
Asynchronous Verifiable Information Dispersal with Near-Optimal
Communication∗

NICOLAS ALHADDAD, Boston University, USA

SOURAV DAS, University of Illinois at Urbana-Champaign, USA

SISI DUAN, Tsinghua University, China

LING REN, University of Illinois at Urbana-Champaign, USA

MAYANK VARIA, Boston University, USA

ZHUOLUN XIANG, University of Illinois at Urbana-Champaign, USA

HAIBIN ZHANG, Beijing Institute of Technology, China

We present a near-optimal asynchronous verifiable information dispersal (AVID) protocol. The total dispersal cost of our AVID protocol

is𝑂(|𝑀 |+𝜅𝑛2
), and the retrieval cost per client is𝑂(|𝑀 |+𝜅𝑛). Unlike prior works, our AVID protocol only assumes the existence of

collision-resistant hash functions. Also, in our AVID protocol, the dispersing client incurs a communication cost of𝑂(|𝑀 |+𝜅𝑛) in

comparison to𝑂(|𝑀 |+𝜅𝑛 log𝑛) of prior best. Moreover, each node in our AVID protocol incurs a storage cost of𝑂(|𝑀 |/𝑛 + 𝜅) bits, in

comparison to𝑂(|𝑀 |/𝑛 +𝜅 log𝑛) bits of prior best. Finally, we present lower bound results on communication cost and show that our

AVID protocol has near-optimal communication costs – only a factor of𝑂(𝜅) gap from the lower bounds.

1 INTRODUCTION

Verifiable information dispersal (VID), introduced by Rabin [12], is a primitive with emerging applications in fault-

tolerant replication [14], distributed storage [10]. VID lets a client, here on referred to as the dispersing client, disperse

a message among a set of nodes during the dispersal phase, such that during the retrieval phase the message can be

later retrieved by any node or any other client, which we refer to as the retrieving client. A VID protocol immediately

implies a RBC protocol, where the broadcaster acts as the dispersing client, and each node retrieves the data by acting

as a retrieving client. In this paper, we consider the VID problem in asynchronous networks (AVID), and we assume

Byzantine faults that may deviate arbitrarily from the protocols. We consider the unauthenticated setting where the

protocol does not use digital signatures, but we assume collision-resistant hash functions.

Existing works. Cachin and Tessaro [6] presented the first AVID protocol, with dispersal phase cost𝑂(𝑛 |𝑀 |+𝜅𝑛2
log𝑛)

and retrieval phase cost𝑂(|𝑀 |+𝜅𝑛 log𝑛). It is then improved by Hendricks et al. [9], and very recently, by Alhaddad et al.

and Yang et al. [2, 14] to𝑂(|𝑀 |+𝜅𝑛2
) for the dispersal and𝑂(|𝑀 |+𝜅𝑛 log𝑛) for the retrieval phase. In their protocols, both

the dispersing client and the retrieving client incur a cost of 𝑂(|𝑀 |+𝜅𝑛 log𝑛), and each node incurs 𝑂(|𝑀 |/𝑛 + 𝜅 log𝑛)

storage cost. We summarize the existing works on AVID in Table 1 and describe them in more detail in §5.

Our contributions. Our main contribution is an AVID protocol that does not require any trusted setup and has a

communication cost of 𝑂(|𝑀 |+𝜅𝑛2
) during the dispersal phase. Moreover, in our AVID protocol, both dispersing and

retrieving clients incur a communication cost of 𝑂(|𝑀 |+𝜅𝑛). We also reduce the per node storage to 𝑂(|𝑀 |/𝑛 + 𝜅), and

the communication cost of the retrieval phase to 𝑂(|𝑀 |+𝜅𝑛) by designing a novel retrieval phase. We also present a

∗
This publication is a merge of the following ePrint papers [3, 8]. All authors contributed equally to this work and are listed alphabetically.

Corresponding authors: Sisi Duan and Haibin Zhang.

Authors’ addresses: Nicolas Alhaddad, Boston University, USA, nhaddad@bu.edu; Sourav Das, University of Illinois at Urbana-Champaign, USA,

souravd2@illinois.edu; Sisi Duan, Tsinghua University, China, duansisi@tsinghua.edu.cn; Ling Ren, University of Illinois at Urbana-Champaign,

USA, renling@illinois.edu; Mayank Varia, Boston University, USA, varia@bu.edu; Zhuolun Xiang, University of Illinois at Urbana-Champaign, USA,

xiangzl@illinois.edu; Haibin Zhang, Beijing Institute of Technology, China, haibin@bit.edu.cn.

Manuscript submitted to ACM

Table 1. Comparison with existing AVID protocols. The following accronyms are used in the table; DL: Discrete Logarithm, CRS:
Common Reference String, q-SDH: q-Strong Diffie-Hellman.

Scheme

Dispersal

Cost (client)

Dispersal

Cost (total)

Retrieval

Cost (total)

Storage

Cost (total)

Cryptographic

Assumption

Setup

Cachin-Tessaro [6] 𝑂(|𝑀 |+𝜅𝑛 log𝑛) 𝑂(𝑛 |𝑀 |+𝜅𝑛2
log𝑛) 𝑂(|𝑀 |+𝜅𝑛 log𝑛) 𝑂(|𝑀 |+𝜅𝑛 log𝑛) Hash None

Hendricks et al. [9] 𝑂(|𝑀 |+𝜅𝑛2
) 𝑂(|𝑀 |+𝜅𝑛3

) 𝑂(|𝑀 |+𝜅𝑛2
) 𝑂(|𝑀 |+𝜅𝑛2

) Hash None

Alhaddad et al. [2] 𝑂(|𝑀 |+𝜅𝑛 log𝑛) 𝑂(|𝑀 |+𝜅𝑛2
) 𝑂(|𝑀 |+𝜅𝑛 log𝑛) 𝑂(|𝑀 |+𝜅𝑛 log𝑛) DL CRS

