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Abstract

The SPDZ multiparty computation protocol [17] allows n parties to securely compute arith-
metic circuits over a finite field, while tolerating up to n− 1 active corruptions. A line of work
building upon SPDZ have made considerable improvements to the protocol’s performance, typ-
ically focusing on concrete efficiency. However, the communication complexity of each of these
protocols is Ω(n2|C|).

In this paper, we present a protocol that achieves O(n|C|) communication. Our construction
is very similar to those in the SPDZ family of protocols, but for one modular sub-routine for
computing a verified sum. There are a handful of times in the SPDZ protocols in which the
n parties wish to sum n public values. Rather than requiring each party to broadcast their
input to all other parties, clearly it is cheaper to use some designated “dealer” to compute and
broadcast the sum. In prior work, it was assumed that the cost of verifying the correctness of
these sums is O(n2), erasing the benefit of using a dealer. We show how to amortize this cost
over the computation of multiple sums, resulting in linear communication complexity whenever
the circuit size is |C| > n.

1 Introduction

In their foundational result, Goldreich, Micali and Wigderson [20] present a secure multiparty
computation (MPC) protocol for n parties to perform an arbitrary computation over their inputs,
while guaranteeing privacy and correctness, even in the presence of an adversary that controls
n − 1 of the participants. In addition to the first construction tolerating n − 1 corruptions by a
semi-honest adversary, just as famously, the authors built a general compiler, using zero knowledge
proofs, to provide security against an active adversary. For many years, the results were mainly
of theoretical interest: the semi-honest construction requires an O(n2|C|) oblivious transfers for a
circuit of size |C|, each (then) requiring expensive public key operations, while the zero knowledge
proofs in the compiler relied upon an NP-reduction from circuit SAT to graph 3-coloring. Twenty
years later, Gentry presented the first construction of fully homomorphic encryption (FHE) [19].
While it was also (then) of purely theoretical interest, the result implied, for the first time, the
existence of MPC protocols with communication that grows only with the input size, remaining
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independent of |C|. This exciting result offers and appealing tradeoff between communication and
computation in MPC.1

In the decade since Gentry’s result, cryptographers have been tremendously successful in making
MPC, zero knowledge, and FHE more practical. Today, the line of work with the best concrete
performance, measured in runtime, for the setting of an active adversary corrupting t < n parties,
uses a mix of the two approaches by relying on somewhat homomorphic encryption to preform a pre-
processing step, and then leveraging the output in a more classical solution that resembles GMW
(and its derivatives). Starting from Bendlin et al. [5] (BDOZ) and Damg̊ard et al. (SPDZ) [17, 23, 2],
this line of work employs somewhat homomorphic encryption for constructing multiplication triples.
The reduction of MPC to the secure pre-processing of multiplication triples was first presented by
Beaver [3]. These triples are secret shares of random values, (a, b, c), subject to to the constraint
that a·b = c. In the semi-honest setting, somewhat homorphic encryption provides a simple method
for constructing such triples. Each party i locally samples and encrypts random ai and bi, and sends
the ciphertexts to a desginated “dealer”. This central party sums (homomorphically) the shares of
a and b, and broadcasts the resulting ciphertexts. All parties homomorphically multiply, and now
each holds identical encryptions of (a, b, c). Using a threshold sharing of the FHE secret key, they
can locally recover a secret sharing of the triple. Thus, in the semi-honest setting, by leveraging
somewhat homomorphic encryption (SHE) and relying on a designated dealer, we can reduce the
total communication of GMW from O(n2|C|), which is required when performing pair-wise OT, to
O(n|C|), while avoiding the computational cost of a fully homomorphic evaluation of the circuit.
The online phase, which uses these triples to perform the circuit evaluation, requires only O(n|C|)
total communication, and is extremely fast.

In the malicious setting (i.e. with an active adversary), the communication cost of the most
efficient protocols, even when using SHE, remains O(n2|C|). This gap is, perhaps, somewhat
surprising, because the classic GMW compiler preserves the asymptotic cost of all point-to-point
communication. However, the semi-honest protocol just outlined above relies on a dealer to perform
the homomorphic summation, so the communication pattern is no longer point-to-point. If we were
to apply the GMW compiler, with the dealer proving correctness of its summation, we would require
all parties to learn all n ciphertexts that were used in the summation. Put another way, each of the
n parties must receive an O(n) sized NP statement for verification. One possible way of closing this
gap is to rely on succinct proofs: rather than proving correct summation to all parties, if we first
establish (or assume) a public key infrastructure, the dealer can tailor each proof to each party,
proving that the claimed summation contains a ciphertext signed by that party. This statement is
independent of n, and while the circuit defining the relation – correct summation of n ciphertexts
– still has size O(n), a succinct proof prevents the proof size from growing and preserves the
communication of the semi-honest protocol. However, there are two undesirable features of such
a solution: in general these succinct proofs rely on strong, non-falsifiable assumptions, and, while
a proof of correct signature verification does not change the asymptotic cost, the concrete cost of
executing n− 1 such proofs will be quite high.

Amortizing Verified Sum: Our main technical result is a protocol for realizing a “verified sum”
functionality, with low amortized communication cost. This functionality, which we repeatedly rely
on in our full protocol, allows n users to securely sum n vectors, each of length m � n, using
O(n2 + nm) communication. Setting m = |C| allows us to perform a secure computation of circuit

1Asymptotically, using FHE for MPC requires no more computation than GMW. In concrete terms, however, it
still introduces a hefty computational cost.

2



C with O(n2 +n|C|) communication.2 This closes the gap in asymptotic performance between the
semi-honest and malicious settings for t < n corruptions, without relying on strong, non-falsifiable
assumptions, or adding high constant overhead.

In our protocol for verified sum, each user i has input vector (x
(i)
1 , . . . , x

(i)
m ). They begin by

broadcasting a homomorphic hash of their full vector. The succinctness of the hash output ensures
that they each send only a constant-sized hash to every other party, for a total communication of
O(n2), independent of the vector length, m. They then send their full vectors to a central dealer
to perform the summation. The dealer sends the aggregated vector to all parties, which requires
O(nm) communication. Finally, they verify the summation against the aggregated hash values,
relying on the homomorphic property of the hash function, and abort if they find an inconsistency.
This captures the main intuition of the protocol; technically, to prevent rushing attacks, we require
a non-malleable commitment to the homomorphic hash. The precise details appear in Section 3.
To prove that the construction is secure, we require the hash function to be collision resistant, and
we require the non-malleable commitment scheme to be equivocal. To get the claimed asymptotic
result, we can instantiate the hash function using the classic result of Chaum et al. [15], based on
the discrete log assumption. We discuss in Section 2.8 how to set the group size so that we can
support the hashing of somewhat homomorphic ciphertexts. We can instantiate the commitment
scheme using any UC-secure commitment scheme, such as [14], based on linear codes.

