
FULLY PRIVACY-PRESERVING FEDERATED REPRESENTATION LEARNING VIA
SECURE EMBEDDING AGGREGATION

Jiaxiang Tang 1 Jinbao Zhu 1 Songze Li 1 2 Kai Zhang 3 Lichao Sun 3

ABSTRACT
We consider a federated representation learning framework, where with the assistance of a central server, a group
ofN distributed clients train collaboratively over their private data, for the representations (or embeddings) of a set
of entities (e.g., users in a social network). Under this framework, for the key step of aggregating local embeddings
trained at the clients in a private manner, we develop a secure embedding aggregation protocol named SecEA,
which provides information-theoretical privacy guarantees for the set of entities and the corresponding embeddings
at each client simultaneously, against a curious server and up to T < N/2 colluding clients. As the first step of
SecEA, the federated learning system performs a private entity union, for each client to learn all the entities in the
system without knowing which entities belong to which clients. In each aggregation round, the local embeddings
are secretly shared among the clients using Lagrange interpolation, and then each client constructs coded queries
to retrieve the aggregated embeddings for the intended entities. We perform comprehensive experiments on
various representation learning tasks to evaluate the utility and efficiency of SecEA, and empirically demonstrate
that compared with embedding aggregation protocols without (or with weaker) privacy guarantees, SecEA incurs
negligible performance loss (within 5%); and the additional computation latency of SecEA diminishes for training
deeper models on larger datasets.

1 INTRODUCTION

We consider the framework of federated representation learn-
ing (FRL), for which the goal is to train good representations
(or embeddings), for a set of entities (e.g., users in a social
network), collaboratively over the private data on a group
of distributed clients. A typical FRL protocol consists of
the following steps: (i) in each training round, each selected
client trains the local embedding for each of its entities us-
ing its private data; (ii) the clients send their trained local
embeddings to the server; (iii) the server aggregates the
local embeddings from different clients for the same entity
into a global embedding; and (iv) the server sends the global
embeddings back to the clients for the training of the next
round, until the convergence of all entity embeddings. This
framework can be leveraged to boost the performance of a
wide range of representation learning tasks and their subse-
quent downstream tasks in recommendation system, social
network mining, and knowledge graph (Chai et al., 2020;

1IoT Thrust, The Hong Kong University of Science and
Technology (Guangzhou), Guangzhou, China 2Department of
Computer Science and Engineering, The Hong Kong University
of Science and Technology, Hong Kong SAR, China 3School
of Computer Science, Lehigh University, USA. Correspon-
dence to: Jiaxiang Tang <jtangbe@connect.ust.hk>, Songze Li
<songzeli@ust.hk>.

Wu et al., 2021; Chen et al., 2020).

The embedding aggregation in the FRL framework can help
to improve the embedding quality and the learning perfor-
mance, as embeddings of the same entities over all clients
are aggregated. To this end, FRL first needs to align the
entities of clients such that there are opportunities for ag-
gregating the embeddings of the same entities, and then
exchanges embeddings to finish aggregation. However, dur-
ing the embedding aggregation process, the curious server
and clients can potentially infer the local entities and their
embeddings of the victim clients, which would lead to leak-
age of the victim clients’ local datasets. To protect the
privacy of clients’ local entities, the current state-of-the-art
approach is for the FRL system to first privately agree on
the set of entities that are common to all clients, using pri-
vate set intersection (PSI) primitives (Angelou et al., 2020;
Hardy et al., 2017). Next, for each common entity exist-
ing on all clients, the clients securely aggregate their local
embeddings, using secure aggregation protocols that mask
the embeddings with random noises (see, e.g., (Bonawitz
et al., 2017; Yang et al., 2019)). However, with the idea of
aggregating embeddings of entities common to all clients,
PSI-based approaches suffer from 1) privacy leakage: the
existence of the common entities at all other clients is known
at each client; and 2) performance degradation: aggregation
opportunities among subsets of clients who share common

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

entities are not leveraged.

In this paper, we propose a novel secure embedding ag-
gregation protocol, named SecEA, which simultaneously
provides entity privacy and embedding privacy for FRL,
and overcome both shortcomings of PSI-based approaches.
In SecEA, the FRL system first performs a one-time pri-
vate entity union operation, such that each client learns
the collection of the entities existing on all clients, without
knowing the set of entities on each of the other clients. In
each global training round, each client secret shares its local
embedding vectors with the other clients, using Lagrange
Coded Computing (Yu et al., 2019). To privately obtain
the embedding aggregations of local entities, each client
sends a coded query, for each of its local entities, to another
client, without revealing the requested entity. Having re-
ceived the responses from all the other clients, the client
decodes the embedding aggregation of its intended entity,
using Lagrange polynomial interpolation. Meanwhile, the
server adds carefully designed noises to the responses such
that each client learns nothing about the embeddings of the
entities it does not have locally. Given a security parameter
T , we theoretically demonstrate that, the proposed SecEA
protocol simultaneously achieves information-theoretic pri-
vacy against a curious server and any subset of up to T
clients from inferring 1) local entities of a victim client;
2) local embeddings of a victim client; and 3) embedding
aggregations for an entity that is not owned by any colluding
clients.

We implement the SecEA protocol, with a focus on cross-
silo scenarios (Zhang et al., 2020) where clients have strong
computing capability and reliable communication links (e.g.,
companies, schools, and hospitals). We run extensive exper-
iments to evaluate utility performance and execution com-
plexity of SecEA in practical settings, for comprehensive
representation learning tasks including knowledge graph
completion (Bordes et al., 2013; Sun et al., 2019; Nguyen
et al., 2022), recommendation system (Salakhutdinov &
Mnih, 2007; He et al., 2017; 2020), node classification
in social network (Tang et al., 2015; Perozzi et al., 2014;
Grover & Leskovec, 2016), and multi-view clustering (Jol-
liffe & Cadima, 2016; Baldi, 2012). Compared with the
best-performing protocol EmbAvg (Chen et al., 2020) who
has the server receive and aggregate all embeddings without
any entity and embedding privacy, SecEA incurs a negligible
performance loss of less than 5% across all tasks. For com-
plexity evaluation, although the execution time of SecEA is
in general longer than those of EmbAvg and PSI (Angelou
et al., 2020), the additional latency is as small as 0.77%
for training deep models on large datasets (e.g., training
LightGCN on the MovieLens 1M (Harper & Konstan, 2015)
dataset). Moreover, as the additional overheads of query
computation, encoding of local embeddings, and decoding
the embedding aggregations are independent between differ-

ent entities, we parallelize these computations onto multiple
computing processes and empirically demonstrate a (nearly)
linear speedup with the number of processes. Therefore,
given more computation resources, the latency of SecEA
can be further reduced.

Notation. For two integers m ≤ n ∈ Z, we define [m] ≜
{1, . . . ,m} and [m,n] ≜ {m,m+ 1, . . . , n}.

2 BACKGROUNDS AND PROBLEM
FORMULATION

2.1 Representation Learning

Consider a representation learning task with a dataset
D = (E ,X), where X is a collection of data points (e.g.,
user information in a social network), and E is the set of
entities of the data points in X (e.g., IDs of the users). For
each e ∈ E , we denote the unique data point in X who
has entity e, as Xe. The goal is to train a collection of
embedding vectors H = {he : e ∈ E}, from the origi-
nal dataset D, by minimizing some loss function L(D,H).
Here for each entity e ∈ E , the vector he ∈ Fd denotes
its corresponding embedding vector of length d. We next
discuss some common representation learning tasks using
the above framework. The discussions are divided into two
distinct categories according to the type of the training data,
as follows.

Categorical Data. The dataset X is a set of records, each
of which has a corresponding index and a fixed number of
features. The entity set E simply consists of the indices of
the records. For each e ∈ E , Xe ∈ X is the feature vector of
the record with index e. One typical representation learning
task on categorical data is multi-view clustering.

Multi-view Clustering. In this task, we have n items, and
the entity set E = {1, . . . , n}. The dataset X consists of
m pattern matrices X(1), . . . , X(m). For each 1 ≤ i ≤ m,
X(i) ∈ Rn×ki

+ represents a view of clustering distribution,
where the jth row of X(i) is the probability distribution
of item j in one of ki clusters. The goal is to train an
optimal pattern matrix H ∈ Rn×d

+ for d clusters, which
is simultaneously close to all m pattern matrices in some
distance measure. Here the set of embeddings H is exactly
the matrix H , with the embedding he being the eth row
of H . For instance, we can minimize the following loss
function over H (Long et al., 2008).

L((E ,X),H) =

m∑
i=1

GI(X(i)||H · P (i)),

where GI(X||Y) =
∑

i,j(logXij log
Xij

Yij
−Xij + Yij) is

the generalized I-divergence function (Bickel & Scheffer,
2004), and P (i) ∈ Rd×ki is a projection matrix that maps
H onto Rn×ki

+ .

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

Graph-structured Data. A graph G = (V,U) consists of a
vertex set V and an edge set U . Each vertex v ∈ V has an
associated entity e(v), and E = {e(v) : v ∈ V} is the set of
entities for all vertices. There is a function r : U → R that
maps each edge in U to a value in some domain R. For each
vertex v, its corresponding data point Xe(v) contains the
entities of the neighbours of v, and the values of the edges
that incident from v. That is, for vertex v with neighbour set
Nv ⊂ V , we have Xe(v) = {(e(v′), r((v, v′))) : v′ ∈ Nv}.
We describe some representation tasks on graph data.

Social Network Mining. In a social network graph G =
(V,U), each vertex v ∈ V represents a user. An edge
(u, v) ∈ U represents the presence of certain relation be-
tween users u and v (e.g., friends or colleagues). The entity
e(v) of a user v is simply his or her ID. The data pointXe(v)

of entity e(v) contains the IDs of users who connect to v,
i.e., Xe(v) = {e(v′) : v′ ∈ Nv}. For the user IDs in E , we
will need to train H = {he(v) : v ∈ V} by minimizing the
negative log-likelihood function:

L((E ,V,U),H) =
∑
v∈V

− log Pr(Xe(v)|H).

After obtaining the optimal embeddings for all users, we
can use them to predict interests of potential user connec-
tions, and provide recommendation services. The above
framework also applies to the task of discovering similar-
ities between structures of protein molecules, on graphs
constructed by connecting proteins with similar molecular
structures (see, e.g., (Kovács et al., 2019)).

Recommendation System. The dataset is represented as
a bipartite graph G = (V,U), where the vertex set V is
partitioned into the set of user vertices Vu and the set of item
vertices Vi. An edge (u, i) ∈ U exists, if user u ∈ Vu has
rated item i ∈ Vi, and its value r((u, i)) is the rating. The
entity e(u) is the ID of user u, and the entity e(i) is the ID
of item i. The goal is to minimize the root mean square error
(RMSE), over the set of user embeddings Hu = {he(u) :
u ∈ Vu} and item embeddings Hi = {he(i) : i ∈ Vi}.

L((E ,V,U),Hu,Hi)=
∑

(u,i)∈U

||r((u, i))− h⊤
e(u)he(i)||2.

Using obtained embeddings, we can predict the missing
ratings of user u on item i by computing h⊤

e(u)he(i).

Knowledge Graph. In a knowledge graph G = (V,U), each
vertex v ∈ V represents an object, (e.g., it can be a person, or
a location). The entity e(v) of vertex v is its unique ID, (e.g.,
the name of a person). There is an edge between objects u
and v if they have certain relations, and the value of the edge
r((u, v)) represents the specific type of their relation. For
instance, the relation between two people can be “parent”,
“friends”, or “classmates”. In this task, except for training

the set of entity embeddings He = {he(v) : v ∈ V} for
the set of vertices in V , we also need to optimize a set
of relation embeddings Hr = {hr : r ∈ R}, where R
is the set of all relation types, and hr is the embedding
vector corresponding to a specific type r. Finally, we need
to maximize some score function S over the entity and
relation embeddings. For instance, the TransE knowledge
graph model (Bordes et al., 2013) adopts the following score
function.

S((E ,V,U),He,Hr)=
∑

(v,v′)∈U

||he(v)−hr((v,v′))+he(v′)||.

Various downstream tasks can be performed using the ob-
tained embedding vectors, which include predicting possible
relations between objects, and identifying objects that pos-
sess certain relations with the target objects (Ji et al., 2021).

2.2 Federated Representation Learning

Federated learning (FL) (McMahan et al., 2017) is a privacy-
preserving collaborative learning paradigm, which enables
a group of distributed clients, each with some private lo-
cal data, to collaboratively train a high-performance global
model without revealing their private data, with the help of a
central server. To do so, using the classical FedAvg (McMa-
han et al., 2017) algorithm, each client trains a local model
with their private data and sends obtained model to the
server, who aggregates the local models from many clients
to obtain a global model.