Alhaddad et al. [2] 𝑂(|𝑀 |+𝜅𝑛) 𝑂(|𝑀 |+𝜅𝑛2
) 𝑂(|𝑀 |+𝜅𝑛) 𝑂(|𝑀 |+𝜅𝑛) q-SDH+Hash Trusted

DisperseLedger [14] 𝑂(|𝑀 |+𝜅𝑛 log𝑛) 𝑂(|𝑀 |+𝜅𝑛2
) 𝑂(|𝑀 |+𝜅𝑛 log𝑛) 𝑂(|𝑀 |+𝜅𝑛 log𝑛) Hash None

This work 𝑂(|𝑀 |+𝜅𝑛) 𝑂(|𝑀 |+𝜅𝑛2
) 𝑂(|𝑀 |+𝜅𝑛) 𝑂(|𝑀 |+𝜅𝑛) Hash None

Lower bound Ω(|𝑀 |+𝑛) Ω(|𝑀 |+𝑛2
) Ω(|𝑀 |+𝑛) Ω(|𝑀 |) — —

lower bound result on the communication cost of any AVID protocol. In particular, we prove that in any deterministic

AVID protocol, the dispersal phase has a communication cost of Ω(|𝑀 |+𝑛2
) and the retrieval phase has a communication

cost of Ω(|𝑀 |+𝑛). Hence, our AVID protocol above has near-optimal communication costs – only a factor of 𝑂(𝜅) gap

from the lower bounds.

2 PRELIMINARIES

System Model. We consider a network of 𝑛 nodes where every pair of nodes is connected via a pairwise authenticated

channel. We consider the presence of a malicious adversary A that can corrupt up to 𝑡 nodes in the network. The

corrupted nodes can behave arbitrarily, and we call a node honest if it remains non-faulty for the entire protocol

execution. We assume the network is asynchronous, i.e., A can arbitrarily delay any message but must eventually

deliver all messages sent between honest nodes. We use |𝑆 | to denote the size of a set 𝑆 . Let F be a finite field. For any

integer 𝑎, we use [𝑎] to denote the set {1, 2, . . . , 𝑎}. We use 𝜅 to denote the size of the output of the collision-resistant

hash function. Naturally, we assume that 𝜅 > log𝑛.

Problem Formulations. An AVID protocol has two functions: DISPERSE(𝑀), which a dispersing client invokes to

disperse a message𝑀 to 𝑛 nodes, and RETRIEVE, which a (possibly different) retrieving client invokes to retrieve the

message𝑀 .

Definition 1 (Asynchronous Verifiable Information Dispersal [6]). An asynchronous verifiable information dispersal

(AVID) scheme for a message 𝑀 consists of a pair of protocols DISPERSE and RETRIEVE which satisfy the following

requirements under asynchrony:

• Termination: If an honest client invokes DISPERSE(𝑀) and no other client invokes DISPERSE on the same instance,

then every honest node eventually finishes the dispersal phase.

• Agreement: If any honest node finishes the dispersal phase, all honest nodes eventually finish the dispersal phase.

• Availability: If an honest node has finished the dispersal phase, and some honest client initiates RETRIEVE, then the

client eventually reconstructs some message𝑀 ′
.

• Correctness: If an honest node has finished the dispersal phase, then honest clients always reconstruct the same

message𝑀 ′
when invoking RETRIEVE. Furthermore, if an honest client invoked DISPERSE(𝑀) and no other client

invokes DISPERSE on the same instance, then𝑀 ′
= 𝑀 .

Manuscript submitted to ACM

2.1 Primitives

Error Correcting Code. We use error-correcting codes, such as Reed-Solomon (RS) codes [13]. Let RSEnc(𝑀,𝑚,𝑘) be

the encoding algorithm. Briefly, the RSEnc takes as input a message𝑀 consisting of 𝑘 symbols, treats it as a polynomial

of degree 𝑘 − 1, and outputs𝑚 evaluations of the corresponding polynomial. Let RSDec(𝑘, 𝑟,𝑇) be the RS decoding

procedure. RSDec takes as input a set of symbols 𝑇 (some of which may be incorrect), and outputs a degree 𝑘 − 1

polynomial, i.e., 𝑘 symbols, by correcting up to 𝑟 errors (incorrect symbols) in 𝑇 . It is well-known that RSDec can

correct up to 𝑟 errors in 𝑇 and output the original message provided that |𝑇 |≥ 𝑘 + 2𝑟 .

Online Error Correction. The OEC [4] takes a set 𝑇 consisting of tuples (𝑗, 𝑎 𝑗) where 𝑗 is an index 𝑗 ∈ [𝑛] and 𝑎 𝑗 is a

symbol of a Reed-Solomon codeword. The OEC algorithm then tries to decode a message𝑀 such that Reed-Solomon

encoding of𝑀 matches with at least 2𝑡 + 1 elements in 𝑇 . We summarize the OEC in Algorithm 1.

Collision-resistant Hash Function. A cryptographic collision-resistant hash function guarantees that a compu-

tationally bounded adversary cannot come up with two inputs that hash to the same value, except for a negligible

probability.