Proving Correct Noise Bounds: The costliest portion of the SPDZ protocol is not the homo-
morphic operations, but rather the cost for each party to prove to every other that their ciphertexts
are well formed. That is, each party must prove to all other parties that the random noise used
in encrypting ai and bi comes from the appropriate range. Recently, Keller et al. [23] modified
this zero-knowledge proof to reduce the computational complexity of verification: instead of each
party i providing a proof of correctness for ai and bi to each of the other parties, which results
in both O(n2) communication and verification time, they instead provide a single “global” proof,
in which each party plays the role of prover and verifier simultaneously, in order to prove a good
noise bound on the summed ciphertexts: a =

∑
ai and b =

∑
bi. At a high level, the witnesses

that each party holds for the validity of their own ciphertexts, and the challenge responses that
each ought to provide can be combined, homomorphically, into a single witness for the aggregated
value. This reduces computational cost of the proof to O(n). However, the authors remark that
O(n2) communication is still required in order to “commit” these challenges to each of the other
n − 1 parties. Keller et al. are correct that O(n2) communication is required in order to commit
each user to their ciphertexts, but, as with our proof of correct summation just described, we can
amortize this cost away using the identical protocol for verified summation.

Putting the Pieces Together: Our pre-processing phase proceeds similarly to the HighGear
protocol of Keller et al. [23] and the TopGear protocol of Baum et al. [2], except that we replace
all instances of broadcast with our verified sum functionality; we use verified sum when we sum
encrypted shares of ∆, a, b, and c, as well as when summing the commitments in the global zero
knowledge proof. (∆ is an authentication tag that is used in an identical manner to that of prior
work.) Due to the simplicity of this modification, our construction incurs only minimal computa-
tional overhead when compared with existing protocols, and current implementations can be easily
upgraded to benefit from our asymptotic improvement in communication. We stress, however, that
recognizing that this change would suffice for an O(n) factor improvement in communication is one

2Here we are ignoring the security parameter for simplicity.
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of our main contributions.

Other related work. Prior to the introduction of the global ZKPoK by Keller et al [23], the high
cost of the ZKPoKs led to a temporary switch to an OT-based offline phase called MASCOT [22].

Another approach to prove that the ciphertext is well-formed and that the prover knows the
plaintext was proposed by Pino et al [18]. The proof relies on bulletproofs [11] and it is very short.
However, this technique is not compatible with the “global ZKPoK” approach used in Overdrive
and TopGear. Using [18] directly would require pairwise proofs which add heavy overhead. Each
party would need to verify O(n) proofs instead of one single joint proof. [18] would have the same
communication complexity as Overdrive and TopGear, but the computation complexity is worse
by a factor of n.

A recent line of work based on PCGs [9][6][7][8] achieves communication complexity sublinear
in m (specifically, n2 · o(m)). Compared to our result, the PCG construction is optimized towards
a small number of parties executing a large circuit, while we focus on scalability for large numbers
of parties.

In the honest majority setting, many protocols achieve linear (or better) communication through
a similar technique to our amortized addition verification. The batchwise multiplication verification
technique of [4] efficiently computes many multiplication gates first through an semi-honest pro-
tocol, then obtains malicious security by checking the correctness of all multiplications in parallel
afterwards.

2 Background

2.1 Notation.

In this paper, we denote the n parties as taking part in the computation as P1, . . . , Pn. Additionally,
one party D ∈ [n] is designated as the “dealer” and will have a unique role in several protocols. In
protocol descriptions Pi will be shorthand to denote steps taken by every party i ∈ [n]. We denote
the security parameter by λ and the number of triples to be generated in the offline phase by m.
In our zero-knowledge protocol, we denote by λsnd and λzk the statistical security parameters for
soundness and zero-knowledge, respectively.

2.2 Security Model

We prove the security of our protocols in the Universal Composability (UC) model [12]. Briefly,
the model describes a PPT adversary A controlling the corrupt parties in the protocol and a PPT
environment Z which accesses the inputs and outputs of the honest parties and freely communicates
with A throughout the protocol’s execution.

We assume a static malicious majority, meaning the adversary is free to corrupt up to n − 1
parties, chosen at the start of the computation. The protocol is shown to achieve active security,
i.e. allows the corrupt parties to deviate from the honest protocol arbitrarily. We assume access
to a functionality FRand which when run samples an element uniformly from a specified set and
outputs said element to all parties. Our construction is designed to implement arithmetic circuits
modulo a prime p.
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2.3 Statistical Distance

Let A, B be discrete random variables with common range R. We define the statistical distance
between A and B as

1

2

∑
x∈R
|Pr[A = x]− Pr[B = x]|

We denote the statistical distance between A and B by ∆(A,B). We let the reader verify the
following standard claim on their own.

Claim 1. For discrete random variables A,B, if ∆(A,B) = ε, then Pr[A 6= B] ≥ ε.

2.4 (ε, δ)−independence

For random variables X,Y , let W = {x : ∆(Y |X = x, Y ) > ε)}. We say X and Y are
(ε, δ)−independent if Pr[X ∈ W ] ≤ δ. We note that (0, 0)−independence is the standard no-
tion of stochastically independent random variables.

Claim 2. Let X,Y be (ε, δ)−independent random variables and let X ′ be a random variable that is
independent of X and Y , and identically distributed to X. We claim ∆(X+Y,X ′+Y ) ≤ δ+ε(1−δ)

Proof. Let R be the range of X + Y and X ′ + Y :

1

2

∑
z

|Pr[X + Y = z]− Pr[X ′ + Y = z]|

=
1

2

∑
z

∣∣∣∣∣
(∑

x

Pr[X = x] · Pr[Y = z − x|X = x]

)
−

(∑
x

Pr[X ′ = x] · Pr[Y = z − x]

)∣∣∣∣∣
=
∑
x

Pr[X = x] · 1

2

∑
z

|Pr[Y = z − x|X = x]− Pr[Y = z − x]|

=
∑
x

Pr[X = x]∆(Y |X = x, Y )

=
∑
x∈W

Pr[X = x]∆(Y |X = x, Y ) +
∑
x 6∈W

Pr[X = x]∆(Y |X = x, Y )

Since the maximum possible statistical distance between two variables is 1, and for all x 6∈ W
we have ∆(Y |X = x) ≤ ε (by assumption), the final expression above becomes

≤
∑
x∈W

Pr[X = x] · 1 +
∑
x 6∈W

Pr[X = x] · ε

= Pr[X ∈W ] + Pr[X 6∈W ] · ε

= δ + (1− δ) · ε
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2.5 Commitment schemes

We define commitments using the ideal FCom functionality shown in Figure 1. In addition to
capturing the “binding” and “hiding” properties of standard commitments schemes, protocols im-
plementing FCom are non-malleable due to the UC model. Informally, this ensures that one cannot
create commitments to values that are correlated with the values of another party’s unopened
commitments. This functionality is known to be impossible to securely implement in the plain
model [13]. However, in the CRS model it can be realized, requiring |x|+ o(|x|) bits of communi-
cation in order to commit to a string x [14]. In practice, we may instantiate the functionality using
a random oracle in order to reduce overhead.

FCom

FCom proceeds as follows, running n parties P1, . . . , Pn and an adversary A.

1. Upon receiving a message (commit, sid, ssid, i, j,m) from Pi where m ∈ 0, 1λ, record
(ssid, i, j,m) and send the message (receipt, sid, ssid, i, j) to Pj and A. Ignore any fu-
ture commit messages.

2. Upon receiving a message (open, sid, ssid, i, j) from Pi where (ssid, i, j,m) was previously
recorded, send the message (open, sid, ssid, i, j,m) to Pj and A. Otherwise abort.

