
A Toolbox for Barriers on Interactive Oracle Proofs

Gal Arnon
gal.arnon@weizmann.ac.il

Weizmann Institute

Amey Bhangale
amey.bhangale@ucr.edu

UC Riverside

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Eylon Yogev
eylon.yogev@biu.ac.il

Bar-Ilan University

November 24, 2022

Abstract

Interactive oracle proofs (IOPs) are a proof system model that combines features of interac-
tive proofs (IPs) and probabilistically checkable proofs (PCPs). IOPs have prominent applica-
tions in complexity theory and cryptography, most notably to constructing succinct arguments.

In this work, we study the limitations of IOPs, as well as their relation to those of PCPs.
We present a versatile toolbox of IOP-to-IOP transformations containing tools for: (i) length
and round reduction; (ii) improving completeness; and (iii) derandomization.

We use this toolbox to establish several barriers for IOPs:

• Low-error IOPs can be transformed into low-error PCPs. In other words, interaction can be
used to construct low-error PCPs; alternatively, low-error IOPs are as hard to construct as
low-error PCPs. This relates IOPs to PCPs in the regime of the sliding scale conjecture for
inverse-polynomial soundness error.

• Limitations of quasilinear-size IOPs for 3SAT with small soundness error.

• Limitations of IOPs where query complexity is much smaller than round complexity.

• Limitations of binary-alphabet constant-query IOPs.

We believe that our toolbox will prove useful to establish additional barriers beyond our work.

Keywords: probabilistically checkable proofs; interactive oracle proofs; lower bounds

1

Contents

1 Introduction 3
1.1 Our results . 3
1.2 Related work . 6

2 Techniques 8
2.1 Tools for length and round reduction . 8
2.2 Tools for improving completeness . 9
2.3 Tools for derandomization . 11
2.4 Deriving our results using the tools . 13

3 Preliminaries 18
3.1 Interactive oracle proofs . 18
3.2 Interaction trees of probabilistic proofs . 19
3.3 IP to algorithm . 19
3.4 Constraint satisfaction problems . 19
3.5 Pseudorandom generators . 20
3.6 Exponential-time hypotheses . 21
3.7 Probabilistic inequalities . 21

4 Tools for length and round reduction 22
4.1 Length reduction . 22
4.2 Round reduction . 24
4.3 Unrolling IOPs to PCPs . 28

5 Tools for improving completeness 29
5.1 Completeness amplification . 29
5.2 Perfect completeness . 30

6 Tools for derandomization 34
6.1 Derandomization using non-uniform advice . 34
6.2 Derandomization using pseudorandom generators . 37

7 Low-error IOPs to low-error PCPs 41

8 Limitations of short IOPs 44

9 Limitations of high-round low-query IOPs 46

10 Limitations of binary-alphabet constant-query IOPs 47
10.1 Algorithms for 3SAT from CSP-solvers and PCPs . 48
10.2 Algorithms for 3SAT from CSP-solvers and IOPs . 48
10.3 Proof of Theorems 10.1 and 10.2 . 50

Acknowledgments 51

References 51

2

1 Introduction

Probabilistic proof systems have enabled breakthroughs in complexity theory and cryptography in
areas such as zero-knowledge, delegation of computation, hardness of approximation, and more.

A probabilistically checkable proof (PCP) [BFLS91; FGLSS96] is a proof system in which a
polynomial-time probabilistic verifier has query access to a proof string. The power of PCPs is
often exemplified by the celebrated PCP theorem [AS98; ALMSS98]: every language in NP can be
decided, with constant soundness error, by probabilistically examining a constant number of bits in
a polynomial-size proof. Decades of PCP research have achieved many other goals and applications.

Yet challenging open problems about PCPs remain. For example, the shortest PCPs known to
date have quasi-linear length [BS08; Din07], and efforts to achieve linear length have not succeeded.
As another example, it remains open to construct a PCP for NP with soundness error 1/n, alphabet
size poly(n), query complexity O(1), and randomness complexity O(log n). The existence of such
“low-error” PCPs is known as the “sliding-scale conjecture”.
Interactive oracle proofs. Due to the lack of progress on these and other open problems,
researchers introduced an interactive variant of PCPs called interactive oracle proofs (IOP) [BCS16;
RRR16]. A k-round IOP is a k-round IP where the verifier has PCP-like access to each prover
message (the verifier may read a few symbols from any prover message).

A rich line of work constructs IOPs that provide significant efficiency improvements over known
PCPs [BCGV16; Ben+17; BCGRS17; BBHR18; BCGGHJ17; XZZPS19; BCG20; BCL22; RR20;
LSTW21; GLVTW21; BN22; RR22]. In particular, known IOPs achieve desirable properties such as
linear proof length, fast provers, added properties such as zero-knowledge, and even good concrete
efficiency. In turn, these IOPs have led to breakthroughs in the construction of highly-efficient
cryptographic proofs, which have been widely deployed in real-world applications.

Another line of work shows that IOPs can also be used to prove hardness of approximation
results for certain stochastic problems [CFLS97; Dru11; ACY22a; ACY22b].
What is the power of IOPs? Since IOPs were invented to bypass open problems of PCPs, it is
crucial to understand the limitations of IOPs, and the relation to the limitations of PCPs.

What are the limitations of IOPs, and how do they compare to PCPs?

For example: What trade-offs are there between round complexity, query complexity, and soundness
error in IOPs? How small can the soundness error of an IOP be if we require constant query
complexity but allow increasing the alphabet size (as in a sliding-scale PCP)?

In this paper, we explore these and other questions.

1.1 Our results

We show several results for IOPs in different regimes: (1) low-error IOPs imply low-error PCPs;
(2) limitations of short IOPs; (3) limitations of high-round low-query IOPs; and (4) limitations of
binary-alphabet constant-query IOPs. All these results follow from combining various tools from a
new toolbox of transformations for IOPs. We discuss this toolbox in more detail in Section 2. We
believe that our toolbox will prove useful to establish additional barriers beyond our work.
(1) Low-error IOPs imply low-error PCPs. The “sliding scale” conjecture [BGLR93] states
that for every β with 1/poly(n) ≤ β < 1 there is a PCP system for NP that has perfect complete-
ness, soundness error β, polynomial proof length over a poly(1/β)-size alphabet, constant query

3

complexity, and logarithmic randomness complexity. A major open problem is constructing such
PCPs when β is an inverse polynomial.

We show that (under a complexity assumption or using non-uniformity), a polylog-round IOP
with inverse-polynomial soundness error and constant query complexity can be transformed into a
sliding-scale PCP with inverse-polynomial soundness error.

Theorem 1 (informal). Let R be a relation with a public-coin IOP with perfect completeness,
soundness error 1/n, round complexity polylog(n), alphabet size poly(n), proof length poly(n), and
query complexity O(1). Then under a derandomization assumption1 (or alternatively by using a
non-uniform verifier) R has a PCP with perfect completeness, soundness error 1/n, alphabet size
poly(n), proof length poly(n), and query complexity O(1).

Our full theorem in Section 7 allows for trade-offs between the parameters of the IOP and PCP.
Theorem 1 can be interpreted as a positive result or a negative result. The positive viewpoint

is that efforts towards constructing sliding-scale PCPs can rely on interaction as an additional tool.
The negative viewpoint is that constructing polylog(n)-round IOPs with sliding-scale parameters is
as hard as constructing sliding-scale PCPs.

Our theorem does leave open the question of constructing poly(n)-round IOPs with constant
query complexity and small soundness error.
(2) Limitations of short IOPs. While the shortest PCPs known have quasi-linear proof length,
constructing linear-size PCPs remains a major open problem. In contrast, interaction has enabled
IOPs to achieve linear proof length (e.g., [BCGRS17]). Yet, we do not have a good understanding
of the relation between proof length and soundness error for IOPs. We show that, under the
randomized exponential-time hypothesis (RETH),2 short IOPs for 3SAT have high soundness error.

Theorem 2 (informal). Assume RETH and suppose that there exists a public-coin IOP for n-variate
3SAT with the following parameters: perfect completeness, soundness error β, round complexity
polylog(n), alphabet size λ, (total) proof length l, and query complexity q.

If
(
l·log λ

n

)q
≤ npolylog(n), then β > Ω

(
n

l·log λ

)q
.

The theorem provides a barrier to improving some state-of-the-art PCPs. Dinur, Harsha, and
Kindler [DHK15] come close to a sliding-scale PCP in the inverse-polynomial regime: they construct
a PCP for NP with perfect completeness, soundness error 1/poly(n), alphabet size n1/polyloglog(n),
proof length poly(n), and query complexity polyloglog(n). While IOPs have been useful in improv-
ing proof length over PCPs, Theorem 2 implies that IOPs are unlikely to help achieving nearly-linear
proof length in the parameter regime of [DHK15] (even when significantly increasing alphabet size).

Corollary 1.1. Assuming RETH, there is no public-coin IOP for n-variate 3SAT with perfect com-
pleteness, soundness error 1/n, round complexity polylog(n), alphabet size npolylog(n), proof length
n · polylog(n), and query complexity polyloglog(n).

We leave open the question of whether IOPs in this parameter regime can be made to have
linear proof length by using O(n) rounds of interaction.
(3) Limitations of high-round low-query IOPs. Goldreich, Vadhan, and Wigderson [GVW02]
show that IP[k] ̸= IP[o(k)] for every k, under reasonable complexity assumptions. In other words,

1There exists a function in E with circuit complexity 2Ω(n) for circuits with PSPACE gates.
2RETH states that there exists a constant c > 0 such that 3SAT /∈ BPTIME[2c·n].

4

IPs with k rounds cannot be “compressed” to have o(k) rounds. In contrast, Arnon, Chiesa, and
Yogev [ACY22b] show that k-round IPs can be modified so that the verifier reads o(k) rounds. We
show that reading o(k) rounds comes at the price of a large soundness error.

Theorem 3. Let L ∈ AM[k]\AM[k′] be a language for k′ < k and suppose that L has a public-coin
IOP with perfect completeness, soundness error β, round complexity k, alphabet size 2poly(n), proof
length poly(n), and query complexity q ≤ k′. Then β ≥ Ω

(
k′

k

)q
− n−c for every constant c > 0.

This provides a barrier to improving the parameters of IOPs in [ACY22b]. They show that
any language in IP[log(n)] has an IOP with perfect completeness, soundness error 1/polylog(n),
round complexity polylog(n), alphabet size 2poly(n), and query complexity O(1). By Theorem 3 the
soundness error 1/polylog(n) is tight unless IP[log(n)] = IP[O(1)]. Moreover, since the soundness
error of IOPs is closely related to the approximation factor for the value of stochastic constraint
satisfaction problems (SCSP) (see [ACY22b]), our theorem additionally provides barriers to proving
hardness of approximation results for SCSPs using IOPs.
(4) Limitations of binary-alphabet constant-query IOPs. PCPs with a binary alphabet
and small query complexity cannot have good soundness. In more detail, assuming the randomized
exponential-time hypothesis, any binary-alphabet PCP with perfect completeness, soundness error
β, and query complexity q satisfies the following.

• If q = 2 then β = 1 (i.e., no such PCPs exist). This follows from the fact that we have linear time
algorithms to check satisfiability of every binary-alphabet 2-ary constraint satisfaction problem.

• If q = 3 then β > 5/8. Zwick [Zwi98] gives a polynomial-time algorithm that, on input a
satisfiable CSP with binary alphabet and arity 3, distinguishes whether the CSP is satisfiable or
whether every assignment satisfies at most a 5/8 fraction of the constraints. This implies that,
unless P = NP, every PCP for NP with binary alphabet, polynomial size, and query complexity
3 must have soundness error greater than 5/8.3 Håstad [Hås14] shows that this lower bound
on soundness error is essentially optimal: for every ε > 0, he constructs a PCP for NP with
perfect completeness, soundness error 5/8 + ε, binary alphabet, polynomial proof length, and
query complexity 3.

We ask whether interaction can help in further reducing the soundness error in the constant-
query regime. Our next result shows that this is unlikely if the number of rounds is not large.

Theorem 4. Assume RETH and suppose that there exists a non-adaptive public-coin IOP for n-
variate 3SAT with the following parameters: perfect completeness, soundness error β, round com-
plexity k, alphabet size 2, proof length 2o(n), query complexity q, verifier randomness r, and verifier
running time 2o(n).
• If q = 2 then β > 1− ε for every ε satisfying k · log(r · n/ε) = o(n).
• If q = 3 then β > 5/8− ε for every ε satisfying k · log(r · n/ε) = o(n).

For example, assuming RETH, there is no public-coin IOP with perfect completeness, soundness
error β = 1 − 2−o(n), round complexity k = polylog(n), alphabet size 2, proof length 2o(n), query
complexity 2, and verifier randomness r = 2o(n).

The bound on the query complexity of PCPs can be extended to q queries for any q = O(1)
for which there is a polynomial-time algorithm that decides q-ary CSPs. Theorem 4 generalizes

3Assuming ETH, the proof length of the PCP can be 2o(n).

5

similarly to match the soundness error for PCPs. However, for q > 3, we do not know the exact
optimal soundness error for PCPs with perfect completeness [Has05].

Constructing an IOP for 3SAT with polynomial round complexity, binary alphabet, constant
query complexity, and small soundness error remains an open problem.

1.2 Related work

Barriers on probabilistic proofs. We describe known limitations about PCPs, IPs, and IOPs.

• PCPs. If P ̸= NP then, for every q = o(log n) and r = o(log n), NP has no non-adaptive PCP
with alphabet size λ = O(1), query complexity q, and randomness complexity r. Indeed, the
PCP-to-CLIQUE reduction in [FGLSS91], given an instance x for the language L of the PCP,
produces, in polynomial time, a graph of size λq · 2r ≪ n whose maximum clique size is either
large (if x ∈ L) or small (if x /∈ L), where the gap between these sizes depends on the PCP’s
completeness and soundness errors. By iteratively applying that reduction a polynomial number
of times, one can (in polynomial time) reduce x to a graph G of size O(log n), while preserving
the large-or-small property of the maximum clique. Since the size of G is logarithmic, one can
then determine in polynomial time whether the largest clique in G is large or small, and thereby
decide membership for the original instance x.

Moreover, if P ̸= NP then NP does not have non-adaptive PCPs with alphabet size λ = O(1),
query complexity q = O(1), and randomness complexity r = O(log n) with soundness error
β < log λ

λq−1 . Indeed, such a non-adaptive PCP can be converted into a CSP of size poly(n), and
any efficient algorithm for approximating the CSP’s number of satisfied constraints imposes a
limitation on the soundness error β. For example, the bound log λ

λq−1 follows from the approxi-
mation algorithm in [MNT22]. Assuming ETH, these limitations can be extended to PCPs with
super-polynomial proof length and super-constant alphabet size and query complexity. For com-
pleteness, in Section 10.1 we show quantitatively how to combine PCPs with small soundness
error for 3SAT and polynomial-time approximation algorithms for CSPs in order to decide 3SAT
faster than is possible under ETH.

Notice that an adaptive PCP with alphabet size λ and query complexity q can be converted into
a non-adaptive PCP with query complexity λq, which is constant when λ = O(1) and q = O(1).
Hence the above discussion applies to adaptive PCPs in this regime as well.

• IPs. [GH98] show that public-coin IPs with bounded prover communication complexity can be
decided in non-trivial (probabilistic) time. [GVW02] strengthen these results for the case of
private-coin IPs, showing that similar bounds on communication imply that the complement of
the language can be decided in non-trivial non-deterministic time. Such results are limitations
on IPs for languages believed to be hard, such as SAT.

• IOPs. In order to derive barriers for succinct arguments, [CY20] extend to IOPs the limitations
of [GH98], showing barriers for IOPs with small soundness error relative to query complexity.

[NR22] show limitations for succinct IOPs for circuit SAT (CSAT), where the proof length is
polynomial in the number n of circuit inputs. The results cover different parameters, depending
on the “plausibility” of the complexity assumption used. For example (on the most probable
end), suppose that the satisfiability of a circuit C cannot be decided by a poly(n)-space algorithm

6

following poly(|C|)-time preprocessing. Then there is no succinct IOP for CSAT with constant
round complexity and logarithmic query complexity.

IOP-to-IOP transformations. Our toolbox (outlined in Section 2) contains IOP-to-IOP trans-
formations that include round reduction, achieving perfect completeness, and derandomization.

• [ACY22a; ACY22b] provide IOP-to-IOP transformations for round reduction and achieving per-
fect completeness, but we cannot use them because those transformations do not preserve query
complexity of the IOP (a key property for us).

