
One Hot Garbling

David Heath and Vladimir Kolesnikov
heath.davidanthony@gatech.edu, kolesnikov@gatech.edu

Abstract

Garbled Circuit (GC) is the main practical 2PC technique, yet despite
great interest in its performance, GC notoriously resists improvement.
Essentially, we only know how to evaluate GC functions gate-by-gate using
encrypted truth tables; given input labels, the GC evaluator decrypts the
corresponding output label.

Interactive protocols enjoy more sophisticated techniques. For exam-
ple, we can expose to a party a (masked) private value. The party can
then perform useful local computation and feed the resulting cleartext
value back into the MPC. Such techniques are not known to work for GC.

We show that it is, in fact, possible to improve GC efficiency, while
keeping its round complexity, by exposing masked private values to the
evaluator. Our improvements use garbled one-hot encodings of values.
By using this encoding we improve a number of interesting functions,
e.g., matrix multiplication, integer multiplication, field element multipli-
cation, field inverses and AES S-Boxes, integer exponents, and more. We
systematize our approach by providing a framework for designing such
GC modules.

Our constructions are concretely efficient. E.g., we improve binary ma-
trix multiplication inside GC by more than 6× in terms of communication
and by more than 4× in terms of WAN wall-clock time.

Our improvement circumvents an important GC lower bound and may
open GC to further improvement.

1 Introduction

Garbled circuits (GCs) allow two mutually untrusting parties to compute arbi-
trary functions of their private inputs while revealing only the functions’ out-
puts. Today, cryptographers view GC as a cryptographic primitive rather than a
protocol. The primitive can be plugged into many protocols and is foundational
in secure multiparty computation (MPC).

The GC primitive only allows the circuit generator G and evaluator E to
communicate a constant number of times. This restriction makes GC difficult
to improve. Indeed, since Yao first described GC, only a handful of fundamental
improvements have been made.

GCs are usually structured as encryptions of Boolean circuits composed
of XOR and AND gates. Most prior work has focused on improving these

1



gates. The most relevant cost is bandwidth consumption: G must send to E an
‘encryption’ of the circuit, and this transmission is typically understood to be
the GC bottleneck.

The widely used half-gates [ZRE15] garbling requires G send to E two ci-
phertexts per AND gate; XOR gates are communication free [KS08]. [ZRE15]
also established a matching lower bound on AND gate communication that is
difficult to circumvent1.

Thus, it is natural to target GC evaluation of more complex functions. Thus,
searching for complex functions that can be quickly computed in GC became a
natural research direction. Nevertheless, only two core-GC improvements have
subsequently been found:

Arithmetic GCs [BMR16] show that Free XOR [KS08] can be generalized to
achieve free addition for arbitrary fields. Using this technique, we can efficiently
add arithmetic values inside GC. Unfortunately, both multiplication and con-
verting between fields is expensive, since these operations require G to send to
E a number of ciphertexts proportional to the size of the field. Thus, arithmetic
GCs only improve communication in very specific scenarios.

Stacked garbling [HK20a] improves the performance of GCs for functions
that include conditional branching. The technique shows that G needs to send a
number of ciphertexts proportional to only the longest program execution path,
not to the entire circuit. Stacked garbling dramatically improves some functions,
but requires that these functions feature exclusive conditional behavior.

Our work. We show that a number of useful functions can be greatly
improved by operating over a garbled one-hot encoding.

Specifically, suppose the GC holds two bit vectors a ∈ {0, 1}n and b ∈
{0, 1}m. Moreover, suppose E knows a in cleartext. Our central primitive
allows G and E to compute the following 2n×m matrix inside the GC extremely
efficiently: 

0 0 · · · 0
...

0 0 · · · 0
b0 b1 · · · bm−1
0 0 · · · 0

...
0 0 · · · 0


(1)

In this matrix, row a, viewed as a ∈ {0, 2n−1}, is the only non-zero row.
At first glance, this primitive, which we call a one-hot outer product, may

seem incredibly contrived and niche. It is not.

1“Three-halves” [RR21], a recent improvement to half gates developed concurrently with
our work, requires only 1.5 ciphertexts per AND gate. This new approach circumvents the
letter, but not the spirit, of the [ZRE15] lower bound by operating on portions of garbled
labels. The core of the lower bound still holds and implies further improvements will be
difficult.

2



Application Comm. Improvement
128× 128 binary matrix mult. 6.2×
32-bit mult. 1.5×
GF(28) mult. 2.2×
AES S-Box 1.1×
32-bit xy for public x 11.8×
32-bit x mod p for public p 3.3×

Figure 1: Use cases that we implemented where a one-hot encoding improves
over a standard Boolean circuit implemented with [ZRE15]. We list communi-
cation reduction as compared to a standard circuit. See Section 7 for details.

This primitive can be used to implement a number of important functions.
We use it to improve the GC bandwidth consumption of matrix multiplication,
integer multiplication, field multiplication, field inverses and AES S-Boxes, inte-
ger exponents, and more. We believe other efficient applications of the technique
are likely.

We develop a framework for designing such ready-to-use modules. Once
designed, these modules are freely composable in GC.

1.1 Contribution

Non-interactivity is a key advantage of GC, as compared to other MPC tech-
niques, such as GMW. However, non-interactivity also severely limits the set of
GC building blocks. Essentially, we only know how to evaluate GC functions by
using encrypted truth tables; given input labels, E decrypts the corresponding
output label.

In this work, we show that it is possible to improve GC efficiency by exposing
masked private values to E. By doing so, we circumvent the [ZRE15] GC lower
bound, and open GC for further improvement. In more detail, we:

1. Introduce a new GC gate primitive that computes a one-hot outer product
(see Equation (1)) for only 2(n− 1) +m ciphertexts.

2. Provide numerous constructions that utilize this new primitive to imple-
ment improved GC modules (see Figure 1 and Section 7).

3. Formalize a framework that allows new one-hot-based modules to be easily
plugged in. Once implemented, these new modules can be used as if they
are ordinary gates.

4. Implement our approach in C++ and provide experimental evaluation (see
Section 7).

1.2 High Level Intuition

Let H(·) denote the function that maps a bit vector to its corresponding one-hot
encoding. That is, for a ∈ {0, 1}n, H(a) is a length-2n bit vector that is zero

3



everywhere, except at index a, where it is one. Let a ∈ {0, 1}n and b ∈ {0, 1}m
be two bit vectors and suppose E holds garblings of these two values. Our lowest
level primitive allows E to efficiently construct a garbling of the following matrix
(see also Equation (1)):

H(a)⊗ b
where ⊗ denotes the vector outer product operation. This matrix has dimension
2n × m, yet the parties construct the output using only O(n + m)κ bits of
communication, for security parameter κ.

Our construction does have one limitation: E must know a. Nevertheless,
we build a number of useful GC constructions from this low-level primitive, even
if E does not know the input.

Our constructions use two key ideas:
First, the garbled one-hot encoding of a value is, in a sense, ‘fully homo-

morphic’. Namely, let T (f) denote the truth table (represented as a matrix) for
arbitrary function f . The following equality holds:

T (f)ᵀ · H(a) = f(a)

Thus, if f is public and E knows a, then we can map a garbling of H(a) to a gar-
bling of f(a) without communication. Specifically, the parties locally construct
and apply T (f)ᵀ via Free XOR [KS08].

Second, we can reveal in cleartext to E masked intermediate circuit values.
This way, E learns nothing, yet can use the above one-hot primitive to compute
f of masked a. In many useful cases we can use simple algebra to cheaply undo
the masking and obtain f(a) inside GC, where E does not know a.

2 Related Work

Ours is in a line of works that improve the practical performance of GC. We
review other works in this line. Our emphasis is communication reduction, which
is the GC bottleneck.

Practical GC research has long focused on efficient evaluation of AND/XOR
gates. [NPS99] gave the first GC communication improvement: garbled row re-
duction. Much later [KS08], gave the important Free XOR optimization which
eliminated the communication cost of XOR gates. Garbled gates were slowly
improved [PSSW09, KMR14], and the half-gates technique [ZRE15] reduced
AND gate communication cost to only two ciphertexts. Subsequently, [GLNP18]
showed that similar costs (two ciphertexts per AND and one per XOR) are
possible even when assuming only one-way functions, as opposed a circular
correlation robust hash function. Very recently, a new “three-halves” garbling
technique showed that only 1.5 ciphertexts are needed per AND gate [RR21].
However, “three-halves” has not yet been implemented, so we focus our com-
parison on the widely-available half-gates technique. We mention that [RR21]’s
construction uses Free XOR based GC labels, and so is compatible with and
complementary to our technique: one-hot gates can be composed with 1.5 ci-
phertext AND gates in a single circuit.

4



Not only have there been few core-GC improvements, but those improve-
ments have also been small. For example, half-gates improved over prior state-
of-the-art [KMR14] by only 1 − 1.5× (1.5× is for the case where [KMR14]’s
heuristics fail).

Recently, GC performance improvement has proceeded in two new direc-
tions:

1. Consider more expressive fields. One elegant direction views a circuit as
an object that operates over the Boolean field. With this perspective, it is
natural to consider whether larger finite fields are also candidates for GC
evaluation. [BMR16] showed that they indeed are candidates, and gave
constructions that add/multiply in a small arithmetic field and even that
convert between different fields. Unfortunately, multiplication/conversion
gates grow linearly in the size of the considered fields, and so rapidly
become impractical. Arithmetic GCs are, unfortunately, only useful in
specific settings.

2. Consider more expressive functions. Since an improved AND gate seems
unlikely, it is natural to consider more complex functions. However, such
improvements are elusive in GC, and, to our knowledge, only one has been
made: stacked garbling [HK20a, HK21] shows that GC communication can
be improved for functions with exclusive conditional behavior.

Our work falls into the second category.

Non-GC Expressive Functions In other MPC protocols, it is possible to
improve beyond considering simple XOR/AND or ADD/MUL gates. For exam-
ple, other protocols allow (1) efficient lookup-table-based approaches [IKM+13,
DKS+17, KKW17, DNNR17]2, (2) efficient linear algebra operations, e.g. [HKP20,
ADI+17, PSSY20, RWT+18], or (3) custom designed subprotocols, such as fast
field inverse computation [BIB89]. Our work brings a flavor of such techniques
to GC.

Puncturable PRFs and MPC Our one-hot outer product construction uses
a well-known puncturable PRF derived from the classic GGM PRF [GGM84].
This same idea is often applied in MPC, for example to help achieve efficient
OT extension [BCG+19, YWL+20]. Our work shows that this primitive can
be directly and elegantly plugged into GC and that the resulting primitive is
powerful.

GC frameworks Part of our contribution is a framework for building new GC
modules from one-hot outer products. The generally accepted GC framework,
specified by [BHR12], defines garbling schemes. We clarify that our framework

2Technically, large lookup tables can be implemented in GC by enumerating garbled rows,
but this is expensive.

5



and [BHR12]’s framework achieve different goals. The [BHR12] framework pro-
vides an abstraction barrier between high level protocols and garbling schemes.
Our framework instead supports new GC modules which are hosted inside a spe-
cific garbling scheme. Indeed, our framework is proved secure in the [BHR12]
framework.

Previous work, e.g., [KNR+17, GLMY16] viewed their circuits as modules.
The similarity between these works and ours is superficial. They build mod-
ular GC components that are individually garbled, then dynamically stitched
together into a full GC for improved performance. In contrast, our modules
enforce scope of private variables, and facilitate clean security proofs of circuits
composed of our one-hot gates.

3 Notation and Assumptions

We list some simple notation here. We elaborate on more involved notation in
the following subsections.

• κ is our computational security parameter, e.g. 128.

• G is the GC generator. We refer to G by he/him.

• E is the GC evaluator. We refer to E by she/her.

• x , y denotes that x is equal to y by definition.

• x
c
= y denotes that x is computationally indistinguishable from y.

• We work with vectors and matrices:

– If v is a vector, then vi denotes the ith entry in v. If m is a matrix,
then mi,j , denotes the entry at the ith row and jth column. We use
zero-based indexing.

– mᵀ denotes the transpose of m.

– x⊗y denotes the outer product of vectors x and y. The outer product
can be defined as follows: x⊗ y , x · yᵀ.

• Let D be a distribution. We write x← D to denote that x is drawn from
D.

• We overload the notion of a circuit wire to hold a matrix of bits of arbitrary
dimension. We sample wires in a natural manner from general D. Namely,
we sample D, encode the result in binary, then store the result onto the
wires.

• [n] denotes the sequence of natural numbers 0, 1, ..., n− 1.