Figure 1: Commitment ideal functionality

2.6 Random sampling

The FRand functionality (Figure 2) allows the parties to agree on a freshly-sampled random element
from an arbitrary set. This can be implemented in O(n2) through a simple commit-and-reveal
protocol.

FRand

Public parameters: an input set G.
Functionality: Upon receiving a message (sample) from all parties, sample a uniformly random

element g
$← G and output g to all parties.

Figure 2: Random sample functionality

2.7 Ring-LWE

We use the leveled homomorphic encryption scheme proposed by Brakerski et al. [10] in our pre-
processing phase. The BGV encryption scheme is built around the arithmetic of the cyclotomic
ring R = Z[X]/Φk(X), where Φk(X) = Πi∈Z∗k (X − ωik) is the kth cyclotomic polynomial, ωk =

exp(2π
√
−1/k) ∈ C is the principal kth complex root of unity. For the special case k = 2x+1, we

have Φk(X) = X2x + 1 = Xk/2 + 1. Let p and q be the plaintext and ciphertext modulus used
in the BGV scheme. We denote Rp ≡ R/pR and Rq ≡ R/qR the plaintext and ciphertext ring
respectively3. The security of the BGV homomorphic encryption schemes is based on the hardness
of the ring learning with errors problem.

3p, q are not necessary prime numbers.
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Definition 1. [24] Let χ be a gaussian distribution over Rq. Define the distribution (a, b) by
sampling a, s uniformly from Rq and e according to χ, then set b← a ·s+e. Define the distribution
(a′, b′) by sampling a′, b′ uniformly from Rq. The R-LWE assumption states that distinguishing
between these two distributions is computationally infeasible.

SIMD operations on plaintext slots. Let ` be the smallest integer such that p` ≡ 1 mod k,
then Φk(X) can be split into ` irreducible polynomials such that Φk(X) = Π`

i=1Fi(X) where all
the polynomials Fi(X) have degree d = φ(k)/` (φ(·) is the Euler’s totient function). This property

allows us to pack ` plaintext messages ai ∈ F dp into a single message a ∈ F
φ(k)
p where a ≡ ai

mod Fi(X). Choosing p such that p ≡ 1 mod k enables SIMD operations on φ(k) plaintext slots.

Distributions for BGV. Let N = φ(k), p be the plaintext modulus, and q = p0 · p1 be the
ciphertext modulus. The following example distributions come from the SCALE-MAMBA [1]
implementation of the BGV scheme.

• HWT(h,N): samples a vector of length N in Rq with elements chosen at random from
{−1, 0, 1} such that the number of non-zero elements is equal to h.

• ZO(0.5, N): samples a vector e of length N in Rq with elements chosen from {−1, 0, 1} such
that Pr[ei = −1] = Pr[ei = 1] = 1/4 and Pr[ei = 0] = 1/2.

• dN(σ2, N): samples a vector of length N in Rq with elements chosen according to an approx-
imation to the discrete Gaussian distribution with variance σ2.

• U(q,N): samples a vector of length N with elements chosen uniformly at random over the
range [−q/2, q/2).

Key Generation. The secret key is sampled from the HWT distribution sk ≡ s← HWT (h,N)
where, typically, h = 64. The public key is defined as pk ≡ (a, b) where a ← U(q,N), and
b← a · s+ p · e for e← dN(σ2, N) and p is the plaintext modulus.

Encryption/Decryption.

• Encpk(x): Let x ∈ Rp be a plaintext message. The encryption of x is denoted as Encpk(x) ≡
(c0, c1) ∈ R2

q where c0 ← b · v + p · e0 +m, c1 ← a · v + p · e1, e0, e1 ← dN(σ2, N).

• Decsk(c): Given a ciphertext c = (c0, c1) ∈ R2
q ≡ Encpk(x), the underlying message x can be

recovered by computing x′ ← c0 − c1 · s, then x = x′ mod p.

2.8 Homomorphic CRHF

Definition 2. A homomorphic collision-resistant hash function over groups (G1,+),(G2, ·) is a
pair of PPT algorithms (Gen, H) with the following properties:

• Keyed-deterministic: Gen outputs a key k, which along with H specifies a deterministic func-
tion Hk : G1 → G2.

• Homomorphic: ∀a, b ∈ G1, Hk(a) ·Hk(b) = Hk(a+ b)
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• Collision-resistant: For all PPT adversaries A

Pr[k ← Gen ∧ (a, b)← AHk(·) ∧ a 6= b ∧Hk(a) = Hk(b)] ≤ negl(λ)

• Compressing: |G1| > |G2|

For simplicity we will omit the key k and write e.g. H(a) when the key generation is clear from
context.

in Figure 3 we provide a concrete instantiation of a homomorphic CRHF based on the discrete
log assumption.

H− CRHF

Public Parameters:
q: modulus of input group Zmq
m: dimension of input group
q′: dimension of output group Z∗q′ . We require that Z∗q′ is a group such that the discrete log
assumption holds.

Gen:
Sample m generators g1, . . . , gm of a subgroup of Z∗q′ of order q.
Output g1, . . . , gm as the key.

Hash algorithm:
Input:
a1, . . . , am ∈ Zq.
Output:
H(a) := ga11 · . . . · gamm

Homomorphism:
H(a+ b) := H(a) ·H(b) := ga1+b1

1 · . . . · gam+bm
m

Figure 3: Homomorphic collision-resistant hash function over G1 = Zmq , G2 < Z∗q′ : |G2| = q [15]

H-CRHF over BGV ciphertexts
The hash function from Figure 3 is defined over an input group Zmq . We use the following

encoding to compute H(·) over a length-m vector of BGV ciphertexts (a1, . . . , am) ∈
(
R2
q

)m
.

We write our vector of a’s as (a1,1, a1,2), . . . , (am,1, am,2). Since BGV addition is performed
componentwise, we hash each component vector separately and concatenate the output H(a) =
H(a1,1, a2,1, . . . , am,1)||H(a1,2, a2,2, . . . , am,2).

Each ai,b ∈ Rq is a polynomial in Zq/Φk(X), i.e. addition is componentwise over k/2 coefficients
in Zq. Thus by expanding each polynomial into its vector of coefficients, we obtain for each instance
of H an input of k/2 ·m elements in Zq. Notably, this expansion on the input size of H has no
impact on the output size.

Finally, H from Figure 3 requires that the inputs have a prime modulus. However, the BGV
ciphertext modulus must be composite q = p0 · p1

4. We resolve these conflicting requirements

4We will perform a single multiplication on these ciphertexts, and therefore wish to support modulus switching.
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by appealing to the Chinese Remainder Theorem: we generate two keys K0 and K1 with pa-
rameters (p0,m · k/2, p′0) and (p1,m · k/2, p′1) respectively (where p′0, p

′
1 are moduli for which the

discrete log assumption is hard, and p0|p′0−1 and p1|p′1−1). The combined hash is then computed
H(a1,b, . . . , amk/2,b) = HK0(a1,b mod p0, . . . , amk/2,b mod p0)||HK1(a1,b mod p1, . . . , amk/2,b mod p1).
By sampling p0, p1 from the Sophie Germain primes we guarantee p′0 = 2p0 + 1 is a valid output
group modulus (similar for p1) and thus |H(a1, . . . , am)| ≈ 2|ai|.

