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Abstract

Collapse binding and collapsing were proposed by Unruh (Eurocrypt ’16) as post-quantum
strengthenings of computational binding and collision resistance, respectively. These notions
have been very successful in facilitating the “lifting” of classical security proofs to the quantum
setting. A basic and natural question remains unanswered, however: are they the weakest
notions that suffice for such lifting?

In this work we answer this question in the affirmative by giving a classical commit-and-
open protocol which is post-quantum secure if and only if the commitment scheme (resp. hash
function) used is collapse binding (resp. collapsing). We also generalise the definition of collapse
binding to quantum commitment schemes, and prove that the equivalence carries over when the
sender in this commit-and-open protocol communicates quantum information.

As a consequence, we establish that a variety of “weak” binding notions (sum binding, CDMS
binding and unequivocality) are in fact equivalent to collapse binding, both for post-quantum
and quantum commitments.

Finally, we prove a “win-win” result, showing that a post-quantum computationally binding
commitment scheme that is not collapse binding can be used to build an equivocal commitment
scheme (which can, in turn, be used to build one-shot signatures and other useful quantum
primitives). This strengthens a result due to Zhandry (Eurocrypt ’19) showing that the same
object yields quantum lightning.
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1 Introduction

The advent of quantum computing has led to a deep reevaluation of central ideas in cryptography.
Most prominently, the hardness assumptions upon which many widely-used cryptographic schemes
are based do not hold with respect to quantum computation. The past two decades have seen
a great deal of progress in tackling this issue, by devising new schemes based on post-quantum
assumptions.

This is, however, only part of the picture. Quantum computation is not simply more powerful
than classical, it is fundamentally different in nature. Quantum information exhibits properties
like superposition and unclonability that have no classical analogue. As such, we must also revisit
another key ingredient in the study of cryptography: definitions. A number of works explore the
implications of quantum information for security definitions; some examples include random oracles
[BDF+11], message authentication codes [BZ13a, GYZ17], as well as signatures and CCA-secure
encryption [BZ13b].

This work studies the notion of computational binding (and the related notion of collision resis-
tance) against quantum adversaries. While a natural quantum analogue of computational binding
asserts that it is infeasible for a quantum computer to furnish valid openings of a commitment
to more than one message, [ARU14] demonstrated that this definition is not sufficient for many
applications of commitment schemes. The key issue is that while binding rules out finding openings
to distinct messages simultaneously, it does not rule out being able to “choose” the message that
is opened. Note that this is an exclusively quantum problem: a classical algorithm able to make
such a choice can break computational binding via rewinding.

Unruh [Unr16b] proposed post-quantum strengthenings of computational binding and collision
resistance (for classical protocols) called collapse binding and collapsing, respectively. These have
since become central in post-quantum cryptography: a sequence of works [Unr16b, LZ19, ACP21,
CCY21, CMSZ21, LMS22] has demonstrated that this strengthening is sufficient to prove post-
quantum security for various important schemes. Roughly speaking, these properties state that
an adversary that has committed to a superposition of messages cannot tell whether or not that
superposition has been measured.

Collapsing hash functions can be built from LWE [Unr16a]; additionally, any CRH that satisfies
a certain regularity property is collapsing, which includes constructions from LPN and isogenies,
and plausibly functions like SHA [Zha22, CX22]. Nonetheless, in general there remains a gap
between collapsing and collision resistance. Zhandry [Zha19, Zha21] showed that the existence of
a hash function in this gap implies the existence of quantum lightning, which (among other things)
yields public-key quantum money.

Quantum commitments. So far we have restricted our attention to the security of classical
schemes against quantum adversaries (post-quantum security). Complicating matters further, how-
ever, quantum communication enables the construction of “intrinsically quantum” cryptographic
constructions for which classical notions of security may not even apply. In quantum commitment
schemes, where commitments and openings are (possibly entangled) quantum states, the basic
notion of computational binding does not have a clear analogue; indeed, finding an appropriate
definition of binding for quantum commitments has proved difficult [DMS00, YWLQ15, FUYZ22,
AQY22, BB21], even in the statistical case, owing to an adversary’s ability to commit to a super-
position of messages.
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2 Results

In this work we investigate collapse binding and related properties. We first propose a definition of
collapse binding for quantum commitments (formalised in Definition 4.7). Then, using chosen-bit
binding as a bridge, we show that collapse binding is equivalent to CBB (Theorems 2.2 and 2.4) and
sum binding (Corollary 2.5), among others, both for post-quantum and quantum commitments.

Lastly, we use quantum rewinding techniques to show that, if computational and collapse bind-
ing are distinct, then a commitment scheme in this gap can be used to construct a one-shot equivocal
scheme and, consequently, a variety of useful quantum cryptographic primitives (see Section 6).

Remark 2.1 (Quantum vs. post-quantum results). For clarity, in this section we discuss the post-
quantum versions of our experiments and results. We stress, however, that our proofs hold with
respect to both quantum and classical (i.e., post-quantum) versions of the experiments.

(Note that, as the standard definition of quantum commitment schemes does not include post-
quantum as a special case, this is not trivial; see Section 2.2 for a discussion.)

2.1 Chosen-bit binding commitments

We introduce a new notion of binding we call chosen-bit binding, which is defined in terms of an
interactive game against a (potentially quantum) adversary Adv.

Let COM = (Gen,Commit) be a commitment scheme for the set of messages M = {0, 1}ℓ(λ).
The chosen-bit binding experiment is as follows. (See Experiment 5.1 for the general version.)

1. Sample a commitment key ck← Gen(1λ).
2. Obtain an index-commitment pair (i, com)← Adv(ck).
3. Sample b← {0, 1} uniformly at random.
4. Obtain a message-opening pair (m,ω)← Adv(b).
5. Output 1 if mi = b and Commit(ck,m, ω) = com.

We say that COM is chosen-bit binding (CBB) if, for every efficient adversary Adv, the above
experiment outputs 1 with probability at most 1/2 + negl(λ). Note that the definition of CBB is
agnostic to the actual form of the commitment, which is used only as an abstract functionality. It
therefore readily applies to both classical and quantum commitments, as well as to schemes where
the commit or reveal phases are interactive1 (or even to “physical” commitments like a locked safe).

Note, also, that CBB is equivalent to requiring that COM be a sum-binding bit commitment
at every coordinate i ∈ [ℓ] (which is distinct from Definition 4.5, the natural generalisation of sum
binding to message spaces with size larger than 2); the CBB experiment concisely captures all ℓ
sum binding experiments into one.

It is straightforward to show, via rewinding, that classical CBB is equivalent to computational
binding. Our first result is an equivalence between CBB against quantum adversaries and collapsing.

Theorem 2.2. A classical commitment scheme is collapse binding if and only if it is post-quantum
chosen-bit binding.

1In this work we restrict our attention to noninteractive commitments. All of our results easily generalise to the
setting where the commit phase is interactive. However, the definition of collapse binding seems to crucially rely on
the reveal phase being noninteractive.
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Our results establish that collapsing is a “minimal” assumption which allows one to prove post-
quantum security for the important class of commit-and-open sigma protocols (3-message protocols
where the prover initiates, consisting of (1) commitments to s strings; (2) a challenge C ⊆ [s];
and (3) for each i ∈ C, an opening of the ith string). Indeed, it was shown in [LMS22] that
any classically secure commit-and-open protocol is post-quantum secure when instantiated with a
collapse binding commitment. Our result yields a converse:

Corollary 2.3. There exists a classical commit-and-open protocol which is insecure when instan-
tiated with a commitment that is not collapse binding.