• [NR22] show that any public-coin IOP can be transformed into one with less interaction random-
ness at the cost of introducing a “common reference string” (CRS) and satisfying only non-adaptive
soundness. Their main goal is to achieve randomness complexity that depends (logarithmically)
only on the prover-to-verifier communication complexity (but not the instance length) and on an
error parameter over the choice of the CRS. They also show that the CRS can be replaced with
non-uniform advice for the verifier at the cost of increasing the randomness complexity to also
depend (logarithmically) on the instance length. Our derandomization lemma focuses on IOPs
with a non-uniform verifier and allows choosing the target randomness complexity, rather than
optimizing with regards to the prover-to-verifier communication complexity.

• [AG21] show how to derandomize private-coin IPs via non-uniform advice or PRGs. Our deran-
domization lemma applies to public-coin IOPs.

7

2 Techniques

We describe our tools for IOPs and sketch their proofs, and then show how they can be applied to
achieve our main results. The tools are divided into three groups.

1. Tools for length and round reduction: Section 2.1 outlines transformations that decrease
the length and round complexity of IOPs with low query complexity. Details are in Section 4.

2. Tools for improving completeness: Section 2.2 outlines transformations that improve the
completeness errors of IOPs. Details are in Section 5.

3. Tools for derandomization: Section 2.3 outlines transformations that decrease the number of
random bits used by the IOP verifier. Details are in Section 6.

Following the presentation of our toolbox, in Section 2.4 we explain how we use the tools (in
conjunction with additional arguments) to derive the theorems described in Section 1.1.

2.1 Tools for length and round reduction

We describe how to decrease the length and round complexity of IOPs.

Lemma 1 (informal). Let R be a relation with a public-coin IOP (P,V) with completeness error α,
soundness error β, round complexity k, alphabet size λ, per-round proof length l, query complexity
q, per-round verifier randomness r, and verifier running time vt.

1. Length reduction: Let ℓ be a parameter with q ≤ ℓ ≤ k · l. Then R has a public-coin IOP with
completeness error 1 − (1 − α) · (ℓ/(e · k · l))q, soundness error β, round complexity k, alphabet
size λ, total proof length ℓ, query complexity q, per-round verifier randomness r+ ℓ · log(k · l),
and verifier running time poly(vt, ℓ).

2. Round reduction: Let k′ be a parameter with q ≤ k′ ≤ k. Then R has a public-coin IOP with
completeness error 1−(1−α)·(k′/(e·k))q, soundness error β, round complexity k′+1, alphabet
size λ, per-round proof length l, query complexity q, per-round verifier randomness k · (r+ log k),
and verifier running time poly(vt).

3. Unrolling to PCP: R has a PCP with completeness error α, soundness error β, alphabet size
λ, proof length l ·2O(k·r), query complexity q, randomness k · r, and verifier running time poly(vt).

Below we sketch the proofs of Items 1 and 2. Item 3 is folklore and follows by setting the PCP
to equal the interaction tree of the IOP.
Length reduction. The length of low-query IOPs can be reduced while incurring an increase
in the completeness error. The intuition is that if the IOP has query complexity q ≪ k · l, then
each symbol in the proof is read by the verifier with small probability. Hence, if the prover omits a
random subset of the proof symbols, the verifier is unlikely to require these missing symbols.

Construction 2.1 (informal). The new prover P′ receives as input an instance x and a witness w,
while the verifier V′ receives as input the instance x. They interact as follows.
1. V′ guesses the locations that V will query. V′ samples and sends a random set I ⊆ [k · l] of ℓ

indices from among all the prover message symbols.
2. The original IOP is simulated with prover messages omitted according to I. For every j ∈ [k]:

8

(a) V′ sends ρj ← {0, 1}r.
(b) P′ computes πj := P(x,w, ρ1, . . . , ρj) and sends π′j equal to πj with symbols outside of I

omitted.
3. V′ simulates V, and rejects if any queries are made outside of I. V′ simulates the decision stage

of V given input x. Whenever an index i ∈ I is queried, return the appropriate symbol from the
prover messages. If an index i /∈ I is queried, then immediately reject. Output the same answer
as V.

The total proof length is ℓ since the prover P′ sends only those symbols whose index is in I
(which has size ℓ). The per-round verifier randomness at most r + ℓ · log(k · l) because in the first
round the verifier sends I (which can be described with ℓ · log(k · l) random bits) and then it sends
its first message of r bits. The rest of the complexity parameters follow straightforwardly from the
construction.

Soundness follows from the fact that the changes made to the IOP can only increase the chance
that the verifier rejects. We sketch the proof of completeness. Fix some x ∈ L. The locations read
by V are independent of the set I. Therefore, the probability that V queries outside the set I is(k·l−q
ℓ−q

)
/
(k·l
ℓ

)
≥ (ℓ/(e ·k · l))q. Conditioned on V querying only inside I, V accepts with probability at

least 1−α. Hence the probability that the new verifier V′ accepts is at least (1−α) · (ℓ/(e · k · l))q.
Round reduction. We sketch how the round-complexity of low-query IOPs can be reduced. The
intuition behind this lemma is similar to that described for length reduction: if q ≪ k, then the
verifier is unlikely to need most of the rounds, so removing a random subset of the rounds does not
harm completeness by much. Below we describe the transformation for IOP round reduction.

Construction 2.2 (informal). The new prover P′ receives as input an instance x and a witness w,
while the verifier V′ receives as input the instance x. They interact as follows.
1. V′ guesses the rounds that V will query. V′ samples and sends a random set I ⊆ [k] of k′ indices.

Denote I := (i1, . . . , ik′) with ij < ij+1 and let i0 := 1.
2. The original IOP is simulated with rounds omitted according to I. For every j ∈ [k′]:

(a) V′ sends ρi(j−1)+1, . . . , ρij ← {0, 1}r.
(b) P′ computes and sends πj := P(x,w, ρ1, . . . , ρij).

3. V′ simulates V, and rejects if any queries are made outside of I. V′ samples ρik′+1, . . . , ρk ←
{0, 1}r simulates the decision stage of V given input x and verifier messages ρ1, . . . , ρk. Whenever
an index in round i ∈ I is queried, return the appropriate symbol in the prover messages. If a
round i /∈ I is queried, then immediately reject. Output the same answer as V.

A technical remark: as written above, the protocol is not public-coin because the verifier’s first
message I dictates the length of subsequent verifier messages. Nevertheless, the protocol can be
made public-coin by padding verifier messages to k · r bits. The prover and verifier act as in the
protocol description, ignoring the padding bits. The verifier additionally sends k′ · log k bits as the
choice of the set I. Thus, the per-round randomness of the verifier is k · r+ k′ · log k ≤ k · (r+ log k).

2.2 Tools for improving completeness

A transformation for achieving perfect completeness for IPs is shown in [FGMSZ89]. Directly
applying that transformation to IOPs increases the query complexity of the protocol significantly.
We show a variant of the transformation in [FGMSZ89] that preserves query complexity up to a
small additive constant.

9

Lemma 2 (informal). Let R be a relation with a public-coin IOP (P,V) with completeness error α,
soundness error β, round complexity k, alphabet size λ, per-round proof length l, query complexity
q, per-round verifier randomness r, and verifier running time vt.

Then R has a public-coin IOP with perfect completeness, soundness error O
(

β·k·r
log(1/α)

)
, round

complexity k + 1, alphabet size max{λ, 2k·r}, per-round proof length O
(

l·k·r
log(1/α)

)
, query complexity

q+ 2, per-round verifier randomness r, and verifier running time poly(vt).

Remark 2.3. If only small completeness error is desired (rather than completeness error 0), then
this can be achieved with similar query complexity but smaller overhead to the alphabet size.
See Section 5.1 for more details.

Review: perfect completeness for IPs. Consider the set S of verifier random coins ρ⃗ =
(ρ1, . . . , ρk) (over the entire protocol) where the honest prover has a strategy to make the verifier
accept if it is sent these strings while interacting with the verifier. Given the matching prover
messages, the verifier can efficiently check whether ρ⃗ ∈ S. [FGMSZ89] shows that for large enough
t there exist “shifts” z⃗1, . . . , z⃗t such that for every choice of verifier randomness ρ⃗ there exists j such
that (z⃗j⊕ ρ⃗) ∈ S. It follows that the honest prover needs only to send these shifts, and then run the
protocol with the verifier, giving answers matching each shift. At the end of the protocol, the verifier
accepts if and only if ∨tj=1

(
(z⃗j ⊕ ρ⃗)

?

∈ S
)
= 1. The soundness error degrades by a multiplicative

factor of t since a malicious prover only needs to convince the verifier in one execution.
Perfect completeness for IOPs. The aforementioned verifier computes the “OR” of t expressions.
We observe that, in order to prove the claim ∨tj=1

(
(z⃗j ⊕ ρ⃗)

?

∈ S
)
= 1, it suffices for the prover to

send the verifier a single index j where (z⃗j ⊕ ρ⃗) ∈ S, which is then checked by the verifier. The
verifier only needs to check a single execution of the IOP, rather than t, and so the query complexity
of the protocol is preserved up to reading the index j and shift z⃗j .

Construction 2.4. Let t := 2 ·
(

r·k
log(1/α)

)
. The new prover P′ receives as input an instance x and

a witness w, while the verifier V′ receives as input the instance x. They interact as follows.
1. P′ sends t “shifts” for the verifier randomness. P′ sends

z⃗1, . . . , z⃗t = (z1,1, . . . , z1,k), . . . , (zt,1, . . . zt,k) ∈ {0, 1}r·k ,

to the verifier such that for every ρ⃗ there exists j where (z⃗j ⊕ ρ⃗) ∈ S (i.e., the original prover P
has an accepting strategy for verifier randomness (z⃗j ⊕ ρ⃗)).

2. Original IOP is simulated, where for every verifier message, prover replies with a message for
each shifted randomness. For i = 1, . . . , k:
• V′: Choose ρi ← {0, 1}r uniformly and send to the prover.
• P′: Send {πj,i}j∈[t] where πj,i := P(x,w, ρ1 ⊕ zj,1, . . . , ρi ⊕ zj,i).

3. Prover sends index j of shift where its messages succeed in convincing the verifier. P′: If there
exists an index j ∈ [t], such that Vπj,1,...,πj,k(x, ρ1 ⊕ zj,1, . . . , ρk ⊕ zj,k) = 1, then send j to the
verifier V′ as a non-oracle message. Otherwise, send ⊥.

4. V′ checks that V accepts the “shifted” j-th execution. V′: Receive j as a non-oracle message.
(a) If j = ⊥, then reject.
(b) Otherwise, query z⃗j = (zj,1, . . . , zj,k) and check that

Vπj,1,...,πj,k(x, ρ1 ⊕ zj,1, . . . , ρk ⊕ zj,k) = 1 ,

querying the appropriate proofs as required by V.

10

2.3 Tools for derandomization

We show how to derandomize public-coin IOPs based on non-uniform advice or based on pseudo-
random generators (PRGs), while preserving the use of public-coins. Both transformations achieve
logarithmic randomness complexity but slightly increase completeness and soundness error. Round
complexity, proof length, and query complexity are preserved.

Lemma 3 (informal). Let R be a relation with a public-coin IOP (P,V) with completeness error α,
soundness error β, round complexity k, alphabet size λ, per-round proof length l, query complexity
q, per-round verifier randomness r, and verifier running time vt.

1. Derandomization using PRGs: Suppose that there exists a PRG against polynomial-size
PSPACE circuits with seed length ℓ, error ε and evaluation time tPRG. Then R has a public-
coin IOP with completeness error 1 − O((1 − α) − ε · k2), soundness error O(β + ε · k3), round
complexity k, alphabet size λ, per-round proof length l, query complexity q, per-round verifier
randomness ℓ, and verifier running time poly(vt, tPRG).

(Such a PRG with seed length ℓ = O(log |x|), error ε = 1/poly(|x|) and computation time
tPRG = poly(|x|) exists if there exists a function in E with circuit complexity 2Ω(n) for circuits
with PSPACE gates.)

2. Derandomization using non-uniformity: Let ε ∈ (0, 1) be a parameter. Then R has a
public-coin IOP with completeness error α+ k · ε, soundness error β + k · ε, round complexity k,
alphabet size λ, per-round proof length l, query complexity q, per-round verifier randomness
Θ(log((r ·k+ |x|)/ε)), and verifier running time poly(vt, k, l, r, 1/ε), where the verifier receives
poly(|x|, k, r, 1/ε) bits of non-uniform advice. Moreover, a random string constitutes good advice
with probability 1− 2−|x|.

We focus the overview below on Item 1. Item 2 can be shown in a similar manner.
Derandomization using PRGs. We show that IOPs can be derandomized using a pseudo-
random generator. In this transformation, the verifier samples seeds for the PRG rather than
uniform random messages. Thus the verifier randomness per-round is as small as a seed of the
PRG.

Construction 2.5 (informal). On instance x and witness w, the protocol (P′,V′) proceeds as
follows:
1. Simulate original IOP where verifier messages are chosen using the PRG. For j = 1, . . . , k:

(a) V′: Sample and send a random ρj ← {0, 1}ℓ.
(b) P′: Compute and send the prover message πj that maximizes the probability that V accepts

where all of the verifier messages are chosen using the PRG G.
2. V′: Accept if and only if Vπ1,...,πk(x,G(ρ1), . . . ,G(ρk)) = 1.

The verifier sends ℓPRG bits of randomness in each round, since it sends a seed for the PRG. The
rest of the complexity parameters follow straightforwardly from the construction.
Interaction trees. The interaction tree of a protocol on input x, denoted Tx is the full tree of
all possible transcripts corresponding to each choice of prover and verifier messages. The leaves are
labelled as accepting or rejecting corresponding to whether the verifier accepts or rejects the full
transcript represented by the leaf.

11

The value of an interaction tree T
x
, denoted by val(T

x
), is the probability of reaching an accepting

leaf from the root of the tree in a walk on the tree where verifier messages are chosen uniformly at
random and prover messages are chosen so as to maximize the probability of reaching an accepting
node. The notion of value extends to sub-trees as well, where the value is the probability of
reaching an accepting leaf when beginning on the root of the sub-tree. Notice that val(T

x
) =

maxP̃{Pr[⟨P̃,V⟩(x) = 1]}. Moreover, val(T
x
) can be computed in space that is polynomial in |x|,

the round complexity, the proof length, and the verifier randomness of the IOP.
Completeness and soundness. Completeness and soundness follow straightforwardly from Claim 2.6,
which says that the value of the interaction tree of the IOP does not change by much when the
verifier messages are sampled via a PRG.

Claim 2.6. Let G be a PRG against circuits of size poly(|x|) with PSPACE gates. Then for every
instance x:

O(val(T)− ϵPRG · k2) ≤ val(TG) ≤ O(val(T) + ϵPRG · k3) ,

where T is the interaction tree of the IOP and TG is the interaction tree of (P′,V′), which is identical
to T except verifier randomness is always sampled using the PRG G.

We give a simplified sketch of the proof of the claim. Let T (0) := TG and for i = 1, . . . , k let
T (i) be the tree of an intermediate protocol where the messages ρ1, . . . , ρi are chosen uniformly at
random and ρi+1, . . . , ρk are chosen from the PRG. Notice that T (k) = T .

We show that, under a simplifying assumption to be described later, there exist circuit families
C(1), . . . , C(k) each comprised of circuits of size poly(|x|, k, l, r) that have PSPACE gates, such that
if G fools C(i) then

|val(T (i−1))− val(T (i))| ≤ ϵPRG · k .

Letting C := ∪iCi, we have that if G fools C (i.e., fools circuits of size maxC∈C |C| = poly(|x|, k, l, r)),
then

|val(Tx)− val(T
x,G)| ≤ ϵPRG · k2 .

Fix some i. We show a family C(i) such that if G fools C(i) then |val(T (i−1))−val(T (i))| ≤ ϵPRG ·k.
Consider a fixed node in T (i) corresponding to the transcript prefix tr = (ρ1,m1, . . . , ρi−1,mi−1)
(which is empty if i = 1). For ρi let T (i,tr)(ρi) be the sub-tree of T (i) whose root corresponds to the
transcript (tr||ρi).

Define

S :=

{(
1 +

1

3k

)−1
, . . . ,

(
1 +

1

3k

)−O(k)

, 0

}
.

We make the simplifying assumption that val(T (i,tr)(ρi)) ∈ S and val(T (i−1,tr)(ρi)) ∈ S for every
ρi. In the full proof of the claim we achieve this by discretizing the functions val(T (i,tr)(·)) and
val(T (i−1,tr)(·)), which incurs additional errors. For simplicity, we ignore these errors in this overview.