Algorithm 1 Information Theoretic Online Error-correcting (IT-OEC) protocol

1: Input:𝑇 //𝑇 consisting of tuples (𝑗, 𝑎 𝑗) where 𝑗 ∈ [𝑛] and 𝑎 𝑗 is a symbol
2: for 0 ≤ 𝑟 ≤ 𝑡 do // online error correction
3: Wait till |𝑇 | ≥ 2𝑡 + 𝑟 + 1

4: Let 𝑝𝑟 (·) := RSDec(𝑡 + 1, 𝑟 ,𝑇)

5: if 2𝑡 + 1 elements (𝑗, 𝑎) ∈ 𝑇 satisfy 𝑝𝑟 (𝑗) = 𝑎 then
6: let𝑀 be the coefficients of 𝑝𝑟 (·)
7: return𝑀

3 AVID

Challenges and Our Approaches. In the state-of-the-art AVID protocol with no trusted setup, both the dispersing and

retrieving clients incur communication cost of 𝑂(|𝑀 |+𝜅𝑛 log𝑛). This is due to sending a Merkle path and an encoded

symbol of the input message to each node. Nodes use the Merkle path to check and prove the consistency of the encoded

symbol. The cost can be improved to𝑂(|𝑀 |+𝜅𝑛) using a trusted setup phase and polynomial commitments [2]. Omitting

the Merkle tree or commitment in a naïve manner introduces the challenge that, during the dispersal phase, nodes

cannot check the consistency of the symbol they receive. Moreover, the lack of a consistency proof allows Byzantine

nodes to equivocate to different retrieving clients, violating Correctness.

Briefly, we address these challenges with the following ideas. First, we replace the Merkle tree with a vector of

hashes of the encoded symbols and then let the dispersing client reliably broadcast the entire vector of hashes to every

node. The nodes then use this vector to check the consistency of the symbols they receive from the dispersing client.

Note that, during the retrieval phase, the retrieving client does not have the vector of hashes and thus cannot directly

validate the symbols it receives from other nodes. Furthermore, asking each sender to send the entire vector would

result in 𝑂(𝜅𝑛2
) communication cost. We address this by first letting the client retrieve the vector of hashes, and then

use the retrieved vector for the rest of the retrieval phase.

Design of AVID. In the dispersal phase, first, the dispersing client encodes the message𝑀 using a (𝑛, 𝑡 +1) Reed-Solomon

code (line 2) and computes a hash vector 𝐻 for the encoded message (line 3). The dispersing client then sends the 𝑖-th

symbol𝑚𝑖 to the 𝑖-th node, and reliably broadcasts 𝐻 using a balanced reliable broadcast protocol BalBRB from [1]

(line 4). During the BalBRB, as per the predicate, the 𝑖-th node checks whether the 𝑖-th element of the hash vector that

Manuscript submitted to ACM

Algorithm 2 Pseudocode for AVID

// the dispersing client invokes DISPERSE(M)
1: input𝑀
2: Let𝑀′

:= [𝑚1,𝑚2, . . . ,𝑚𝑛] := RSEnc(𝑀,𝑛, 𝑡 + 1)

3: Let 𝐻 := [hash(𝑚1), hash(𝑚2), . . . , hash(𝑚𝑛)]

4: Send𝑚𝑖 to node 𝑖 for each 𝑖 ∈ [𝑛], and invoke BalBRB(𝐻) with predicate 𝑃 (·) described below

// additional predicate 𝑃 (·) for node 𝑖 to check in BalBRB
5: procedure 𝑃 (𝐻)

6: upon receiving𝑚𝑖 from the dispersing client do
7: return true iff hash(𝑚𝑖) = 𝐻 [𝑖]

// code for node 𝑖 during the dispersal phase
8: Wait till BalBRB(·) terminate

9: Let 𝐻 = [ℎ1, ℎ2, . . . , ℎ𝑛] be the output of BalBRB(·)
10: Let ℎ = hash(𝐻)

11: [ℎ′
1
, ℎ′

2
, . . . , ℎ′𝑛] := RSEnc(𝐻,𝑛, 𝑡 + 1)

12: Output and store ⟨𝑚𝑖 , ℎ
′
𝑖
, ℎ⟩ for the dispersal phase

// the retrieving client invokes RETRIEVE
13: send ⟨RETRIEVE⟩ to all nodes

// retrieving 𝐻
14: Let𝑇ℎ := {} and𝑇𝑀 := {}
15: For every ⟨HASH, ℎ′

𝑗
, ℎ⟩ received from 𝑗 , add (𝑗, ℎ′

𝑗
) to𝑇ℎ

16: For every ⟨SYMBOL,𝑚 𝑗 ⟩ received from 𝑗 , add (𝑗,𝑚 𝑗) to𝑇𝑀

17: Run IT-OEC using𝑇ℎ
18: Let 𝐻 := IT-OEC(𝑇ℎ)

// retrieving𝑀 after retrieving 𝐻
19: for each (𝑗, 𝑎) ∈ 𝑇𝑀 do
20: if hash(𝑎) = 𝐻 [𝑗] then
21: add (𝑗, 𝑎) to𝑇

22: Wait till |𝑇 |= 𝑡 + 1

23: Interpolate𝑇 as a degree-𝑡 polynomial

24: Let𝑀′
be the interpolated polynomial evaluated at every element in [𝑛]

25: if ∃ 𝑗 ∈ [𝑛] such that hash(𝑀′
[𝑗]) ̸= 𝐻 [𝑗] then

26: output ⊥ and return
27: else
28: output RSDec(𝑡 + 1, 0, 𝑀′

) and return

// code for node 𝑖 during the retrieval phase
29: upon receiving ⟨RETRIEVE⟩ from the retrieving client do
30: Wait till the dispersal phase outputs ⟨𝑚𝑖 , ℎ

′
𝑖
, ℎ⟩

31: send ⟨HASH, ℎ′
𝑖
, ℎ⟩ to the retrieving client

32: if𝑚𝑖 ̸= ⊥ then
33: send ⟨SYMBOL,𝑚𝑖 ⟩ to the retrieving client

is being reliably broadcast, is equal to the hash of the symbol it received from the dispersing client (line 5-7). Let 𝐻

be the output of the validated RBC. Each node then encodes 𝐻 and compute ℎ = hash(𝐻). At the end of the dispersal

phase, the 𝑖-th node outputs ⟨𝑚𝑖 , ℎ
′
𝑖
, ℎ⟩ where𝑚𝑖 = ⊥ if the 𝑖-th node did not receive a valid symbol from the dispersing

client, and ℎ′
𝑖
is the 𝑖-th encoding symbol of 𝐻 .