We note, however, that Theorem 2.2 follows from a more general result: since Definition 4.7
captures collapse binding of commitments with either classical or quantum messages, we prove
the equivalence between collapse and chosen-bit binding for a generalisation that captures both
quantum and post-quantum schemes (Definition 4.1; see also Remark 4.3).

Theorem 2.4. A quantum commitment scheme is collapse binding if and only if it is chosen-bit
binding.

Several works [FUYZ22, Yan21, BB21] aim to surmount the difficulties of basing cryptographic
protocols on the binding guarantees of quantum commitments, especially for computational security.
We hope that introducing a notion of collapse binding for quantum commitments will allow for some
of the successes in the post-quantum case to be carried over to the quantum setting.

2.2 Connections to existing notions

Note that, when the message length is ℓ = 1, CBB is identical to sum binding. Therefore,

Corollary 2.5. Sum binding is equivalent to collapse binding for quantum and post-quantum bit
commitments.

This corollary improves upon and generalises results from prior work. In the classical (post-
quantum) setting, Unruh [Unr16a] proves that collapse binding implies sum binding; one of the
main contributions of this paper is proving the converse.2

In the quantum setting, Yan [Yan22, Appendix F] shows that for parallel repetitions of “canon-
ical” quantum bit commitments (which capture the one-bit case of the schemes in Experiments 4.4
and 5.1), sum binding implies collapse binding – though that work does not give a definition of the
latter.3 Definition 4.7 is the natural extension of collapse binding to quantum commitments (which
does not appear in prior work), and enables us to generalise Yan’s result to arbitrary string commit-
ments; note that these include compressing commitments, which implies an analogous equivalence
for hash functions (see Section 2.2.2).

2We note that the following seemingly simpler strategy towards Theorem 2.2 does not suffice: (i) prove sum
binding implies collapse binding for bit commitments; then (ii) use Unruh’s parallel repetition theorem [Unr16a] to
“lift” the equivalence to string commitments. This strategy only works for parallel repetitions of bit commitments,
whereas Theorem 2.2 holds for any string commitment (and extends to hash functions).

3In fact, [Yan22] shows that for canonical quantum commitments, (i) honest binding (a seemingly weaker notion)
is equivalent to sum binding; and (ii) honest binding implies a “computational collapse” property that is equivalent
to collapse binding. This result relies on the particular structure of canonical quantum bit commitments.
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For general ℓ, (classical) chosen-bit binding is a special case of so-called “CDMS binding”
[CDMS04, Unr16b]. Informally, a commitment is CDMS binding with respect to a function class
F if for every f : X → Y in F and every efficient adversary Adv,

Pr
y
[Adv(y) opens com to m s.t. f(m) = y] ≤ 1

|Y |
+ negl(λ) ,

where com is a fixed commitment previously output by Adv and y is chosen uniformly at random
from Y . Unruh [Unr16a] showed that collapsing implies CDMS binding for all function classes
where |Y | is polynomial. CBB is easily seen to be equivalent to CDMS binding when F is the class
of one-bit projection functions; we hence obtain the following corollary.

Corollary 2.6. CDMS binding against quantum adversaries is equivalent to collapse binding.

It also follows that CDMS binding for one-bit projections implies CDMS binding for all function
classes with polynomial range.

2.2.1 Somewhere statistical binding and parallel repetition

Unlike collapse binding, which is defined in terms of a quantum interaction, chosen-bit binding is
defined in terms of a classical interaction with a (potentially quantum) adversary. This enables
“fully classical” proofs that previously required quantum machinery, as we demonstrate next.

We use the chosen-bit binding definition to reprove two known results: the (folklore) fact
that somewhere statistically binding (SSB) commitment schemes are collapse binding; and the
preservation of the collapse-binding property under parallel repetitions [Unr16b].

Lemma 2.7. Any somewhere-statistically binding commitment scheme is chosen-bit binding; in
particular, post-quantum SSB commitment schemes are collapsing.

Lemma 2.8. If a commitment scheme COM is chosen-bit binding, then is k-fold parallel repetition
COMk is also chosen-bit binding.

2.2.2 Hash functions

While we shall only discuss commitment schemes in the body of the paper, for our purposes
collision-resistant hash functions are binding (but not hiding) classical commitment schemes where
the length of the randomness is zero; therefore, many of our results extend to CRHs mutatis
mutandis.

More precisely, consider the analogous (classical) chosen-bit binding experiment for a family
Hλ ⊆ {0, 1}m(λ) → {0, 1}n(λ) of hash functions defined next.

1. Sample h← Hλ.
2. Obtain (y, i)← Adv(h), where y ∈ {0, 1}n(λ) and i ∈ [m(λ)].
3. Choose b← {0, 1} uniformly at random.
4. Obtain x← Adv(b).
5. Output 1 if h(x) = y and xi = b.

We say that H is classically (resp. post-quantum) chosen-bit binding (CBB) if for every efficient
classical (resp. quantum) adversary Adv, the above experiment outputs 1 with probability at most
1/2 + negl(λ).
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Classical chosen-bit binding for hash functions is easily seen to be equivalent to collision resis-
tance, and, by an essentially identical argument to Theorem 2.2, we can show that post-quantum
CBB is equivalent to collapsing.

Corollary 2.9. A hash family H is collapsing if and only if it is post-quantum chosen-bit binding.

Note that CBB also implies a method by which a quantum falsifier can convince a classical party
that a hash function is not collapsing.

2.3 Equivocality

A (classical) commitment scheme is one-shot equivocal [AGKZ20] if it has an additional functionality
Eq, the equivocator, which produces a commitment string com and then, given a messagem, outputs
a valid opening ω to it (with probability close to 1).4 In other words, Eq generates a commitment
com it can equivocate to any message of its choice (but only once, if the scheme is computationally
binding).

We observe first that what [AGKZ20] call “unequivocality” — roughly, that achieving the above
with any nontrivial advantage is computationally infeasible — implies chosen-bit binding, and hence
collapsing. This resolves an open question of [AGKZ20].

However, we are able to show something much stronger, in the spirit of the “win-win” results
of [Zha19, Zha21]. In particular, we show that if a commitment scheme is (almost everywhere) not
collapse binding, then it is one-shot equivocal. Note that the latter is a much stronger property than
the negation of unequivocality, since Eq must succeed with probability close to 1. More formally,
we obtain the following.5

Theorem 2.10 (Theorem 6.9, informally stated). If COM is a post-quantum computationally but
not sum-binding commitment scheme, it can be transformed into a one-shot equivocal scheme.

Our proof uses recent quantum rewinding techniques [CMSZ21] to amplify success probability.
We remark that while [LMS22, CMSZ21] build upon “Unruh’s lemma” [Unr12] – which shows that
if a pair of projective measurements succeed with sufficiently high probability, then so does their
sequential application – it is insufficient for our purposes.

We instead use an early quantum rewinding lemma [CSST11], which ensures one-shot equivocal-
ity for any inverse-polynomial advantage against COM in the collapse binding experiment (Unruh’s
lemma would only apply assuming constant advantage).

3 Preliminaries

We denote by λ ∈ N the security parameter, and when we refer to probabilistic/quantum polynomial-
time (PPT/QPT) algorithms, the time complexity is a polynomial in λ. We denote by negl(λ) any
function asymptotically smaller than every inverse polynomial, i.e, that is o(λ−c) for every c ∈ N.