For every transcript tr, let C(i,tr) := {C(i,tr)
p }p∈S where each circuit C(i,tr)

p , on input ρi, outputs
1 if and only if val(T (i,tr)(ρi)) = p. We observe that a careful implementation of C(i,tr)

p (computing
the value of a tree can be done space proportional to its depth) has size at most poly(|x|, k, l, r)

12

using PSPACE gates. Thus, if G fools every circuit in the family C(i,tr) we get that

val(T (i−1,tr)) =
∑
p∈S

p · Pr
s
[C(i,tr)

p (G(s)) = 1]

≤
∑
p∈S

p ·
(
Pr
ρi
[C(i,tr)

p (ρi) = 1] + ϵPRG

)
= val(T (i,tr)) +

∑
p∈S

p · ϵPRG

≤ val(T (i,tr)) +O(ϵPRG · k) ,

where T (i−1,tr) is the sub-tree of T (i−1) whose root corresponds to the transcript tr. The final
inequality follows by the fact that

∑
p∈S p =

∑O(k)
i=1 (1 + 1/3k)−i is a geometric series bounded by

O(k).
We can similarly show that val(T (i−1,tr)) ≥ val(T (i,tr)) − O(ϵPRG · k). Notice that val(T (i)) =

Etr[val(T
(i,tr))] and val(T (i−1)) = Etr[val(T

(i−1,tr))] (where the expectation is over the verifier’s ran-
dom coins). Therefore, if the G fools the entire circuit family C(i) := ∪trC(i,tr) then we have

|val(T (i−1))− val(T (i))| = |Etr[val(T
(i−1,tr))]− Etr[val(T

(i,tr))]|

≤
∣∣∣Etr

[
val(T (i,tr)) +O(ϵPRG · k)

]
− Etr

[
val(T (i,tr))

]∣∣∣
= O(ϵPRG · k) .

2.4 Deriving our results using the tools

We use the toolbox developed in the previous sections to derive the theorems in Section 1.1. Each
theorem is proved by applying a carefully chosen sequence of tools (along with other arguments).
Figure 1 summarizes which tools are used to derive each theorem and the order of their use.

Round
reduction

IOP Derandomizing
Perfect

completeness
Unrolling

to PCP
Theorem 1

IOP Theorem 2
Length

reduction
IP/IOP to
Algorithm

IOP Theorem 3
Round

reduction

IOP Theorem 4
Algorithm

for CSP
Unrolling

to PCP
Derandomizing

Figure 1: Summary of how our tools are used to derive each theorem. Grey boxes are prior work.

13

2.4.1 Low-error IOPs to low-error PCPs

We sketch the proof of Theorem 1, which shows that low-error IOPs can be transformed into low-
error PCPs. The proof is a sequence of transformations from our toolbox, whose goal is to transform
the IOP into one that is efficient enough to be unrolled into a PCP via Item 3 of Lemma 1. This
unrolling has an exponential dependency on the round complexity and on the verifier randomness
complexity of the IOP, so we seek to decrease these without increasing the soundness error.

Decreasing the round complexity is done using the round-reduction transformation of Lemma 1,
and decreasing the verifier randomness is done using either one of our derandomization lemmas
(Lemma 3). Since both transformations degrade completeness, prior to applying the unrolling lemma
(Item 3 of Lemma 1), we restore the IOP back to having perfect completeness using Lemma 2. Since
the transformation for perfect completeness increases the soundness error, we counterbalance it by
beginning the sequence of transformations with a small number of parallel repetitions.

In somewhat more detail, the sequence of transformations is as follows.

1. Initial IOP. We begin with an IOP with the following parameters: perfect completeness, sound-
ness error 1/|x|, round complexity polylog(|x|), alphabet size poly(|x|), proof length poly(|x|),
query complexity O(1), and per-round randomness poly(|x|).

2. Parallel repetition. Repeat the protocol twice in parallel, and have the verifier accept if and
only if both executions are accepted. This yields a public-coin IOP for R with: perfect com-
pleteness, soundness error 1/|x|2, round complexity k = polylog(|x|), alphabet size poly(|x|),
query complexity q = O(1), and per-round randomness poly(|x|).

3. Round reduction. Reduce the number of rounds of the IOP via Item 2 of Lemma 1 with ℓ := q
where q = O(1) is the query complexity of the IOP verifier. This transformation results in a
public-coin IOP for R with: completeness error 1− (q/(e · k))q = 1− 1/polylog(|x|), soundness
error 1/|x|2, round complexity O(1), alphabet size poly(|x|), query complexity O(1), and
per-round randomness poly(|x|).

4. Derandomization. Derandomize the IOP verifier using either item of Lemma 3. This results in
a public-coin IOP for R with: completeness error 1− 1/polylog(|x|), soundness error O(1/|x|2),
round complexity O(1), alphabet size poly(|x|), query complexity O(1), and per-round ran-
domness O(log |x|).

5. Perfect completeness. Improve the IOP to have perfect completeness using Lemma 2. The
resulting IOP has the following parameters: perfect completeness, soundness error

O(1/|x|2) ·
(

q ·O(log |x|)
− log(1− 1/polylog(|x|))

)
≤ 1/|x| ,

round complexityO(1), alphabet size poly(|x|), query complexityO(1), and randomnessO(log |x|).

6. Unrolling to PCP. Unroll the IOP with perfect completeness into a PCP via Item 3 of Lemma 1.
This gives us our final PCP with parameters: perfect completeness, soundness error 1/|x|, alpha-
bet size poly(|x|), proof length poly(|x|), query complexity O(1), and randomness complexity
O(log |x|).

14

2.4.2 Limitations of short IOPs

We sketch the proof of Theorem 2, which shows that short IOPs with small soundness contradict
RETH, the hypothesis that 3SAT /∈ BPTIME[2c·n] for a constant c > 0. First, we convert the IOP
into a short IP, and then apply a transformation from [CY20] that converts short IPs into fast
probabilistic algorithms. This leads to a fast algorithm for 3SAT, contradicting RETH.

Consider a public-coin IOP for n-variate 3SAT with parameters as in Theorem 2: perfect com-
pleteness, soundness error β, round complexity polylog(n), alphabet size λ, (total) proof length l,
query complexity q, and verifier randomness poly(n). Suppose towards contradiction that l ≥ n

and
(
l·log λ

n

)q
≤ npolylog(n) and that β = 1

2 ·
(
2·e·l·log λ

c·n

)−q
≥ n−polylog(n).4

We apply the following transformations.

1. Length reduction. Apply Item 1 of Lemma 1 with parameter ℓ := e·l·(2β)1/q. This results in an
IOP with: completeness error α′ := 1−2β, soundness error β, round complexity k′ := polylog(n),
alphabet size λ′ := λ, and proof length l′ := e · l · (2β)1/q.

2. IOP to algorithm. Convert the IOP into an algorithm using a lemma from [CY20] that says
that if a relation R has a public-coin IP with completeness error α′, soundness error β′, round
complexity k′, and prover-to-verifier communication length l′ of symbols of size λ′, then there is a
probabilistic algorithm for deciding R in time 2O(d)+o(n) for d := l′ · log λ′+k′ · log k′

1−α′−β′ . Notice
that while the result from [CY20] applies to IPs rather than IOPs, one can straightforwardly
convert an IOP into an IP by having the verifier read the prover’s messages in their entirety.

Substituting the relevant parameters, we have that:

d = l′ · log λ′ + k′ · log k′

1− α′ − β′

= e · l · (2β)1/q · log λ+ k · log(k/β)
= c · n/2 + polylog(n) .

Thus, 3SAT is decidable in probabilistic time 2c·n/2+o(n) < 2c·n in contradiction to RETH.

2.4.3 Limitations of high-round low-query IOPs

We sketch the proof of Theorem 3, showing that relations not decidable in few rounds do not have
small-query IOPs with good soundness error. As in the theorem statement, let R ∈ AM[k]\AM[k′]
be a relation for k′ < k and suppose that R has a k-round public-coin IOP (P,V) with perfect com-
pleteness, soundness error β, alphabet size 2poly(|x|), proof length poly(|x|), and query complexity
q ≤ k′.

By applying the round-reduction lemma (Item 2 of Lemma 1) to the k-round IOP (P,V) with
parameter k′, we get a k′-round IOP (P′,V′) with completeness error α′ := 1 − (k′/(e · k))q and
soundness error β. Suppose towards contradiction that β < (k′/(e · k))q − |x|−c for some c ∈ N.
Then the (additive) gap between completeness and soundness error of (P′,V′) is 1−α′−β > |x|−c.

Since the gap between completeness and soundness error of (P′,V′) is inverse polynomial, it
can be transformed into a k′-round public-coin IP (P′′IP,V

′′
IP) for R with completeness error 1/3

4It is sufficient to assume that β = 1
2
·
(
2·e·l·log λ

c·n

)−q
to find contradiction in β ≤ 1

2
·
(
2·e·l·log λ

c·n

)−q
since we can

always increase the soundness error without loss of generality.

15

and soundness error 1/3. This is done by using the standard technique of taking poly(|x|) parallel
repetitions, computing the fraction of accepting transcripts, and accepting if the number of accept-
ing transcripts is beyond some threshold that depends on α′ and |x|−c. The IP (P′′IP,V

′′
IP), then,

contradicts the assumption that R /∈ AM[k′].

2.4.4 Limitations of binary-alphabet constant-query IOPs

We sketch the proof of Theorem 4, showing that assuming RETH there are no binary-alphabet IOPs
with 2 or 3 queries and small soundness error for 3SAT. We first discuss the following lemma which
says that, assuming RETH, algorithms for solving constraint satisfaction problems (CSPs) cannot
coexist with IOPs with a binary alphabet, constant query complexity, and small soundness error.

Lemma 4 (informal). Assume RETH and suppose that both of the following exist.
• An IOP with perfect completeness, soundness error β, round complexity k, alphabet size 2, proof

length 2o(n), query complexity q, verifier randomness r, and verifier running time 2o(n).
• A polynomial-time algorithm A for deciding whether a binary-alphabet CSP with arity q has value
1 or value at most γ.

Then β > γ − ε for every ε satisfying k · log(r · n/ε) = o(n).

The proof of the theorem is concluded by relying on known algorithms for solving CSPs with
appropriate arities q and decision bounds γ.

• For q = 2, we rely on Schaefer’s dichotomy theorem [Sch78], which says that the satisfiability of
a binary-alphabet CSP with arity 2 can be decided in polynomial time. In this case γ = 1.

• For q = 3, we rely on Zwick’s algorithm [Zwi98], which decides in polynomial time whether a
binary-alphabet CSP with arity 3 has value 1 or value smaller than 5/8. In this case γ = 5/8.

Proof sketch of Lemma 4. Suppose towards contradiction that β ≤ γ − ε where ε satisfies k · log(r ·
n/ε) = o(n). The proof has two steps: (1) transform the IOP into a PCP for 3SAT that is “efficient-
enough”; and (2) use the “efficient-enough” PCP and the algorithm A to decide 3SAT.
IOP to “efficient-enough” PCP. We apply these transformations from our toolbox.

1. Derandomization using non-uniform advice. Reduce the verifier randomness of the IOP
using the non-uniform derandomization theorem (Lemma 3, Item 2) with error ε/k to get per-
round randomness complexity of O(log(r · n/ε)) bits. The new IOP uses poly(n, r, 1/ε) bits of
non-uniform advice, where a random string is good advice with overwhelming probability. The
resulting IOP has perfect completeness, soundness error β + ε ≤ γ, round complexity k,
alphabet size 2, proof length 2o(n), query complexity q, verifier randomness O(log(r ·n/ε)),
and verifier running time 2o(n) + poly(n, r, 1/ε) = 2o(n).

2. Unrolling to PCP. Unroll the IOP into a PCP for 3SAT using Lemma 1, Item 3. This
transformation preserves the number of advice bits, and also the fact that a random string
is good advice with overwhelming probability. The resulting PCP has perfect completeness,
soundness error γ, alphabet size 2, proof length 2O(k·log(k·n/ε))+o(n) = 2o(n), query complexity q,
randomness complexity O(log(k · n/ε)) = o(n), and verifier running time 2o(n).

Solving 3SAT using the PCP and CSP solvers. We use the PCP and the algorithm A
to design a probabilistic algorithm A′ that decides whether a 3SAT formula ϕ over n variables is
satisfiable in time 2o(n). The algorithm A′, on input the 3SAT formula ϕ, works as follows.

16

1. Sample random advice. Sample a random advice string z for the PCP resulting from the
previous transformation.

2. Transform formula to CSP. Transform the 3SAT formula ϕ into a binary-alphabet CSP ψ
with arity q. This is done using the standard method of translating a PCP into a CSP; each
constraint in the CSP is indexed by a choice of verifier randomness ρ and described by the verifier
circuit with the input formula ϕ, randomness ρ, and advice z hard-coded. The CSP ψ has size
poly(2r

′
, vt′) = 2o(n) where r′ = o(n) and vt′ = 2o(n) are the randomness complexity and verifier

running time of the PCP. Additionally, assuming that z is good advice, we have that if ϕ ∈ 3SAT
then the value of ψ is 1, and if ϕ /∈ 3SAT, then the value of ϕ is at most γ.

3. Solve CSP. Run A(ψ) and say that ϕ is satisfiable if and only if A says that ψ’s value is 1.

The algorithm A′ decides 3SAT with high probability: with overwhelming probability the choice
of advice z is good, and deciding whether the value of the CSP instance ψ is 1 or γ, as A does, is
equivalent to deciding whether ϕ is satisfiable.

Moreover, the algorithm A′ runs in probabilistic time 2o(n): the advice sampled in the first
step is polynomial; the second step can be done in time poly(2r

′
, vt′) = 2o(n) where r′ = o(n) and

vt′ = 2o(n) are the randomness complexity and verifier running time of the PCP; the final step takes
poly(|ψ|) = 2o(n), since A runs in polynomial time.

We obtained an algorithm for deciding 3SAT in probabilistic time 2o(n), contradicting RETH.

17

3 Preliminaries

In some theorems we highlight important parameters with a yellow background .

3.1 Interactive oracle proofs

Interactive Oracle Proofs (IOPs) [BCS16; RRR16] are information-theoretic proof systems that com-
bine aspects of Interactive Proofs [Bab85; GMR89] and Probabilistically Checkable Proofs [BFLS91;
FGLSS91; AS98; ALMSS98], and also generalize the notion of Interactive PCPs [KR08]. Below we
describe public-coin IOPs.

Recall that a k-round public-coin IOP works as follows. In every round i ∈ [k], the verifier sends
a uniformly random message ρi to the prover; then the prover sends a proof string πi to the verifier.
After k rounds of interaction, the verifier makes some queries to the proof strings π1, . . . , πk sent by
the prover, and then decides if to accept or to reject.

In more detail, let IOP = (P,V) be a tuple where P is an interactive algorithm, and V is an
interactive oracle algorithm. We say that IOP is a public-coin IOP for an indexed relation R with
k rounds, completeness error α, and soundness error β if the following holds.

• Completeness. For every (x,w) ∈ R,

Pr
ρ1,...,ρk

 Vπ1,...,πk(x, ρ1, . . . , ρk) = 1

π1 ← P(x,w, ρ1)
...

πk ← P(x,w, ρ1, . . . , ρk)

 ≥ 1− α .

• Soundness. For every x /∈ L(R) and unbounded malicious prover P̃,

Pr
ρ1,...,ρk

 Vπ1,...,πk(x, ρ1, . . . , ρk) = 1

π1 ← P̃(ρ1)
...

πk ← P̃(ρ1, . . . , ρk)

 ≤ β .

For interactive (oracle) algorithms A and B, we denote by ⟨A(a),B(b)⟩(c) the random variable
describing the output of B following the interaction between A and B, where A is given private
input a, B is given private input b and both parties are given joint input c.
Efficiency measures. We study several efficiency measures. All of these complexity measures
are implicitly functions of the instance x.
• Rounds k: The IOP has k rounds of interaction.
• Alphabet Σ and alphabet size λ: the symbols of each πi come from the alphabet Σ, of size λ.
• Proof length (per round) l: the number of bits in each proof πi.
• Queries q: the number of bits read by the verifier from π1, . . . , πk.
• Randomness (per round) r: the number of bits in each verifier message ρi.
• Verifier time vt: V runs in time vt.
• Decision complexity dt: Following the choice of queries, V runs in time dt to decide whether to

accept or reject.
PCPs, Round-query IOPs and IPs. A PCP is an IOP with no interaction rounds (only a
single prover message). A round-query IOP with round-query complexity qround is an IOP in which
the verifier reads symbols from at most qround rounds of the interaction. An interactive proof (IP) is
an IOP where the verifier reads every symbol in the interaction.

18

3.2 Interaction trees of probabilistic proofs

An alternate way of viewing a probabilistic proof is that of an interaction tree that describes all
possible conversations between a prover and verifier:

Definition 3.1. The (complete) interaction tree of an IOP (P,V) on an instance x, denoted by
T
x
, is defined as follows:

• The root represents the empty transcript.
• Each node v represents a transcript tr, and moving from node v to a child u via edge e corresponds

to adding the message e to the transcript tr. Thus, the node u represents the transcript tr′ = (tr||e).
• Each leaf v, representing a complete transcript tr, is labelled with “accept” or “reject” matching

whether V accepts tr given instance x.

