circuit complexity, we now pro-
vide a microbenchmark on concrete circuit costs for major
components in Table 3. Among them, one of the highlights
is our PLONK verifier gadget only taking roughly 21k UL-

14We could further reduce the number of non-native operations when we
implement the optimized predicate commitment in § 3.6.

Gadgets Field of Operation # Constraints

native over BLS nr = 388
Rescue Permutation native over BW np = 148

non-native over BW nnn = 23,760∗

CRH native over BLS (⌈ ℓ3 ⌉+ k−1) ·nr +4
(input: Fℓ, output: Fk) native over BW (⌈ ℓ3 ⌉+ k−1) ·np +4

Commitment native over BLS ⌈ ℓ+1
3 ⌉ ·nr +4

(input: Fℓ) non-native over BW6 ⌈ ℓ+1
3 ⌉ ·nnn+4∗

PRF (input: Fℓ) native over BLS ⌈ ℓ4 ⌉ ·nr +4
Merkle Path (depth: ℓ) native over BLS (5+nr) · ℓ+nr
ECC Add native over both 2
Mod Add (input: Fℓ

r) non-native over BW ⌈ ℓ4 ⌉+6∗

Mod Mul (input: F2
r) non-native over BW 23∗

PLONK Verifier
1 proof native over BW 20,232∗

2 proofs native over BW 31,407∗

3 proofs native over BW 42,407∗

4 proofs native over BW 53,735∗

Table 3: Number of PLONK constraints for major cryptographic building blocks and
algebraic operations. These numbers are TURBOPLONK constraints (see Def. 2), unless
annotated with ∗ which refers to ULTRAPLONK constraints (see Def. 3). Furthermore,
we denote the scalar field of BLS12-377 as Fr , and the scalar field of BW6-761 as Fp.

Inner Proofs Outer Proof

Prover (s) Memory (GB) Prover (s) Memory (GB)

Phone 46.3 1.1 270.0 2.6
Laptop 5.8 1.8 32.2 3.4
Server 3.2 5.0 12.7 6.6

Table 4: Proof generation time and memory usages for 2x2-transactions across different
hardware environments. The first row simulates a phone environment with 4 CPU, 8GB
RAM at 2.3 GHz. The second row simulates a customer-grade laptop environment with
16 CPU, 32GB RAM at 2.5 GHz. The third row simulates a powerful server environment
with 64 CPU, 128GB RAM at 2.95 GHz.

13

 0

 50000

 100000

 150000

 200000

 250000

2 4 8 16 32 64 128

N
u

m
b

e
r

o
f

P
lo

n
k
 C

o
n

s
tr

a
in

ts

Number of Basis

Naive method

3.73k 7.46k
14.9k

29.8k

59.7k

119k

239k
Pippenger with lookup

1.06k 1.62k 2.75k 5.00k
9.49k

18.4k

36.4k

Figure 9: Circuit complexity for variable-based MSM.

TRAPLONK constraints for verifying a single TURBOPLONK
proof. This is made possible primarily thanks to highly ef-
ficient modular arithmetic gates (see § 3.5) for polynomial
evaluation over non-native field and compact variable-based
MSM gadget (see § 3.4). To illustrates the improvement at-
tributed to our Pippenger-based vMSM gadget relying on
the online lookup table technique, we provide a benchmark
against a naïve implementation in Fig. 9.

Practicality. With significant improvements in memory us-
age, DPC transaction generations are possible on consumer-
grade laptops or even on phones for the first time. As illus-
trated in Table 4, there is a general trade-off between prover
time and peak memory usage – more cores enable higher
parallelism which leads to faster proof generation at the cost
of higher memory usage partially due to the overhead from
multi-threading management.

Another observation is that inner proofs generations are
easily manageable even for lower-resource hardware whereas
the outer-proof generation is much more demanding. In quest
of a balance between privacy and speed, resource-limited de-
vices could produce inner proofs on-device, preserving the
data privacy (all record states), and outsource the outer proof
to a more powerful server, leaking only the predicates used in
this transaction and nothing else. Note that the final transac-
tion is still completely private to the world, we only sacrifice
function privacy to the server. Alternatively, one could also
use Delegable DPC (Sec.5 of [14]) which enables delega-
tion of the entire transaction generation to untrusted workers
who will learn about all transaction details but never produce
valid transactions with invalid witnesses or without user’s
authorization. Our open-sourced VERIZEXE implementation
supports Delegable DPC.

Threat Model and Security Proof. We emphasize that
VERIZEXE is a concrete efficient construction of the DPC

scheme, thus inherits all of its threat models, security prop-
erties, and DPC model level security proof. As long as our
instantiations of cryptographic building blocks satisfy the nec-
essary properties, then the ideal functionalities and security
goals of DPC will be achieved.

The extra cryptographic assumptions, compared to [14], are
Rescue permutation in Appx. H as a secure Pseudorandom
Permutation and Rescue-based Hash as a random oracle.

Furthermore, our ULTRAPLONK are constraint system de-
signs, not modifications to the underlying PLONK PIOP. The
knowledge soundness error is proportional to the maximum
degree of each gate times the number of gates. In our case,
the maximum degree is 6 v.s. 2 in vanilla PLONK circuit; over
the 256-bit field, the security difference is negligible (from
Schwartz-Zippel lemma)

14

References
[1] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy,

and Tyge Tiessen. Mimc: Efficient encryption and cryptographic hash-
ing with minimal multiplicative complexity. In Advances in Cryptology
- ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I, 2016.

[2] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe,
and Alan Szepieniec. Design of symmetric-key primitives for advanced
cryptographic protocols. IACR Trans. Symmetric Cryptol., 2020:1–45,
2020.

[3] arkworks contributors. arkworks zksnark ecosystem. https://
arkworks.rs, 2022.

[4] Aritra Banerjee, Michael Clear, and Hitesh Tewari. zkhawk: Practical
private smart contracts from mpc-based hawk. 2021 3rd Conference
on Blockchain Research & Applications for Innovative Networks and
Services (BRAINS), pages 245–248, 2021.

[5] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable, transparent, and post-quantum secure computational integrity.
IACR Cryptol. ePrint Arch., 2018.

[6] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on
Security and Privacy, pages 459–474, 2014.

[7] Daniel Bernstein. Pippenger’s exponentiation al-
gorithm, 01 2002. https://cr.yp.to/papers/
pippenger-20020118-retypeset20220327.pdf.

[8] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge functions. In ECRYPT hash workshop. Citeseer, 2007.

[9] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments
of knowledge, and back again. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12. Association
for Computing Machinery, 2012.

[10] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and
Omer Paneth. Succinct non-interactive arguments via linear interactive
proofs. In TCC, 2012.

[11] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88. Association for
Computing Machinery, 1988.

[12] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo infinite:
Proof-carrying data from additive polynomial commitments. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO
2021, pages 649–680, Cham, 2021. Springer International Publishing.

[13] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Kristian Jakobsen,
and Mary Maller. Nearly linear-time zero-knowledge proofs for correct
program execution. In IACR Cryptol. ePrint Arch., 2018.

[14] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush
Mishra, and Howard Wu. Zexe: Enabling decentralized private compu-
tation. In 2020 IEEE Symposium on Security and Privacy (SP), pages
947–964, 2020.

[15] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party
protocol for constructing the public parameters of the pinocchio zk-
snark. In Financial Cryptography and Data Security - FC 2018 In-
ternational Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort,
Curaçao, March 2, 2018, Revised Selected Papers, Lecture Notes in
Computer Science, 2018.

[16] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof com-
position without a trusted setup. Cryptology ePrint Archive, Report
2019/1021, 2019. https://ia.cr/2019/1021.

[17] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.
Zether: Towards privacy in a smart contract world. In Joseph Bon-
neau and Nadia Heninger, editors, Financial Cryptography and Data
Security, pages 423–443, Cham, 2020.

[18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Gregory Maxwell. Bulletproofs: Short proofs for confi-
dential transactions and more. 2018 IEEE Symposium on Security and
Privacy (SP), pages 315–334, 2018.

[19] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data from accumulation schemes. IACR
Cryptol. ePrint Arch., 2020:499, 2020.

[20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks
from dark compilers. In 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10–14, 2020, Proceedings, volume 12105 of Lecture
Notes in Computer Science. Springer, 2020.

[21] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and
Hadrián Rodríguez. Lunar: A toolbox for more efficient universal and
updatable zksnarks and commit-and-prove extensions. In Advances
in Cryptology - ASIACRYPT 2021 - 27th International Conference on
the Theory and Application of Cryptology and Information Security,
Singapore, December 6-10, 2021, Proceedings, Part III, 2021.

[22] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed E. Kosba, Ari Juels, and
Elaine Shi. Solidus: Confidential distributed ledger transactions via
pvorm. Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, 2017.

[23] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah M. Johnson, Ari Juels, Andrew K. Miller, and Dawn Xiaodong
Song. Ekiden: A platform for confidentiality-preserving, trustworthy,
and performant smart contracts. 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 185–200, 2019.

[24] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. Marlin: Preprocessing zksnarks with uni-
versal and updatable srs. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 738–768.
Springer, Cham, 2020.

[25] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Fron-
trunning, transaction reordering, and consensus instability in decentral-
ized exchanges. CoRR, abs/1904.05234, 2019.

[26] The halo2 book. https://zcash.github.io/halo2/index.html.
Accessed: 2022-04-26.

[27] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko,
editor, Advances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin,
Heidelberg, 1987. Springer Berlin Heidelberg.

[28] Ariel Gabizon. Aztec emulated field and group operations. https:
//hackmd.io/LoEG5nRHQe-PvstVaD51Yw. Accessed: 2022-04-26.

[29] Ariel Gabizon, Zac Williamson, and Tom Walton-Pocock. Aztec yel-
low paper. https://hackmd.io/@aztec-network/ByzgNxBfd. Ac-
cessed: 2022-09-26.