6



3.1 One-Hot Encoding and Truth Tables

Recall from Section 1.2 that our central construction computes the one-hot outer
product H(a)⊗ b. Moreover, we apply functions to one-hot encodings via truth
tables. We define appropriate notation:

Definition 1 (One-hot encoding). Let a ∈ {0, 1}n be a length-n bitstring. The
one-hot encoding of a is a length-2n bitstring denoted H(a) such that for all
i ∈ [n]:

H(a)i ,

{
1 if i = a

0 otherwise

Definition 2 (Truth table). Let f : {0, 1}n → {0, 1}m be a function. The truth
table for f , denoted T (f), is a 2n ×m matrix of bits such that:

T (f)i,j , f(i)j

That is, the ith row of T (f) is the bitstring f(i).

We extensively use the following simple lemma that relates truth tables and
one-hot encodings:

Lemma 1 (Evaluation by truth table). Let f : {0, 1}n → {0, 1}m be an arbitrary
function. Let a ∈ {0, 1}n be a bitstring:

T (f)ᵀ · H(a) = f(a)

Proof. Straightforward from Definitions 1 and 2. Informally, the one-hot vector
“selects” row a of the truth table.

3.2 GC Notation: Garbled Sharings

In this work, we forgo the standard GC notation of garbled labels in favor of
garbled sharings of cleartext values held by G and E. This will be convenient
for handling vectors and matrices of bits. We stress that the GC mechanism,
including communication rounds, remains completely unchanged.

We use Free XOR style garbled circuit labels [KS08]. In the GC, G and E
hold sharings of each circuit wire. Each sharing consists of two shares, one held
by G and one by E. G samples a uniform value ∆ ∈ {0, 1}κ; ∆ is a value that is
global to all wires in the circuit. Then, for each wire value a ∈ {0, 1}, G samples
a uniform value A ∈ {0, 1}κ. A is G’s share; E holds A ⊕ a∆. Hence, the two
parties together hold an XOR share of a∆. We will say that gates “output”
a sharing. This corresponds to the traditional notation of E obtaining a valid
wire label which can be used in continued GC evaluation.

Definition 3 (Garbled sharing). Let a ∈ {0, 1} be a bit. Let A,B ∈ {0, 1}κ
be two bitstrings. We say that the pair (A,B) is a garbled sharing of a over
(usually implicit) ∆ ∈ {0, 1}κ if A ⊕ B = a∆. We denote a garbled sharing of
a by writing JaK:

JaK , (A,B) such that A⊕B = a∆

7



Each of the two elements in the sharing are called shares. In the GC, G holds
one share and E holds the other. We say that a garbled sharing is uniform if
one share is drawn uniformly from {0, 1}κ.

We extend sharing notation to vectors/matrices: a sharing of a matrix is a
matrix of sharings. I.e., for a matrix a ∈ {0, 1}n×m:

JaK =

u

w
v

a0,0 . . . a0,m−1
...

. . .

an−1,0 an−1,m−1

}

�
~ ,

 Ja0,0K . . . Ja0,m−1K
...

. . .

Jan−1,0K Jan−1,m−1K


Note, XOR is homomorphic over garbled sharings [KS08]:

JaK⊕ JbK = Ja⊕ bK

More generally, we can homomorphically apply arbitrary linear functions to
sharings. Specifically, if f is a linear map, then we overload function application
syntax as follows:

f(JaK) = f((A,A⊕ a∆)) , (f(A), f(A⊕ a∆))

That is, the parties apply (linear) f to a sharing by locally applying f to their
respective shares. This generates a correct output sharing:

Lemma 2. Let f be a linear map and let JaK be a sharing. Then

f(JaK) = Jf(a)K

Proof.

f(JaK)
= f((A,A⊕ a∆)) Definition 3

= (f(A), f(A⊕ a∆)) function application to sharing

= (f(A), f(A)⊕ f(a)∆) f is a linear map

= Jf(a)K Definition 3

We apply the above fact often, most notably when applying truth tables
to shared one-hot vectors. Specifically for arbitrary function f , Lemma 1 and
Lemma 2 together imply the following:

T (f)ᵀ · JH(a)K = Jf(a)K

3.2.1 G constants

It is easy for G to inject secret constants into the GC. Specifically to input a
constant c, E takes as her share 0 and G takes c∆: note that this matches
Definition 3. We use such constants to help eliminate introduced masks.

8



3.2.2 Share colors

GC techniques use garbled shares to decrypt ciphertexts arranged in tables.
The classic point and permute technique [BMR90] shows that E need not try to
decrypt each row of a table, but rather can use share “pointer bits” to directly
decrypt the appropriate row. Per [ZRE15], we refer to these pointers as colors.

Namely, each share has a single distinguished bit that we refer to as the color.
The key property is that on each wire, E’s two possible shares have different
colors, and the color of a share is independent of the cleartext value that the
share represents.

Formally, we ensure that the global value ∆ has a one in its least significant
bit. We define a procedure Color that, when given a bit sharing JaK, returns to
G and E the least significant bit of their respective shares. Note the following:

Color(JaK) = Color((A,A⊕ a∆))

= (Color(A),Color(A⊕ a∆)) = (Color(A),Color(A)⊕ a)

That is, if both parties compute the color of their respective shares, the result
is an XOR secret share of the cleartext value. We extend the Color procedure
over vectors and matrices: the color of a matrix of sharings is the matrix of
colors of its elements.

3.3 Model and Cryptographic Assumptions

We use the Free XOR technique [KS08] and so we assume a circular correlation
robust hash function H [CKKZ12]. In practice, we can instantiate H using
fixed-key AES [GKWY20, BHKR13].

Formally, we construct a garbling scheme [BHR12], which is a tuple of algo-
rithms that can be plugged into GC protocols. Thus we do not need to formally
consider a specific threat model, e.g. semi-honest adversaries. Informally, E
and G can be understood as semi-honest. Our implementation (see Section 6)
uses our garbling scheme to instantiate a semi-honest protocol.

4 Technical Overview

In this section, we present our techniques with sufficient detail to understand
our contribution. Section 5 later presents our constructions in formal detail with
appropriate theorems and proofs, and Section 7 shows a number of interesting
functions that can be computed efficiently from our technique.

Let a ∈ {0, 1}n and b ∈ {0, 1}m be two strings. Recall from Section 1.2 that
our core primitive efficiently computes the following:

JaK, JbK 7→ JH(a)⊗ bK

To use the primitive, E must know in cleartext the value a. We first sketch the
construction, then show how it can be used.

9



4.1 Garbled One-Hot Encoding JaK 7→ JH(a)K
We first describe how to compute JaK 7→ JH(a)K when E knows a. The idea
marries GC with a well-known puncturable PRF built from the classic GGM
PRF [GGM84]. Puncturable PRFs are useful in a number of settings, see e.g.
[BW13, KPTZ13, BGI14, Ds17, BCG+19, SGRR19]. The technique is well
known, but we nevertheless sketch it here and emphasize its natural compati-
bility with GC sharings.

G first generates a full binary tree of PRG seeds with 2n leaves in the natural
manner. Namely, each node’s seed is derived by evaluating a PRG on its parent’s
seed. Let Si,j denote the jth seed on level i. Let the root of the overall tree

reside in level −1. Let Lj be a pseudonym for the jth leaf seed: Lj , Sn−1,j .
Our goal is to deliver to E all leaf seeds Lj 6=a. Recall that G and E hold

garbled shares of JaK. Let JaiK = (Ai, Ai ⊕ ai∆) be the shares of the individual
bits in a. Recall, E knows each ai in cleartext but does not know ∆. We can
use these shares to encrypt values that help E recover each seed in the binary
tree, except the seeds along the path to La.

As a base case, G simply defines the seeds on level zero as follows:

S0,0 , A0 ⊕∆ S0,1 , A0

Thus, E trivially obtains exactly one seed on level zero.
Now, consider arbitrary level i. Assume E has all seeds on level i except for

one (along the path to La). By applying a PRG to these seeds, E can recover
all seeds in level i+ 1 save two.

To deliver to E the missing seed “just off” the path to La, G sends two
encrypted values. Let Even (resp. Odd) denote the XOR sum of all seeds Si+1,j

for even j (resp. for odd j). G sends to E Even encrypted by Ai ⊕∆ and Odd
encrypted by Ai. Thus, E can decrypt Even if the seed just off the path to La
is even (resp. for odd). E can then XOR in the even seeds (resp. odd seeds)
she already holds and recover the missing seed.

G now holds each seed Li and E holds each Li 6=a. By Definition 3, the
parties hold garbled sharings of zero at all points i 6= a. To complete the shared
one-hot vector, we must convey to E a valid share of one at position a. G thus
sends the following value to E: (⊕

i
Li

)
⊕∆

E XORs this value with the leaves she already holds and hence extracts La⊕∆:
a valid share of one.

Thus, the two parties compute JH(a)K via 2(n− 1) + 1 ciphertexts.

4.2 Garbled One-Hot Outer Product

We now generalize the above approach to compute JH(a)⊗ bK.
Let us back up to the point where the two parties each hold each Li except

that E does not hold La. For each j, the parties hold a garbled sharing JbjK.
Let Bj (resp. Bj ⊕ bj∆) be G’s (resp. E’s) share.

10



For each j ∈ [m] the parties act as follows. Both parties apply a PRG to
each of their leaf seeds Li and hence obtain strings Xi,j . Now, G sends to E
the following value: (⊕

i
Xi,j

)
⊕Bj

E XORs this with her 2n − 1 values Xi 6=a,j and with her share of bj :(⊕
i6=a

Xi,j

)
⊕
((⊕

i
Xi,j

)
⊕Bj

)
⊕ (Bj ⊕ bj∆) = Xa,j ⊕ bj∆

In other words, at index a, E receives a share of bj .
Thus, the parties now hold a sharing of a 2n×m matrix x where each row is

all zeros except row a: row a holds the vector b. We have constructed JH(a)⊗bK.
The full construction, formalized in Figure 3, requires G send to E 2(n −

1) +m ciphertexts.

4.3 Applying the One-Hot Encoding

We now give some examples of how the one-hot outer product can be used. We
greatly expand on this topic in Section 7.

Recall that garbled shares support linear maps (Lemma 2) and that for any
function f the following equality holds:

T (f)ᵀ · H(a) = f(a) Lemma 1

Zero Knowledge. We briefly mention that our one-hot outer product implies
improvement for GC-based Zero Knowledge [JKO13, HK20b]; we emphasize
that our focus is 2PC, not ZK.

In ZK, E knows each circuit wire value, so our requirement that E knows the
argument to H(·) is met automatically. Thus, in GC-ZK we can compute any
function using only 2n− 1 ciphertexts by computing T (f)ᵀ · JH(a)K. However,
we must keep the domain of f small, since the parties construct a tree with 2n

leaves.
If f requires a large circuit, then this truth-table based approach can improve

over the circuit. For example, if the ZK proof invokes SHA256 on a small domain
n-bit input, we need only 2n−1 ciphertexts. The hand tuned SHA256 circuit, on
the other hand, has a staggering 22573 AND gates [AAL+]. Other ZK protocols,
e.g. [WYKW21], can similarly use truth tables by brute force constructing a
one-hot encoding (at the cost of O(2n) AND gates). However, as the size of the
input grows, our technique becomes more efficient. For tables with more than
9 input bits, our GC-based one-hot encoding will improve over other protocols.

2PC We now consider 2PC applications where both parties have input and
neither party knows any intermediate wire value.

Since our one-hot outer product primitive requires E to know the argument
a, we must reveal a to E in cleartext. Of course, we cannot arbitrarily reveal
cleartext values to E: this would not be secure. Instead, we are careful to only

11



reveal values that have a mask applied such that the cleartext value remains
protected.

We illustrate this idea by example. Let a ∈ {0, 1}n and b ∈ {0, 1}m be
two bitstrings. Moreover, let n,m be small. (Formally, let n,m be at most
logarithmic in the overall circuit input size. This restriction avoids exponential-
time computation due to the one-hot technique.)

Suppose the parties hold two sharings JaK and JbK and wish to compute the
(non-one-hot) outer product Ja⊗ bK. Note that outer products are useful since
they can be leveraged to compute matrix products, integer products, and more
(see Section 7).

First, G chooses two uniform masks α ∈ {0, 1}n and β ∈ {0, 1}m. The
parties compute Ja ⊕ αK and Jb ⊕ βK inside GC. Now, it is safe to reveal the
values a⊕α and b⊕β to E in cleartext. These values are revealed by G sending
his color bits to E3.

From here, the parties use the following straightforward lemma:

Lemma 3. Let x ∈ {0, 1}n, y ∈ {0, 1}m be two bitstrings and let id : {0, 1}n →
{0, 1}n denote the identity function:

T (id)ᵀ · (H(x)⊗ y) = x⊗ y

Proof.