The value of an interaction tree T
x
, denoted by val(T

x
), is the probability of reaching an ac-

cepting leaf from the root of the tree in a walk on the tree where verifier messages are chosen
uniformly at random and prover messages are chosen so as to maximize the probability of reach-
ing an accepting node. The notion of value extends to sub-trees as well, where the value is the
probability of reaching an accepting leaf when beginning on the root of the sub-tree. Notice that
val(T

x
) = maxP̃{Pr[⟨P̃,V⟩(x) = 1]}.

Moreover, if V runs in polynomial time, then val(T
x
) can be computed in space that is polynomial

in |x| and in the round complexity, the proof length, and the verifier randomness of the IOP. This
can be done using the standard PSPACE algorithm for IP.

3.3 IP to algorithm

Goldreich and Håstad [GH98] show that a public-coin IP with constant completeness and soundness
errors for a relation implies a probabilistic algorithm that decides the same relation. Chiesa and
Yogev [CY20] refine this result to apply to arbitrary completeness and soundness errors.

Lemma 3.2 ([GH98; CY20]). Suppose that a relation R has a public-coin IP with completeness
error α, soundness error β, round complexity k, and (binary) prover-to-verifier communication l.
For d(n) := l(n) + k(n) · log k(n)

1−α(n)−β(n) , the relation R is in

BPTIME
[
2O(d) · poly(n)

]
.

3.4 Constraint satisfaction problems

We introduce notation and facts for constraint satisfaction problems (CSPs). We denote by Σ a
finite alphabet, l the number of variables, m the number of constraints, and q the constraint arity.

Definition 3.3. A (Σ, q, l)-constraint C is a tuple of indices (i1, . . . , iq) in [l] and a function
f : Σq → {0, 1}. An assignment a : [l]→ Σ satisfies the constraint C if f

(
a(i1), . . . , a(iq)

)
= 1.

Definition 3.4. A (Σ, q, l,m)-CSP is a list ψ = (C1, . . . , Cm) where each Ci is a (Σ, l, q)-constraint.
We say that ψ is a (Σ, q)-CSP if it is a (Σ, q, l,m)-CSP for some l and m.

The CSP ψ is satisfiable if there exists an assignment that satisfies each of its constraints. The
value of the CSP ψ is the maximum fraction of satisfied constraints across any assignment.

19

It is a well-known fact that (non-adaptive) PCPs can be translated into CSPs. In this paper we
use an extension of this fact that works for PCPs where the verifier receives non-uniform advice.
This extension follows straightforwardly from the standard PCP-to-CSP transformation.

Fact 3.5 (PCP to CSP). Let R be a relation with a non-adaptive PCP with alphabet Σ, proof
length l, query complexity q, randomness complexity r, decision time d, completeness error α, and
soundness error β where the verifier uses ℓ bits of non-uniform advice.

There exists a deterministic reduction that, given ℓ bits of non-uniform advice, receives as input
an instance x for R, runs in time poly(2r, d), and outputs a (Σ, l, q, 2r)-CSP such that:
• if x ∈ L(R) then the value of ψ is at least 1− α;
• if x /∈ L(R) then the value of ψ is at most β.
Moreover, the size of each constraint in ψ is poly(d), and so |ψ| = poly(2r, d).

We use theorems for efficiently solving binary-alphabet CSPs with arity 2 and 3.

Theorem 3.6 ([Sch78]). There exists an algorithm that decides in time poly(|ψ|) whether a ({0, 1}, 2)-
CSP instance ψ is satisfiable.

Theorem 3.7 ([Zwi98]). There exists an algorithm that decides in time poly(|ψ|) whether a ({0, 1}, 3)-
CSP instance ψ has value 1 or value at most 5/8.

3.5 Pseudorandom generators

We define pseudorandom generators that fool oracle circuits of a given size.

Definition 3.8. For a boolean function f , an f-oracle circuit is a boolean circuit that includes f
gates (in addition to standard gates). The size of the circuit is the total number of wires and gates.

Definition 3.9. A function G : {0, 1}ℓPRG(n) → {0, 1}n is a pseudorandom generator (PRG)
with seed length ℓPRG, computation time tPRG, and error ϵPRG against f -circuits of size sPRG(n) if (i) G
is computable by a Turing machine in time tPRG; and (ii) for every f -circuit C of size at most sPRG(n)
it holds that:

|Pr[C(Un) = 1]− Pr[C(G(UℓPRG)) = 1]| ≤ ϵPRG .

Above Un denotes the uniform distribution over binary strings of length n.

Results in [NW94; IW97] imply that, under certain complexity assumptions, PRGs with loga-
rithmic seed length exist. It was later observed in [AIKS16] that these results can be extended to
more powerful circuits.

Theorem 3.10 ([AIKS16]). Let f be a boolean function. Assume that there exists a function in
E = DTIME(2O(n)) with f -circuit complexity 2Ω(n). Then, for every polynomial sPRG, there exists
a PRG G : {0, 1}ℓPRG(n) → {0, 1}n against f -circuits of size sPRG(n), where ℓPRG(n) = O(log n) and
ϵPRG = 1/sPRG(n).

The assumption underlying the above theorem is a worst-case assumption that can be seen as a
natural generalization of the assumption that E ̸⊆ NP. For a further discussion about this type of
assumptions see [AIKS16; AASY16].

20

3.6 Exponential-time hypotheses

The exponential time hypothesis, introduced in [IP01], is a strengthening of the P ̸= NP conjecture
roughly stating that 3SAT on n variables using deterministic algorithms requires exponential time
to decide in the worst case.

Conjecture 3.11. The exponential time hypothesis (ETH) states that there exists a constant
c > 0 such that 3SAT /∈ DTIME[2c·n].

A strengthening of the exponential time hypothesis introduced in [DHMTW14] says that decid-
ing 3SAT requires exponential time even for probabilistic algorithms:

Conjecture 3.12. The randomized exponential time hypothesis (RETH) states that there
exists a constant c > 0 such that 3SAT /∈ BPTIME[2c·n].

3.7 Probabilistic inequalities

We use McDiarmid’s Inequality:

Theorem 3.13 (McDiarmid’s Inequality). Let X1, X2, . . . , Xn be independent random variables
such that Xi ∈ Ki, for some measurable set Ki. Suppose f :

∏n
i=1Ki → R is ’Lipschitz’ in the

following sense: for each k ≤ n and any two input sequence x, x′ ∈
∏

iKi, that differ only in the
k-th coordinate,

|f(x)− f(x′)| ≤ σk.

Let Y = f(X1, X2, . . . , Xn). Then for every γ > 0,

Pr[|Y − E[Y]| ≥ γ] ≤ 2 · exp
(
− 2γ2∑n

i=1 σ
2
i

)
.

We use the following fact:

Fact 3.14. Let n, k, q ∈ N be parameters such that q ≤ k ≤ n. Then:(
n− q
k − q

)
/

(
n

k

)
> (k/(e · n))q .

Proof. (
n− q
k − q

)
/

(
n

k

)
=

(n− q)!
(k − q)! · (n− k)!

· k! · (n− k)!
n!

=
(n− q)!
n!

· k!

(k − q)!

=

(
k

q

)
/

(
n

q

)
>

(
k

q

)q

·
(q

e · n

)q

= (k/(e · n))q .

21

4 Tools for length and round reduction

We show several transformations for reducing the length of IOPs, either by reducing the number of
rounds, or by reducing each round’s proof length.

• Section 4.1: a length-reduction lemma for IOPs with small query complexity.
• Section 4.2: a round-reduction lemma for IOPs that do not query each of their rounds.
• Section 4.3: a statement that captures how IOPs can be “unrolled” into PCPs.

4.1 Length reduction

The lemma below shows that the length an IOP can be reduced, albeit with an increase in the
completeness error.

Lemma 4.1. Let R be a relation with a public-coin IOP (P,V) with total proof length ltot and query
complexity q. Let ℓ be a parameter satisfying q ≤ ℓ ≤ ltot. Then Construction 4.2 yields a public-coin
IOP (P′,V′) for R with the following parameters:

IOP (P,V) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (total) ltot
Queries q
Randomness (per round) r
Verifier running time vt

−→

Round-reduced IOP (P′,V′) for R
Completeness error 1− (1− α) ·

(
ltot−q
ℓ−q

)
/
(
ltot
ℓ

)
≤ 1− (1− α) · (ℓ/(e · ltot))q

Soundness error β
Rounds k
Alphabet size λ
Proof length (total) ℓ
Queries q

Randomness (per round) r + log
(
ltot
ℓ

)
≤ r + ℓ · log ltot

Verifier running time poly(vt, ℓ, log ltot)

Moreover, if (P,V) is non-adaptive, then so is (P′,V′).

Construction 4.2. The prover P′ receives as input an instance x and a witness w, while the
verifier V′ receives as input the instance x. They interact as follows.

1. V′: Sample a random set of ℓ indices I := {ik}k∈[ℓ] ∈
([ltot]

ℓ

)
with i1 < · · · < iℓ. Note that these

indices span all of the prover messages. Send I to the prover.

2. For j = 1, . . . , k:

(a) V′: Randomly sample and send ρj ← {0, 1}r.
(b) P′: Compute πj := P(x,w, ρ1, . . . , ρj). Send π′j equal to πj restricted to the indices appro-

priate to πj in I.

22

3. V′: Given direct access to interaction randomness ρ1, . . . , ρk and oracle access to the prover
messages π′1, . . . , π′k:

(a) Simulate Vπ1,...,πk(x, ρ1, . . . , ρk) where, for any query made by the verifier to a location
j ∈ I, the query is forwarded to the appropriate location proof oracle. If V queries some
location j /∈ I, then immediately reject.

(b) Output the same answer as V.

Proof of Lemma 4.1. We prove completeness, then soundness, and finally analyze complexity mea-
sures.
Completeness. Fix (x,w) ∈ R. Consider the following algorithms A′ and A.

• A′(x,w):

1. Choose a random set I ∈
([ltot]

ℓ

)
.

2. For i ∈ [k] run V to receive ρi and compute πj := P(x,w, ρ1, . . . , ρj).
3. Run Vπ1,...,πk(x, ρ1, . . . , ρk), where if V queries a location j ∈ I then answer according to the

appropriate proof. If V queries at a location j /∈ I then output 0 and quit.
4. If the algorithm has not quit, output whatever V output.

• A(x,w):

1. Choose a random set I ∈
([ltot]

ℓ

)
.

2. For i ∈ [k] run V to receive ρi and compute πj := P(x,w, ρ1, . . . , ρj).
3. Run Vπ1,...,πk(x, ρ1, . . . , ρk). For every j ∈ [k], let Q be the set of locations queries by V.
4. If Q ⊆ I then output whatever V output. Otherwise, output 0.

Notice that A′ can be viewed as an emulation of (P′,V′), and so:

Pr
[
⟨P′(w),V′⟩(x) = 1

]
= Pr

[
A′(x,w) = 1

]
.

Moreover, there is no difference between quitting whenever V queries outside of the set I and
actually generating the result of V and only then quitting if V queried outside of I:

Pr
[
A′(x,w) = 1

]
= Pr [A(x,w) = 1] .

Finally, notice that the simulated prover and verifier in A(x,w) constitute a random execution of
(P(w),V) on input x. Fix Q of size q. The probability that I contains Q is equal to

(ltot−q
ℓ−q

)
/
(ltot

ℓ

)
.

Therefore:

Pr [A(x,w) = 1] ≥
(ltot−q

ℓ−q
)(ltot

ℓ

) · Pr [⟨P(w),V⟩(x) = 1] .

Putting all of this together with the fact that the IOP (P,V) has completeness error α, we have
that

Pr
[
⟨P′(w),V′⟩(x) = 1

]
≥

(ltot−q
ℓ−q

)(ltot
ℓ

) · Pr [⟨P(w),V⟩(x) = 1]

≥ (1− α) ·
(ltot−q

ℓ−q
)(ltot

ℓ

)
> (1− α) · (ℓ/(e · ltot))q ,

23

where the final inequality follows from Fact 3.14.
Soundness. Fix x /∈ L(R) and a malicious prover P̃′ for the IOP (P′,V′). Consider the prover
P̃ for the IOP (P,V) defined as follows:
• P̃:

1. Choose a random set I ∈
([ltot]

ℓ

)
.

2. For j ∈ [k]:
(a) Receive ρj from the verifier V.
(b) Compute π′j := P̃′(ρ1, . . . , ρj) and let Ij be I restricted to the indices related to the

j-th message of P. Define πj as follows: for every i ∈ Ij , set Pj [i] to be equal to the
appropriate location in π′j . For any i /∈ Ij , set Pj [i] := 0. Send πi to V.

The sets I chosen by V′ and P̃ are chosen with the same probability. For every fixed I = I∗, the
probability that V simulated by V′ queries only in I is identical to the probability that the real
V decides to query only in I in the interaction with P̃. When there are only queries in I, the
verifiers in both cases have an identical view, and so accept with the same probability. When the
V simulated by V′ queries outside of I, it immediately rejects, and, the real verifier V may or may
not reject when it samples outside of I, since it reads from proofs padded by zeroes. Therefore

Pr
[
⟨P̃′,V′⟩(x) = 1

]
≤ Pr

[
⟨P̃,V⟩(x) = 1

]
.

Finally, since the IOP (P,V) has soundness error β, we conclude that

Pr
[
⟨P̃′,V′⟩(x) = 1

]
≤ Pr

[
⟨P̃,V⟩(x) = 1

]
≤ β .

Complexity parameters. We analyze the complexity parameters of the new IOP.

• Rounds. The protocol has k rounds. (The message I and the first set of randomness sent by the
verifier can be merged into a single message.)

• Alphabet size and proof length. The alphabet remains unchanged. The total proof length of the
IOP is ℓ.

• Queries. The verifier makes q queries while simulating V.

• Randomness. The verifier begins by sending I ∈
([ltot]

ℓ

)
, which takes log

(ltot
ℓ

)
bits. In the same

round it sends its first random message of r bits. In each subsequent round, V′ sends r bits of
randomness. Thus the per-round interaction-randomness complexity is r+log

(ltot
ℓ

)
≤ r+ℓ · log ltot.

• Verifier running time. The running time of the verifier is poly(vt, ℓ, log ltot).

• Adaptivity. The IOP is non-adaptive if the original IOP was non-adaptive.

4.2 Round reduction

The lemma below shows that the round complexity of an IOP can be reduced, albeit with an increase
in the completeness error.

24

Lemma 4.3. Let R be a relation with a public-coin k-round round-query IOP (P,V) with round-
query complexity qround. Let ℓ be a parameter such that qround ≤ ℓ ≤ k. Then Construction 4.4 yields
a public-coin IOP (P′,V′) for R with parameters related

IOP (P,V) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) l
Round queries qround

Queries (in total) q
Randomness (per round) r
Verifier running time vt

−→

Round-reduced IOP (P′,V′) for R
Completeness error 1− (1− α) ·

(
k−qround
ℓ−qround

)
/
(
k
ℓ

)
≤ 1− (1− α) · (ℓ/(e · k))qround

Soundness error β
Rounds ℓ+ 1
Alphabet size λ
Proof length (per round) l
Round queries qround

Queries (in total) q

Randomness (per round) k · r + log
(
k
ℓ

)
≤ k · r + ℓ · log k

Verifier running time poly(vt)

Moreover, if (P,V) is non-adaptive, then so is (P′,V′).

The goal of the construction is to decrease the number of rounds in the protocol to be equal to
the number of prover messages that the verifier reads. The construction follows from the intuition
that if the verifier does not read all of the prover’s messages in an IOP, then the prover might as
well not send them. Unfortunately, we cannot know the beginning of the protocol execution which
of the prover’s messages the verifier will read (in order to not send messages that will not be read).
Instead, we have the verifier guess which of the prover’s messages it will read and send this guess
to the prover. The prover now skips over sending these messages.

If it turns out that the verifier chose correctly, then it has access to everything it needs to read.
If it chose incorrectly, then it rejects. This behavior causes a degradation in completeness error, but
the soundness error remains unchanged.

Construction 4.4. The prover P′ receives as input an instance x and a witness w, while the
verifier V′ receives as input the instance x. They interact as follows.

1. V′: Sample a random set of ℓ indices I := {ij}j∈[ℓ] ∈
([k]
ℓ

)
with i1 < · · · < iℓ. For notational

convenience, set i0 := 0. Send I to the prover.

2. For j = 1, . . . , ℓ:

(a) V′: Randomly sample and send ρi(j−1)+1, . . . , ρij ← {0, 1}r.
(b) P′: Compute and send πij := P(x,w, ρ1, . . . , ρij).

25

3. V′: Given direct access to interaction randomness ρ1, . . . , ρiℓ and oracle access to the prover
messages πi1 , . . . , πiℓ :

(a) Randomly sample ρ(iℓ+1), . . . ρk ← {0, 1}r.
(b) Simulate Vπ1,...,πk(x, ρ1, . . . , ρk) where if the verifier queries the proof πj for j ∈ I, the query

is forwarded to the appropriate oracle. If V queries some j /∈ I, then immediately reject.
(c) Output the same answer as V.