Here we focus on executing FL for representation learning
tasks, i.e., Federated Representation Learning (FRL) (Chai
et al., 2020; Wu et al., 2021; Chen et al., 2020). Instead
of training a global model, the goal of FRL is to train a
global embedding for each distinct entity. Having locally
trained embeddings for its local entities using private data,
the clients aggregate the local embeddings of the same entity
to obtain a global embedding.

An FRL network consists of a central server and N clients.
For each n ∈ [N], client n has a local dataset Dn =
(En,Xn) consisting of a set of local entities En and a set
of local data points Xn. The entity sets across clients may
overlap, i.e., En ∩ Ev ̸= ∅ for n ̸= v. An FRL protocol
proceeds in rounds. In each round t, with the knowledge
of a global embedding h

(t)
e for each entity e∈En, client n

trains its local embeddings over Dn:

{h(t)
n,e : e ∈ En} = g({h(t)

e : e ∈ En},Dn), (1)

where g denotes some learning algorithm, and h
(t)
n,e denotes

the updated local embedding of entity e at client n in round
t. Having updated their local embeddings, the N clients
communicate these embeddings with each other, via the
assistance of the central server, such that for each n ∈

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

[N], and each e ∈ En, client n obtains an updated global
embedding of entity e, which is computed by averaging the
local embeddings of e from all the clients who have e locally.
More precisely, for each entity e, the global embedding
h
(t+1)
e for the next round is computed as

h(t+1)
e =

∑
v∈[N]

1(e ∈ Ev) · h(t)
v,e∑

v∈[N]

1(e ∈ Ev)
, (2)

where 1(x) is the indicator function that returns 1 when
x is true and 0 otherwise. The global embeddings of the
entities are updated iteratively until convergence, via the
above aggregation rule.

Privacy Leakage in FRL. Within the FRL framework, the
key step of embedding aggregation across clients may ex-
pose the system under security attacks, resulting in the leak-
age of the clients’ private data. Firstly, the local embeddings
{h(t)

n,e : e ∈ En} trained as in (1) are highly related to the
local data samples Xn, and if the embeddings are shared in
the clear with the server or the other clients during embed-
ding aggregation, they can be exploited by curious parties to
infer Xn. On the other hand, the privacy of the entity set can
also be of vital importance for each client. For instance, no
movie website would be willing to share the identities of its
registered users to collaborate with other movie websites to
improve recommendation services, due to various reasons
like users’ privacy and competitive advantages. However,
as indicated in (2), the local embeddings are required to
be aligned by their entities before aggregation, and entity
alignment can also reveal information about entity sets at
the clients.

Multiple inference attacks have been developed using em-
bedding information. In (Song & Raghunathan, 2020), an
embedding inversion attack was developed to reconstruct
the original words in the training set from the word embed-
dings, using the relaxed optimization method (Jang et al.,
2016). The membership of an entity at a client can be
inferred from the client’s embeddings using the threshold
attack (Sablayrolles et al., 2019). In such attack, a target
entity is firstly mapped to an embedding through a trained
model, and the obtained embedding is compared with the
embeddings received from a client to determine if the target
entity exists on that client. Besides the embeddings, if the
attacker also has access to some features of the original data
(e.g., the occupations of users in a social network), it can
train a classifier to predict sensitive attributes from the data
embeddings (Song & Raghunathan, 2020).

Threat Model. We consider honest-but-curious adversaries,
which is the common model adopted to study privacy vul-
nerabilities in FL systems. Specifically, corrupted parties

(clients and the server) will faithfully follow the learning
protocol, but will try to infer a client’s private information
including its entity set and data samples. The adversary can
corrupt the server, or multiple clients, but not server and
clients simultaneously, i.e., the server does not collude with
clients to infer private information of other clients.

We consider two types of privacy: entity-privacy and
embedding-privacy. More concretely, given a security pa-
rameter T < N , an embedding aggregation protocol is
considered T -secure if the following two requirements are
simultaneously satisfied:

• Entity-privacy: the entity set of any individual client
must be kept private from the server and the remaining
clients, even if any up to T clients collude to share
information with each other. In other words, the server
or any subset of T colluding clients learn nothing about
which entities are owned by each of the other clients.

• Embedding-privacy: 1) the server learns nothing about
any local embedding of any client; 2) any subset of
up to T colluding clients learn nothing about the local
embeddings of the other clients, beyond the embedding
aggregations of the colluding clients’ local entities.

The goal of this paper is to design a provably secure em-
bedding aggregation protocol, for general FRL tasks. As
secure computation protocols are built upon cryptographic
primitives that carry out operations over finite fields, we
consider each element of an embedding vector being from a
finite field Fq of order q.

3 TECHNICAL CHALLENGES AND
LIMITATIONS OF EXISTING
APPROACHES

The main technical challenges to the above secure embed-
ding aggregation problem center around how can each client
in the system, for each of its local entities, aggregates the cor-
responding local embedding with those of all other clients
who also have this entity (i.e., computes the global em-
bedding (2) exactly), without knowing the distribution of
entities (entity privacy), and simultaneously maintains the
embedding privacy, i.e., not knowing anything about the
individual or global embedding of any entity that is not lo-
cally owned. In the rest of the section, we review related
existing techniques to improve the security of FL systems,
and explain why they fall short in addressing the considered
secure embedding aggregation problem.

Secure aggregation (SA) protocols have been developed to
protect the data privacy during model aggregation for fed-
erated learning of a global model (Bonawitz et al., 2017;
So et al., 2020; Yang et al., 2021; Wei et al., 2020; Seif

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

et al., 2020). The basic idea is to mask clients’ local models
with some random noises, such that when aggregating the
masked models, the server learns nothing about the indi-
vidual models other than their (exact or approximate) sum-
mation. However, secure aggregation is not applicable in a
FRL system, as the entities may arbitrarily distribute among
clients (Sattler et al., 2020) and the distribution of entities
is private to the clients and the server. In this case, a client
does not know the peers who share common entities, and
does not know with whom to aggregate local embeddings.

One way to resolve the above issue is to perform private
entity alignment before embedding aggregation. Private Set
Intersection (PSI) is a multi-party computation technique
which allows parties to learn the intersection of their local
set without revealing each individual set (Buddhavarapu
et al., 2020; Freedman et al., 2004; Huang et al., 2012;
Pinkas et al., 2016; Kissner & Song, 2005). PSI has been
widely employed for ID alignment in vertical federated
learning (vFL) problems (Hardy et al., 2017; Angelou et al.,
2020; Yang et al., 2019), for which the dataset is partitioned
along the feature space among different clients. For the
embedding aggregation problem, we can first perform PSI
on the local entity sets for all clients to agree on their com-
mon entities, and then apply secure aggregation to aggregate
the embeddings of this entities. However, this PSI+SA ap-
proach suffers from 1) privacy leakage: the existence of
the common entities at each client is known globally; and
2) performance degradation: embeddings of entities com-
mon to a subset of clients are not aggregated. In the worst
case, no embedding aggregation would happen if no entity
is common to all clients.

Alternatively, private entity alignment can also be achieved
via Private Set Union (Seo et al., 2012; Frikken, 2007; Gopi
et al., 2020; Sun et al., 2021), which privately computes
the union of the clients’ entity sets without revealing the
entity set of each client. For the embedding aggregation
problem, after the clients obtain the global set of all entities
via PSU, they can perform secure aggregation on each of
these entities where a client would use an auxiliary all-zero
embedding for an each entity it does not have locally. While
PSU+SA approach overcomes both shortcomings of PSI,
the aggregated global embeddings of all entities are known
to all clients. This leaks the global embeddings of some
entities to clients who do not have these entities locally,
violating the embedding-privacy requirement.

Given our objective that each client only obtains the ag-
gregated embeddings of its intended local entities, without
revealing these entities, it is related to the problem of Pri-
vate Information Retrieval (PIR). PIR protocols allow a
user to retrieve an item from a database stored at multiple
servers, without revealing to the servers which item is being
retrieved. The PIR problem was introduced by Chor et al.

(Chor et al., 1995) and has recently been studied extensively
from an information-theoretic perspective (Sun & Jafar,
2017; Banawan & Ulukus, 2018; Zhu et al., 2019a; Ulukus
et al., 2022; Zhu et al., 2022a;b). To retrieve the desired
item, the user sends some private queries to the servers, who
then generate responses following the instructions of the
received queries, and finally the user recovers the intended
item from the collected responses. For our embedding ag-
gregation problem, while we may consider each client as a
user of the PIR problem and tries to privately retrieve the
aggregated embeddings of its entities, it is not clear how the
embeddings can be aggregated and stored in the system in a
privacy-preserving manner, and how to design compatible
private queries to guarantee correct recovery.

To summarize, the secure embedding aggregation problem
in FRL systems is highly challenging, and the current se-
curity mechanisms on federated learning results in leaking
either entity privacy with low performance (PSI+SA) or em-
bedding privacy (PSU+SA). This calls for a novel holistic
design of secure embedding aggregation, for general FRL
problems, with good aggregation performance and privacy
guarantees. As a result, we present the first end-to-end se-
cure embedding aggregation protocol, with no performance
loss and strong information-theoretical privacy guarantees
simultaneously on 1) clients’ local entities; 2) clients’ local
embeddings; and 3) leakage of aggregated embeddings to
unintended clients.

4 SECURE EMBEDDING AGGREGATION

We propose a secure embedding aggregation protocol,
named SecEA, simultaneously providing entity and embed-
ding privacy for general federated representation learning
tasks. Our SecEA protocol consists of three main compo-
nents: private entity union, private embedding sharing, and
private embedding aggregation retrieval. Before the train-
ing starts, the FL system performs a one-time private entity
union operation, such that each client can privately obtain
the union of the entity sets of all clients, without knowing
which entities are owned by which other client. Within each
training round, after obtaining the updated local embed-
dings, each client secret shares them with the other clients
using Lagrange polynomial interpolation (Yu et al., 2019).
After the private embedding sharing, each client privately
retrieves desired embedding aggregations from other clients,
without revealing the requested entities and gaining addi-
tional information on embeddings of unintended entities.
In the rest of this section, we present the proposed SecEA
protocol in its three major components, and illustrate the
core ideas via a simple example.

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

4.1 Private Entity Union

Before the training starts, the learning system executes a
private entity union protocol, for each client and the server to
privately obtain the union of the entity sets from all clients
(i.e.,

⋃
n∈[N] En), without knowing the entity set of any

individual client.

Specifically, each client n first hashes each of its local en-
tities e ∈ En into the finite field Fq, using some collision-
resistant hash function (e.g., SHA256). For ease of expo-
sition, in what follows, we use entity e to denote its hash
value. We assume that the numbers of entities owned by
the N clients are publicly known, and focus on the scenario
where each client locally has the same number of k entities.1

Our protocol leverages techniques for computing private set
union in (Seo et al., 2012), and proceeds in the following
steps.

1. Each client n represents its entity set En by polynomial

fn(x) =
∏
e∈En

(x− e). (3)

The client chooses uniformly at random a polynomial
rn(x) of degree at most k − 1, and then takes the
2Nk high-order terms of reversed Laurent series of
rn(x)
fn(x)

, denoted the sum of these terms by Gn(x) and
corresponding coefficients by vector sn of length 2Nk.

2. Every pair of clients n, v ∈ [N] utilize a key agreement
protocol (e.g., Diffie-Hellman key aggrement (Diffie
& Hellman, 1976)) to agree on a pairwise private seed
an,v. Then each client n sends a masked version
of its local vector s̃n = sn +

∑
v:n<v PRG(an,v) −∑

v:n>v PRG(av,n) to the server, where PRG is a se-
cure pseudo-random generator. The server computes
the sum of the masked vectors∑

n∈[N]

s̃n =
∑

n∈[N]

(
sn +

∑
v:n<v

PRG(an,v)

−
∑

v:n>v

PRG(av,n)

)
=

∑
n∈[N]

sn, (4)

and then shares the result
∑

n∈[N] sn with all the
clients. Equivalently, the server and all the client ob-
tain

∑N
n=1Gn(x), without knowing each individual

Gn(x).

3. After getting the summation of Gn(x), each client
performs rational function reconstruction algorithm
(see, e.g., (Shoup, 2009) [Section 17.5.1]) to obtain

1Otherwise, we can set k = max({|En| : n ∈ [N]}), and have
each client n with less than k entities randomly sample k − |En|
values from the hashes of the local entities En.

two polynomials u(x) and L(x) such that u(x)
L(x) =∑N

n=1Gn(x) and gcd(u(x), L(x)) = 1. Note from
(Seo et al., 2012) that L(x) is exactly the least com-
mon multiple of f1(x), . . . , fN (x), i.e., L(x) =
lcm(f1(x), . . . , fN (x)). Hence the client can factor
L(x) over Fq, and obtains the roots of L(x) as the
union of the entity sets

⋃
n∈[N] En.