4While [AGKZ20] defines equivocality for hash functions, it easily extends to commitment schemes. Indeed, the
functionality they require is that of a commitment, which suffices to ensure security of the cryptographic objects
constructed in that work.

5It is claimed in [AGKZ20] that if COM is not unequivocal, its parallel repetition COMk is equivocal for large
enough k. This is in fact true, but their argument is flawed; see Remark 6.2 for a discussion.
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For n ∈ N, we write [n] to denote the set {1, . . . , n}. For a set S, we write i ← S to denote
that i is sampled uniformly from S. When D is a distribution, its support is denoted supp(D) and
i← D denotes that i is chosen according to D.

We make use of the following simple fact, a consequence of Markov’s inequality, and the Chernoff
bound.

Proposition 3.1. Let X be a random variable supported on [0, 1]. Then for all α ≥ 0, Pr[X ≥ α] ≥
E[X]− α.

Proposition 3.2 (Chernoff bound). Let X1, . . . , Xk be independent Bernoulli random variables
distributed as X. Then, for every δ ∈ [0, 1],

Pr

[
1

k

k∑
i=1

Xi ≥ (1 + δ)E[X]

]
≤ e−

δ2kE[X]
3 and

Pr

[
1

k

k∑
i=1

Xi ≤ (1− δ)E[X]

]
≤ e−

δ2kE[X]
2 .

We also make use of the Cauchy-Schwarz inequality with respect to the Hilbert-Schmidt inner
product.

Lemma 3.3 (Cauchy-Schwarz). For any complex matrices A,B such that A†B is defined,∣∣∣Tr(A†B
)∣∣∣2 ≤ Tr

(
A†A

)
· Tr
(
B†B

)
.

We say a commitment scheme is classical when all of its communication is classical (but an
adversary may be quantum); that is, we use classical commitments as a shorthand for classical-
message commitments.

By the k-fold parallel repetition of an experiment/interactive protocol, we denote that which
results from repeating it independently k times with the same first message (in our case, a com-
mitment key ck); the output of the experiment is the conjunction of the outputs of each execution.

3.1 Quantum information

We recall the basics of quantum information. (Most of the following is taken almost verbatim
from [CMSZ21].) A (pure) quantum state is a vector |ψ⟩ in a complex Hilbert space H with
∥|ψ⟩∥ = 1; in this work, H is finite-dimensional, and we use |0⟩ to refer to a fixed (“zero”) state in
H. We denote by S(H) the space of Hermitian operators on H. A density matrix is a positive semi-
definite operator ρ ∈ S(H) with Tr(ρ) = 1. A density matrix represents a probabilistic mixture
of pure states (a mixed state); the density matrix corresponding to the pure state |ψ⟩ is |ψ⟩⟨ψ|.
Typically we divide a Hilbert space into registers, e.g. H = H1 ⊗ H2, and we sometimes write
H \H2 to denote H1; we also write ρH1 to specify that ρ ∈ S(H1).

A unitary operation is a complex square matrix U such that UU † = I. The operation U
transforms the pure state |ψ⟩ to the pure state U |ψ⟩, and the density matrix ρ to the density
matrix UρU †.

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π. If a (unitary U or) projector
Π in a Hilbert spaceH1⊗H2 acts trivially (as the identity I) inH2, we may write Π or ΠH1 to denote
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Π ⊗ IH2 . A collection of projectors M = (Πi)i∈S is a projective measurement when
∑

i∈S Πi = I,
and a submeasurement when there exists a projector Π such that

∑
i∈S Πi = I−Π.

The application of M to a pure state |ψ⟩ yields outcome i ∈ S with probability pi = ∥Πi |ψ⟩∥2;
we denote sampling from this distribution by i ← M(ρ), and in this case the post-measurement
state is |ψi⟩ = Πi |ψ⟩ /

√
pi. We also use σ ← M(ρ) to denote the mixture of post-measurement

states Πi |ψ⟩ /
√
pi with probability pi. A two-outcome projective measurement is called a binary

projective measurement, and is written as M = (Π, I−Π), where Π is associated with the outcome
1, and I−Π with the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via a completely-positive
trace-preserving (CPTP) map T : S(H) → S(H′). We omit the precise definition of these maps in
this work; we only use the facts that they are trace-preserving (i.e., Tr(T (ρ)) = Tr(ρ) for every
ρ ∈ S(H)) and linear. For every CPTP map T : S(H) → S(H) there exists a unitary dilation U
that operates on an expanded Hilbert space H ⊗ K, so that, with TrK the partial trace operator
that traces out K, we have T (ρ) = TrK(U(ρ⊗ |0⟩⟨0|K)U †). This is not necessarily unique; however,
if T is described as a circuit then there is a dilation UT represented by a circuit of size O(|T |).

4 Commitment schemes

In this section, we define commitment schemes and the different notions of binding that we shall
use (except for CBB, whose definition we defer to Section 5). While most of what follows is not
novel, to the best of our knowledge the notion of collapse binding has as yet only been defined
and studied for classical commitments. Our definition generalises that put forth by [Unr16b] (and
coincides with it in the classical case).

Definition 4.1. A quantum commitment scheme COM consists of a PPT algorithm Gen, a unitary
QPT algorithm Commit acting on a 4-tuple of registers K⊗M⊗C ⊗O, and a “check” subregister
S ⊆ C ⊗O.

Commit uses the key register K and message registerM as classical controls. The dimension of
K is

∣∣supp (Gen(1λ))∣∣ andM has ℓ(λ) qubits; its computational basis is labeled by elements of the

message spaces {Mλ}λ∈N, where M = {0, 1}ℓ(λ).
In addition, COM = (Gen,Commit,S) is a bit commitment if ℓ = 1, i.e., if Mλ = {0, 1} for all

λ ∈ N.

As the register S will be clear from context, we write COM = (Gen,Commit) for (Gen,Commit,S).
Moreover, we denote by Commitck,m the unitary acting as Commitck,m |ψ⟩ = Commit |ck⟩ |m⟩ |ψ⟩ on
C ⊗ O.

Definition 4.2. A classical commitment scheme COM = (Gen,Commit) is a quantum commitment
scheme where Commit is a PPT algorithm and S = C.

We use function notation for classical commitments, i.e., Commit(ck,m, ω) is the function computed
and inserted (by a bitwise XOR) into the commitment register C.

Remark 4.3. Our definition of quantum commitment schemes deviates slightly from those in the
literature in order to generalise classical commitments. In prior work it is typically assumed that
quantum commitments are generated deterministically, which is without loss of generality since
any randomness can be “purified out”. Then the challenger may measure both C and O in the
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last step to check that Commit†ck,m indeed inverts the adversary’s computation (i.e., the challenger
checks the register S = C ⊗ O).

However, in classical commitments randomness is inherent and only the C register is “un-
computed”: the challenger reads ω from O and checks that the contents of C coincide with
Commit(ck,m, ω). This corresponds to applying Commit†ck,m(C,O) and only measuring S = C.

(Given this discussion, it is natural to ask whether, for quantum commitments, it suffices to
measure only C. We leave this question to future work.)

We now define two notions of binding (sum and collapse) that apply to both quantum and
classical commitments. Recall that, in order to be non-trivial, commitment schemes typically also
satisfy a notion of hiding, which we omit since it is not relevant to the current work.