Remark 4.5. As written in Construction 4.4, the protocol (P′,V′) is not public-coin because
the verifier’s first message I dictates the length of subsequent verifier messages. Nevertheless, the
protocol can be made public-coin by padding verifier messages to k · r bits. The prover and verifier
act as in the protocol description, ignoring the padding bits.

Proof of Lemma 4.3. We analyze completeness, soundness, and complexity measures.
Completeness. Fix (x,w) ∈ R. Consider the following algorithms A′ and A.

• A′(x,w):

1. Choose a random set I ∈
([k]
ℓ

)
.

2. For i ∈ [k] run V to receive ρi and compute πi := P(x,w, ρ1, . . . , ρi).
3. Run Vπ1,...,πk(x, ρ1, . . . , ρk), where if V queries j ∈ I then answer using πj . If V queries j /∈ I

then output 0 and quit.
4. If the algorithm has not quit, output whatever V outputs.

• A(x,w):

1. Choose a random set I ∈
([k]
ℓ

)
.

2. For i ∈ [k] run V to receive ρi and compute πi := P(x,w, ρ1, . . . , ρi).
3. Run Vπ1,...,πk(x, ρ1, . . . , ρk). Let Qrnd be the set of rounds queried by V.
4. If Qrnd ⊆ I then output whatever V output. Otherwise output 0.

Notice that A′ can be viewed as an emulation of (P′,V′), and so:

Pr
[
⟨P′(w),V′⟩(x) = 1

]
= Pr

[
A′(x,w) = 1

]
.

Moreover, there is no difference between quitting whenever V queries outside of I and actually
generating the result of V and only then quitting if V queried outside of I:

Pr
[
A′(x,w) = 1

]
= Pr [A(x,w) = 1] .

Finally, notice that the simulated prover and verifier in A(x,w) constitute a random execution of
(P(w),V) on input x. For a fixed Qrnd, the probability that I contains Qrnd is equal to

(k−qround
ℓ−qround

)
/
(k
ℓ

)
.

Therefore:

Pr [A(x,w) = 1] >

(k−qround
ℓ−qround

)(k
ℓ

) · Pr [⟨P(w),V⟩(x) = 1] .

Putting all of this together with the fact that the IOP (P,V) has completeness error α, we have

26

that

Pr
[
⟨P′(w),V′⟩(x) = 1

]
>

(k−qround
ℓ−qround

)(k
ℓ

) · Pr [⟨P(w),V⟩(x) = 1]

≥ (1− α) ·
(k−qround
ℓ−qround

)(k
ℓ

)
> (1− α) · (ℓ/(e · k))qround ,

where the final inequality follows from Fact 3.14.
Soundness. Fix x /∈ L(R) and a malicious prover P̃′ for the IOP (P′,V′). Consider the prover
for the IOP (P,V) defined as follows:
• P̃:

1. Choose a random set I = {ij}j∈[ℓ].
2. For i ∈ [k]:

(a) Receive ρi from the verifier V.
(b) If i ∈ I, compute πi := P̃′(ρ1, . . . , ρi). Otherwise, let πi be the all-zeroes proof. Send πi

to V.
The sets I chosen by V′ and P̃ are chosen with the same probability. For every fixed I, the
probability that V simulated by V′ queries only in I is identical to the probability that the real
V decides to query only in I in the interaction with P̃. When there are only queries in I, the
verifiers in both cases have an identical view, and so accept with the same probability. When the
V simulated by V′ queries outside of I, it immediately rejects, and, the real verifier V may or may
not reject when it samples outside of I, since it reads from the all-zeroes proofs. Therefore

Pr
[
⟨P̃′,V′⟩(x) = 1

]
≤ Pr

[
⟨P̃,V⟩(x) = 1

]
.

Finally, since the IOP (P,V) has soundness error β, we conclude that

Pr
[
⟨P̃′,V′⟩(x) = 1

]
≤ Pr

[
⟨P̃,V⟩(x) = 1

]
≤ β .

Complexity parameters. We analyze the complexity parameters of the new IOP.

• Rounds. The protocol has ℓ + 1 rounds. The message I and the first set of randomness sent by
the verifier can be merged into a single message, but the final choice of randomness cannot be
merged into a previous round.

• Alphabet size and proof length. The alphabet and proof length of the new IOP are identical to
that of the original IOP.

• Round queries. The verifier reads queries from qround rounds.

• Queries. The verifier makes q queries while simulating V.

• Randomness. The verifier first sends a random I ∈
([k]
ℓ

)
, which takes log

(k
ℓ

)
random bits. Fol-

lowing the padding of the interaction randomness (see Remark 4.5), in each subsequent round V′

sends k · r bits of randomness. Overall, the first round is the longest, in which the verifier sends
k · r + log

(k
ℓ

)
≤ k · r + ℓ · log k bits.

27

• Verifier running time. The running time of the verifier is poly(vt, k) = poly(vt).

• Adaptivity. The IOP is non-adaptive if the original IOP was non-adaptive.

4.3 Unrolling IOPs to PCPs

The lemma below captures the folklore idea that any (public-coin) IOP can be unrolled into a PCP,
whose proof length depends exponentially in the number of rounds and randomness.

Lemma 4.6. Let R be a relation with a public-coin IOP system (PIOP,VIOP). Then R has a PCP
system (PPCP,VPCP) with parameters related as below.

IOP (PIOP,VIOP) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) r
Verifier running time vt
Advice length ℓ

−→

PCP (PPCP,VPCP) for R
Completeness error α
Soundness error β
Alphabet size λ
Length l · 2O(k·r)

Queries q
Randomness k · r
Verifier running time poly(vt)
Advice length ℓ

If (PIOP,VIOP) is non-adaptive, then so is (PPCP,VPCP). Moreover, any good advice string for (PIOP,VIOP)
is also a good advice string for (PPCP,VPCP).

Remark 4.7. A similar statement can be made for private-coin IOPs. For such IOPs the verifier
may not sample random coins in each round, and as such we cannot reason about randomness per
round, but rather consider the total number of random coins used by the verifier, rtot. The PCP
after unrolling has length l · 2O(rtot) and its verifier uses rtot random bits. A shorter length may be
achieved by keeping track of the space of possible verifier messages rather than its randomness.

28

5 Tools for improving completeness

We show two transformations for reducing the completeness error of IOPs.

• Section 5.1: reducing the completeness error while increasing the alphabet size, and increasing
the query complexity by 1.

• Section 5.2: achieving perfect completeness while increasing the alphabet size, and increasing the
query complexity by 2.

5.1 Completeness amplification

The lemma below shows that the completeness error of an IOP can be reduced via a variation of
parallel repetition, while the query complexity increases by 1.

Lemma 5.1. Let t ∈ N be a parameter. Let R be a relation with a public-coin IOP (P,V).
Then Construction 5.2 yields a public-coin IOP (P′,V′) for R with parameters related as below.

IOP (P,V) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) r
Verifier running time vt

−→

Completeness-amplified IOP (P′,V′) for R
Completeness error αt

Soundness error t · β
Rounds k+ 1
Alphabet size max{λ, t}
Proof length (per round) t · l
Queries q+ 1
Randomness (per round) t · r
Verifier running time poly(vt, t)

Construction 5.2. The prover P′ receives as input an instance x and a witness w, while the
verifier V′ receives as input the instance x. They interact as follows.

1. P′ and V′ run t independent parallel executions of the interaction between P and V (excluding
the decision stage) on instance x with witness w. Let π⃗i and ρ⃗i be the proofs and interaction
random strings corresponding to the i-th execution.

2. P′:

(a) If there exists an index i ∈ [t], such that Vπ⃗i(x, ρ⃗i) = 1, then send i to the verifier V′ as a
non-oracle message (choosing arbitrarily if there is more than one such index).

(b) Otherwise, send an arbitrary value for i as a non-oracle message (or, alternatively, quit the
execution).

3. V′: Receive the value i (as a non-oracle message) from the prover. Check that Vπ⃗i(x, ρ⃗i)=1,
querying the appropriate proofs in the i-th execution as required by V.

Notice that the verifier in this construction is adaptive.

Proof of Lemma 5.1. We analyze completeness, soundness, and complexity measures.
Completeness. Fix (x,w) ∈ R. By completeness of the original IOP, the verifier rejects in a
parallel execution with probability at most α. Therefore, the probability that the verifier rejects in

29

all executions is at most αt. If there is any execution for which V accepts, then the prover sends
its index as i, and V′ accepts when emulating V on the i-th execution. We conclude that

Pr
[
⟨P′(w),V′⟩(x) = 0

]
≤ αt .

Soundness. Fix x /∈ L(R) and a malicious prover P̃′. By soundness of the original IOP, each of
the parallel executions accepts with probability at most β. By applying the union bound over all t
executions, we have that

Pr
[
⟨P̃′,V′⟩(x) = 1

]
≤ t · β .

Complexity parameters. We analyze the complexity parameters of the resulting IOP.

• Rounds. The protocol has k+ 1 rounds.

• Alphabet size and proof length. The alphabet of the new IOP is identical to that of the original
IOP, with the addition of needing to send the index i ∈ [t]. Therefore the alphabet size is
max{λ, t}. The proof length is t · l, as it contains t executions of the original IOP.

• Queries. The verifier makes q queries while simulating V, and one to read i. Therefore, the query
complexity is q+ 1.

• Randomness per-round. In each round, V′ sends t · r bits of randomness corresponding to each
parallel execution. Therefore the total randomness sent per round is t · r.

• Verifier running time. The running time of the verifier is at most poly(vt, t).

• Adaptivity. The IOP is adaptive since the verifier’s queries depend on the index i.

5.2 Perfect completeness

The lemma below shows that, for every IOP with good enough soundness error, perfect completeness
can be achieved while preserving the query complexity up to constants.

Lemma 5.3. Let R be a relation with a public-coin IOP (P,V). Then Construction 5.4 yields a
public-coin IOP (P′,V′) for R with parameters related as below.

IOP (P,V) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) r
Verifier running time vt

−→

Perfectly-complete IOP (P′,V′) for R
Completeness error 0

Soundness error O
(
β ·

(
r·k

log(1/α)

))
Rounds k+ 1
Alphabet size max{λ, 2r·k}
Proof length (per round) O

(
l ·
(

r·k
log(1/α)

))
Queries q+ 2
Randomness (per round) r

Verifier running time poly
(
vt, log

(
r·k

log(1/α)

))
Moreover, if the verifier V uses non-uniform advice, then V′ uses advice of the same length.

30

Construction 5.4. Let t := 2 ·
(

r·k
log(1/α)

)
. The prover P′ receives as input an instance x and a

witness w, while the verifier V′ receives as input the instance x. They interact as follows.

• P′: Send z⃗1, . . . , z⃗t = (z1,1, . . . , z1,k), . . . , (zt,1, . . . zt,k) ∈ {0, 1}r·k to the verifier.

• For i = 1, . . . , k:

– V′: Choose ρi ← {0, 1}r uniformly and send to the prover.
– P′: Send {πj,i}j∈[t] where πj,i := P(x,w, ρ1 ⊕ zj,1, . . . , ρi ⊕ zj,i).

• P′:

1. If there exists an index j ∈ [t], such that Vπj,1,...,πj,k(x, ρ1 ⊕ zj,1, . . . , ρ ⊕ zj,k) = 1, then send
j to the verifier V′ as a non-oracle message (choosing arbitrarily if there is more than one
possible value for j).

2. Otherwise, send ⊥.

• V′: Receive j as a non-oracle message.

1. If j = ⊥, then reject.
2. Otherwise, query z⃗j = (zj,1, . . . , zj,k) and check that Vπj,1,...,πj,k(x, ρ1 ⊕ zj,1, . . . , ρk ⊕ zj,k) = 1,

querying the appropriate proofs as required by V.

While this construction (and subsequent analysis) assumes that V uses no non-uniform advice, the
non-uniform case is identical, except that whenever any party invokes V, it also passes along the
advice string. Notice that the verifier in this construction is adaptive.

Proof of Lemma 5.3. We analyze completeness, soundness, and complexity measures. Completeness
and soundness are identical to those in [FGMSZ89], and are repeated here for convenience.
Completeness. Fix (x,w) ∈ R. For convenience of notation, we denote ρ⃗ := (ρ1, . . . , ρk). Thus,
ρ⃗⊕ z⃗j = (ρ1 ⊕ zj,1, . . . , ρk ⊕ zj,k) for any j. By completeness of the original IOP, the verifier rejects
in a parallel execution with probability at most α. We show the following claim:

Claim 5.5. There exist strings z⃗1, . . . , z⃗t = (z1,1, . . . , z1,k), . . . , (zt,1, . . . zt,k) such that for every
choice of verifier messages ρ⃗ = (ρ1, . . . , ρk) there is some j ∈ [t] satisfying

Vπj,1,...,πj,k(x, ρ⃗⊕ z⃗j) = 1 ,

where the prover messages πj,i are generated as in Construction 5.4.

This fact completes the proof, as the honest prover will be able to send these values z⃗1, . . . , z⃗t,
and, following the interaction with the verifier, is able to send the correct j to the verifier.

Proof of Claim 5.5. Let S be the set of verifier randomness ρ⃗ for which the original prover P is able
to convince the verifier V on instance x and witness w. By completeness of the protocol:

Pr
z⃗
[z⃗ /∈ S] < α .

We say that a sequence z⃗1, . . . , z⃗t is good if for every ρ⃗, there exists j ∈ [t] with ρ⃗⊕ z⃗j ∈ S. We
show that the probability that a uniformly random z⃗1, . . . , z⃗t is good is non-zero, which implies that

31

the prover P′ can always find such a sequence and manages to convince the verifier V′:

Pr
z⃗1,...,z⃗t

[z⃗1, . . . , z⃗t are not good]

= Pr
z⃗1,...,z⃗t

[∃ ρ⃗ ∀ j ∈ [t] ρ⃗⊕ z⃗j /∈ S]

≤ 2r·k · Pr
z⃗1,...,z⃗t

[∀j ∈ [t] z⃗j /∈ S] (1)

< 2r·k · αt

< 1 , (2)

where Equation 1 holds since ρ⃗ is r · k bits long, and by the fact that for every fixed string ρ⃗, the
probability that ρ⃗ ⊕ z⃗j ∈ S for a uniformly random z⃗j is equal to the probability that z⃗j ∈ S.
Equation 2 holds since t > r·k

log(1/α) .

Soundness. Fix x /∈ L(R) and a malicious prover P̃′. Suppose towards contradiction that P̃′ is
able to convince V′ with probability greater than

β′ := β · t = 2 · β ·
(

r · k
log(1/α)

)
.

We construct a prover P̃ that manages to convince V to accept on x with probability greater than
β, which contradicts the soundness error of the original IOP.

P̃ begins by using P̃′ on x to generate a sequence of strings

z⃗1, . . . , z⃗t = (z1,1, . . . , z1,k), . . . , (zt,1, . . . zt,k) .

It then chooses a random j ∈ [t]. During interaction with the verifier, upon receiving a string ρi, P̃
passes ρ′i := ρi ⊕ zi,j to P̃′ and receives proofs π1,i, . . . , πt,i.

Whenever P̃′ convinces V′ to accept by telling V′ to read the shift string z⃗j , this means that V
accepts given proofs πj,1, . . . , πj,k and randomness (ρ′1 ⊕ zj,1), . . . , (ρ′k ⊕ zj,k). Since ρ′i := ρi ⊕ zi,j ,
this means that V accepts given proofs πj,1, . . . , πj,k and randomness ρ1, . . . , ρk. Hence, P̃ is able
to cause the verifier to accept whenever P̃′ manages to do so with the same index j chosen by
P̃. Therefore, the probability that P̃ causes the verifier to accept is greater than β′/t = β, which
contradicts the soundness error of the original IOP (P,V).
Complexity parameters. We analyze the complexity parameters of the resulting IOP.

• Rounds. The protocol has k + 1 rounds as the prover’s final message can be merged with its
previous message.

• Alphabet size and proof length. The alphabet of the new IOP is identical to that of the original
IOP, with the addition of needing to send the strings z⃗1, . . . , z⃗t (which are each read as a single
block by the verifier) and the index j ∈ [t] ∪ {⊥}. Therefore the alphabet size is max{λ, 2r·k}.
The proof length of the first prover message (the vectors z⃗) is t, and the length of the rest of the
messages is l · t since the prover sends t different proofs of the original IOP to the verifier. The
proof length is, therefore, l · t = 2 · l ·

(
r·k

log(1/α)

)
symbols.

• Queries. The verifier makes one query to read j, one query to read z⃗j and q queries while
simulating V. Therefore, the query complexity is q+ 2.

32

• Randomness per-round. The randomness complexity of the IOP is r.