T (id)ᵀ · (H(x)⊗ y)

= T (id)ᵀ · (H(x) · yᵀ) Definition ⊗
= (T (id)ᵀ · H(x)) · yᵀ Associativity

= id(x) · yᵀ Lemma 1

= x · yᵀ Definition id

= x⊗ y Definition ⊗

In particular, the parties compute the following two values:

T (id)ᵀ · JH(a⊕ α)⊗ bK = J(a⊕ α)⊗ bK
T (id)ᵀ · JH(b⊕ β)⊗ αK = J(b⊕ β)⊗ αK

Finally, the parties compute the following:

J(a⊕ α)⊗ bK⊕ J(b⊕ β)⊗ αKᵀ ⊕ Jα⊗ βK
= Ja⊗ bK⊕ Jα⊗ bK⊕ Jb⊗ αKᵀ ⊕ Jβ ⊗ αKᵀ ⊕ Jα⊗ βK
= Ja⊗ bK⊕ Jα⊗ bK⊕ Jα⊗ bK⊕ Jα⊗ βK⊕ Jα⊗ βK
= Ja⊗ bK

3Alternatively and more directly, G can define α (resp. β) to be his color bits of a (resp. b).
This avoids sending small cleartext values to E and is similar to the method used in [ZRE15].
Here, we introduce the idea that G can send color bits of a masked value to E because this
sending generalizes to non-XOR masks.

12



(G knows α⊗ β, so he can inject this value as a GC constant.)
Thus, E and G can compute the outer product Ja⊗ bK using only two one-

hot outer products. In total, G sends to E 3(n + m) − 4 ciphertexts. This is
a significant improvement compared to computing the outer product via AND
gates: the AND-gate method consumes 2nm ciphertexts.

As an interesting aside, the above technique is a strict generalization of
the [ZRE15] half-gates technique. Namely, if we consider length one inputs a
and b, the above technique computes Boolean AND using only two ciphertexts.
Moreover, the numbers of per-party calls to H match the half-gates technique.

While we have shown here only how to compute an outer product, our tech-
nique improves other functions as well (see Section 7). We highlight the key
ideas common to such constructions:

1. Apply a mask to an internal circuit value such that it is safe to reveal the
masked value to E.

2. Use the revealed value as input to a one-hot outer product.

3. Apply a function, via truth table, to this outer product matrix.

4. Use simple algebra to remove the introduced masks and obtain the desired
output sharing. The parties can use the output in further GC evaluation.

4.4 A Framework for One-Hot Techniques

We found a number of interesting functions that can be efficiently implemented
using the one-hot outer product (see Section 7). We certainly did not find all
such functions. Thus, part of our contribution is a simple framework for design-
ing new such constructions, which can then be directly used without building a
new garbling scheme from the ground up.

Section 5 motivates and explains this framework in detail. In brief, notice
our above high-level strategy involves revealing cleartext values to E. Our
framework provides a simple infrastructure that prevents insecure leakage by
packaging sensitive values into modules and ensuring these values cannot leave
the module.

Our framework is a tool for designing modules that implement useful func-
tions inside GC. Modules are built from a small set of primitives provided by
the framework. These primitives allow the designer to specify what to compute,
how to sample auxiliary randomness, and what to reveal to E. Crucially, the
module designer will not directly manipulate garbled labels, material, and other
garbling scheme artifacts – all such handling is done through the framework’s
primitives. In particular, this means that the module designer need not prove
her GC instantiation secure: module security follows from our framework’s se-
curity theorems.

13



C

α← Dmask

a C(a, α)

E

Reveal

x← Dout

{a, C(a, α)} c= {a, x}

G

M

M(a) = f (a)

a

Figure 2: Left: Reveal gates safely reveal values to E. At runtime, G samples
a mask α from the designer-specified distribution Dmask. This mask, and the
input, are fed into the designer-specified function C. For security, the output
of C must be indistinguishable from a value sampled from some output distri-
bution Dout, even in the context of the input a (Requirement 2, Section 5.3).
The masked value C(a, α) is revealed in cleartext to E and α is given to G. The
masked value C(a, α) and the mask α are output as GC shares.
Right: A moduleM implements a specific function and encapsulates any inter-
nal randomness that can emerge from Reveal gates. M must satisfy Require-
ment 1 (Section 5.3).

5 Our Garbling Framework

In this section we formalize our approach. Typically, GC approaches consider
simple gates, e.g. XOR/AND or ADD/MUL; the resulting GC framework is
simple to prove and use. Ours is more complex.

At the heart of this complexity lies our highly nonstandard one-hot outer
product gate. In particular, the gate is nonstandard because it requires that E
know one of its inputs. Thus, to use the gate effectively, the GC must reveal
certain values to E.

One direction we could take, but which we do not take, would be to expose
one-hot gates to the circuit designer and to allow her to manage (e.g., via
masking) the information release associated with its efficient use in GC. This
would not be ideal, since each new top level circuit would require a new proof
of security.

Instead, we do not allow our one-hot primitive to be used by top level cir-
cuits. Rather, these gates must be packaged into self-contained modules. Each
module can use our primitive to efficiently implement a specific function. As a
module might internally reveal values to E, it must satisfy certain simple secu-
rity properties. Once these properties are proved, the module may be used by
a top level circuit as if it were a standard gate.

In Section 7, we enumerate a number of useful modules, but we are confident
that we have not found them all. Thus, we provide a framework for building
and using modules: we specify the module requirements, and prove that, if met,
the module can be used as a regular gate in GC. Thus GCs can be arbitrarily
constructed from secure modules, without the need for additional proofs. New

14



modules require proofs; the circuits that use them do not.

5.1 Reveal gates

Our framework introduces a Reveal meta-gate (see Figure 2). Reveal gates are
our framework’s method for revealing cleartext values to E. The GC may re-
veal a value to E so long as that value is indistinguishable from a value drawn
from a fixed distribution (more formally, the input and output are together
indistinguishable from the input and the sampled value). To achieve this indis-
tinguishability, we allow the module designer to specify an arbitrary function
that can apply a mask to the Reveal gate input value. The Reveal gate samples
the mask (which is revealed to G) from a designer-specified distribution. In
practice, this is achieved by G locally sampling the mask and programming it
into the gate.

The Reveal gate produces as (garbled) output both the mask and the masked
value; crucially, it also reveals in cleartext the masked value to E and the mask
to G.4 Because the masked value is indistinguishable from one drawn from a
fixed distribution, our security proofs can simulate E’s view5.

We do not wish to restrict masking methods (in this work we mask via XOR-
ing, adding, and multiplying). Reveal gates can implement arbitrary masking
by way of the circuit C (see Figure 2).

5.1.1 Color Gates and Connection to [ZRE15]

The half-gates technique views the color (see Section 3.2.2) of a GC label as a
masked cleartext value, where the mask is known to G. They use this observa-
tion to help implement efficient AND gates.

Reveal gates can be viewed as a generalization of this simple masking: we
allow arbitrary masks, and the chosen mask can be tailored to the application.

Reveal gates require G to send bits to E to reveal the output. Color bits do
not require extra sending from G to E: the revealed value is implicit. We view
color-based masking as a special case; for completeness, we include a special
Color gate. At the interface, Color gates are the same as Reveal gates, except
that they do not need a designer-specified distribution Dmask or circuit C. Color
gates can be viewed as a specific instantiation of a Reveal gate.

Formally, a Color gate takes as input a matrix JaK. Let α be the color of
G’s share: α = Color(A). The gate outputs (1) Ja ⊕ αK and (2) JαK. The gate
“reveals” α to G and a ⊕ α to E. Of course, the parties already knew these
values, so no communication is required – the Color gate is merely a formalism
that allows modules to syntactically manipulate colors.

4Values are revealed to E via color bits; as noted above, G selects the mask himself.
5In this work, we only use Reveal gates that each produce a distribution that is identical

to a fixed distribution, not merely indistinguishable. We allow indistinguishability because it
is more flexible and because it is easily proved secure.

15



5.2 Modules

Reveal gates and Color gates do not encapsulate sensitive data that might be
misused.

As an example, suppose the module designer specifies a Reveal gate that
applies a uniform XOR mask α to a bit a: thus E learns a ⊕ α. Now suppose
the designer inadvertently specifies that α is an output of the overall circuit.
Because a⊕ α was revealed to E, this leaks a to E!

To achieve a clean modular GC framework, we must prevent sensitive values
(i.e. values that depend on random masks) from escaping the context where
they are used. Thus, we introduce the concept of Modules. A Module is a
subroutine that computes a specific function of its input and that encapsulates
internal data.

A Module is parameterized over a module-designer-provided circuit. It sim-
ply passes its input to this circuit and then propagates the output. So far,
this is trivial. However, we require that the module designer provide a proof of
correctness demonstrating that the internal circuit implements a deterministic
function of its argument. This will, in particular, guarantee that the output is
independent of internal random masks; thus, masks cannot escape the module.

Top level circuits are only allowed to manipulate modules. I.e., our one-
hot outer product primitive, Reveal gates, and Color gates are syntactically
prohibited outside of modules. This restriction means (we prove this) that top
level circuits may use modules without any extra proofs, and so are suitable for
end users.

5.3 Formal Syntax

We now formalize our syntax. Specifically, we formalize the space of circuits
C, the space of modules M, and the space of gates allowed in modules G.
Because we wish to allow modules to use other, simpler modules (i.e., one module
designer should be allowed to use the work of another) our syntax is inductively
defined.

As stated above, top level circuits are only allowed to manipulate modules.
Formally, a circuit C is an ordered list of modules with specified input and
output wires. Modules can manipulate lower level gates. A module M is a list
of gates with accompanying input and output wires. Modules do not directly
manipulate garbled shares, etc (Section 4.4).

We provide a grammar for the gates allowed inside of modules. Let each
wi denote a wire that holds a matrix of bits of arbitrary dimension. When a
wire wi’s cleartext value is revealed to G (resp. E), we write w�G

i (resp. w�E
i ).

When a wire is revealed, it remains a valid garbled sharing and can be used
inside a module. Let Dmask refer to an arbitrary distribution over a finite set of

16



values. Let c refer to a constant chosen by G:

G , w2 := w0 ⊕ w1

| w2 := H(w0)⊗ w1

| w0 := Constant(c)

| w�E
1 , w�G

2 := Reveal[C,Dmask](w0)

| w�E
1 , w�G

2 := Color(w0)

| w1 := Module[M](w0)

(2)

That is, modules can use gates that (1) compute the XOR of two matrices (of
equal dimension), (2) compute the one-hot outer product of two vectors, (3)
output a constant chosen by G, (4) reveal a masked value to E (see Figure 2),
(5) incorporate a share’s color in the GC (see Section 5.1.1), and (6) recursively
call another module. We refer to one-hot outer product gates simply as ‘one-hot’
gates.

We specify two requirements each module must satisfy.

Requirement 1 (Module correctness). For module M computing function f ,
it must hold that for all inputs x:

f(x) =M(x)

Requirement 2 (Reveal indistinguishability). For a Reveal gate w�E
1 , w�G

2 :=
Reveal[C,Dmask](w0), there must exist a distribution Dout such that for all inputs
x on wire w0 and for r ← Dout and α← Dmask the following indistinguishability
holds:

{x, C(x, α)} c
= {x, r}

Note, each module may have more than one Reveal gate, so it may not be a
priori clear that arbitrary Reveal gate interactions are secure. For instance, is it
safe to feed the output of one Reveal gate as input to another? From Require-
ment 2, we can prove that everything revealed in a module can be simulated
by a fixed distribution. We then (Theorem 2) prove that this is sufficient for
security.

Lemma 4. Let M be a module and let y be the tuple of all values revealed to E
inM due to Reveal gates and Color gates (as formally specified by OneHot.Ev).
There exists a distribution Drev such that:

{y} c
= {r} where r ← Drev

Specifically, Drev is the distribution that samples from each Reveal gate
distribution Dout (and samples a uniform distribution in the case of Color gates)
and concatenates the samples. Due to lack of space, we prove Lemma 4 in
Appendix A.

17



5.4 Standard Boolean Gates in Our Framework

Neither XOR nor AND are by default available to top level circuits. However,
these functions can be expressed as modules, and thus traditional Boolean cir-
cuits are compatible with our framework:

XOR is easily handled by building a module with a single XOR gate that
XORs the two bits of its input and outputs the result.

AND is conspicuously missing from G. We do not need a separate AND
gate primitive, because we can express AND as a module. Moreover, the re-
sulting module is functionally identical to the state-of-the-art half-gates tech-
nique [ZRE15]. Namely, our approach uses the same number of calls to H for
each party and transfers the same number of ciphertexts (i.e., two) from G to
E.

Let a, b be bits, and view them as one element vectors. Let α, β denote the
color of a, b respectively. Note the following equality:

(T (id) · H(a⊕ α)⊗ b)⊕ (T (id) · H(b⊕ β)⊗ α)⊕ αβ
= ((a⊕ α)⊗ b)⊕ ((b⊕ β)⊗ α)⊕ αβ
= ((a⊕ α)b)⊕ ((b⊕ β)α)⊕ αβ
= ab

Thus, we can compute ab via two Color gates (to compute and reveal a⊕ α
and b⊕ β), two one-hot gates, one Constant gate (for αβ), and XOR gates (to
compute T (id)·). Each of these sub-components is communication free except
for the one-hot gates. A one-hot gate uses 2(n − 1) + m ciphertexts; here, in
both cases n = m = 1, so the module costs a total of two ciphertexts.