The main idea of the retrieval phase is to let the retrieving client first recover the vector 𝐻 and then use it to validate

symbols sent by nodes. More specifically, during the retrieval phase, the retrieving client sends RETRIEVE request to all

nodes (line 13). Upon receiving RETRIEVE request from the retrieving client, each node waits till the dispersal phase

Manuscript submitted to ACM

terminates (line 30). The 𝑖-th node then sends the message ⟨HASH, ℎ′
𝑖
, ℎ⟩ to the retrieving client (line 31). Additionally,

if node 𝑖 received a symbol𝑚𝑖 during the dispersal phase such that hash(𝑚𝑖) = 𝐻 [𝑖], it sends a ⟨SYMBOL,𝑚𝑖 ⟩ to the

retrieving client (line 32-33). The retrieving client upon receiving messages stores the symbols in 𝑇ℎ and 𝑇𝑀 . The

retrieving client then uses 𝑇ℎ and the standard online error correction to recover 𝐻 (line 17-18). After recovering 𝐻 ,

the retrieving client uses it to retrieve the message. In particular, for every tuple (𝑗, 𝑎) ∈ 𝑇𝑀 , it first checks whether

hash(𝑎) = 𝐻 [𝑗] and adds the tuple (𝑗, 𝑎) to the set 𝑇 (line 19-21). The retrieving client waits till |𝑇 |= 𝑡 + 1 and then

interpolates the tuples in 𝑇 into a polynomial of degree at most 𝑡 (line 22-23). Let𝑀 ′
be the interpolated polynomial.

The client then checks if there exists any 𝑗 ∈ [𝑛] such that hash(𝑀[𝑗]) ̸= 𝐻 [𝑗]. If such 𝑗 exists, then the client outputs ⊥
and returns. Otherwise, the client outputs the Reed-Solomon decoding of𝑀 ′

(line 28).

3.1 Analysis of AVID

We next analyze the properties of our AVID protocol and its performance.

Theorem 1 (Termination and Agreement). If an honest dispersing client invokes DISPERSE(𝑀) and no other client invokes

DISPERSE on the same instance, then every honest node eventually finishes the dispersal phase. If any honest node finishes

the dispersal phase, all honest nodes eventually finish the dispersal phase.

Proof. An honest dispersing client sends the correct symbols [𝑚1,𝑚2, . . . ,𝑚𝑛] = RSEnc(𝑀,𝑛, 𝑡 + 1), and reliably

broadcasts the hash vector 𝐻 = [hash(𝑚1), hash(𝑚2), . . . , hash(𝑚𝑛)]. By the Validity property of the RBC, the RBC will

terminate at all honest nodes. Hence, every honest node will finish the dispersal phase.

A nodes terminates the dispersal phase if and only if the RBC protocol terminates. Thus, by the Totality property of

the RBC every node will terminate the RBC and thus terminate the dispersal phase. □

Lemma 1. If the dispersal phase terminates at an honest node, then every honest node will output the same vector of

hashes 𝐻 = [ℎ1, ℎ2, . . . , ℎ𝑛] for RBC. Furthermore, at least 𝑡 + 1 honest nodes have received a symbol that matches with the

corresponding location of 𝐻 .

Proof. Nodes terminate the dispersal phase if and only if the RBC protocol terminates. Thus by the Totality and

Agreement property of the RBC every node will receive the same message 𝐻 . Furthermore, when any honest node

finishes the RBC, it has received READY messages from at least 2𝑡 + 1 nodes, among which at least 𝑡 + 1 are honest. Thus,

at least one honest node receives ECHOmessages from at least 2𝑡 + 1 nodes, among which at least 𝑡 + 1 are honest. Before

these honest nodes send ECHO messages, they have the predicate evaluated to be true, which implies that each honest

node 𝑗 above has received𝑚 𝑗 from the client such that hash(𝑚 𝑗) = 𝐻 [𝑗]. □

Lemma 2. If an honest node has finished the dispersal phase with 𝐻 as the output of the RBC, then any honest client can

reconstruct the same 𝐻 after invoking RETRIEVE.

Proof. By Agreement of AVID, all honest nodes eventually finish the dispersal phase once an honest node has

finished the dispersal phase. Also, due to Lemma 1 all honest nodes output the same 𝐻 for RBC when the dispersal

phase terminates. Therefore, when an honest client invokes RETRIEVE, all 2𝑡 + 1 honest nodes will send the correct

⟨HASH, ℎ′
𝑖
, hash(𝐻)⟩ to the client. By OEC (line 17-20) and the collision resistance property of the hash function, the

client can successfully decode the same hash vector 𝐻 . □

Manuscript submitted to ACM

Theorem 2 (Availability and Correctness). If an honest node has finished the dispersal phase, and some honest clients

invoke RETRIEVE, then they eventually output the same message𝑀 ′. Furthermore, if an honest client invoked DISPERSE(𝑀)

and no other client invokes DISPERSE on the same instance, then𝑀 ′
= 𝑀 .

Proof. By Lemma 2, the honest client reconstructs the same hash vector 𝐻 as the one output by any honest node

during the dispersal phase, where 𝐻 corresponds to some message 𝑀 ′
. Moreover, at least 𝑡 + 1 honest nodes have

received𝑚 𝑗 such that hash(𝑚 𝑗) = 𝐻 [𝑗]. Therefore, when an honest client invokes RETRIEVE, all these 𝑡 + 1 honest

nodes will send the correct ⟨SYMBOL,𝑚𝑖 ⟩ where hash(𝑚𝑖) = 𝐻 [𝑖] to the retrieving client, enabling it to reconstruct the

message𝑀 ′
.

