
Safe Permissionless Consensus

Youer Pu
Cornell University

Lorenzo Alvisi
Cornell University

Ittay Eyal
The Technion

August 23, 2022

Abstract

Nakamoto’s consensus protocol works in a permissionless model, where
nodes can join and leave without notice. However, it guarantees agree-
ment only probabilistically. Is this weaker guarantee a necessary conces-
sion to the severe demands of supporting a permissionless model? This
paper shows that, at least in a benign failure model, it is not. It presents
Sandglass, the first permissionless consensus algorithm that guarantees
deterministic agreement and termination with probability 1 under general
omission failures. Like Nakamoto, Sandglass adopts a hybrid synchronous
communication model, where, at all times, a majority of nodes (though
their number is unknown) are correct and synchronously connected, and
allows nodes to join and leave at any time.

1 Introduction

The publication of Bitcoin’s white paper [22], besides jumpstarting an in-
dustry whose market is expected to reach over $67B by 2026 [26], presented
the distributed computing community with a fundamental question [12]: how
should the agreement protocol at the core of Nakamoto’s blockchain construc-
tion (henceforth, Nakamoto’s Consensus or NC) be understood in light of the
combination of consensus and state machine replication that the community has
studied for over 30 years? The similarities are striking: in both cases, the goal
is to create an append-only distributed ledger that everyone agrees upon, which
NC calls a blockchain. But so are the differences. Unlike traditional consensus
algorithms, where the set of participants n is known and can only be changed by
running an explicit reconfiguration protocol, Nakamoto’s consensus is permis-
sionless: it does not enforce access control and allows the number and identity
of participants to change without notice. It only assumes that the computing
power of the entire system is bounded, which effectively translates to assuming

1

the existence of an upper bound N on the number of participants. 1

To operate under these much weaker assumptions, NC adopts a new mech-
anism for reaching agreement: since the precise value of n is unknown, NC
forsakes explicit majority voting and relies instead on a Proof of Work (PoW)
lottery mechanism [22], designed to drive agreement towards the blockchain
whose construction required the majority of the computational power of all
participants. Finally, whereas traditional consensus protocols guarantee agree-
ment deterministically, NC can do so only probabilistically; furthermore, that
probability approaches 1 only as termination time approaches infinity. Is set-
tling for these weaker guarantees the inevitable price of running consensus in a
permissionless setting?

In this paper we show that, at least in a benign failure model, one can do
much better. We present Sandglass, a permissionless consensus algorithm that
guarantees deterministic agreement and terminates with probability 1. It oper-
ates in a model based on Nakamoto’s. Our model allows an arbitrary number
of participants to join and leave the system at any time and stipulates that
at no time the number of participants exceeds an upper bound N (though the
actual number n of participants at any given time is unknown). Further, like
Nakamoto’s, it is hybrid synchronous, in that, at all times, a majority of partici-
pants are correct and able to communicate synchronously with one another. We
call these participants good; our protocol’s safety and liveness guarantees apply
to them. Participants that are not good (whether because they crash, perform
omission failures, and/or experience asynchronous network connections) we call
defective. Sandglass proceeds in asynchronous rounds, with a structure sur-
prisingly reminiscent of Ben-Or’s classic consensus protocol [3]. Let’s review
it. Nodes propose a value by broadcasting it; in the first round, each node
proposes its initial value; in subsequent rounds, nodes propose a value chosen
among those received in the previous round. Values come with an associated
priority, initialized to 0. The priority of v depends on the number of consecutive
rounds during which v was the only value received by the node proposing v –
whenever a node receives a value other than v, it resets v’s priority back to 0.
When proposing a value in a given round, node p selects the highest priority
value received in the previous round; if multiple values have the same priority,
then it selects randomly among them. A node can safely decide a value v after
sufficiently many consecutive rounds in which the proposals it receives unani-
mously endorse v (i.e., when v’s priority is sufficiently high); and termination
follows from the non-zero probability that the necessary sequence of unanimous,
consecutive rounds will actually eventually occur.

Of course, embedding this structure in a permissionless setting introduces
unprecedented challenges. Consider, for example, how nodes decide. In Ben-Or,
a node decides v after observing two consecutive, unanimous endorsements of
v; it can do so safely because any two majority sets of its fixed set of n nodes

1The bound can be trivial, e.g., equal to the number of atoms in the Universe, but it needs
to exist; otherwise, if it would be possible for a large, unknown group of nodes to be secretly
adding blocks onto a different branch of the blockchain, and Nakamoto’s decisions would never
be, even probabilistically, safe.

2

intersect in at least one correct node. This approach is clearly no longer feasible
in a permissionless setting, where n is unknown and the set of nodes can change
at any time.

Instead, Sandglass’s approach to establish safety is inspired by one of the key
properties of Nakamoto’s PoW: whatever the value of n, whatever the identity of
the nodes participating in the protocol at any time, the synchronously connected
majority of good nodes will, in expectation, be faster than the remaining nodes
in adding a new block to the blockchain.

Think now of adding a block b at position i of the blockchain as implicitly
starting a new round of consensus for all the chain’s positions that precede i;
for each position, the new round proposes the corresponding block in the hash
chain that ends at b. In this light, the greater speed in adding blocks that
PoW promises to the majority of connected nodes translates into these nodes
moving faster from one asynchronous round to the next in each of the consensus
instances.

This insight suggests an alternative avenue for achieving deterministic con-
sensus among good nodes – without relying on quorum intersection. Node p
should decide on a value v only after it has seen v unanimously endorsed for
sufficiently many rounds that, if p is good, the lead p (and all other good nodes)
have gained over any defective node q proposing some other value is so large
that q’s proposals can no longer affect the proposal of good nodes.

Why can’t the same approach be used to achieve deterministic consensus in
Nakamoto’s original protocol? Because Nakamoto’s PoW mechanism, notwith-
standing its name, is an indirect and imperfect vehicle for proving work. As
evidence of performed work, Nakamoto presents the solution to a puzzle: this
solution, however, could just have been produced as a result of a lucky guess.
Thus, however unlikely, it is always possible in NC for defective nodes proposing
a value other than v to catch up with, or even overtake, good nodes and reverse
their decisions.

To avoid this danger, Sandglass relies on a different PoW mechanism, which
ties the ability to propose a value to a deterministic amount of work. In par-
ticular, Sandglass nodes can propose a value in any round other than the first
only after they have received a specific threshold of messages from the previ-
ous round. Therefore, each proposed value implicitly represents all the work
required to generate the messages needed to clear the threshold. The threshold
value is chosen as a function of the upper bound N on the number of nodes that
at any time run the protocol, in such a way that, whatever is their actual num-
ber n, any node that does not receive messages from good nodes will inevitably
take longer than them in moving from round to round.

The full power of this PoW mechanism, however, comes from pairing it
with the idea, which we borrow from Ben Or, of associating a priority with the
values being proposed. With a fixed set of n nodes, Ben Or leverages priorities
and quorum intersection to safely decide a value v once it has reached priority
2, because it can guarantee that henceforth every node executing in the same
round as a correct node will propose v. In a permissionless setting, we show
that the combination of priorities and our PoW mechanism allows Sandglass to

3

offer good nodes the same guarantee (though, as we will see, v will be required
to reach a significantly higher priority value!). Intuitively, by the time v reaches
the priority necessary to decide, any node q that manages not to fall behind (and
thus become irrelevant) to the unanimous majority of good nodes who have kept
proposing v must have received some of the messages proposing v from some
good nodes. Furthermore, to keep up, q must have received such messages often
enough that, given how the priority of received values determines what a node
can propose, it would be impossible for q to propose any value other than v.

In summary, this paper makes the following contributions: (i) it formalizes
Nakamoto’s permissionless model in the vocabulary of traditional consensus
analysis; (ii) it introduces novel proof strategies suitable for this new model;
(iii) it exposes the connection between PoW and a voting mechanism that can
be implemented by message passing; and (iv) it introduces Sandglass, the first
protocol that achieves deterministic agreement in a permissionless setting under
hybrid synchrony.

2 Related work

The consensus problem has been studied for decades, covering both benign
and Byzantine faults under different synchrony assumptions. Common across
these classic works is the assumption that the set of nodes that participate in
running the protocol is either constant or changes through an agreement among
the incumbents (reconfiguration). In contrast, Sandglass allows for participants
to change arbitrarily and without any coordination, as long as at all times a
majority of nodes is correct and synchronously connected. More recent papers
also explore models where participants can change dynamically at any time,
subject to guarantees of well-behaved majority; unlike Sandglass, those works
achieve only probabilistic safety guarantees. We briefly review related prior
work in more detail below.

The permissionless nature of our model implies that consensus solutions for
classical models (e.g., [13]) do not apply. For synchronous networks, previous
solutions rely on the fact that the number of failures is bounded in a period of
time. They tolerate up to (n− 1) benign failures [28] or Byzantine failures with
authentication [7, 18]. For an asynchronous network, Fisher, Lynch, and Pater-
son [8] show that it is impossible to solve consensus with deterministic safety
and liveness even with a single crash failure. Various protocols (e.g., [16, 25, 27])
thus either solve asynchronous consensus with weaker liveness guarantees than
deterministic termination, or provide deterministic termination after a Global
Stabilization Time (GST) (e.g., [4]). They use logical rounds, and for each
round collect messages from a sufficient number of (authenticated) nodes, tol-
erating fewer than n

2 failures in a benign failure model [3, 17], and n
3 failures

with Byzantine failures and authentication [4, 30]. Although our model is not
directly comparable, we note that our protocol matches the (n/2) bound of a
benign model in an asynchronous network, despite assuming synchrony among
good nodes.

4

Aspnes et al. [2] explore the consensus problem in an asynchronous benign
model where an unbounded number of nodes can join and leave [9], but where
at least one node is required to live forever, or until termination. It is easy to see
that in their model, but without this latter assumption, deterministic safety is
impossible. In contrast, Sandglass, in a hybrid synchronous model, guarantees
deterministic safety while allowing all nodes to freely join and leave.

Consider two groups of good nodes with different initial values running
from t = 0, with messages within the groups delivered immediately, but mes-
sages between the two groups are delayed until at least one in each group decides.
By validity of consensus, the two groups will decide on different values, which
violates agreement.

A newer line of work, starting with Nakamoto [22], studies systems where
principals can unilaterally join or leave without notifying previous participants.
These protocols (e.g., [21, 29]) are based on probabilistic assumptions and pro-
vide probabilistic guarantees. Specifically, participation is based on probabilistic
proofs of work, and the assumption that no minority can find most proofs of
work in a long period. They provide safety with high probability, given a suf-
ficiently long running time (latency) [6, 15, 23, 10]. Nonetheless, they are all
based on probabilistic techniques and provide probabilistic guarantees, which
cannot be directly translated to deterministic guarantees.

Several protocols, inspired by the PoW approach, achieve consensus among
a large group of principals while requiring the active participation of only a
subset of them. In the Sleepy Model [24] participants join and leave (“sleep”);
the assumptions and guarantees of the consensus protocol presented for this
model are as probabilistic as those of pure proof of work. Momose and Ren [20]
present a consensus protocol in the Sleepy Model with constant latency and
deterministic agreement; however, their protocol does not guarantee progress
until the participation is stable. Ouroboros [14, 5] forms a chain in the spirit
of PoW but using internal tokens for the random choice of participants, again
leading to probabilistic guarantees. In Algorand [11], committees elect one an-
other in a series of reconfigurations, with assumptions and guarantees similar to
classical consensus, except that participants are chosen at random from a large
pool, with a negligible probability of a Byzantine majority – again, providing
probabilistic guarantees.

In contrast, despite its permissionless model, our protocol guarantees deter-
ministic safety and terminates with probability 1. We note other differences:
Sandglass’s failure model assumes only benign failure and is thus stronger than
the Byzantine model adopted by many of these works, but its network assump-
tions are weaker, as defective nodes can experience asynchronous communica-
tion, and all nodes can join or leave instantaneously.

Abraham and Malkhi [1] formalize Nakamoto’s Consensus within a classical
disturbed systems framework, and in particular abstract the PoW primitive as a
Pre-Commit, Non-Equivocation, Leader Election (PCNELE) Oracle. However,
the power of this probabilistic oracle is similar to that of Nakamoto’s PoW
and yields a consensus protocol that provides only probabilistic guarantees as
Nakamoto.

5

Lewis-Pye and Roughgarden [19] show that deterministic consensus can-
not be achieved in a permissionless synchronous model with Byzantine nodes,
let alone in a partially synchronous model (where communication becomes syn-
chronous only after some point unknown to the processes). Sandglass shows, for
the first time, that deterministic safety and termination with probability 1 can
be achieved in a permissionless model, though the network is hybrid-synchronous
rather than synchronous. The exploration of a Byzantine model remains for fu-
ture work.

3 Model

The system comprises an infinite set of nodes p1, p2, Time progresses in
discrete steps; in each step, a subset of the nodes is active and the rest are
inactive. At each step, active nodes are partitioned into good and defective
subsets.

We assue a hybrid synchronous model. Good nodes are correct, and the net-
work that connects them to one another is synchronous; at all times, a majority
of active nodes are good. Defective nodes may suffer from benign failures, such
as crashes and omission failures, or simply lack a synchronous connection with
some good node.

The system progress is orchestrated by a scheduler. In each step, the sched-
uler can activate any inactive node pi (we say that pi has joined the system)
and deactivate an active node (which then leaves the system). The scheduler
chooses which nodes to activate and deactivate arbitrarily, subject only to the
following three constraints: (i) The upper bound of active nodes in any step
is N ; (ii) there is at least one active node in every step; and (iii) in every step
the majority of active nodes is good.

In each step where it is active, each node pi executes the stateful protocol
shown as procedure Step in Sandglass’s pseudocode (see Algorithm 1). It can
execute computations, update its state variables, and communicate with other
nodes with a broadcast network. In particular, since Sandglass assumes benign
failures, every active node, whether good or defective, waits for a full step to
elapse before sending its next message.

The network allows each active node to broadcast and receive unauthen-
ticated messages. Node pi broadcasts a message m with a Broadcasti(m) in-
struction and receives messages broadcast by itself and others with a Receivei
instruction. The network does not generate or duplicate messages, i.e., if in
step t a node pi receives message m with Receivei, then m was sent in some
step t′ < t.

The communication model is designed to capture the design of Nakamoto’s
consensus, which relies on an underlying network layer to propagate and store
blocks. Nakamoto’s network layer provides a shared storage of data structures,
called blocks, and guarantees delivery of published blocks within a bounded
time. Each block includes cryptographically secure references to all blocks seen
by its creator. This allows a newly joined node to receive and validate the entire

6

history of published blocks. Thus, in our model, the scheduler determines when
each message is delivered to each node under the following constraints.

First, propagation time is bounded between any pair of good nodes. For-
mally: if a good node pi calls Broadcasti(m) in step t, and if a good node pj calls
Receivej in step t′ > t, then m is returned, unless it was already received by pj
in an earlier call to Receivej . Thus, a newly activated good node is guaranteed,
upon executing its first Receive, to receive all messages from other good nodes
broadcast in the steps prior to its activation.

Second, the network is reliable, but there is no delivery bound unless both
nodes are good. Formally: For any two nodes pi and pj , where at least one
of pi and pj is defective, and for a message m broadcast by pi, if node pj calls
Receivej infinitely many times, then m is eventually delivered.

Each node is initiated when joining the system with an initial value vi ∈
{a, b}. An active node pi can decide by calling a Decidei(v) instruction for
some value v. The goal of the nodes is to reach a consensus based on these
values:

Definition 1 (Agreement). If a good node decides a value v, then no good node
decides a value other than v.

Definition 2 (Validity). If all nodes that ever join the system have initial
value v and any node (whether good or defective) decides, then it decides v.

Definition 3 (Termination). Every good node that remains active eventually
decides.