Thus, [ZRE15] half-gates can be hosted in our framework.

5.5 The OneHot Garbling Scheme

Now that we have established syntax, we prove the framework secure. We
formalize our framework as a garbling scheme [BHR12].

A garbling scheme is a five-tuple of algorithms:

(ev,En,Gb,Ev,De)

These five algorithms specify the actions taken by G and E when executing
the protocol. Informally, (1) En describes how cleartext inputs are encoded as
garbled shares, (2) Gb describes how G constructs the garbled circuit, (3) Ev
describes how E uses input shares and the garbled circuit to compute output
shares, (4) De describes how output shares are decoded to cleartext outputs,
and (5) ev provides a cleartext specification of the circuit semantics. Loosely
speaking, En, Gb, Ev, and De should together perform the same task as ev
while preventing E from learning G’s inputs.

Construction 1 (OneHot Garbling Scheme). OneHot is the tuple of algorithms
defined in Figure 4 by reference to Figure 3.

18



Our scheme is a straightforward formalization of the high level intuition
given in Section 4.

OneHot satisfies the [BHR12] definitions of correctness, obliviousness, pri-
vacy, and authenticity. We include definitions and explanations of each of
these properties. Full formal proof of each theorem is presented in
Appendix A due to a lack of space.

Definition 4 (Correctness). A garbling scheme is correct if for all circuits C
and all inputs x:

De(d,Ev(C,M,En(e, x))) = ev(C, x)

where (M, e, d)← Gb(1κ, C).

Correctness requires the scheme to realize the semantics specified by ev.
That is, the implementation matches the specification.

Theorem 1. OneHot is correct.

Correctness is mostly trivial, save the correctness of one-hot gates. One-hot
gate correctness can be inferred from discussion in Section 4. See Appendix A
for a full proof.

Definition 5 (Obliviousness). A garbling scheme is oblivious if there exists a
simulator Sobv such that for any circuit C and all inputs x, the following are
indistinguishable:

(C,M,X)
c
= Sobv(1κ, C)

where (M, e, ·)← Gb(1κ, C) and X ← En(e, x).

Informally, obliviousness ensures that the material M and encoded input
shares X reveal no information about the input x or about the output ev(C, x).

Theorem 2. If H is a circular correlation robust hash function, then OneHot
is oblivious.

In short, because of the properties of H we can simulate most values by
uniform bits. For Reveal gates, we instead simulate values by sampling from
each such gate’s specified distribution; this is valid due to Requirement 2. See
Appendix A for a full proof.

Definition 6 (Privacy). A garbling scheme is private if there exists a simulator
Sprv such that for any circuit C and all inputs x, the following are computation-
ally indistinguishable:

(M,X, d)
c
= Sprv(1κ, C, y),

where (M, e, d)← Gb(1κ, C), X ← En(e, x), and y ← ev(C, x).

Privacy ensures that E, who is given (M,X, d), learns nothing about the
input x except what can be learned from the output y.

19



Theorem 3. If H is a circular correlation robust hash function, then OneHot
is private.

The privacy simulator follows relatively trivially from the obliviousness sim-
ulator and from our choice of output decoding string d (Figure 4). See Ap-
pendix A for a full proof.

Definition 7 (Authenticity). A garbling scheme is authentic if for all circuits
C, all inputs x, and all poly-time adversaries A the following probability is neg-
ligible in κ:

Pr (Y ′ 6= Ev(C,M,X) ∧De(d, Y ′) 6= ⊥)

where (M, e, d) = Gb(1κ, C), X = En(e, x), and Y ′ = A(C,M,X).

Authenticity ensures that even an adversarial E cannot construct shares that
successfully decode except by running Ev as intended.

Theorem 4. If H is a circular correlation robust hash function, then OneHot
is authentic.

Authenticity is nontrivial only for one-hot gates. One-hot gates can be shown
authentic due to the properties of H. See Appendix A for a full proof.

5.5.1 Compatibility with Stacked Garbling

As mentioned in Section 2, stacked garbling (SGC) is a state-of-the-art GC
improvement for conditional branching [HK20a, HK21]. SGC is parameterized
over an underlying garbling scheme which it leverages to handle each conditional
branch. OneHot can, in a slightly limited sense, be used as this underlying
scheme.

SGC requires that the underlying scheme produces garbled material M and
inputs shares X that are indistinguishable from uniform strings. Our scheme
satisfies this, with the notable exception of Reveal gates. OneHot can be
‘stacked’ so long as all Reveal gates use uniform binary strings as their out-
put distribution Dout.

In Appendix A, we prove that, under this condition, OneHot is strongly
stackable [HK21] and can be the SGC underlying scheme.

6 Experimental Setup

In the following section, we give experimental findings of the performance of our
technique as compared to standard Boolean circuits. We record details of our
experimental setup here.

Implementation Details. We implemented our technique and benchmarks
in ∼ 2000 lines of C++. Our implementation uses our garbling scheme to
instantiate a semi-honest 2PC protocol. Garbled shares are 128 bits long. Hence
our security parameter κ = 127; the 128th bit is reserved for share color.

20



We compare our implementation against half-gates [ZRE15]. We refer to
half-gates based implementations of our experiments simply as ‘standard’. We
do not compare in detail to the concurrent work [RR21]; moreover their tech-
nique has not yet been implemented. For many of our applications, our im-
provement will be slightly diminished given a fast [RR21] implementation. In
particular, our work improves over [RR21] for all considered applications, except
for AES S-Box.

Computation Setup. For each experiment, we ran both G and E on a single
commodity laptop: a MacBook Pro with an Intel Quad-Core i7 2.3GHz proces-
sor and 16GB of RAM. The two parties run in parallel on separate processes on
the same machine.

Communication Setup. G and E communicate over a simulated 100Mbps
WAN. (For completeness we configure the network with 30ms latency, though
this is largely irrelevant in our experiments which do not incur multiple rounds
of interaction.)

In our experiments, we record bandwidth consumption and wall clock time.
For each experiment, we build a top-level circuit that repeatedly uses the tar-
get module 1000 times; our presented measurements divide total communica-
tion/total wall clock time by 1000 to approximate the cost of a single module
instance.

7 Applications

In this section, we instantiate applications of our approach. Each application is
formalized in our framework (see Section 5); when necessary, we implement a
module.

We mention that all of the following modules, with the exception of our
binary field inverse and our modular reduction, are compatible with stacked
garbling.

7.1 Small Domain Binary Outer Products

Our first module follows naturally from our one-hot primitive. Let a ∈ {0, 1}n
and b ∈ {0, 1}m be two bitstrings and let n,m be small (formally, at most log-
arithmic in the overall circuit input size). The module maps two input garbled
sharings JaK, JbK to the outer product Ja⊗ bK.

This module was explained in Section 4 and is formalized in Figure 5. Be-
cause we need XOR-based masks, we use Color gates.

The full construction consumes only 3(n+m)− 4 ciphertexts, a significant
improvement from the 2nm ciphertexts needed to compute the outer product
via AND gates.

We implemented our module and experimented with its performance. Fig-
ure 6 plots the results.

21



7.2 General Binary Outer Products

We have shown how to compute the outer product of two short vectors. We are,
so far, limited to short vectors because of the exponential computation scaling
of our one-hot technique.

It is interesting to compute the outer product of vectors of all sizes, not just
short ones. Here, we give an efficient construction of general outer products.

In Section 7.1 we decomposed a⊗ b into three summands:

(a⊗ b) = ((a⊕ α)⊗ b)⊕ ((b⊕ β)⊗ α)ᵀ ⊕ (α⊗ β)

The third term is known toG and is free. The other two terms must be computed
inside the GC. Consider the term (a⊕ α)⊗ b.

In Section 7.1 we insisted that this outer product be computed by a single
one-hot gate. More generally, we can tile together multiple one-hot outer prod-
ucts. We ensure the tiles are small enough that computation remains polynomial
in the input size.

Each tile computes the outer product of a k-bit chunk of a ⊕ α with b,
yielding a k × m submatrix of the full outer product (a ⊕ α) ⊗ b. Vertically
concatenating the dn/ke submatrices yields the correct result. We use the same
idea to compute (b ⊕ β) ⊗ α. We defer formal presentation of the module to
Appendix B.

If the chosen chunk size k is logarithmic in the size of input, then the parties
compute a ⊗ b in polynomial time. In terms of communication, the parties
use O(nm/k) garbled rows: a factor k improvement over the standard method.
Formally, we improve outer product communication by a logarithmic factor; in
practice we choose constants k that yield good performance.

Figure 7 plots the practical efficiency we obtained when implementing gen-
eral outer products with different values of k. The results show that our ap-
proach significantly improves outer products over prior state-of-the art.

7.3 Binary Matrix Multiplication

It is well known that outer products can be used to efficiently multiply ma-
trices. We implemented this approach – see Appendix B. For chunking factor
k = 6, our approach improves 128 × 128 square matrix multiplication by 6.2×
(communication) and 5× (time).

7.4 Integer Multiplication

Consider bit vectors a, b ∈ {0, 1}n that each represent n-bit numbers. The outer
product of a⊗ b can be used to help calculate the product a · b. See Appendix B
for further discussion.

We implemented 32-bit integer multiplication using our technique and the
standard method (our standard circuit is inspired by [WMK16]). Best perfor-
mance was achieved with “chunking factor” (see Section 7.2) k = 6:

22



Standard Ours Improvement
Comm. (KB) 32.0 21.3 1.51×
Time (ms) 3.20 2.32 1.38×

As compared to outer products and matrix multiplication, our improvement
here is less substantial: after the outer product is computed, our technique still
must add together values in the standard manner. Still, we achieve improvement
to an important primitive.

In the GC setting, the Karatsuba fast multiplication method improves over
standard multiplication even for small 20-bit integers [HKS+10]. Karatsuba is a
recursive divide-and-conquer algorithm. At the leaves of the recursion (i.e. for
19-bit numbers or less), it is best to use standard multiplication. We thus can
use our improved standard multiplication method to accelerate Karatsuba-based
multiplication.

7.5 Binary Field Multiplication

Consider an arbitrary binary field GF(2n). In such fields, multiplication can be
understood as polynomial multiplication modulo an irreducible polynomial p(x).
By representing elements a, b ∈ GF(2n) as vectors of bits, we can easily compute
the product of the two polynomials from the vector outer product. Once com-
puted, the product can be reduced modulo p(x) by a linear function [GKPP06].
Thus, our outer product construction improves binary field multiplication by
the “chunking factor” k (see Section 7.2).

Because this multiplication only uses a black box outer product followed by
XORs, we do not need to formalize a module.

We implemented both our approach and a standard circuit for GF(28) (mod-
ulo x8 + x4 + x3 + x + 1). We used the best available standard circuit for this
field [BDP+20]. We ran our version with chunking factor k = 4 and k = 8.
We list communication, wall clock time, and corresponding improvement over
standard:

Standard k = 4 k = 8
Comm. (Bytes) 1536 896 1.71× 704 2.18×
Time (µs) 146 80 1.82× 111 1.3×

Despite the fact efficient hand-tuned circuits are available, we improve commu-
nication consumption by more than 2×.

7.6 Binary Field Inverses and the AES S-Box

Our technique can compute binary field inverses using less communication than
the state-of-the-art. Consider a field GF(2n) where n is small (formally, loga-
rithmic in the circuit input size). Let a ∈ GF(2n) be a field element and suppose
a 6= 0 (we handle this separately).

Our module follows from a technique given by [BIB89]. Namely, for non-
zero input a, we first compute a · α for uniform non-zero mask α. Then, we
reveal a · α to E. With this done, we use a one-hot gate to efficiently compute

23



(a · α)−1 · α = a−1. Due to a lack of space, we defer a full formalization of our
inverse module to Appendix B.

S-Boxes. The AES S-Box, which is the only non-linear component of the AES
block cipher, performs a single inversion in GF(28); all other parts of the S-Box
are linear. The state-of-the-art Boolean circuit S-Box uses 32 AND gates [BP10].
Thus, with the half-gates technique, this implementation consumes 64 cipher-
texts.

Our full inverse gate consumes 58 ciphertexts: 22 to compute Ja · αK, 22 to
then compute the inverse, and 14 to handle the case where a = 0. This improves
communication by ∼ 10%.

We implemented the [BP10] S-Box and our one-hot version:

Standard Ours Improvement
Comm. (Bytes) 1024 929 1.10×
Time (µs) 103.6 105.8 0.98×

On a WAN, our implementation is slightly slower than the standard S-Box. This
can likely be improved by low-level code optimization.