• Verifier running time. The running time of the verifier is poly(vt, log t) = poly
(
vt, log

(
r·k

log(1/α)

))
.

• Adaptivity. The IOP is adaptive since the verifier’s queries depend of the index j.

33

6 Tools for derandomization

We show how to derandomize a public-coin IOP based on non-uniform advice (Section 6.1) or based
on pseudorandom generators (Section 6.2). In both cases, the verifier’s randomness is reduced by
having the IOP verifier sample each round’s randomness from a smaller set; in Section 6.1 this set
is the non-uniform advice, and in Section 6.2 this set is the PRG’s seeds.

6.1 Derandomization using non-uniform advice

Theorem 6.1. Let R be a relation with a public-coin IOP (P,V) and ε = ε(|x|) ∈ (0, 1] be a
noticeable function. Then Construction 6.2 is a public-coin IOP (P′,V′) for R with parameters
related as below.

IOP (P,V) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) r
Verifier running time vt

−→

Non-uniform IOP (P′,V′) for R
Completeness error α+ k · ε
Soundness error β + k · ε
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) Θ(log ((r · k+ |x|)/ε))
Verifier running time O(vt+ r · (r · k+ |x|)/ε2)
Advice length Θ(r · (r · k+ |x|)/ε2)

Moreover, if α = 0 then (P′,V′) has completeness error 0. Finally, for every instance x, a uniformly
random string of length Θ(r · (r · k+ |x|)/ε2) is good advice with probability at least 1− 2−|x|.

Construction 6.2. On instance x, witness w, and non-uniform advice Y ⊆ {0, 1}r where |Y | =
Θ((r · k+ |x|)/ε2), the IOP (P′,V′) proceeds as follows.

1. For j = 1, . . . , k:

(a) V′: Sample a random string ρj ← Y and send it to the prover. This involves sampling and
sending O(log |Y |) bits.

(b) P′: Given verifier messages ρ1, . . . , ρj , send a message πj .

2. V′: Given oracle access to π1, . . . , πk, accept if and only if

Vπ1,...,πk(x, ρ1, . . . , ρk) = 1 .

In order to prove Theorem 6.1, we show a generic lemma that bounds the effect of the sub-
sampling on the average value of the interaction tree of a the protocol.

Lemma 6.3. Let T
x

be an interaction tree of IOP (P,V) on input x. For a set Y ⊆ {0, 1}r of size
t = Θ((r · k+ |x|)/ε2), let T

x,Y be the sub-tree of T
x

where all verifier messages are chosen only from
Y . Then

Pr
Y

[|val(T
x,Y)− val(T

x
)| ≥ k · ε] ≤ 1− 2−|x|/3 .

In particular (by applying the union bound), there exists a set Y such that for every x:

|val(T
x,Y)− val(T

x
)| ≥ k · ε .

34

First, we use Lemma 6.3 to prove Theorem 6.1, and then prove Lemma 6.3.

Proof of Theorem 6.1. We analyze completeness, soundness, and the efficiency parameters.
Completeness. Fix (x,w) ∈ R. Let T

x
be the interaction tree of (P,V) on input x and T

x,G be the
interaction tree of (P′,V′) on input x and given PRG G. We have val(T

x
) ≥ 1−α. By Lemma 6.3:

|val(T
x
)− val(T

x,G)| ≤ k · ε ,

and so val(T
x,G) ≥ 1 − (α + k · ε). It follows that there exists a prover strategy that causes the V′

to accept with probability at least 1− (α+ k · ε).
Soundness. Fix some instance x /∈ L(R). Let T

x
be the interaction tree of (P,V) on input x

and T
x,G be the interaction tree of (P′,V′) on input x and given PRG G. We have val(T

x
) ≤ β.

By Lemma 6.3:
|val(T

x
)− val(T

x,G)| ≤ k · ε ,

and so val(T
x,G) ≤ β+k ·ε. It follows that there no malicious prover strategy can cause V′ to accept

with probability greater than β + k · ε.
Complexity measures. We analyze the efficiency parameters of the resulting IOP:

• Rounds. The protocol has k rounds, as in the original IOP (P,V).

• Alphabet size and proof length. The alphabet and proof length of the new IOP are identical to
that of the original IOP.

• Advice length. The advice Y ⊆ {0, 1}r contains Θ((r · k + |x|)/ε2) strings of length r. Therefore
the total length of the advice is Θ(r · (r · k+ |x|)/ε2).

• Queries. The IOP verifier reads at most q symbols, as in the original IOP (P,V).

• Randomness per-round. The verifier, in each round, samples a random element from Y . Since
|Y | = Θ((r · k+ |x|)/ε2), the randomness complexity is Θ(log

(
Θ((r · k+ |x|)/ε2)

)
).

• Verifier running time. The verifier runs in time O(vt + r · (r · k + |x|)/ε2) since it must read all
of its advice.

• Adaptivity. The IOP is non-adaptive if the original IOP was non-adaptive.

Proof of Lemma 6.3. First, we prove that, for every node on the tree, if in this node the verifier
samples its messages from the set Y (rather than {0, 1}r) then with high probability (over the choice
of Y) the value of the subtree following the node does not change by much.

Claim 6.4. Let T be an interaction (sub-)tree whose root corresponds to the verifier’s turn to send
a message, and, for a set Y ⊆ {0, 1}r of size t, let TY be the tree T when the verifier message
corresponding to the root is chosen only from Y . Then:

Pr
Y

[|val(TY)− val(T)| ≥ ε] ≤ 2 · exp(−2ε2 · t) .

35

Proof. For ρ ∈ {0, 1}r, let T (ρ) be the subtree of T when ρ is chosen as the verifier’s message. Then
by definition:

val(T) := Eρ←{0,1}r [val(T (ρ))] .

Similarly, for every Y : val(TY) = Eρ←Y [val(T (ρ))]. Notice that for every Y, Y ′ of size t that are
identical apart for only one string,

|val(TY)− val(TY ′)| ≤ 1/t ,

since the largest difference occurs if val(T (ρ)) = 1 and val(T (ρ′)) = 0, where ρ and ρ′ are the
elements that differ between the sets. We can therefore apply Theorem 3.13 with f(Y) := val(TY)
and value σj = 1/t for every j, noting that val(T) := Eρ←{0,1}r [val(T (ρ))] = EY [f(Y)] to get

Pr
Y
[|val(TY)− val(T)| ≥ ε] ≤ 2 · exp(−2ε2 · t) .

We now apply Claim 6.4 to the entire tree T
x

to turn it into the tree T
x,Y , showing that with

high probability that the value of the tree does not change by much. We do this in a layer-by-layer
fashion from the bottom up. For i ∈ {0, . . . , k}, let Ti be the tree T

x
where nodes in layers 1, . . . , i

have the verifier sampling uniformly, and nodes in layers i+1, . . . , k are changed to subsample from
Y .

Claim 6.5. For every i ∈ [k]:

Pr
Y
[|val(Ti−1)− val(Ti)| ≥ ε] ≤ 2 · ℓi · exp(−2ε2 · t) ,

where ℓi is the number of nodes in layer i of T for which the next message is a verifier message.

Proof. By Claim 6.4, switching a single node changes the value of its subtree by a value more than
ε with probability at most 2 ·exp(−2ε2 · t). By applying the union bound over all ℓi nodes in layer i,
we have that there is no node in layer i whose subtree changes value by more than ε with probability
at least 2 · ℓi · exp(−2ε2 · t).

The claim follows by noticing that since all of the nodes that have been changed are in the same
layer, the expected value of the tree also has a change of at most ε.

By applying Claim 6.5 and noticing that T0 = T
x,Y and Tk = T

x
, we have that:

Pr
Y
[|val(T

x
)− val(T

x,Y)| ≥ k · ε] ≤ Pr
Y
[∃i s.t. |val(Ti−1)− val(Ti)| ≥ ε] (3)

≤ 2 · exp(−2ε2 · t) ·
∑
i

ℓi (4)

≤ 2k·r+1 · exp(−2ε2 · t) . (5)

Equation 3 can be verified by a simple counting argument, since there are k layers. Equation 4
follows by applying Claim 6.5 and the union bound, and Equation 5 follows from the fact that since
in every one of the k rounds the verifier sends r random bits, and so the tree T contains at most 2k·r

nodes.
By setting t = Θ((r · k+ |x|)/ε2), we have that:

Pr
Y

[|val(T
x,Y)− val(T

x
)| < k · ε] < 1− 2−|x|/3 .

36

6.2 Derandomization using pseudorandom generators

Theorem 6.6. Let R be a relation with a public-coin IOP (P,V) with (per round) randomness
complexity r, and communication complexity l. Let G : {0, 1}ℓPRG → {0, 1}r be a PRG against circuits
of size sPRG = poly(|x|, k, l, r) with PSPACE gates. Then Construction 6.7 yields an IOP (P′,V′)
for R with parameters:

IOP (P,V) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) r
Verifier running time vt = poly(|x|, k, l, r)

+

PRG G

Seed length ℓPRG
Error ϵPRG
Security against size poly(|x|, k, l, r)
Running time tPRG

−→

IOP (P′,V′) for R
Completeness error 1− ((1− α)/3 + 4ϵPRG · k2)
Soundness error 3β + 54ϵPRG · k3
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) ℓPRG
Verifier running time O(vt+ k · tPRG)

Moreover, if α = 0 then (P′,V′) has completeness error 0.

Construction 6.7. Suppose without loss of generality that the honest prover P maximizes the
probability that V accepts given x ∈ L(R). On instance x and witness w, the protocol (P′,V′)
proceeds as follows:

1. For j = 1, . . . , k:

(a) V′: Choose a uniformly random string ρj ← {0, 1}ℓPRG and send it to the prover.
(b) P′: Send some message πj to the verifier.

2. V′: Given oracle access to π1, . . . , πk, accept if and only if Vπ1,...,πk(x,G(ρ1), . . . ,G(ρk)) = 1,
querying the oracles π1, . . . , πk appropriately.

In order to prove Theorem 6.6, we show a generic lemma that bounds the effect of the sub-
sampling on the average value of the interaction tree of a the protocol.

Lemma 6.8. Let T
x

be an interaction tree of IOP (P,V) on input x. For a PRG G against circuits
of size sPRG = poly(|x|, k, l, r) with PSPACE gates, let T

x,G be the tree T
x

when the verifier messages
are chosen only using G. Then

val(T
x
)/3− 4ϵPRG · k2 ≤ val(T

x,G) ≤ 3val(T
x
) + 54ϵPRG · k3 .

We first use Lemma 6.8 to prove Theorem 6.6, and later give a proof of Lemma 6.8.

37

Proof of Theorem 6.6. We analyze completeness, then soundness, and finally the efficiency param-
eters of the resulting IOP.
Completeness. Fix (x,w) ∈ R. Let T

x
be the interaction tree of (P,V) on input x and T

x,G be the
interaction tree of (P′,V′) on input x and given PRG G. We have val(T

x
) ≥ 1−α. By Lemma 6.8:

val(T
x,G) ≥ val(T

x
)/3− 4ϵPRG · k2 ,

and so val(T
x,G) ≥ (1 − α)/3 + 4ϵPRG · k2. It follows that there exists a prover strategy that causes

the V′ to accept with probability at least (1− α)/3 + 4ϵPRG · k2.
Soundness. Fix some instance x /∈ L(R). Let T

x
be the interaction tree of (P,V) on input x

and T
x,G be the interaction tree of (P′,V′) on input x and given PRG G. We have val(T

x
) ≤ β.

By Lemma 6.8:
val(T

x,G) ≤ 3val(T
x
) + 54ϵPRG · k3 ,

and so val(T
x,G) ≤ 3β + 54ϵPRG · k3. It follows that there no malicious prover strategy can cause V′

to accept with probability greater than 3β + 54ϵPRG · k3.
Complexity measures. We analyze the efficiency parameters of the resulting IOP:

• Rounds. The protocol has k rounds, as in the original IOP (P,V).

• Alphabet size and proof length. The alphabet and proof length of the new IOP are identical to
that of the original IOP.

• Queries. The IOP verifier reads at most q symbols, as in the original IOP (P,V).

• Randomness per-round. The verifier, in each round, samples a random seed for G of length ℓPRG.

• Verifier running time. The verifier runs in time O(vt+ k · tPRG).

• Adaptivity. The IOP is non-adaptive if the original IOP was non-adaptive.

Proof of Lemma 6.8. First, we show that, for every node in the tree, if in this node the verifier
samples its messages using the PRG then the value of the subtree following the node does not
change by much.

Claim 6.9. Let T ′ be an interaction (sub-)tree corresponding to an instance x and transcript prefix
tr whose root corresponds to the verifier’s turn to send a message. Furthermore, let T ′G be the tree
T ′ when the root verifier message is chosen only using the PRG G. Then:

(1 + 1/k)−1 ·
(
val(T ′)− 12ϵPRG · k

)
≤ val(T ′G) ≤ (1 + 1/k) ·

(
val(T ′) + 18 · ϵPRG · k2

)
.

Proof. For the verifier’s message ρ denote T ′(ρ) be the sub-tree of T ′ where ρ is chosen as the
verifier’s first message. Then by definition: Eρ[val(T

′(ρ))] = val(T ′).
Let δ := 1

3k . We define ranges of values for val(T ′(ρ)). Let m ∈ N be the minimal integer such
that (1+ δ)m · δ · val(T ′) ≥ 1. For every i ∈ {0, 1, . . . ,m} let Ri = (1+ δ)−i, and set Rm+1 = 0. For
every i ∈ {0, 1, . . . ,m}, let pi = Prρ[Ri ≤ val(T ′(ρ)) ≤ Ri−1]. Notice that:

m+1∑
i=1

pi ·Ri ≤ val(T ′) ≤
m+1∑
i=1

pi ·Ri−1 .

38

Additionally, notice that since Ri−1 = (1 + δ) ·Ri for every i ̸= m+ 1:

m+1∑
i=1

pi ·Ri =
m∑
i=1

pi ·Ri = (1 + δ)−1 ·
m∑
i=1

pi ·Ri−1 .

By noting that
∑m+1

i=1 pi ·Ri−1 ≤ (1 + δ)−m +
∑m

i=1 pi ·Ri−1, we conclude the following bounds on
val(T ′):

(1 + δ)−1 ·
m+1∑
i=1

pi ·Ri − (1 + δ)−m−1 ≤ val(T ′) ≤ (1 + δ) ·
m∑
i=1

pi ·Ri−1 . (6)

Let Ci be a circuit that has x and the transcript tr hardwired such that Ci(ρ) = 1 if and
only if Ri ≤ val(T ′(ρ)) ≤ Ri−1. Therefore, Prρ[Ci(ρ)] = pi. We observe that val(T ′(ρ)) can be
computed in space poly(|x|, k, l, r) (see Section 3.2) and so the circuit Ci can be implemented in size
poly

(
|x|, k, l, r, log

(
(1 + δ)i

))
= poly(|x|, k, l, r) with PSPACE gates.

Then, by the pseudo-randomness of the PRG against {Ci}i∈[m] we get that for every i ∈ [m]:

|Pr
s
[Ci(G(s)) = 1]− pi| = |Pr

s
[Ci(G(s)) = 1]− Pr

ρ
[Ci(ρ) = 1]| ≤ ϵPRG .

Using these definitions we have that:

m+1∑
i=1

Pr
s
[Ci(G(s)) = 1] ·Ri ≤ Es[val(T

′(G(s)))] ≤
m+1∑
i=1

Pr
s
[Ci(G(s)) = 1] ·Ri−1 .

Since Es[val(T
′(G(s)))] = val(T ′G), and by combining the pseudo-randomness of the PRG, we have

m+1∑
i=1

(pi − ϵPRG) ·Ri ≤ val(T ′G) ≤
m+1∑
i=1

(pi + ϵPRG) ·Ri−1 .

By applying Equation 6, we get:

(1 + δ)−1 · val(T ′)− ϵPRG ·
m+1∑
i=1

Ri ≤ val(T ′G) ≤ (1 + δ)−m + (1 + δ) · val(T ′) + ϵPRG ·
m+1∑
i=1

Ri+1 .

Finally, we note that the sums
∑

i∈[m]Ri =
∑m

i=1(1 + δ)−i and
∑

i∈[m]Ri−1 =
∑m

i=1(1 + δ)−i+1 are

geometric series bounded from above by 1+δ−(1+δ)−m

δ ≤ 2
δ . Therefore:

(1 + δ)−1 · val(T ′)− 2ϵPRG
δ
≤ val(T ′G) ≤ (1 + δ)−m + (1 + δ) · val(T ′) + 2ϵPRG

δ
.