4 Protocol

To form an intuition for the mechanics of Sandglass, it is useful to compare
and contrast it with Ben-Or. From a distance, the high-level structure of the
two protocols is strikingly similar: execution proceeds in asynchronous rounds;
progress to the next round depends on collecting a threshold of messages sent in
the current round; safety and liveness depend on the correctness of a majority
of nodes; and nodes decide a value v when, for sufficiently many consecutive
rounds, all the messages they collect propose v. But looking a little closer,
the differences are equally striking. On the one hand, Sandglass’s notion of
node correctness and its hybrid synchronous model are stronger than Ben-Or’s.
Sandglass assumes a majority of good nodes that are not only free from crashes
and omissions, but also synchronously connected to one another. On the other
hand, in Sandglass, unlike Ben-Or, the number n of nodes running the protocol
is not only unknown, but may be changing all the time. These differences
motivate four key aspects that separate the two protocols:

Choosing a threshold In Ben-Or, a node advances to a new round only after
having received a message from a majority of nodes. This strict condition
for achieving progress is critical to how Ben-Or establishes Agreement.
Any node that, from a majority of the nodes in round r, receives a set

7

of messages that unanimously propose v, can be certain that (i) there
cannot exist in r also a unanimous majority proposing a value other than
v and (ii) no node can proceed to round (r + 1) unaware that v is among
the values proposed in round r. Nodes that isolate themselves from a
majority simply do not make any progress; and since all majority sets
intersect, nodes cannot make contradictory decisions.

Unfortunately, this approach is unworkable in Sandglass: when the car-
dinality and membership of the majority set can change at any time,
receiving messages from a majority can no longer serve as a binary switch
to trigger progress. More generally, thresholds based on the cardinality of
the set of nodes from which one receives messages become meaningless.
Instead, Sandglass allows nodes to broadcast multiple messages during a
round, one in each of the round’s steps, and lets nodes move to round
(r + 1) once they have collected a specified threshold of messages sent in
round r.

Think of the threshold T of messages that allows a node to move to a new
round as the number of grains of sands in a sandglass: a node (figuratively)
flips the sandglass at the beginning of a round, and cannot move to the
next until all T sand grains have moved to the bottom bulb. The value
of T is the same for all nodes; the speed at which messages are collected,
however—the width of their sandglass’s neck—is not, and can change from
step to step: if all nodes broadcast messages at the same rate, the larger
the number of nodes that one receives messages from in a timely fashion,
the faster it will be to reach the threshold. Thus, while in Sandglass
setting a threshold cannot altogether prevent nodes that don’t receive
messages from a majority from making progress, it ensures that they will
progressively fall behind those who do.

Exchanging messages In each step of the protocol, a node currently in round
r (i) determines, on the basis of the messages received so far, what is the
largest round rmax ≥ r for which it has received the required threshold of
messages and (ii) broadcasts a message for round rmax, which includes the
node’s current proposed value, as well as the critical metadata discussed
below.

Keeping history Unlike Ben-Or, Sandglass allows nodes to join the system
at any time. To bring a newly activated node up to speed, each message
broadcast by a node p in round r carries a message coffer that includes
(i) the set of messages (at least T of them) p collected in round r − 1 to
advance to round r; (ii) recursively, the set of messages in those messages’
coffers; and (iii) the set of messages p collected so far for round r.

Respecting priority In Ben-Or, a node decides v if, for two consecutive
rounds, v is the only value it collects from a majority set. To ensure
the safety of that decision, Ben-Or assigns a priority to the value v that
a node p proposes: if v was unanimously proposed by all the messages p

8

collected in the previous round, it is given priority 1; otherwise, 0. Nodes
that collect more than one value in round r, propose for round r + 1 the
one among them with the highest priority, choosing by a coin flip in the
event of a tie. Sandglass uses a similar idea, although its different thresh-
old condition requires a much longer streak of consecutive rounds where
v is unanimously proposed before v’s priority can be increased. To keep
track of the length of that streak, every message sent in a given round r
carries a unanimity counter, which the sender computes upon entering r.

4.1 Selecting the Threshold

Unlike Ben-Or, Sandglass’s threshold condition can not altogether prevent nodes
from making progress. It is perhaps surprising that, by leveraging only the
assumption that at all times a majority of nodes are good (i.e., correct and
synchronously connected with each other) without ever knowing precisely how
many they actually are, Sandglass retains enough of the disambiguating power
of intersecting majorities to ultimately yield deterministic agreement.

In essence, Sandglass succeeds by causing defective nodes that isolate them-
selves from the majority of nodes in the systen to fall eventually so far behind
that they no longer share the same round with good nodes. At the same time, it
ensures that, once some good node has decided on a value v, nodes that manage
to keep pace with good nodes will never propose anything other than v.

Of course, to obtain this outcome it is critical to set T appropriately. Con-
sider two nodes, one good and one defective, and suppose they flip their sand-
glass at the same time—i.e., they enter a new round in the same step. We want
that, independent of how the number of active nodes may henceforth vary at
each step, if the defective node only receives messages from other defective nodes
(i.e., if it fails to hear from a majority of nodes), it will reach the threshold T at
least one step later than the good node will. The following lemma shows that

setting T to dN
2

2 e (where N is the upper bound on the maximum number of
nodes active in any step) does the trick.

Lemma 1. For any k, consider any time interval comprising (k+1) consecutive
steps. Let the number of messages generated by good nodes and defective nodes
in each step of the interval be, respectively, g0, g1, ..., gk and d0, d1, ..., dk. Setting

the threshold T to dN
2

2 e ensures that, if Σi=k−1
i=1 gi < T , then Σi=k

i=0di < T .

Proof. Note how the lemma does not count the messages generated by good
nodes in the steps at the two ends of the interval. Recall that moving from the
current round to the next requires a node to receive at least a threashold T of
messages sent in the current round. Thus, we drop good messages from step
0 because good nodes that in step 0 enter a new round r are unable to count
against the threshold for round r messages generated by good node that in step
0 are still in round r−1. And we similarly drop step k because good nodes may
only need one of the messages sent by good nodes in step k to move to a new
round – and have no use for the remaining messages in gk.

9

We begin by observing that, when k is either 0 or 1, the lemma trivially
holds, since in all steps defective nodes generate fewer than N messages. For

example, when k = 1, d0 + d1 < N
2 + N

2 = N ≤ dN
2

2 e. We then prove the
lemma for k ≥ 2.

Let ḡ =
Σi=k−1

i=1 gi
k−1 and d̄ =

Σi=k−1
i=1 di

k−1 denote, respectively, the average number
of messages generated by good nodes and by defective nodes during the k − 1
steps that include all but the interval’s first and last step. Expressed in terms
of ḡ and d̄, the lemma requires us to show that, if ḡ · (k−1) < T , then Σi=k

i=0di =

d0 + d̄ · (k − 1) + dk < T when T is chosen to equal dN
2

2 e.
Assume ḡ · (k − 1) < T ; then k − 1 < T

ḡ . Substituting for (k − 1) in the
formula that computes the messages generated by defective nodes, we have:

Σi=k
i=0di = d̄ · (k − 1) + d0 + dk

< d̄ · T
ḡ

+ d0 + dk (since (k − 1) <
T
ḡ

)

≤ d̄ · T
ḡ

+
N − 1

2
+
N − 1

2
(since defective nodes are always a minority)

≤ d̄ · T
ḡ

+
T
N 2

2

(N − 1) (since T = dN
2

2
e ≥ N

2

2
)

= T (
d̄

ḡ
+

2(N − 1)

N 2
).

Then, to establish that Σi=k
i=0di < T , it suffices to prove that d̄

ḡ + 2(N−1)
N 2 < 1.

Since for any i, di ≤ gi − 1 and di + gi ≤ N , we know that d̄ ≤ ḡ − 1 and
d̄+ ḡ ≤ N . Dividing both inequalities by ḡ yields d̄

ḡ ≤ min(1− 1
ḡ ,
N
ḡ − 1). Note

that the largest value of min(1− 1
ḡ ,
N
ḡ − 1) occurs when 1− 1

ḡ = N
ḡ − 1; solving

for ḡ and plugging the solution back in, gives us: min(1− 1
ḡ ,
N
ḡ − 1) ≤ N−1

N+1 .

Therefore, we have that d̄
ḡ + 2(N−1)

N 2 ≤ N−1
N+1 + 2(N−1)

N 2 = N 3+N 2−2
N 3+N 2 < 1.

4.2 Protocol Mechanics

Protocol 1, besides showing how Sandglass initializes its key variables, presents
the code that node pi executes to take a step. Every step begins with adding all
received messages, as well as the messages in their message coffers, to a single
set, Reci (lines 4 - 5). Going over the elements of that set, pi determines the
largest round rmax for which it has received at least a threshold T of messages,
and, if the condition at line 6 holds, sets the current round to (rmax+1) (line 7).
Upon entering a new round, pi does four things. First, after resetting its message
coffer M , pi collects in the coffer all the messages it received from the previous
round—as well as the messages stored in the coffers of those messages (lines 8
- 10). Second, pi chooses the value v that it will propose in the current round
(lines 11 - 15): it picks the highest-priority value among those collected in its
coffer for the previous round ; if more than one value qualifies, it chooses among

10

Protocol 1 Sandglass: Code for node pi
1: procedure Init(inputi)
2: vi ← inputi; priorityi ← 0; uCounteri ← 0; ri = 1; Mi = ∅; Reci =
∅; uidi = 0

3: procedure step
4: for all m = (·, ·, ·, ·, ·,M) received by pi do
5: Reci ← Reci ∪ {m} ∪M

6: if max|Reci(r)|≥T (r) ≥ ri then
7: ri = max|Reci(r)|≥T (r) + 1
8: Mi = ∅
9: for all m = (·, ri − 1, ·, ·, ·,M) ∈ Reci(ri − 1) do

10: Mi ←Mi ∪ {m} ∪M

11: Let C be the multi-set of messages in Mi(ri − 1) with the largest
priority.

12: if all messages in C have the same value v then
13: vi ← v
14: else
15: vi ← one of{a, b}, chosen uniformly at random

16: if all messages in Mi(ri − 1) have the same value vi then
17: uCounteri ← 1 + min{uCounter|(·, ri − 1, vi, ·, uCounter, ·) ∈

Mi(ri − 1)}
18: else
19: uCounteri ← 0

20: priorityi ← max(0,
⌊
uCounteri
T

⌋
− 5)

21: if priorityi ≥ 6T + 4 then
22: Decidei(vi)

23: uidi ← uidi + 1;
24: Mi ←Mi ∪Reci(ri)
25: broadcast (pi, uidi, ri, vi, priorityi, uCounteri,Mi)

them uniformly at random. Third, pi computes the unanimity counter and
the priority for all messages that pi will broadcast during the current round
(lines 16 -20). The counter represents, starting from the previous round and
going backwards, the longest sequence of rounds for which all corresponding
messages in pi’s coffer unanimously proposed v. The priority is simply a direct
function of the value of the unanimity counter: we maintain it explicitly because
it makes it easier to describe how Sandglass works. Finally, if v’s priority is high
enough, pi decides v (lines 21- 22). Whether or not it starts a new round, pi ends
every step by broadcasting a message (line 25): before it is sent, the message is
made unique (line 23) and pi adds to the message’s coffer all messages received
for the current round (line 24).

11

5 Correctness: Overview

Sandglass upholds the definitions of Validity, Agreement, and Termination (with
probability 1) given in Section 3. We overview the proof below, as its approach
differs from proofs of classical, permissioned protocols. We defer the presenta-
tion of the full proof to Appendix A, which includes the formal statements of
the lemmas we informally state below.

Validity is easily shown by induction on the round number, since if all nodes
that join have the same value, there is only one value that can be sent in each
round (Lemma 2). Establishing Agreement and Termination is significantly
more involved, and hinges on a precise understanding of the kinematics of good
and defective nodes—and how that interacts with the ability of good nodes to
converge on decision value and on the number of rounds necessary to do so safely.
How clustered are good nodes as they move from round to round? At what rate
do good nodes gain ground over defective nodes that cut themselves out from
receiving messages from good nodes? How often do defective nodes need to
receive messages from good nodes to be in turn able to have their messages still
be relevant to good nodes?

The answer to these and similar questions constitute the scaffolding of lem-
mas and corollaries on which the proofs of Agreement and Termination rely. We
discuss it in greater detail below, before moving on to the proofs.

5.1 The Scaffolding

The protocol achieves several properties that facilitate the consensus proof.
First, it keeps good nodes close together as they move from round to round.

Specifically, in any step two good nodes are at most one round apart (Corol-
lary 2), and if in any step a good node is in round r, then by the next step all
good nodes are guaranteed to be at least in round r (Lemma 3). However, note
that defective nodes can advance faster than good ones, using a combination of
messages from good nodes and messages from defective nodes that do not reach
the good nodes. Nonetheless, we show that at any step a defective node is at
most one round ahead of any good node (Lemma 5).

Second, the protocol guarantees information sharing among good nodes.
This may appear trivial to establish, since good nodes are correct and syn-
chronously connected, but the laissez-faire attitude of the permissionless model,
with nodes joining and leaving without coordination at any step, complicates
matters significantly, making it impossible to prove seemingly basic properties.
For example, consider a good node p that, in round r and step T , proposes a
value v with a positive uCounter. It would feel natural to infer that all good
nodes must have proposed v in the previous round—but it would also be wrong.
If p just entered r in step T , it would in fact ignore any value proposed by good
nodes that newly joined the systems in step T , but are still in round r − 1.
Fortunately, we show that a much weaker form of information sharing among
good nodes is sufficient to carry the day. We say that a node collects a message
in a round if it receives the message and does not ignore it (messages originated

12

from a lower round number are ignored). We show that, in any round, a good
node collects at least one message from a good node (Lemma 6), and that, for
any round, there exists a message from a good node that is collected by all good
nodes (Corollary 1).

Third, it allows us to establish the basis for a key insight about the kine-
matics of Sandglass nodes that will be crucial for proving Agreement and Ter-
mination: in the long run, the only values proposed by defective nodes that
remain relevant to the outcome of consensus are those that have been, in turn,
recently influenced by values proposed by good nodes. This insight stands on
a series of intermediate results. We already saw (Lemma 1) that, given any
sequence of steps, if good nodes cannot generate enough messages to get into
the next round, neither can defective nodes, even if they, unlike good nodes, are
allowed to count messages generated in the two steps at the opposite ends of
the period. It follows that during the steps that good nodes spent in a round,
defective nodes can generate fewer than the T messages necessary to move to
the next round (Lemma 10). It all ultimately leads to Lemma 11, which quan-
tifies the slowdown experienced by defective nodes that don’t allow themselves
to be contaminated by good nodes: it establishes that defective nodes that do
not collect any message from good nodes for kT consecutive rounds fall behind
every good node by at least (k − 1) rounds.

5.2 Agreement

The intuition behind our proof of Agreement is simple. To each value v proposed
and collected by Sandglass nodes is associated a uCounter, which records the
current streak of consecutive rounds for which all the messages collected by the
proposer of v were themselves proposing v. Once v’s uCounter reaches a certain
threshold, v’s priority increases; and once the value v proposed by a node reaches
a given priority threshold, then a node decides v (see Algorithm 1, line 21).
Since, as we saw, good nodes share information from round to round (recall
Corollary 1), proving Agreement hinges on showing that, once a good node
decides v, no good node will ever propose a value other than v. To prove that,
we must in turn leverage what we learned about the kinematics of Sandglass
nodes to identify a priority threshold that makes it safe for good nodes to decide.
It should be large enough that, after it is reached, it becomes impossible for a
defective node to change the proposal value of any good node.

The technical core of the Agreement proof then consists in establishing the
truth of the following (Claim 2):

Let pd be the earliest good node to decide, in round rd at step Td.
Suppose pd decides vd. Then, any good node pg that in any step
(whether before, at, or after Td) finds itself in a round rg that is at
least as large as rd, proposes vd for rg with priority at least 1. 2

2Although proving Agreement does not require that vd be proposed with priority at least
1, it makes proving the claim easier.

13

It is easy to see that if the above claim holds, then Agreement follows. Say
that Td is the earliest step in which a good node pd, currently in round rd,
decides vd. The claim immediately implies that no good node can decide a
value other than vd in a round greater or equal to rd, since, from rd on, every
good node proposes vd. Recall that, since good nodes are never more that one
round apart at any step (Corollary 2), the earliest round a good node can find
itself at Td is (rd − 1); and that, by Lemma 3, every good node is guaranteed
to be at least in round rd by step (Td + 1). All that is left to show then is that
no good node p′, which at Td found itself in round (rd − 1), can decide some
value v′ other than vd. To this end, we leverage the information sharing that
we proved exists among good nodes.