Thus, the above private entity union protocol ensures that
each client can obtain the union of the entity sets at all
clients.

4.2 Private Embedding Sharing

We let the global entity set E =
⋃

n∈[N] En =

{e1, . . . , eM}, where M is the total number of distinct enti-
ties across all clients. After the initial private entity union
operation, the set E is known at all clients.

During each training round, each client n computes a set
of local embeddings {hn,em : em ∈ En} as in (1).2 Recall
from (2) that for each em ∈ En, client n wishes to update
the corresponding embedding hem using aggregation of the
embeddings from clients who own em as follows

hem =

∑
v∈[N]

1(em ∈ Ev) · hv,em∑
v∈[N]

1(em ∈ Ev)
. (5)

To proceed, each client n first appends one unit element
to each of its locally trained embeddings, expanding the
embedding of each entity em ∈ En to ĥn,em = (hn,em , 1)
of dimension of d + 1. On the other hand, for each entity
em /∈ En that has not been encountered locally, client n
generates its embedding with same dimension d+ 1 and all
the elements being 0. Consequently, for any m ∈ [M], each
client n locally possesses an expanded embedding ĥn,em of
entity em with dimension d+ 1, such that

ĥn,em =

{
(hn,em , 1), if em ∈ En
0, otherwise . (6)

We point out that for client n to obtain the average em-
bedding of its entity em ∈ En as in (5), it is sufficient to
obtain the aggregation

∑
v∈[N] ĥv,em =

(∑
v∈[N] 1(em ∈

Ev) · hv,em ,
∑

v∈[N] 1(em ∈ Ev)
)

.

To perform secure embedding aggregation, our protocol
requires each client to communicate secret shares of its
local embeddings to the other clients. For reducing the
communication cost among the clients, given the security

2We omit the round index t for brevity.

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

parameter T , we select a partitioning parameter K such that

K =

⌊
N + 1

2

⌋
− T. (7)

Then, for each m ∈ [M], client n evenly partitions its
local expanded embedding ĥn,em into K sub-vectors of
dimension d+1

K , i.e., ĥn,em =
(
ĥ1
n,em , . . . , ĥ

K
n,em

)
. Hence,

client n can accomplish the aggregation of embedding em
once it recovers the summations of the K sub-vectors as
follows

∑
v∈[N]

ĥv,em =

 ∑
v∈[N]

ĥ1
v,em , . . . ,

∑
v∈[N]

ĥK
v,em

 . (8)

We consider a set of public parameters known to all par-
ties in the system, which consist of K + T + N pair-
wise distinct elements from Fq, denoted by {βk, αn : k ∈
[K + T], n ∈ [N]}. These parameters are fixed across
all training rounds and do not depend on entity embed-
dings. Each client n ∈ [N], for each m ∈ [M], samples

independently and uniformly over F
d+1
K

q , T random noises
zK+1
n,em , z

K+2
n,em , . . . , z

K+T
n,em , and then constructs a polynomial

φn,em(x) of degree at most K + T − 1 such that

φn,em(βk) =

{
ĥk
n,em , ∀ k ∈ [K]

zkn,em , ∀ k ∈ [K + 1 : K + T]
. (9)

By Lagrange interpolation rule and the degree restriction,
φn,em(x) can be uniquely expressed as

φn,em(x) =

K∑
i=1

ĥi
n,em ·

∏
j∈[K+T]\{i}

x− βj
βi − βj

+

K+T∑
i=K+1

zin,em ·
∏

j∈[K+T]\{i}

x− βj
βi − βj

. (10)

Then, for each v ∈ [N], client n shares the evaluation of
φn,em(x) at point x = αv with client v. The secret sharings
sent by client n to client v across all m ∈ [M] are given by

yn,v =
(
φn,e1(αv), . . . , φn,eM (αv)

)
. (11)

Next, client v aggregate the sharings {yn,v}n∈[N] received
from all the clients and obtains

yv≜
∑

n∈[N]

yn,v=

 ∑
n∈[N]

φn,e1(αv),. . .,
∑

n∈[N]

φn,eM (αv)

. (12)

Note from (8) and (10) that, for each m ∈ [M],∑
n∈[N] φn,em(αv) is a secret share of the global aggre-

gated embedding
∑

n∈[N] ĥn,em , at client v.

Remark 1. Since all communication between clients are
through the relay of the central server, to protect information
on entity embeddings from leaking to the server, clients
mask their messages when communicating with each other.
Specifically, as done in the private entity union phase, each
pair of clients n, v agree on a private seed an,v unknown to
the server. When client n wishes to send yn,v to client v,
the communication takes place in the following steps:

1. Client n uploads ỹn,v = yn,v + PRG(an,v) to the
server and the server forwards the received ỹn,v to
client v.

2. Client v decrypts the desired data yn,v by performing
ỹn,v − PRG(an,v) = yn,v .

Similarly, in the following step of private embedding aggre-
gation retrieval, all communication between the clients are
performed following the above steps.3

4.3 Private Embedding Aggregation Retrieval

After the private embedding sharing, each client obtains
locally secret shares of global embedding aggregations of
all M entities. To privately retrieve desired embedding ag-
gregations for entities in En without revealing the identities
of local entities, each client n sends some queries to each of
other clients v in a privacy-preserving manner. Then client
v responds with some answers following the instructions
of the received queries. Finally, client n reconstructs the
desired embedding aggregations from the answers.

For each entity e ∈ En owned by client n, the client inde-
pendently and uniformly generates MT random variables
{zm,K+1

n,e , . . . , zm,K+T
n,e }m∈[M] from Fq. Then, for each

m ∈ [M], the client constructs a query polynomial ρmn,e(x)
of degree K + T − 1 such that

ρmn,e(βk) =

{
1, if em = e
0, otherwise

, ∀ k ∈ [K], (13)

ρmn,e(βk) = zm,k
n,e , ∀ k ∈ [K + 1 : K + T]. (14)

Since the elements βk, k ∈ [K + T] are pairwise distinct,
the query polynomial ρmn,e(x) can be explicitly written as

ρmn,e(x) =

K+T∑
i=K+1

zm,i
n,e ·

∏
j∈[K+T]\{i}

x− βj
βi − βj

+

K∑
i=1

∏
j∈[K+T]\{i}

x−βj

βi−βj
, if em = e

0, otherwise

.(15)

Next, for each v ∈ [N], client n evaluates the M query
polynomials {ρmn,e(x) : m ∈ [M]} at x = αv and sends

3Alternatively, one can use public-key encryption to encrypt
communication between clients.

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

them (the encoded queries) to client v. We denote the query
sent from client n to client v, for retrieving the aggregation
of entity e ∈ En, as

qn,v,e =
(
ρ1n,e(αv), . . . , ρ

M
n,e(αv)

)
. (16)

Upon receiving the query, client v takes the inner product of
the received query vector qn,v,e and its locally stored data
yv in (12), generating the response (the secret sharing of the
aggregation of e’s embeddings) Av,n,e = ⟨qn,v,e,yv⟩, and
sends it back to client n via the central server.

Further, to prevent client n from inferring any additional
information about the embeddings of unintended entities
that are not in En, the server locally generates K + 2T − 1
random variables {zkn,e : k ∈ [K + 2T − 1]} distributed

independently and uniformly over F
d+1
K

q . Define a noise
polynomial ψn,e(x) of degree 2(K + T − 1) such that

ψn,e(βk) = 0, ∀ k ∈ [K], (17)
ψn,e(αk) = zkn,e, ∀ k ∈ [K + 2T − 1]. (18)

The noise polynomial ψn,e(x) is the form of

ψn,e(x) =
∑

i∈[K+2T−1]

zin,e

 ∏
j∈[K]

x− βj
αi − βj

 ∏

l∈[K+2T−1]\{i}

x− αl

αi − αl

 . (19)

Upon received the response Av,n,e from client v, the server
adds an evaluation of ψn,e(x) at x = αv to Av,n,e to gener-
ate

Yv,n,e = ⟨qn,v,e,yv⟩+ ψn,e(αv), (20)

and forwards it to client n. We note from (12) and (16)
that the response Yv,n,e is the evaluation of the following
response polynomial Yn,e(x) at point x = αv .

Yn,e(x) =

M∑
m=1

ρmn,e(x) ·
∑

v′∈[N]

φv′,em(x) + ψn,e(x). (21)

Apparently, as ψn,e(βk) = 0 for all k ∈ [K], Yv,n,e is still
a secret share of e’s embedding aggregation over all clients.

For any m ∈ [M], φv′,em(x) is a polynomial of degree
K + T − 1 for any v′ ∈ [N], and the degree of polynomial
ρmn,e(x) is K + T − 1. Thus, Yn,e(x) is a polynomial of
variable x with degree 2(K+T−1) ≤ N−1 by (7). Recall
that {αv}v∈[N] are distinct elements from Fq . Client n can
exactly recover the polynomial Yn,e(x) from the receivedN
response (Y1,n,e, . . . , YN,n,e) = (Yn,e(α1), . . . , Yn,e(αN))
via polynomial interpolation.

Finally, for each k ∈ [K], client n evaluates Yn,e(x) at
x = βk to obtain

Yn,e(βk) =

M∑
m=1

ρmn,e(βk) ·
∑
v∈[N]

φv,em(βk) + ψn,e(βk)

(a)
=

∑
v∈[N]

φv,e(βk)
(b)
=

∑
v∈[N]

ĥk
v,e, (22)

where (a) is due to (13) and (17), and (b) follows by (9).
Therefore, client n can correctly recover the embedding
aggregation

∑
v∈[N] ĥv,e for entity e, as in (8).

For each n ∈ [N], client n repeats the above process for
each entity e ∈ En to retrieve the corresponding embedding
aggregation

∑
v∈[N] ĥv,e, and then computes the global

embedding as in (5).

4.4 Illustrative Example

We illustrate the key ideas behind the proposed SecEA pro-
tocol through a simple example with N = 3 and T = 1.
Assume that the entire system contains M = 2 entities, and
their distributions onto the 3 clients are E1 = {e1}, E2 =
{e2} and E3 = {e1}, respectively. The proposed SecEA
protocol operates three phases as follows.

Private Entity Union. The system executes the private
entity union protocol, for the server and all 3 clients to agree
on the global set of entities E = {e1, e2}. Here the server
does not know the entity set of any individual client, and
each client does not know the entity sets of the other clients.

Private Embedding Sharing. In each round of global
training, after training local embeddings, the clients append
entity counts to the embeddings such that

ĥ1,e1 = (h1,e1 , 1), ĥ1,e2 = (0, 0);

ĥ2,e1 = (0, 0), ĥ2,e2 = (h2,e2 , 1);

ĥ3,e1 = (h3,e1 , 1), ĥ3,e2 = (0, 0).

Next, each client n ∈ [3] creates masked embeddings
(ye1

n,v,y
e2
n,v) as follows, and shares it with each client v∈ [3].

ye1
1,1 = −ĥ1,e1 + 2z1,e1 , ye2

1,1 = −ĥ1,e2 + 2z1,e2 ;

ye1
1,2 = −2ĥ1,e1 + 3z1,e1 , ye2

1,2 = −2ĥ1,e2 + 3z1,e2 ;

ye1
1,3 = −3ĥ1,e1 + 4z1,e1 , ye2

1,3 = −3ĥ1,e2 + 4z1,e2 ;

ye1
2,1 = −ĥ2,e1 + 2z2,e1 , ye2

2,1 = −ĥ2,e2 + 2z2,e2 ;

ye1
2,2 = −2ĥ2,e1 + 3z2,e1 , ye2

2,2 = −2ĥ2,e2 + 3z2,e2 ;

ye1
2,3 = −3ĥ2,e1 + 4z2,e1 , ye2

2,3 = −3ĥ2,e2 + 4z2,e2 ;

ye1
3,1 = −ĥ3,e1 + 2z3,e1 , ye2

3,1 = −ĥ3,e2 + 2z3,e2 ;

ye1
3,2 = −2ĥ3,e1 + 3z3,e1 , ye2

3,2 = −2ĥ3,e2 + 3z3,e2 ;

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

ye1
3,3 = −3ĥ3,e1 + 4z3,e1 , ye2

3,3 = −3ĥ3,e2 + 4z3,e2 ,

where z1,e1,. . .,z3,e2 are noises sampled uniformly at ran-
dom.

Each client v ∈ [3] aggregates the received masked embed-
dings from all 3 clients to obtain

y1 = (ye1
1,1 + ye1

2,1 + ye1
3,1, y

e2
1,1 + ye2

2,1 + ye2
3,1),

y2 = (ye1
1,2 + ye1

2,2 + ye1
3,2, y

e2
1,2 + ye2

2,2 + ye2
3,2),

y3 = (ye1
1,3 + ye1

2,3 + ye1
3,3, y

e2
1,3 + ye2

2,3 + ye2
3,3).