[30] Ariel Gabizon and Zachary J Williamson. plookup: A simplified
polynomial protocol for lookup tables. IACR Cryptol. ePrint Arch.,
2020:315, 2020.

[31] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk:
Permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. IACR Cryptol. ePrint Arch., 2019:953, 2019.

[32] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In Ad-
vances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Athens, Greece, May 26-30, 2013. Proceedings, Lecture Notes
in Computer Science, 2013.

15

https://arkworks.rs
https://arkworks.rs
https://cr.yp.to/papers/pippenger-20020118-retypeset20220327.pdf
https://cr.yp.to/papers/pippenger-20020118-retypeset20220327.pdf
https://ia.cr/2019/1021
https://zcash.github.io/halo2/index.html
https://hackmd.io/LoEG5nRHQe-PvstVaD51Yw
https://hackmd.io/LoEG5nRHQe-PvstVaD51Yw
https://hackmd.io/@aztec-network/ByzgNxBfd

[33] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of
interactive proof-systems. In Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing, STOC ’85, New York, NY,
USA, 1985. Association for Computing Machinery.

[34] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab
Roy, and Markus Schofnegger. Poseidon: A new hash function for
zero-knowledge proof systems. In USENIX Security Symposium, 2021.

[35] Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In ASIACRYPT, 2010.

[36] Jens Groth. On the size of pairing-based non-interactive arguments.
In Annual international conference on the theory and applications of
cryptographic techniques, pages 305–326. Springer, 2016.

[37] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and
Ian Miers. Updatable and universal common reference strings with
applications to zk-snarks. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, pages 698–728,
Cham, 2018. Springer International Publishing.

[38] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures
of knowledge from simulation-extractable snarks. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
pages 581–612, Cham, 2017. Springer International Publishing.

[39] Youssef El Housni and Aurore Guillevic. Optimized and secure pairing-
friendly elliptic curves suitable for one layer proof composition. IACR
Cryptol. ePrint Arch., 2020:351, 2020.

[40] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010, pages 177–194,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[41] Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Kachina
– foundations of private smart contracts. 2021 IEEE 34th Computer
Security Foundations Symposium (CSF), pages 1–16, 2021.

[42] Joe Kilian. A note on efficient zero-knowledge proofs and arguments
(extended abstract). In Proceedings of the Twenty-Fourth Annual ACM
Symposium on Theory of Computing, STOC ’92. Association for Com-
puting Machinery, 1992.

[43] Ahmed E. Kosba, Andrew K. Miller, Elaine Shi, Zikai Wen, and Char-
alampos Papamanthou. Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts. 2016 IEEE Symposium on
Security and Privacy (SP), pages 839–858, 2016.

[44] Fernando Krell, Binyi Chen, Philippe Camacho, and Alex
Xiong. Configurable asset privacy: Specification. https:
//raw.githubusercontent.com/EspressoSystems/cap/
master/cap-specification.pdf, 2021. Accessed: 2022-04-
25.

[45] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn.
Sonic: Zero-knowledge snarks from linear-size universal and updatable
structured reference strings. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, page
2111–2128, New York, NY, USA, 2019. Association for Computing
Machinery.

[46] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of
full-state keyed sponge and duplex: Applications to authenticated en-
cryption. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 465–489. Springer, 2015.

[47] Silvio Micali. Computationally sound proofs. SIAM Journal on Com-
puting, 2000.

[48] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec
2008. Accessed: 2015-07-01.

[49] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-
preserving auditing for distributed ledgers. In IACR Cryptol. ePrint
Arch., 2018.

[50] Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Muñoz,
and Jose Luis Muñoz-Tapia. Plonkup: Reconciling plonk with plookup.
Cryptology ePrint Archive, Report 2022/086, 2022. https://ia.cr/
2022/086.

[51] Nicholas Pippenger. On the evaluation of powers and monomials.
SIAM Journal on Computing, 9(2):230–250, 1980.

[52] Ravital Solomon and Ghada Almashaqbeh. smartfhe: Privacy-
preserving smart contracts from fully homomorphic encryption. IACR
Cryptol. ePrint Arch., 2021:133, 2021.

[53] Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin
Vechev. Zeestar: Private smart contracts by homomorphic encryption
and zero-knowledge proofs. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 1543–1543. IEEE Computer Society, 2022.

[54] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior,
Petar Tsankov, and Martin T. Vechev. zkay: Specifying and enforcing
data privacy in smart contracts. Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[55] Paul Valiant. Incrementally verifiable computation or proofs of knowl-
edge imply time/space efficiency. In Proceedings of the 5th Conference
on Theory of Cryptography, TCC’08, page 1–18, Berlin, Heidelberg,
2008. Springer-Verlag.

[56] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–32,
2014.

A Related Work

Private Smart Contracts. Since the exciting work of
ZEXE [14], there have been more works on privacy-preserving
smart contracts. ZKay [54] observes the difficulty of express-
ing programs in low-level circuits correctly, and designs a
high-level language to annotate private data with explicit own-
ership. Zkay provides a compiler transforming zkay contracts
into Solidity contracts on Ethereum that leverages encryption
for privacy and NIZK proofs for correctness. Unfortunately,
transactions in Zkay cannot operate on “foreign values” (val-
ues owned by parties other than the caller), a limitation ad-
dressed by ZeeStar [53] which uses additive homomorphic
encryption to allow the simple addition of foreign values.
Zkay and ZeeStar lower the barrier for non-cryptographers
to write contracts in higher-level language but have many
restrictions and limited expressiveness.

Meanwhile, zkHawk [4] extends Hawk [43] by replacing
the minimal trusted manager who will learn the private inputs
from users with an MPC protocol. To avoid running a SNARK
prover in MPC which is prohibitively expensive, they simplify
the Hawk framework by assuming a “freeze-compute-finalize”
three-phase process for program execution. To enforce the
correct payout of the original deposits from the “freeze” phase
during the “finalize” phase or contract closure, zkHawk uses
sigma protocols and homomorphic commitments, similar to
techniques used in confidential transactions. While this model
is perfect for applications like sealed bid auctions, it is ar-
guably restricted since many applications run forever without
a clear closure yet require frequent intermediate on-chain
state commitments.

16

https://raw.githubusercontent.com/EspressoSystems/cap/master/cap-specification.pdf
https://raw.githubusercontent.com/EspressoSystems/cap/master/cap-specification.pdf
https://raw.githubusercontent.com/EspressoSystems/cap/master/cap-specification.pdf
https://ia.cr/2022/086
https://ia.cr/2022/086

SmartFHE [52] is the first to use fully-homomorphic en-
cryption in the blockchain model and allow multi-user com-
putation on-chain with hidden function inputs and outputs.
Additionally, to mitigate concurrency issues, SmartFHE in-
troduces account locking to freeze account balance or states
from unintended updates when some private transactions are
still in the mempool. Inevitably, the biggest obstacle is still
the staggering cost of FHE for arbitrary computation.

Kachina [41] provides a unified universal composable (UC)
model on private smart contracts which claims to be an over-
arching framework to capture ZEXE, Hawk, Zether, and more
while preserving their original privacy guarantees. One of the
novelties of Kachina is introducing the concept of state oracle
transcript and model read/write of private and public states
as query/response from the local and public oracles. Transac-
tions are further allowed to declare inter-dependencies, which
together with the public oracle transcripts are supposed to
help with the concurrency issue. However, it remains to be
demonstrated how to achieve flexible composability of con-
tracts and complex interactions among contracts in Kachina.
Particularly, [41] did not offer concrete construction that im-
proves ZEXE.

In short, ZEXE remains the only concrete private smart
contract construction to date that offers both data privacy and
function privacy with rich expressiveness.

Universal SNARKs. Zero-knowledge proof [33] allows
a prover to convince a verifier of an NP statement without
revealing any extra information. Subsequent works lead to
non-interactive proofs [11] in the common reference string
model and arguments with sublinear communication [42, 47]
where malicious provers are computationally bounded. In the
recent decade, a long line of work [9, 10, 32, 35, 36, 38] has
focused on succinct non-interactive argument of knowledge
(SNARK) with succinct proofs, sometimes of constant size,
and fast verification. These SNARKs usually rely on some
heavy offline pre-processing to generate a circuit-specific
structured reference string (SRS) to facilitate faster online
verification. Even though some constructions like Groth16
are highly efficient and widely deployed, sampling of the SRS
would require a trusted setup for each circuit, instantiated
using a secure multi-party ceremony [15] that takes months in
practice, which is highly unsustainable. One way around this
is using an argument system with a transparent setup depend-
ing on only uniformly random reference strings without any
toxic trapdoor; however, they usually result in larger proof
size [5] or non-succinct (linear) verification cost [18]. An-
other alternative is using a universal and updatable model [37]
where a circuit-independent SRS is generated when the sys-
tem boots up, and any party can update the SRS in a verifiable
way; the trapdoor is unknown to all parties as long as at least
one contributor is honest. Sonic [45] presents the first efficient
universal SNARK construction, followed up by Marlin [24],
Plonk [31], and Lunar [21] to further improve the efficiency

of the proof system.
Universal SNARKs strike a good balance between effi-

ciency and acceptable trust assumption. We choose variants
of Plonk for our implementations primarily due to its excellent
performance, customizable gates, and importantly its support
for lookup argument [13, 30] that some of our optimization
techniques depend on.

B Cryptographic Primitives: Definitions and
Security Properties

B.1 Commitment Scheme

A commitment scheme COM =
(COM.Setup,COM.Commit,COM.Open) is a triple of
efficient algorithms where:

• ppCOM
$←−COM.Setup(1λ) generates a public parameter

given the security parameter;

• cm← COM.Commit(ppCOM,m;r) produces a commit-
ment cm given the message from a message space to be
committed (m ∈MppCOM

), and an explicit randomness

r $←−RppCOM
from the randomness space;

• b ← COM.Open(ppCOM,cm,m,r) checks whether
(m,r) is an opening of the commitment cm, and out-
puts a bit b ∈ {0,1} representing accept if b = 1, and
reject otherwise.