It may be possible to further apply our technique to block ciphers, perhaps
by codesigning with our new cost structure in mind. We leave such fine-grained
approaches to future work.

7.7 Modular Reduction

Let x mod y denote a function that computes the remainder of x divided by y.
Suppose the parties hold a sharing JaK and wish to compute Ja mod `K where `
is a public constant. Such computation is potentially useful, e.g. to compute in
an arithmetic field Zp.

The Boolean circuit that computes (·) mod ` is an expensive quadratic con-
struction. One-hot gates can improve the cost.

Our module first subtracts a random mask α from a and then reveals a− α
to E. It then splits a into small k-bit “chunks” and, for each chunk, efficiently
computes (·) mod ` using a one-hot gate. The reduced chunks can then be
recombined and the mask stripped off using addition mod `. (Addition modulo
` where both arguments are already less than ` is a special case and can be
computed efficiently.) Crucially, the number of needed additions is proportional
only to the number of chunks. Due to lack of space, we defer formal treatment
of the module to Appendix B.

For our concrete experiment, we implemented modular reduction for 32-
bit numbers using the prime modulus p = 65521 (the largest 16-bit prime).
Our standard implementation conditionally subtracts p · 2k for k ∈ [16]; thus 16
conditional subtractions are needed. Our optimized version uses chunking factor
k = 8. The technique requires only 3 additions and 3 conditional subtractions
and hence substantially improves performance:

24



Standard Ours Improvement
Comm. (KB) 35.1 10.5 3.3×
Time (ms) 3.75 1.08 3.5×

7.8 Exponentiation

Suppose the parties hold a sharing JaK and wish to compute J`aK where ` is
a publicly agreed constant. For special cases of ` (e.g., ` = 2), there are fast
circuits that compute J`aK. However, for arbitrary ` we need to repeatedly
multiply inside GC, which is expensive. We can use one-hot gates to greatly
reduce the number of needed multiplications.

Our module first subtracts a uniform additive mask α from a and then reveals
a− α to E. Then, the module splits Ja− αK into small k-bit “chunks” and, for
each chunk c, computes J`cK using a one-hot gate. These intermediate values
can be combined and the mask stripped off using multiplication. We use our
improved multiplication technique (Section 7.4) to further improve the module.
We defer formal treatment of the module to Appendix B.

We implemented exponents for 32-bit numbers using a standard technique
(which consumes 31 standard multiplications) and our technique (with chunking
factor k = 8, which consumes only 4 improved multiplications):

Standard Ours Improvement
Comm. (KB) 1024 87 11.8×
Time (ms) 101 10.6 9.52×

Acknowledgments. This work was supported in part by NSF award
#1909769, by a Facebook research award, a Cisco research award, and by Geor-
gia Tech’s IISP cybersecurity seed funding (CSF) award.

References

[AAL+] David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene, Nele
Mertens, Danilo Sijacic, and Nigel Smart. ’bristol fashion’ mpc
circuits. https://homes.esat.kuleuven.be/~nsmart/MPC.

[ADI+17] Benny Applebaum, Ivan Damg̊ard, Yuval Ishai, Michael Nielsen,
and Lior Zichron. Secure arithmetic computation with constant
computational overhead. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 223–
254. Springer, Heidelberg, August 2017.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa
Kohl, and Peter Scholl. Efficient pseudorandom correlation gen-
erators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 489–518. Springer, Heidelberg, August 2019.

25



[BDP+20] Joan Boyar, Morris Dworkin, Rene Peralta, Meltem Tu-
ran, Cagdas Calik, and Luis Brandao. Circuit Mini-
mization Work. http://cs-www.cs.yale.edu/homes/peralta/

CircuitStuff/CMT.html, 2020.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional sig-
natures and pseudorandom functions. In Hugo Krawczyk, editor,
PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Hei-
delberg, March 2014.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip
Rogaway. Efficient garbling from a fixed-key blockcipher. In 2013
IEEE Symposium on Security and Privacy, pages 478–492. IEEE
Computer Society Press, May 2013.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Founda-
tions of garbled circuits. In Ting Yu, George Danezis, and Virgil D.
Gligor, editors, ACM CCS 2012, pages 784–796. ACM Press, Oc-
tober 2012.

[BIB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-
tolerant computing in constant number of rounds of interaction.
In Piotr Rudnicki, editor, 8th ACM PODC, pages 201–209. ACM,
August 1989.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimiza-
tion techniques with applications to cryptology. Journal of Cryp-
tology, 26(2):280–312, April 2013.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round
complexity of secure protocols (extended abstract). In 22nd ACM
STOC, pages 503–513. ACM Press, May 1990.

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets
for Boolean and arithmetic circuits. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 565–577. ACM Press, Oc-
tober 2016.

[BP10] Joan Boyar and René Peralta. A new combinational logic min-
imization technique with applications to cryptology. Experimen-
tal Algorithms Lecture Notes in Computer Science, page 178–189,
2010.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom func-
tions and their applications. In Kazue Sako and Palash Sarkar,
editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages
280–300. Springer, Heidelberg, December 2013.

26



[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-
Sheng Zhou. On the security of the “free-XOR” technique. In
Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
39–53. Springer, Heidelberg, March 2012.

[DKS+17] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,
Thomas Schneider, Shaza Zeitouni, and Michael Zohner. Push-
ing the communication barrier in secure computation using lookup
tables. In NDSS 2017. The Internet Society, February / March
2017.

[DNNR17] Ivan Damg̊ard, Jesper Buus Nielsen, Michael Nielsen, and Samuel
Ranellucci. The TinyTable protocol for 2-party secure computa-
tion, or: Gate-scrambling revisited. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 167–187. Springer, Heidelberg, August 2017.

[Ds17] Jack Doerner and abhi shelat. Scaling ORAM for secure compu-
tation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 523–535. ACM
Press, October / November 2017.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to con-
struct random functions (extended abstract). In 25th FOCS, pages
464–479. IEEE Computer Society Press, October 1984.

[GKPP06] Jorge Guajardo, Sandeep S. Kumar, Christof Paar, and Jan Pelzl.
Efficient software-implementation of finite fields with applications
to cryptography. In Acta Applicandae Mathematica, 2006.

[GKWY20] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and
secure multiparty computation from fixed-key block ciphers. In
2020 IEEE Symposium on Security and Privacy, pages 825–841.
IEEE Computer Society Press, May 2020.

[GLMY16] Adam Groce, Alex Ledger, Alex J. Malozemoff, and Arkady
Yerukhimovich. CompGC: Efficient offline/online semi-honest two-
party computation. Cryptology ePrint Archive, Report 2016/458,
2016. https://eprint.iacr.org/2016/458.

[GLNP18] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast
garbling of circuits under standard assumptions. Journal of Cryp-
tology, 31(3):798–844, July 2018.

[HK20a] David Heath and Vladimir Kolesnikov. Stacked garbling - garbled
circuit proportional to longest execution path. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 763–792. Springer, Heidelberg, Au-
gust 2020.

27



[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for dis-
junctive zero-knowledge proofs. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS,
pages 569–598. Springer, Heidelberg, May 2020.

[HK21] David Heath and Vladimir Kolesnikov. Logstack: Stacked garbling
with o(b log b) computation. Cryptology ePrint Archive, Report
2021/531, 2021. https://eprint.iacr.org/2015/751.pdf.

[HKP20] David Heath, Vladimir Kolesnikov, and Stanislav Peceny. MOTIF:
(almost) free branching in GMW - via vector-scalar multiplication.
In ASIACRYPT 2020, Part III, LNCS, pages 3–30. Springer, Hei-
delberg, December 2020.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas
Schneider, and Immo Wehrenberg. TASTY: tool for automat-
ing secure two-party computations. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010, pages
451–462. ACM Press, October 2010.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi,
and Anat Paskin-Cherniavsky. On the power of correlated ran-
domness in secure computation. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 600–620. Springer, Heidelberg, March
2013.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic state-
ments efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM Press,
November 2013.

[KKK+15] Matthew Kelly, Alan Kaminsky, Michael Kurdziel, Marcin
 Lukowiak, and Stanis law Radziszowski. Customizable sponge-
based authenticated encryption using 16-bit s-boxes. In MILCOM
2015 - 2015 IEEE Military Communications Conference, pages 43–
48, 2015.

[KKW17] W. Sean Kennedy, Vladimir Kolesnikov, and Gordon T. Wilfong.
Overlaying conditional circuit clauses for secure computation. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017,
Part II, volume 10625 of LNCS, pages 499–528. Springer, Heidel-
berg, December 2017.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek.
FleXOR: Flexible garbling for XOR gates that beats free-XOR.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 440–457. Springer, Heidel-
berg, August 2014.

28



[KNR+17] Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu,
and Roberto Trifiletti. DUPLO: Unifying cut-and-choose for gar-
bled circuits. In Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 3–20.
ACM Press, October / November 2017.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and
Thomas Zacharias. Delegatable pseudorandom functions and appli-
cations. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013, pages 669–684. ACM Press, November
2013.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled
circuit: Free XOR gates and applications. In Luca Aceto, Ivan
Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II,
volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July
2008.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving
auctions and mechanism design. In Proceedings of the 1st ACM
conference on Electronic commerce, pages 129–139. ACM, 1999.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C.
Williams. Secure two-party computation is practical. In Mitsuru
Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
250–267. Springer, Heidelberg, December 2009.

[PSSY20] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein
Yalame. ABY2.0: Improved mixed-protocol secure two-party com-
putation. Cryptology ePrint Archive, Report 2020/1225, 2020.
https://eprint.iacr.org/2020/1225.

[RR21] Mike Rosulek and Lawrence Roy. Three halves make a whole?
Beating the half-gates lower bound for garbled circuits. LNCS,
pages 94–124. Springer, Heidelberg, 2021.

[RWT+18] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M. Songhori, Thomas Schneider, and Farinaz Koushanfar.
Chameleon: A hybrid secure computation framework for machine
learning applications. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim,
Yongdae Kim, Javier López, and Taesoo Kim, editors, ASIACCS
18, pages 707–721. ACM Press, April 2018.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mar-
iana Raykova. Distributed vector-OLE: Improved constructions
and implementation. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
1055–1072. ACM Press, November 2019.

29



[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://github.com/

emp-toolkit, 2016.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In IEEE
Symposium on Security and Privacy, 2021.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao
Wang. Ferret: Fast extension for correlated OT with small com-
munication. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Gio-
vanni Vigna, editors, ACM CCS 20, pages 1607–1626. ACM Press,
November 2020.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make
a whole - reducing data transfer in garbled circuits using half
gates. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250.
Springer, Heidelberg, April 2015.

A Formal Proofs

We prove Lemma 4.

Proof. By constructing Drev.
In this proof, we view Color gates as a strict special case of Reveal gates

that use a uniform output distribution Dout.
Recall that Drev must simulate all values revealed by Reveal gates in a

module M. Drev is the distribution that, when sampled, samples each Reveal
gate’s distribution Dout and concatenates the results.

We show this secure by a hybrid argument. Let the considered module M
have n Reveal gates. Let hybrid h0 be the real distribution of revealed values
and let hybrid hn be Drev. Each hybrid hi is equal to hi−1 except that we replace
the output of the ith Reveal gate by a sample from its distribution Dout.

Assume the real distribution and Drev are distinguishable, and hence for
some i, hi−1 and hi allow a distinguisher. Thus, the ith gate’s simulated output
must allow the distinguisher. Let y�E , z�G := Reveal[C,Dmask](x) denote the
ith Reveal gate. Requirement 2 gives the following property for all inputs x:

{x, C(x, α)} c
= {x, r} where r ← Dout, α← Dmask

This property implies that the output of the ith gate is (computationally) inde-
pendent of its input. Hence the output of the ith gate must be computationally
independent of all other Reveal gate outputs. Note, (1) {C(x, α)} c

= {r} holds
trivially from the above property and (2) the presence of other simulated Reveal

30



outputs cannot help a distinguisher because each such output is mutually in-
dependent with every other output (up to computational indistinguishability).
Therefore, the existence of distinguisher between hi−1 and hi contradicts Re-
quirement 2, and hence our assumption does not hold.

As an informal aside, note that this lemma would not hold if we required only
that the output of a Reveal gate is indistinguishable from Dout: by requiring
that indistinguishability hold even in the context of the Reveal gate input, we
ensure that Reveal outputs are independent of one another (and hence cannot
even jointly reveal private information).

We prove Theorem 1: OneHot is correct.

Proof. By induction on a moduleM. Our inductive hypothesis is that modules
are correct. Once modules are proved correct, circuits are trivially correct, since
a circuit is merely a list of modules.