Private Embedding Aggregation Retrieval. We explain
how client 1 privately retrieves its intended embedding ag-
gregation ĥ1,e1 + ĥ2,e1 + ĥ3,e1 , without revealing the entity
e1. The other clients follow the same procedure to retrieve
their intended embedding aggregations. Specifically, client 1
samples 2 masks z1 and z2 uniformly at random, and sends
a coded query qv to client v ∈ [3], where

q1=(−1+2z1, 2z2),q2=(−2+3z1, 3z2),q3=(−3+4z1, 4z2).

Having received the query qv, client v ∈ [3] computes the
inner product Av = ⟨qv,yv⟩ as the response, and sends
it back to client 1 through the server. Upon receiving the
responses A1, A2, A3, the server adds locally generated ran-
dom noises s1 and s2 to obtain the results Y1, Y2, Y3, and
forwards them to client 1, where

Y1 = A1 + 3s1, Y2 = A2 + 3s2, Y3 = A3 − 6s1 + 8s2.

Note that adding s1 and s2 at the server prevents client 1
from learning any additional information about h2,e2 .

With Y1, Y2, Y3, client 1 recovers

ĥ1,e1+ĥ2,e1+ĥ3,e1 =(h1,e1+h3,e1 , 2) = 6Y1−8Y2+3Y3,

and computes the global embedding of its entity e1 as
h1,e1+h3,e1

2 .

We would like to remark here that through this example,
the advantage of our protocol over PSI-based protocols can
be easily seen. As the intersection of 3 clients’ entity sets
is ∅, PSI-based protocol would have not performed any
embedding aggregation, missing the opportunity for clients
1 and 3 to collaborate. In general, our SecEA is superior to
PSI-based protocols in the following two aspects: 1) SecEA
builds upon private entity union, which captures all possible
aggregation opportunities across all subsets of clients, while
PSI allows embedding aggregations only within the inter-
section of all clients’ entity sets; 2) SecEA achieves higher
level of entity privacy. While PSI still reveals the existence
of entities in the intersection at the other clients, the local
entities of a client are completely kept private.

5 THEORETICAL ANALYSIS

5.1 Theoretical Guarantees

We formally describe the privacy guarantees of the SecEA
protocol in the following theorem.

Theorem 1. Consider a distributed system of a central
server and N clients. The proposed secure embedding ag-
gregation (SecEA) protocol for general federated embedding
learning tasks is T -secure for any T < N

2 , i.e., it simul-
taneously achieves entity-privacy and embedding-privacy
against 1) the curious server, and 2) any subset of up to T
colluding clients.

Proof. We present an information-theoretic proof in Ap-
pendix A, which shows that any T colluding clients (with un-
limited computation power) learn absolutely nothing about
other clients’ entities and their corresponding local or aggre-
gated embeddings (zero mutual information).

5.2 Complexity Analysis

To understand the operational cost of providing the FL sys-
tem with entity and embedding privacy, we analyse the stor-
age, communication, and computation complexities of the
proposed SecEA protocol, in unit of elements or operations
in the corresponding finite fields.

In the private entity union phase, the computation cost
at each client n mainly includes computing Gn(x), com-
puting L(x) and factoring L(x) over the finite field Fq,
which require the complexity O(Nk2), O(N2k2) and
O(N2k2 log(q)), respectively (Seo et al., 2012), where k =
max({|En| : n ∈ [N]}) is the maximum number of local en-
tities across all the clients. Moreover, the complexity of com-
puting the mask

∑
v:n<v PRG(an,v)−

∑
v:n>v PRG(av,n)

for sn is O(N2k) as the PRG has the same length of
2Nk with sn. Thus, the computation cost at each client
is O(N2k2 log(q)). In addition, in private entity union, the
communication at each client n includes uploading s̃n to
the server and downloading

∑
n∈[N] sn from the server, in-

curring a communication cost of O(Nk).

Remark 2. We note that as the private entity union opera-
tion is performed only once before the training rounds, we
expect a negligible contribution of its computation and com-
munication costs into the overhead of the SecEA protocol.

We next analyse the complexities of secure embedding shar-
ing and private embedding aggregation retrieval, which are
operations carried out in each training round of the SecEA
protocol. We note that the queries in (16) and the noise
terms ψn,e(αv) in (20) are constructed independently of the
entity embeddings, and thus can be computed and stored
offline before each round starts. These offline storage and
computation costs are analysed as follows.

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

Offline Storage Cost. The offline storage contains the
queries (16) and the noise terms ψn,e(αv) in (20) that are
both used in private embedding aggregation retrieval. Each
client n can independently generate a query vector qn,v,e of
length M sent to each client v ∈ [N] for any entity e ∈ En.
Thus, the storage cost at client n is O(MN |En|).

For each client n, the server can independently generate
the noise ψn,e(αv) of dimension d+1

K for any e ∈ En and
v ∈ [N]. Hence, the total offline storage cost at the server

for all N clients is O(
dN

∑N
n=1 |En|
K).

Offline Computation Cost. The offline computation in-
cludes the generating queries and noise terms in private em-
bedding aggregation retrieval. The queries {ρmn,e(αv)}v∈[N]

in (16) at client n are generated by evaluating the polyno-
mial ρmn,e(x) (15) of degree K + T − 1 < N at N points,
for each m ∈ [M] and e ∈ En. This can be done with com-
plexity O(MN(logN)2|En|) (Von Zur Gathen & Gerhard,
2013).

Similarly, for n-th client, the noise terms {ψn,e(αv)}v∈[N]

of dimension d+1
K in (20) are generated at the server by eval-

uating the polynomial ψn,e(x) of degree 2(K+T−1) < N
at N points. Repeating this operation for all the enti-
ties in En yields a complexity of O(dN(logN)2|En|

K). The
total offline computational complexity at the server is
O(

dN(logN)2
∑N

n=1 |En|
K). We continue to analyze the on-

line communication and computation cost of SecEA, which
involves operations carried out after updating the embed-
dings via local training.

Online Communication Cost. The online communication
overhead at each client n consists of three parts: 1) send-
ing the encoded vector yn,v in (11) of dimension M(d+1)

K
to each client v ∈ [N]; 2) sending the query vector qn,v,e

in (16) of dimension M to each client v ∈ [N], for each
entity e ∈ En; 3) responding the answer An,v,e of dimen-
sion d+1

K to client v for each v ∈ [N] and e ∈ Ev. The
incurred communication overhead of client n for these three
parts are O(dNM

K), O(MN |En|) and O(
d
∑N

v=1 |Ev|
K), re-

spectively. Thus the online communication overhead at
clients n is O(dNM

K +MN |En|+
d
∑N

n=1 |En|
K).

Online Computation Cost. The online computation over-
head at client n also contains three parts: 1) generating
the encoded data {φn,em(αv)}v∈[N] sent to the N clients
for all m ∈ [M], in the private embedding sharing phase.
This can be viewed as evaluating the polynomial φv,em(x)
in (10) of degree K + T − 1 < N at N points, for
d+1
K times for each m ∈ [M], which can be achieved

by complexity O(dMN(logN)2)
K) (Von Zur Gathen & Ger-

hard, 2013); 2) generating the answer An,v,e to client v by
computing a linear combination of two vectors of dimen-
sion M , d+1

K times for each v ∈ [N] and each e ∈ Ev,

which incurs a complexity of O(
dM

∑N
v=1 |Ev|
K); 3) decoding

the embedding aggregation of entity e by first executing a
(N, 2(K + T − 1) + 1) Reed-Solomon decoder to obtain
a polynomial Yn,e(x) of degree 2(K + T − 1) < N , and
then evaluating the polynomial atK < N points. Repeating
this operation for all entities in Ev yields a computational
complexity of O(dN(logN)2|En|

K) (Gao, 2003). To summa-
rize, the overall online computation overhead at client n is
O(dMN(logN)2

K +
dM

∑N
n=1 |En|
K).

Table 1. Complexities of the proposed SecEA protocol in one
global round. Given security parameter T , each embedding vector
is partitioned into K = ⌊N+1

2
⌋ − T sub-vectors.

Complexity
Offline storage at client n O(MN |En|)
Offline storage at server O(

dN
∑N

n=1 |En|
K

)
Offline comp. at client n O(MN(logN)2|En|)
Offline comp. at server O(

dN(logN)2
∑N

n=1 |En|
K

)

Online comm. at client n O(dNM
K

+MN |En|+ d
∑N

n=1 |En|
K

)

Online comp. at client n O(dMN(logN)2

K
+

dM
∑N

n=1 |En|
K

)

Online comp. at server O(
dN

∑N
n=1 |En|
K

)

With respect to the online computational complexity at
the server, it simply masks the response Av,n,e received
from client v with the locally stored evaluation ψn,e(αv),
for each pair of n, v ∈ [N]. This incurs a complexity of

O(
dN

∑N
n=1 |En|
K). We summarize the complexities of the

proposed SecEA protocol in each training round in Table
1. Recall from (7) that each embedding is partitioned into
K =

⌊
N+1
2

⌋
− T sub-vectors. We have following observa-

tions from Table 1: (1) There is a tradeoff between privacy
guarantee and system complexity. To achieve a higher pri-
vacy guarantee with a larger T , we will have a smaller
value of K, which leads to a higher storage, computation,
and communication overhead; and (2) In most of practi-
cal scenarios, e.g., training a recommendation system with
M = 6000 entities across N = 10 companies, we have
M ≫ N and the total online computation cost of client and
server is dominated by a complexity of O(

dM
∑N

n=1 |En|
K).

6 EMPIRICAL EVALUATIONS

We conduct a comprehensive experimental study on the
learning performance and the operational complexity of the
proposed SecEA protocol, via a wide range of representation
learning tasks including knowledge graph, recommendation
system, social network, and categorical clustering.

Datasets and Metrics. For each learning task, we em-
ploy several benchmark datasets, and focus on the typi-
cal performance metrics. For knowledge graph, we con-
sider three benchmark knowledge graphs Kinship (Lin
et al., 2018), WN18 (Bordes et al., 2013), and FB15k (Bor-

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

des et al., 2013), and use the metric Mean Reciprocal
Rank (MRR). For recommendation system, we consider
the datasets Last.FM (Cantador et al., 2011) and Movie-
Lens (Harper & Konstan, 2015), and the metric Normalized
Discounted Cumulative Gain (NDCG). For social network
tasks, we select three datasets Citeseer, Cora, and Wikipedia
(Wiki) (Sen et al., 2008), and use Micro F1 as the metric.
For categorical clustering tasks, we use three categorical
datasets SPECT Heart, Soybean, and Census Income (Dua
& Graff, 2017), and the Normalized Mutual Information
(NMI) as the metric. We summarize their statistics in Ta-
ble 2. Each of these datasets is randomly split into a training
set and a test set on the sample level. We partition each train-
ing set across the clients in a non-i.i.d. manner, which is
common for practical FL tasks (see Appendix B for detailed
descriptions on partition strategies).

Table 2. Statistics of the datasets for different tasks.
Task Dataset #Samples #Entities #Classes

Knowledge
Graph

Kinship 10,686 104 25
WN18 151,442 40,943 18
FB15k 592,213 14,951 1,345

Recommenda-
tion System

LastFM 92,792 1,892 -
MovienLens

100k 100,000 943 5

MovieLens
1m 1,000,000 6,040 5

Social
Network

Citeseer 4,732 3,312 6
Cora 5,429 2,708 7
Wiki 17,981 2,405 17

Categorical
Clustering

SPECT 267 267 2
Soybean 307 307 19
Census
Income 48,842 48,842 2

Models. For each task, we consider two or three classical
models for evaluation. In knowledge graph completion, we
use TransE, RotatE and NoGE. In recommendation system,
we use SVD, NCF and LightGCN. In social network, we
evaluate LINE, DeepWalk and Node2Vec. In categorical
clustering, we consider PCA and Autoencoder. We describe
the choices of the hyper-parameters of these models in Ap-
pendix B.

We perform experiments under the following settings. 1)
Entire. Embeddings of all entities are trained centrally on
the entire training data. 2) Single. Each client trains the
embeddings of its local entities using the local data. 3)
EmbAvg. The server performs the embedding aggregation
such that for each entity, the local embeddings of all clients
who have this entity locally are aggregated to generate a
global embedding, which is then sent back to these clients
for the training of next round. Note that in this setting the
server knows the entity set and the local embeddings of each
client, and there is no privacy guarantee. 4) PSI. The server
only aggregates embeddings of the entities that belong to the
intersection of all clients’ entity sets via secure aggregation,

and sends the aggregated results back to each client. 5)
SecEA(p). For some precision parameter p, the elements
of local embeddings are quantized to keep p digits after
the decimal point, and then the quantized embeddings are
aggregated using SecEA protocol.