Informally, a commitment scheme is called binding if once
a message is committed, it is infeasible to later open to a
different message; and it is called hiding if the commitments
of any two messages are indistinguishable from one another.

Formally, COM is:

• Computationally Binding if for all efficient adversaries
A, there exists a negligible function negl(·) such that:

Pr

 b0 = b1 ̸= 0

∧ x0 ̸= x1

∣∣∣∣∣∣∣∣
ppCOM← COM.Setup(1λ)

(cm,x0,x1,r0,r1)←A(ppCOM)

b0← COM.Open(ppCOM,cm,x0,r0)

b1← COM.Open(ppCOM,cm,x1,r1)

≤ negl(λ)

if negl(λ) = 0, then we say the scheme is perfectly bind-
ing.

• Statistically Hiding if for all unbounded adversaries A,

17

there exists a negligible function negl(·) such that:

∣∣∣∣∣∣∣∣∣∣∣
Pr

b = b̂

∣∣∣∣∣∣∣∣∣∣∣

ppCOM← COM.Setup(1λ);

b $←− {0,1},r $←−RppCOM
,

(x0,x1)←A(ppCOM)

cm← COM.Commit(ppCOM,xb;r)

b̂←A(ppCOM,cm)

−
1
2

∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

if negl(λ) = 0, then we say the scheme is perfectly hid-
ing.

B.2 Polynomial Commitment Scheme

Introduced in [40], Polynomial Commitment Schemes (PCS)
enables a prover to commit to a polynomial f ∈ F[X], and
later open the commitment c at any point z ∈ F by produc-
ing an evaluation proof π attesting that “the opened value is
consistent with committed polynomial and f (z) = y”. A poly-
nomial commitment scheme is a tuple of algorithms PCS=
(Setup,Commit,Open,Eval) where (Setup,Commit,Open)
is a binding commitment scheme for a message space F[X]
of polynomials over a finite field F, and:

• (⊥,b) ← PCS.Eval(P(ppPCS, f ,r),V(ppPCS,cm,z,y))
is a public-coin interactive protocol between the prover
P who has a list of polynomials and opening hints
{ fi,ri}n

i=1, where fi ∈F<d [X]; and the verifierV who has
the common input ppPCS and a list of commitments, eval-
uation points, and their evaluations {cmi,zi,yi}n

i=1 where
(cmi,zi,yi)∈G×F2. The verifier outputs b∈ {0,1} and
the prover has no output. The purpose of the protocol is
to convince the verifier that for ∀i ∈ [n], fi(zi) = yi and
deg(fi)< d.

A PCS is correct if for all degree bound d ∈N and efficient
adversaries A:

Pr

{b1,i}n
i=1

∧ b2 = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ppPCS← PCS.Setup(1λ,d)

(d, f ,r,z)←A(ppPCS)
For i ∈ [n] :
cmi← PCS.Commit(ppPCS, fi;ri)

b1,i← PCS.Open(ppPCS,cmi, fi,ri)

yi← fi(zi)

(⊥,b2)← PCS.Eval

(
P(ppPCS, f ,r),

V(ppPCS,cm,z,y)

)

= 1

A PCS has knowledge soundness if PCS.Eval has knowl-

edge soundness as an interactive argument forREval(ppPCS):

REval(ppPCS) =

(x= (cm,z,y,d),w = (f ,r)) :

For i ∈ [n] :
fi ∈ F[x] ∧ deg(fi)< d

∧ fi(zi) = yi

∧ PCS.Open(ppPCS,cmi, fi,ri) = 1

Linearly Additive Homomorphism. A PCS is linearly
additively homomorphic if it holds the following property:
let [Ci]

n
i=1 commit to [fi]

n
i=1, then ∑

n
i=1 ai ◦Ci commits to

∑
n
i=1 ai · fi for any ai ∈ F. Here, arithmetics operations for

fi are over F[X]; and ◦ is the addition over the commitment
space (e.g. it is the group addition in [40]).

B.3 Indexed Relation
We define an indexed relationR as a set of (i,x,w), where i
is the index that describes the circuit; x consists of the (public)
instances that hold the assignments to a subset of wires; and
w is the witness that holds the assignments to the remaining
wires in the circuit. The corresponding indexed language
is defined as: L(R) := {(i,x) : ∃w s.t. (i,x,w) ∈ R}. We
further denoteRN for a relation with an upper-bounded circuit
|i| < N where N ∈ N is the size bound. When there is no
ambiguity, we use i= Φ to represent the indexing of circuit
for the relation:RΦ := {(x,w) : Φ(x,w) = 1}; and refer to
Φ as a predicate.

B.4 Pre-processing SNARK with Universal
SRS

A (pre-processing) non-interactive argument of knowl-
edge (NARK) is a tuple of efficient algorithms NARK =
(G,I,P,V) where:

• srs← NARK.G(λ,N) is a probabilistic algorithm that
generates a structured reference string srs from the secu-
rity parameter λ and a size bound N for the circuit.

• (ipk, ivk)← NARK.Isrs(i) is a deterministic algorithm
that, given a circuit description i and oracle access to srs,
generates an index proving key ipk and index verifying
key ivk for this particular circuit.

• π← NARK.P(ipk,x,w) is a probabilistic prover algo-
rithm that, given an index proving key ipk corresponding
to some relation RΦ, an instance x, and a witness w,
returns a NARK proof π.

• b ← NARK.V(ivk,x,π) is a verifier algorithm that,
given the index verifying key ivk, the instance x, and the
proof π, outputs a bit b where b = 1 indicates successful
verification, b = 0 otherwise.

18

A NARK scheme NARK = (G,I,P,V) for relation RΦ

needs to the following properties to hold:

• Completeness. For all size bound N ∈N, all adversaries
A:

Pr

(x,w) /∈RΦ

∨
NARK.V(ivk,x,π) = 1

∣∣∣∣∣∣∣∣∣∣
srs

$←−NARK.G(λ,N)

(Φ,x,w)←A(srs)

(ivk, ipk)
$←−NARK.Isrs(Φ)

π
$←−NARK.P(ipk,x,w)

= 1

• Adaptive Knowledge Soundness. For all N ∈ N, all
efficient adversaries A = (A1,A2) with state st, there
exists a knowledge extractor EA with oracle access to
A, such that:

Pr

(x,w) /∈RΦ

∧
NARK.V(ivk,x,π) = 1

∣∣∣∣∣∣∣∣∣∣∣

srs
$←−NARK.G(λ,N)

(Φ,x,st)←A1(srs)

(ivk, ipk)
$←−NARK.Isrs(Φ)

π←A2(st)

w← EA(srs,Φ,x, ipk, ivk)

≤ negl(λ)

A NARK scheme can additionally satisfy the following
optional properties:

• Statistical Zero-knowledge. For all N ∈ N, all un-
bounded adversaries A= (A1,A2), there exists an effi-
cient simulator15 S = (S1,S2):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

(x,w) ∈RΦ

∧
A2(st,π) = 1

∣∣∣∣∣∣∣∣∣∣∣

srs
$←−NARK.G(1λ,N)

(Φ,x,w,st)←A1(srs)

(ivk, ipk)
$←−NARK.Isrs(Φ)

π←NARK.P(ipk,x,w)

−Pr

(x,w) ∈RΦ

∧
A2(st,π) = 1

∣∣∣∣∣∣∣∣
(srs,τ)

$←− S1(1λ,N)

(Φ,x,w,st)←A1(srs)

π← S2(τ,Φ,x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

• Succinctness. A NARK scheme is said succinct (and
thus denoted as SNARK) if there exists a universal poly-
nomial poly (independent of relationRΦ) such that:

– The indexer algorithm NARK.Isrs runs in
polyλ(|Φ|) time, namely, it is polynomial in the
circuit size and independent from the public pa-
rameter srs size.

– The proof size |π| is bounded by poly(λ).

15We change a bit the syntax of the NARK.G algorithm in order to return
the trapdoor τ.

Figure 10: Incrementally Verifiable Computation.

– The verifier NARK.V runs in poly(λ+ |x|) time.
Particularly if is independent from the size of the
predicate Φ (equivalently the circuit i).

Furthermore, when the structured referenced string srs is
independent from all subsequent relations RN , we refer to
these NARKs as universal since their SRS can be univer-
sally applied to all relations of a bounded size N. Universal
(S)NARKs are of tremendous interest because they obviate
the requirement of a “circuit-specific” srs and thus a ded-
icated setup ceremony for each relation. Usually, SNARK
with universal srs are also updateable [37], allowing anyone
to efficiently update the SRS thus reducing the trust assump-
tion on the setup ceremony during NARK.G.

B.5 Incrementally Verifiable Computation
(IVC)

The notion of incrementally verifiable computation (IVC),
introduced by Valiant [55], describes a machine that outputs
the updated state in each step of computation, along with a
proof attesting to the correctness of all historical computation
steps. As shown in Fig. 10, an IVC starts with an initial state
z0 and takes t steps to compute the function F0 ◦F1 ◦ . . .◦Ft−1
and outputs the final state zt . In each step, an IVC prover takes
in the state zi, some optional witness wi, and integrity proof
πi from the last step, apply the computation Fi and outputs the
new state zi+1 together with a new proof attesting correctness
of πi and correctness of state transitions zi+1 =Fi(zi). An IVC
verifier can “jump in” at any step i ∈ [t], verify the (zi,πi),
and be convinced that the state is correct since all historical
computations are incrementally verified.