2.9 Multiplication Triples

In the SPDZ online phase, the inputs of each party are shared among all parties using a simple
additive secret sharing scheme. As a result, we can compute the addition gates of the circuit
entirely with local operations by all parties. In order to compute multiplication gates, we use the
circuit randomization technique of Beaver [3]: given sharings of inputs x, y and sharings of random
a, b, c = a · b we locally compute shares of (x− a) and (y − b). Then, we open (x− a) and (y − b),
from which we are able to locally compute shares of:

(x− a) · (y − b) + a · (y − b) + b · (x− a) + c = x · y

The bulk of the computation and communication occurs during the “preprocessing phase” in which
we create these multiplication triples (a, b, c) for each multiplication gate in the circuit.

Since we are in the active security setting, corrupt parties can open their shares to arbitrary
values and cause the computation to be incorrect. To circumvent this, the shares and all input
values are authenticated using a global MAC key ∆, of which the parties also hold shares. To
authenticate a shared value x, we compute shares of ∆ · x, hence an authenticated triple is a share
of the values (a,∆a = ∆ · a, b,∆b = ∆ · b, c = a · b,∆c = ∆ · c).

Given shares of ∆ and ∆x we can verify that an opening of x is correct by locally computing
shares of ∆x − x · (∆). Rather than opening normally (i.e. sending all shares to PD, who then
broadcasts the reconstructed sum), we commit-then-broadcast these shares, and reject x if the
result is nonzero. We generalize this technique to verify multiple openings with a single check by
applying a random linear combination to these shares before opening.

ΠMAC−Check

Input: Pi has MAC key share ∆(i) and authentication shares (∆x1)(i), . . . , (∆xk)(i) for public
opened values x1, . . . , xk

Protocol:

1. All parties invoke FRand to generate k-1 linear functional L(·).

2. Pi invokes σ(i) ← L
(
(∆x1)(i) − x1 ·∆(i), . . . , (∆xk)(i) − xk ·∆(i)

)
.

3. Pi invokes FCom to commit σ(i) to all other parties.

4. Pi opens previous commitment; receive σ(j) for j 6= i from FCom.

5. Abort if
∑
i∈[n] σ

(i) 6= 0.

Figure 4: ΠMAC−Check Protocol [16]

Even with the MAC-Check, it is still possible for the corrupt parties to produce correctly
authenticated triples for which c 6= a ·b. To fix this, SPDZ uses the ΠSacrifice protocol. The protocol
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works by creating two multiplication triples (a, b, c), (a′, b, c′), sampling a random challenge t, and
testing the value of t·c−c′−(t·a−a′)·b for equality with zero. We see the resulting t(c−ab)−(c′−a′b)
is only zero if either both triples are correct or if t, which is chosen randomly after the triples were
computed, is the specific solution to this equation.

ΠSacrifice

Inputs: Authenticated triples
(
a

(i)
j , a

′(i)
j , b

(i)
j , c

(i)
j , c

′(i)
j

)
j∈[m]

Use FRand to generate t1, . . . , tm ← Fp
For j in [m] do:

1. Open dj ← tj · a(i)
j − a

′(i)
j

2. Open ej ← tj · c(i)j − c
′(i)
j − dj · b(i)j

3. Abort if ej 6= 0

Figure 5: Sacrifice Protocol [17][21]

3 Dealer-assisted Linear Summation

Our main tool is a protocol that allows parties to verifiably compute multiple sums in amortized
linear communication. The protocol is described in Figure 6. We note that the protocol only
guarantees correctness of the output sums, and we do not make any claims with respect to input
privacy. Most importantly, its communication cost to compute m sums of n elements improves on
the naive protocol used in prior work, which has cost O(n2m) to broadcast and locally sum the
values, element-by-element.

Each party begins by compressing its input vector using a homomorphic CRHF and commits
its compressed input to all other parties. Next, everyone decommits their compressed inputs,
and all parties locally combine them into a single hash. By the homomorphic property of the
CRHF, the sum of the hashes is the same as the hash of the output vector when the sums are
computed correctly. To prevent scenarios in which dishonest parties commit different inputs to
different parties (and possibly collude with PD to cause different outputs), the parties compare
their locally computed sum of hashes with the sum computed by every other party. This phase in
which the hashes are committed requires pairwise communication between the parties (as in prior
works), but the data communicated has size independent of m. Hence, this phase incurs an O(n2)
communication cost.

Now, to compute the sums, the parties send their input vectors to a designated dealer. The
dealer aggregates the input vectors into a single vector of length m, and forwards these to all other
parties, incurring O(nm) communication cost. Using the hash computed in the previous phase,
the parties can verify that the sum was computed correctly by applying the same function to the
dealer’s output.

Challenges in achieving modularity: While we present the protocol in this section, we do
not provide a functionality or a proof of security here. Instead, our pre-processing protocol will
make multiple “in-line” calls to the sub-routine described in this section, and we will prove later
that the resulting protocol securely realizes the pre-processing functionality. Below, in Claim 3,
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we provide a formal proof that the adversary cannot correlate the output of the summation with
the honest parties’ input values. We will then use this claim in later Sections when we prove
that the end-to-end pre-processing protocol is secure. There are several reasons for this choice
of presentation, but most importantly, we cannot claim that our protocol realizes the “natural”
functionality that we would like to define, where each party provides an arbitrary input value, and
all parties receive the sum. Our protocol securely realizes this functionality only when the inputs
are drawn from an appropriate distribution. For example, when the inputs are ciphertexts, as they
are in our pre-processing protocol.

ΠVerified−Sum

Public parameters: An input dimension m and a homomorphic collision-resistant hash function
H(·).

Inputs: Pi has inputs
(
x

(i)
1 , . . . , x

(i)
m

)
∈ Gm

Commit phase:

1. Pi computes y(i) ← H
(
x

(i)
1 , . . . , x

(i)
m

)
2. Pi invokes FCom with every other party to commit y(i)

Open phase:

1. Pi opens its commitments from Commit phase; Pi receives y(j) from FCom for every j 6= i

2. Pi sends y =
∑n
i=1 y

(i) to every other party; if Pi receives y′ 6= y from any party, abort.

3. Pi sends
(
x

(i)
1 , . . . , x

(i)
m

)
to PD

4. PD sends (x1, . . . , xm) :=
(∑n

i=1 x
(i)
1 , . . . ,

∑n
i=1 x

(i)
m

)
to all parties

5. Pi verifies that H (x1, . . . , xm) = y, otherwise abort.

Output: (x1, . . . , xm)

Figure 6: ΠVerified−Sum Protocol.

Claim 3. Let X be a random variable representing the sum of the honest parties’ input vectors, let
Z be a random variable representing the output of an execution of ΠVerified−Sum where the honest
input is X, and define the random variable Y = Z −X. For any distribution on X and any static,
active PPT adversary corrupting up to (n − 1) parties in the FCom-hybrid model, X and Y are
(ε(λ), δ(λ))−independent, where ε and δ are negligible functions.

Proof. We show this by a reduction to the collision-resistance property of H. We prove the case
where there is only one honest party, but one can easily generalize the proof to the case of adver-
saries that corrupt fewer than (n − 1) parties. Assume there exists an adversary A and an input
distribution X for which Prx[∆(Y |X = x, Y ) > ε] > δ. We construct the following adversary B
with black-box access to A:

• B samples x, x′ according to the provided distribution X.