Let 𝑓𝑢 (·) denote the polynomial of degree 𝑡 or less a retrieving client 𝑢 obtains via interpolation. The client 𝑢 then

uses 𝑓𝑢 (·) to recover the message𝑀𝑢 only if hash(𝑓𝑢 (𝑖)) = 𝐻 [𝑖] for all 𝑖 ∈ [𝑛]. Hence, due to collision resistance property

of the hash(·), if two retrieving client, 𝑢 and 𝑣 outputs messages𝑀𝑢 ̸= ⊥ and𝑀𝑣 ̸= ⊥, respectively, then𝑀𝑢 = 𝑀𝑣 .

Also, if any honest retrieving client outputs ⊥, then every honest retrieving client outputs ⊥. For the sake of

contradiction, let us assume that a retrieving client 𝑢 outputs ⊥ but another retrieving client 𝑣 ̸= 𝑢 outputs 𝑀𝑣 ̸= ⊥.
Let 𝑇𝑢 be the set of indices used by retrieving client 𝑢 to interpolate 𝑓𝑢 . Then, there exists a 𝑘 ∈ [𝑛] \ 𝑇𝑢 such that

𝐻 [𝑘] ̸= hash(𝑓𝑢[𝑘]). Since retrieving client 𝑣 outputs𝑀𝑣 ̸= ⊥, this implies 𝑓𝑢[𝑘] = 𝑓𝑣[𝑘] for all 𝑘 ∈ 𝑇𝑢 . However, both

𝑓𝑢 and 𝑓𝑣 have degree 𝑡 or less and agrees on 𝑡 + 1 distinct points. This implies 𝑓𝑢 and 𝑓𝑣 matches as polynomial and

𝑓𝑢[𝑘] = 𝑓𝑣[𝑘] for all 𝑘 ∈ [𝑛], which is a contradiction.

If an honest dispersing client invoked DISPERSE(𝑀) and no other dispersing client invokes DISPERSE on the same

instance, by the Termination property of AVID, all honest nodes eventually finish the dispersal phase with RBC output

𝐻 = [hash(𝑚1), . . . , hash(𝑚𝑛)] where [𝑚1, . . . ,𝑚𝑛] = RSEnc(𝑀,𝑛, 𝑡 + 1). Also, from Lemma 2 the retrieving client will

receive 𝐻 during the retrieval phase. Then, by collision-resistant property of the hash function, the honest retrieving

client use correct symbol to recover the message, hence will recover and output𝑀 . □

Theorem 3 (Performance). The communication cost of a dispersing client during the dispersal phase is 𝑂(|𝑀 |+𝜅𝑛) and

the total communication cost of the dispersal phase is 𝑂(|𝑀 |+𝜅𝑛2
). Also, each node incurs a storage cost of 𝑂(|𝑀 |/𝑛 + 𝜅).

Furthermore, the total communication cost for retrieval at a client is 𝑂(|𝑀 |+𝜅𝑛).

Proof. During the dispersal phase, the dispersing client only sends a symbol of size 𝑂(|𝑀 |/𝑛) to each node and

reliably broadcasts a message of size 𝜅𝑛. Hence, the total communication cost of the dispersing client is𝑂(|𝑀 |+𝜅𝑛) from

Lemma 8. Also, each node receives a symbol of size 𝑂(|𝑀 |/𝑛) and participates in the RBC of a message of size 𝑂(𝜅𝑛).

Hence, using Lemma 8, the total communication cost of the dispersal phase is 𝑂(|𝑀 |+𝜅𝑛2
). At the end of the dispersal

phase, each node stores two symbol of size 𝑂(|𝑀 |/𝑛) and 𝑂(𝜅), respectively, and a hash output of size 𝜅 . Thus, the total

storage cost of our AVID protocol is 𝑂(|𝑀 |+𝜅𝑛).

During retrieval, each node sends at most two symbols of size 𝑂(𝜅) and 𝑂(|𝑀 |/𝑛) to the retrieving client. Hence, the

communication cost of a single retrieving client is 𝑂(|𝑀 |+𝜅𝑛). □

4 LOWER BOUNDS

For AVID (or even synchronous VID), the communication cost of the dispersing client during dispersal phase is lower

bounded by Ω(|𝑀 |+𝑛) by the following simple argument – the dispersing client needs to send Ω(|𝑀 |) bits, and needs to

send messages to at least 𝑡 + 1 = Ω(𝑛) nodes otherwise it is possible that no honest node receives any information from

the client, and the Termination property of VID can be violated. For the total communication cost during dispersal, we

will show the following Ω(|𝑀 |+𝑛2
) lower bound for AVID.

Manuscript submitted to ACM

Theorem 4. Any deterministic protocol that solves AVID must incur a communication cost of Ω(|𝑀 |+𝑛2
) during the

dispersal phase in at least one execution.

Proof. Recall that the communication cost of the dispersing client during dispersal phase is lower bounded by

Ω(|𝑀 |+𝑛). Now we will show that any deterministic protocol that solves AVID must uses ≥ (𝑡/2)
2
messages during the

dispersal phase in at least one execution. Suppose it is not true, and there exists a deterministic AVID protocol that uses

< (𝑡/2)
2
messages during the dispersal phase for all executions. Consider the following two executions.

(1) Execution 𝐸1: Let the dispersing client be honest. The adversary corrupts the set of nodes 𝐵 where |𝐵 |= 𝑡/2. Let 𝐴

denote the rest of the nodes. For each node 𝑏 ∈ 𝐵, 𝑏 does not send messages to each other, and ignores the first 𝑡/2

messages received.

One observation is that ∃𝑝 ∈ 𝐵 such that 𝑝 receives < 𝑡/2 messages, since the protocol uses < (𝑡/2)
2
messages

during the dispersal phase and |𝐵 |= 𝑡/2. Also, due to Termination, all honest nodes in 𝐴 terminate the dispersal

phase in 𝐸1.