To prove modules correct, we first argue that each individual gate type is
in some sense correct. Note that we cannot prove gates strictly correct because
both Reveal and Color are non-deterministic. However, we can show that in
both our implementation (OneHot.Gb and OneHot.Ev) and our specification
(OneHot.ev), gates produces outputs in the same distribution. This, combined
with the module-designer proof of correctness (Requirement 1), suffices to show
that the module as a whole is strictly correct.

We proceed by case analysis on gates.
XOR gates use the linearity of garbled shares (Lemma 2), and are trivially

correct.
Constant gates are trivially correct: For constant c, G uses share c∆ and

E uses share 0. This is a valid garbled sharing of c (Definition 3).
One-hot gates are our most complex construction. Figure 3 explains many

details inline; we expand on details here.
We consider a one-hot gate with inputs a and b that computes H(a) ⊗ b.

Recall that E is assumed to know a. The two parties begin by jointly expanding
a GGM tree such that, in the end, G computes 2n leaf nodes Li and E computes
each leaf node Li 6=a.

We prove this initial expansion correct by induction on the levels of the tree;
namely for each level i, G holds 2i+1 strings Si,j and E holds all such strings
except the single string on the path to La. In the base case, G chooses S0,0 to
be A0 ⊕∆ and S0,1 to be A0. Thus the invariant trivially holds.

Now consider arbitrary level i such that level i− 1 is already populated. E
trivially expands all strings on this level save two: one on the path to a (which
she should not receive) and one just off the path to a. To correct for this, G
sends to E two encryptions that allow her to obtain the XOR sum of all even
strings/all odd strings depending on her share Ai ⊕ ai∆. From this sum, she
XORs on all of her already expanded even (resp. odd) strings and recovers the
missing even (resp. odd) string. From this, E recovers the string just off the
path to La. Hence the inductive invariant holds.

31



Next, the parties expand their leaf strings into garbled sharings JH(a)⊗ bK.
G generates all of his shares simply by applying H to each leaf m times. Thus
G computes a 2n × m matrix. E similarly applies H to her leaves m times.
Thus, she obtains the same matrix as G except that row a is missing.

Let X be G’s matrix. Let Bj be G’s share of bit bj . For each column j of
the matrix, G computes and sends to E the following value:(⊕

i
Xi,j

)
⊕Bj

Note that E holds her garbled share Bj ⊕ bj∆. Thus, she computes:(⊕
i6=a

Xi,j

)
⊕
((⊕

i
Xi,j

)
⊕Bj

)
⊕ (Bj ⊕ bj∆) = Xa,j ⊕ bj∆

Thus, in row a, the parties hold garbled shares of b. Altogether, the parties hold
a sharing JH(a)⊗ bK.

One-hot gates are correct.
Recursive Module calls are correct by induction.
Reveal gates are correct by inspection. The specification and the imple-

mentation of Reveal gates match: both procedures sample values from Dmask

and feed them as input to the internal masking circuit. The internal masking
circuit is correct by induction.

Color gates are similarly correct: the specification draws a uniform value
while the implementation uses the color bit, which is uniform. Note there is one
tedious detail here: If we are being pedantic, calling a color gate on the same
input more than once is problematic because the implementation uses the same
uniform bit for each gate, whereas the specification draws a fresh mask for each
gate. This is easily remedied by having the specification associate a uniform
color with each wire. We elide this detail outside of this discussion because it
is so minor.

We have now shown each gate type correct in the sense that the implemen-
tation and specification produce equal distributions. Now, the module that calls
these gates is strictly correct, because the module designer provided a proof of
correctness that demonstrates the module output is independent of any internal
randomness (Requirement 1).

Since modules are correct, circuits are correct. OneHot is correct.

We prove Theorem 2: If H is a circular correlation robust hash function,
then OneHot is oblivious.

Proof. By construction of a simulator Sobv. At a high level, all messages sent
from G to E are simulated by uniform bits, except values leaked by Reveal
gates which are instead simulated by sampling each such gate’s specified output
distribution (Requirement 2).

First, Sobv uniformly samples input sharesX ′. In isolation, these are trivially
indistinguishable from the real shares X, because each share in X is drawn
uniformly (with ∆ conditionally added). These remain indistinguishable in the
context of C and M .

32



We describe the simulator’s gate-by-gate handling and argue that the re-
sultant material (even in context of input shares) is indistinguishable. The
simulator propagates the simulated input shares X ′ to simulated output shares
Y ′ and builds up material M ′. Our indistinguishability argument proceeds by
induction on the structure of a moduleM. The inductive hypothesis maintains
that the simulated garbling of each submodule is indistinguishable from the real
garbling.

XOR gates are handled simply: Sobv XORs the input shares. No change
is made to the simulator’s output.

Constants are also simple: Sobv sets the output share to zero.
One-hot gates are more involved.
Recall that a one-hot gate first proceeds level-by-level through a binary

branching tree. For each level, Gb includes an encryption of all even nodes
and of all odd nodes:

H(Ai ⊕∆,noncei,even)⊕
2i−1⊕
j=0

Si,2j H(Ai,noncei,odd)⊕
2i−1⊕
j=0

Si,2j+1

Note two facts: (1) each string Si,j is generated by invoking H on another
uniform string and (2) both encryptions are generated by again invoking H. H
is a circular correlation robust hash function, so Sobv securely simulates each
pair of encryptions with uniform bits.
Sobv then copies the actions of OneHot.Ev in decrypting the GGM tree

starting from the input shares. Recall that the purpose of this decryption is to
compute the 2n− 1 leaf strings Li6=a. As an aside, we emphasize that the input
a is not a uniform value, but rather must be simulated on a case-by-case basis.
In particular, the Reveal leakage is simulatable (see below). Because each input
share is uniform and each encryption is uniform, Sobv computes 2n − 1 uniform
leaves.

Finally, in the real world, Gb appends to M m strings of the form:(⊕
i
Xi,j

)
⊕Bj

Sobv simulates each such string with a uniform string. This is suitable because
(1) each Xi,j is uniform, and (2) one string Xa,j is missing from E’s view. From
here, Sobv copies the actions of Ev in computing E’s share of the output matrix
and outputs the resultant shares.

Thus, Sobv properly simulates one-hot gates.
Each recursive Module call is recursively simulated. This is appropriate

by induction.
Reveal gates are handled as follows. First, we simulate shares for the sam-

pled value α ← Dmask. These shares are trivially simulated by all zeros (see
OneHot.Ev). Next, Sobv recursively simulates the Reveal gate’s internal circuit
C. By induction, this simulation is indistinguishable from the real garbling. Let
b′, c′ be the simulated output shares. The real garbling appends a value Color(b)
to the material (see OneHot.Gb). Sobv simulates this message as follows: first,

33



it samples a value x ← Dout. Recall that the user provided a proof that the
output of C is indistinguishable from such a sampled value (Requirement 2).
Hence x simulates the cleartext output of C. Next, Sobv appends x⊕ Color(b′)
to its simulated material. This properly simulates the material because it “re-
veals” the value x, which is indistinguishable from the value revealed in the real
garbling.

Color gates are straightforward: the simulator simply copies OneHot.Ev’s
actions.

We have now proved each gate type simulatable. However, this does not yet
prove the entire module simulation indistinguishable. In the real world, some of
the module’s wires encode masks applied to values that are revealed via Reveal
gates. We must ensure that these masks are never themselves revealed, or else
the simulation would be distinguishable. This is ensured by three facts: (1)
inside a module, no values are revealed except those revealed by new Reveal
and Color gates, (2) each Reveal gate uses a fresh mask and its leakage is
simulatable, and (3) the output of the module is a deterministic value, and
hence is independent of any internal random masks (Requirement 1). Thus
internal random masks cannot escape the module. Note also that the joint
information given by multiple Reveal gates does not break indistinguishability
(see Lemma 4).

Thus Sobv outputs a module garbling that is indistinguishable from real.
Because modules can simulated, circuits can also trivially be simulated. OneHot
is oblivious.

We prove Theorem 3: If H is a circular correlation robust hash function,
then OneHot is private.

Proof. By construction of a simulator Sprv. At a high level, Sprv simply runs
Sobv, then builds a corresponding decoding string that ensures the simulated
circuit garbling outputs y when evaluated.

First, Sprv invokes (C,M ′, X ′) = Sobv(1κ, C). The remaining task is to gen-
erate a decoding string d′ which, together with M ′ and X ′, is indistinguishable
from real (M,X, d), even when given the output y.

To do so, Sprv invokes the procedure Y ′ = Ev(C,M ′, X ′) and hence computes
output shares that correspond to the obliviousness simulation. Recall that the
real string d is constructed by hashing each corresponding zero/one output share
(see OneHot.De). Thus, Sprv must simulate two strings for each ith output: one
that properly maps Y ′i to yi, and one that cannot be decrypted. Sprv computes
H(Y ′i ,nonce) where nonce is the same nonce as described in OneHot.De. There
are two available ‘slots’ in d′ where this string can be placed; Sprv places it in
slot yi. Sprv fills the other slot with a uniform string.

Note first that the above is correct: OneHot.De(d′, Y ′) = y. Moreover, the
simulation is indistinguishable from the real world: each element in d is the
output of a (circular correlation robust) hash function, so appears uniformly
random; the simulated decoding string d′ also appears uniformly random.

OneHot is private.

34



We prove Theorem 4: If H is a circular correlation robust hash function,
then OneHot is authentic.

Proof. We proceed backwards across C, at each gate demonstrating that A
cannot obtain input shares except by correctly evaluating the previous parts of
the circuit. The key idea is to show that forging an output of any subcircuit
is as hard as forging an input to that subcircuit. Thus, by induction, forging a
circuit output amounts to guessing a different circuit input, which succeeds with
probability 2−κ by trying to guess the value ∆. At a high level, authenticity
is trivial for all except one-hot gates; one-hot gates are authentic due to the
security properties of H.

First, inspect OneHot.De. Recall that for each bit of output yi, the decoding
string d holds two values:

H(nonce, Yi) H(nonce, Yi ⊕∆)

A succeeds if for any output bit yi she causes De to output yi⊕ 1. To construct
an output that properly decodes, A must either (1) break the collision resistance
of H (infeasible by assumption) or (2) construct a value Yi ⊕ (yi ⊕ 1)∆. If A
attempts any other value, then OneHot.De will abort, so A fails.

Now, it suffices to show that it is infeasible to produce any such value Yi ⊕
(yi⊕1)∆. We do so by induction on the structure of a moduleM. Authenticity
of circuits follows trivially from the authenticity of modules. The inductive
hypothesis is as follows: Given garbled input X and material M for a submodule
M′ such that Y = Ev(C,M,X), A cannot construct Y ′ = Y ⊕r∆ for some non-
zero matrix r except with negligible probability. Put more simply, it is infeasible
for A to generate an output Y ′ that is a valid share, but is different from Y
anywhere.

XOR gates are trivially authentic. In Ev, XOR gates simply XOR the
input shares. Thus, forging output is as hard as forging input.

Constant gates are trivially authentic: Ev simply outputs a share zero, so
A is given no new information.

Recursive Module calls are authentic by induction.
Reveal gates are trivially authentic. First, each such gate samples a mask

α ← Dmask. Forging a different mask would require A to guess ∆, which
succeeds only with probability 2−κ and hence is infeasible. Then, the gate
forwards its input and α to a subcircuit which is authentic by induction.

Note, the Reveal gate also leaks a value to A. Changing this value cannot
help A because the leaked values are simply guides that indicate which garbled
rows to decrypt.

Color gates are trivially authentic: Ev simply forwards parts of the Color
gate input.

One-hot gates are less straightforward, but can be proved secure by the
properties of H. Assume the one-hot gate has inputs a and b. We split the
one-hot gate into two parts. The first part constructs the GGM tree where
honest E decrypts 2n−1 out of 2n leaves. The second part uses these leaves to
construct matrix columns.

35



We start from the second part. For each column in the second part, the
material includes a message of the following form:(⊕

i
Xi,j

)
⊕Bj

Moreover, A holds each string Xi 6=a,j and Bj ⊕ bj∆. However, A does not hold
Xa,j and, moreover, this value is the result of calling H on a leaf string La. But
H is a hash function, so constructing Xa,j is as hard as constructing La. Thus,
forging a valid output matrix X ′ 6= X is as hard as forging La or forging valid
B′ 6= B.

Now, let us look at the first part and demonstrate that forging La is as hard
as forging valid A′ 6= A. We proceed upwards through the binary branching
tree, demonstrating that forging level i+ 1 is as hard as forging level i.

Each child node is constructed fby hashing its parent node, so forging a
child is as hard as forging its parent. For each level, A additionally observes
two strings:

H(Ai ⊕∆,noncei,even)⊕
2i−1⊕
j=0

Si,2j H(Ai,noncei,odd)⊕
2i−1⊕
j=0

Si,2j+1

Informally, if A could decrypt the ‘wrong’ string, then she could forge a child
on the path to a. However, both strings are encrypted using a hash of Ai and
H is circular correlation robust. Therefore, forging the sum of odds/evens is as
hard as forging A′ 6= A. Thus, the first part is authentic.