• B runs A on input x, receiving output z ; B sets y ← z − x.

11



• B rewinds A to the start of the Open phase.

• Simulating FCom, B equivocates its commitment to H(x′) and continues the Open phase
normally with input x′.

• B receives output z′; B sets y′ ← z′ − x′

We claim (y, y′) is a collision in H with non-negligible probability.
First, we observe that if A does not cause an abort, then H(y) = H(y′). It suffices to show

that y 6= y′ with non-negligible probability.
We argue the distribution of (x, y) follows the distribution defined by (X,Y |X = x). x ∼ X and

y ∼ Y follow from B’s sampling procedure, and the joint distribution (X,Y |X) simply describes
the event X = x ∧ Y = y without assuming independence between X and Y . Now we argue that
y′ ∼ Y and is independent from (x, y). Because FCom hides its input until the Open phase, y′ is
only dependent on x′. Since B samples x′ independently from x, y′ is also independent from x (and
consequently independent from y).

Let Y ′ be denote the distribution of y′, i.e. the same distribution as Y but independent from
X. By assumption, Pr[∆(Y |X = x, Y ′) > ε] ≥ δ, where the probability is taken over the choice of
x. By Claim 1, the overall probability that y 6= y′ is greater than ε · δ > negl(λ).

A Note on rewinding and UC-security: Though proofs in the UC-model do not allow for
rewinding the adversary, we stress here that this is not a proof of a protocol implementing an
ideal functionality. As explained above, our proof that the full pre-processing protocol achieves UC
security is deferred until later sections, and the simulator there will not rewind the adversary. When
we appeal to Claim 3 there, it will be to argue that our straight-line simulation is indistinguishable
from a real execution.

Complexity. The communication of ΠVerified−Sum consists of:

• Pairwise executions of FCom on a single group element ⇒ O(n2)

• Broadcast of a single group element from all parties ⇒ O(n2)

• m group elements from each non-dealer party sent to PD ⇒ O(nm)

• m group elements broadcast by PD ⇒ O(nm)

In total, we obtain a communication complexity of O(n2 + nm) for ΠVerified−Sum on m inputs.

Comparison with SPDZ broadcast. The original SPDZ paper also includes an optimized
broadcast protocol claiming amortized O(n) communication [17]. For clarity, we briefly discuss the
differences with our own results.

ΠVerified−Sum computes m sums with total communication O(n2 + nm). SPDZ’s broadcast
distributes n elements with O(n2) total communication. With the same amount of communication,
our protocol outputs m sums, while SPDZ’s broadcast outputs n summands. Hence, computing an
equivalent output using SPDZ’s technique will incur O(mn2) cost, since each of the m individual
sums of n values requires O(n2) communication.

In addition, SPDZ broadcast is built assuming access to authenticated secret shares, and thus,
as written, can only be used in the online phase. In contrast, ΠVerified−Sum is designed as an
optimization to the offline phase and requires no setup assumptions beyond the public parameters.
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4 n-party ZKPoKs

As used in our construction, BGV admits certain selective failure attacks for corrupt ciphertexts
which are not encrypted correctly. For example, if the noise parameter of one ciphertext is signif-
icantly outside of the expected distribution, multiplication with another ciphertext could create a
product where decryption failure depends on the plaintext values. In SPDZ, this problem is solved
by requiring each party to submit a zero-knowledge proof-of-knowledge that their own ciphertext
is well-formed and that the they have knowledge of the plaintext.

In our setting, each party receives a ciphertext from the dealer who has no knowledge of the
plaintext or encryption randomness, and thus is unable to provide a proof of knowledge. Instead,
we turn to the n-party ZKPoK technique of [23, 2]. An n-party ZKPoK protocol allows multiple
parties to create a single zero-knowledge proof for some relation that is defined by a function over
the individual inputs — in our case, the summation. This is accomplished by having each party
independently create a proof for their own input based on a single, global challenge, which can then
be combined to form a proof for the summed ciphertexts. Much like the ciphertexts themselves,
only the summed proof is necessary for each party to verify that the ciphertext is well-formed.
Hence, we use ΠVerified−Sum to optimize the zero knowledge protocols of prior works.

Intuitively, since the output of ΠVerified−Sum is the same as the broadcast-then-sum steps com-
puted in Baum et al.’s TopGear, the proofs of security are largely the same. In order to accomodate
verifiers no longer knowing the individual proof statements, our security requirements are slightly
relaxed from prior works. We provide our definition of n-party ZKPoKs below, with the changes
between our definition and the definition of [2] highlighted.

Definition 3. Let L ⊆ L′ be NP-languages for relations P and P′, respectively. An n-party ZKPoK
for (L,L′) with challenge set C is a tuple of algorithms (Samp,Comm,Resp,Vrfy) where Samp and
Comm are PPT and Resp and Vrfy are deterministic, such that the following properties hold:
Completeness: The following protocol between n provers P1, . . . , Pn and verifier V outputs 1 with
probability 1:

1. All Pi independently execute
(xi, wi)← Samp

Verifier V receives x∗ ←
∑

i xi as public input.5

2. All Pi independently execute

(commi, statei)← Comm(xi, wi)

V receives comm∗ ←
∑

i commi.

3. V selects a random challenge c ∈ C and sends it to all Pi.

4. All Pi independently execute
respi ← Resp(statei, c)

V receives resp∗ ←
∑

i respi.

5Note that we have intentionally left the method by which V receives x∗ unspecified. If all Pi send xi to V directly
and V computes x∗ herself, then we obtain the definition of [2]; if x∗ is the output of ΠVerified−Sum, we obtain our
concrete instantiation.
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5. V executes b← Vrfy(x∗, comm∗, c, resp∗)

6. Protocol outputs b.

Computational Knowledge Soundness: Let (A1,A2) be a pair of PPT algorithms and ε ∈
[0, 1). Consider the following game:

1. A1 is run and outputs I ⊆ [n], xI and stateA1 .

2. Sample (xj , wj)← Samp for each Pj, j 6∈ I and compute x∗ ← xI +
∑

j 6∈I xj.

3. Execute (commj , statej)← Comm(xj , wj) for Pj, j 6∈ I.

4. A2 on input of stateA1 ,x∗,{commj}j 6∈I outputs stateA2 and comm∗.

5. Choose c ∈ C uniformly at random and compute respj ← Resp(statej , c) for k 6∈ I.

6. A2 on input stateA2 , c, {respj}j 6∈I outputs resp∗.

We say that A1,A2 wins the above game with probability δ > ε if Vrfy(x∗, comm∗, c, resp∗) = 1.
We say that (Samp,Comm,Resp,Vrfy) is a computational proof of knowledge if there exists a PPT
algorithm Extract which, for any fixed I, xI generated by A1, with {(xj , wj , statej , commj)}j 6∈I ←
Samp as input and black-box access to A2(stateA1 ,x∗,{commj}j 6∈I) outputs w∗ such that (x∗, w∗)∈ L′
in expected time poly(λsnd/(δ − ε)).
Honest Verifier Zero Knowledge There exists a PPT algorithm SZK indexed by a set I ⊂ [n],
which takes as input an element in the language L and a challenge c ∈ C, and outputs tuples
(commi, respi)i∈I . We require that for all such I the output of SZK is statistically indistinguishable
from a valid execution of the protocol.