The executions of the protocols were simulated on a sin-
gle machine using Intel(R) Xeon(R) Gold 5118 CPU @
2.30GHz with 12 cores of 48 threads. The embeddings of
each client were trained on an NVIDIA GeForce 3090 GPU
with 24G RAM. Through the experimental evaluations, we
would like to answer the following questions: 1) How does
the embedding aggregation help to improve the model util-
ity? 2) How does incorporating SecEA affect the model
utility? 3) What is the complexity overhead of executing
SecEA in different tasks?

6.1 Performance Evaluation

For all FL settings, we perform the experiments over N = 3
clients. We choose the finite field of order q = 232 for
SecEA. We repeat the execution of each task 5 times, and
record in Table 3 the average evaluation results, over the
execution trials and the clients. We observe that for all
tasks, all settings involving embedding aggregation (i.e.,
EmbAvg, PSI, and SecEA) outperform the Single setting,
demonstrating the effectiveness of aggregating embeddings.
Particularly, EmbAvg achieves the best performance, with
an improvement ranging from 1.14% to 115.10% over the
Single setting. In each task, the biggest improvement ratio
of our protocol SecEA over Single for different datasets
are as follows. In knowledge graph completion, 25.01%
of RotatE on Kinship, 97.14% of NoGE on WN18 and
55.10% of TransE on FB15k respectively; in recommenda-
tion system, 39.02% and 32.94% of MF on Last.FM and
MovieLens-100k, 74.94% of NCF on MovieLens-1M; in
social network, 18.99% of LINE on Citeseer, 13.40% of
node2vec on Cora, 12.15% of LINE on Wiki; in multi-view
categorical clustering, 99.18% of PCA on SPECT, 16.60%
of AutoEncoder on Soybean, 85.71% of PCA on Census
Income.

Comparing the results of SecEA for different p values and
EmbAvg in Table 3, we can see that for all tasks the per-
formance improves as the precision parameter p increases.
Also, the performance of SecEA with small p in some tasks
has marginal performance loss. Specifically, for p = 4 and
p = 6, the performance drops at most by 13.17% and 9.59%
respectively, both for Social Network of LINE on Citeseer;
for p = 8 and p = 10, a largest performance loss of 7.40%
is observed in Clustering of PCA on SPECT. For all tasks
and p ≥ 8, the performance loss is within 5%. On the other
hand, the best performance of the SecEA setting, over the
choice of precision parameter p, is constantly better than
that of the PSI setting. For example, in Knowledge Graph of

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

Table 3. Utility performance of FRL tasks under different settings. For the FL settings (i.e., other than the Entire setting), experiments
were conducted on N = 3 clients.

Task Dataset Model Entire Single EmbAvg PSI SecEA(4) SecEA(6) SecEA(8) SecEA(10)

Knowledge Graph
Completion

(MRR)

Kinship
TransE 0.5169 0.3289 0.4026 0.3919 0.3862 0.3869 0.3937 0.3969
RotatE 0.8342 0.5093 0.7413 0.4663 0.6166 0.6234 0.6249 0.6367
NoGE 0.5164 0.3621 0.4363 0.4312 0.4268 0.4275 0.4275 0.4291

WN18
TransE 0.6672 0.4366 0.5931 0.5068 0.5898 0.5898 0.5927 0.5929
RotatE 0.8159 0.4969 0.7347 0.6116 0.7346 0.7346 0.7346 0.7347
NoGE 0.5159 0.1750 0.3672 0.2158 0.3438 0.3447 0.3448 0.3450

FB15k
TransE 0.7710 0.4591 0.7131 0.7098 0.7016 0.7094 0.7106 0.7121
RotatE 0.7453 0.6052 0.7098 0.7070 0.7093 0.7093 0.7096 0.7096
NoGE 0.3417 0.2844 0.3213 0.3007 0.3116 0.3123 0.3169 0.3188

Recommendation
System

(NDCG)

Last.FM
SVD 0.0132 0.0082 0.0114 0.0085 0.0092 0.0114 0.0114 0.0114
NCF 0.7470 0.3012 0.4233 0.3306 0.4036 0.4233 0.4233 0.4233

LightGCN 0.1810 0.0610 0.0619 0.0610 0.0613 0.0619 0.0619 0.0619

MovieLens
100k

SVD 0.0229 0.0170 0.0226 0.0221 0.0225 0.0225 0.0225 0.0226
NCF 0.6240 0.2708 0.4116 0.2921 0.3581 0.3581 0.3581 0.3581

LightGCN 0.3237 0.1905 0.2098 0.2009 0.2092 0.2097 0.2097 0.2097

MovieLens
1M

SVD 0.0287 0.0220 0.0291 0.0232 0.0232 0.0232 0.0232 0.0232
NCF 0.7345 0.3844 0.6951 0.5721 0.6654 0.6657 0.6719 0.6725

LightGCN 0.2713 0.1351 0.1737 0.1579 0.1625 0.1625 0.1625 0.1631

Node Classification
in Social Network

(Micro F1)

Citeseer
LINE 0.4297 0.2411 0.3013 0.2417 0.2616 0.2724 0.2805 0.2869

DeepWalk 0.5339 0.4233 0.4529 0.4429 0.4410 0.4419 0.4453 0.4501
node2vec 0.5294 0.4136 0.4666 0.4554 0.4419 0.4549 0.4574 0.4631

Cora
LINE 0.4428 0.2833 0.3491 0.3383 0.3266 0.3303 0.3437 0.3447

DeepWalk 0.7454 0.5878 0.6300 0.6174 0.6138 0.6218 0.6235 0.6291
node2Vec 0.7362 0.5706 0.6282 0.6291 0.6345 0.6210 0.6471 0.6534

Wiki
LINE 0.6590 0.4964 0.5581 0.5391 0.5440 0.5469 0.5524 0.5567

DeepWalk 0.6736 0.5721 0.6506 0.6205 0.6263 0.6299 0.6318 0.6354
node2vec 0.6804 0.5699 0.6167 0.6136 0.6017 0.6102 0.6121 0.6167

Multi-View
Categorical Clustering

(NMI)

SPECT PCA 0.2364 0.1099 0.2364 0.2364 0.2189 0.2189 0.2189 0.2189
Autoencoder 0.2364 0.1373 0.2364 0.2364 0.2189 0.2364 0.2364 0.2364

Soybean PCA 0.7231 0.6004 0.7130 0.7130 0.6961 0.6940 0.7013 0.7107
Autoencoder 0.7136 0.5980 0.7017 0.7017 0.6875 0.6930 0.6945 0.6973

Census Income PCA 0.0026 0.0014 0.0026 0.0026 0.0025 0.0025 0.0025 0.0026
Autoencoder 0.0026 0.0015 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026

NoGE on WN18, the SecEA have a 59.87% improvement
over PSI.

6.2 Optimization and Complexity Evaluation

We first present the system-level optimizations implemented
to improve the computational efficiency of SecEA. Next,
we evaluate the efficiency of SecEA for different tasks, via
measuring and comparing protocol execution times under
different system settings.

6.2.1 System Optimization

We have performed the following system-level optimiza-
tions in the implementation of the SecEA to speed up its
execution.

Multi-process parallelization. At each client, as the of-
fline and online computations are both independent across
entities, we can parallelize them over multiple execution
processes to speed up the execution of SecEA. For exam-
ple, for training a LightGCN model on the MovieLens-1M
dataset with an embedding dimension d = 128, as shown in
Figure 1, the offline and online computation times reduce

almost linearly as the number of processes increases.

Figure 1. The offline query generation time and the online compu-
tation time of LightGCN on MovieLens-1M among 5 clients.

Parallelization of training and query generation. As the
offline computations to generate coded queries at each client
is independent of its local training process, we parallelize
the query generation and the training operation to save the
computation time.

6.2.2 Complexity Evaluation

We perform the training tasks on the datasets in Table 2 un-
der different settings. As we focus on the cross-silo FL sce-
narios, we simulate the communication between the clients

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

Table 4. Execution time (seconds) for a global round of FRL. For the FL settings (i.e., other than the Entire setting), experiments were
conducted on N = 5 clients.

Task Dataset Model Entire Single EmbAvg PSI SecEA
T = 1 T = 2

Knowledge Graph
Completion

Kinship
TransE 1.7821 0.3066 0.3076 0.3094 19.2904 21.6531
Rotate 1.9424 0.3766 0.3780 0.3820 31.9094 32.4962
NoGE 0.0138 0.0100 0.1333 0.1433 19.9958 22.3952

WN18
TransE 49.3834 8.9590 9.6090 9.9242 1029.6071 1376.7152
Rotate 215.4374 37.4870 38.8949 40.0782 1278.6604 1522.4993
NoGE 10.4387 4.7327 4.7429 5.1558 1188.6553 1259.4863

FB15k
TransE 132.3642 26.7638 27.3164 27.6325 478.1384 533.6825
RotatE 194.1622 40.8121 41.3936 41.4454 396.0029 691.6463
NoGE 54.0640 9.6879 9.6933 9.9058 430.4715 456.1997

Recommendation
System

Last.FM
SVD 3.8108 0.5697 0.6347 0.6227 20.6476 23.2208
NCF 51.9052 12.5331 12.5359 12.5388 16.5476 16.9183

LightGCN 24.5480 23.3454 24.6930 24.7482 25.8342 28.0136

MovieLens
100k

SVD 2.6813 0.5522 0.6443 0.6670 9.4297 10.5753
NCF 15.7431 4.1461 4.1481 4.1485 7.6522 7.8619

LightGCN 22.4373 21.1839 21.3993 21.4220 22.3761 23.4612

MovieLens
1M

SVD 26.7907 5.1925 5.3436 5.4796 105.3312 132.2052
NCF 181.1412 43.3515 43.3530 43.3674 91.7813 93.1311

LightGCN 2375.9342 2200.1347 2200.2687 2200.2858 2210.7084 2217.3901

Node Classification
in Social Network

Citeseer
LINE 3.3156 0.6264 0.6556 0.6932 16.6380 18.5235

DeepWalk 8.7221 3.7134 4.9233 4.9901 16.6888 18.5786
node2vec 9.2045 4.0145 5.2115 5.2464 16.6545 18.9667

Cora
LINE 2.7987 0.5133 0.5289 0.5802 21.7991 24.8895

DeepWalk 8.1478 3.5622 5.0013 3.6291 21.8200 24.9152
node2Vec 8.8835 3.2431 4.8974 3.7802 21.7557 25.1202

Wiki
LINE 6.3342 1.7268 2.2416 2.3112 30.3383 34.5111

DeepWalk 21.7643 10.4436 10.9981 11.0460 30.7721 33.9292
node2vec 20.5459 9.7665 11.2301 9.8689 31.9072 34.3018

Multi-View
Categorical Clustering

SPECT PCA 0.0555 0.0070 0.0081 0.0077 2.6384 2.6472
Autoencoder 9.7041 9.4420 9.4426 9.4462 9.5501 9.6275

Soybean PCA 0.0458 0.0173 0.0184 0.0180 2.9849 2.9954
Autoencoder 10.8870 8.8629 8.8634 8.8666 8.9876 9.0801

Census Income PCA 0.0360 0.0207 0.0278 0.0980 3293.0407 3556.2640
Autoencoder 165.2815 88.8010 88.8122 89.4286 3726.3676 3873.6363

and the server, assuming connections between data centers
with a bandwidth of 680Mbps (see, e.g., m3.large instance
on AWS EC2 (Scheuner & Leitner, 2018)). The SecEA
setting is implemented using 20 parallel processes for query
generation and encoding and decoding embeddings. The
execution times of one global training round, with N = 5
clients for all FL settings, are measured in Table 4, which
shows that compared with the EmbAvg setting whose execu-
tion time is mostly spent for training embeddings, SecEA in-
curs a longer execution time. This is mainly due to 1) offline
computations of coded queries; and 2) online computation
to encode local embeddings and decode global embeddings.
The smallest increase 0.77% in execution time is observed
for LightGCN on MovieLens-1M, as the training time com-
pletely dominates those for offline computation and coding.
The most significant increase occurs for PCA on Census
Income, as the training time is much shorter and the total
number of entities is enormous. In general, for shallow
models like TransE, PCA, and SVD who have short training
times, running SecEA increases their execution times by a
sizable margin. On the other hand, for deep models like

LightGCN and AutoEncoder, especially on large datasets,
the additional execution time of SecEA is negligible.

Compared with another secure aggregation protocol PSI, Se-
cEA generally requires longer to complete a training round.
From Table 4, we can see that the execution time of PSI is
slightly longer than that of EmbAvg, due to the additional
time to construct masks for protecting the embedding pri-
vacy. Similar to the comparison with the EmbAvg setting,
SecEA is slower than PSI on shallow models, and achieves
comparable running time as PSI on deep models (e.g., slow-
ing down by less than 5% for LightGCN and AutoEncoder).
However, as discussed before, SecEA achieves a strictly
better utility performance than PSI, and provides a higher
level of security.