For simpler presentation and W.L.O.G., we assume that
F = F0 = . . .= Ft−1. An IVC for a step function F : X 7→ X
is a tuple of efficient algorithms IVC= (PF ,VF) that follows
these properties:

• Completeness. For all inputs z ∈ X , witnesses w and
proofs π:

Pr [z′ = F(z,w)∧VF (z′,π′) = 1 | (z′,π′)←PF (z,w,π)] = 1

• Knowledge Soundness. For all efficient adversaries A,
there exists an efficient knowledge extractor EA, such
that:

Pr

 VF (zt ,π) = 0

∨
∀i ∈ [t−1],zi+1 = F(zi,wi)

∣∣∣∣∣∣ (zt ,π)←A

{zi,wi}t−1
i=1 ← EA

≥ 1−negl(λ)

19

C PLONK Constraint Systems

A PLONK (and its variants) constraint system over a finite
field F consists of many gates, each of which has a predefined
number of wires where each wire is to be assigned with a value
in the witness vector. Each gate implies an algebraic relation
among all wire values and the exact relation is configurable
via some selectors to collectively select the exact function
applied, and a public input wire to be assigned with values of
the public input of an NP relation. Value assignments for all
wires are described using an index vector that connects each
wire with a specific value in the witness vector. For an NP
relation expressed in this constraint system, the index vector,
the selectors and the field F constitute the circuit description.
Such constraint system is satisfied if and only if some “local
constraints” (i.e. algebraic functions at each gate) are fulfilled
and some “regional/global constraints” across different/all
gates (e.g. all wire values respect the index vector connection)
are fulfilled.

We denote n,m, ℓ the number of gates, length of witness
vector, and the number of public inputs respectively. We adopt
definitions of PLONK and its variants to indexed relations
(defined in Appx. B.3) below.

Definition 1 (Plonk indexed relation). The indexed relation
Rplonk is the set of all triples:(

i= (F,n,m, ℓ,a,Q),x= (w j) j∈[ℓ],w = (w j) j∈[ℓ+1,m]

)
where the index vector a ∈ [m]3n, selectors are Q :=
(qL,qR,qO,qM,qC) ∈ (Fn)5, such that ∀i ∈ [n],

(qL)i ·wai +(qR)i ·wan+i +(qM)i ·waiwan+i +(qC)i +PIi

= (qO)i ·wa2n+i

where PIi = wi for i ∈ [ℓ] and PIi = 0 for i ∈ [ℓ+1,n].

Next, we propose a TURBOPLONK constraint system that
allows for customized gates beyond just addition and multi-
plication gate. However, we note that TURBOPLONK proof
system has a higher per-gate cost for proof generation and
higher fan-in resulting in a slightly larger proof size and more
polynomial to interpolate during proving. Fortunately, our
design is extremely efficient for NP relations that involve
heavy Rescue computation (e.g. Merkle proof verification
in a Merkle tree instantiated with Rescue hash) and ellip-
tic curve operations, since the total constraints required are
significantly reduced, the overall efficiency will be improved.

Definition 2 (TURBOPLONK indexed relation). The indexed
relationRtplonk is the set of all triples:(

i= (F,n,m, ℓ,a,Q),x= (w j) j∈[ℓ],w = (w j) j∈[ℓ+1,m]

)
where the index vector a ∈ [m]5n, selectors are Q :=
(q1,q2,q3,q4,qM1,2

,qM3,4
,qO,qC,qH1

,qH2
,qH3

,qH4
,qecc) ∈

Fn×13, such that ∀i ∈ [n],

(qO)i ·wa4n+i = (q1)i ·wai +(q2)i ·wan+i

+(q3)i ·wa2n+i +(q4)i ·wa3n+i

+(qM1,2
)i ·waiwan+i +(qM3,4

)i ·wa2n+iwa3n+i

+(qH1
)i ·w5

ai
+(qH2

)i ·w5
an+i

+(qH3
)i ·w5

a2n+i
+(qH4

)i ·w5
a3n+i

+(qecc)i ·waiwan+iwa2n+iwa3n+iwa4n+i

+(qC)i +PIi

where PIi = wi for i ∈ [ℓ] and PIi = 0 for i ∈ [ℓ+1,n].

Furthermore, to minimize the number of gates used for
range proofs and multi-scalar multiplications, we integrate
the techniques from Plookup [30] with the previous TUR-
BOPLONK constraint system and propose a customized UL-
TRAPLONK constraint system. The system is mainly used for
outer-layer circuits, where we need to simulate non-native
field arithmetics (whose circuit is dominated by range proofs),
as well as the Pippenger-based multi-scalar multiplications
(which require lookup over online key-value tables). The
ULTRAPLONK constraint system extends TURBOPLONK by
further introducing the following:

• To enable efficient range proofs, it introduces a prepro-
cessed range table Trg ∈ Fn, an additional wire to each
gate, and an index vector arg ∈ [m]n, such that for each
i ∈ [n], the witness value w(arg)i is in the range table Trg.

• To support multiple online lookup tables16, each contain-
ing key-value tuples where the “keys” are scalars and the
“values” are affine point variables (i.e. two variables for
the x and y coordinates)17, it introduces the following:

1. A merged, preprocessed table Tkey ∈ Fn containing
predefined “keys” in the key-value entries across
all sub-tables.

2. A lookup selector qK ∈ Fn to indicate whether a
gate is performing online table entry insertion and
query table insertion.

3. Two domain separator selectors qlt ,qqt for indicat-
ing the exact lookup sub-table and query sub-table
an entry in the final merged table belongs to.

More precisely, the i-th entry in our merged on-
line lookup table is a key-value tuple Ti := (qK)i ·[
(qlt)i,(Tkey)i,wa3n+i ,wa4n+i

]
; the i-th entry in our

merged online query table is a key-value tuple Qi :=
(qK)i ·

[
(qqt)i,wai ,wan+i ,wa2n+i

]
. The witness vector and

16We merged multiple sub-tables into a single one by adding an additional
column for table index in both the online lookup sub-tables and online query
sub-tables, which results in two additional “domain separator” selectors.

17The “values” type here is a pair of variables, but we can easily support
“value” type of a single variable by filling the other one with zero variables.

20

index vector should satisfy that ∀i ∈ [n],Qi ∈ T :=
(T j) j∈[n].

Definition 3 (ULTRAPLONK indexed relation). The indexed
relationRuplonk is the set of all triples (i,x,w) where

i= (F,n,m, ℓ,a,arg,Q,Trg,Tkey)

x= (w j) j∈[ℓ]

w = (w j) j∈[ℓ+1,m]

where the TURBOPLONK index vector a ∈ [m]5n, the
index vector for the range wire: arg ∈ [m]n, selectors are:
Q := (q1,q2,q3,q4,qM1,2

,qM3,4
,qO,qC,qH1

,qH2
,qH3

,qH4
,

qecc,qK ,qlt ,qqt) ∈ Fn×16, such that:

1. ((F,n,m, ℓ,a,Q),x,w) ∈Rtplonk.

2. ∀i ∈ [n], w(arg)i ∈ Trg.

3. ∀i ∈ [n], the query key-value tuple

Qi := (qK)i ·
[
(qqt)i,wai ,wan+i ,wa2n+i

]
is in the lookup table

T :=
{
T j = (qK) j ·

[
(qlt) j,(Tkey) j,wa3n+ j ,wa4n+ j

]}
j∈[n]

Here a ·b denotes the element-wise multiplications be-
tween scalar a and vector b.

D ULTRAPLONK Proof Systems

We present a Polynomial IOP for the ULTRAPLONK indexed
relationRuplonk (Def. 3) in Fig. 11 and follow notations simi-
lar to [31] and [30].

Let F be a finite field of prime order p, H ⊂ F∗ the
multiplicative subgroup containing the n-th roots of unity
where ω is the generator of the subgroup, namely H :=
{1,ω,ω2, . . . ,ωn−1}. The Lagrange polynomial Li(X) ∈
F<n[X] over H is defined as Li(X) = ωi(Xn−1)

n(X−ωi)
so that Li(x) =

1 when x = ωi and Li(x) = 0 elsewhere. The vanishing poly-
nomial ZH(X) over H is defined as ZH(X) = (X − 1)(X −
ω) . . .(X−ωn−1) = Xn−1 so that ∀x ∈ H,ZH(x) = 0.

D.1 Witness transformation
Given an ULTRAPLONK indexed relation
Ruplonk :=

(
i,x= (w j) j∈[ℓ],w = (w j) j∈[ℓ+1,m]

)
with

i= (F,n,m, ℓ,a,arg,Q,Trg,Tkey), we show how to transform
the index vector a′ = (a,arg) ∈ [m]5n× [m]n into a permuta-
tion: σ : [6n]→ [6n] and transformRuplonk into an equivalent
relation:R′uplonk :=

(
i,x= (w′i)i∈[ℓ],w = (w′i)i∈[ℓ+1,6n]

)
with

i= (F,n,m, ℓ,σ,Q,Trg,Tkey).

1. Define a partition P1, . . . ,Pm corresponding to m values
in the witness vector, such that for each j ∈ [m]: P j ={

i ∈ [6n] : a′i = w j
}

. Intuitively,Pi is the set of gate wire
identifiers whose assignments map to the same witness
value w j.

2. Define a permutation σ : [6n]→ [6n] such that for each
j ∈ [m], the restriction of σ on input P j forms a cycle
going over all elements in P j.

3. Define a new instance-witness vector (w′i)i∈[6n] such that
for each j ∈ [m] and each i ∈ P j, we have w′i = w j. It is
easy to see that this copy constraint holds if and only if
∀i ∈ [6n], w′i = w′

σ(i).

D.2 Polynomial Interpolation
During arithmetization, we turn relations among some vec-
tors indexed by gates into relations among some polynomi-
als indexed by elements in a multiplicative subgroup H –
a process that involves polynomial interpolations. For vec-
tors v = (vi)i∈[n] of size n, the same as the subgroup order,
we interpolate using Lagrange polynomial and expressed as
pv(X) = ∑i∈[n]Li(X) · vi ∈ F<n[X]. In practice, one should
use (Inverse) Fast Fourier Transform (IFFT/FFT) to effi-
ciently compute the coefficients of pv(X) from the data points
(vi)i∈[n]. For vectors of size kn for some k ∈ N, we use k
polynomials over k non-overlapping cosets of H to interpo-
late all data points. In our case, we need to find {ki}i∈[6]
such that k1H, . . . ,k6H are disjoint cosets of H in order to
interpolate polynomials from a vector of size 6n. We choose
the cosets using the following algorithm: let N ≥ |H| be a
global constant that is a multiple of |H|. We pick k1 = 1
and pick random k2, . . .k6 such that (k−1

j · ki)
N ̸= 1 for every

i, j ∈ [6], i ̸= j because every elements x ∈H satisfies xN = 1,
and that: aH = bH if and only if a−1 ·b ∈ H.