We now give a concrete instantiation of an n-prover ZKPoK for the language of well-formed
ciphertexts. In addition to requiring knowledge of plaintext, we require that the ciphertexts are
summations of no more than n individual freshly-generated ciphertexts, i.e. the norms of the plain-
text and the randomness vectors are no more than n times the maximum of the sampling algorithm.
In the case of a plaintext over Rp, this is n ·p; for ZO(0.5, N) this is n; for dN(σ2, N) it depends on
the choice of σ — the standard approach of setting σ = 3.17 and sampling using a discrete gaussian
gives us a bound for dN(3.172, N) summations of 20 · n [2].

Theorem 1. Let the languages L,L′ be defined as

L = {(x∗, w∗) : w∗ = (xk, rk, r
′
k, r
′′
k)k∈[m], x∗ = (Enc(xk, Rk))k∈[m],

||xk||∞ ≤ n · p/2, ||rk||∞, ||r′k||∞ ≤ 20n, ||r′′k ||∞ ≤ n}

L′ = {(x∗, w∗) : w∗ = (xk, rk, r
′
k, r
′′
k)k∈[m], x∗ = (Enc(xk, Rk))k∈[m],

||2 · xk||∞ ≤ 2λzk+2 · n · p/2, ||2 · rk||∞, ||2 · r′k||∞ ≤ 2λzk+2 · 20n, ||2 · r′′k ||∞ ≤ 2λzk+2 · n}

Then the protocol ΠZK described in figure 7 is an n-prover ZKPoK.

14



ΠZK

Define:
λsnd: statistical soundness security parameter
λzk: statistical zero-knowledge security parameter
U : number of inputs
V :

• λsnd + 2 if proving a MAC key

• (λsnd + 2)/log2(2N + 1) otherwise

C:

• {0, 1}V×U if proving a MAC key

• ({Xj} ∪ {0})V×U otherwise

Input:

Private input:
(
x

(i)
k , r

(i)
k

)
k∈[U ]

Public input: (Ek)k∈[U ] =
∑
i∈[n] Enc

(
x

(i)
k , r

(i)
k

)
Comm:
Sample

(
y

(i)
k , s

(i)
k

)
uniformly subject to (||y(i)

k ||∞ ≤ 2λzk · p/2, ||s(i)
k,1||∞, ||s

(i)
k,2||∞ ≤ 20 · 2λzk ,

||s(i)
k,3||∞ ≤ 2λzk for k ∈ [V ]. If proving a MAC key, also add the constraint that y

(i)
k must be a

constant polynomial.

Compute D
(i)
k = Enc

(
y

(i)
k , s

(i)
k

)
for k ∈ [V ]

(Dk)k∈[V ] ← ΠVerified−Sum

(
D

(i)
k

)
i∈[n],k∈[V ]

Chal:
Call FRand to generate challenge c← C

Resp:

Compute
(
z

(i)
k

)
k∈[V ]

=
(
y

(i)
k

)
+ c

(
x

(i)
k

)
and

(
t
(i)
k

)
k∈[V ]

=
(
s

(i)
k

)
+ c

(
r

(i)
k

)
(zk, tk)k∈[V ] ← ΠVerified−Sum

((
z

(i)
k , t

(i)
k

)
k∈[V ]

)
Vrfy:
Parties accept iff, for all k ∈ [V ],

• Enc(zk, tk) = (D + cE)k.

• ||zk||∞ ≤ n · 2λ+1p/2.

• tk := tk,1, tk,2, tk,3:

1. ||tk,1||∞ ≤ 20 · n · 2λzk+1.

2. ||tk,2||∞ ≤ 20 · n · 2λzk+1.

3. ||tk,3||∞ ≤ n · 2λzk+1.

• (if proving a MAC key) zk is a constant polynomial.

Figure 7: ΠZK Protocol.
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SHVZK

Input: Corrupt party set I, E =
(
Enc

(
x

(j)
k , r

(j)
k

))
k∈[U ]

for all j 6∈ I
Setup:

1. Sample a matrix c from C

2. Sample
(
z

(j)
k , t

(j)
k

)
k∈[V ]

subject to ||z(j)
k ||∞ ≤ 2λzk · p/2, ||t(j)k,1||∞, ||t

(j)
k,2||∞ ≤ 20 · 2λzk ,

||t(j)k,3||∞ ≤ 2λzk .

If proving a MAC key, also constrain z
(j)
k to be a constant polynomial.

3. Set
(
D

(j)
k

)
k∈[V ]

←
(
Enc

(
z

(j)
k , t

(j)
k

))
k∈[V ]

− c · E

Comm:
Send

(
D

(j)
k

)
k∈[V ]

to ΠVerified−Sum and receive (Dk)k∈[V ]

Chal:
Emulating FRand, send c to all Pj ∈ I

Resp:

Send
(
z

(j)
k , t

(j)
k

)
k∈[V ]

to ΠVerified−Sum and receive (zk, tk)k∈[V ]

Vrfy:
Run the honest protocol Vrfy on the current transcript and output the result

Figure 8: SHVZK simulation honest verifier zero knowledge (dishonest dealer).

Proof. (sketch)
(Completeness) Follows directly from the homomorphic property of the encryption scheme and
the correctness of ΠVerified−Sum.

(Computational Knowledge Soundness) Given adversaries (A1,A2) which win the Soundness
game with probability δ, an extractor E is constructed as follows:

1. Run A1 as described in the definition to generate I, x∗, {(xj , wj , statej , commj)}j 6∈I , stateA1 .

2. Until A2 wins the soundness game, sample c
$← C, compute respj ← Resp(statej , c) for all j 6∈

I, and run A2(stateA2 , c, {respj}j 6∈I). Denote the winning transcript (c, resp∗ = (zk, tk)k∈[V ]).

3. For i = 1 to U :

(a) Until A2 wins the soundness game, sample c′i
$← C subject to the constraint c′i = c in

every column except the i-th and c′i 6= c, compute respj ← Resp(statej , c) for all j 6∈ I, and

run A2(stateA2 , c, {respj}j 6∈I). Denote the winning transcript (c′k, resp
′
∗ = (z′k,i, t

′
k,i)k∈[V ])

4. Solve the system of linear equations defined by zi−z′i,i = (c−c′i)·wT∗ for all i ∈ [U ], outputting
w∗. Perform a similar process for each randomness vector.
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By claim 3 zk,i, t
′
k,i = 0 for all k 6= i, hence the above process gives exactly U independent

equations.

(Honest Verifier Zero Knowledge) The honest verifier zero knowledge simulator is identical
to prior works, depicted in figure 8. We argue that ΠVerified−Sum does not effect the simulation.

In the worst-case scenario, we assume a corrupt dealer, hence the adversary obtains the indi-
vidual (commj , respj) from each party, i.e. the same view as in prior works. The only additional
messages sent by ΠVerified−Sum are the CRHF of commj , a deterministic poly-time function of other
messages in the view. Thus, the simulated honest parties’ messages are indistinguishable from the
honest messages in a real interaction. Finally, we claim that the indistinguishability of the corrupt
parties’ own messages follows from claim 3.