(2) Execution 𝐸2 same as 𝐸1 except the following differences: Let 𝐴(𝑃) denote the set of nodes that (attempt to) send 𝑝

messages in 𝐸1. Since 𝑝 receives < 𝑡/2 messages, |𝐴(𝑝)|< 𝑡/2. The adversary corrupts nodes in 𝐴(𝑝) and 𝐵 \ {𝑝}.
The corrupted nodes in 𝐵 \ {𝑝} behaves like in 𝐸1 and ignores all messages from node 𝑝 . The corrupted nodes in

𝐴(𝑝) behave like in 𝐸1 but do not send messages to 𝑝 .

Claim: 𝐸1 and 𝐸2 are distinguishable to honest nodes in 𝐴 \𝐴(𝑝), and the honest nodes in 𝐴 \𝐴(𝑝) will terminate the

dispersal phase in 𝐸2 as well.

The claim can be shown by examining how every node behaves in 𝐸1, 𝐸2. Nodes in 𝐵 \ {𝑝} behave the same to all

nodes. Nodes in 𝐴(𝑝) behave the same to 𝐴 \𝐴(𝑝). Node 𝑝 behaves the same since in both executions it does not receive

any message from others. Thus the claim is true. □

Now, consider two cases.

• If 𝑝 never terminates the dispersal phase in 𝐸2, then Agreement property is violated since other honest nodes

terminates the dispersal phase in 𝐸2, contradiction.

• If 𝑝 terminates the dispersal phase in 𝐸2 without receiving any messages, suppose 𝑝 terminates at time 𝜏 . Then

consider another execution 𝐸3 where the dispersing client is Byzantine and remains silent, and all nodes are honest.

All messages from any node to 𝑝 are delayed after 𝜏 . Since 𝑝 cannot distinguish 𝐸2 and 𝐸3, it terminates the dispersal

phase in 𝐸3 at time 𝜏 as well. Due to the Agreement property, all honest nodes will eventually terminate the dispersal

phase in 𝐸3. Now consider another execution 𝐸4 where the dispersing client with message 𝑀 is honest but its

messages are delayed, and all nodes are honest. For all honest nodes, they cannot distinguish 𝐸3 and 𝐸4 before

receiving any message from the dispersing client. Therefore, these honest nodes will terminate the dispersal phase in

𝐸4 before receiving any message from the dispersing client. In the retrieval phase of 𝐸4, according to the Availability

property, the retrieving client reconstructs some message eventually at some time 𝜏 ′. Suppose the messages of the

dispersing client are delayed beyond time 𝜏 ′ in 𝐸4. Since no honest node receives any message from the dispersing

client, during the retrieval phase of 𝐸4 the dispersed message cannot be reconstructed, violating the Correctness

property of AVID, hence a contradiction.

Hence, any deterministic protocol that solves AVID must uses ≥ (𝑡/2)
2
messages during the dispersal phase in at least

one execution, and thus must incur a communication cost of Ω(max{|𝑀 |+𝑛, (𝑡/2)
2}) = Ω(|𝑀 |+𝑛2

). □

Manuscript submitted to ACM

Theorem 5. Any deterministic protocol that solves AVID must incur a communication cost of Ω(|𝑀 |+𝑛) during the retrieval

phase in at least one execution.

Proof. Consider any execution with an honest retrieving client. The client needs to receive at least Ω(|𝑀 |) bits from
the honest nodes to obtain𝑀 , and the client needs to send messages to at least 𝑡 + 1 = Ω(𝑛) nodes for retrieval otherwise

it could be the 𝑡 nodes are Byzantine and ignore the message. Hence, the retrieval phase has cost Ω(|𝑀 |+𝑛) . □

5 RELATEDWORK

The first AVID protocol is due to Cachin and Tessaro [6]. In their protocol, during the dispersal phase, each node,

including the dispersing client, incurs a communication cost of 𝑂(|𝑀 |+𝜅𝑛 log𝑛), leading to a total dispersal cost of

𝑂(𝑛 |𝑀 |+𝜅𝑛2
log𝑛). This cost arises because every node needs to send a symbol and its associated Merkle path proof to

all nodes. Finally, during retrieval, each retrieving client incurs a communication cost of 𝑂(|𝑀 |+𝜅𝑛 log𝑛). Again, the

log𝑛 factor is due to nodes sending Merkle path proofs to the retrieving client.

Hendricks et al. in [9] propose an alternate AVID protocol where during dispersal, the dispersing client incurs a

communication cost of 𝑂(|𝑀 |+𝜅𝑛2
). They improve the communication cost using a non-interactive verification scheme

with fingerprinted cross-checksum. In their protocol, only the dispersing client sends the symbols to all nodes, and the

nodes perform an RBC on the fingerprinted cross-checksum but not the symbols. As a result, the remaining nodes incur

a communication cost of 𝑂(𝜅𝑛2
). Hence, the total communication cost of their protocol during the dispersal phase is

𝑂(|𝑀 |+𝜅𝑛3
). Also, the total retrieval cost for a single retrieving client is 𝑂(|𝑀 |+𝜅𝑛2

), as each node sends a 𝑂(𝜅𝑛) size

finger-printed cross-checksum and an encoded symbol to the retrieving client.

Very recently, Yang et al. [14] presents a new AVID protocol in which, during the dispersal phase, the dispersing

client incurs a communication cost of 𝑂(|𝑀 |+𝜅𝑛 log𝑛). Furthermore, the total communication cost of their dispersal

phase is𝑂(|𝑀 |+𝜅𝑛2
). The main innovation of the AVID protocol of [14] is that they remove the need for nodes to gossip

symbols and Merkle path proofs during the dispersal phase. They do so by designing a novel retrieval protocol and a

RBC on the root of the associated Merkle tree. Nevertheless, during the dispersal phase, the dispersing client still needs

to send a Merkle path proof to every node. Moreover, during retrieval, each node still sends an encoded symbol and the

associated Merkle path proof to the retrieving client, leading to a communication cost of 𝑂(|𝑀 |+𝜅𝑛 log𝑛). Our protocol

improves the communication costs of both these steps by a factor of log𝑛 using a vector of hashes instead of a Merkle

tree, along with our balanced RBC protocol for long messages.