Experiment 4.4 (Sum binding). Given an adversary Adv, define the experiment ExpAdvsum(λ),
parametrised by λ ∈ N, as follows.

1. Generate ck← Gen(1λ).
2. Obtain the commitment register C ← Adv(ck).
3. Sample a (classical) message m←M .

4. Obtain the opening register O ← Adv(m), apply Commit†ck,m(C,O) and measure S in the
computational basis.

5. Output 1 if the measurement yields |0⟩.

Definition 4.5. A quantum commitment scheme COM is sum binding if, for all non-uniform QPT
adversaries Adv in Experiment 4.4,

Pr
[
ExpAdvsum(λ) = 1

]
≤ 1

|M |
·
(
1 + negl(λ)

)
.

When COM is classical and Adv is PPT (resp. QPT), we say it is classically (resp. post-quantum)
sum binding.

Note that the definition of sum binding given by [Unr16b] refers only to bit commitments; the
above is a natural generalisation to quantum commitments and larger message spaces (which seems,
however, to be of limited use when M is of superpolynomial size).

We proceed to the definition of collapse binding for quantum commitments.

Experiment 4.6 (Collapse binding). For an adversary Adv, define the experiment ExpAdvcoll (λ) as
follows.

1. Generate ck← Gen(1λ).
2. Obtain the registers C ⊗M⊗O ← Adv(ck).
3. Sample b← {0, 1}. If b = 1, measureM in the computational basis.
4. Obtain b′ ← Adv(M⊗O).
5. Output 1 if b = b′.

We say that Adv is valid if, for all ck ∈ supp
(
Gen(1λ)

)
, the state ρ in C ⊗M⊗O ← Adv(ck)

is a mixture of superpositions of valid commitments; that is, ρ =
∑

i pi |ψi⟩⟨ψi| where |ψi⟩ has
nonzero amplitude only on computational basis states |com,m, ω⟩ in the image of the projec-

tor Commitck,m |0⟩⟨0|S Commit†ck,m. (In the post-quantum case, this simplifies to |m,ω⟩ satisfying
Commit(ck,m, ω) = com.)
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Definition 4.7. A quantum commitment scheme COM is collapse binding if, for all valid non-
uniform QPT adversaries Adv in Experiment 4.6,6

Pr
[
ExpAdvcoll (λ) = 1

]
≤ 1

2
+ negl(λ) .

Note that the challenger does not return the register C to the adversary in Step 4 for the
purpose of distinguishing; this is crucially used in the proof of Theorem 2.4, and would other-
wise lead to an unsatisfiable generalisation of classical commitments: an adversary that sends∑

m∈M |Commit(ck,m, ω)⟩ |m⟩ |ω⟩ (normalised) and receives all three registers can detect a mea-
surement with high probability by uncomputing Commit and using the binary measurement with
projector |ψ⟩⟨ψ|M where |ψ⟩ =

∑
m∈M |m⟩.

4.1 Classical binding

We conclude this section with a discussion of notions of binding that we only apply to classical
commitments (with possibly quantum adversaries).

Experiment 4.8 (Computational binding). Given an adversary Adv, define ExpAdvbind(λ) as follows.

1. Generate ck← Gen(1λ).
2. Obtain (m0, ω0,m1, ω1)← Adv(ck).
3. Output 1 if m0 ̸= m1 and Commit(ck,m0, ω0) = Commit(ck,m1, ω1).

Definition 4.9. A commitment scheme COM is classically (resp. post-quantum) computationally
binding if for all PPT (resp. QPT) adversaries Adv in Experiment 4.8,

Pr
[
ExpAdvbind(λ) = 1

]
= negl(λ) .

Somewhere statistical binding (SSB). Finally, we recall the notion of somewhere statistical
binding, introduced by [HW15] in the context of hash functions. Here we present the equiva-
lent notion for commitments; note that this is different to the more sophisticated notion of SSB
commitments given by [FLPS21].

Definition 4.10 (Somewhere statistical binding). Let ℓ be a polynomial in λ. A commitment
scheme COM = (Gen,Commit) is said to be somewhere statistically binding (SSB) if:

• For all i, j ∈ [ℓ(λ)], the distributions Gen(1λ, i) and Gen(1λ, j) are computationally indistin-
guishable.

• For all i ∈ [ℓ(λ)] and all ck ∈ supp
(
Gen(1λ, i)

)
, if Commit(ck,m, ω) = Commit(ck,m′, ω′) for

some (m,ω,m′, ω′), then mi = m′
i.

More precisely, computational indistinguishability of Gen(·, i) and Gen(·, j) is defined by the
experiment defined next.

Experiment 4.11. Given a commitment scheme COM, define ExpAdvssb (λ) as follows.

6Equivalently, we could drop the validity constraint by measuring the state obtained in Step 2 with the appropriate
binary projective measurement and aborting unless the outcome is 1.
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1. Sample j ← [ℓ(λ)] and generate ck← Gen(1λ, j).
2. Obtain i← Adv(ck).
3. Output 1 if i = j.

Therefore, (Gen,Commit) is classically (resp. post-quantum) somewhere-statistically binding if for
all non-uniform PPT (resp. QPT) adversaries Adv,

Pr
[
ExpAdvssb (λ) = 1

]
≤ 1

ℓ
+ negl(λ) .

(And, in addition, commitment keys ck determine the ith coordinate of messages that map to the
same commitment string.)

5 Chosen-bit binding

We begin this section with the definition of our main conceptual tool: the notion of chosen-bit
binding. We define this notion in generality, for quantum schemes (and, owing to Definition 4.2, for
classical schemes as a special case). Recall that S ⊆ C ⊗O is the subregister checked in a quantum
(de)commitment.

Experiment 5.1 (Chosen-bit binding). Given a commitment scheme COM, define ExpAdvcbb (λ) as
follows.

1. Sample ck← Gen(1λ).
2. Obtain the index and commitment register pair (i, C)← Adv(ck).7

3. Sample b← {0, 1}.
4. Obtain the message and opening register pair (m,O)← Adv(b).

5. Apply Commit†ck,m to C ⊗ O and measure S in the computational basis.
6. Output 1 if mi = b and the measurement outcome is |0⟩.

Definition 5.2. A quantum commitment scheme is chosen-bit binding if, for all non-uniform QPT
adversaries Adv in Experiment 5.1,

Pr
[
ExpAdvcbb (λ) = 1

]
≤ 1

2
+ negl(λ) .

Note that, in the case of bit commitments (i.e., when M = {0, 1}), this notion coincides with sum
binding. Recall that, in the case of classical adversaries, we have:

Lemma 5.3. A (classical) commitment scheme is chosen-bit binding against classical adversaries
if and only if it is computationally binding.

(The proof of this lemma is straightforward and hence omitted.)
We now prove the first of our main results: an equivalence between chosen-bit binding and

collapse binding. We will make extensive use of the following binary projective measurements
associated with a quantum commitment scheme COM. With

(
|m⟩

)
m∈M and

(
|ω⟩
)
ω
as bases for

the registersM and O, respectively, we define:

7Alternatively, Adv(ck) may output two quantum registers (I, C); then i is obtained by a computational basis
measurement of I. (An analogous observation holds for Step 4, with (M,O)← Adv(b) and a measurement ofM.)
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Mck,m := (Πck,m, I−Πck,m) by

Πck,m := Commitck,m

(
|0⟩⟨0|S ⊗ I(C⊗O)\S

)
Commit†ck,m ; (1)

Mck := (Πck, I−Πck) by

Πck :=
∑
m∈M

|m⟩⟨m|M ⊗Πck,m ; (2)

Mi,b := (Πi,b, I−Πi,b) by

Πi,b :=
∑

m,mi=b

|m⟩⟨m|M ⊗Πck,m ; and (3)

Mi := (Πi, I−Πi) by

Πi :=
∑

b∈{0,1}

|b⟩⟨b|B ⊗Πi,b . (4)

Note that Πck,m (Eq. 2) projects onto the subspace of valid commitment-opening register pairs,
and the other measurements do so with additional restrictions: Πck,m (Eq. 1) projects onto valid
messages; Πi,b (Eq. 3) projects onto (valid) messages with mi = b; and Πi (Eq. 4) onto messages
whose ith coordinate overlaps with the contents of B.