E PLONK with Merging, Batching and Accu-
mulation

We present a scheme Plonk′ based on the vanilla PLONK
in Def. 1 and that incorporates instance merging (§ 3.2),
proof batching (§ 3.3), and lightweight verifier via accu-
mulation scheme technique (§ 3.1). The presentation can
be easily adapted to TURBOPLONK which is what we use
for inner predicate circuits in ZEXE since it minimizes the
circuit complexity of the outer proof. Details of Plonk′ =
(Setup, Index,MergePK,MergeVK,MergeWit,BatchProve,
BatchPartialVfy,Decide) are shown below.

For generating a npf-input-npf-output transaction via
DPC.ExecuteL, the user will take npf pair of input death pred-
icate and output birth predicate (Φd ,Φb) and preprocess them
via Plonk′.Index to get proving keys and verification keys.
The user then passes npf pair of proving keys, verification keys,

21

Preprocessing Phase:
The indexer I takes as input an indexed instance i= (F,n,m, ℓ,σ,Q,Trg,Tkey) and outputs the following polynomial oracles:

• The selector polynomials that interpolates selector vectors in Q:

q1(X) = ∑
i∈[n]

Li(X) · (q1)i , . . . ,qqt(X) = ∑
i∈[n]

Li(X) · (qqt)i .

• Define σ∗ := σ◦ fσ : [6n] 7→ k1H ∪ . . .∪ k6H, where fσ := i 7→ k1 ·ωi, . . . ,5n+ i 7→ k6 ·ωi ∀i ∈ [n].
The identity polynomials SID j(X) = k jX for each j ∈ [6], and the permutation polynomials Sσ j(X) = ∑i∈[n] σ

∗((j−1)n+ i) ·Li(X) that encodes σ∗ for
each j ∈ [6].

• The preprocessed table polynomials
Trg(X) = ∑

i∈[n]
Li(X) · (Trg)i , Tkey(X) = ∑

i∈[n]
Li(X) · (Tkey)i .

Prover Inputs: The prover P takes as input the indexed relation i, the online public instance x= (wi)i∈[ℓ], and the online witness w= (wi)i∈[ℓ+1,6n]. (WLOG
we assume w6n = 0,(qK)n = 0.)
Verifier Inputs: The verifier V takes as input F, the online public instance x= (wi)i∈[ℓ], and the oracle access to polynomials the indexer generates.
Online Phase:
Round 1

1. P computes the public input polynomial PI(X) = ∑i∈[ℓ]Li(X) · (w)i.

2. P computes and sends V polynomials f1(X), . . . , f6(X) such that for every i ∈ [6], fi(X) interpolates (w(i−1)n+1, . . . ,win) over H.

Round 2
1. V sends P a random challenge τ ∈ F.

2. P computes the merged query polynomial:

Q∗(X) := f6(X)+ τ ·qK(X) · (qqt(X)+ τ · f1(X)+ τ
2 · f2(X)+ τ

3 · f3(X)) ,

and the merged lookup table polynomial:

T ∗(X) := Trg(X)+ τ ·qK(X) · (qlt(X)+ τ ·Tkey(X)+ τ
2 · f4(X)+ τ

3 · f5(X)) .

(q∗ = (Q∗(ωi))i∈[n] is the merged query vector, t∗ = (T∗(ωi))i∈[n] is the lookup table vector)

3. Let s be the vector (q∗, t∗) sorted by t∗. We represent s by the vectors h1,h2 ∈ Fn as followsa:

h1 = (s1,s3, . . . ,s2n−1), h2 = (s2,s4, . . . ,s2n)

P computes the sorted polynomial h1(X),h2(X) ∈ F<n[X] and sends them to V:

h1(X) = ∑
i∈[n]

s2i−1 ·Li(X), h2(X) = ∑
i∈[n]

s2i ·Li(X)

Round 3
1. V sends random challenges β,γ ∈ F.

2. P computes Plonk permutation polynomial z1(X) and Plookup permutation polynomial z2(X) and sends to V:

z1(X) = L1(X)+
n−1

∑
i=1

(
Li+1(X) ·

i

∏
j=1

6

∏
ℓ=1

w(ℓ−1)n+ j +βkℓw j−1 + γ

w(ℓ−1)n+ j +βσ∗((ℓ−1)n+ j)+ γ

)
,

z2(X) = L1(X)+
n−1

∑
i=1

(
Li+1(X) ·

i

∏
j=1

(1+β)(γ+q∗ j)(γ(1+β)+ t∗ j +βt∗ j+1)

(γ(1+β)+ s2 j−1 +βs2 j)(γ(1+β)+ s2 j +βs2 j+1)

)
.

(Online Phase) Round 4:
1. V computes a random challenge α ∈ F.

2. P computes some intermediate polynomials:

Fgate(X) = q1(X) f1(X)+q2(X) f2(X)+q3(X) f3(X)+q4(X) fx(X)+qM1,2
(X) f1(X) f2(X)+qM3,4

(X) f3(X) f4(X)

+qH1
(X) f1(X)5 +qH2

(X) f2(X)5 +qH3
(X) f3(X)5 +qH4

(X) f4(X)5 +qecc(X) f1(X) f2(X) f3(X) f4(X) f5(X)+qC(X)+PI(X)−qO(x) f5(X)

Fz1 ,1 = L1(X) · (z1(X)−1), Fz1 ,2 = z1(X) ·

(
6

∏
i=1

fi(X)+βSIDi(X)+ γ

)
− z1(ωX) ·

(
6

∏
i=1

fi(X)+βSσi(X)+ γ

)
, Fz2 ,1 = L1(X) · (z2(X)−1)

Fz2 ,2 = z2(X) · (1+β)(γ+Q∗(X))(γ(1+β)+T ∗(X)+βT ∗(X ·ω))− z2(ωX) · (γ(1+β)+h1(X)+βh2(X))(γ(1+β)+h2(X)+βh1(X ·ω))

3. P computes polynomial
F(X) := Fgate(X)+αFz1 ,1(X)+α

2Fz1 ,2(X)+α
3Fz2 ,1(X)+α

4Fz2 ,2(X)

and sends V the quotient polynomial t(X) := F(X)
ZH (X) .

Verification Phase:
1. V computes public input polynomial PI(X) defined in online phase round 1.

2. V checks the polynomial identity

F(X)
?
= t(X)ZH(X)

where F(X) is defined above in online phase round 4, and can be evaluated given oracle access to the indexer’s preprocessed polynomials, polynomials
sent by P , and the public input polynomial PI(X).
We note that the check is equivalent to checking F(X) = 0,∀x ∈ H.

aWe borrow the alternating method from [50] to split s into even and odd halves instead of lower and upper halves as in the original [30] to save one
polynomial identity check used to ensure h1 and h2 are overlapped.

Figure 11: A Polynomial IOP for the ULTRAPLONK constraint system

22

and witnesses into MergePK,MergeVK,MergeWit to get npf
number of merged keys/witnesses. Subsequently, the user gen-
erates a batched inner predicate proof for all 2npf predicates
via BatchProve whose correctness will be checked inside the
outer circuit that embeds the logic in BatchPartialVfy. Fi-
nally, a ledger maintainer will check the outer proof and run
Decide on the accumulator outputted by BatchPartialVfy to
determine the validity of the transaction.
Setup(λ,N)→ srs

• inputs: security parameter λ, and upper bound for
merged-instance circuit N = 2n (where n is the size
bound for a single instance)

• outputs: public parameter srs

1. Run Setup of the [40] PCS to get srs :=
([1]1, [x]1, . . . , [xN+5], [1]2, [x]2).

Index(srs,Φ,b)→ (ipk, ivk)

• inputs:

– public parameter srs
– predicate Φ (whose circuit size is bounded by n)
– bit b indicating whether Φ is a birth or death predi-

cate

• outputs: circuit proving key ipk and verification key ivk

1. Compute all selectors Q ∈ (Fn)5 and the wire permu-
tation σ : [3n] 7→ [3n] from predicate Φ (similar to the
process in Appx. D.1).

2. Find coset representatives {k1,k2} such that
H,k1H,k2H ⊂ F∗ are non-overlapping cosets (similar to
the process in Appx. D.2). Note H = {1,ω,ω2, . . . ,ωN}
is a multiplicative subgroup of size N.
Derive σ∗ as:

σ∗︷ ︸︸ ︷
[3n] σ7→ [3n] 7→ [6n]︸ ︷︷ ︸

σ′

f
σ′7→ H ∪ k1H ∪ k2H

σ
′(i) :=

σ(i) 0 < σ(i)≤ n
σ(i)+n n < σ(i)≤ 2n
σ(i)+2n 2n < σ(i)≤ 3n

fσ′ (i) :=

ωi 0 < σ′(i)≤ N
k1 ·ωi N < σ′(i)≤ 2N
k2 ·ωi 2N < σ′(i)≤ 3N

3. If b = 0,
qL(X) = ∑

n
i=1 (qL)i ·Li(X)

qR(X) = ∑
n
i=1 (qR)i ·Li(X)

qO(X) = ∑
n
i=1 (qO)i ·Li(X)

qM(X) = ∑
n
i=1 (qM)i ·Li(X)

qC(X) = ∑
n
i=1 (qC)i ·Li(X)

qC(X) = ∑
n
i=1 (qC)i ·Li(X)

Sσ1(X) = ∑
n
i=1 σ∗(i) ·Li(X)

Sσ2(X) = ∑
n
i=1 σ∗(n+ i) ·Li(X)

Sσ3(X) = ∑
n
i=1 σ∗(2n+ i) ·Li(X)

If b = 1
qL(X) = ∑

n
i=1 (qL)i ·Ln+i(X)

qR(X) = ∑
n
i=1 (qR)i ·Ln+i(X)

qO(X) = ∑
n
i=1 (qO)i ·Ln+i(X)

qM(X) = ∑
n
i=1 (qM)i ·Ln+i(X)

qC(X) = ∑
n
i=1 (qC)i ·Ln+i(X)

Sσ1(X) = ∑
n
i=1 (σ

∗(i)+n) ·Ln+i(X)

Sσ2(X) = ∑
n
i=1 (σ

∗(n+ i)+n) ·Ln+i(X)

Sσ3(X) = ∑
n
i=1 (σ

∗(2n+ i)+n) ·Ln+i(X)

4. Output proving key:

ipk := (qL(X),qR(X),qO(X),qM(X),qC(X),Sσ1(X),Sσ2(X),Sσ3(X))

and verification key:

ivk := ([qL]1, [qR]1, [qO]1, [qM]1, [qC]1, [Sσ1]1, [Sσ2]1, [Sσ3]1)

MergePK(ipkb, ipkd)→ ipk⊕

• inputs: a birth predicate proving key ipkb and a death
predicate proving key ipkd .