We finally note that the execution time of SecEA increases
with the security parameter T . The increase in execution
time when raising T from 1 to 2 ranges from 1.02% to
74.65%. The largest increase incurs for RotatE on WN18.
In general, a larger dataset and more entities witness a sig-
nificant increase in execution time while increasing T . For

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

instance, from Table 4, for running SVD in recommendation
systems, the execution time for the MovieLens-100k grows
12.15% when T is increased from 1 to 2, and the growth for
a larger dataset MovieLens-1M is 36.74%.

Online and Offline Time Cost. We analyze the breakdown
of the execution of the SecEA protocol, which consists of
the offline and online phases. The major operation in the
offline phase is to compute the coded queries that are used
later to retrieve embedding aggregations. The online phase
consists of training local embeddings, encoding/decoding
operations, and communications between the clients.

Online Time Cost. The detailed analysis of online cost
is decomposed into three parts, i.e., training, computing,
and communication. We measured the individual time of
each part for several tasks in Figure 2, and provide detailed
numerical results in Appendix B.

• Training - It is well known that the training time depends
on the size of the dataset, batch size, and the complexity
of the model. For a fair comparison, the batch size is fixed
in each task. From Figure 2, as the model LightGCN
is the most complex model with the largest dataset, the
training time is the longest. For a given dataset, the local
training time of each client decreases with more clients,
as each client would have a smaller training dataset.

• Computation - From the online computation cost
O(dMN(logN)2

K +
dM

∑N
n=1 |En|
K), as the number of lo-

cal entities |En| is much larger than the number of clients
N , the second part dominates the computation cost. In
this situation, the online computation cost is proportional
to |En|. As shown in Figure 2, for fixed security parameter
T , the online computation time (the green part) becomes
shorter as N increases from 5 to 20. This is because that
less number of entities will be available at each client
as N increases. For a fixed number of clients, the on-
line computation becomes longer with a larger security
parameter T = ⌊N+1

2 ⌋ −K.
• Communication - The communication cost of client n is
O(dNM

K +MN |En|+
d
∑N

n=1 |En|
K). As we can observe

from Figure 2, for fixed number of clients, as T increases,
K =

⌊
N+1
2

⌋
− T decreases, and the communication cost

(orange part) increases. For fixed T , communication cost
increases with N . Besides, for all tasks in Figure 2, the
communication overhead is relatively small compared
with the other parts in the online phase of SecEA.

Offline Time Cost. We have measured each task’s offline
time cost and used two of them for illustration, i.e., Light-
GCN on MovieLens-1M and AutoEncoder on Soybean in
Table 5. We can see that for fixed security parameter T , the
offline time increases as the number of clients N increases;
for fixed N , the offline execution time is longer for a larger
T .

We also observe that for these tasks, the training time is
much larger than the offline time. Therefore, thanks to our
system optimization of parallelizing the query generation
and the embedding training, the time cost of the offline
computation can be completely hidden behind the local
training time, and will not add to the overall execution time
of SecEA.

Table 5. The offline and training time costs (seconds) of LightGCN
on MovieLens 1M and AutoEncoder on Soybean, in one global
training round.

T N
LightGCN AutoEncoder

Offline Training Offline Training

⌊0.1N⌋
5 88.7823 2200.1345 2.6917 13.9775
10 157.5516 2093.2187 2.8925 12.9871
15 177.6544 1840.4922 2.7830 7.4435
20 218.9578 1700.4794 3.1325 4.0749

⌊0.3N⌋
5 94.7238 2202.8472 2.7395 14.0384
10 191.1781 2090.7413 2.7536 12.8402
15 209.0647 1835.9492 2.8238 7.5043
20 234.2669 1695.4395 2.8388 3.9401

⌊0.5N⌋
5 114.9181 2205.8749 2.7420 14.2426
10 224.4510 2098.0582 2.7584 13.0481
15 306.9342 1842.7493 2.8650 7.4893
20 709.3732 1706.9347 2.9518 4.1345

7 DISCUSSIONS

This section discusses general privacy and security threats
in FL and common defense mechanisms. For the problem of
privacy protection, we compare SecEA with other potential
solutions (e.g., differential privacy).

Privacy v.s. Security. FL faces many threats in real-world
scenarios due to multi-party training. In the most basic of
cases, we can categorize all FL attacks into privacy attacks
and poisoning attacks. Privacy attacks aim to reveal sensi-
tive and original information during training. For example,
an honest-but-curious server could try to reconstruct a tar-
get client’s training data via model inversion attacks (Zhu
et al., 2019b; Geiping et al., 2020), and infer if a data record
was in the training set and which client this record belongs
to, via membership and source inference attacks (Hu et al.,
2021; Pustozerova & Mayer, 2020). In the same time, curi-
ous clients may collude with each other (or even with the
server) to infer private information of the target client. Other
than privacy attacks, recent studies found that an adversarial
client could easily poison the global training model in FL,
whose goal is to manipulate model’s performance rather
than stealing private information. For example, the adversar-
ial clients can either destroy the model accuracy (Tolpegin
et al., 2020; Fung et al., 2018) or control the model’s predic-
tions via backdoor attacks (Bagdasaryan et al., 2020; Wang
et al., 2020; Xie et al., 2019). Different types of attacks
require customized defending mechanisms, and this work
only focuses on privacy protection in FL.

Passive v.s. Active Adversaries. Like other secure ag-

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

(a) DeepWalk on Citeseer (b) DeepWalk on Cora (c) TransE on FB15k (d) SVD on MovieLens 1M

(e) NCF on MovieLens-100k (f) NCF on MovieLens-1M (g) LightGCN on MovieLens-
1M

(h) AutoEncoder on Soybean

Figure 2. Breakdowns of online time cost (seconds) in one global training round for different tasks.

gregation protocols for privacy protection in FL, SecEA is
designed to defend passive adversaries that the server and
colluding clients are honest-but-curious. Recently, a series
of works developed novel privacy attacks under an active
threat model where a malicious server can infer clients pri-
vate information via modifying the architectures and the
parameters of FL models (Wen et al., 2022; Boenisch et al.,
2021; Fowl et al., 2021), even when models are protected
with secure aggregation (Lam et al., 2021; Pasquini et al.,
2021). In the proposed SecEA protocol to aggregate em-
beddings, we note that as the server is essentially used as
a “relay” for communications between clients, this type of
“model modification” attack can be effectively mitigated
using authenticated encryption techniques, ensuring the con-
fidentiality and integrity of communications across clients.
Nevertheless, a malicious server can indeed collude with
curious clients to infer information about embeddings of
other clients’ entities, via manipulating the response in (20).
One approach to deal with this problem is to use secure
key distribution primitives such that a subset of clients can
securely agree on some private randomness. For instance
in (Chai et al., 2020), an FL client generates a private key
and shares it with other clients via TLS/SSL secure chan-
nels. With these common private keys, the noise injection
(adding ψ) in (20) can be done at the clients rather than the
server, eliminating the possibility of server manipulating the
response.

Secure Aggregation v.s. Differential Privacy. In FL, dif-
ferential Privacy (DP) and secure aggregation are the two
most common privacy protection mechanisms, which aim
to protect clients’ privacy via perturbing the local models
before sending them back to the server. Unlike secure aggre-
gation, DP (Kairouz et al., 2016; Truex et al., 2019; Kairouz

et al., 2021) perturbs each local model by adding random
noises sampled from certain distributions (e.g., Laplace or
Gaussian distribution (Dwork et al., 2014)), which can pro-
tect clients from model inversion and membership inference
attacks (Shokri et al., 2017). However, the perturbed noises
cannot be canceled out entirely but be accumulated in the
aggregation phase, which leads to a steep hit in accuracy
(Duchi et al., 2013; Kairouz et al., 2016; Truex et al., 2019;
Kairouz et al., 2021). In Appendix C, we evaluate TransE
on kinship to validate this concern. The preliminary results
show that only a sizeable random noise can be effective
against privacy attacks, which however severely damage the
model’s utility. In sharp contrast, the proposed SecEA pro-
tocol simultaneously achieves information-theoretic privacy
and lossless embedding aggregation for FRL.

8 CONCLUSION

We proposed a novel framework SecEA for secure em-
bedding aggregation in federated representation learning,
which ensures the entity privacy and embedding privacy
simultaneously. We theoretically demonstrated that SecEA
achieves information-theoretic privacy against a curious
server and collusion of up to T clients. We also empir-
ically demonstrated that, overall a comprehensive set of
representation learning tasks, compared with other baseline
aggregation protocols with no or weaker security guaran-
tees, SecEA achieves almost identical performance, and
comparable execution time for training deep models on
large datasets. Therefore, SecEA is particularly suitable for
running computation-intensive learning tasks in cross-silo
federated representation learning scenarios.

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

REFERENCES

Angelou, N., Benaissa, A., Cebere, B., Clark, W., Hall, A. J.,
Hoeh, M. A., Liu, D., Papadopoulos, P., Roehm, R., Sand-
mann, R., et al. Asymmetric private set intersection with
applications to contact tracing and private vertical feder-
ated machine learning. arXiv preprint arXiv:2011.09350,
2020.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and
Shmatikov, V. How to backdoor federated learning. In
International Conference on Artificial Intelligence and
Statistics. PMLR, 2020.

Baldi, P. Autoencoders, unsupervised learning, and deep
architectures. In Proceedings of ICML workshop on un-
supervised and transfer learning. JMLR Workshop and
Conference Proceedings, 2012.

Banawan, K. and Ulukus, S. The capacity of private informa-
tion retrieval from coded databases. IEEE Transactions
on Information Theory, 2018.

Bickel, S. and Scheffer, T. Multi-view clustering. In
Fourth IEEE International Conference on Data Mining
(ICDM’04), 2004.

Boenisch, F., Dziedzic, A., Schuster, R., Shamsabadi, A. S.,
Shumailov, I., and Papernot, N. When the curious aban-
don honesty: Federated learning is not private. arXiv
preprint arXiv:2112.02918, 2021.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. Advances in neural information
processing systems, 2013.

Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S.,
Taubeneck, E., and Vlaskin, V. Private matching for
compute. Cryptology ePrint Archive, 2020.

Cantador, I., Brusilovsky, P., and Kuflik, T. 2nd workshop
on information heterogeneity and fusion in recommender
systems (hetrec 2011). In Proceedings of the 5th ACM
conference on Recommender systems, RecSys 2011, New
York, NY, USA, 2011. ACM.

Chai, D., Wang, L., Chen, K., and Yang, Q. Secure federated
matrix factorization. IEEE Intelligent Systems, 2020.

Chen, M., Zhang, W., Yuan, Z., Jia, Y., and Chen, H. Fede:
Embedding knowledge graphs in federated setting. arXiv
preprint arXiv:2010.12882, 2020.

Chor, B., Goldreich, O., Kushilevitz, E., and Sudan, M.
Private information retrieval. In Proceedings of IEEE
36th Annual Foundations of Computer Science. IEEE,
1995.

Diffie, W. and Hellman, M. New directions in cryptography.
IEEE transactions on Information Theory, 1976.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Duchi, J. C., Jordan, M. I., and Wainwright, M. J. Local
privacy and statistical minimax rates. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science,
2013.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
2014.

Fowl, L., Geiping, J., Czaja, W., Goldblum, M., and Gold-
stein, T. Robbing the fed: Directly obtaining private
data in federated learning with modified models. arXiv
preprint arXiv:2110.13057, 2021.

Freedman, M. J., Nissim, K., and Pinkas, B. Efficient pri-
vate matching and set intersection. In Cachin, C. and
Camenisch, J. L. (eds.), Advances in Cryptology - EURO-
CRYPT 2004. Springer, 2004.

Frikken, K. Privacy-preserving set union. In Katz, J. and
Yung, M. (eds.), Applied Cryptography and Network Se-
curity. Springer, 2007.

Fung, C., Yoon, C. J., and Beschastnikh, I. Mitigating
sybils in federated learning poisoning. arXiv preprint
arXiv:1808.04866, 2018.

Gao, S. A new algorithm for decoding reed-solomon codes.
In Communications, information and network security.
Springer, 2003.

Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M.
Inverting gradients-how easy is it to break privacy in
federated learning? Advances in Neural Information
Processing Systems, 2020.

Gopi, S., Gulhane, P., Kulkarni, J., Shen, J. H., Shokouhi,
M., and Yekhanin, S. Differentially private set union. In
International Conference on Machine Learning. PMLR,
2020.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, 2016.

http://archive.ics.uci.edu/ml

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini,
G., Smith, G., and Thorne, B. Private federated learn-
ing on vertically partitioned data via entity resolution
and additively homomorphic encryption. arXiv preprint
arXiv:1711.10677, 2017.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. Acm transactions on interactive
intelligent systems (TIIS), 2015.