By Corollary 1, there is at least a message m generated in round (rd− 2) by
a good node that is collected by all the good nodes. Since pd at Td has reached
the priority threshold required to decide vd, m must have proposed vd; but if
so, it would be impossible for good node p′, which also must have collected m,
to have reached the priority threshold required to decide a different value v′.

Proving Claim 2 is non trivial. The core of the proof consists in showing
that any node that proposes a value v′ other than the decided value vd must find
itself, at Td, in a much earlier round than the earliest round occupied by any
good node. In fact, we show something stronger: we choose a priority threshold
large enough that any node, whether good or defective, that at Td or later is
within earshot of a good node (i.e., whose message m can be collected by a good
node), not only proposes vd, but it does so with a uCounter large enough that
allows whoever collects m to propose vd with priority at least 1.

To see why those who propose v′ are so far behind good nodes, note that the
good node pd that decided vd at Td must have received only messages proposing
vd for a long sequence of rounds, so long as to push vd’s priority over the (6T +4)
threshold required for a decision. Let’s zoom in on that sequence of rounds. It
took 6T unanimous rounds for vd to reach priority 1 (see Algorithm 1, line 20);
after clearing that first hurdle, vd’s priority increased by 1 every T rounds.

Consider now the set S of messages collected by pd during the long climb
that took vd’s priority from 1 to (6T + 4). Any node p′ that during this climb
proposes something other than vd faces a dilemma. It can either refuse to collect
any message in S — but if it does so, it will advance more slowly than good
nodes, and, by the time vd’s priority reaches the decision threshold, it will be
so far behind that no good node will collect its messages. Or p′ can try to
keep up by collecting messages from S — but, if it wants to keep proposing
v′ 6= vd, it can do so in at most one round during the entire climb: since the
first message collected from S would reset v′ priority to 0, any further message
from S collected by p′ in later rounds would have higher priority than the one
of v′, forcing p′ to henceforth propose vd instead of v′.

In short, since p′ can collect messages from S in at most one round, to ensure
that any node that in round rd is within earshot of good nodes will propose vd
it suffices to choose a large enough priority threshold for deciding. In particular,
setting the threshold to (6T + 4) ensures that (i) all messages collected by good
nodes for round (rd − 1) will propose vd, and (ii) vd’s uCounter in all these

14

messages is at least (6T − 1), ensuring that all good nodes in round rd will
propose vd with uCounter at least 6T , i.e., with priority at least 1.

Finally, a simple induction argument shows that, if all good nodes propose
vd with priority at least 1 from rd on, then any node that, from step (Td + 1)
on, continues to propose a value other than vd, will fall ever more behind good
nodes, as it will be allowed to collect messages from good nodes only once every
6T rounds, on pain of being forced to switch its proposed value to vd.

5.3 Termination

The Termination property requires good nodes that stay active to eventually
decide. Sandglass’s Termination guarantee is probabilistic: for Termination to
hold, Sandglass needs to be lucky, so that it can build a sequence of consecutive
rounds during which all messages collected by good nodes propose the same
value; long enough that the value will reach the priority required for a node
to decide. Luck is required because Sandglass allows some randomness in the
values that a node proposes: nodes are required to propose the highest priority
value from any message collected in the previous round, but, if they receive
multiple values with the same priority, they can choose among them uniformly
at random.

To help us prove that luck befalls Sandglass with probability 1, we introduce
the interdependent notions of lucky period, lucky value, and lucky round. Intu-
itively, a lucky period is a sequence of steps that leads to a decision: all nodes
that are active in the step that immediately follows the end of the lucky period
are guaranteed to decide in that step, if not earlier. A lucky round is simply the
first round of a lucky period. What is more interesting is the quality that makes
a period lucky: during a lucky period, whenever Sandglass allows nodes to use
randomness in picking which value they will propose in the current round, they
select the same value — the lucky value for that round.

A minimum requirement for a round’s lucky value is that it should be a
plausible value on which good nodes may converge, in the sense that it should
not explicitly go counter the value that some good node is required to propose
in that round. Concretely, if the messages collected by a good node require it to
propose v and all other nodes can randomly choose between v and v, then the
round’s lucky value better not be v. In addition, to encourage the possibility of
a lucky period, the lucky value should be sticky: we would like random choices
to consistently pick the same value, round after round, unless doing so would
make the value implausible.

In the end, Sandglass adopts a definition of lucky value (see Appendix A.4)
that, in addition to upholding plausibility, has two additional properties that
express its stickiness. First, in every round good nodes collect at least one mes-
sage that proposes the lucky value of the previous round (Observation 2): this
guarantees that under no circumstances the previous round’s lucky value will
simply be forgotten when moving to a new round. The second property, which
builds upon the first, establishes that lucky values don’t flip easily: (Observa-
tion 3): for the lucky value in the current round to change, some good node

15

must have collected a different value with priority at least 1 from the previous
round.

To prove that Sandglass guarantees Termination with probability 1, we then
proceed in two steps.

First, we show (Observation 5) that the uCounter of all good nodes active
in the step that immediately follows the end of the lucky period reaches a value
that allows these good nodes to decide. To this end, we begin by proving that,
in any lucky period, the lucky value after a while becomes locked: specifically,
we show that the lucky value v` at round 6T in the lucky period remains the
lucky value until the end of the lucky period, and, further, that after that round
all good nodes propose v`. Then, leveraging techniques similar to those used to
prove Agreement, we show that any node p′ that proposes a value v′ other that
v` must fall behind good nodes during the lucky period. The reason is that,
once v` is locked, p′ can collect a message from a good node only every 6T
rounds. If it did it more often, p′ would collect a message proposing v` from a
good node while v′ has priority 0, which would force p′ to change its proposal to
v` – even if v′ and v` both had priority 0, and p′ could choose randomly among
them, it would have to propose v` in the next round, since v` is the lucky value.
Thus, by choosing a sufficiently long lucky period, we ensure that nodes that
propose values other that v` fall so far behind good nodes that v`’s priority, for
any good node that is active in the step right after the end of a lucky period,
reaches the threshold necessary for deciding.

Second, we show that lucky periods occur with non-zero probability, since
the probability of a certain outcome of random choices for a finite number of
nodes during a finite number of steps is non-zero. Since in any infinite execution
lucky periods appear infinitely often, it follows that any good node that stays
active, no matter when it joins, is guaranteed to eventually decide.

6 Conclusion

Sandglass shows, for the first time, that it is possible to obtain consensus with
deterministic safety in a permissionless model. This result suggests that it is the
probabilistic nature of its PoW mechanism, rather that its permissionless model,
that prevents deterministic safety in Nakamoto’s consensus. It also opens up sev-
eral additional interesting questions. First among them is to understand how the
interplay between permissionlessness and the hybrid synchronous model shape
the boundaries of what is possible, and at what cost. As we noted, Sandglass
matches the (n/2) bound of a benign model in an asynchronous network, even
though a majority of its nodes are synchronously connected. Perhaps at the root
of this result is that in both an asynchronous model and a permissionless hybrid
one it is impossible for a node to know when it has received all the messages that
were intended for it. Regardless, whether there exists a protocol that achieves
deterministic safety and termination in a hybrid synchronous model remains an
open question. Another natural question is whether there exists a deterministic
solution to consensus in a hybrid-synchronous model with Byzantine failures.

16

Answering these questions might pave the way to a qualitative improvement of
permissionless systems that would provide deterministic guarantees; or, at the
very least, give us more insight about the nature of consensus.

Acknowledgments This work was supported in part by the NSF grant CNS-
CORE 2106954, BSF and IC3.

References

[1] Ittai Abraham, Dahlia Malkhi, et al. The blockchain consensus layer and
bft. Bulletin of EATCS, 3(123), 2017.

[2] James Aspnes, Gauri Shah, and Jatin Shah. Wait-free consensus with
infinite arrivals. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 524–533, 2002.

[3] Michael Ben-Or. Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols. In Proceedings of the Sec-
ond Annual ACM Symposium on Principles of Distributed Computing,
pages 27–30. ACM, 1983.

[4] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.
In OSDI, volume 99, pages 173–186, 1999.

[5] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell.
Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 66–98. Springer, 2018.

[6] Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod
Viswanath, Xuechao Wang, and Ofer Zeitouni. Everything is a race and
Nakamoto always wins. In Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 859–878, 2020.

[7] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzan-
tine agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[8] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility
of distributed consensus with one faulty process. Technical report, MAS-
SACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER
SCIENCE, 1982.

[9] Eli Gafni, Michael Merritt, and Gadi Taubenfeld. The concurrency hier-
archy, and algorithms for unbounded concurrency. In Proceedings of the
twentieth annual ACM symposium on Principles of distributed computing,
pages 161–169, 2001.

17

[10] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone
protocol: Analysis and applications. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 281–
310. Springer, 2015.

[11] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the 26th symposium on operating systems principles, pages
51–68, 2017.

[12] Maurice Herlihy. Blockchains and the future of distributed computing.
In Proceedings of the 2017 ACM Symposium on Principles of Distributed
Computing (PODC ’17), page 155, August 2017. Keynote Address.

[13] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegel-
man. All you need is DAG. In Proceedings of the 2021 ACM Symposium
on Principles of Distributed Computing, pages 165–175, 2021.

[14] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain proto-
col. In Annual international cryptology conference, pages 357–388. Springer,
2017.

[15] Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method
to analyze blockchain consistency. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 729–744,
2018.

[16] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Ed-
mund Wong. Zyzzyva: speculative Byzantine fault tolerance. Communica-
tions of the ACM, 51(11):86–95, November 2008.

[17] Leslie Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems (TOCS), 16(2):133–169, 1998.

[18] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382–401, 1982.

[19] Andrew Lewis-Pye and Tim Roughgarden. Byzantine generals in the per-
missionless setting. arXiv preprint arXiv:2101.07095, 2021.

[20] Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. Cryp-
tology ePrint Archive, 2022.

[21] Tal Moran and Ilan Orlov. Simple proofs of space-time and rational proofs
of storage. In Annual International Cryptology Conference, pages 381–409.
Springer, 2019.

18

[22] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec
2008. Accessed: 2015-07-01. URL: https://bitcoin.org/bitcoin.pdf.

[23] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain
protocol in asynchronous networks. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 643–
673. Springer, 2017.

[24] Rafael Pass and Elaine Shi. The sleepy model of consensus. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 380–409. Springer, 2017.

[25] Michael O Rabin. Randomized byzantine generals. In 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983), pages 403–409.
IEEE, 1983.

[26] Research and Markets. Blockchain market with covid-19 impact analy-
sis, by component (platforms and services), provider (application, mid-
dleware, and infrastructure), type (private, public, and hybrid), orga-
nization size, application area, and region - global forecast to 2026.
https://www.researchandmarkets.com, November 2021.

[27] Yee Jiun Song and Robbert van Renesse. Bosco: One-step Byzantine asyn-
chronous consensus. In International Symposium on Distributed Comput-
ing, pages 438–450. Springer, 2008.

[28] TK Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Distributed Computing, 2(2):80–94, 1987.

[29] Gavin Wood et al. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[30] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: BFT consensus with linearity and responsiveness.
In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 347–356, 2019.

A Correctness

We prove that Sandglass satisfies the consensus requirements. Figure 1 illus-
trates the dependency between the statements proven below. The letters L, O,
and C, signify Lemma, Observation, and Corollary, respectively.

Sandglass upholds the definitions of Valdity, Agreement, and Termination
(with probability 1) given in Section 3.

19

https://bitcoin.org/bitcoin.pdf

A.1 Validity

We show that if all nodes have the same initial value, this is the only value that
can be decided.

Lemma 2 (Validity). If all nodes that ever join the system have initial value v
and any node (whether good or defective) decides, then it decides v.

Proof. By line 22 of Sandglass, if a node pi decides a value, it decides the value
held in its variable vi. By lines 2 and 12– 15 of Sandglass, vi is either the initial
value of pi, or one of the values that pi receives. Therefore, it suffices to show
that if all nodes have initial value v, then v is the only value that can be sent
by any node.

We prove, by induction on the round number, that any message m sent by
any node for round r proposes v.

Base case: r = 1 Consider any node p that sends a message in the first
round. Since every node’s initial value is v, the message that p broadcasts at
line 25 proposes v.

Induction hypothesis: Assume that all messages sent by any node up to
round r = k propose v.

Induction step: Consider any node p sending a message in round r =
(k + 1) at step T . By assumption, all round k messages collected by p must be
proposing v. In lines 12–15 of Sandglass,, vi is randomly selected from among
the proposed values with highest priority collected in round k. Since the only
collected value is v, vi can only be set to v.

A.2 Scaffolding

Before addressing Agreement and Termination, we prove several statements that
will serve as scaffolding for our main results.

We start with some terminology. In Sandglass, a node in round r ignores
every message it receives that was sent with some round r′ < (r − 1) (line 9).
We say that a node p collects message m if it adds it to Mp (line 10). We say
that a node is in round r at step T if it sends a message for round r at step T .

Our first lemma establishes that good nodes are progressing almost together
from round to round.

Lemma 3. If a good node is in round r at step T , then all good nodes will be
in round r or larger at step (T + 1).

Proof. Let p be a good node in round r at step T .
By line 6 of Sandglass, p must have collected at least T messages for

round (r− 1) which p will then forward to all nodes in the coffer of the message
m that p broadcasts at line 25.

Consider any good node p′ that is in a round r′ < r at T or joins the system
at step (T + 1). Since p and p′ are good, p′ will receive m by (T + 1) and, by
line 5, add to its set Recp′ both m and all the messages p forwarded in m’s coffer,

20

Figure 1: The structure of the proof through the dependencies among its con-
stitutents lemmas, corollaries, and observations. Preparatory results discussed
in the Scaffolding section are in black; red and blue denote facts used in the
proofs of Agreement and Termination, respectively.

L1

L14

L3
L7

L8 L5

L6

L10

L12

C2

C1

O1

Cl2

Cl1

L11

C3 L9

L4

L15

O4 L13O2 C4

O3

O5

including at least T messages for round (r − 1). Then, computing at line 6 the
largest round for which p′ has received T messages or more will return at least
(r − 1), and, at line 7, p′ will update its round number, if it was smaller, to be
at least r.

Good nodes progress by at least one round every T steps.

Lemma 4. If, at step T , r is the earliest round that any good node is in, then
at step (T + T) all good nodes are at least in round (r + 1).

Proof. Let p be the good node that, by hypothesis, is in round r at step T ; and
all the good nodes are at least in round r at step T . By Lemma 3, all good
nodes are in round r or larger at step (T + 1); indeed, by a similar argument,
all good nodes are in round r or larger for any step T ′ > T . Further, in each of
these steps the system contains at least one good node, since, by assumption,

21

the system contains at least one node in every step and a majority of its nodes
are good.

For the time interval from T to (T + T − 1), consider all the good nodes in
each of the steps of the interval. There are two cases:

• In some step of the interval, some good node is in some round r′ > r.

If so, by the same reasoning used above, all good nodes will be in
round r′ ≥ (r + 1) or larger at step (T + T).

• In all steps of the interval, all good nodes are in round r.

If so, in each of these steps there exists at least one good node that broad-
casts a message for round r (by line 25 of Sandglass). Consider any good
node pg at step (T + T). Again, there are two cases:

– pg receives some message m′ for round r′ ≥ (r + 1), possibly from a
defective node.

If so, by line 5, Recpg
will include at least the T messages for

round (r′ − 1) ≥ r forwarded on m′.

– pg only receives messages for round r or smaller.

If so, pg receives at least T messages for round r.

In both cases, computing at line 6 the largest round for which pg has
received T messages or more will return at least r, and, at line 7, pg will
update its round number, if it was smaller, to be at least (r + 1).

Lemma 5. At any step T , any defective node is at most one round ahead of
any good node.