• outputs: a merged proving key ipk⊕.

1. Parse two input proving keys:

ipkb :=
(

qb
L(X),qb

R(X),qb
O(X),qb

M(X),qb
C(X),Sb

σ1(X),Sb
σ2(X),Sb

σ3(X)
)

ipkd :=
(

qd
L(X),qd

R(X),qd
O(X),qd

M(X),qd
C(X),Sd

σ1(X),Sd
σ2(X),Sd

σ3(X)
)

2. Homomorphically add each element in the two verifica-
tion keys:

q⊕L (X) = qb
L(X)+qd

L(X), . . . ,S⊕
σ3(X) = Sb

σ3(X)+Sd
σ3(X)

3. Output the merged verification key:

ipk⊕ :=
(

q⊕L (X),q⊕R (X),q⊕O(X),q⊕M(X),q⊕C (X),
S⊕

σ1(X),S⊕
σ2(X),S⊕

σ3(X)

)
MergeVK(ivkb, ivkd)→ ivk⊕

• inputs: a birth predicate verification key ivkb and a death
predicate verification key ivkd .

• outputs: a merged verification key ivk⊕.

1. Parse two input verification keys:

ivkb :=
(
[qb

L]1, [q
b
R]1, [q

b
O]1, [q

b
M]1, [qb

C]1, [S
b
σ1]1, [S

b
σ2]1, [S

b
σ3]1

)
ivkd :=

(
[qd

L]1, [q
d
R]1, [q

d
O]1, [q

d
M]1, [qd

C]1, [S
d
σ1]1, [S

d
σ2]1, [S

d
σ3]1

)
2. Homomorphically add each element in the two proving

keys:

[q⊕L]1 = [qb
L]1 +[qd

L]1, . . . , [S
⊕
σ3]1 = [Sb

σ3]1 +[Sd
σ3]1

3. Output the merged proving key:

ivk⊕ :=
(
[q⊕L]1, [q

⊕
R]1, [q

⊕
O]1, [q

⊕
M]1, [q⊕C]1, [S⊕σ1]1, [S

⊕
σ2]1, [S

⊕
σ3]1

)
MergeWit(wb,wd)→w⊕

23

• inputs: birth predicate witness wb and death predicate
witness wd

• outputs: merged witness w⊕

1. Parse birth and death witness ∈ F3n (witness from the
indexed relation is transformed as in Appx. D.1 first):

wb = (wb,1, . . . ,wb,3n) , wd = (wd,1, . . . ,wd,3n)

2. Outputs merged witness ∈ F3N where N = 2n:

w⊕ =

 wb,1, . . . ,wb,n,wd,1, . . . ,wd,n,

wb,n+1, . . . ,wb,2n,wd,n+1, . . . ,wd,2n,

wb,2n+1, . . . ,wb,3n,wd,2n+1, . . . ,wd,3n

where the merged public instance is x⊕ =
(wb,1, . . . ,wb,ℓ,wd,1, . . . ,wd,ℓ)

BatchProve(srs, [x⊕,i]
npf
i=1, [w⊕,i]

npf
i=1, [ipk⊕,i]

npf
i=1)→ π⊛

• inputs:

– public parameter srs

– list of merged instances, merged witnesses, and
merged proving keys
[x⊕,i]

npf
i=1, [w⊕,i]

npf
i=1, [ipk⊕,i]

npf
i=1 where npf denotes

the number of instances to be proven.

• outputs: a batched proof π⊛

Round 1:

• For each i ∈ [npf], compute wire polynomials
ai(X),bi(X),ci(X) as in Round 1 of [31]18, and
outputs ([ai]1, [bi]1, [ci]1)i∈[npf].

Round 2:

• Compute permutation challenge β =
H(transcript,0),γ = H(transcript,1).

• For each i ∈ [npf], compute permutation polynomials
zi(X) as in Round 2 of [31], and outputs ([zi]1)i∈[npf].

Round 3:

• Compute quotient challenge α = H(transcript).

• For each i ∈ [npf],

– Parse merged instance x⊕,i = (xi)i∈[2ℓ], com-
pute public input polynomial: PIi(X) =

∑
ℓ
i=1 (xi ·Li(X)+ xi+ℓ ·Ln+i(X))

18Referring to the protocol presented in Section 8.3, similarly for all con-
sequent steps

– Compute the following intermediate polynomials:

Fgate,i(X) = ai(X)qi
L(X)+bi(X)qi

R(X)

+ai(X)bi(X)qi
M(X)+PIi(X)− ci(X)qi

O(X)

Fσ1,i(X) = (ai(X)+βX + γ)(bi(X)+βk1X + γ)

× (ci(X)+βk2X + γ) · zi(X)

− (ai(X)+βSi
σ1(X)+ γ)(bi(X)+βSi

σ2(X)+ γ)

× (ci(X)+βSi
σ3(X)+ γ) · zi(ωX)

Fσ2,i(X) = (zi(X)−1) ·L1(X)

• Compute the batched quotient polynomial (note |H|=
N = 2n):

t(X) = Z−1
H (X)×(

npf

∑
i=1

α
3i−3 (Fgate,i(X)+αFσ1,i(X)+α

2Fσ2,i(X)
))

• Split t(X) into t1(X), t2(X), t3(X) as in Round 3 of [31],
and outputs ([t1]1, [t2]1, [t3]1).

Round 4:

• Compute evaluation challenge z= H(transcript).

• For each i ∈ [npf], compute and output opening evalua-
tions:

āi = ai(z), b̄i = bi(z), c̄i = ci(z)

s̄σ1,i = Si
σ1(z), s̄σ2,i = Si

σ2(z), z̄ω,i = zi(zω)

Round 5:

• Compute opening challenge v = H(transcript).

• For each i ∈ [npf], compute the following intermediate
polynomials:

– Numerator polynomial of the quotient polynomial:

ri(X) = āiqi
L(X)+ b̄iqi

R(X)+ āib̄iqi
M(X)

+qi
C(X)+PI(z)− c̄iqi

O(X)

+α · [(āi +βz+ γ)(b̄i +βk1z+ γ)(c̄i +βk2z+ γ) · zi(X)

− (āi +βs̄σ1 ,i + γ)(b̄i +βs̄σ2 ,i + γ)(āi +βs̄σ3 ,i + γ) · z̄ω,i]

+α
2 · [(zi(X)−1)L1(z)]

– Polynomials evaluated at evaluation point z:

gz,i(X) =

v · (ai(X)− āi)

+v2 · (bi(X)− b̄i)

+v3 · (ci(X)− c̄i)

+v4 · (Si
σ1(X)− s̄σ1 ,i)

+v5 · (Si
σ2(X)− s̄σ2 ,i)

– Polynomial(s) evaluated at evaluation point zω:

gzω,i(X) = zi(X)− z̄ω,i

24

• Compute the batched linearization polynomial:

r(X) =

npf

∑
i=1

α
3i−3 · ri(X)

−ZH(z) ·
(
t1(X)+ zNt2(X)+ z2Nt3(X)

)
• Compute the batched opening proof polynomials:

Wz(X) =
r(X)+∑

npf
i=1 v6i−6 ·gz,i

X− z

Wzω(X) =
∑

npf
i=1 vi−1 ·gzω,i

X− zω

• Outputs their commitments: [Wz]1, [Wzω]1.

Final Round:

• Compute multi-point evaluation challenge
u = H(transcript).

• For each i ∈ [npf], define: πi =(
[ai]1, [bi]1, [ci]1, [zi]1, āi, b̄i, c̄i, s̄σ1,i, s̄σ2,i, z̄ω,i

)
,

outputs batched proof:

π⊛ :=
(
[t1]1, [t1]2, [t3]1, [Wz]1, [Wzω]1, [πi]i∈[npf]

)
.

Remark 4. Since we only use Plonk′ for the inner predicate
proofs, we don’t need it to be zero-knowledge, as long as the
SNARK proof for the outer circuit is zero-knowledge, then we
would satisfy the function privacy of ZEXE. Specifically, we
don’t need random blinding scalars for wire polynomials in
Round 1 and permutation polynomials in Round 2 as in [31].
BatchPartialVfy(srs, [x⊕,i]

npf
i=1, [ivk⊕,i]

npf
i=1,π⊛,s)→ ξ

• inputs:

– public parameter srs
– list of merged instances, merged verification keys
[x⊕,i]

npf
i=1, [ivk⊕,i]

npf
i=1

– the batched proof for all relations π⊛

– masking randomness s ∈ F

• outputs: an accumulator ξ containing two group ele-
ments to checked in a pairing equation in Decider in the
accumulation scheme.