In summary, forging an output matrix X ′ 6= X is as hard as forging A′ 6= A
or B′ 6= B. Thus, one-hot gates are authentic.

Since all gate types are authentic, modules and circuits are also authentic.
Forging a valid circuit output Y ′ 6= Y is as hard as forging a valid circuit input
X ′ 6= X, and forging a valid circuit X ′ 6= X can only be achieved by guessing
∆, which only succeeds with negligible probability.

OneHot is authentic.

A.1 Compatibility with Stacked Garbling

Recall that OneHot is a garbling scheme (Section 5.5, Construction 1) [BHR12].
In this section we prove OneHot’s (limited) compatibility with stacked gar-
bling [HK20a, HK21]. In particular, OneHot can serve as the underlying gar-
bling scheme for stacked garbling, which handles each conditional branch. We
start by giving the definition of strong stackability [HK21].

Definition 8 (Strong Stackability). A garbling scheme is strongly stackable if:

1. For all circuits C and all inputs x,

(C,M,En(e, x))
c
= (C,M ′, X ′)

where (M, e, ·)← Gb(1κ, C), X ′ ← {0, 1}|X|, and M ′ ← {0, 1}|M |.

36



2. The scheme is projective [BHR12].

3. There exists an efficient deterministic procedure Color that maps strings
to {0, 1} such that for all C and all projective label pairs A0, A1 ∈ d:

Color(A0) 6= Color(A1)

where (·, ·, d) = Gb(1κ, C).

4. There exists an efficient deterministic procedure Key that maps strings to
{0, 1}κ such that for all C and all projective label pairs A0, A1 ∈ d:

Key(A0) | Key(A1)
c
= {0, 1}2κ

where (·, ·, d) = Gb(1κ, C).

Informally, strong stackability achieves two goals. First, property (1) ensures
that the garbling of a circuit “looks random”, which is important when stacking
branches [HK20a]. Second, properties (2–4) allow the stacked garbling scheme
to manipulate the shares that emerge from evaluation of our garbling scheme.

To achieve strong stackability we modify OneHot in two ways.
The first change is simple and does not alter the flexibility of our scheme.

Specifically, we alter our output decoding string d to meet item (3). Recall that
we construct the decoding string d by setting the projective pair for each output
bit yi as follows (see Figure 4):

H(Yi,nonce) H(Yi ⊕∆,nonce)

Note that if we call our Color procedure (Section 3) on these two strings, the
result may match, which fails property (3). Thus, we make the following simple
adjustment to d:

H(nonce, Yi) | Color(Yi) H(nonce, Yi ⊕∆) | Color(Yi ⊕∆) (3)

By concatenating the color of the input shares, we ensure that the least signif-
icant bits of these two strings differ. Therefore, our Color procedure will now
meet item (3).

The second change is more fundamental: Reveal gates can reveal values
from arbitrary distributions. This breaks property (1), which insists that all
values viewed by E are indistinguishable from uniform. Therefore, to achieve
strong stackability we limit Reveal gates such that only uniform distributions
are allowed.

Theorem 5. Let OneHot′ be the OneHot garbling scheme (Section 5.5, Con-
struction 1) with the following two modifications:

1. The output decoding string d is configured by setting the projective output
pair for each output bit yi according to Equation (3).

37



2. The output distribution Dout of each Reveal gate is limited to a uniform
distribution over binary strings.

If H is a circular correlation robust hash function, OneHot′ is strongly stackable.

Proof. By inspection of the simulator Sobv (Theorem 2).
First note that strong stackability items (2–4) hold trivially. OneHot is

projective. Color is formally defined in Section 3, and we define Key to be
the procedure which drops the least significant bit (i.e. drops the color bit)
and retains the remaining bits . The indistinguishability of pairs of keys in d
follows from the fact that H is a circular correlation robust hash function (see
Equation (3)).

Now, it remains to prove strong stackability item (1). Examine the oblivious-
ness simulator Sobv (Theorem 2). Note that Sobv simulates the entire garbling
(i.e., all material and wire shares) with uniform bits with one notable excep-
tion: the material used to reveal E’s output of a Reveal gate is simulated by
sampling from that gate’s output distribution Dout. However, since OneHot′ re-
stricts Dout, this simulation is also achieved by uniform bits. Since the simulator
simulates all values with uniform bits, item (1) holds.

OneHot′ is strongly stackable.

B Applications – Extended

In this appendix, we expand on details deferred from Section 5.

B.1 General Binary Outer Products – Extended

In Section 7.2 we explained our general outer product technique, but we did not
formalize it. Figure 8 provides the formal module.

B.2 Binary Matrix Multiplication – Extended

It is well known that outer products can be used to efficiently compute matrix
products. Specifically, the binary matrix product of input matrices a and b can
be expressed by (1) for each i taking the outer product of column i of a with
row i of b and (2) XORing the resulting matrices.

Notice that this technique does not use our low level primitives directly, and
instead uses our outer product module as a black box. Hence, we need not
formalize a module for matrix multiplication.

Because our technique reduces the cost of outer products by factor k (see
Section 7.2), we similarly reduce the cost of binary matrix multiplication by
factor k. That is, for input matrices with dimension n × m and m × l, we
require O(nml/k) communication rather than the standard O(nml). Formally,
k is a logarithmic factor; in practice we instantiate k with small constants.

We implemented matrix multiplication; Figure 9 plots our improvement over
the standard approach.

38



B.3 Integer Multiplication – Extended

Consider the multiplication of two n-bit numbers a and b. Standard GC tech-
niques multiply such numbers using the schoolbook method [WMK16]6. For
sake of example, consider n = 4 and examine the computation done by the
schoolbook method:

a0 · (
a1 · (
a2 · (
a3 · (

b3 b2 b1 b0

b2 b1 b0

b1 b0

b0+

(ab)0(ab)1(ab)2(ab)3

)

)

)0

0

0

000 )

Notice that each summand can be expressed by bits in the outer product of a
and b. Hence, we improve multiplication by using our general outer product
module (Section 7.2). Each summand must still be added inside GC; we do so
by traditional GC means. This addition is now the bottleneck of multiplica-
tion performance. We leave potential improvements, perhaps by incorporating
arithmetic GC techniques [BMR16], to future work.

Our integer multiplication technique does not use our lowest level primitives
directly, so we need not formalize a module.

B.4 Binary Field Inverses – Extended

We now describe our field inverse module in detail. We first compute and release
to E a · α. To do so, we use a Reveal gate to sample uniform non-zero mask
α ∈ GF(2n). Recall that a Reveal gate may use an arbitrary circuit to apply the
mask to its argument; we use a circuit that computes a ·α where · denotes field
multiplication. This circuit uses the technique described in Section 7.5 to reduce
field multiplication to an outer product. Because G knows the multiplicand α,
the Reveal gate’s internal circuit can compute the outer product more efficiently
than as described in Section 7.1. Namely the parties compute the following,
where γ ∈ {0, 1}n is a uniform mask:

T (id)ᵀ · JH(a⊕ γ)⊗ αK⊕ Jγ ⊗ αK = Ja⊗ αK

G injects Jγ⊗αK as a constant. The parties apply a linear function to this outer
product to obtain Ja · αK.

The above gate reveals a · α to E, so we must prove this secure. This holds
straightforwardly: because α is uniform and because GF(2n) is a field, this value
is indistinguishable from a uniform non-zero field element.

Next, we use the revealed value a ·α to compute the inverse. Let (·)−1 be the
function that takes the field inverse of its argument. The parties use a one-hot
gate to compute the following:

T ((·)−1)ᵀ · JH(a · α)⊗ αK = J(a · α)−1 ⊗ αK Lemma 1

6There exist asymptotically more efficient multiplication algorithms, but these are ineffi-
cient in practice.

39



The parties use the reduction described in Section 7.5 to compute from the outer
product the field product J(a · α)−1 · αK = Ja−1K.

Our module must account for the possibility that the input a is zero. The
typical approach, which we also adopt, is to map input zero to output zero. To
do so, we first compute an auxiliary bit z that indicates if a = 0. We use a
regular Boolean circuit with ANDs and XORs to compute JzK , Ja == 0K. At
the top-level, the module computes the following expression:

J(a⊕ z)−1 ⊕ zK

If a is indeed zero, then this expression takes the inverse of one, which is itself
one, and then XORs one, resulting in the desired output zero. Otherwise, this
expression computes a−1.

B.4.1 S-Boxes – Extended

In Section 7.6, we discussed the 8-bit AES S-Box. 16-bit S-Boxes, based on an
inversion in GF(216), have also been proposed for some applications [KKK+15].
The state-of-the-art Boolean circuit uses 226 ciphertexts (113 AND gates) [BMP13].
Our approach produces an S-Box that consumes only 122 ciphertexts, a ∼ 45%
improvement. Unfortunately, this application is less practical in terms of wall
clock time since the parties must each compute a 216×16 one-hot outer product
matrix.

B.5 Modular Reduction – Extended

Figure 11 lists the module for our modular reduction technique. The module
makes use of two key ideas:

First, consider x and y that are both statically known to be less than `. In
this case, the operation (x + y) mod ` is a special case and can be computed
using linear communication: simply add the numbers, compare the sum to `,
and conditionally subtract `.

Second, we use the two following equalities:

(x+ y) mod ` = ((x mod `) + (y mod `)) mod `

x mod ` = (x mod (m · `)) mod `

Based on these ideas, we split the input a into chunks, reduce each chunk
modulo `, and then efficiently add the results.

B.6 Exponentiation – Extended

We now describe our module that computes J`aK for publicly agreed constant `.
We take advantage of the following property of exponents:

xy · xz = xy+z

The module is formalized in Figure 12.

40



The key idea is that we can split a into “chunks” and then easily compute `(·)

for each chunk. We still need to then multiply each of these results inside GC,
but the number of required multiplications is proportional only to the number
of chunks. Notice also that we can use our improved multiplication technique
(Section 7.4) to further improve the module.

41



Input: E inputs a. Parties together input shared bitstrings JaK and JbK where
a ∈ {0, 1}n, b ∈ {0, 1}m.
Output: Parties output a shared matrix JH(a)⊗ bK.
Procedure:

• Let Ai represent G’s share of each bit ai; hence E holds Ai ⊕ ai∆.

• Our first goal is to deliver to E 2n − 1 out of 2n pseudorandom seeds
where the ath seed is missing:

• E and G consider a full binary tree with 2n leaves. Let Ni,j be the jth
node on level i and let the root reside on level −1.

• E and G label nodes from level 1 down with jointly agreed nonces
noncei,j .

• G labels each node (except the root) with a κ-bit string Si,j :

– G labels N0,0 by letting S0,0 , A0 ⊕∆ and N0,1 by letting S0,1 ,
A0.

– Consider Ni,j with parent Ni−1,bj/2c. G sets Si,j =
H(Si−1,bj/2c,noncei,j).

• For each level i > 0, G XORs all odd and all even labels:

Even ,
⊕2i−1

j=0
Si,2j Odd ,

⊕2i−1

j=0
Si,2j+1

For each level i > 0, the parties agree on two nonces noncei,even and
noncei,odd. G sends to E the following two values:

H(Ai ⊕∆,noncei,even)⊕ Even H(Ai,noncei,odd)⊕Odd

• E reconstructs each label Si,j except the labels along the path to leaf
a:

– E labels N0,1 with A0 if a0 = 0; otherwise she labels N0,0 with
A0 ⊕∆ (recall, her share is A0 ⊕ a0∆).

– Consider each level i > 0. There are two sibling nodes on
level i that do not have a labeled parent. Consider each of the
other 2i+1 − 2 nodes Ni,j with parent Ni−1,bj/2c. E computes
H(Si−1,bj/2c,noncei,j) = Si,j .

– For the other nodes on level i, E decrypts the XOR sum Even if ai
is odd or Odd if ai is even; E XORs this value with her 2i−1 even
(resp. odd) labels and hence extracts the remaining even (resp.
odd) label.

• G now holds 2n strings Sn−1,j ; E also holds each string except Sn−1,a.

Rename these leaf strings Li , Sn−1,i.

• For each bit bj of b:

– Let Bj be G’s share of JbjK. Hence, E holds Bj ⊕ bj∆.

– E and G agree on 2n fresh nonces noncei.

– For each leaf i, G sets Xi,j , H(Li,noncei). G sends to E:(⊕
i
Xi,j

)
⊕Bj

– For each leaf i 6= a, E computes Xi,j = H(Li,noncei). E then
computes:(⊕

i6=a
Xi,j

)
⊕
((⊕

i
Xi,j

)
⊕Bj

)
⊕ (Bj ⊕ bj∆) = Xa,j ⊕ bj∆

• Thus, for each column j of X, E and G hold 2n values equal everywhere
(i.e., each is a garbled share of zero) except at index a, where the parties
hold an XOR share of bj∆: the computation outputs a shared one-hot
outer product.