Proof. By contradiction. Assume that there exists an earliest step, T , where
some defective node p is more than one round ahead of a good node pg, i.e., at
T node p is in some round r and node pg is in round rpg

≤ (r − 2).
Note that no good node is in round (r− 1) or larger before T ; otherwise, by

Lemma 3, all good nodes would be in round (r − 1) or larger at T , contradict-
ing rpg

≤ (r − 2). Therefore, defective node p received no messages from good
nodes for round (r − 1) by T .

Consider the earliest step T ′ ≤ (T − 1) where some defective node is in
round (r − 1). Since T is the first step where some defective node is more than
a round ahead of a good node, all good nodes must be in round (r−2) or larger
at T ′; but, as we just showed, no good node is in round (r−1) or larger before T .
Therefore, all good nodes must be in round (r − 2) from T ′ until T .

Consider the k consecutive steps from T ′ to (T − 1). Let the number of
messages generated by good nodes and defective nodes in each step be, re-
spectively, g1, ..., gk and d1, ..., dk. Since by step T node p has received for
round (r− 1) only messages from defective nodes, and yet p is in round r at T ,
by line 6 of Sandglass, Σi=k

i=1di ≥ T and thus, by Lemma 1, Σi=k−1
i=2 gi ≥ T . Since

22

by assumption every step includes at least one good node (i.e., g1 > 0), we
have that Σi=k−1

i=1 gi > T . Recall that during these k steps all good nodes are
in round (r − 2); then, all messages g1, ..., gk are for round (r − 2) and will all
be received by all good nodes by T . By line 6 and line 7, then, all good nodes
(including pg) must be in round (r− 1) at T . This contradicts our assumption
and completes the proof.

Lemma 6. For any r, a good node that enters round (r + 1) collects at least
one message from a good node for round r.

Proof. By contradiction. Let T be the first step where some good node pg enters
round (r + 1) without collecting any messages from any good node for round r.

Since, by line 9 of Sandglass, pg collects all the messages it receives for
round r, and yet it collects no messages from good nodes for round r, pg must
have received no messages for round r from good nodes by T .

By our model’s assumptions about good nodes, this implies that no good
node has sent a message for round r (and hence that no good node was in
round r) before step T . Therefore, both of the following statements must be
true:

S1: Defective nodes generated at least T messages for round r before step T .
By line 6, a node must receive at least T messages for round r to be in
round (r+ 1). Since pg received no messages for round r from good nodes
before T , all the messages pg received for round r must be from defective
nodes.

S2: No good node moved past round (r − 1) before T . We have showed above
that no good node is in round r before T ; further, since pg is in round (r+1)
at T , by Lemma 3, no good node is in a round larger than (r+1) before T .
Finally, no good node p′g can be in round (r + 1) at T ′ < T : otherwise,
since good nodes send no messages for round r before T , p′g would not have
collected any message from a good node for round r at T ′, contradicting
our assumption that T is the first step where some good node enters
round (r+1) without collecting any message from good nodes for round r.
Hence, before T no good node can be in round r or larger: the largest
round any good node can be in is round (r − 1).

Let T ′ be the earliest step when some defective node is in round r. By
Lemma 5, the earliest round that any good node can be in at T ′ is round (r−1).
Combining this observation with S2, we conclude that all good nodes are in
round (r − 1) from T ′ until T .

Denote by k the number of consecutive steps from T ′ to (T − 1). Let the
number of messages generated by good nodes and defective nodes in each step
be, respectively, g1, ..., gk and d1, ..., dk. Since by T node pg has received only
messages from defective nodes for round r, and yet it is in round (r + 1) at T ,
then, by line 6 of Sandglass, Σi=k

i=1di ≥ T and thus, by Lemma 1, Σi=k−1
i=1 gi ≥ T .

Recall that during these k steps all good nodes are in round (r − 1); then, all
messages g1, ..., gk−1 are for round (r − 1) and will all be received by all good

23

nodes by (T −1). By lines 6 and 7 of Sandglass, then, all good nodes (including
pg) must be in round r at (T − 1), contradicting S2.

It follows that all good nodes collect a message from a single good node for
each round.

Corollary 1. For any round r, there exists a message from a good node for
round r that is collected by all good nodes that are in round r′ ≥ (r + 1).

Proof. By induction on r′.
Base case: r′ = (r + 1) We are going to prove that, for any round r,

there exists a message from a good node for round r that is collected by all
good nodes that are in round (r + 1).

Consider the earliest step T when some good node pg reaches some round (r+
1). By Lemma 6, pg collects by T at least one message, m, from a good node for
round r. Since m is sent by a good node, all good nodes must have received m
by T . Since pg is the earliest good node who reaches round (r + 1), any good
node who reaches round (r+ 1) at the same step or later must have collected m
at line 10 of Sandglass.

Induction hypothesis Assume the lemma holds for r′ = k ≥ (r + 1).
Induction step We are going to prove that the lemma holds for r′ =

(k + 1). By induction hypothesis, there exists a message, mr,all, for round r
from a good node that is collected by all good nodes that are in round k; i.e.,
∀m = (·, ·, k, ·, ·,M) sent by a good node for round k, mr,all ∈M .

Consider the earliest step T when some good node pg reaches round (k+ 1).
By Lemma 6, pg collects by T at least one message, mk = (·, ·, k, ·, ·,Mk), from
a good node for round k. As we argued above, mr,all must be included in Mk.
Since mk is sent by a good node, all good nodes must have received m by T .
Since pg is the earliest good node to reach round (k + 1), any good node that
reaches round (k+1) at the same step or later must have collected both mk and
all the messages in Mk, including mr,all at line 10 of Sandglass. Therefore, there
exists a message from a good node for round r, namely mr,all, that is collected
by all the good nodes that are in round (k + 1).

Lemma 7. For any message m = (·, ·, r ≥ 2, ·, ·, ·,M), M contains at least T
messages generated for round (r − 1).

Proof. Consider a message m = (p, ·, r, ·, ·, ·,Mp) for any round r ≥ 2.
Let T be the earliest step when p is in round r (i.e., the earliest step when

p broadcasts at line 25 of Sandglass a message for round r). Independent of
whether p has just been activated at T , or was already active in a round smaller
than r at (T −1), p’s round number rp must have been updated to r in line 7 of
Sandglass. Therefore, the condition on line 6 must be satisfied, i.e., Recp must
contain at least T messages for round (r − 1) at T . Then by lines 9-10 , Mp

contains at least T messages for round (r − 1) at T . By line 24, any message p
generates and broadcasts while in round r, either at T or later, contains at
least T messages generated in round (r − 1).

24

Lemma 8. If a node p receives a message for round r at step T , then p will be
in at least round r at step T .

Proof. When p receives a message m generated in round r, it adds to Recp all
the messages contained in the set M included in m (line 5 of Sandglass). By
Lemma 7, M contains at least T messages for round (r−1); thus, if rp is smaller
than r at line 6, rp will be set to at least r at line 7.

Corollary 2. At any step T , if a good node is in round r ≥ 2, then any good
node is at least in round (r − 1).

Proof. Consider a good node p that is in round r at T . By Lemma 6, p must
have collected at least one message, m, from a good node pr−1 for round (r−1).
Consider any other good node p′, it must also have received m by T . By
Lemma 8, p′ is at least in round (r − 1) at step T .

Lemma 9. The round number of a node never decreases.

Proof. The lemma follows trivially since line 5 of Sandglass only adds new mes-
sages to Reci; thus, the set of received messages used to compute the current
round number at line 7 never shrinks.

Lemma 10. Let Tr and Tr+1 be the earliest steps where all good nodes are,
respectively, at least in rounds r and (r + 1). Let gi and di denote, respectively,
the number of messages generated by good nodes and defective nodes in the i-
th step of the sequence of k steps starting from Tr and up to step (Tr+1 − 1).
Then, Σk

i=1di < T .

Proof. First of all, by lemma 3, no good node is in a round smaller than r
after Tr; and no good node is in a round smaller than (r + 1) after Tr+1.

If k = 0, i.e., Tr = Tr+1, the lemma trivially holds.
If k ≥ 1, it suffices to establish that Σk−1

i=1 gi < T ; then, by Lemma 1, we can
conclude that Σk

i=1di < T and proves the lemma.
All that is left to prove then is that Σk−1

i=1 gi < T holds. To do so, we begin
by observing that no good node is in round (r + 1) or later at step (Tr+1 − 2);
otherwise, by Lemma 3, all good nodes would already be in round (r + 1) at
step (Tr+1− 1), i.e., before Tr+1, which, by definition, is the earliest step where
all good nodes are at least in round (r + 1).

Therefore, since all Σk−1
i=1 gi messages sent by good nodes from Tr and up

to (Tr+1 − 2) must be at least for round r, they must be exactly for round r.
From this, it immediately follows that Σk−1

i=1 gi must be less that T (proving
the lemma): if Σk−1

i=1 gi equaled or exceeded T , then all good nodes would have
received at least T messages for round r by step (Tr+1 − 1) and thus would all
be in round (r + 1) or larger at step (Tr+1 − 1), contradicting the definition
of Tr+1.

The following important corollary characterizes the rate of progress expe-
rienced by defective nodes that do not collect messages from good nodes. In

25

particular, it establishes that defective nodes that do not collect any message
from good nodes for kT consecutive rounds fall behind every good node by at
least (k − 1) rounds.

Lemma 11. Suppose a good node pg is in round r at step T , and a node pd is
in round rd at step T ′ ≤ T . If pd does not collect any messages from good nodes
in any round (r − i), where 0 ≤ i < kT , then rd ≤ (r − (k − 1)).

Proof. To prove the corollary, we compute the maximum number of messages
Dmax that a defective node pd can collect during the kT rounds when it does
not collect any message from good nodes. To help us count these messages, for
any 1 ≤ i ≤ kT , denote by T(r−kT+i) the earliest step for which all good nodes
are at least in round (r − kT + i).

Recall that, to be collected by pd at step T ′, a message must have been
generated no later than step (T ′−1) ≤ (T−1). Then, we partition the execution
of the system up to step T − 1 into three time intervals, and compute, for each
interval, the maximum number of messages generated during these intervals
that pd could have collected for rounds (r − kT + 2) or larger.

I1: Up to step (T(r−kT +1) − 1).

By definition of T(r−kT +1), some good node is in some round r′ < r−kT +1
at step (T(r−kT +1) − 1). Therefore, neither a defective node nor a good
node can be in some round r′′ > r − kT + 1 at step (T(r−kT+1) − 1),
respectively because of Lemma 5 and Corollary 2. Therefore, during this
interval no messages were generated for rounds (r − kT + 2) or larger.

I2: From T(r−kT+1) up to (Tr − 1).

By assumption, pd only collects messages generated by defective nodes
throughout interval I2. We further split I2 into i consecutive subintervals,
each going from T(r−kT+i) up to (T(r−kT +i+1) − 1) for 1 ≤ i ≤ (kT − 1).
By Lemma 10, in each of these sub-intervals defective nodes can generate
at most (T − 1) messages. Therefore, the number of messages generated
by defective nodes during I2 is at most (T − 1) · (kT − 1).

I3: From Tr to T − 1.

Once again, by assumption pd only collects messages generated by
defective nodes throughout interval I3. There are two cases:

– T − 1 precedes Tr.

If so, defective nodes trivially generate no messages during I3.

– T − 1 does not precede Tr.

By assumption, some good node pg is in round r at T , where it
collects all messages generated by good nodes before T ; further, since
pg is still in round r, the messages for round r sent by good nodes
before T must be fewer than T . Finally, since pg is in round r
at T , by Lemma 3, in all steps preceding T no good node can be in

26

round (r + 1) or higher. We then conclude that from step Tr and
up to (T − 1) good nodes generated at most (T − 1) messages, all
for round r. Thus, since in any step defective nodes generate fewer
messages than good nodes, during I3 defective nodes generate fewer
than (T − 1) messages.

Adding the messages generated in the three intervals, we find that Dmax, the
maximum number of messages that pd could have collected up to step T for
rounds (r−kT +2) or larger, is smaller than (T −1)·kT ; at the same time, since
by assumption pd is in round rd, Dmax must equal at least (rd−(r−kT +2))·T .
Therefore, we have that (rd − (r − kT + 2)) · T < (T − 1) · kT , which implies
rd ≤ r − (k − 1), proving the corollary.

Corollary 3. Suppose a good node pg is in round r at step T , and a node pd
is in round rd = (r − 1) at step T ′ ≤ T . pd must have collected some message
from good nodes in some round rg, where r − 3T < rg ≤ (r − 1).

Proof. By contradiction. Assume that node pd is in round (r − 1) and has not
collected any message from good nodes in any round rg, where r−3T < rg < r.

Note that by T ′ pd has collected no message for round r as well, for, if it
had, its round number would be at least r. To see why, suppose pd collected mr

for round r. By line 5 of Sandglass, pd would then add to its set Recpd
both mr

and all the messages in the message coffer of mr, including at least T messages
for round (r− 1). Then, max|Reci(r)|≥T (r) would be at least r at line 6, and pd
would update its round number to be at least r (line 7).

Therefore, pd does not collect any message from good nodes in any round rg,
where (r − 3T) < rg ≤ r.

Then, by applying k = 3 in Lemma 11, rd ≤ (r − 2). Contradiction.

The following lemma formalizes the semantics of the unanimity counter uC
included in every message; it states that the value of uC in a message that
proposes v is equal to the number of consecutive rounds in which the sender of
m has collected only messages that propose v.

Lemma 12. Consider a message m = (·, ·, r, v, ·, uC > 0,M). For ∀m′ =
(·, ·, r′, v′, ·, uC ′, ·) ∈ M , where r − uC ≤ r′ < r, we have v′ = v and uC ′ ≥
uC − (r − r′).

Proof. By induction on uC.
Base case: uC = 1 We are going to prove that if a node broadcasts a

message m = (·, ·, r, v, ·, uC = 1,M), then ∀m′ = (·, ·, r′, v′, ·, uC ′, ·) ∈M , where
r′ = (r − 1), we have v′ = v and uC ′ ≥ uC − 1 = 0.

Establishing that uC ′ ≥ 0 follows trivially from the protocol. Since r′ =
(r − 1) < r, m′ was added to M in line 10 of Sandglass (not in line 24). Note
that Sandglass sets the value of uCounteri (at lines 16-19) only once per round,
in the round’s first step. Since by assumption the unanimity counter’s value is
1, it must have been set at line 17; therefore, the condition at line 16 must be

27

satisfied. Thus, for all m′ in Mi(r− 1), v′ equals the value v broadcast in m at
line 25.

Induction hypothesis Assume the lemma holds for uC = k > 0.
Induction step We are going to prove that the lemma holds for uC =

(k + 1).
First, we prove that for any mr−1 = (·, ·, r − 1, vr−1, ·, uCr−1, ·) ∈ M , it

holds that uCr−1 ≥ uC − 1 = (k + 1) − 1 = k and v = vr−1. Since uC =
(k+1) > 0, the value of the minimum unanimity counter carried by all messages
(including mr−1) from round (r−1) must be k; therefore, uCr−1 ≥ uC−1 = k.
Finally, as in the Base Case, since uCounter is set at line 17 of Sandglass, the
condition at line 16 is satisfied; therefore v = vr−1.

Now, by line 10 of Sandglass, ∀m′ = (·, ·, r′, v′, ·, uC ′, ·) ∈ M , one of the
following must be true:

Case 1 r′ = (r − 1). It directly follows that uC ′ ≥ uC − 1 and v = v′.

Case 2 There exists a message m′′ = (·, ·, r′′, v′′, ·, uC ′′,M ′′) ∈M , where r′′ =
(r − 1) and m′ ∈ M ′′. Since r′′ = (r − 1), it follows again that uC ′′ ≥
uC − 1 = k and v = v′′. Therefore, by the induction hypothesis, we
have ∀mx = (·, ·, rx, vx, ·, uCx, ·) ∈ M ′′, where r′′ − k ≤ rx < r′′, we
have vx = v′′ = v and uCx ≥ uC ′′ − (r′′ − rx). Since m′ ∈M ′′, it follows
that v′ = v and uC ′ ≥ uC ′′ − (r′′ − r′) ≥ (uC − 1) − ((r − 1) − r′) ≥
uC − (r − r′).