He, C., Balasubramanian, K., Ceyani, E., Yang, C., Xie, H.,
Sun, L., He, L., Yang, L., Yu, P. S., Rong, Y., et al. Fed-
graphnn: A federated learning system and benchmark for
graph neural networks. arXiv preprint arXiv:2104.07145,
2021.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S.
Neural collaborative filtering. In Proceedings of the 26th
international conference on world wide web, 2017.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang, M.
Lightgcn: Simplifying and powering graph convolution
network for recommendation. In Proceedings of the 43rd
International ACM SIGIR conference on research and
development in Information Retrieval, 2020.

Hu, H., Salcic, Z., Sun, L., Dobbie, G., and Zhang, X.
Source inference attacks in federated learning. In 2021
IEEE International Conference on Data Mining (ICDM),
2021.

Huang, Y., Evans, D., and Katz, J. Private set intersection:
Are garbled circuits better than custom protocols? In
NDSS, 2012.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Ji, S., Pan, S., Cambria, E., Marttinen, P., and Philip, S. Y. A
survey on knowledge graphs: Representation, acquisition,
and applications. IEEE Transactions on Neural Networks
and Learning Systems, 2021.

Jolliffe, I. T. and Cadima, J. Principal component analysis:
a review and recent developments. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 2016.

Kairouz, P., Bonawitz, K., and Ramage, D. Discrete distri-
bution estimation under local privacy. In International
Conference on Machine Learning, 2016.

Kairouz, P., Liu, Z., and Steinke, T. The distributed discrete
gaussian mechanism for federated learning with secure
aggregation. In International Conference on Machine
Learning. PMLR, 2021.

Kissner, L. and Song, D. Privacy-preserving set operations.
In Annual International Cryptology Conference. Springer,
2005.

Kovács, I. A., Luck, K., Spirohn, K., Wang, Y., Pollis, C.,
Schlabach, S., Bian, W., Kim, D.-K., Kishore, N., Hao,
T., et al. Network-based prediction of protein interactions.
Nature communications, 2019.

Lam, M., Wei, G.-Y., Brooks, D., Reddi, V. J., and Mitzen-
macher, M. Gradient disaggregation: Breaking privacy
in federated learning by reconstructing the user partic-
ipant matrix. In International Conference on Machine
Learning. PMLR, 2021.

Lin, X. V., Socher, R., and Xiong, C. Multi-hop knowledge
graph reasoning with reward shaping. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, 2018.

Long, B., Yu, P. S., and Zhang, Z. A general model for
multiple view unsupervised learning. In Proceedings of
the 2008 SIAM international conference on data mining.
SIAM, 2008.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics. PMLR, 2017.

Nguyen, D. Q., Tong, V., Phung, D., and Nguyen, D. Q.
Node co-occurrence based graph neural networks for
knowledge graph link prediction. In Proceedings of
WSDM 2022 (Demonstrations), 2022.

Pasquini, D., Francati, D., and Ateniese, G. Eluding secure
aggregation in federated learning via model inconsistency.
arXiv preprint arXiv:2111.07380, 2021.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: On-
line learning of social representations. In Proceedings
of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014.

Pinkas, B., Schneider, T., and Zohner, M. Scalable private
set intersection based on ot extension. ACM Transactions
on Privacy and Security (TOPS), 2016.

Pustozerova, A. and Mayer, R. Information leaks in feder-
ated learning. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2020.

Sablayrolles, A., Douze, M., Schmid, C., Ollivier, Y., and
Jégou, H. White-box vs black-box: Bayes optimal strate-
gies for membership inference. In International Con-
ference on Machine Learning, pp. 5558–5567. PMLR,
2019.

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

Salakhutdinov, R. and Mnih, A. Probabilistic matrix factor-
ization. In Proceedings of the 20th International Confer-
ence on Neural Information Processing Systems, 2007.

Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W.
Robust and communication-efficient federated learning
from non-i.i.d. data. IEEE Transactions on Neural Net-
works and Learning Systems, 2020.

Scheuner, J. and Leitner, P. A cloud benchmark suite
combining micro and applications benchmarks. In
ACM/SPEC International Conference on Performance
Engineering, 2018.

Seif, M., Tandon, R., and Li, M. Wireless federated learning
with local differential privacy. In 2020 IEEE International
Symposium on Information Theory (ISIT), 2020.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 2008.

Seo, J. H., Cheon, J. H., and Katz, J. Constant-round
multi-party private set union using reversed laurent series.
In International Workshop on Public Key Cryptography.
Springer, 2012.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP). IEEE, 2017.

Shoup, V. A computational introduction to number theory
and algebra. Cambridge university press, 2 edition, 2009.

So, J., Güler, B., and Avestimehr, A. S. Byzantine-resilient
secure federated learning. IEEE Journal on Selected
Areas in Communications, 2020.

Song, C. and Raghunathan, A. Information leakage in
embedding models. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 377–390, 2020.

Sun, H. and Jafar, S. A. The capacity of private informa-
tion retrieval. IEEE Transactions on Information Theory,
2017.

Sun, J., Yang, X., Yao, Y., Zhang, A., Gao, W., Xie, J., and
Wang, C. Vertical federated learning without revealing
intersection membership. ArXiv, abs/2106.05508, 2021.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. Rotate: Knowl-
edge graph embedding by relational rotation in complex
space. arXiv preprint arXiv:1902.10197, 2019.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei,
Q. Line: Large-scale information network embedding.
In Proceedings of the 24th international conference on
world wide web, 2015.

Tolpegin, V., Truex, S., Gursoy, M. E., and Liu, L. Data
poisoning attacks against federated learning systems. In
European Symposium on Research in Computer Security.
Springer, 2020.

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., and Zhou, Y. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th
ACM workshop on artificial intelligence and security,
2019.

Ulukus, S., Avestimehr, S., Gastpar, M., Jafar, S., Tandon,
R., and Tian, C. Private retrieval, computing and learning:
Recent progress and future challenges. IEEE Journal on
Selected Areas in Communications, 2022.

Von Zur Gathen, J. and Gerhard, J. Modern computer alge-
bra. Cambridge university press, 2013.

Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H.,
Agarwal, S., Sohn, J.-y., Lee, K., and Papailiopoulos, D.
Attack of the tails: Yes, you really can backdoor federated
learning. Advances in Neural Information Processing
Systems, 2020.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F.,
Jin, S., Quek, T. Q., and Poor, H. V. Federated learning
with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics
and Security, 2020.

Wen, Y., Geiping, J., Fowl, L., Goldblum, M., and Gold-
stein, T. Fishing for user data in large-batch feder-
ated learning via gradient magnification. arXiv preprint
arXiv:2202.00580, 2022.

Wu, C., Wu, F., Cao, Y., Huang, Y., and Xie, X. Fedgnn:
Federated graph neural network for privacy-preserving
recommendation. arXiv preprint arXiv:2102.04925,
2021.

Xie, C., Huang, K., Chen, P.-Y., and Li, B. Dba: Distributed
backdoor attacks against federated learning. In Interna-
tional Conference on Learning Representations, 2019.

Yang, C.-S., So, J., He, C., Li, S., Yu, Q., and Avestimehr, S.
Lightsecagg: Rethinking secure aggregation in federated
learning. arXiv preprint arXiv:2109.14236, 2021.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine
learning: Concept and applications. ACM Transactions
on Intelligent Systems and Technology (TIST), 2019.

Yu, Q., Li, S., Raviv, N., Kalan, S. M. M., Soltanolkotabi,
M., and Avestimehr, S. A. Lagrange coded computing:
Optimal design for resiliency, security, and privacy. In
The 22nd International Conference on Artificial Intelli-
gence and Statistics. PMLR, 2019.

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu,
Y. Batchcrypt: Efficient homomorphic encryption for
cross-silo federated learning. In 2020 USENIX Annual
Technical Conference, 2020.

Zhu, J., Yan, Q., Qi, C., and Tang, X. A new capacity-
achieving private information retrieval scheme with (al-
most) optimal file length for coded servers. IEEE Trans-
actions on Information Forensics and Security, 2019a.

Zhu, J., Yan, Q., and Tang, X. Multi-user blind symmetric
private information retrieval from coded servers. IEEE
Journal on Selected Areas in Communications, 2022a.

Zhu, J., Yan, Q., Tang, X., and Li, S. Symmetric private
polynomial computation from lagrange encoding. IEEE
Transactions on Information Theory, 2022b.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradi-
ents. Advances in Neural Information Processing Systems,
2019b.

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

APPENDIX

A. Proof of Theorem 1

The proposed SecEA protocol consists of private entity
union, private embedding sharing and private embedding
aggregation retrieval. After securely obtaining the set of all
entities from all clients in the private entity union phase, in
each training round, the clients aggregate their embeddings
for each of the entities, using private embedding sharing
and private embedding aggregation retrieval, such that no
entity or embedding information about individual clients is
leaked to the server or any subset of up to T < N

2 colluding
clients.

The entity-privacy in the private entity union phase is pro-
vided by the security of the pseudo-random noises used to
mask clients’ messages, and the security of the private set
union protocol in (Seo et al., 2012). At the server side, it
receives a masked message s̃n from each client n as in (4),
with which it learns nothing about the message sn (and
hence Gn(x)), as the server does not know any pairwise
seeds of the clients. By the end of the private entity union
protocol, the server and all clients know the aggregated par-
tial sum

∑
n∈[N]Gn(x) =

u(x)
L(x) , from which L(x) can be

recovered, and the entities from all clients can be obtained as
the roots of L(x). It was shown in (Seo et al., 2012)[Lemma
1] that u(x) is uniformly distributed over the space of all
polynomials with degree at most deg(L(x))− 1. Thus for
the server who only knows u(x) and L(x), or any subset
T ⊂ [N] with |T | < N

2 of colluding clients who addition-
ally know {En}n∈T , the entity of an individual client is kept
private.

Next, we move on to prove that the entity-privacy and the
embedding-privacy are preserved, in the phases of private
embedding sharing and private embedding aggregation re-
trieval. Over the course of these two phases, all messages
received by the server are masked by pseudo-random noises,
and hence the server learns nothing about the entities and
embeddings. Finally, we show that, in the information-
theoretic sense, the phases of private embedding sharing
and private embedding aggregation retrieval admit entity-
privacy and embedding-privacy against any subset of up
to T < N

2 colluding clients, beyond the aggregations of
desired embeddings and the numbers of clients owned these
embeddings. This is made precise in the following lemma.

Lemma 1. For any subset of clients T ⊆ [N] of size T <
N
2 , we have

I
(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;

YT |
{ ∑

v∈[N]

ĥv,e : e ∈ En
}
n∈T

)
= 0,(23)

where I is the mutual information, and YT denotes all mes-
sages received by these T colluding clients in the phases of

private embedding sharing and private embedding aggrega-
tion retrieval.

Proof. In our SecEA protocol, YT includes the data {yv,n :
v ∈ [N], n ∈ T } in (11) received by clients T from clients
[N] during the phase of private embedding sharing; and the
queries {qv,n,e : v ∈ [N], n ∈ T , e ∈ Ev} in (16) and the
responses {Yv,n,e : e ∈ En}v∈[N],n∈T in (20) received by
clients T from clients [N], in the phase of private embedding
aggregation retrieval. Thus, we have

0 ≤ I
(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;

YT |
{ ∑

v∈[N]

ĥv,e : e ∈ En
}
n∈T)

= I
(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;

{yv,n}v∈[N],n∈T , {qv,n,e}v∈[N],n∈T ,e∈Ev
,

{Yv,n,e : e ∈ En}v∈[N],n∈T |
{ ∑

v∈[N]

ĥv,e : e ∈ En
}
n∈T

)
= I

(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ; {yv,n}v∈[N],n∈T

|
{ ∑

v∈[N]

ĥv,e : e ∈ En
}
n∈T

)
+I

(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;

{qv,n,e}v∈[N],n∈T ,e∈Ev
, {Yv,n,e : e ∈ En}v∈[N],n∈T

|
{ ∑

v∈[N]

ĥv,e : e ∈ En
}
n∈T , {yv,n}v∈[N],n∈T

)

(a)
= I

(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;

{qv,n,e}v∈[N],n∈T ,e∈Ev
|
{ ∑

v∈[N]

ĥv,e :

e ∈ En
}
n∈T , {yv,n}v∈[N],n∈T

)
+I

(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;

{Yv,n,e : e ∈ En}v∈[N],n∈T |
{ ∑

v∈[N]

ĥv,e :

e ∈ En
}
n∈T , {yv,n}v∈[N],n∈T , {qv,n,e}v∈[N],n∈T ,e∈Ev

)
(b)
= I

(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;

{Yv,n,e : e ∈ En}v∈[N],n∈T |
{ ∑

v∈[N]

ĥv,e :

e ∈ En
}
n∈T , {yv,n}v∈[N],n∈T , {qv,n,e}v∈[N],n∈T ,e∈Ev

)
(c)
= I

(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;{

Yn,e(x) : x ∈ {βk}k∈[K] ∪ {αk}k∈[K+2T−1] :

e ∈ En
}
n∈T |

{ ∑
v∈[N]

ĥv,e : e ∈ En
}
n∈T ,

{yv,n}v∈[N],n∈T , {qv,n,e}v∈[N],n∈T ,e∈Ev

)
(d)
= I

(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;{

{Λn,e(αk) + zkn,e}k∈[K+2T−1], {
∑

v∈[N]

ĥk
v,e}k∈[K] :

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

e ∈ En
}
n∈T |

{ ∑
v∈[N]

ĥv,e : e ∈ En
}
n∈T ,

{yv,n}v∈[N],n∈T , {qv,n,e}v∈[N],n∈T ,e∈Ev

)
(e)
= I

(
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T ;{

{Λn,e(αk) + zkn,e}k∈[K+2T−1] : e ∈ En
}
n∈T

|
{ ∑

v∈[N]

ĥv,e : e ∈ En
}
n∈T ,

{yv,n}v∈[N],n∈T , {qv,n,e}v∈[N],n∈T ,e∈Ev

)
(24)

(f)
= 0.