1. Validate all field elements and group elements in π⊛.

2. Compute challenges α,β,γ,z,v,u ∈ F as in the
BatchProve from the common inputs, public inputs, and
elements of π⊛.

3. Compute:

[A]1 = [Wz]1 +u[Wzω]1

[B]1 = z[Wz]1 +uzω[Wzω]1

+

[
r(X)+

npf

∑
i=1

v6i−6gz,i(X)

]
1

+u

[
npf

∑
i=1

vi−1gzω,i(X)

]
1︸ ︷︷ ︸

computable from all inputs to BatchPartialVfy.

4. Mask both elements for hiding property:

[Ã]1 = [A]1 + s[x]1, [B̃]1 = [B]1 + s[1]1

where [x]1, [1]1 are in srs.

5. Outputs ξ :=
(
[Ã]1, [B̃]1

)
.

Decide(srs,ξ)→ b

• inputs: public parameter srs and the accumulator (partial
verification state) ξ

• outputs: accept or reject bit b ∈ {0,1}

1. Parse ξ :=
(
[Ã]1, [B̃]1

)
, get [1]2, [x]2 from srs.

2. Check e([Ã]1, [1]2)
?
= e([B̃]1, [x]2), if equal output b = 1;

output b = 0 otherwise.

F Modular Arithmetic Gadgets: Security
Proof

We proceed to provide detailed proof of the security properties
of our modular arithmetic gadgets. Given a set of relevant
public parameters (and prerequisite assumption about them), a
circuit design (w.r.t. a relation) has completeness when for any
inputs and their valid witnesses, the circuit should always be
satisfied; soundness when for any inputs and invalid witnesses,
the circuit should never be satisfied.

Proof for Proposition 1. Soundness is straightforward since
any invalid witnesses w0,w1,z0,z1 ∈ Fq, either they are out of
bound ∈ [2m,q) thus failed the first range check in the gadget,
or they are values ∈ [0,2m) that breaks the equation 1 and
by violating any one of equation 1b,1c,1d, the corresponding
steps in the gadget will fail.

(x0 +2m · x1) · (y0 +2m · y1) (1)

= z0 +2m · z1 +(w0 +2m ·w1) · (p0 +2m · p1) (1a)

⇕
z0 +w0 · p0− x0 · y0−2m · c′0 = 0

z1 +w0 · p1 +w1 · p0− x0 · y1− x1 · y0 + c′0−2m · c′1 = 0

w1 · p1− x1 · y1 + c′1 = 0

(1b)

(1c)

(1d)

For completeness, we need to further argue that (i) calcula-
tions within the circuit won’t overflow or underflow Fq at all
steps; and (ii) there exists at least one witness for any possible
inputs.

To see why (i) is true (with honest provers who follow the
protocol and prepare witnesses and intermediate values like
carriers c0,c1 properly):

• In step 2, LHS is z0 +w0 · p0 ∈ [0,2m + 22m]; RHS is
x0 · y0 + 2m · (c0− 2m) ∈ [0,22m + 2m · (2m+k − 2m)) ∈
[0,22m+k). Since q> 22m+k+1, both LHS and RHS won’t
overflow. Note that RHS ≥ 0 because c′0 ≥ −2m and
c0 = c′0 +2m.

25

• In step 3, LHS is z1 +w0 · p1 +w1 · p0 + (c0− 2m) ∈
[0,2m +22m ·2+2m+k−2m) ∈ [0,22m+1 +2m+k); RHS
is x0 · y1 + x1 · y0 + 2m · (c1− 2m+1) ∈ [0,22m · 2+ 2m ·
2m+2) ∈ [0,22m+3). Since q > 22m+k+1 ∧ K ≤ 3, both
LHS and RHS won’t overflow.

• In step 4, LHS is w1 · p1 + (c1 − 2m+1) ∈ [0,22m +
2m+2) ∈ [0,22m+1); RHS is x1 · y1 ∈ [0,22m). Clearly
both sides won’t overflow.

To see why (ii) is true, we emphasize that inputs x,y are
assumed to be the canonical representation of Fp (namely,
x,y ∈ [0, p)). Since for x · y = z+ p ·w (the actual relation is
expressed limb-wise), x · y ∈ [0, p2) and p ·w ∈ [0, p · 22m),
given that 22m > p, we know ensure existence of at least one
w ∈ [0,22m) for any inputs x,y.

Proof for Proposition 2. For soundness, it is straightforward,
invalid witnesses w,y are either out of proper range and failed
the range check in the first step of the circuit, or they are in
range but violate the relation y+ p ·w = x1 + . . .+ xN which
will failed the second step.

For completeness, we need to further argue that (i) calcula-
tions within the circuit won’t overflow or underflow Fq at all
steps; and (ii) there exists at least one witness for any possible
inputs.

To see why (i) is true: given N < K−1
c + 1,c · p ≥ 22m ≥

p, q
p > c+K in step 2,

LHS is 0≤ y+ p ·w < 22m +22m ·K < 22m+k+1;
RHS is 0≤ x1+ . . .+xN <N ·22m)< (K

c +1) ·22m < (K
c +1) ·

c · p < (K + c) · p < q. We can see both sides won’t overflow
Fq.

To see why (ii) is true: since the tight upper bound of LHS
is bigger than a loose upper bound of RHS:

22m +K · p≥ (K + c−1) · p

> (
K−1

c
+1) · cp > (

K−1
c

+1) ·22m > N ·22m

there must exists some witnesses w,y for any inputs.

G Optimized Predicate Commitment

For efficiency reason, we split Re into two relations: an ex-
tended UTXO relationRutxo that checks the well-formedness
of input and output records among other things, and a pred-
icates satisfiability relation RΦ that checks inner proofs for
death/birth predicates of the input/output records. The circuit
forRΦ takes a list of inner proofs and their corresponding ver-
ification keys as secret witnesses and checks their validity. To
ensure that death/birth predicates involved inRutxo andRΦ

are consistent, [14] proposes to make the hiding commitment
cmΦ to the predicates in a transaction as a public input for
both circuits so that the verifier can check their equality (see

Predicate commitment in Rutxo

xutxo =
(
pred. commitment cmΦ

)
wutxo =

input death pred. hashes [pidd,i]
m
1

output birth pred. hashes [pidb, j]
n
1

pred. comm. randomness rΦ

Circuit (over Fr)

1. The predicate commitment is valid:

cmΦ = COM.Commit([pidd,i]
m
1 ∥ [pidb, j]

n
1;rΦ)

= Blake2s([pidd,i]
m
1 ∥ [pidb, j]

n
1 ∥ rΦ)

Predicate commitment in RΦ

xΦ =
(
pred. commitment cmΦ

)
wΦ =

input death pred. ver. key [ivkd,i]
m
1

output birth pred. ver. key [ivkb, j]
n
1

pred. comm. randomness rΦ

Circuit (over Fp)

1. For each i ∈ {1, . . . ,m}: the death predicate hash is computed
correctly: pidd,i = CRH.Eval(ppCRH, ivkd,i).

2. For each j ∈ {1, . . . ,n}: the birth predicate hash is computed
correctly: pidb, j = CRH.Eval(ppCRH, ivkb, j).

3. The predicate commitment is valid:

cmΦ = COM.Commit([pidd,i]
m
1 ∥ [pidb, j]

n
1;rΦ)

= Blake2s([pidd,i]
m
1 ∥ [pidb, j]

n
1 ∥ rΦ)

Figure 12: Relation snippet for predicate commitment in [14].

Fig. 12). Furthermore, the authors suggest committing to the
collision-resistant hashes of the predicate verification keys
instead, to reduce the cost of computing cmΦ in the circuit.

Concretely, the original ZEXE instantiates CRH with Ped-
ersen hash, COM with Blake2s hash where the message is
appended with a randomizer for the hiding property. The
primary circuit cost comes from constraining non-algebraic
Blake2s hash on a message size of m+n+1 for an m-input-
n-output transaction. We emphasize that directly switching
Blake2s to a SNARK-friendly hash is not immediately more
advantageous, since we need to constrain this hash function
in two different fields (over Fr forRutxo and over Fp forRΦ),
and constraining algebraic hashes over non-native fields is
probably more expensive as it requires many range checks
and modular arithmetics. Worse, the number of non-native
operations grows linearly with the message size since longer
messages require more invocations of the hash function.

We present an optimized circuit in Fig. 13. The high-level
idea is to encode the list of predicate hashes/identifiers as the
coefficients of a univariate polynomial and commit to these
predicates by evaluating this polynomial at a binding point.

Let HCOM1 : Fm+n
r 7→ Fr,HCOM2 : Fm+n

p 7→ Fr be two
hash-based commitment scheme with different message
spaces but the same digest space. In practice, we can instan-
tiate HCOM1,HCOM2,COM with SNARK-friendly, hash-

26

Predicate commitment in Rutxo

xutxo =

(
pred. comm. cmΦ ∈ Fr
pred. bindings c1,c2 ∈ Fr

)

wutxo =

input death pred. hashes [pidd,i]

m
1

output birth pred. hashes [pidb, j]
n
1

pred. comm. randomness rΦ ∈ Fr
pred. binding factor rΦ,1 ∈ Fr

Circuit (over Fr)

1. Check predicate binding is correct: c1 =
HCOM1.Commit(ppHCOM1

, [pidd,i]
m
1 ∥ [pidb, j]

n
1;rΦ,1).

2. The predicate commitment is valid: cmΦ =
COM.Commit(ppCOM, putxo(c);rΦ) where c = c1 + c2 and
putxo(X) = ∑

m
i=1 pidd,i ·X i−1 +∑

n
j=1 pidb, j ·Xm+ j−1.