Theorem 5.4 (Theorem 2.4, restated). A quantum commitment scheme COM is collapse binding
if and only if it is chosen-bit binding .

We first prove (via the contrapositive) that collapse binding implies chosen-bit binding, which
extends [Unr16a, Theorem 32] to quantum commitments.

Proof (collapsing ⇒ CBB). Let Adv be an adversary that achieves advantage ε in Experiment 5.1
(the chosen-bit binding experiment). We may assume, without loss of generality, that the adver-
sary’s action in Step 4 consists of the application of a unitary U on B ⊗M ⊗ O ⊗ H (where B
contains the bit received from the challenger and H is an additional workspace register) followed
by a computational basis measurement of M. We construct an adversary Adv′ for the collapse
binding experiment as follows.

• Upon receipt of ck:

1. Run Adv(ck) to obtain i ∈ [ℓ] and state ρ on C ⊗M⊗O ⊗H.
2. Apply U ⊗ IC to σ = |+⟩⟨+|B ⊗ ρ followed by the binary projective measurement Mi.
3. If the measurement outcome is 0, overwrite C ⊗M⊗ O with a valid commitment (to,

say, the all-zero string). Output i ∈ [ℓ] along with the registers C,M and O.
• Upon receipt ofM, O:

1. If the measurement outcome in the previous step was 0, stop and output a random bit.
2. Apply U † to B ⊗M⊗O ⊗H and measure B in the {|+⟩ , |−⟩} basis.
3. If the outcome is |+⟩, output 0; otherwise output 1.

Note that Adv′ is valid, as Πck = Πi,0+Πi,1 (by Eqs. 2 and 3) and Eq. 4 implies TrB,H(ΠiσΠi) ∈
Im(Πi,0 + Πi,1). Moreover, if either (i) the challenger measures or (ii) the outcome of the first
measurement by Adv′ is 0, the experiment outputs a uniformly random bit.

For the case where the challenger does not measure, we use the following proposition:
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Proposition 5.5. Let P,Q be projectors and ρ a density matrix such that ρQ = ρ. Then

Tr(QPρP ) ≥ Tr(Pρ)2 .

Proof. Tr(Pρ) = Tr(PρQ) ≤
√
Tr(QPρPQ), by Cauchy-Schwarz (Lemma 3.3).

Assume that b = 0 in Step 3 of Experiment 4.6, soM is not measured (we deal with the case
b = 1 next). We lower bound the probability that the measurement outcomes of Adv′(ck) and
Adv′(M,O) are 1 and |+⟩, respectively, whereupon the experiment outputs 1: since σ · |+⟩⟨+| = σ,
by Proposition 5.5,

Tr (|+⟩⟨+|ΠiσΠi) ≥ Tr(Πiσ)
2

=

(
1

2
Tr (Πi,0ρ) +

1

2
Tr (Πi,1ρ)

)2

=

(
1

2
+ ε

)2

.

Now note that, if b = 1 in Step 3, theM register is measured and B collapses to a computational
basis state, namely, |mi⟩ when the outcome is m; since the adversary measures B in the Hadamard
basis, the experiment outputs 1 with (conditional) probability 1/2 in this event. Moreover, if the
adversary’s first measurement outcome is 0 (an event with 1 − Tr(Πiσ) probability) it outputs a
uniformly random bit; in this case, Experiment 4.6 also outputs 1 with probability 1/2.

Overall, the probability that the experiment outputs 1 is thus

1

4
+

1

2

(
Tr
(
|+⟩⟨+|ΠiσΠi

)
+

1

2

(
1− Tr(Πiσ)

))
=

1

4
+

1

2

(
Tr
(
|+⟩⟨+|ΠiσΠi

)
+

1

2

(
1

2
− ε
))

≥ 1

4
+

1

2

((
1

2
+ ε

)2

+
1

2

(
1

2
− ε
))

≥ 1

2
+
ε

2
.

Before proving the reverse implication, we show a basic fact about non-commuting projective
measurements. Let M be a projective measurement and B = (D, I − D) a binary projective
measurement. Consider the following experiment applied to a state ρ:

1. Measure i← M.
2. Apply B (and ignore the result).
3. Measure j ← M.

The following claim gives a lower bound on the probability that i ̸= j in terms of how well B
distinguishes ρ from M(ρ) (which is a measure of how “non-commuting” B and M are). Variants
of this claim have appeared independently and concurrently in [Zha22, CX22].

Claim 5.6. Let D be a projector, M = (Πi)i∈[N ] be a projective submeasurement and ρ be a
Hermitian matrix such that

∑
iTr(Πiρ) = Tr(ρ). Then∑

j

∑
i ̸=j

Tr(ΠiDΠjρΠjD) ≥
Tr
(
D(ρ−M(ρ))

)2
N · Tr(ρ)

.
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Proof. Inserting resolutions of the identity, and since (I−
∑

iΠi)ρ = 0,

Tr(Dρ) =
∑
i

Tr(DΠiρΠi) +
∑
i ̸=j

Tr(ΠiDΠjρ)

= Tr(DM(ρ)) +
∑
j

Tr(Π̸=jDΠjρ) ,

where Π̸=j :=
∑

i ̸=j Πi. Applying Cauchy-Schwarz (Lemma 3.3, with A =
√
ρ · ΠjDΠ ̸=j and B =

√
ρ) yields |Tr(Π̸=jDΠjρ)| ≤

√
Tr(Π̸=jDΠjρΠjD)

√
Tr(ρ). Substituting into the above equation

and squaring we have

Tr
(
D(ρ−M(ρ))

)2
Tr(ρ)

≤

∑
j

√
Tr(Π̸=jDΠjρΠjD)

2

,

and applying Cauchy-Schwarz again (with respect to Euclidean norm and the N -dimensional pair
of vectors with 1 and

√
Tr(Π̸=jDΠjρΠjD) in the jth coordinate, respectively) yields the claim.

We now prove the reverse implication.

Proof (CBB ⇒ collapsing). Let Adv be an adversary that achieves ε collapsing advantage. We
design an adversary Adv′ for the chosen-bit binding experiment as follows.

• Upon receipt of ck:

1. Run Adv(ck) obtain a quantum state ρ in C ⊗M⊗O ⊗H.
2. Output a random index i← [ℓ] and C.

• Upon receipt of b:

1. Measure the first i bits ofM, obtaining outcomes b1, . . . , bi.
2. If bi ̸= b, apply Adv’s (projective) distinguishing measurement (D, I−D) toM⊗O⊗H.8
3. MeasureM in the computational basis. Output the outcome m and the opening register
O.9

Let Mj(ρ) be the map corresponding to measuring the jth qubit ofM, i.e.,

Mj(ρ) = ΠiρΠi + (I−Πi)ρ(I−Πi).