Corollary 4. If a good node p proposes v with uCounter = uC for round r and
uC ≥ 1, then for any round r′, where r− uC ≤ r′ ≤ r, there exists a good node
proposing v with uCounter at least uC − (r − r′) .

Proof. If a good node p proposes v with uCounter = uC for round r and uC ≥ 1,
by Lemma 12, all the messages p collected for round r′, where r − uC ≤ r′ < r
propose v with uCounter ≥ uC − (r − r′). By Corollary 1, at least one of these
messages is from a good node. Therefore, there exists a good node proposing v
with uCounter at least uC − (r − r′) for round r′.

For r′ = r, the corollary trivially holds, since p proposes v with uCounter =
uC for round r.

Lemma 13. If a good node p sends a message proposing v with uCounter > 0
for round r, no good node sends a message proposing v′ 6= v with uCounter > 0
for round (r − 1).

Proof. By contradiction. Assume a good node p′ sends a message, m′, propos-
ing v′ 6= v with uCounter > 0 for round (r − 1).

Let T ′ be the first step when p′ is in round (r − 1), and let T be the first
step when p is in round r.

Sandglass does not change the proposal value (vi) or the priority counter
(uCounteri) during a round; therefore, p sends a message proposing v

28

with uCounter > 0 for round r at T ; and p′ sends a message proposing v′

with uCounter > 0 for round (r − 1) at T ′.
First, we are going to show that T ′ = T by showing that neither T ′ < T

or T ′ > T is possible.

Not T ′ < T Assume T ′ < T . By model assumption, p will receive all the
messages sent by good nodes on or before T−1, which include m′. Since T
is the first step that p is in round r, the condition in line 6 of Sandglass is
true, and all the messages p received for round (r − 1), including m′, will
be collected by p at line 10 at T . By lines 16-19, since m′ is proposing v′,
it is impossible for p to propose v with non-zero uCounter.

Not T ′ > T Assume T ′ > T . Since p is in round r at T , then by Lemma 3, p′

is at least in round r at (T + 1). Then, by Lemma 9, it is impossible for p′

to be in round (r − 1) at T ′ ≥ (T + 1).

Therefore, T ′ = T , i.e. T is both the first step when p is in round r, and the
first step when p′ is in round (r − 1).

Now, we show that p′ must have collected some message proposing v for
round (r − 2).

By Corollary 1, there exists a message, mall,r−1, from a good node for
round (r − 1) that is collected by all the good nodes in round r, including p.
We make two observations about mall,r−1: (i) to be collected by T , mall,r−1

must be sent before T ; and (ii) since p proposes v with uCounter > 0, by
Lemma 12, mall,r−1 must propose v.

Let mall,r−1 = (pall,r−1, ·, r − 1, v, ·, ·,Mall,r−1). By lines 11-15 of Sand-
glass, v must be proposed by one of the round (r− 2) messages in Mall,r−1. Let
one of the messages that propose v for round (r − 2) in Mall,r−1 be mv,r−2.

Since p′ is a good node, it must also have received mall,r−1 by T . Therefore,
by line 5 of Sandglass, all the messages in Mall,r−1, including mv,r−2, are added
to Rec′ by p′ at T .

Now, since we established that T is the first step when p′ is in round (r−1), p′

updates its round number to (r− 1) at line 7 of Sandglass. Then, at line 10, p′

collects all the round (r − 2) messages from the messages that it has received,
including mv,r−2. Since mv,r−2 proposes v, by lines 16-19, it is impossible for p′

to propose v′ with uCounter > 0 for round (r − 1). Contradiction.

A.3 Agreement

Our strategy for proving Agreement (see Definition 1) proceeds in two phases
and with the help of two claims, detailed below. We begin by assuming that
Claim 1 holds, and rely on it to prove Agreement in Lemma 14. We do not
prove Claim 1 directly, however: instead, we find it easier to prove Claim 2,
which implies Claim 1, thus establishing Agreement.

Claim 1. Let pd be the earliest good node to decide, in round rd at step Td.
Suppose pd decides vd. Then, any good node pg that in any step (whether before,
at, or after Td) finds itself in a round rg, where rg ≥ rd, proposes vd for rg.

29

We now prove that, assuming Claim 1 holds, so does Agreement.

Lemma 14 (Agreement). If a good node decides a value v, then no good node
decides a value other than v.

Proof. Denote by UD the value of the unanimity counter at which a node de-
cides. By lines 20 and 21 of Sandglass, UD = (6T +9)T . Let pd be the first good
node to decide; and suppose pd decides vd in round rd at step Td. By line 25,
node pd broadcasts at Td a message md = (pd, ·, rd, vd, ·, uCd), where uCd ≥ UD.

By Lemma 12, all the messages pd collected for any round rd−i, 1 ≤ i ≤ UD,
must be of the form (·, ·, rd − i, vd, ·, uCounter, ·), where uCounter ≥ UD − i.

By Corollary 2, at Td no good node can be in a round earlier than (rd − 1);
this implies, since pd is the first good node to decide, that no good can decide
prior to round (rd − 1).

We now show that it is impossible for any such node to decide on a value
other than vd – neither in (rd − 1), nor in rd or in later rounds – thus proving
the lemma.

Not in (rd − 1) By Corollary 1, there exists a message for round (rd − 2)
broadcast by a good node that is collected by every good node that is
in round (rd − 1) or larger. Let the message be mrd−2. Since mrd−2 is
also collected by pd when it decides with uCounter = UD, mrd−2 is of
the form (·, ·, rd−2, vd, ·, uCounterrd−2, ·), where uCounterrd−2 ≥ UD−2.
Consider any good node pg in round (rd−1). Since pg collects mrd−2 that
proposes vd in round (rd − 2), by lines 16-19 of Sandglass, the uCounter
of any value other than vd proposed by pg must be 0. Therefore, by
lines 20-21, it is impossible for pg to decide any value other than vd in
round (rd − 1).

Not in r ≥ rd Trivially follows from Claim 1, any good node pg in a round r,
where r ≥ rd, will propose vd, and cannot decide any value other than vd.

Now we have shown if Claim 1 is true, Agreement is satisfied. To complete
the proof, we proceed to show Claim 1 is true, and we are going to do it by
proving the following claim that implies Claim 1. Claim 2 is at least as strong
as Claim 1, since it adds to Claim 1 the additional requirement shown in bold.

Claim 2. Let pd be the earliest good node to decide, in round rd at step Td.
Suppose pd decides vd. Then, any good node pg that in any step (whether before,
at, or after Td) finds itself in a round rg, where rg ≥ rd, proposes vd for rg with
priority at least 1.

Now, before proving Claim 2, we prove an observation that is useful to prove
the claim.

Let UD be the value of the unanimity counter at which a node decides.
Since pd decides at Td, Sandglass requires pd to broadcast at Td a message
md = (pd, ·, rd, vd, ·, uCd), where uCd ≥ UD; therefore, by Lemma 12, all the

30

messages that pd has collected for round r, where r ≥ rd−UD, propose vd, and
their uCounter is at least UD − (rd − r).

Definition 4 ((pd, Td)-D-form). Given a node pd that decides vd in round rd
at Td, we say that a message for round r, where r ≥ rd − UD, is in (pd, Td)-D-
form if it proposes vd and the uCounter is at least UD − (rd− r). When pd and
Td are clear from the context, we e say simply that the message is in D-form.

It directly follows from Lemma 12 that all the messages that pd collects from
round (rd − UD) to round (rd − 1) are in D-form.

Observation 1. For any round r, where rd−UD ≤ r ≤ rd−1, let T ∀r and T ∀r+1

be the earliest steps where all the good nodes are at least in round r and in
round (r + 1), respectively. Consider the set that includes messages sent by
defective nodes starting from T ∀r and before T ∀r+1 and messages sent by good
nodes for round r. The total number of messages not in D-form in this set is
smaller than T .

Proof. Let T ∃r be the earliest step when some good node is in round r. By
Corollary 1, we know that T ∃r exists for all r.

We are going to show that:

For any round r, where rd − UD ≤ r ≤ rd − 1, all the messages sent by good nodes

for round r before T ∃r+1 must be in D-form. (F1)

We prove two cases separately.

Case 1 rd − UD ≤ r ≤ rd − 2. Consider the message, mall,r+1, that all good
nodes collect for round (r + 1). Since pd also collects it, mall,r+1 must be
in D-form. Consider the node pall,r+1 that sends mall,r+1. By definition
of T ∃r+1, pall,r+1 enters round (r + 1) at or after T ∃r+1; therefore, pall,r+1

must have collected all the messages sent by good nodes for round r be-
fore T ∃r+1. Since mall,r+1 is in D-form, by Lemma 12, all the messages
sent by good nodes for round r before T ∃r+1 must also be in D-form.

Case 2 r = rd − 1, note that pd decides in round rd, and thus also sends a
message in D-form for round rd. Since pd enters round rd at or after T ∃rd , pd
must have collected all the messages sent by good nodes for round (rd−1)
before T ∃rd . Therefore, by Lemma 12, all messages sent by good nodes for

round r = rd − 1 before T ∃r+1 must also be in D-form.

Having established F1, we proceed to prove the observation.
By Corollary 2, all good nodes are at least in round r at T ∃r+1, i.e., good

nodes are either in round r or in round (r + 1) at T ∃r+1. If all good nodes are in
round (r + 1), then T ∀r+1 = T ∃r+1; otherwise, by Lemma 3, T ∀r+1 = (T ∃r+1 + 1).
We consider these two cases separately.

Let Sr be the sequence of k steps starting from T ∀r and up to (T ∀r+1 − 1)
(perhaps k = 1). Let X equal the sum of (i) the number of messages sent

31

by good nodes for round r that are not in D-form, and (ii) the number of
messages sent by defective nodes during Sr that are not in D-form. To prove
Observation 1, it is sufficient to prove X < T .

Let di denote the number of messages sent by defective nodes in the i-th step
of Sr. Let gi denote the number of messages sent by good nodes for round r in
the i-th step of Sr.

Case 1 T ∀r+1 = T ∃r+1. In this case, since all messages sent by good nodes for
round r are sent before T ∃r+1, by F1, all messages sent by good nodes
for round r are in D-form. Therefore, X is no more than the number of
messages sent by defective nodes during Sr, i.e. X ≤ Σk

i=1di.

Since, in this case, no good node is in round (r + 1) at (T ∀r+1 − 1), the
number of messages sent by good nodes for round r before (T ∀r+1 − 1) is
smaller than T ; otherwise, by line 6 of Sandglass, all good nodes would
have proceeded to round (r + 1) at (T ∀r+1 − 1). Therefore, Σk−1

i=1 gi < T .
Then, by Lemma 1, Σk

i=1di < T , therefore X < T , an we are done.

Case 2 T ∀r+1 = T ∃r+1 + 1. Again, we proved in F1 that all messages sent by
good nodes for round r before T ∃r+1 are in D-form. Therefore, X is no
more than the sum of the messages sent by good node for round r at T ∃r+1

and the messages sent by defective nodes during Sr, i.e., X ≤ Σk
i=1di +gk.

Now we are going to show, using a set of inequalities, that Σk
i=1dk + gk <

T ; X < T directly follows.

Let d̄ =
Σk−1

i=1 di

k−1 , and ḡ =
Σk−1

i=1 gi
k−1 . Recall that, in all steps, good nodes

outnumber defective nodes. Therefore, for all 1 ≤ i ≤ (k−1), we have di ≤
gi− 1. Then, for all 1 ≤ i ≤ (k− 1), since di ≤ gi− 1 and di + gi ≤ N , we
have that d̄ ≤ ḡ−1 and d̄+ ḡ ≤ N . Dividing both inequalities by ḡ yields
d̄
ḡ ≤ min(1− 1

ḡ ,
N
ḡ − 1). Note that the largest value of min(1− 1

ḡ ,
N
ḡ − 1)

occurs when 1− 1
ḡ = N

ḡ −1; solving for ḡ and plugging the solution back in

gives us: min(1− 1
ḡ ,
N
ḡ −1) ≤ (1− 2

N+1). Therefore, we have d̄
ḡ ≤ (1− 2

N+1),
and thus

d̄ ≤ ḡ · (1− 2

N + 1
). (1)

Since T ∀r+1 = T ∃r+1+1, some good node is still in round r at T ∃r+1; therefore,
the number of messages sent by good nodes for round r before T ∃r+1 is
smaller than T ; otherwise, by line 6 of Sandglass, all good nodes would
have proceeded to round (r + 1) at T ∃r+1. Therefore, Σk−1

i=1 gi < T , i.e.,

ḡ · (k − 1) < T . (2)

Since at least one good node is already in round (r+1) at T ∃r+1, the number
of good nodes in round r plus the number of defective nodes at T ∃r+1 is no
more than N − 1, i.e.,

gk + dk ≤ N − 1. (3)

32

Since good nodes outnumber defective nodes in all steps, we have for
all 1 ≤ i ≤ (k − 1)

di ≤
N − 1

2
. (4)

Now we will show (Σk
i=1di + gk) < T .

(Σk
i=1di + gk) = dk + gk + (k − 1)d̄

≤ (N − 1) + (k − 1)d̄ (By Inequality 3)

≤ (N − 1) + (k − 1) · ḡ · (1− 2

N + 1
) (By Inequality 1)

< (N − 1) + T · (1− 2

N + 1
) (By Inequality 2)

= (N − 1) + T − 2

N + 1
· T

≤ T − 2

N + 1
· N

2

2
+ (N − 1) (Since T = dN

2

2 e ≥
N 2

2)

= T − 1

N + 1
< T

This concludes the second case and thus the proof.

We can now proceed to prove Claim 2.

Proof. We are going to prove that, for any step T , if at T a good node pg is in
round rg ≥ rd, then pg proposes vd with priority at least 1.

Let U1 = 6T be the uCounter value, such that if uCounter is greater or
equals to U1, then priority is at least 1. Thus UD = (U1 + 3)T + U1 is the
uCounter value that, once reached, allows a node to decide (lines 21-22 of Sand-
glass).

As the first step of our proof, we establish the following fact:

If a good node is in rg at T , a node that, before T , proposes v′ 6= vd, can be

at most in round (rg − U1 − 1). (F2)

Assuming F2 holds, Claim 2 follows easily. Since by F2 all nodes that propose
in round (rg − U1) before T must propose vd, then, by line 17 of Sandglass,
all nodes that propose in round (rg − U1 + 1) before T must propose vd with
uCounter at least 1. A simple inductive argument then shows that all nodes
that ever propose in round (rg−U1 + i) before T , where 1 ≤ i < U1, propose vd
with uCounter at least i. With i = U1 − 1, messages sent for rv′ before T must
propose vd with uCounter at least (U1 − 1); therefore, pg must propose vd with
uCounter at least U1 at T , i.e., with priority at least 1.

33

Before, proving F2, we introduce a useful notion: For each message m sent
in round r, we consider the set of messages collected by the sender of m in round
(r − 1); we call this set m’s bag for round (r − 1).

Consider some node p′ that sends mv′

r′ proposing v′ for round r′. By line 12 of

Sandglass, p′ must have collected for round (r′−1) a message mv′

r′−1 proposing v′,

whose priority was the largest among all messages in mv′

r′ ’s bag. Inductively,

consider message mv′

r′−i: it must in turn contain in its bag a message mv′

r′−i−1

proposing v′, whose priority is the largest among all the messages in the bag.
Therefore, there exists a chain of messages extending from round 1 to round r′,
where each of these messages proposes v′.

Consider these messages’ bags. By construction of the chain, there exists
exactly one bag per round, and at least one of the messages with the highest
priority in each bag must be proposing v′.

Let uCounter v′

i be the value of uCounter of mv′

i . By line 17 of Sandglass,

for all 1 ≤ i < r′: uCounter v′

i ≥ uCounter v′

i+1 − 1. Therefore,

for all 1 ≤ i < j ≤ r′: uCounter v′

i ≥ uCounter v′

j − (j − i). (F3)

We now prove F2 by induction on the round number rg that a good node, pg,
is in.
Induction Basis: rg = rd Suppose a good node is in round rg at T . We proceed
by contradiction: assume that before T there exists a node, p′, proposing v′ in
some round r′ > (rg − U1 − 1) = (rd − U1 − 1).