We begin by refining the lower-bound:

(1 + δ)−1 · val(T ′)− 2ϵPRG
δ

= (1 + δ)−1 ·
(
val(T ′)− 2ϵPRG(1 + δ)

δ

)
≥ (1 + δ)−1 ·

(
val(T ′)− 4ϵPRG

δ

)
≥ (1 + 1/k)−1 ·

(
val(T ′)− 12ϵPRG · k

)
,

39

where the final equality follows by recalling that δ = 1
3k . We now refine the upper-bound, recalling

that (1 + δ)m · δ · val(T ′) ≥ 1:

(1 + δ)−m + (1 + δ) · val(T ′) + 2ϵPRG
δ
≤ δ · val(T ′) + (1 + δ) · val(T ′) + 2ϵPRG

δ

≤ (1 + 3δ) ·
(
val(T ′) +

2ϵPRG
δ2

)
= (1 + 1/k) ·

(
val(T ′) + 18 · ϵPRG · k2

)
.

Putting all of this together, we conclude that

(1 + 1/k)−1 ·
(
val(T ′)− 12ϵPRG · k

)
≤ val(T ′G) ≤ (1 + 1/k) ·

(
val(T ′) + 18 · ϵPRG · k2

)
.

We now use Claim 6.9 to show that the value of the interaction tree does not grow significantly
over the entire interaction. Let Ti be the tree T

x
after changing the nodes in layers i, . . . , k to

subsample from G. Notice that T0 = T
x,G and Tk = T

x
. Then:

(1 + 1/k)−1 · (val(Ti+1)− 12ϵPRG · k) ≤ val(Ti) ≤ (1 + 1/k) ·
(
val(Ti+1) + 18 · ϵPRG · k2

)
.

This follows since, by Claim 6.9, this is the variation in value of changing a node in layer i to
sub-sample from G. Since all the nodes changed are in the same layer, the expected value of the
tree also changes by the same value.

We now combine the bounds over all the layers to achieve the required bounds. We begin with
the lower-bound:

val(T
x,G) ≥ (1 + 1/k)−1 · (val(Tk−1)− 12ϵPRG · k)
≥ · · ·
≥ (1 + 1/k)−k · (val(T0)− k · 12ϵPRG · k)
≥ val(T

x
)/3− 4ϵPRG · k2 .

Similarly, we give the upper-bound:

val(T
x,G) ≤ (1 + 1/k) ·

(
val(Tk−1) + 18 · ϵPRG · k2

)
≤ · · ·
≤ (1 + 1/k)k ·

(
val(T0) + k · 18 · ϵPRG · k2

)
≤ 3val(T

x
) + 54ϵPRG · k3 .

Therefore, we conclude that:

val(T
x
)/3− 4ϵPRG · k2 ≤ val(T

x,G) ≤ 3val(T
x
) + 54ϵPRG · k3 .

40

7 Low-error IOPs to low-error PCPs

We show that IOPs with small soundness error imply PCPs with small soundness error. In particular
(under complexity assumptions) in order to construct a sliding-scale PCP for NP, it suffices to
construct an IOP for NP, with polynomial round complexity, with similar parameters.

We first show that this can be done using PRGs, meaning that, under complexity assumptions,
IOPs can be transformed into PCPs.

Theorem 7.1. Let R be a relation with a public-coin IOP (PIOP,VIOP) with (per round) interaction-
randomness r. Suppose that there exists a PRG G : {0, 1}ℓPRG → {0, 1}r against circuits of size
sPRG = poly(|x|, k, l, r) with PSPACE gates. Then R has a PCP (PPCP,VPCP) with the following
parameters:

IOP (PIOP,VIOP) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) r
Verifier running time vt

+

PRG G

Seed length ℓPRG
Error ϵPRG
Security against size poly(|x|, k, l, r)
Running time tPRG

−→

PCP (PPCP,VPCP) for R where γ := 1/3 · (1− α) · (q/(e · k))q − 4ϵPRG · q2

Completeness error 0

Soundness error O
((
β + ϵPRG · q3

)
·
(

q·ℓPRG
γ

))
Alphabet size max{λ, 2q·ℓPRG}
Length O

(
l · 2q·ℓPRG · q · ℓPRG/γ

)
Queries q+ 2
Randomness O(q · ℓPRG)
Verifier running time poly(vt, q, tPRG, log(

ℓPRG
γ))

We now show an analogue of the above theorem in which, rather than use a PRG, the verifier
uses non-uniform advice.

Theorem 7.2. Let R be a relation with a public-coin IOP (PIOP,VIOP) and let ε = ε(|x|) ∈ (0, 1] be
a noticeable function. Then R has a PCP (PPCP,VPCP) with the following parameters:

IOP (PIOP,VIOP) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) r
Verifier running time vt

−→

PCP (PPCP,VPCP) for R
Completeness error 0

Soundness error O
(
(β + q · ε) ·

(
q·ℓ
γ

))
Alphabet size max{λ, 2q·ℓPRG}
Length O

(
l · 2q·ℓ · q · ℓ/γ

)
Queries q+ 2
Randomness O(q · ℓ)
Verifier running time poly(vt, k, r, 1/ε, log(1/γ))
Advice length O(q · k · r · ε2)

(Where γ := (1− α) · (q/(e · k))q − q · ε and ℓ := O
(
log

(
q·r·k·|x|

ε

))
= O(log(|x|/ε)).)

41

Corollary 7.3. Let R be a relation with a public-coin IOP (PIOP,VIOP) with parameters as below.
Then R has an adaptive PCP (PPCP,VPCP) with the following parameters:

IOP (PIOP,VIOP) for R
Completeness error 0
Soundness error 1/|x|
Rounds polylog(|x|)
Alphabet size poly(|x|)
Proof length (per round) poly(|x|)
Queries O(1)
Randomness (per round) poly(|x|)
Verifier running time poly(|x|)

−→

PCP with non-uniform advice (PPCP,VPCP) for R
Completeness error 0
Soundness error 1/|x|
Alphabet size poly(|x|)
Length poly(|x|)
Queries O(1)
Randomness O(log |x|)
Verifier running time poly(|x|)
Advice length poly(|x|)

Moreover, the non-uniform advice can be removed under the assumption that there exists a function
in E with circuit complexity 2Ω(n) for circuits with PSPACE gates.

Proof. We first run amplify the IOP (PIOP,VIOP) twice so that the soundness error is 1/|x|2, and all
other parameters are related by at most a factor of 2. We then apply Theorem 7.2 with ε = 1/|x|2.
Notice that here γ = 1/polylog(|x|) and ℓ := O(log |x|). Therefore, the length of the PCP is equal
to poly(|x| · 2O(log |x|) · polylog(|x|)) = poly(|x|), and it has soundness error (1/|x|2 + 1/poly(|x|)) ·
polylog(|x|) ≤ 1/|x|.

If we assume that there exists a function in E with circuit complexity 2Ω(n) for circuits with
PSPACE gates, then the non-uniform advice can be removed as follows: By Theorem 3.10, there
exists a PRG G : {0, 1}O(log |x|) → {0, 1}r against poly(|x|)-sized circuits with PSPACE-gates and
error 1/poly(|x|) ≤ 1/|x|2 (where r = poly(|x|) is the maximum number of random bits sent by the
verifier of the amplified IOP in a round). We can then apply Theorem 7.1 in place of Theorem 7.2.

Proof of Theorems 7.1 and 7.2. We first prove Theorem 7.1. We apply a sequence of transforma-
tions:

1. reduce the number of rounds of the IOP via Lemma 4.3 with ℓ := q;
2. derandomize the IOP verifier via Theorem 6.6;
3. transform the IOP to have perfect completeness via Lemma 5.3; and
4. unroll the IOP into a PCP via Lemma 4.6.

This sequence of transformations and their effects on the parameters of the resulting proof systems
is described in the list of tables below. The proof of Theorem 7.1 uses an identical series of trans-
formations, except that Theorem 6.6 is replaced with Theorem 6.1 (and as a result, the parameters
change slightly).

IOP (PIOP,VIOP) for R
Completeness error α
Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) r
Verifier running time vt

42

↓ (Item 1)
Round-reduced IOP for R via Lemma 4.3 with ℓ := q

Completeness error 1− (1− α) · (q/(e · k))q
Soundness error β
Rounds q
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) k · r + q · log k < (q+ 1) · k · r
Verifier running time poly(vt)

↓(Item 2)
Derandomized IOP for R via Theorem 6.6 with PRG G with γ := 1/3 · (1− α) · (q/(e · k))q − 4ϵPRG · q2

Completeness error 1− γ
Soundness error O(β + ε · q3)
Rounds q
Alphabet size λ
Proof length (per round) l
Queries q
Randomness (per round) ℓPRG
Verifier running time poly(vt, q, tPRG)

↓ (Item 3)
Perfectly complete IOP for R via Lemma 5.3

Completeness error 0

Soundness error O
((
β + ϵPRG · q3

)
·
(

q·ℓPRG
− log(1−γ)

))
Rounds q+ 1
Alphabet size max{λ, 2q·ℓPRG}
Proof length (per round) O

(
l · q·ℓPRG

− log(1−γ)

)
Queries q+ 2
Randomness (per round) ℓPRG

Verifier running time poly
(
vt, q, tPRG, log

(
q·ℓPRG

− log(1−γ)

))
↓(Item 4)

PCP (PPCP,VPCP) for R via Lemma 4.6
Completeness error 0

Soundness error O
((
β + ϵPRG · q3

)
·
(

q·ℓPRG
− log(1−γ)

))
Alphabet size max{λ, 2q·ℓPRG}
Length O

(
l · 2q·ℓPRG · q·ℓPRG

− log(1−γ)

)
Queries q+ 2
Randomness q · ℓPRG
Verifier running time poly

(
vt, q, tPRG, log

(
q·ℓPRG

− log(1−γ)

))
Finally, notice that − log(1− γ) ≥ γ for 0 < γ < 1, and so 1

− log(1−γ) ≤
1
γ .

43

8 Limitations of short IOPs

We show that, under the randomized exponential time hypothesis, there are no short IOPs for 3SAT
with polylog(n) rounds and small soundness error.

Theorem 8.1. Assume that 3SAT /∈ BPTIME[2c·n] for a constant c > 0 and let (P,V) be a
public-coin IOP for 3SAT with the following parameters:

Public-coin IOP (P,V) for n-variate 3SAT

Completeness error 0
Soundness error β
Rounds polylog(n)
Alphabet size λ
Proof length (total) ltot
Queries q
Randomness (per round) poly(n)
Verifier running time poly(n)

If ltot ≥ n and
(
ltot·log λ

n

)q
≤ npolylog(n) then β > 1

2 ·
(
2·e·ltot·log λ

c·n

)−q
.

Proof of Theorem 8.1. We reduce the length of the IOP (P,V) using Lemma 4.1. Let m = ltot/n.
The parameters of the resulting IOP (P′,V′) are described in the following tables:

IOP (P,V) for n-variate 3SAT

Completeness error 0
Soundness error β
Rounds polylog(n)
Alphabet size λ
Proof length (total) n ·m
Queries q
Randomness (per round) poly(n)
Verifier running time poly(n)

↓
Length-reduced IOP (P′,V′) for n-variate 3SAT via Lemma 4.1 with ℓ := e · n ·m · (2β)1/q

Completeness error α′ := 1− 2β
Soundness error β′ := β
Rounds k′ := polylog(n)
Alphabet size λ
Proof length (total) l′tot := e · n ·m · (2β)1/q
Queries q
Randomness (per round) poly(n)
Verifier running time poly(n)

We now apply Lemma 3.2 with the IOP (P′,V′) (viewed as an IP) to construct an algorithm for
3SAT. When considering the IOP with a binary alphabet (by writing each symbol in its binary
representation), Lemma 3.2 says that for

d = l′tot · log λ+ k′ log k′ − k′ · log
(
1− α′ − β′

)
+O(log n)

= e · n ·m · log λ · (2β)1/q +O(polylog(n) · log 1/β) + o(n) ,

44

there exists an algorithm that decides 3SAT in probabilistic time 2O(d). Suppose towards contra-
diction (of RETH) that β ≤ 1

2 · (2 · e ·m · log λ/c)
−q. Notice that 1

2 · (2 · e ·m · log λ/c)
−q ≥ n−polylog(n),

thus we can assume (without loss of generality) that β ≥ n−polylog(n), and, as a result, that
polylog(n) · log 1/β = o(n). Then we have that:

d = e · n ·m · log λ · (2β)1/q + o(n)

= c · n/2 + o(n)

< c · n .

As a result, we have an algorithm that decides 3SAT in time 2c·n in contradiction to the (RETH)
assumption that 3SAT /∈ BPTIME[2c·n].

45

9 Limitations of high-round low-query IOPs

We show that if a relation cannot be decided by IPs with small round complexity, then any round-
query IOP with small round-query complexity for the relation cannot have small soundness error.

Theorem 9.1. Let k and ℓ be parameters and R be a relation where R ∈ AM[k]\AM[ℓ]. Suppose
that R has a k-round public-coin round-query IOP (P,V) with completeness error α, soundness
error β, and round-query complexity qround ≤ ℓ.

Then β ≥ (1− α) · (ℓ/(e · k))qround − |x|−c for every constant c > 0.

Proof of Theorem 9.1. Apply Lemma 4.3 to the k-round IOP (P,V) with parameter ℓ. This results
in a ℓ-round IOP (P′,V′) with completeness error α′ := 1− (1− α) · (ℓ/(e · k))qround and soundness
error β. Suppose towards contradiction that β < (1 − α) · (ℓ/(e · k))qround − |x|−c for some c ∈ N.
Then the gap between completeness and soundness error of (P′,V′) is 1− α′ − β > |x|−c.

Since the gap between completeness and soundness error of (P′,V′) is polynomial (P′,V′) can be
transformed into a ℓ-round public-coin IP (P′′,V′′) for R with completeness error 1/3 and soundness
error 1/3. This is done by using the standard technique of taking poly(|x|) parallel repetitions,
computing the fraction of accepting transcripts, and accepting if the number of accepting transcripts
is beyond some threshold that depends on α′ and |x|−c. The IP (P′′,V′′), then, contradicts the
assumption that R /∈ AM[ℓ].

46

10 Limitations of binary-alphabet constant-query IOPs

We prove lower bounds on the soundness error of 2-query and 3-query IOPs for 3SAT over the
binary alphabet.

Theorem 10.1. Assume that RETH holds and suppose that there exists a non-adaptive public-coin
IOP (P,V) for 3SAT with the following parameters:

Non-adaptive public-coin IOP (P,V) for n-variate 3SAT

Completeness error 0
Soundness error β
Rounds k
Alphabet size 2
Proof length (per round) 2o(n)

Queries q
Randomness (per round) r
Verifier running time 2o(n)

Then:

• If q = 2 then β > 1− ε for every ε with k · log(r · n/ε) = o(n).
• If q = 3 then β > 5/8− ε for every ε with k · log(r · n/ε) = o(n).

The theorem follows from a generic lemma that we prove in two steps. In Section 10.1 we
formalize the folklore idea that, in certain parameter regimes, it is unlikely that there simultaneously
exist CSP solvers and PCPs. In Section 10.2 we build on this and prove an analogous lemma for
IOPs.

When compared to the following analogous (folklore) theorem for binary-alphabet PCPs, The-
orem 10.1 shows that interaction does not grant additional power when restricted to 2 or 3 queries.
The soundness beyond which RETH is contradicted is nearly identical to that of PCPs (in order to
contradict ETH). Moreover, the fewer rounds the IOP has, the smaller this gap.

Theorem 10.2 (folklore). Assume that the ETH conjecture holds and suppose that there exists a
non-adaptive PCP (P,V) for 3SAT with the following parameters:

Non-adaptive PCP (P,V) for n-variate 3SAT

Completeness error 0
Soundness error β
Alphabet size 2
Length 2o(n)

Queries q
Randomness o(n)
Verifier running time 2o(n)

Then:

• If q = 2 then β = 1.
• If q = 3 then β ≥ 5/8.

The proof of Theorem 10.1 uses the fact that there exist efficient algorithms for deciding gap
problems for CSPs with arities 2 and 3. This proof is generic in the sense that, given an efficient
algorithm for deciding gap problems for CSPs with arity q, our proof gives a lower-bound on the
soundness error of any IOP for 3SAT with query complexity q.

47

10.1 Algorithms for 3SAT from CSP-solvers and PCPs

We prove a generic lemma that states that, for certain parameters, the simultaneous existence of a
PCP for 3SAT and an algorithm for solving CSPs implies a fast algorithm for 3SAT.

Lemma 10.3. Suppose that the following exist:

• A non-adaptive PCP (P,V) for n-variable 3SAT with perfect completeness, soundness error β,
alphabet Σ, proof length l = 2o(n) , query complexity q, randomness complexity r = o(n), and
verifier running time vt = 2o(n) given ℓ(n) bits of non-uniform advice.

• A deterministic algorithm A that decides in time poly(|ψ|) whether an input (Σ, q)-CSP instance
ψ has value 1 or value at most β.