Let M[j] := M1(· · ·Mj−1(Mj(ρ)) · · · ) be the map corresponding to measuring the first j qubits of
M, where M[0] is the identity map. We have that

ρ−M[ℓ](ρ) =
ℓ−1∑
j=0

M[j](ρ)−M[j+1](ρ) =
n−1∑
j=0

ρj −Mj+1(ρj)

where ρj := M[j](ρ).

8Here we use that D acts trivially on C.
9Note that in the case of classical commitments, O is a classical register containing an opening string ω; equiva-

lently, we may assume O is implicitly measured.
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The adversary’s success probability γ in Experiment 5.1 can be written as

1

2ℓ

∑
i∈[ℓ]

∑
b∈{0,1}

Tr(Πi,bρi−1) + Tr(Πi,bDΠi,1−bρi−1Πi,1−bD).

Note that the validity of Adv ensures ρi−1 is in the span of Πck, which simplifies the first term of
the sum:

∑
i∈[ℓ]

∑
b∈{0,1}Tr(Πi,bρi−1) =

∑
i∈[ℓ]Tr(ρi−1) = ℓ. It also enables us to apply Claim 5.6

with respect to the submeasurement (Πi,0,Πi,1); using the claim and Cauchy-Schwarz (Lemma 3.3),
we obtain that

γ ≥ 1

2
+

1

4ℓ

∑
i∈[ℓ]

Tr(D(ρi −Mi+1(ρi)))
2

≥ 1

2
+

1

4ℓ2

∑
i∈[ℓ]

Tr(D(ρi −Mi+1(ρi)))

2

=
1

2
+

1

4ℓ2
(
Tr
(
D(ρ−M[ℓ](ρ))

))2
=

1

2
+
( ε
2ℓ

)2
where the final equality follows by assumption on Adv. This completes the proof.

5.1 Somewhere statistical binding and parallel repetitions

Using chosen-bit binding, we give “fully classical” proofs that somewhere-statistical binding com-
mitments are collapse binding, and that the parallel repetition of collapse binding commitments
are collapse binding.

Lemma 5.7. Post-quantum somewhere statistically binding commitment schemes are chosen-bit
binding against quantum adversaries, and therefore collapse binding.

Proof. Let Adv be an adversary satisfying Pr
[
ExpAdvcbb (λ) = 1

]
= 1/2 + ε.

We construct an adversary Adv′(ck) for Experiment 4.11 (SSB) as follows: simulate Exper-
iment 5.1 (CBB) with the key ck, obtaining (com, i, b,m, ω). (Recall that Experiment 4.11 is
classical, so Adv outputs strings com and ω.) If mi ̸= b or Commit(ck,m, ω) ̸= com (i.e., if the
adversary loses), output k ← [ℓ]; otherwise, output k ← [ℓ] \ {i}. We denote by j the uniformly
sampled binding index (which determines Gen(1λ, j) as the generator in the experiment).

The success probability of this adversary is

Pr[k = j] =
1

ℓ
· Pr

[
ExpAdvcbb (λ) = 0

]
+

1

ℓ− 1
· Pr

[
ExpAdvcbb (λ) = 1 ∧ j ̸= i

]
. (5)

Observe that the experiment outputs 1 with probability at most 1/2 when conditioned on j = i
(since, by Definition 4.10, one of the choices for b ∈ {0, 1} is such that no message-opening pair
(m,ω) with Commit(ck,m, ω) = com and mi = b exists); that is, Pr

[
ExpAdvcbb (λ) = 1

∣∣ j = i
]
≤ 1/2.

Hence

1

2
+ ε = Pr

[
ExpAdvcbb (λ) = 1

∣∣∣ j = i
]
Pr[j = i] + Pr

[
ExpAdvcbb (λ) = 1 ∧ j ̸= i

]
≤ 1

2
· Pr[j = i] + Pr

[
ExpAdvcbb (λ) = 1 ∧ j ̸= i

]
.
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Note that, if Pr[j = i] ≥ (1+ε)/ℓ (infinitely often), the adversary that always outputs i has inverse
polynomial advantage. We therefore assume otherwise; then

1

2
+ ε ≤ 1 + ε

2ℓ
+ Pr

[
ExpAdvcbb (λ) = 1 ∧ j ̸= i

]
,

and so Pr
[
ExpAdvcbb (λ) = 1 ∧ j ̸= i

]
≥ 1

2(1−
1
ℓ ) + ε · (1− 1

2ℓ).

Substituting into (5) and using Pr
[
ExpAdvcbb (λ) = 0

]
= 1/2− ε (by hypothesis) yields

Pr[k = j] ≥ 1

2ℓ
+

1− 1
ℓ

2(ℓ− 1)
+ ε ·

(
1− 1

2ℓ

ℓ− 1
− 1

ℓ

)
=

1

ℓ
+

ε

2ℓ(ℓ− 1)
,

which completes the proof.

Observe that Theorem 5.4 implies that parallel repetitions preserve collapse binding if and only
if they preserve chosen-bit binding. Then,

Proposition 5.8. If a quantum commitment scheme COM = (Gen,Commit) is chosen-bit binding,
then its k-fold parallel repetition is also chosen-bit binding.

Proof. Let Adv be an adversary satisfying Pr
[
ExpAdvcbb (λ) = 1

]
= 1/2 + ε in the k-wise parallel

repetition of Experiment 5.1. (Recall that the same key ck is used in each repetition; we index
message bits by pairs (i, j) ∈ [k]× [ℓ], so that mij is the jth bit of the ith message.)

Then an adversary Adv′(ck) for the original commitment scheme, with the same advantage,
simply executes Adv(ck) to obtain an index (i, j) along with commit registers C1 ⊗ . . . ⊗ Ck, and
outputs (j, Ci); upon receipt of b, it obtains (m1, . . . ,mk,O1 ⊗ · · · ⊗ Ok) ← Adv(b) and returns
(mi,Oi) in the last step.

Since mij = (mi)j = b and applying Commit†ck,mi
(Ci,Oi) followed by a measurement of Si

yields |0⟩ with probability at least 1/2 + ε (because applying Commit†ck,m1
⊗ · · · ⊗ Commit†ck,mk

to
(C1 ⊗O1) ⊗ · · · ⊗ (Ck ⊗Ok) and measuring S1 ⊗ · · · ⊗ Sk yields |0⟩ with probability 1/2 + ε), the
result follows.

6 Equivocality

Amos, Georgiou, Kiayias and Zhandry [AGKZ20] define two closely related notions they call equiv-
ocal and one-shot chameleon collision-resistant hash functions, and show how they can be used
to obtain a variety of interesting quantum cryptographic constructions. Here we consider a slight
variant, which we call a one-shot equivocal commitment scheme. We note that an equivocal CRHF
associated to a predicate p is a one-shot equivocal commitment to the bit p(x) where x is the hash
preimage.10

10While [AGKZ20] distinguish between the notions of equivocal and one-shot chameleon hash functions (roughly
speaking, equivocal hashes allow equivocation to some string under a predicate constraint, while one-shot chameleon
hashes equivocate to any string), they also prove how to construct one from the other. We choose to only define the
(syntactically) stronger property, which we call one-shot equivocality – both to distinguish it from classical notions
of equivocality and to evince the connection to one-shot chameleon hashes.
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Definition 6.1. A commitment scheme COM = (Gen,Commit) is one-shot equivocal if there exists
a stateful QPT algorithm Eq such that for all messages m ∈M ,

Pr

Commit(ck,m, ω) = com

∣∣∣∣∣∣
ck← Gen(1λ)
com← Eq(ck)
ω ← Eq(m)

 = 1− negl(λ) .