• G outputs his matrix share X; E outputs her matrix share X⊕ (H(a)⊗
b)∆

Figure 3: Our central primitive computes the outer product of two values: (1)
a one-hot encoded value H(a) where E knows a and (2) a value b. For inputs
a ∈ {0, 1}n and b ∈ {0, 1}m, G sends to E 2(n−1)+m ciphertexts. Recall from
Section 3.3 that H is a circular correlation robust hash function.

42



OneHot.ev(C,x) takes as input a circuit C and a string x. It outputs a string
y. Each gate in a module is handled as follows:

• For each XOR gate w2 := w0⊕w1 and each one-hot gate w2 := H(w0)⊗
w1, ev applies the appropriate function and stores the result in w2. For
each constant gate w0 := Constant(c), ev stores c in w0.

• For each Module w1 := Module[M](w0), OneHot.ev recursively evalu-
ates M on input w0 and stores the result in w1.

• For each Reveal gate w�E
1 , w�G

2 := Reveal[C,Dmask](w0), OneHot.ev
(1) samples a mask α ← Dmask, (2) recursively evaluates C with input
(w0, α), (3) stores the result on wire w1, and (4) stores α on wire w2.
Each Color gate w1, w2 := Color(w0) is handled in the same manner as
each Reveal gate except that α is drawn uniformly.

OneHot.Gb(1κ, C) takes as input a circuit C. It outputs an input encoding
string e, an output decoding string d, and circuit materialM . OneHot is a pro-
jective garbling scheme [BHR12], so e and d are standard. When OneHot.Gb
is first called, it uniformly draws the global XOR offset ∆ ← {0, 1}κ and
sets ∆’s least significant bit to one. To generate M , OneHot.Gb maintains
a garbled share on each circuit wire. Each gate in a module is handled as
follows:

• For each XOR gate w2 := w0 ⊕ w1, OneHot.Gb generates the output
sharing by XORing the two input sharings (see Lemma 2).

• For each one-hot gate w2 := H(w0) ⊗ w1, OneHot.Gb runs G’s steps
as described in Figure 3. When Figure 3 indicates G should send a
message to E, OneHot.Gb appends the message to M .

• For each constant gate w0 := Constant(c), OneHot.Gb sets w0 to c∆.

• For each Module, OneHot.Gb recursively garbles.

• For each Reveal gate w�E
1 , w�G

2 := Reveal[C,Dmask](w0), Gb samples a
mask α ← Dmask and sets the share w2 to α∆. The procedure recur-
sively garbles the subcircuit C with appropriate input shares and stores
the output shares in w1. Finally, the procedure evaluates Color(w1) and
attaches the result to M : informally, this reveals the masked output to
E.

• For each Color gate w1, w2 := Color(w0), Gb computes Color(w0) and
stores Color(w0)∆ in w2. It then stores w2 ⊕ w0 in w1.

OneHot.Ev(C,M,X) takes as input a circuit C, material M , and encoded
input X. It outputs encoded output Y . OneHot.Ev maintains E’s garbled
share on circuit wires, propagating them through each gate in a module as
follows:

• For each XOR gate w2 := w0 ⊕ w1, OneHot.Ev generates the output
share by XORing the two input shares (see Lemma 2).

• For each one-hot gate w2 := H(w0)⊗w1, OneHot.Ev runs E’s steps as
described in Figure 3. Note, w0 must have been revealed for this call
to be legal. When Figure 3 indicates G should send a message to E,
OneHot.Ev parses the message from M .

• For each Constant gate w0 := Constant(c), OneHot.Ev sets w0 to zero.
Note, E need not know c.

• For each Module, OneHot.Ev recursively evaluates.

• For each Reveal gate w�E
1 , w�G

2 := Reveal[C,Dmask](w0), Ev sets w2

to zero. The procedure recursively evaluates the subcircuit C with ap-
propriate input shares and stores the output shares in w1. Finally, the
procedure parses G’s color bits col from M (see Gb above), computes
Color(w1) ⊕ col, and as a side-effect outputs this value: i.e, the value
w1 is revealed.

• For each Color gate w1, w2 := Color(w0), Ev computes Color(w0) and
outputs this value to E. Color sets w1 to w0 and w2 to zero.

OneHot.En(e, x) takes as input an encoding string e and cleartext input x; it
outputs encoded input X. En maps each bit xi to Xi ⊕ xi∆ for uniform Xi.
OneHot.De(d, Y ) takes as arguments a decoding string d and an encoded
output Y ; it outputs a cleartext output y. We ensure that for each output
bit yi, d holds the following two strings:

H(Yi,nonce) H(Yi ⊕∆,nonce)

where nonce is a fresh nonce. De hashes Y and outputs 0 or 1 depending on
which above string matches. If neither matches, De aborts.

Figure 4: Our garbling scheme algorithms. We describe the handling of gates
G (Equation (2)) inside of modules. Circuit/module handling is achieved by
the repeated handling of gates. Note that our scheme does not directly provide
XOR/AND gates to top-level circuits. However, these standard gates can be
formalized as modules in our framework (see Section 5.4). Recall, in our notation
wires hold matrices of bits.

43



Input: Parties input shared bitstrings JaK, JbK where a ∈ {0, 1}n and b ∈
{0, 1}m.
Output: Parties output a shared matrix Ja⊗ bK.
Procedure:

• Parties reveal to E a⊕α and b⊕β for uniform α ∈ {0, 1}n, β ∈ {0, 1}m
via Color gates. Notably, the Color gates output Ja⊕ αK, Jb⊕ βK, and
JαK.

• Parties compute JH(a⊕ α)⊗ bK via a one-hot gate.

• Parties compute JH(b⊕ β)⊗ αK via a one-hot gate.

• Parties compute the following two outer products:

T (id)ᵀ · JH(a⊕ α)⊗ bK = J(a⊕ α)⊗ bK Lemma 3

T (id)ᵀ · JH(b⊕ β)⊗ αK = J(b⊕ β)⊗ αK Lemma 3

• G locally computes α⊗ β. He injects Jα⊗ βK as a constant.

• Parties compute and output:

J(a⊕ α)⊗ bK⊕ J(b⊕ β)⊗ αKᵀ ⊕ Jα⊗ βK = Ja⊗ bK

See Section 4.3 for a correctness argument.

Figure 5: Efficient small domain outer product module. The module implements
the function a, b 7→ a⊗ b.

Figure 6: Communication consumption (top) and wall clock time (bottom)
when computing the outer product of two n-bit vectors. We varied n from 1 to
9. The standard method computes the outer product using AND gates. Our
technique’s computation scales exponentially in the vector sizes, but is more
efficient for vectors between lengths 4 and 8.

44



Figure 7: We used our implementation to compute the bitwise outer product
of two 128 bit vectors. We instantiated our approach with various “chunking
factors” k (see Section 7.2). Increasing k decreases communication but increases
computation, due to the exponential computation scaling of our one-hot gate.
The standard method computes outer products by simply ANDing pairs of
values. At k = 6, we improve over standard by 6.2× (communication) and 4.1×
(time).

45



Input: Parties input shared bitstrings JaK, JbK where a ∈ {0, 1}n and b ∈
{0, 1}m.
Output: Parties output a shared matrix Ja⊗ bK.
Procedure:

• Parties release to E a⊕α and b⊕β for uniform α ∈ {0, 1}n, β ∈ {0, 1}m
via Color gates. Notably, the Color gates output Ja⊕ αK, Jb⊕ βK, and
JαK.

• Parties agree on a “chunk size” k which is at most logarithmic in the
overall circuit input size. The parties split the input vectors into dn/ke
k-bit subvectors to avoid expensive exponential scaling.

• For each k-bit subvector Ja⊕ αKi..i+k, the parties compute:

T (id)ᵀ · JH((a⊕ α))i..i+k ⊗ bK = J(a⊕ α)i..i+k ⊗ bK

via a one-hot gate (by Lemma 3). Notice that the parties do not split b
into chunks. The parties then vertically concatenate the dn/ke resultant
matrices into a single matrix J(a⊕ α)⊗ bK.

• Symmetrically, the parties compute J(b ⊕ β) ⊗ αK by splitting Jb ⊕ βK
into dn/ke k-bit chunks.

• G locally computes α⊗ β and injects Jα⊗ βK as a constant.

• Parties compute and output:

J(a⊕ α)⊗ bK⊕ J(b⊕ β)⊗ αKᵀ ⊕ Jα⊗ βK = Ja⊗ bK

(see Figure 5 for proof of above equality).

Figure 8: Efficient general outer product module. The module implements the
function a, b 7→ a⊗ b. Unlike Figure 5, this module handles outer products for
input vectors of arbitrary length.

Figure 9: We used our implementation to compute the bitwise matrix product of
two 128 × 128 square bit matrices. We plot total communication consumption
(top) and wall clock runtime (bottom). We instantiated our approach with
various “chunking factors” k (see Figure 8). At k = 6, we improve over standard
by 6.2× (communication) and 5× (time).

46



Input: Parties input shared bitstring JaK where a ∈ {0, 1}n.
Output: Let f : {0, 1}n → {0, 1}n be defined as follows:

f(x) ,

{
0 if x = 0

x−1 otherwise

Parties output a shared bitstring Jf(a)K.
Procedure:

• The parties first compute JzK , Ja == 0K. This is achieved using a
circuit with n− 1 AND gates.

• The parties next compute a Reveal gate to mask a⊕z. The gate samples
a uniform non-zero element α from GF(2n). The Reveal gate’s internal
circuit is itself a module that computes x 7→ x · α; it is implemented as
follows:

– The internal module takes as arguments a and α. Via a Color gate,
it reveals a⊕ γ to E where γ is a uniform mask.

– Note, G knows γ ⊗ α and hence can inject it as a constant. The
parties compute the following by a one-hot gate:

T (id)ᵀ · JH(a⊕ γ)⊗ αK⊕ Jγ ⊗ αK
= J(a⊕ γ)⊗ αK⊕ Jγ ⊗ αK
= J(a⊗ α)⊕ (γ ⊗ α)K⊕ Jγ ⊗ αK
= Ja⊗ αK

– The internal module then computes Ja · αK via a linear function
(see Section 7.5) and outputs the result.

• The above Reveal gate releases (a⊕ z) · α to E. This is secure because
both a⊕ z and α are non-zero field elements and because α is uniform;
hence the product is indistinguishable from a uniform non-zero field
element.

• The parties compute the following by a one-hot gate:

T ((·)−1)ᵀ · JH((a⊕ z) · α)⊗ αK = J((a⊕ z) · α)−1 ⊗ αK

• Finally, the parties compute the following via a linear function (see
Section 7.5) and output the result:

J((a⊕ z) · α)−1 · α)⊕ zK =

{
J0K if z = 1

Ja−1K otherwise

Figure 10: Our binary field inverse module.

47



Input: Parties input shared bitstring JaK where a ∈ {0, 1}n. Parties agree
on a public constant `.
Output: Parties output a shared bitstring Ja mod `K.
Procedure:

• Parties agree on a parameter m such that m · ` > 2n.

• The parties use a Reveal gate to (1) sample uniform mask α ∈ Zm·`,
(2) compute Ja + α mod m · `K, and (3) reveal a + α mod m · ` to E.
Because α is uniform, this revelation is secure.

• The parties view Ja+α mod m·`K as the concatenation of k-bit “chunks”.
For each ith chunk Jci mod (m · `)K, the parties compute:

T (((·)� (i · k)) mod `) · JH(ci)⊗ 1K
= (ci � (i · k)) mod `

Where� denotes a left bit shift. That is, the parties compute (·) mod `
on each k-bit chunk of the masked input.

• The parties compute and output:((∑
i

(ci � (i · k)) mod `

)
+ α

)
mod `

= ((a+ α)− α) mod `

= a mod `

Each addition is computed by an AND-gate based circuit that efficiently
computes (x+ y) mod ` for x, y strictly less than `.

Figure 11: Our public modular reduction module.

48



Input: Parties input shared bitstring JaK where a ∈ {0, 1}n. Parties agree
on a public constant `.
Output: Parties output a shared bitstring J`a mod 2nK.
Procedure:

• The parties use a Reveal gate to (1) sample uniform α, (2) compute
Ja−αK, and (3) reveal a−α to E. Because α is uniform, this revelation
is secure.

• The parties view Ja−αK as the concatenation of dn/ke k-bit “chunks”.
For each ith chunk JciK, the parties compute:

T (`(·)�(i·k)) · JH(ci)⊗ 1K = `ci�(i·k)

• The parties compute and output:(∏
i

`ci�(i·k)

)
· `α

= (`a−α) · `α

= `a

Note `α is a constant known to G. Each multiplication is computed via
the technique described in Section 7.4.

Figure 12: Our integer exponent of a public constant module.

49