Here (a) is because {yv,n}v∈[N],n∈T = {φv,em(αn) :
m ∈ [M], v ∈ [N], n ∈ T } by (11) and the data
{φv,em(αn)}n∈T received by the clients T are pro-
tected by T independent and uniform random noises
zK+1
v,em , . . . , z

K+T
v,em for all m ∈ [M], v ∈ [N] by

(10), such that {yv,n}v∈[N],n∈T are independent of
{En}n∈[N]\T , {hn,e : e ∈ En}n∈[N]\T and {

∑
v∈[N] ĥv,e :

e ∈ En}n∈T , and thus I
(
{En}n∈[N]\T , {hn,e : e ∈

En}n∈[N]\T ; {yv,n}v∈[N],n∈T |{∑
v∈[N] ĥv,e : e ∈ En

}
n∈T

)
= 0. The step

(b) is similar to (a) because {qv,n,e}v∈[N],n∈T ,e∈Ev
=

{ρmv,e(αn)}m∈[M],v∈[N],n∈T ,e∈Ev
by (16) and the queries

{ρmv,e(αn)}n∈T received by the clients T are pro-
tected by T independent and uniform random noises
zm,K+1
v,e , . . . , zm,K+T

v,e for all m ∈ [M], v ∈ [N] and

e ∈ Ev by (15), such that I
(
{En}n∈[N]\T , {hn,e : e ∈

En}n∈[N]\T ; {qv,n,e}v∈[N],n∈T ,e∈Ev
|
{∑

v∈[N] ĥv,e : e ∈

En
}
n∈T , {yv,n}v∈[N],n∈T

)
= 0. The step (c) holds be-

cause the answer Yv,n,e is equivalent to evaluating Yn,e(x)
at x = αv for any v ∈ [N] by (20)-(21) and Yn,e(x)
is a polynomial of degree 2(K + T − 1), such that
{Y1,n,e, . . . , YN,n,e} and {Yn,e(x) : x ∈ {βk}k∈[K] ∪
{αk}k∈[K+2T−1]} are determined of each other by La-
grange interpolation rules for any e ∈ En and n ∈ T ;
(d) follows by (17)-(18) and (21)-(22) in which Λn,e(x) ≜∑M

m=1 ρ
m
n,e(x) ·

∑
v′∈[N] φv′,em(x); (e) is due to (8); (f)

follows from the fact that {{zkn,e}k∈[K+2T−1] : e ∈

En}n∈T are i.i.d. uniformly over F
d+1
K

q and are generated
independently of all other variables in (24).

This completes the proof of the lemma.

B. Experiment Details

Data Partitioning. We first randomly split the entire dataset
by 90% training, 10% testing. The data partitioning of
training set for each class of tasks is performed in a non-
i.i.d. manner as follows.

• Subgraph-level: For knowledge graph, as similarly done
in (He et al., 2021), the dataset is partitioned to subgraphs
according to the type of the relation, and each subgraph
consists of one relation and all connected entities. The
subgraphs are uniformly distributed across clients, such
that different clients have distinct sets of relations. For
recommendation system, the dataset is partitioned to sub-
graphs by the items, which are then randomly distributed
to the clients.

• Sample-level: For social networks, we view the user pairs
as sample points and uniformly partition them onto the
clients, such that different clients have distinct sets of
edges in the dataset. Similar sample-level partitioning is
done on the data points in multi-view categorical datasets.

Model Hyper-parameters. The learning rate, number
of clients, batch size, number of local update epochs
in all experiments are set as 0.001, {3, 5, 10, 15, 20},
{32, 64, 128, 256, 512}, {1, 3, 5, 10, 20}, respectively. Em-
bedding dimensions of PCA, Autoencoder, and other mod-
els are set as 4, 32, 128, respectively. For neural network-
based models, there is 1 hidden layer in NoGE, and 3 layers
in Autoencoder, NCF and LightGCN. The corresponding
sizes are 128, {32, 32, 32}, {16, 8, 4}, {16, 8, 4}. For Deep-
Walk and node2vec, the window size, number of walks per
vertex, and walk length are set as 10, 80, and 10, respec-
tively. The parameters of search bias of node2vec are set as
p = 1, q = 0.5.

Detailed Breakdown of Execution Times. We provide
numerical breakdowns of the online execution times of the
8 tasks in the Figure 2, in Table 6, respectively.

C. Performance Degradation with Local Differential
Privacy

We explore a significant drawback of local differential pri-
vacy (LDP)-based approach – the catastrophic performance
degradation. Specifically, we apply the vanilla Laplace DP
mechanism to mask the local embeddings for aggregation
instead of SecEA after the private entity union, where we
set the sensitivity to 2 as the value of components in an
embedding representation ranges from -1 to 1.

Besides, we perform multiple experiments of TransE model
with different privacy budget ϵ of {0.5, 1, 5, 10, 30, 50, 100}
on kinship dataset. The utility is measured by MRR, which
is shown in Table 7.

We can see that only when eps = 100, the framework
achieves acceptable performance with MRR = 0.3039 but
is still ineffective compared to the setting without LDP.
Besides, to defend strong adversary from privacy breach,
the ϵ is typically less than 1. However, in that case, the LDP-
based FL system totally fails to perform link prediction

Fully Privacy-Preserving Federated Representation Learning via Secure Embedding Aggregation

Table 6. Breakdown of the execution time (seconds) of SecEA in a single training round
Model
Dataset

T ⌊0.1N⌋ ⌊0.3N⌋ ⌊0.5N⌋
#Client 5 10 15 20 5 10 15 20 5 10 15 20

DeepWalk
Citeseer

offline 14.4547 5.7433 4.9826 3.6368 14.8515 7.4173 5.2278 3.9232 15.3549 9.3075 5.8565 5.7228
coding 1.2047 0.7154 0.4152 0.2104 1.7569 1.2361 0.6086 0.3365 3.1381 2.3313 2.0649 1.0994
comm. 0.0788 0.0915 0.1059 0.1094 0.0804 0.0960 0.0986 0.1011 0.0857 0.1052 0.1182 0.1263
train 3.4941 2.0720 1.4867 1.2150 3.6583 2.2592 1.3583 1.2483 3.5899 2.2583 1.4930 1.1458

DeepWalk
Cora

offline 19.2118 17.5325 15.807 13.5627 19.288 18.6774 16.8766 14.9646 20.3052 21.9719 25.1359 24.9255
coding 1.6839 1.1303 0.6432 0.5366 2.4491 2.0119 0.9979 0.8830 4.5223 3.6491 3.3011 2.8978
comm. 0.0813 0.1225 0.1649 0.1842 0.0828 0.1267 0.1580 0.1765 0.0877 0.1354 0.1764 0.1997
training 3.8071 2.5786 1.7650 1.5200 3.7648 2.2143 1.8058 1.7605 3.9104 2.2786 1.8014 1.4307

TransE
FB15k

offline 427.1913 687.7632 1162.3199 1311.3095 441.2074 789.2808 1397.0109 1939.6777 482.9971 1272.757 3230.6708 4320.8896
coding 30.8264 25.3537 18.7802 15.4889 33.2285 32.8138 29.1698 26.6471 46.9499 46.3280 47.3702 50.1463
comm. 3.6918 7.3198 10.7184 13.7567 3.7024 7.3522 10.6645 13.6940 3.7354 7.4179 10.8096 13.8841
training 26.7682 14.5078 8.3445 4.4108 26.4832 14.4828 8.8485 4.5891 26.7498 14.0238 8.8471 4.1031

SVD
ML-1M

offline 88.6134 159.4535 190.6595 200.8004 94.6681 196.1013 227.1899 300.1344 114.8103 227.3396 423.6914 719.3727
coding 7.6975 7.6785 5.8632 5.7459 9.9408 10.8421 7.7532 7.7091 16.8020 19.3864 19.3723 19.2789
comm. 0.6424 1.2591 1.8792 2.4596 0.6469 1.2724 1.8568 2.4333 0.6606 1.2996 1.9171 2.5120
training 5.1925 2.7014 1.9404 1.4207 5.2749 2.6893 1.9404 1.3984 5.1038 2.7194 2.0841 1.4023

NCF
ML-100k

offline 8.9569 10.1264 9.4157 9.0506 8.6364 8.8438 10.0416 8.4492 9.1376 8.8759 10.2633 10.5870
coding 0.1775 0.1785 0.1674 0.1838 0.2064 0.2491 0.2027 0.2203 0.3130 0.3828 0.3908 0.3744
comm. 0.0144 0.0010 0.0032 0.0041 0.0012 0.0019 0.0017 0.0025 0.0021 0.0037 0.0056 0.0075
train 3.9489 1.8945 1.1984 0.9684 3.9502 2.0050 1.2010 1.0516 3.8715 2.1248 1.2018 0.9589

AutoEncoder
Soybean

offline 2.6917 2.8925 2.7830 3.1325 2.7395 2.7536 2.8238 2.8388 2.7420 2.7584 2.8650 2.9518
coding 0.0900 0.0921 0.0739 0.0852 0.1354 0.1386 0.1016 0.0915 0.2405 0.2420 0.2502 0.2678
comm. 0.0018 0.0035 0.0051 0.0068 0.0018 0.0037 0.0052 0.0070 0.0020 0.0040 0.0060 0.0080
training 13.9775 12.9871 7.4435 4.0749 14.0384 12.8402 7.5043 3.9401 14.2426 13.0481 7.4893 4.1345

NCF
ML-1M

offline 87.8645 130.8852 161.2462 182.0857 89.3253 132.4413 165.3046 190.2756 89.4635 139.7503 173.5766 202.0810
coding 1.0302 2.1325 1.6356 3.6612 1.2872 2.7168 2.9405 4.3177 2.5178 4.2863 4.7949 7.0286
commu 0.6364 1.2511 1.8436 2.4158 0.6368 1.2524 1.8449 2.4183 0.6381 1.2549 1.8505 2.4249

train 39.4885 20.0498 11.9837 9.5889 39.6896 20.1701 12.3888 9.6120 39.8907 20.0498 12.3537 9.4810

LightGCN
ML-1M

offline 88.7823 157.5516 177.6544 218.9578 94.7238 191.1781 209.0647 234.2669 114.9181 224.451 206.9342 709.3736
coding 7.3514 7.6026 4.7115 1.6222 10.0594 10.6602 6.5289 2.6399 16.7274 19.0898 17.0312 16.7147
comm. 0.6446 1.2632 1.8853 2.4677 0.6490 1.2766 1.8629 2.4413 0.6627 1.3038 1.9233 2.5212
training 2200.1345 2093.2187 1840.4922 1700.4794 2202.8472 2090.7413 1835.9492 1695.4395 2205.8749 2098.0582 1842.7493 1706.9347

Figure 3. Training loss and MRR of TransE on kinship with LDP
approach versus communication rounds with regard to different
privacy budget ϵ

Table 7. Experimental results with and without LDP.
Budget 0.5 1 5 10 30 50 100
w/ LDP 0.0464 0.0471 0.0515 0.0543 0.0739 0.1903 0.3039

w/o LDP 0.4026

due to the poor MRR. The training loss and MRR over
communication rounds are shown in Figure 3, from which
we can see that the less privacy budget, the training loss is
larger and the MRR is worse.