While this definition allows arbitrary message spaces, hereafter we focus on the caseM = {0, 1}.
We also note that Definition 4.5 (sum binding) is identical to a “converse” notion to the above,
which [AGKZ20] define informally and call unequivocality.

Remark 6.2. Despite what the terminology may suggest, we stress that (one-shot) equivocality
and unequivocality (i.e., sum binding) are not the logical negation of one another: aside from
the usual technical issues of infinitely-often vs. almost-everywhere, equivocality is syntactically
much stronger than “non-unequivocality”, as it requires a correct opening with all but negligible
probability.

It is claimed in [AGKZ20] that an adversary breaking unequivocality yields a one-shot equivocal
commitment scheme as follows (we adapt their argument to our definitions). The new commitment
is a parallel repetition of the original, where the committed bit is taken to be the majority of the
underlying commitments. To equivocate, we ask the adversary to open each underlying commitment
to the same bit b. The idea is that taking the majority amplifies the small bias that an adversary
achieves. However, this argument has a significant flaw: what do we do when the adversary fails
to equivocate on a particular commitment? In this case it may either produce an invalid opening,
preventing us from opening the commitment altogether, or even consistently provide openings for
1− b, leading to a valid opening to the wrong bit!

Regardless, we show in Theorem 6.9 that the implication still holds: sum binding can be
“boosted” to one-shot equivocality via quantum rewinding.

One-shot equivocal commitments only differ from equivocal hashes in their mildly weaker
“collision-resistance”, which does not prevent an adversary from efficiently finding distinct valid
openings for the same message. However, we remark that the construction of one-shot signatures
of [AGKZ20] can be based on one-shot equivocal commitments rather than hashes without harm to
their security: while an adversary may find distinct signatures for the same message, the resulting
scheme still ensures it cannot sign distinct messages. (As a result, subsequent constructions that
rely on one-shot signatures – quantum money and proofs of quantumness, among others – also
satisfy this weakened but sufficient security guarantee.)

Nontrivial (i.e., computationally binding) one-shot equivocal string commitments can be ob-
tained from one-shot equivocal bit commitments by the usual composition, which we prove next
for completeness.

Proposition 6.3. If a bit commitment scheme COM = (Gen,Commit) is computationally binding
and one-shot equivocal, then its k-fold parallel repetition is also computationally binding and one-
shot equivocal when k = poly(λ).

Proof. Computational binding follows from the fact that an adversary Adv in the parallel repetition
of Experiment 4.8 achieving Pr

[
ExpAdvbind(λ)

]
= ε with message space M = {0, 1}k immediately

yields Adv′ with advantage ε/k when M = {0, 1}: Adv′ samples i← [k], runs the (bit) experiment
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with the challenger on this coordinate and simulates the interaction for coordinates j ̸= i. When
ε = poly

(
λ−1

)
, the resulting advantage ε/k is also inverse polynomial.

If Eq with quantum auxiliary input ρ is the equivocator for COM, we define Eq′ as the nat-
ural equivocator for the parallel repetition: Eq′(ck), with auxiliary input ρ⊗k, obtains from each
copy of ρ a commitment string comi ← Eq(ck) and a post-measurement state ρi, then returns
(com1, . . . , comk). Upon receipt of a message, Eq′(m) runs each Eq(mi) on the state ρi, obtains ωi

and returns (ω1, . . . , ωk). Since Commit(ck,mi, ωi) = comi with probability 1 − negl(λ) for each i,
all k openings succeed except with probability k · negl(λ) = negl(λ).

We will show via quantum rewinding techniques that a commitment scheme that is computa-
tionally but not sum binding is indeed one-shot equivocal. To this end, we first recall an early
“basic quantum rewinding” lemma, first used in [CSST11], which shows that when two different
computations (on the same state) yield prescribed outcomes with sufficiently high probability, per-
forming the computations sequentially obtains both outcomes with non-negligible probability. We
state a slightly more general statement than [CSST11] and prove it for completeness.

Lemma 6.4. For any projectors P,Q and quantum state ρ it holds that

Tr(PQPρ) ≥ 1

4

(
Tr(Pρ) + Tr(Qρ)− 1

)2
.

Proof. Let ε := Tr(Pρ) + Tr(Qρ) − 1. Then Tr((P +Q)ρ) = 1 + ε by assumption and linearity,
and, by Cauchy-Schwarz,

(1 + ε)2 = Tr
(
(P +Q)ρ

)2 ≤ Tr
(
(P +Q)ρ(P +Q)

)
= Tr(Pρ) + Tr(Qρ) + 2ReTr(QPρ) .

It follows that ReTr(QPρ) ≥ ε/2. Then, again by Cauchy-Schwarz (Lemma 3.3),

ε/2 ≤ ReTr(QPρ) ≤ |Tr(QPρ)| ≤
√
Tr(QPρPQ) ,

which completes the proof.

Next, we recall Jordan decompositions and two singular vector algorithms that we shall use in
our construction.

Lemma 6.5 (Jordan decomposition). Any pair of projectors ΠA and ΠB induces a decomposition
of the Hilbert space they act upon into ⊕iSi where each Si has dimension 1 or 2.

The projectors can be written as ΠA =
∑

i |vi⟩⟨vi| and ΠB =
∑

i |wi⟩⟨wi| for Si-bases
{∣∣vi〉, ∣∣v⊥i } 〉

and
{∣∣vi〉, ∣∣v⊥i } 〉; the sums range over all Si except the one-dimensional ones where the projector

acts trivially (as the zero projector).

We call the Si Jordan subspaces, and define pi :=
∣∣〈vi∣∣wi

∣∣〉2 =
∣∣〈v⊥i ∣∣w⊥

i

〉∣∣2. We also define the
Jordan measurement MJor =

(
ΠJor

i

)
by

ΠJor
i :=

∣∣vi〉〈vi∣∣+ ∣∣v⊥i 〉〈v⊥i ∣∣ = ∣∣wi

〉〈
wi

∣∣+ ∣∣w⊥
i

〉〈
w⊥
i

∣∣;
that is, MJor projects onto a subspace Si and outputs its index i.

The singular vector algorithms, due to [LMS22, GSLW19], allow us to effectively “filter out”
components of a quantum state below a threshold of our choice and then “flip” the image of a
projector to its complement if needed.
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Lemma 6.6. Let ΠA,ΠB be projectors described by uniform poly(λ)-size quantum circuits. Then
there exists a (uniform) family {Thresholdθ}θ∈(0,1] of algorithms described by poly(λ)-size circuits
that satisfy the following:

• if pi ≥ θ, Thresholdθ(|vi⟩) outputs 1 with probability 1− negl(λ).

• if pi ≤ θ/2, Thresholdθ(|vi⟩) outputs 1 with probability negl(λ).

Moreover, Si is invariant under Thresholdθ for all i and θ, and the post-measurement state is
|vi⟩ when the measurement outputs 1.

Lemma 6.7. Let ΠA,ΠB be projectors described by uniform poly(λ)-size quantum circuits. Then
there exists a (uniform) family of circuits {Transformγ}γ∈(0,1] of size poly(λ)/

√
γ such that, when

pi ≥ γ, the output (i.e., post-measurement state) of Transform(|vi⟩) is |wi⟩ with probability 1 −
negl(λ).