Proceeding as above, we construct the chain of messages for p′ and consider
the bags for every round from (rd − (UD − U1)− 1) to (rd − U1 − 1). We will
show that (i) at most one of these bags can contain messages in D-form; and
(ii) the total number of messages not in D-form sent before T is not sufficient to
fill these bags. Thus, it is impossible for a node that before T proposes v′ 6= vd
to advance up to round (rd − U1), contradicting our assumption and proving
the basis of the induction.

Proof of (i) We show that at most one of the bags for the rounds from (rd −
(UD − U1) − 1) to (rd − U1 − 1) contains messages in D-form, i.e., mes-
sages that propose vd in round r, where r ≥ rd − UD, with uCounter at
least UD − (rd − r).

By contradiction: assume more than one of the bags for the rounds
from (rd − (UD − U1) − 1) to (rd − U1 − 1) contains messages in
D-form. Consider two such bags, for round r1 and r2 respectively,
where (rd − (UD − U1) − 1) ≤ r1 < r2 ≤ (rd − U1 − 1). Consider
now any message md

r1 in D-form contained in the bag for round r1;

md
r1 proposes vd with uCounter d

r1 ≥ UD − (rd − r1). Similarly, any
message md

r2 in D-form contained in the bag for round r2 proposes vd
with uCounter d

r2 ≥ UD − (rd − r2).

34

Now, let us consider the messages mv′

r1+1 and mv′

r2 on the chain. We showed

above (F3) that uCounter v′

r1+1 ≥ uCounter v′

r2−(r2−(r1+1)). Since there is
a message in D-form that proposes vd 6= v′ in the bag of round r1, by line 17

of Sandglass, uCounter v′

r1+1 = 0. Therefore, uCounter v′

r2 ≤ uCounter v′

r1+1+
(r2−(r1 +1)) = r2−(r1 +1) ≤ r2−(rd−(UD−U1)) = UD−U1−(rd−r2).

Then, by line 20 of Sandglass, priority v′

r2 ≤ max(0, bU
D−U1−(rd−r2)

T c − 5).

Recall that md
r2 proposes vd with uCounter d

r2 ≥ UD − (rd − r2). Then,

prioritydr2 ≥ max(0, bU
D − (rd − r2)

T
c − 5)

= max(0, bU
D − U1 − (rd − r2) + 6T

T
c − 5) (Since U1= 6T)

= max(0, bU
D − U1 − (rd − r2)

T
c+ 1).

Since r2 > r1 ≥ (rd − (UD − U1) − 1), i.e., r2 ≥ (rd − (UD − U1)),

we have UD − U1 − (rd − r2) ≥ 0. Then, bU
D−U1−(rd−r2)

T c + 1 ≥ 1.

Therefore, priority d
r2 ≥ b

UD−U1−(rd−r2)
T c + 1 > bU

D−U1−(rd−r2)
T c − 5

and priority d
r2 ≥ 1 > 0. Therefore, priority d

r2 > max(0, bU
D−U1−(rd−r2)

T c−
5) ≥ priorityv

′

r2 .

Now, consider mv′

r2+1. It collects both mv′

r2 and md
r2 . Since mv′

r2+1

proposes v′, mv′

r2 must be the message with the highest prior-

ity among the messages collected by mv′

r2+1 for round r2. How-

ever, priority d
r2 > priority v′

r2 . Contradiction.

Proof of (ii) Now we established that at most one of the bags for the rounds
from (rd − (UD −U1)− 1) to (rd −U1 − 1) contains messages in D-form.
That is, among these (UD − 2U1 + 1) bags, (UD − 2U1) of them contain
only messages that are not in D-form. We will call these ND-bags. Since
the size of each bag is at least T ,

ND-bags contain at least T · (UD − 2U1) messages. (F4)

Let us now compute the largest number of messages they can contain. ND-
bags can only contain messages not in D-form in any round from (rd −
(UD −U1)− 1) to (rd −U1 − 1) sent by (A) good nodes; or (B) defective
nodes.

Recall that T ∀r is the earliest step where all good nodes are in round r.

By Lemma 5, T ∀rd−(UD−U1)−2 is the earliest step where some defective node

can be in round (rd− (UD−U1)−1). Then, the messages covered by case

35

(B) must have been sent between steps T ∀rd−(UD−U1)−2 and (T − 1). We

can then partition this range of steps into four consecutive subranges:

B1 : from T ∀rd−(UD−U1)−2 to (T ∀rd−(UD−U1)−1 − 1)

B2 : from T ∀rd−(UD−U1)−1 to (T ∀rd−U1 − 1)

B3 : from T ∀rd−U1 to (T ∀rd − 1)

B4 : from T ∀rd to (T − 1)

We now count the total number of messages covered by cases A and B1
to B4.

B1 By Lemma 10, the number of messages in B1 is at most (T − 1).

A and B2 Consider, for any round rb, where (rd − (UD − U1) − 1) ≤
rb ≤ (rd − U1 − 1), the set of messages Srb obtained by adding (i)
messages sent by defective nodes starting from T ∀rb and before T ∀rb+1;
and (ii) messages not in D-form sent by good nodes for round rb. By
Observation 1, Srb contains fewer than T messages. Thus, the set

(rd−U1−1)⋃
rb=(rd−(UD−U1)−1)

Srb ,

which contains all messages covered by cases A and B2, consists of
no more than (T − 1) · (UD − 2U1 + 1) messages.

B3 By Lemma 10, the number of messages sent by defective nodes in the
time interval from T ∀r to (T ∀r+1 − 1) is at most (T − 1). Since B3
contains U1such intervals, the number of messages sent in B3 is at
most (T − 1) · U1.

B4 Note that pg is still in round rd at T , and that, by Lemma 3 and the
definition of T ∀rd , all good nodes are in round rd from T ∀rd to (T − 1).
Therefore, the number of messages good nodes generate during B4
is smaller than T ; otherwise, all good nodes would be at least in
round (rd + 1) at T . Since good nodes outnumber defective nodes
in any step, it follows that the number of messages sent by defective
nodes between T ∀rd and (T − 1) is at most (T − 1).

Therefore, adding the number of messages in B1, A and B2, B3, and B4,
ND-bags can contain no more than (T − 1) + (T − 1) · (UD − 2U1 + 1) +
(T − 1) · U1 + (T − 1) messages, i.e.,

(T − 1) · (UD − U1 + 3). (5)

Recall F4: ND-bags contain at least

T · (UD − 2U1) messages. (6)

36

Therefore, we have

(T − 1) · (UD − U1 + 3) ≥ T · (UD − 2U1),

which we rewrite as T · (UD − U1 + 3)− T · (UD − 2U1) ≥ UD − U1 + 3,
and finally as UD ≤ (U1 + 3)T + U1 − 3.

However, since UD = (U1 + 3)T + U1, we have a contradiction. Q.E.D.

Induction hypothesis: rd ≤ rg ≤ rd + k We assume that if a good node is
in rg, where rd ≤ rg ≤ rd+k, at T , then a node that, before T , proposes v′ 6= vd
can be at most in round (rg − U1 − 1). As we argued above, this is enough to
easily show a version of Claim 2 limited to the case when rd ≤ rg ≤ rd + k.
Induction step: rg = rd+k+1 Suppose a good node is in round rg = rd+k+1
at T , and that Claim 2 holds for any round r, where rd ≤ r ≤ rd + k. We will
prove that if a good node is in rg at T , then a node that, before T , proposes v′ 6=
vd can be at most in round (rg − U1 − 1).

We will assume, by contradiction, that there exists a node p′ that before T
proposes v′ in some round r′ > (rg−U1−1). We will consider the following two
cases: (1) (rg−U1−1) ≤ rd−1, i.e., rg ≤ rd+U1; and (2) (rg−U1−1) > rd−1,
i.e., rg > rd + U1.

Case 1: rg ≤ rd + U1 Proceeding as above, we construct the chain of messages
for p′ and consider the bags for every round from (rd − (UD − U1) − 1)
to (rg − U1 − 1). With rg ≤ rd + U1, we have (rg − U1 − 1) ≤ rd − 1.

We will show that (i) at most one of these bags can contain messages in
D-form; and (ii) the total number of messages not in D-form sent before
T is not sufficient to fill these bags. Thus, it is impossible for a node that
before T proposes v′ 6= vd to advance up to round (rg−U1), contradicting
our assumption. The proof for Case 1 is very similar to how we proved
the induction basis; we present it in full for completeness.

Proof of (i) We will show that at most one of the bags for the rounds
from (rd − (UD − U1) − 1) to (rg − U1 − 1) contains messages in
D-form.

By contradiction: assume more than one of the bags for the rounds
from (rd−(UD−U1)−1) to (rg−U1−1) contains messages in D-form.
Consider two such bags, for round r1 and r2 respectively, where (rd−
(UD − U1) − 1) ≤ r1 < r2 ≤ (rg − U1 − 1) ≤ (rd − 1). Consider
now any message md

r1 in D-form contained in the bag for round r1;

md
r1 proposes vd with uCounter d

r1 ≥ UD − (rd − r1). Similarly, any
message md

r2 in D-form contained in the bag for round r2 proposes vd
with uCounter d

r2 ≥ UD − (rd − r2).

Now, let us consider the messages mv′

r1+1 and mv′

r2 on the chain. We

showed above (F3) that uCounter v′

r1+1 ≥ uCounter v′

r2 − (r2 − (r1 +

37

1)). Since there is a message in D-form that proposes vd 6= v′ in

the bag of round r1, by line 17 of Sandglass, uCounter v′

r1+1 = 0.

Therefore, uCounter v′

r2 ≤ uCounter v′

r1+1 + (r2− (r1 + 1)) = r2− (r1 +
1) ≤ r2 − (rd − (UD −U1)) = UD −U1 − (rd − r2). Then, by line 20

of Sandglass, priority v′

r2 ≤ max(0, bU
D−U1−(rd−r2)

T c − 5).

Recall that md
r2 proposes vd with uCounter d

r2 ≥ UD−(rd−r2). Then,

prioritydr2 ≥ max(0, bU
D − (rd − r2)

T
c − 5)

= max(0, bU
D − U1 − (rd − r2) + 6T

T
c − 5)

(Since U1= 6T)

= max(0, bU
D − U1 − (rd − r2)

T
c+ 1).

Since r2 > r1 ≥ (rd − (UD − U1) − 1), i.e., r2 ≥ (rd − (UD − U1)),

we have UD − U1 − (rd − r2) ≥ 0. Then, bU
D−U1−(rd−r2)

T c+ 1 ≥ 1.

Therefore, priority d
r2 ≥ b

UD−U1−(rd−r2)
T c+ 1 > bU

D−U1−(rd−r2)
T c − 5

and priority d
r2 ≥ 1 > 0. Therefore, priority d

r2 >

max(0, bU
D−U1−(rd−r2)

T c − 5) ≥ priorityv
′

r2 .

Now, consider mv′

r2+1. It collects both mv′

r2 and md
r2 . Since mv′

r2+1

proposes v′, mv′

r2 must be the message with the highest priority

among the messages collected by mv′

r2+1 for round r2. How-

ever, priority d
r2 > priority v′

r2 . Contradiction.

Proof of (ii) Now we established that at most one of the bags for the
rounds from (rd− (UD−U1)− 1) to (rg−U1− 1) contains messages
in D-form. That is, among these (UD−2U1+(rg−rd)+1) bags, (UD−
2U1 + (rg − rd)) of them contain only messages that are not in D-
form. We will call these ND-bags. Since the size of each bag is at
least T ,

ND-bags contain at least T · (UD − 2U1 + (rg − rd)) messages.
(F5)

Let us now compute the largest number of messages they can con-
tain. ND-bags can only contain messages not in D-form in any round
from (rd − (UD −U1)− 1) to (rg −U1 − 1) sent by (A) good nodes;
or (B) defective nodes.

By Lemma 5, T ∀rd−(UD−U1)−2 is the earliest step where some defective

node can be in round (rd − (UD − U1) − 1). Then, the messages
covered by case (B) must have been sent from step T ∀rd−(UD−U1)−2

38

to step (T − 1). We can then partition this range of steps into four
consecutive subranges:

B1 : from T ∀rd−(UD−U1)−2 to (T ∀rd−(UD−U1)−1 − 1)

B2 : from T ∀rd−(UD−U1)−1 to (T ∀rg−U1 − 1)

B3 : from T ∀rg−U1 to (T ∀rg − 1)

B4 : from T ∀rg to (T − 1)

We now count the total number of messages covered by cases A and
B1 to B4.

B1 By Lemma 10, the number of messages sent in B1 is at most (T −
1).

A and B2 Consider, for any round rb, where (rd − (UD − U1) −
1) ≤ rb ≤ (rg − U1 − 1), the set of messages Srb obtained by
adding (i) messages sent by defective nodes starting from T ∀rb
and before T ∀rb+1; and (ii) messages not in D-form sent by good
nodes for round rb. By Observation 1, Srb contains fewer than T
messages. Thus, the set

(rd−U1−1)⋃
rb=(rg−(UD−U1)−1)

Srb ,

which contains all messages covered by cases A and B2, consists
of no more than (T − 1) · (UD − 2U1 + (rg − rd) + 1).

B3 By Lemma 10, the number of messages sent by defective nodes
in the time interval from T ∀r to (T ∀r+1 − 1) is at most (T − 1).
Since B3 contains U1such intervals, the number of messages sent
in B3 is at most (T − 1) · U1.

B4 Note that pg is still in round rg at T , and that, by Lemma 3 and
the definition of T ∀rg , all good nodes are in round rg from T ∀rg
to (T − 1). Therefore, the number of messages good nodes gen-
erate during B4 is smaller than T ; otherwise, all good nodes
would be at least in round (rg + 1) at T . Since good nodes out-
number defective nodes in any step, it follows that the number
of messages sent by defective nodes between T ∀rg and (T − 1) is
at most (T − 1).

Therefore, adding the number of messages in B1, A and B2, B3, and
B4, ND-bags can contain no more than (T − 1) + (T − 1) · (UD −
2U1 + (rg − rd) + 1) + (T − 1) · U1 + (T − 1) messages, i.e.,

(T − 1) · (UD − U1 + (rg − rd) + 3). (7)

Recall F5: ND-bags contain at least

T · (UD − 2U1 + (rg − rd)) messages. (8)

39

Therefore, we have

(T − 1) · (UD − U1 + (rg − rd) + 3) ≥ T · (UD − 2U1 + (rg − rd))

⇒ (T − 1) · (UD − U1 + (rg − rd) + 3) ≥ (T − 1) · (UD − 2U1 + (rg − rd))

+ (UD − 2U1 + (rg − rd))

⇒ (T − 1) · (U1 + 3) ≥ UD − 2U1 + (rg − rd)

⇒ (T − 1) · (U1 + 3) ≥ (U1 + 3)T − U1 + (rg − rd)
(since UD = (U1 + 3)T + U1)

⇒ 0 ≥ 3 + (rg − rd)

However, since rg ≥ rd, we have a contradiction. Q.E.D.

Case 2: rg > rd + U1 Again, we construct the chain of messages for p′ and
consider the bags for every round from (rd−(UD−U1)−1) to (rg−U1−1).

We will show that:

(i) At most one of the bags for rounds from (rd−(UD−U1)−1) to (rd−1)
contains messages in D-form. That is, among these (UD − U1 + 1)
bags, (UD − U1) of them contain only messages that are not in D-
form. We will call these ND-bags.

(ii) Among the bags for rounds from rd to (rg − U1 − 1), at most one
in every U1 bags can contain messages from good nodes. That is,

among these (rg − rd − U1) bags, (rg − rd − U1 − d rg−rd−U
1

U1 e) of
them contain only messages from defective nodes. We will call these
Def-bags.

(iii) The sum of (1) the messages not in D-form for round (rd − (UD −
U1)− 1) to (rd− 1), and (2) the messages sent by defective nodes for
round rd to (rg − U1 − 1) before T , is not sufficient to fill ND-bags
and Def-bags.

Thus, it is impossible for a node that before T proposes v′ 6= vd to advance
up to round (rg − U1), contradicting our assumption.