Complexity. The communication performed in ΠZk consists of:

• ΠVerified−Sum run on 2V ciphertexts.

• 1 call to FRand

ΠVerified−Sum on 2V elements costs O(n2 +nV ). FRand can be implemented in O(n2) communi-
cation. Since V is bounded by the security parameter, we may ignore it as a constant term. Thus
the total communication of an execution of ΠZK (proving correctness of U inputs) is O(n2).

5 Distributed decryption

Distributed decryption allows the parties, each holding an additive share of the secret key, to
collaboratively decrypt a ciphertext. We use the improved direct-to-sharing protocol of [17], which
outputs an additive share of the plaintext to each party rather than revealing the decryption. We
refer the reader to their work to find a proof of security.

ΠDistDec

Public input: Ciphertext (c0, c1)
Private input: Partial secret key sk(i)

1. All Pi sample fi from Rq with the constraint that all coefficients of fi are ≤ 2λ greater
than the ciphertext noise bound.

2. PD computes x(D) ← c0 − sk(D) · c1,

all other Pi compute x(i) ← −sk(i) · c1 − fi
3. All Pi send x(i) to PD

4. PD computes fD ←
∑
i∈[n] x

(i)

Output: Each Pi outputs fi

Figure 9: Distributed Decryption Protocol

To facilitate running distributed decryption, we assume a trusted setup functionality FKeyGen

which creates a public/secret keypair and distributes additive shares of the secret key to all parties.
This protocol can be implemented by the protocol of e.g. [25].

17



FKeyGen

1. Sample (pk, sk) according to BGV’s Key Generation procedure.

2. Sample sk(1), . . . , sk(n−1) ← Rq uniformly

3. Set sk(n) ← sk −
∑n−1
i=1 sk

(i)

Output: Each Pi receives
(
pk, sk(i)

)
Figure 10: Distributed Key Generation

Complexity
ΠDistDec consists of a single message in Rq from each party to PD. Thus the total complexity

is O(n).

6 The complete preprocessing stage

Using ΠVerified−Sum, we construct a complete implementation of the SPDZ triple functionality. The
full construction appears in Figure 11.

Theorem 2. ΠTriple implements FTriple in the (FRand,FKeyGen,FCom)-hybrid model with UC-
security against active, static adversaries corrupting up to (n− 1) parties.

Proof. We construct a simulator STriple for all adversaries A, described in figure 13, and argue that
all PPT environments have negligible advantage in distinguishing between STriple running FTriple

and A running ΠTriple.
First, we argue that the final output is indistinguishable between the real and ideal worlds. In the

ideal world, if the corrupt parties do not cause an abort then the output is a uniformly sampled triple
consistent with the corrupt parties’ chosen shares. In the real world, the protocol only produces
output after running ΠSacrifice and ΠMAC−Check on the intended output. This pair of protocols will
cause an abort if the intended output is not a valid triple or not correctly authenticated. Thus
to complete this claim we only need to show that the real-world protocol output has the correct
distribution. From claim 3 and 2, it follows that ∀j ∆, aj , and bj are statistically indistinguishable
between the real and ideal world; (∆a)j and (∆b)j follows from the security of ΠDDec; the values of
cj and (∆c)j are fully determined by the preceding values, up to the choice of sharing among the
honest parties.

Furthermore, we note that the adversary’s views in the real and ideal world have identical
distributions. Indeed, analyzing the simulation in Figure 13, the reader can verify that the simulator
runs the protocol honestly with the adversary. (We have written out the steps explicitly only to
make clear how the malicious values are extracted.)
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ΠTriple

Key

1. (pk, sk(i))← FKeyGen

2. Sample constant polynomial ∆(i)

3. E
(i)
∆ ← Enc

(
∆(i)

)
4. E∆ ← ΠVerified−Sum

(
E

(i)
∆

)
5. Run ΠZK on (x,w) =

(
E

(i)
∆ ,∆(i)

)
Factors

1. Sample a
(i)
1 , a

′(i)
1 , b

(i)
1 , . . . , a

(i)
m , a

′(i)
m , b

(i)
m ← P

2. E
(i)
a1 ← Enc

(
a

(i)
1

)
, . . . , E

(i)
bm
← Enc

(
b
(i)
m

)
3.
(
Ea1 , Ea′1 , Eb1 , . . . , Eam , Ea′m , Ebm

)
← ΠVerified−Sum

(
E

(i)
a1 , . . . , E

(i)
bm

)
4. Run ΠZK on (x = (Ea1 , . . . , Ebm) , w = (a1, . . . , bm))

5. ∀j : Compute E∆aj = E∆ · Eaj , E∆a′j
= E∆ · Ea′j , E∆bj = E∆ · Ebj ,

Ecj = Eaj · Ebj , Ec′j = Ea′j · Ebj
Product

1. ∀j : c̃
(i)
j ← ΠDistDec

(
Ecj
)

and c̃
′(i)
j ← ΠDistDec

(
Ec′j

)
2. ∀j : Ẽ

(i)
cj ← Enc

(
c̃
(i)
j

)
and Ẽ

(i)
c′j
← Enc

(
c̃
′(i)
j

)
3. ∀j :

(
Ẽcj , Ẽc′j

)
j∈[m]

← ΠVerified−Sum

(
Ẽ

(i)
cj , Ẽ

(i)
c′j

)
j∈[m]

4. ∀j : Compute E∆cj = E∆ · Ẽcj , E∆c′j
= E∆ · Ẽc′j

Finalize

1. ∀j : (∆aj)← ΠDistDec

(
E∆aj

)
,

(∆a′j)← ΠDistDec

(
E∆a′j

)
,

(∆bj)← ΠDistDec

(
E∆bj

)
,

(∆cj)← ΠDistDec

(
E∆cj

)
,

(∆c′j)← ΠDistDec

(
E∆c′j

)
2. Run ΠSacrifice on

(
(aj ,∆aj) ,

(
a′j ,∆a

′
j

)
, (bj ,∆bj) , (cj ,∆cj) ,

(
c′j ,∆c

′
j

))
j∈[m]

.

3. Run ΠMAC−Check

Output:
(

∆(i), a
(i)
j , (∆a)

(i)
j , b

(i)
j , (∆b)

(i)
j , c

(i)
j , (∆c)

(i)
j

)
j∈[m]

Figure 11: ΠTriple Protocol.
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FTriple

1. Receive ∆(d) or ⊥ from the Adversary

2. Sample random ∆← Rp
3. Set ∆(h) ← ∆−∆(d)

4. For j = 1 to m do:

(a) Receive
(
a

(d)
j , (∆a)

(d)
j , b

(d)
j , (∆b)

(d)
j , c

(d)
j , (∆c)

(d)
j

)
or ⊥ from the Adversary

(b) Sample random aj , bj , and set cj := aj · bj , (∆a)j := ∆ · aj , (∆b)j := ∆ · bj , (∆c)j :=
∆ · cj

(c) Set a
(h)
j = aj − a(d)

j , and define b
(h)
j , c

(h)
j , (∆a)

(h)
j , (∆b)

(h)
j , (∆c)

(h)
j similarly

Output: If the Adversary inputs ⊥, abort the functionality. Otherwise, honest parties receive

shares of
(

∆, a
(h)
j , (∆a)

(h)
j , b

(h)
j , (∆b)

(h)
j , c

(h)
j , (∆c)

(h)
j

)
j∈[m]

.