Moreover, Si is invariant under Transformγ for all i and γ.

We are now ready to show that (almost-everywhere) non-unequivocality implies one-shot equiv-
ocality. Our one-shot equivocal commitment scheme is constructed as follows.

Construction 6.8. Let COM = (Gen,Commit) be a bit commitment scheme. For k ∈ N, we
construct COMk by:

• Genk(1λ) runs cki ← Gen(1λ) for each i ∈ [k] and outputs ck := (ck1, . . . , ckk).

• Commitk
(
(ck1, . . . , ckk),m, (i, ω)

)
:=
(
i,Commit(cki,m, ω)

)
.

Let Adv be an adversary for ExpAdvsum with quantum auxiliary input ρ, which applies the projector
Πb and measures the opening register O when asked to open to bit b. We construct an equivocator
Eq, whose auxiliary input consists of k copies of ρ on registers A1, . . . ,Ak, as follows.

• EqAdvε (ck1, . . . , ckk;A1 ⊗ · · · ⊗ Ak):

1. For each j ∈ [k]:

(a) Run comj ← Adv(ckj ;Aj).

(b) Apply the measurement (Π0, I−Π0) followed by Thresholdε2/2 to Aj .
If both outcomes are 1, set j∗ := j and skip to Step 3.

2. If j∗ is unset, output ⊥.
3. Output (j∗, comj∗) as the commitment. (At this point we can discard Aj for j ̸= j∗.)

• EqAdvε (b;Aj∗):

1. If b = 1, apply Transformε2/4 followed by the measurement (Π1, I−Π1) to Aj∗ .

2. Measure the opening register O ⊂ Aj∗ , obtaining outcome ω, and output (j∗, ω).

Note that COMk = (Genk,Commitk) is not the k-wise parallel repetition of COM (as decommit-
ting a single coordinate suffices).

20



Theorem 6.9. Let ε = ε(λ) be an inverse polynomial, and let COM be a bit commitment scheme
such that Pr

[
ExpAdvsum(λ) = 1

]
= 1/2 + ε for some QPT adversary Adv and all sufficiently large λ

(i.e., that violates sum binding almost everywhere). Then, with k = λ/ε2, the commitment scheme
COMk of Construction 6.8 is one-shot equivocal.

Proof. First, note that the running time of Eq is poly(λ), as it executes the QPT algorithm Adv
(at most) k = poly(λ) times; Threshold (which is QPT regardless of the parameter) once; and
Transform (with a poly(λ−1) parameter, in which case it is QPT) at most once.

For each j, denote by ρj the post-measurement state after Step 1a (where the mixture ρj
includes the distribution over ckj as well as the measurement that outputs comj). By assumption,
we have

Tr
(
(Π0 +Π1)ρj

)
≥ 1 + 2ε.

Hence, by Lemma 6.4,
Tr
(
Π0Π1Π0ρj

)
≥ ε2 .

Now, consider the distribution obtained by applying (Π0, I−Π0) followed by the Jordan measure-
ment MJor (with respect to the pair of projectors Π0,Π1), obtaining outcomes (b, i) and outputting
b · pi. Then

E [b · pi] =
∑
i

pi · Tr
(
ΠJor

i Π0ρjΠ0

)
= Tr

((∑
i

piΠ0Π
Jor
i Π0

)
ρj

)

= Tr

((∑
i

pi |vi⟩⟨vi|

)
ρj

)

= Tr

((∑
i

|vi⟩⟨vi|

)(∑
i

|wi⟩⟨wi|

)(∑
i

|vi⟩⟨vi|

)
ρj

)
= Tr (Π0Π1Π0ρj)

≥ ε2

where the second-to-last equality uses pi = |⟨vi|wi⟩|2.
Therefore, the probability that Step 1b of EqAdvε (ck1, . . . , ckk) sets j

∗ to j (which is unchanged
by the Jordan measurement, since MJor commutes with Threshold and Π0) is

Pr

[
b · pi ≥

ε2

2
and Thresholdε2/2(|vi⟩) outputs 1

]
≥
(
1− 2−λ

)
· Pr

[
b · pi ≥

ε2

2

]
≥
(
1− 2−λ

)
· ε

2

2
,

by Lemma 6.6 and Proposition 3.1.
By the Chernoff bound (Proposition 3.2), the probability j∗ is left unset in all j ∈ [k] (causing

Eq = EqAdvε on input (ck1, . . . , ckk) to abort in Step 2) is at most e−Ω(λ) = negl(λ).
We now move on to the analysis of Eq(b). Set ck = cki∗ , com = comi∗ , A = Ai∗ and recall that

(Πb, I−Πb) is the projective measurement corresponding to the whether Adv wins the sum binding
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experiment when the challenge is b (that is, Πb projects onto the subspace spanned by |ck, b, ω⟩ such
that Commit(ck, b, ω) = com). Then, if b = 0, the output of Step 2 of Eq(0) is a correct opening
(with probability 1), since the post-measurement state of Step 3 of Eq(ck1, . . . , ckk) is contained in
Im(Π0); we thus only need to argue that the measurement (Π1, I−Π1) in Step 1 of Eq(1) outputs
1 except with probability negl(λ).

For a fixed j ∈ [k], consider the distribution of (binary) outcomes that arises from applying the
measurements Thresholdε2/2, Transformε2/4 and (Π1, I−Π1) in this order to an arbitrary quantum
state in Im(Π0). Note that it suffices to show that the first output is 1 and the last is 0 with
probability negl(λ), as this ensures (by a union bound over j) that the probability Eq(1) fails to
return a valid opening remains negligible.

By commutativity of the Jordan measurement with Threshold and Transform (and Π1; recall
that every Si is invariant under all three), the distribution is identical to that which arises by
applying MJor before Thresholdε2/2. We now analyse two cases: (i) when MJor outputs i such that
pi ≤ ε2/4, and (ii) when pi > ε2/4. (Note that the post-measurement outcome is |vi⟩ in both cases,
as the sequence of measurements is applied to a state in Im(Π0).)

In the first case, Lemma 6.6 immediately implies that the outcome of Thresholdε2/2 is 1 with
probability negl(λ). In the second case, while Lemma 6.6 does not allow us to analyse the distribu-
tion of Thresholdε2/2 (when ε2/4 < pi < ε2/2), it ensures that conditioned on outcome 1 the post-
measurement state remains unchanged; then Lemma 6.7 implies the output of Transformε2/4(|vi⟩)
is |wi⟩ with probability 1− negl(λ), in which case the (Π1, I−Π1) measurement always outputs 1.

The probability Thresholdε2/2 outputs 1 and (Π1, I − Π1) outputs 0 is thus negl(λ) in either
case, which concludes the proof.
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[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun
Wang, editors, Advances in Cryptology - ASIACRYPT 2011 - 17th International Con-
ference on the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Com-
puter Science, pages 41–69. Springer, 2011. 3

[BZ13a] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume
7881 of Lecture Notes in Computer Science, pages 592–608. Springer, 2013. 3

[BZ13b] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in
a quantum computing world. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in
Computer Science, pages 361–379. Springer, 2013. 3

[CCY21] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. A black-box approach to
post-quantum zero-knowledge in constant rounds. In Tal Malkin and Chris Peikert, ed-
itors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I,
volume 12825 of Lecture Notes in Computer Science, pages 315–345. Springer, 2021. 3
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