With trusted setup and assuming hardness of 𝑞-SDH [11], the recent work by Alhaddad et al. [2] achieves the

dispersing client cost to 𝑂(|𝑀 |+𝜅𝑛) and the total communication to 𝑂(|𝑀 |+𝜅𝑛2
) using the KZG [11] polynomial

commitment scheme. Our protocol achieves the same cost using only collision-resistant hash function without any

trusted setup or additional cryptographic assumptions other than collision-resistant hash functions.

6 CONCLUSION

In this paper, we present an asynchronous verifiable information dispersal (AVID) protocol with near-optimal commu-

nication complexity, as well as some lower bounds for AVID.

ACKNOWLEDGMENTS

The authors would like to thank our shepherd Elad Schiller and PODC reviewers for their helpful comments on the

paper.

Manuscript submitted to ACM

Nicolas Alhaddad and Mayank Varia are supported by NSF Grants No. 1718135, 1801564, 1915763, and 1931714, by

the DARPA SIEVE program under Agreement No. HR00112020021, and by DARPA and the Naval Information Warfare

Center (NIWC) under Contract No. N66001-15-C-4071. Sisi Duan was supported in part by Tsinghua Independent

Research Program, National Financial Cryptography Research Center, and National Key Research and Development

Program of China under grant No. 2018YFA0704701. Ling Ren is supported by NSF Grant No. 2143058. Haibin Zhang

was supported in part by Shandong Provincial Key Research and Development Program (2021CXGC010106) and Teli

Youth Scholarship.

REFERENCES
[1] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and Haibin Zhang. Balanced byzantine reliable broadcast with

near-optimal communication and improved computation. In PODC, 2022.
[2] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct erasure coding proof systems. Cryptology ePrint Archive, 2021.
[3] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Practical and improved byzantine reliable broadcast and asynchronous verifiable

information dispersal from hash functions. Cryptology ePrint Archive, Paper 2022/171, 2022.

[4] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In STOC, pages 52–61, 1993.
[5] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation, 75(2):130–143, 1987.
[6] Christian Cachin and Stefano Tessaro. Asynchronous verifiable information dispersal. In SRDS, pages 191–201. IEEE, 2005.
[7] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination and its applications. In ACM SIGSAC Conference on Computer and

Communications Security, pages 2705–2721, 2021.
[8] Sourav Das, Zhuolun Xiang, and Ling Ren. Near-optimal balanced reliable broadcast and asynchronous verifiable information dispersal. Cryptology

ePrint Archive, Paper 2022/052, 2022.

[9] James Hendricks, Gregory R Ganger, and Michael K Reiter. Verifying distributed erasure-coded data. In PODC, pages 139–146, 2007.
[10] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In CCS, pages 584–597, 2007.
[11] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and their applications. In International conference

on the theory and application of cryptology and information security, pages 177–194. Springer, 2010.
[12] Michael O Rabin. The information dispersal algorithm and its applications. In Sequences, pages 406–419. Springer, 1990.
[13] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the society for industrial and applied mathematics,

8(2):300–304, 1960.

[14] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dispersedledger: High-throughput byzantine consensus on variable

bandwidth networks. In NSDI, 2022.

Manuscript submitted to ACM

Algorithm 3 BalBRB protocol for long messages

1: // only broadcaster node
2: input𝑀
3: Let ℎ := hash(𝑀)

4: Let [𝑚1,𝑚2, . . . ,𝑚𝑛] := RSEnc(𝑀,𝑛, 𝑡 + 1)

5: send ⟨PROPOSE,𝑚 𝑗 ⟩ to node 𝑗 for each 𝑗 ∈ [𝑛]

// each node 𝑖
6: Let𝑀 := ⊥, 𝑇 := {}, 𝑇ℎ := {}
7: upon receiving the first ⟨PROPOSE,𝑚𝑖 ⟩ from the broadcaster do
8: send ⟨SHARE,𝑚𝑖 ⟩ to all nodes

9: upon receiving the first ⟨SHARE,𝑚∗
𝑗
⟩ from any node 𝑗 do

10: 𝑇 := 𝑇 ∪ {(𝑗,𝑚∗
𝑗
)}

11: Run IT-OEC on the set 𝑇

12: Let𝑀 ′
be the output of IT-OEC(𝑇)

13: if 𝑃 (𝑀 ′
) = 𝑡𝑟𝑢𝑒 then // 𝑃 (·) is an external predicate that returns true or false. See protocol description for more details.

14: Let ℎ := hash(𝑀 ′
)

15: send ⟨ECHO,𝑚 𝑗 , ℎ⟩ to node 𝑗 for each 𝑗 ∈ [𝑛] where𝑚 𝑗 is the 𝑗-th symbol of RSEnc(𝑀 ′, 𝑛, 𝑡 + 1)

16: upon receiving 2𝑡 + 1 ⟨ECHO,𝑚𝑖 , ℎ⟩ for the same𝑚𝑖 , ℎ and not having sent a READY message do
17: send ⟨READY,𝑚𝑖 , ℎ⟩ to all

18: upon receiving 𝑡 + 1 ⟨READY, ∗, ℎ⟩ for the same ℎ and not having sent a READY message do
19: Wait for 𝑡 + 1 matching ⟨ECHO,𝑚′

𝑖
, ℎ⟩

20: send ⟨READY,𝑚′
𝑖
, ℎ⟩ to all

21: upon receiving the first ⟨READY,𝑚∗
𝑗
, ℎ⟩ from any node 𝑗 do

22: 𝑇ℎ := 𝑇ℎ ∪ {(𝑗,𝑚∗
𝑗
)}

23: Run IT-OEC on the set 𝑇ℎ
24: Let𝑀 ′′

be the output of IT-OEC(𝑇ℎ)

25: output𝑀 ′′
and return

A BALANCED RELIABLE BROADCAST

In this section, we provide the balanced reliable broadcast protocol named BalBRB proposed in [1]. The BalBRB protocol

replaces the standard multicast with the balanced multicast [1] in the reliable broadcast protocol of [7] to obtain

balanced communication cost. For completeness, we provide description and analysis of the protocol in this section.