Predicate commitment in RΦ

xΦ =

(
pred. comm. cmΦ

pred. bindings c1,c2 ∈ Fr

)

wΦ =

input death pred. ver. key [ivkd,i]

m
1

output birth pred. ver. key [ivkb, j]
n
1

pred. comm. randomness rΦ ∈ Fr
pred. binding factor rΦ,2 ∈ Fp

Circuit (over Fp)

1. For each i∈{1, . . . ,m}: the death predicate hash is computed correctly:
pidd,i = CRH.Eval(ppCRH, ivkd,i).

2. For each j ∈ {1, . . . ,n}: the birth predicate hash is computed correctly:
pidb, j = CRH.Eval(ppCRH, ivkb, j).

3. Check predicate binding is correct: c2 =
HCOM2.Commit(ppHCOM2

, [pidd,i]
m
1 ∥ [pidb, j]

n
1;rΦ,2).

4. The predicate commitment is valid: cmΦ =
COM.Commit(ppCOM, pΦ(c);rΦ) where c = c1 + c2 and
pΦ(X) = ∑

m
i=1 pidd,i ·X i−1 + ∑

n
j=1 pidb, j ·Xm+ j−1. (addition,

polynomial evaluation, and commitment are all computed over
non-native field Fr)

Figure 13: Relation snippet for optimized predicate commitment.

based commitments, and use modular arithmetic gadgets in-
troduced in § 3.5 during step 4 of the predicate commitment
circuit inRΦ.

Remark 5. Compared to the naïve solution of directly switch-
ing Blake2s to a SNARK-friendly hash, the main efficiency
of our design in Fig. 13 comes from the fact that our non-
native operations do not grow with message size (number of
predicates committed). Because HCOM1,HCOM2 computa-
tions, used to bind all predicate identifiers and whose costs
increase linearly with the input message size, are over the
native field of their respective circuits and involve no modular
arithmetics; whereas the only step involving non-native oper-
ations (the COM.Commit inRΦ circuit) enjoys a fixed-size
input, thus fixed cost, regardless of the number of predicates
to be committed.

Proposition 3. Assuming HCOM1,HCOM2 are random ora-
cles, COM is a hiding commitment scheme, then the circuits
in Fig. 13 ensure that the list of predicates being used in two
circuits are consistent with overwhelming probability w.r.t.

the randomly sampled binding factors rΦ,1 ∈ Fr,rΦ,2 ∈ Fp,
and the predicate commitment randomness rΦ ∈ Fr, and that
cmΦ,c1,c2 reveals nothing about the predicates involved.

informal proof. Since cmΦ,c1,c2 are public inputs,
we know cmΦ,c = c1 + c2 are guaranteed to be
equal across two circuits. If Rutxo and RΦ com-
mit to two different lists of predicates, then the
two polynomials would be different: putxo(X) ̸= pΦ.
Given cmΦ = COM.Commit(ppCOM, putxo(c);rΦ) =
COM.Commit(ppCOM, pΦ(c);rΦ), there are two cases:

• putxo(c) ̸= pΦ(c): this means we open cmΦ to two dif-
ferent messages which break the computational binding
property of COM.

• putxo(c) = pΦ(c): two different polynomials ∈ F<m+n−1
r

only evaluate to the same value at the same random point
c (generated from random oracles) with negligible prob-
ability of m+n−1

|Fr | based on the Schwartz-Zippel lemma.

Therefore, we can conclude that the predicates are consistent
across these two relations with overwhelming probability.

Furthermore, since COM is hiding, HCOM1,HCOM2
are random oracles, with randomly sampled randomnesses
rΦ,1,rΦ,2,rΦ, we know that cmΦ,c1,c2 reveals nothing about
their committed messages.

H System Implementation Details

Elliptic Curves. We use two pairing-friendly elliptic curves
EBLS,EBW in a similar fashion as [14] to support one layer of
proof composition, and one twisted edwards curve EEd/BLS

whose base field matches the prime order subgroup of EBLS.
Inner proofs are generated over the BLS12-377 curve (inner
circuits are over its scalar fields), and outer proofs are gen-
erated over the BW6-761 curve [39] (outer circuits are over
its scalar field which matches the base field of BLS12-377).
Additionally, for some cryptographic primitives that require a
DLP-hard group (e.g. transaction signing in delegable DPC),
we use the twisted Edwards curve whose base field is the
scalar field of the BLS12-377 curve.

Pseudorandom Permutation. Many of our following prim-
itives are built from an algebraic pseudorandom permutation
using Rescue algorithm [2].

The Rescue PRP is defined by a square matrix MDS of
size w× w (in our instantiation w = 4), an initial constants
vector IC, and a key-scheduling constant vector C and a key-
scheduling matrix K. We set the number of rounds nr = 12.
For the S-box parameter α, we set α = 11 for BLS12-377’s
scalar field (used by the inner circuit) and α = 5 for BLS12-
377’s base field (used by the outer circuit). Note that during
key scheduling, the key injection vectors can be preprocessed
yielding a much faster generation of round keys. Formally, our

27

Rescue instance works over a field F, with keys and inputs of
size 4 field elements: m′← PRP(k,m) where k,m,m′ ∈ F4.

For our PRF and hash function below, we need a fixed-key
permutation as a building block rather than the full Rescue
PRP. We build this by setting the key to the 0 vector: m′←
FixedKeyPRP(m) = PRP([0,0,0,0],m) where m,m′ ∈ F4.

Pseudorandom Function. We build a sponge-based PRF
from the fixed-key Rescue permutation. The construction
follows the Full-State Keyed Sponge (FKS) paradigm (see
Algorithm 1 in [46]) but here is simplified to output a single
field element. The PRF takes a secret key k of one field el-
ement, a message m of fixed length: y← PRFn(k,x) where
k,y ∈ F,x ∈ Fn.

The Full-State Keyed Sponge construction works as fol-
lows: it set the initial state with zeroes and the key in the last
slot. Then it divides the input into chunks of Rescue’s state
size, and absorbs them sequentially by 1) adding the chunk to
the state, and 2) calling the Rescue permutation to produce
a new state. After the input has been absorbed, it outputs the
first element of the state19.

CRH. We build our collision-resistant hash (CRH) using
the Sponge construction [8] on top of our Rescue fixed-key
permutation. In our instantiation of Rescue, the permutation
state is of width 4: 3 slots for the rate and 1 for the capacity
of the sponge construction. We provide two instantiations
of the sponge-based CRH. The first one assumes the input
length is multiple of the rate. The second one applies the
following simple padding before calling the Sponge CRH:
append the field element 1 to the input, then append zeroes
as necessary until the length is multiple of the rate. In short,
we have a family of CRH that supports H : F∗ 7→ F for an
arbitrary number of field elements as the pre-image.

Merkle Tree. The append-only ledger L is instantiated us-
ing a Merkle tree to accumulate all published record com-
mitments and to generate membership proofs for old input
records inside a transaction. Specifically, we implemented
a ternary Merkle tree (branch factor is 3) using our Rescue-
based CRH introduced above. Notice that the permutation
in our hash function takes in 4 field elements, out of which
the last one is reserved for padding to avoid prefixing attacks.
Thus, a ternary Merkle tree is tailored for our hash function
in terms of circuit constraints. Our Merkle tree is of fixed
height, a parameter initialized during system setup, and it is
incremental meaning it is possible to dynamically insert new
leaves and update the Merkle root in time O(logM) where M
is the maximum number of leaves allowed. For details on do-
main separation for different types of nodes in the prevention

19For arbitrary length output, the squeeze phase proceeds as in a sponge
construction: the rate part of the state is output, then the permutation is
applied to the state to produce more output chunks until desired output length
is achieved

of prefixing attacks and other formal security proofs, please
refer to Section 4.1.8 in [44].

Commitments. We build a Rescue-based commitment
scheme that takes in a message m ∈ Fn of some fixed length
n and a randomly sampled blinding factor s, outputs a hiding
commitment c←Commitn(s,m)=CRH(s∥m∥0) where 0 are
padded zeros so that the total input to CRH is of multiples of
its rate (i.e. 3), CRH is the first instantiation of rescue-based
CRH introduced above, and c∈ F. Intuitively, the binding and
hiding property of our commitment scheme is derived from
the collision resistance and one-wayness of the rescue per-
mutation respectively. We further note that we can safely pad
zeros to the fixed-length input messages because any message
input of mismatching length should be rejected.

SNARK. We instantiate the SNARKs using KZG-based
PLONK [31]. Concretely, our predicate circuit and circuit for
the relationRutxo uses our TURBOPLONK constraint system
over EBLS (see Def. 2) with customized gates optimized for
rescue-based statements; while our outer circuit for the re-
lation RΦ uses our ULTRAPLONK constraint system over
EBW (see Def. 3) with lookup table for efficient range proofs
and variable-base MSM gadgets. We further extend the nor-
mal capability of a zkSNARK to support instance merging,
proof batching and lightweight verifier gadget for our outer
SNARK. Note that our inner circuits don’t need to be zero-
knowledge, only the outer circuit requires zero-knowledge to
reveal nothing about the predicate verification keys used in
order to achieve the function privacy of a DPC scheme.

28

	Introduction
	Our Contributions
	DPC Background and Use Cases
	Our Techniques
	Related Works

	Preliminaries
	VeriZexe: Practical Zexe with Universal SNARKs
	Lightweight Verifier Circuit from Accumulation Scheme
	Instance Merging
	Proof Batching
	Variable-base Multi-Scalar Multiplication via Online Lookup Table
	Polynomial Evaluation over Non-native Field
	SNARK-friendly Symmetric Primitives

	Implementation and Evaluation
	System Implementation
	Experimental Evaluation

	Related Work
	Cryptographic Primitives: Definitions and Security Properties
	Commitment Scheme
	Polynomial Commitment Scheme
	Indexed Relation
	Pre-processing SNARK with Universal SRS
	Incrementally Verifiable Computation (IVC)

	Plonk Constraint Systems
	UltraPlonk Proof Systems
	Witness transformation
	Polynomial Interpolation

	Plonk with Merging, Batching and Accumulation
	Modular Arithmetic Gadgets: Security Proof
	Optimized Predicate Commitment
	System Implementation Details