Proof of (i) By contradiction: assume more than one of the bags for the
rounds from (rd − (UD − U1) − 1) to (rd − 1) contains messages in
D-form. Consider two such bags, for round r1 and r2 respectively,
where (rd − (UD − U1) − 1) ≤ r1 < r2 ≤ (rd − 1). Consider now
any message md

r1 in D-form contained in the bag for round r1; md
r1

proposes vd with uCounter d
r1 ≥ UD − (rd − r1). Similarly, any mes-

sage md
r2 in D-form contained in the bag for round r2 proposes vd

with uCounter d
r2 ≥ UD − (rd − r2).

Now, let us consider the messages mv′

r1+1 and mv′

r2 on the chain. We

showed above (F3) that uCounter v′

r1+1 ≥ uCounter v′

r2 − (r2 − (r1 +
1)). Since there is a message in D-form that proposes vd 6= v′ in

40

the bag of round r1, by line 17 of Sandglass, uCounter v′

r1+1 = 0.

Therefore, uCounter v′

r2 ≤ uCounter v′

r1+1 + (r2− (r1 + 1)) = r2− (r1 +
1) ≤ r2 − (rd − (UD −U1)) = UD −U1 − (rd − r2). Then, by line 20

of Sandglass, priority v′

r2 ≤ max(0, bU
D−U1−(rd−r2)

T c − 5).

Recall that md
r2 proposes vd with uCounter d

r2 ≥ UD−(rd−r2). Then,

prioritydr2 ≥ max(0, bU
D − (rd − r2)

T
c − 5)

= max(0, bU
D − U1 − (rd − r2) + 6T

T
c − 5)

(Since U1= 6T)

= max(0, bU
D − U1 − (rd − r2)

T
c+ 1).

Since r2 > r1 ≥ (rd − (UD − U1) − 1), i.e., r2 ≥ (rd − (UD − U1)),

we have UD − U1 − (rd − r2) ≥ 0. Then, bU
D−U1−(rd−r2)

T c+ 1 ≥ 1.

Therefore, priority d
r2 ≥ b

UD−U1−(rd−r2)
T c+ 1 > bU

D−U1−(rd−r2)
T c − 5

and priority d
r2 ≥ 1 > 0. Therefore, priority d

r2 >

max(0, bU
D−U1−(rd−r2)

T c − 5) ≥ priorityv
′

r2 .

Now, consider mv′

r2+1. It collects both mv′

r2 and md
r2 , and mv′

r2 .

Since mv′

r2+1 proposes v′, mv′

r2 must be the message with the highest

priority among the messages collected by mv′

r2+1 for round r2.

However, priority d
r2 > priority v′

r2 . Contradiction.

Proof of (ii) We will show that among the bags for rounds rd to (rg −
U1 − 1), at most one in every U1 bags can contain messages from
good nodes.

By contradiction: assume there exist two bags containing
messages from good nodes, for round r1 and r2 respectively,
where rd ≤ r1 < r2 ≤ (rg −U1− 1), and r2− r1 < U1. Consider now
any message mg

r1 from a good node contained in the bag for round r1;
by induction hypothesis, mg

r1 proposes vd with priority g
r1 ≥ 1. Sim-

ilarly, any message mg
r2 from a good node contained in the bag for

round r2 proposes vd with priority g
r2 ≥ 1.

Now, let us consider messages mv′

r1+1 and mv′

r2 on the chain. We

showed above (F3) that uCounter v′

r1+1 ≥ uCounter v′

r2 −(r2−(r1 +1)).
Since there is a message from a good node proposing vd 6= v′ in

the bag of round r1, by line 17 of Sandglass, uCounter v′

r1+1 = 0.

Therefore, uCounter v′

r2 ≤ uCounter v′

r1+1+(r2−(r1+1)) = r2−r1−1 <

U1. Then, by line 20 of Sandglass, priority v′

r2 < 1.

41

Recall that mg
r2 proposes vd with priority g

r2 ≥ 1. Then, we

have priority g
r2 > priority v′

r2 .

Now, consider mv′

r2+1. It collects both mv′

r2 and mg
r2 . Since mv′

r2+1

proposes v′, mv′

r2 must be the message with the highest priority

among the messages collected by mv′

r2+1 for round r2. How-

ever, priority g
r2 > priority v′

r2 . Contradiction.

Proof of (iii) Now we established that:

(i) Among the bags for rounds from (rd−(UD−U1)−1) to (rd−1),
(UD−U1) ND-bags contain only messages that are not in D-form.

(ii) Among the bags for rounds from rd to (rg − U1 − 1), (rg − rd −
U1−d rg−rd−U

1

U1 e) Def-bags contain only messages from defective
nodes.

Since each bag contains at least T messages, ND-bags and Def-bags
contain collectively at least

T · (UD − U1 + (rg − rd − U1 − drg − rd − U1

U1
e)) messages. (F6)

Let us now compute the largest number of messages they can contain.
ND-bags and Def-bags can contain messages not in D-form in any
round from (rd − (UD −U1)− 1) to (rd − 1) sent by either (A) good
nodes or (B) defective nodes, and (C) messages sent for round rd
to rg − U1 − 1 by defective nodes.

By Lemma 5, T ∀rd−(UD−U1)−2 is the earliest step where some defective

node can be in round (rd−(UD−U1)−1). Then, the messages covered
by case (B) and (C) must have been sent from step T ∀rd−(UD−U1)−2

to step (T − 1). We can then partition this range of steps into four
consecutive subranges:

BC1 : from T ∀rd−(UD−U1)−2 to (T ∀rd−(UD−U1)−1 − 1)

BC2 : from T ∀rd−(UD−U1)−1 to (T ∀rd − 1)

BC3 : from T ∀rd to (T ∀rg − 1)

BC4 : from T ∀rg to (T − 1)

We now count the total number of messages covered by cases A and
BC1 to BC4.

BC1 By Lemma 10, the number of messages in BC1 is at most (T −
1).

A and BC2 Consider, for any round rb, where (rd − (UD −U1)−
1) ≤ rb ≤ (rd − 1), the set of messages Srb obtained by adding

42

(i) messages sent by defective nodes starting from T ∀rb and be-

fore T ∀rb+1; and (ii) messages not in D-form sent by good nodes
for round rb. By Observation 1, Srb contains fewer than T mes-
sages. Thus, the set

(rd−1)⋃
rb=(rd−(UD−U1)−1)

Srb ,

which contains all messages covered by cases A and BC2, consists
of no more than (T − 1) · (UD − U1 + 1) messages.

BC3 By Lemma 10, the number of messages sent by defective nodes
in the time interval from T ∀r to (T ∀r+1 − 1) is at most (T − 1).
Since B3 contains (rg−rd) such intervals, the number of messages
sent in BC3 is at most (T − 1) · (rg − rd).

BC4 Note that pg is still in round rg at T , and that, by Lemma 3
and the definition of T ∀rg , all good nodes are in round rg from T ∀rg
to (T − 1). Therefore, the number of messages good nodes gen-
erate during BC4 is smaller than T ; otherwise, all good nodes
would be at least in round (rg + 1) at T . Since good nodes out-
number defective nodes in any step, it follows that the number
of messages sent by defective nodes between T ∀rg and (T − 1) is
at most (T − 1).

Therefore, adding the number of messages in BC1, A and BC2, BC3,
and BC4, ND-bags and Def-bags can contain no more than (T −1)+
(T − 1) · (UD −U1 + 1) + (T − 1) · (rg − rd) + (T − 1) messages, i.e.,

(T − 1) · (UD − U1 + (rg − rd) + 3). (9)

Recall F6: ND-bags and Def-bags contain at least

T · (UD − U1 + (rg − rd − U1 − drg − rd − U1

U1
e)) messages. (F6)

Therefore, we have

(T − 1) · (UD − U1 + (rg − rd) + 3) ≥ T · (UD − U1 + (rg − rd − U1 − drg − rd − U1

U1
e))

⇒ T · (U1 + 3 + drg − rd − U1

U1
e) ≥ UD − U1 + (rg − rd) + 3

⇒ T · (U1 + 3 + drg − rd − U1

U1
e) ≥ (U1 + 3)T + (rg − rd) + 3

(Since UD = ((U1 + 3)T + U1))

⇒ drg − rd
6T

e − 1 ≥ (rg − rd) + 3

T
(Since U1 = 6T)

⇒ rg − rd
6T

>
(rg − rd) + 3

T
(Since

rg−rd
6T > (d rg−rd6T e − 1))

43

However, since 0 < (rg − rd) < ((rg − rd) + 3) and (6T) > T > 0, we
have a contradiction. Q.E.D.

This concludes our proof of Agreement.

A.4 Termination

The Termination property requires good nodes that stay active to eventually
decide. Sandglass’s Termination guarantee is probabilistic: For Termination to
hold, Sandglass needs to be lucky. To help us prove that luck befalls Sandglass
with probability 1, we introduce the interdependent notions of lucky period,
lucky value, and lucky round.

Intuitively, a lucky period is a sequence of steps that leads to a decision:
all nodes that are active in the step that immediately follows the end of the
lucky period are guaranteed to decide in that step, if not earlier. The quality
that makes a period lucky is straightforward. Recall that in Sandglass, if a
node receives distinct highest priority proposals in the previous round, it can
choose uniformly at random among them which one it is going to propose in the
current round. During a lucky period, all the random choices that occur in a
given round just happen to select the same value – the lucky value for that round.
We give below a simple rule that defines what constitutes the lucky value for any
given round spanned by the lucky period. To prove that Sandglass guarantees
Termination with probability 1, we will proceed in two steps. First, we will show
that the unanimity counter of all good nodes that are active during the last step
of a lucky period reaches a value that allows them to decide. Second, we will
prove that lucky periods occur with non-zero probability. Since in any infinite
execution lucky periods appear infinitely often, it follows that any good node
that stays active, no matter when it joins, is guaranteed to eventually decide.
Lucky value The rule that determines the lucky value for a given round r is
defined in terms of two sets. The first, C(r, p), is independently computed by
every node p as the set of messages for round r defined by line 11 of Sandglass; it
contains the highest-priority messages p collected for round (r− 1). The second
set, O(r), contains a (possibly empty) subset of good nodes, and is defined
across all good nodes that enter round r at any time. It contains any good node
pg that meets the following two criteria: (1) pg has collected exactly one highest
priority value in round (r − 1) (which pg is then required to propose in round
r) and (2) one of the messages sent by pg in round r is collected by all good
nodes in round (r + 1). Note that if O(r) contains multiple good nodes, they
may differ in the single highest priority value they have collected.

We dub the first round of a lucky period a lucky round. The lucky value v`(r)
for a given round r of a given lucky period is defined inductively, with the base
case defined by that period’s lucky round, rstart, as follows:

• When r = rstart:

If O(rstart) 6= ∅ and ∀p ∈ O(rstart), v ∈ C(rstart, p), then v`(rstart) = v.

44

Otherwise, v`(rstart) is arbitrarily set to one of the initial values. We will
assume, without loss of generality, that v`(rstart) is set to a.

• When r > rstart:

If O(r) 6= ∅ and ∀p ∈ O(r), v ∈ C(r, p), then v`(r) = v.

Otherwise, v`(r) = v`(r − 1).

Lucky period. We already saw that, informally, a lucky round is the first
round of a lucky period. To define these notions more precisely, we introduce
the following definitions, which we will use extensively in our Termination proof:

• T1(r): The earliest step where some node, possibly defective, is in round
r.

• rlock: The round with index (r + 6T). We will prove that, if r is a lucky
round then, in every round from (rlock + 1) to the end of the lucky period,
v` is the same as the lucky value of round rlock, and all good nodes propose
the lucky value of round rlock.

• T (rlock): The earliest step where some node is in round rlock.

• P~̀

~

: A constant, equal to (6T +d (6T −1)·UD+18T
5 e), which denotes the num-

ber of rounds spanned by a lucky period, i.e., all rounds from the pe-
riod’s lucky round rstart to round (rstart +P~̀

~
− 1) (or, equivalently, round

(rlock + d (6T −1)·UD+18T
5 e − 1).

• TD(r): The earliest step where all good nodes are in round (r + P~̀

~

) or
later. We will prove that, if r is a lucky round, then all good nodes decide
by step TD(r).

We then say that rstart is a lucky round if, in every step during the lucky
period from T1(rstart) to (TD(rstart) − 1), whenever the set C(r, p) of a node p

in round r (where rstart ≤ r < rstart + P~̀

~

) holds multiple values, p randomly
chooses to propose that round’s lucky value, i.e., v`(r).

We now prove two observations that are useful for the proof for termination.

Observation 2. Suppose rstart is lucky and consider round r, where rstart ≤
r < rstart +P~̀

~

. If v`(r) = v, then all good nodes in round (r + 1) collect at least
one message proposing v for round r.

Proof. By contradiction. Assume v`(r) = v and that some good node in
round (r + 1) does not collect v for round r.

Let A(r) be the set of good nodes whose messages for round r are collected
by all the good nodes in round (r + 1). By Corollary 1, A(r) 6= ∅. Since some
good node does not collect v for round r, it follows that none of the good nodes

45

in A(r) proposes v for round r, i.e. all the good nodes in A(r) propose v′ 6= v
for round r.

Since v`(r) = v, for any node p, if v ∈ C(r, p), then p must propose v for
round r. Note that all the good nodes in A(r) propose v′ for round r, therefore,
for any pg ∈ A(r), C(r, pg) only contains v′. That is, O(r) = A(r) 6= ∅. By
definition of v`, v`(r) should be set to v′. Contradiction.

Observation 3 (Necessary condition for v` flipping). If rstart is lucky, then for

any r where rstart < r < rstart + P~̀

~

, v`(r) is different from v`(r − 1) only if
some good node collects from round (r − 1) some message proposing v`(r) with
priority at least 1.

Proof. Assume v`(r − 1) = v′ and v`(r) = v, where v′ 6= v.
Since r > rstart and v′ 6= v, by definition of v`, O(r) 6= ∅ and for

any p ∈ O(r), v ∈ C(r, p). Now we consider the values that one such good
node, pg ∈ O(r), collects from round (r − 1). By Observation 2, pg collects at
least one message proposing v′ from round (r−1). However, only v is in C(r, pg).
Therefore, p must have collected a message proposing v with a higher priority
than v′, that is, at least 1.

Observation 4. If some good node in round r at T collects from round (r− 1)
some message m proposing v with priority at least 1, then there exists a good
node proposing v with uCounter larger than 3T in round rg, where r − 3T <
rg ≤ r − 1.

Proof. Consider the node p that at step T ′ < T sends m, which proposes v with
priority at least 1 for round (r − 1). By Corollary 3, p must have collected a
message from a good node mg by T ′ for round rg, where r − 3T < rg ≤ r − 1.
Since p sends m with priority 1, i.e. uCounterp ≥ 6T ; then, by Lemma 12, mg

must propose v′ with uCounterg ≥ uCounterp− ((r− 1)− rg) ≥ 6T − ((r− 1)−
rg) > 3T .

Observation 5. If round rstart is a lucky round, then all good nodes active at
step TD(rstart) have decided by TD(rstart).

Proof. Recall that T (rlock) is the earliest step where some node is in round rlock,
and rlock = rstart + 6T . Let v`(rlock) be v.

The proof proceeds in two main steps. In Step 1, we will prove that:

For any r, where rlock < r ≤ rstart + P~̀

~

− 1, v`(r) = v`(rlock) = v, and all good

nodes propose v for round r. (F7)

In Step 2, relying on F7, we are going to prove that, for any good node pg,
the uCounter of v = v`(rlock) at TD(rstart) will be at least UD, upon which pg
will decide v.

46

Step 1 To prove F7, we are going to prove:

No good node in round r, where rlock ≤ r ≤ rstart + P~̀

~

− 1, collects a message

proposing v′ 6= v for round (r − 1) with priority larger than 0. (F8)

Assuming F8 is true, then it is easy to show F7 is true as follows. By
combining F8 and Observation 3, we can conclude that v`(rlock) is the

lucky value for all rounds from rlock to (rstart + P~̀

~

− 1). Now, consider

any round r, where rlock + 1 ≤ r ≤ rstart + P~̀

~

− 1. By Observation 2,
since v`(r− 1) = v, all good nodes in round r collect at least one message
proposing v for round (r − 1). By F8, we know that no good node in
round r collects a message proposing v′ for round (r − 1) with priority
larger than 0 . Therefore, any good node in round r either collects only v,
or collects both v and v′, where the priority of v′ is 0. Since rstart is a
lucky round, all good nodes propose v for round r, proving F7.