Figure 12: Authenticate Multiplication Triple Generation Functionality

Next, we argue that the joint distribution over the views of the adversary-controlled parties and
the output of the honest parties are indistinguishable between the real and ideal worlds. Our proof
of this claim is adapted from the proof of SPDZ [17]. It follows from a reduction to the Ring-LWE
problem. Intuitively, the reduction follows from the observation that the only difference between
the real and ideal worlds is whether shares of the output triples are consistent with the ciphertexts
sent during the protocol: in the ideal world, the functionality chooses a fresh set of output shares,
which are independent of those encrypted during the simulation.

Formally, as a challenge we are given pk which is either generated according to BGV’s key
generation algorithm or drawn uniformly from R2

q . Suppose we have access to an adversary A
which can distinguish between the real and ideal worlds with non-negligible advantage ε. We then
construct a new adversary Ar which by interacting with A correctly determines whether pk was
generated via BGV’sKeyGen(·) functionality or generated uniformly at random with non-negligible
advantage ε, violating the R-LWE assumption. We describe the behavior of Ar in Figure 14

Our goal is to show that when pk ← KeyGen(·) the sample provided to A comes form the
correct distribution: it is sampled from the real world distribution when H = REAL, and from the
ideal world distribution when H = IDEAL. Hence A and Ar will have the same distinguishing
advantage. On the other hand, if pk ← Uniform(·) then Ar provides A a sample from the same
distribution regardless of H. We define the distribution generated by Ar when H = REAL as
REALAr , and define IDEALAr as the distribution when H = IDEAL.

We argue that A’s view of REALAr is indistinguishable from A’s view of ΠTriple. The only
differences between the two protocols are those stated in step 2 of figure 14. The FKeyGen emulation
is statistically identical because the adversary never learns all shares of the additively shared fake
secret key. The remaining two bullet points are workarounds for the places that ΠTriple uses the
shares of sk, i.e. for distributed decryption. When Ar runs the extractor before ΠZK , the protocol
is rewound and only the subsequent call to ΠZK ends up in the adversary’s final view. By claim 3,
the corrupt party’s value used after the rewind is the same as the extracted value. Finally, the only
remaining difference is the reliance of Ar on a simulated proof rather than a real proof. Therefore,
when H = REAL, the distribution of the view and outputs provided to A is indistinguishable to
that of the real world. We omit an identical argument demonstrating that IDEALAr ≈ STriple.
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STriple

Let I be the set of parties corrupted by the adversary

Key

1. Emulating FKeyGen, generate a keypair (pk, sk) and secret share sk into shares sk(i).

2. For i ∈ I send sk(i) to Pi, and store the complete sk in memory.

3. For i 6∈ I Sample MAC keyshares ∆(i). E
(i)
∆ ← Enc

(
∆(i)

)
.

4. Run ΠVerified−Sum with the corrupt parties, receiving Enc (∆) as output;

Set ∆̂← Decsk (Enc (∆))−
∑
i6∈I ∆(i)

5. Run ΠZK as in the honest protocol.

Factors/Product

1. For i 6∈ I sample a
(i)
1 , a

′(i)
1 , b

(i)
1 , . . . , a

(i)
m , a

′(i)
m , b

(i)
m

2. Run the Factors and Product phase from ΠTriple with the corrupt parties, using

a
(i)
1 , a

′(i)
1 , b

(i)
1 , . . . , a

(i)
m , a

′(i)
m , b

(i)
m as the honest inputs;

Define â1, b̂1, ĉ1, . . . âm, b̂m, ĉm analogously to ∆̂ from step 4 of Key.

Finalize

1. ∀j ∈ [m], define (∆a)j ← Decsk (Enc (∆) · Enc (aj)) and define (∆b)j and (∆c)j similarly.

2. Run the ΠDistDec honestly with the corrupt parties. The simulator obtains:

(∆a)
(i)
j , (∆b)

(i)
j , (∆c)

(i)
j , i 6∈ I, j ∈ [m].

Define (∆̂a)j ← (∆a)j −
∑
i6∈I(∆a)

(i)
j for all j ∈ [m], and similar for (∆̂b)j and (∆̂c)j .

3. Run ΠSacrifice and ΠMAC−Check honestly with the corrupt parties.

4. If any of the previous steps caused an Abort, submit ⊥ to FTriple as the adversary’s input.
Otherwise submit:(

∆̂, â1, (∆̂a)1, b̂1, (∆̂b)1, ĉ1, (∆̂c)1, . . . , âm, (∆̂a)m, b̂m, (∆̂b)m, ĉm, (∆̂c)m

)
.

Figure 13: STriple simulation.

Note that IDEALAr and REALAr are identical, aside from the output shares. Now, consider the
case where pk ← KeyGen(·): since REALAr ≈ ΠTriple and IDEALAr ≈ STriple, A’s probability of
distinguishing between REALAr and IDEALAr is negligibly different from its probability of correctly
distinguishing between ΠTriple and STriple. In the other case where pk ← Uniform(·), we have
REALAr ≈ IDEALAr . Thus Ar’s probability of correctly distinguishing the challenge “pk ←
KeyGen(·)” from “pk ← Uniform(·)” is then

1

2
Pr[H′ = H|pk ← KeyGen(·)] +

1

2
Pr[H′ 6= H|pk ← Uniform(·)]

=
1

2
(ε− negl()) +

1

2
negl()

which is non-negligible advantage, contradicting the assumption that BGV public keys are compu-
tationally indistinguishable from uniformly sampled elements.

Communication complexity
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Ar

Input: Ar receives pk from the challenger

Main:

1. Sample H ← {REAL, IDEAL}

2. Simulate H for A, but emulate the functionalities/protocols below in the following manner

• FKeyGen: sample random sk(i) for each Pi and output (pk, sk(i)) to Pi.

• ΠZK: First run the Soundness Extractor E to learn the corrupt plaintext sum, then
rewind and run the ΠZK simulator normally.

• ΠDistDec(Enc(x)): Using knowledge of all sk(i) from FKeyGen and x from E :

(a) Run ΠDistDec honestly, receive outputs x(i) on behalf of the honest parties.

(b) From sk(i)s and transcript of ΠDistDec compute corrupt parties’ outputs x(j).

(c) Compute x′ ← x−
∑
i x

(i) −
∑
j x

(j)

(d) If H = REAL: Choose an honest i; set x(i) ← x(i) + x′

3. A outputs H′ ∈ {REAL, IDEAL}, corresponding with which hybrid it believes was running.

Output: If H′ == H output “pk ← KeyGen(·)”, otherwise output “pk ← Uniform(·)”

Figure 14: Ar reduction adversary for R-LWE

The communication of ΠTriple consists of:

• A constant number of executions of ΠVerified−Sum on O(m) inputs ⇒ O(n2 + nm)

• A constant number of executions of ΠZK on m inputs ⇒ O(n2)

• O(m) calls of ΠDistDec ⇒ O(m) ·O(n)

• m executions of ΠSacrifice ⇒ O(n2 + nm)

• One execution of ΠMAC−Check ⇒ O(n2)

Thus our dominant term is O(n2 + nm), as claimed in the introduction.
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