Then there exists an algorithm A′ that decides whether a 3SAT formula ϕ over n variables is
satisfiable in time 2o(n) given ℓ(n) bits of non-uniform advice. (Moreover, any advice string that is
good for the PCP is also good for the resulting algorithm.)

Proof. The algorithm A′ receives as input a 3SAT formula ϕ on n variables and a non-uniform
advice string z ∈ {0, 1}ℓ, and works as follows.

1. Use Fact 3.5 to transform the PCP (P,V) on input the 3SAT formula ϕ and advice string z into
a (Σ, q)-CSP instance ψ.

2. Run A(ψ) and output that ϕ is satisfiable if and only if A outputs that the value of ψ is 1.

We analyze the correctness and running time of the algorithm A′.

• Correctness. By Fact 3.5, ψ is a (Σ, q)-CSP with size poly(2r, vt) = 2o(n) where: (i) if ϕ ∈ 3SAT
then ψ has value 1; (ii) if ϕ /∈ 3SAT then ψ has value at most β. By the correctness of the
algorithm A we conclude that the algorithm A′ correctly decides whether ϕ is satisfiable.

• Running time. The algorithm A′ runs in time 2o(n), because its first step runs in time poly(2r, vt) =
2o(n) and its second step runs in time poly(|ψ|) = 2o(n).

10.2 Algorithms for 3SAT from CSP-solvers and IOPs

We prove a generic lemma that states that, for certain parameters, the simultaneous existence of an
IOP for 3SAT and an algorithm for solving CSPs implies a fast probabilistic algorithm for 3SAT.

Lemma 10.4. Let k, r and ε be parameters with k · log(r/ε) = o(n). Suppose that the following
exist:

• A non-adaptive public-coin IOP (PIOP,VIOP) for n-variable 3SAT with perfect completeness, sound-
ness error β, round complexity k, alphabet Σ, per-round proof length l = 2o(n) , query complexity
q, per-round randomness complexity r, and verifier running time vt = 2o(n).

• A deterministic algorithm A that decides in time poly(|ψ|) whether an input (Σ, q)-CSP instance
ψ has value 1 or value at most β + ε.

Then there exists a probabilistic algorithm A′ that decides whether a 3SAT formula ϕ over n variables
is satisfiable in time 2o(n) with probability at least 2/3.

48

Proof. First, we transform the IOP (PIOP,VIOP) into a PCP (PPCP,VPCP) for 3SAT as follows: (i) use
Theorem 6.1 to derandomize the IOP using non-uniform advice; and (ii) use Lemma 4.6 to unroll
the IOP into a PCP. Moreover, in Theorem 6.1 we may sample a random advice string rather than
using non-uniformity: a random advice string is good with probability at least 1− 2|ϕ|. This same
advice string can be used in the PCP (PPCP,VPCP) derived by applying Lemma 4.6.

Next, we apply Lemma 10.3 with the PCP (PPCP,VPCP) and the algorithm A to derive an algo-
rithm A∗ for 3SAT for whom the same advice strings as the PCP are good. Notice that Lemma 10.3
requires a PCP of length 2o(n)and that the PCP (PPCP,VPCP) resulting from the series of transfor-
mations has proof length 2O(k·log(r·n/ε))+o(n). This length is sub-exponential in n since we require
k · log(r · n/ε) = o(n).

Finally, we have that the algorithm A′ that, on input a 3SAT formula ϕ first samples a random
advice string z and then outputs the same as A∗(ϕ, z) succeeds in deciding 3SAT with probability
at least 1− 2−|ϕ| ≥ 2/3.

In order to keep track of parameters, we describe the transformation as a series of tables :

IOP (PIOP,VIOP) for R
Completeness error 0

Soundness error β
Rounds k
Alphabet size λ
Proof length (per round) 2o(n)

Queries q
Randomness (per round) r
Verifier running time 2o(n)

↓
Derandomized IOP for R via Theorem 6.1 with error ε/k
Completeness error 0
Soundness error β + ε
Rounds k
Alphabet size λ
Proof length (per round) 2o(n)

Queries q
Randomness (per round) O(log(r · n/ε))
Verifier running time 2o(n) + poly(n, r, 1/ε)
Advice length (chosen at random) poly(n, r, 1/ε)

↓
PCP (PPCP,VPCP) for R via Lemma 4.6

Completeness error 0
Soundness error β + ε
Alphabet size λ
Length 2O(k·log(r·n/ε))+o(n)

Queries q
Randomness O(log(r · n/ε))
Verifier running time 2o(n) + poly(n, r, 1/ε)
Advice length (chosen at random) poly(r/ε)

49

10.3 Proof of Theorems 10.1 and 10.2

We first prove Theorem 10.1. Consider an IOP with parameters as in the statement of Theorem 10.1.
Suppose that there exist γ and ε with k · log(r/ε) = o(n) such that: (i) the IOP soundness error
β is at most γ − ε; and (ii) there exists an algorithm A that decides in time poly(|ψ|) whether an
input ({0, 1}, q)-CSP instance ψ has value 1 or value at most γ. Then, by Lemma 10.4, there exists
a probabilistic algorithm that decides 3SAT in time 2o(n), in contradiction to RETH. Therefore,
assuming RETH, the above items cannot both be true.

We conclude the proof of Theorem 10.1 by relying on known algorithms for solving CSPs with
appropriate arities q and decision bounds γ, implying that (assuming RETH) it must be that β > γ−ε
for every ε such that k · log(r/ε) = o(n).

• For q = 2, we rely on Schaefer’s dichotomy theorem (Theorem 3.6), which says that the satisfia-
bility of a ({0, 1}, 2)-CSP can be decided in polynomial time. In this case γ = 1.

• For q = 3, we rely on Zwick’s algorithm (Theorem 3.7), which decides whether a ({0, 1}, 3)-CSP
has value 1 or value smaller than 5/8 in polynomial time. In this case γ = 5/8.

Finally, the proof of Theorem 10.2 is identical to the one of Theorem 10.1, except that Lemma 10.3
is used in place of Lemma 10.4. In more detail, under ETH, for every γ the following cannot be true
simultaneously; (i) the PCP soundness error β is at most γ; and (ii) there exists an algorithm A
that decides in time poly(|ψ|) whether an input (2, q)-CSP instance ψ has value 1 or value at most
γ. As in the proof of Theorem 10.1, we rely on Schaefer’s dichotomy theorem and Zwick’s algorithm
to obtain the claimed lower bounds on β.

50

Acknowledgments

Gal Arnon is supported in part by a grant from the Israel Science Foundation (no. 2686/20) and
by the Simons Foundation Collaboration on the Theory of Algorithmic Fairness. Alessandro Chiesa
is supported in part by the Ethereum Foundation. Eylon Yogev is supported in part by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office, and by the Alter Family Foundation.

References

[AASY16] Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. “Incompressible
Functions, Relative-Error Extractors, and the Power of Nondeterministic Reductions”. In:
Computational Complexity 25.2 (2016), pp. 349–418.

[ACY22a] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “A PCP Theorem for Interactive Proofs”.
In: Proceedings of the 41st Annual International Conference on Theory and Application of
Cryptographic Techniques. EUROCRYPT ’22. 2022, pp. 64–94.

[ACY22b] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “Hardness of Approximation for Stochastic
Problems via Interactive Oracle Proofs”. In: Proceedings of the 37th Annual IEEE Conference
on Computational Complexity. CCC ’22. 2022, 24:1–24:16.

[AG21] Benny Applebaum and Eyal Golombek. “On the Randomness Complexity of Interactive
Proofs and Statistical Zero-Knowledge Proofs”. In: Proceedings of the 2nd Conference on
Information-Theoretic Cryptography. ITC ’21. 2021, 4:1–4:23.

[AIKS16] Sergei Artemenko, Russell Impagliazzo, Valentine Kabanets, and Ronen Shaltiel. “Pseudo-
randomness When the Odds are Against You”. In: Proceedings of the 31st Annual Conference
on Computational Complexity. CCC ’16. 2016, 9:1–9:35.

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof
verification and the hardness of approximation problems”. In: Journal of the ACM 45.3
(1998). Preliminary version in FOCS ’92., pp. 501–555.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characterization
of NP”. In: Journal of the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70–122.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed–Solomon
Interactive Oracle Proofs of Proximity”. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming. ICALP ’18. 2018, 14:1–14:17.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with Sub-
linear Verification from Tensor Codes”. In: Proceedings of the 18th Theory of Cryptography
Conference. TCC ’20. 2020, pp. 19–46.

[BCGGHJ17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and
Sune K. Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiabil-
ity”. In: Proceedings of the 23rd International Conference on the Theory and Applications of
Cryptology and Information Security. ASIACRYPT ’17. 2017, pp. 336–365.

[BCGRS17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
“Interactive Oracle Proofs with Constant Rate and Query Complexity”. In: Proceedings of
the 44th International Colloquium on Automata, Languages and Programming. ICALP ’17.
2017, 40:1–40:15.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. “Quasilinear-Size Zero
Knowledge from Linear-Algebraic PCPs”. In: Proceedings of the 13th Theory of Cryptography
Conference. TCC ’16-A. 2016, pp. 33–64.

51

[BCL22] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. “Zero-Knowledge IOPs with Linear-Time
Prover and Polylogarithmic-Time Verifier”. In: Proceedings of the 41st Annual International
Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT ’22.
2022, pp. 275–304.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Proceedings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computations
in polylogarithmic time”. In: Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing. STOC ’91. 1991, pp. 21–32.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. “Efficient Probabilistically Checkable
Proofs and Applications to Approximations”. In: Proceedings of the 25th Annual ACM Sym-
posium on Theory of Computing. STOC ?93. 1993, pp. 294–304.

[BN22] Sarah Bordage and Jade Nardi. “Interactive Oracle Proofs of Proximity to Algebraic Geom-
etry Codes”. In: Proceedings of the 37th Annual IEEE Conference on Computational Com-
plexity. CCC ’22. 2022, 30:1–30:45.

[BS08] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”. In: SIAM
Journal on Computing 38.2 (2008). Preliminary version appeared in STOC ’05., pp. 551–607.

[Bab85] László Babai. “Trading group theory for randomness”. In: Proceedings of the 17th Annual
ACM Symposium on Theory of Computing. STOC ’85. 1985, pp. 421–429.

[Ben+17] Eli Ben-Sasson et al. “Computational integrity with a public random string from quasi-
linear PCPs”. In: Proceedings of the 36th Annual International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT ’17. 2017, pp. 551–579.

[CFLS97] Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. “Random Debaters and
the Hardness of Approximating Stochastic Functions”. In: SIAM Journal on Computing 26.2
(1997), pp. 369–400.

[CY20] Alessandro Chiesa and Eylon Yogev. “Barriers for Succinct Arguments in the Random Oracle
Model”. In: Proceedings of the 18th Theory of Cryptography Conference. TCC ’20. 2020,
pp. 47–76.

[DHK15] Irit Dinur, Prahladh Harsha, and Guy Kindler. “Polynomially Low Error PCPs with poly-
loglog n Queries via Modular Composition”. In: Proceedings of the 47th Annual ACM Sym-
posium on Theory of Computing. STOC ’15. 2015, pp. 267–276.

[DHMTW14] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén. “Exponential
time complexity of the permanent and the Tutte polynomial”. In: ACM Transactions on
Algorithms 10.4 (2014), 21:1–21:32.

[Din07] Irit Dinur. “The PCP theorem by gap amplification”. In: Journal of the ACM 54.3 (2007),
p. 12.

[Dru11] Andrew Drucker. “A PCP Characterization of AM”. In: Proceedings of the 38th International
Colloquium on Automata, Languages and Programming. ICALP ’11. 2011, pp. 581–592.

[FGLSS91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. “Approx-
imating clique is almost NP-complete (preliminary version)”. In: Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science. SFCS ’91. 1991, pp. 2–12.

[FGLSS96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. “Interactive
proofs and the hardness of approximating cliques”. In: Journal of the ACM 43.2 (1996).
Preliminary version in FOCS ’91., pp. 268–292.

52

[FGMSZ89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos. “On
Completeness and Soundness in Interactive Proof Systems”. In: Advances in Computing Re-
search 5 (1989), pp. 429–442.

[GH98] Oded Goldreich and Johan Håstad. “On the complexity of interactive proofs with bounded
communication”. In: Information Processing Letters 67.4 (1998), pp. 205–214.

[GLVTW21] Alexander Golovnev, Jonathan Lee, Setty Srinath T. V., Justin Thaler, and Riad S. Wahby.
Brakedown: Linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive,
Report 2021/1043. 2021.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of inter-
active proof systems”. In: SIAM Journal on Computing 18.1 (1989). Preliminary version
appeared in STOC ’85., pp. 186–208.

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. “On interactive proofs with a laconic
prover”. In: Computational Complexity 11.1/2 (2002), pp. 1–53.

[Has05] Gustav Hast. “Beating a random assignment: Approximating constraint satisfaction prob-
lems”. PhD thesis. KTH, 2005.

[Hås14] Johan Håstad. “On the NP-hardness of Max-Not-2”. In: SIAM Journal on Computing 43.1
(2014), pp. 179–193.

[IP01] Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of k-SAT”. In: Journal of
Computer and System Sciences 62.2 (2001), pp. 367–375.

[IW97] Russell Impagliazzo and Avi Wigderson. “P=BPP if E Requires Exponential Circuits: Deran-
domizing the XOR Lemma”. In: Proceedings of the 29th Annual ACM Symposium on Theory
of Computing. STOC ’97. 1997, pp. 220–229.

[KR08] Yael Kalai and Ran Raz. “Interactive PCP”. In: Proceedings of the 35th International Collo-
quium on Automata, Languages and Programming. ICALP ’08. 2008, pp. 536–547.

[LSTW21] Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Linear-time zero-
knowledge SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/30. 2021.

[MNT22] Pasin Manurangsi, Preetum Nakkiran, and Luca Trevisan. “Near-Optimal NP-Hardness of
Approximating MAX k-CSPR”. In: Theory of Computing 18.3 (2022), pp. 1–29.

[NR22] Shafik Nassar and Ron D. Rothblum. “Succinct Interactive Oracle Proofs: Applications
and Limitations”. In: Proceedings of the 42nd Annual International Cryptology Conference.
CRYPTO ’22. 2022.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs Randomness”. In: Journal of Computer and
System Sciences 49.2 (1994), pp. 149–167.

[RR20] Noga Ron-Zewi and Ron Rothblum. “Local Proofs Approaching the Witness Length”. In:
Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science.
FOCS ’20. 2020, pp. 846–857.

[RR22] Noga Ron-Zewi and Ron D. Rothblum. “Proving as Fast as Computing: Succinct Arguments
with Constant Prover Overhead”. In: Proceedings of the 54th ACM Symposium on the Theory
of Computing. STOC ’22. 2022, pp. 1353–1363.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Interactive Proofs
for Delegating Computation”. In: Proceedings of the 48th ACM Symposium on the Theory of
Computing. STOC ’16. 2016, pp. 49–62.

[Sch78] Thomas J. Schaefer. “The Complexity of Satisfiability Problems”. In: Proceedings of the 10th
Annual ACM Symposium on Theory of Computing. STOC ’78. 1978, pp. 216–226.

53

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.
“Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation”. In: Proceedings
of the 39th Annual International Cryptology Conference. CRYPTO ’19. 2019, pp. 733–764.

[Zwi98] Uri Zwick. “Approximation Algorithms for Constraint Satisfaction Problems Involving at
Most Three Variables per Constraint”. In: Proceedings of the 9th Annual Symposium on
Discrete Algorithms. SODA ’98. 1998, pp. 201–210.

54

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Techniques
	2.1 Tools for length and round reduction
	2.2 Tools for improving completeness
	2.3 Tools for derandomization
	2.4 Deriving our results using the tools

	3 Preliminaries
	3.1 Interactive oracle proofs
	3.2 Interaction trees of probabilistic proofs
	3.3 IP to algorithm
	3.4 Constraint satisfaction problems
	3.5 Pseudorandom generators
	3.6 Exponential-time hypotheses
	3.7 Probabilistic inequalities

	4 Tools for length and round reduction
	4.1 Length reduction
	4.2 Round reduction
	4.3 Unrolling IOPs to PCPs

	5 Tools for improving completeness
	5.1 Completeness amplification
	5.2 Perfect completeness

	6 Tools for derandomization
	6.1 Derandomization using non-uniform advice
	6.2 Derandomization using pseudorandom generators

	7 Low-error IOPs to low-error PCPs
	8 Limitations of short IOPs
	9 Limitations of high-round low-query IOPs
	10 Limitations of binary-alphabet constant-query IOPs
	10.1 Algorithms for 3SAT from CSP-solvers and PCPs
	10.2 Algorithms for 3SAT from CSP-solvers and IOPs
	10.3 Proof of thm:constant-query-IOP-lower-bound,thm:constant-query-PCP-lower-bound

	Acknowledgments
	References