We are going to prove F8 by contradiction. Let r′ be the earliest round in
the range from rlock to (rstart + P~̀

~

− 1), where some good node, currently
in r′, collects a message from round (r′−1) proposing v′ 6= v with priority
at least 1.

We are going to prove that (i) there exists a round rg, where (rlock−3T) <
rg ≤ (r′ − 1), such that (a) a good node pg proposes v′ in round rg with
uCounterg > 3T , and (b) v`(rg − 1) = v′; and (ii) (rg − 1) can be neither
smaller nor larger than rlock. Since (rg − 1) 6= rlock, as their v` values are
different, this leads to a contradiction.

Proof of (i) Since some good node in round r′ at T collects a message
proposing v′ for round (r′ − 1) with priority at least 1, then, by
Observation 4, there exists a good node pg proposing v′ in round rg,
where r′ − 3T < rg ≤ r′ − 1 with uCounterg > 3T . Now with rg >
(r′ − 3T) ≥ (rlock − 3T) (by definition of r′), we have (rlock − 3T) <
rg ≤ (r′ − 1), establishing (a).

Now, to establish (b), we show that v`(rg − 1) = v′.
Since uCounterg > 0, by line 17 of Sandglass, pg collects only v′

in round (rg − 1). Note that, by Observation 2, all good nodes
in round rg, including pg, collect at least one message proposing
v`(rg − 1) for round (rg − 1). Therefore, v`(rg − 1) must be equal to
v′, i.e., v`(rg − 1) = v′.

Having proved (a) and (b), we proved (i).

Proof of (ii) Consider the round rg that exists by (i). We know
that (rg − 1) 6= rlock. We now show that (rg − 1) can be neither
smaller nor larger than rlock, which leads to a contradiction.

Case 1 (rg − 1) < rlock

47

We are going to show that, under the assumption
of (rg − 1) < rlock, it is possible to prove two statements,
S1 and S2, that are in contradiction with each other.

S1: There exists a round r, where rg − 3T < r ≤ rlock − 1, in
which a good node proposes v with uCounter > 3T .
Since v`(rg−1) = v′ and v`(rlock) = v, there must exist a round rc
between rg and rlock where v` changes from v′ to v, i.e. v`(rc −
1) = v′ and v`(rc) = v.
By Observation 3, some good node in round rc collects from
round (rc−1) some message proposing v with priority at least 1.
Then, by Observation 4, there exists a good node pv in round rv,
where rc − 3T < rv ≤ rc − 1, proposing v with uCounter > 3T .
Since rg ≤ rc ≤ rlock, we have proved S1: there exists a round rv,
where rg − 3T < rv ≤ rlock − 1, such that a good node pv in rv
proposes v with uCounter > 3T .

S2: No good node in any round r, where rg−3T < r ≤ rlock−1,
proposes v with uCounter > 3T .
Recall that, by (i), pg proposes v′ with uCounterg ≥ 3T + 1 in
round rg. Consider any round r between rg − 3T and rg. By
Corollary 4, there exists a good node in round r proposing v
with uCounter at least (uCounterg − (rg − r)), which is a value
greater than 0. Then, by Lemma 13, we can draw a first con-
clusion: no good node can propose v with uCounter > 0 for any
round r, where rg − 3T − 1 ≤ r ≤ rg − 1.
When r is equal to (rg − 1), this means that no good node
proposes v with uCounter > 0 in round (rg − 1). Then, by
Corollary 4, we can further infer that no good node proposes v
with uCounter > 3T in any round between rg and (rg + 3T).
Since rg ≥ (rlock−3T), i.e., (rlock−1) ≤ rg+3T −1, we can draw
a second conclusion: for any round r, where rg ≤ r ≤ rlock − 1,
no good node proposes v with uCounter > 3T .
Combining our two conclusions, we have that no good node
can propose v with uCounter > 3T in any round r, where
rg − 3T < r ≤ rlock − 1, proving S2.

Since S1 and S2 contradict each other, and we were able to prove
them under the assumption that rg−1 < rlock, we conclude that
Case 1 is impossible.

Case 2 (rg − 1) > rlock
Since v`(rlock) = v and we proved that v`(rg − 1) = v′, then
in some round rc, where rlock < rc ≤ (rg − 1), v`(rc − 1) = v
and v`(rc) = v′. By Observation 3, some good node in round rc
must collect a message proposing v′ with priority at least 1 from

48

round (rc − 1).
Recall that r′ is the earliest round in the range from rlock
to (rstart+P~̀

~

−1), where some good node, currently in r′, collects
a message from round (r′ − 1) proposing v′ 6= v with priority at
least 1; and that rg ≤ r′ − 1. Therefore, rlock < rc < rg < r′.
However, by assumption, r′ is the earliest round in which some
node collects a message proposing v′ with priority at least 1.
Contradiction.

This concludes the proof that F8 holds. Recall that, as we showed above,
F8 implies F7:

For any r, where rlock < r ≤ rstart + P~̀

~

− 1, v`(r) = v`(rlock) = v, and all good

nodes propose v for round r. (F7)

which is now also proved.

Step 2 Now, we are going to show that, for any good node pg that is ac-
tive at TD(rstart), the uCounter of v = v`(rlock) at TD(rstart) will be at
least UD. This is the condition upon which pg will decide v.

The key technical hurdle we need to clear is to prove following fact:

A node that proposes v′ 6= v before TD(rstart) can be at most in

round (rstart + P~̀

~

− UD − 1). (F9)

Assuming F9 holds, it follows easily that all good nodes that are active
at TD(rstart) must have decided by TD(rstart). Here is why.

Since by F9 all nodes that propose in round (rstart + P~̀

~

− UD) be-
fore TD(rstart) must propose v, then, by line 17 of Sandglass, all nodes

that propose in round (rstart + P~̀

~

− UD + 1) before TD(rstart) must
propose v with uCounter at least 1. A simple inductive argument then
shows that all nodes that ever propose in round (rstart + P~̀

~

− UD + i)
before TD(rstart), where 1 ≤ i < UD, propose v with uCounter at

least i. With i = UD − 1, messages sent for round (rstart + P~̀

~

− 1)
before TD(rstart) must propose v with uCounter at least (UD − 1). Note
that by Lemma 3 and because pg is active at step TD(rstart), pg enters

round (rstart + P~̀

~

) either at step (TD(rstart)− 1) or at step TD(rstart). In
both cases, pg proposes v with uCounter at least UD, i.e., with priority
at least (6T + 4), and decides by lines 21-22 of Sandglass. Therefore, if pg
is active at step TD(rstart), it must have decided by step TD(rstart).

To prove F9, we use again the notion of bags that we introduced in the
proof for Agreement. We quickly review it below.

49

For each message m sent in round r, m’s bag for round (r − 1) is the set
of messages collected by the sender of m in round (r − 1).

Recall that, if some node p′ sends a message mv′

r′ proposing v′ for round r′,
then there exists a chain of messages extending from round 1 to round r′,
where (a) each message on the chain proposes v′, and (b) the i-th message
on the chain was one of the highest priority messages collected from round i
by the sender of the (i + 1)-th message.

To each message in the chain corresponds a bag: by definition, the bag of
the chain’s i-th message is the bag for round (i − 1). Thus, in the chain
there exists exactly one bag per round, and at least one of the messages
with the highest priority in each bag must be proposing v′.

Let uCounter v′

i be the value of uCounter of the i-th message on the chain.

By line 17 of Sandglass, ∀i : 2 ≤ i < r′: uCounter v′

i ≥ uCounter v′

i+1 − 1.
Therefore, as we saw, the following holds:

∀i : 2 ≤ i < j ≤ r′: uCounter v′

i ≥ uCounter v′

j − (j − i). (F3)

We are now ready to prove F9. We proceed by contradiction.

Assume there exists a node p′ that before TD(rstart) uses a message m′ to

propose v′ in some round r′ > (rstart+P~̀

~

−UD−1). Consider the chain of
messages associated with m′ and, in particular, the bags for every round
from (rlock + 1) to (rstart + P~̀

~
− UD − 1).

We will show that:

(i) Among the bags for rounds from (rlock+1) to (rstart+P~̀

~

−UD−1), at
most one in every U1 bags can contain messages from good nodes.
That is, among these (rstart + P~̀

~

− UD − rlock − 2) bags, (rstart +

P~̀

~

− UD − rlock − 2− d rstart+P~̀

~

−UD−rlock−2
U1 e) = (P~̀

~

− 6T − UD − 2−
dP~̀

~

−6T −UD−2
U1 e) of them contain only messages from defective nodes.

We will call these Def -bags.

(ii) The number of messages sent by defective nodes for round (rlock + 1)

to (rstart + P~̀

~

− UD − 1) before TD(rstart) is not sufficient to fill all
Def -bags.

Thus, it is impossible for a node that before T proposes v′ 6= vd to advance
up to round (rstart + P~̀

~

− UD − 1), contradicting our assumption.

Proof of (i) We will show that among the bags for rounds (rlock + 1)

to (rstart + P~̀

~

− UD − 1), at most one in every U1 bags contains
messages from good nodes.

By contradiction: assume there exist two bags containing messages
from good nodes, for round r1 and r2 respectively, where (rlock+1) ≤
r1 < r2 ≤ (rstart +P~̀

~

−UD−1), and r2−r1 < U1. Consider now any
message mg

r1 from a good node contained in the bag for round r1.

50

Since r1 is within the lucky period that begins in rstart, by F7, mg
r1

proposes v. Similarly, any message mg
r2 from a good node contained

in the bag for round r2 proposes v.

Now, let us consider messages mv′

r1+1 and mv′

r2 on the chain. We

showed above (F3) that uCounter v′

r1+1 ≥ uCounter v′

r2 − (r2 − (r1 +
1)). Since mg

r1 proposing v 6= v′ is in the bag of round r1, by

line 17 of Sandglass, uCounter v′

r1+1 = 0. Therefore, uCounter v′

r2 ≤
uCounter v′

r1+1 + (r2 − (r1 + 1)) = r2 − r1 − 1 < U1. Then, by line 20

of Sandglass, priority v′

r2 = 0.

However, recall that mv′

r2 is one of the messages with the largest

priority among all messages in mv′

r2+1’s bag. Therefore, no message

collected by mv′

r2+1 from round r2 proposes v′ with priority greater

than 0. Note that mv′

r2+1 also collects mg
r2 , which proposes v.

Therefore, consider the set of values with the highest priority
that mv′

r2+1 collected from round r2. Either that set contains only v,
when some v is proposed with priority greater than 0; or it contains
both v and v′, when both values are proposed with priority equal to
0. In either case, since (r2 + 1) ≤ (rstart + P~̀

~

− UD) < (rstart + P~̀

~

)
is within the lucky period, and v`(r2 + 1) = v`(rlock) = v, mv′

r2+1

must propose v. However, by construction mv′

r2+1 should propose v′.
Contradiction.

Proof of (ii) We have just established that, among the bags for rounds

from (rlock +1) to (rstart +P~̀

~

−UD−1), (rstart +P~̀

~

−UD−rlock−2−
d rstart+P~̀

~

−UD−rlock−2
U1 e) Def -bags contain only messages from defective

nodes.

Since each bag contains at least T messages, Def -bags contain at

least T · (P~̀

~

− 6T − UD − 2− dP~̀

~

−6T −UD−2
U1 e) messages.

Let us now compute the largest number of messages these Def -bags
can contain.

Def -bags can only contain messages sent for round (rlock + 1)

to (rstart +P~̀

~

−UD−1) by defective nodes. By Lemma 5, T ∀rlock is the
earliest step where some defective node can be in round (rlock + 1).
Then, the messages in Def -bags must have been sent from step T ∀rlock
to step (TD(rstart)− 1). By Lemma 10, the number of messages sent
by defective nodes in the time interval from T ∀r to (T ∀r+1 − 1) is at
most (T − 1). Since TD(rstart) = T ∀

rstart+P~̀

~

, the period from step

T ∀rlock to step (TD(rstart)− 1) covers (rstart + P~̀

~

− rlock) = (P~̀

~

− 6T)
such intervals; thus, the number of messages sent by defective nodes
in this period is at most (T − 1) · (P~̀

~

− 6T).

Recall that Def -bags contain at least T · (P~̀

~

− 6T − UD − 2 −

51

dP~̀

~

−6T −UD−2
U1 e) messages. Therefore, we have

(T − 1) · (P~̀

~

− 6T) ≥ T · (P~̀

~

− 6T − UD − 2− dP
~̀

~

− 6T − UD − 2

U1
e)

⇒(T − 1) · C ≥ T · (C − UD − 2− dC − UD − 2

U1
e)

(where C = d (6T −1)·UD+18T
5 e, and P~̀

~

= 6T + C)

⇒UD + 2 + dC − UD − 2

U1
e ≥ C

T

⇒UD + 3 +
C − UD − 2

U1
>

C

T
(Since (C−UD−2

U1 + 1) > dC−U
D−2

U1 e)

⇒UD + 3 >
5C + UD + 2

6T
(Since U1 = 6T)

⇒C <
6T (UD + 3)− UD − 2

5
=

(6T − 1)UD + 18T − 2

5

However, since C = d (6T −1)·UD+18T
5 e > (6T −1)UD+18T −2

5 , we have a
contradiction.

Lemma 15 (Termination with probability 1). Every good node that remains
active decides with probability 1.

Proof. By Observation 5, for any round rstart, if rstart is a lucky round, then all
good nodes that are active in step TD(rstart) decide a value in round rstart +

6T + d (6T −1)·UD+18T
5 e. Let P~̀

~

= 6T + d (6T −1)·UD+18T
5 e.

Let S = {1 + k · (P~̀

~

+ 1)|k ∈ N}. S is a set containing infinitely many
numbers of rounds, that the events of each of them being lucky are mutually
independent.

Let T ∀(r) be the earliest step where all good nodes are in round r. For any
round r, T1(r), which is earliest step that any good node can be in round r, is no

earlier than T ∀(r−1) by Lemma 5; and TD(r) is defined as T ∀(r+P~̀

~

). Consider
the period consisting of the steps from T1(r) to TD(r)− 1, i.e., from T ∀(r − 1)

to T ∀(r + P~̀

~

)− 1; this period covers all rounds from r to (r + P~̀

~

− 1). For this
period to be lucky and for r to be a lucky round, we require any node that must
randomly select the value it will propose in any round between r and r+P~̀

~

−1
to select the lucky value v` for its current round.

Consider the events that correspond to rounds in S being lucky. Since the
lucky periods for rounds in S are not overlapping, these events are mutually
independent.

Now we are going to show that all rounds in S are lucky with non-zero
probability. Consider round r in S. In each step of r’s lucky period, there are
at most N nodes in the system. Each node that makes a random choice in
one of the rounds covered by the lucky period chooses the round’s lucky value

52

with probability 1
2 . Therefore, in every step of the lucky period, the probability

that all nodes that make random choices select the lucky value for their current
round is at least 1

2N . By Lemma 4, it takes at most T · (P~̀

~

+1) steps from T1(r)
to (TD(r) − 1). Therefore, the probability that any round in S is lucky is at
least 1

2N·T ·(P`
~

~

+1)
> 0.

Now, consider any good node pg that joins in round rg at any step T and
stays active. Recall that, by Lemma 4, good nodes are guaranteed to eventu-
ally reach any arbitrary round. Since there are infinitely many rounds r in S
where TD(r) > T , with probability 1 there exists a round r ∈ S such that (1) r
is a lucky round; and (2) TD(r) ≥ T . Then, by Lemma 4, pg will eventually
reach TD(r) and, by Observation 5, decide.

53

	Introduction
	Related work
	Model
	Protocol
	Selecting the Threshold
	Protocol Mechanics

	Correctness: Overview
	The Scaffolding
	Agreement
	Termination

	Conclusion
	Correctness
	Validity
	Scaffolding
	Agreement
	Termination