Definition 2 (Reliable Broadcast [5]). A protocol for a set of nodes {1, . . . , 𝑛}, where a designated broadcaster holds an
input𝑀 , is a reliable broadcast (RBC) protocol, if the following properties hold

• Agreement: If an honest node outputs a message𝑀 ′
and another honest node outputs𝑀 ′′

, then𝑀 ′
= 𝑀 ′′

.

• Validity: If the broadcaster is honest, all honest nodes eventually output the message𝑀 .

• Totality: If an honest node outputs a message, then every honest node eventually outputs a message.

Protocol description. In order to reduce the cost of the broadcaster node, protocol BalBRB first lets the broadcaster

encode its message𝑀 into 𝑛 symbols using a (𝑛, 𝑡 + 1) Reed-Solomon code (line 4) and only send the 𝑖-th symbol to node

𝑖 together with the hash digest of the message𝑀 . In particular, let [𝑚1,𝑚2, . . . ,𝑚𝑛] = RSEnc(𝑀,𝑛, 𝑡) be the RS encoding

Manuscript submitted to ACM

of𝑀 . Then, to node 𝑖 , the broadcaster sends the message ⟨PROPOSE,𝑚𝑖 ⟩ (line 5). Note that due to properties RS code,

each symbol has size |𝑀 |/(𝑡 +1), and therefore the cost of the broadcaster is reduced to𝑂(𝑛 · (|𝑀 |/(𝑡 +1)+𝜅)) = 𝑂(|𝑀 |+𝜅𝑛)

where 𝜅 is the size of the hash digest.

Next, each node 𝑖 upon receiving the ⟨PROPOSE,𝑚𝑖 ⟩ message from the broadcaster sends the ⟨SHARE,𝑚𝑖 ⟩ to all nodes
(line 7-8). When a node receives a SHARE message from other nodes, it adds the corresponding symbol to the set 𝑇 .

Once enough symbols are collected, nodes use the Online Error Correcting (OEC) algorithm (line 11) to decode the

message. As described in 2, intuitively, the OEC algorithm performs up to 𝑡 trials of reconstruction, and during the 𝑟 -th

trial, a node uses 2𝑡 + 𝑟 + 1 symbols to decode. If the reconstructed message 𝑀 ′
has the matches with at least 2𝑡 + 1

tuples in 𝑇 , a node successfully reconstructs the message; otherwise, it waits for one more symbol and tries again.

Once a node successfully reconstructs the message𝑀 ′
, the rest of the protocol is similar to the four-round RBC of

Das, Xiang and Ren [7, Algorithm 4]. Similar to Das et al., we also add an external predicate 𝑃 (·) (line 13) to strengthen

the validity guarantee of BalBRB, so that any honest node only output𝑀 such that 𝑃 (𝑀) = 𝑡𝑟𝑢𝑒 . This external validity

check is useful for many application of RBC, including verifiable secret sharing [7] and AVID. In fact, our AVID protocol

in §3 will use such RBC with external validity check. For standard RBC, 𝑃 (·) always returns true.
Briefly, after checking the predicate 𝑃 (·), nodes send ECHO messages with their symbols and the hash digest to all

nodes (line 15). Also, nodes send READY messages once 2𝑡 + 1 matching ECHO messages are collected (line 16-17) or upon

receiving 𝑡 + 1 READY messages (line 18). Note that each node needs to wait for 𝑡 + 1 matching ECHO messages to learn

the symbol to be attached in the READY message (line 19-20). Finally, nodes use the OEC algorithm to reconstruct the

broadcaster’s message once receiving enough READY messages of the same hash digest.

We next analyze the properties of BalBRB protocol and its performance.

Lemma 3. Assuming a collision resistant hash function, if an honest node sends ⟨READY,𝑚𝑖 , ℎ⟩ where ℎ = hash(𝑀), then

𝑚𝑖 is the 𝑖th symbol of RSEnc(𝑀,𝑛, 𝑡 + 1), and furthermore, no honest node sends a READY message for a different hash

ℎ′ ̸= ℎ.

Proof. First, no two honest nodes send READY messages for different hash digests, due to quorum intersection of

the ECHO messages same as the Bracha’s RBC. Now we show if an honest node sends ⟨READY,𝑚𝑖 , ℎ⟩ where ℎ = hash(𝑀),

then𝑚𝑖 is the 𝑖
th
symbol of RSEnc(𝑀,𝑛, 𝑡 + 1). Note that an honest node 𝑖 sends ⟨READY,𝑚𝑖 , ℎ⟩ for ℎ = hash(𝑀) only

upon receiving at least 𝑡 + 1 matching ⟨ECHO,𝑚𝑖 , ℎ⟩. At least one of these ECHOmessage is from an honest node ℎ. Before

the honest node ℎ sends the ECHO message, it successfully reconstructed the message 𝑀 ′
whose hash digest equals

ℎ. Then, by the collision resistance property of the underlying hash function, 𝑀 ′
= 𝑀 and𝑚𝑖 is the 𝑖

th
symbol of

RSEnc(𝑀,𝑛, 𝑡 + 1). □

Lemma 4. If an honest node 𝑖 receives 𝑡 + 1 READY messages with a matching hash ℎ, then node 𝑖 will eventually receive

𝑡 + 1 matching ⟨ECHO,𝑚𝑖 , ℎ⟩ messages and hence send ⟨READY,𝑚𝑖 , ℎ⟩.

Proof. Let 𝑗 be the first honest node that sends ⟨READY, ∗, ℎ⟩ message to all. Then, node 𝑗 must have received at least

2𝑡 + 1 ECHO messages with matching ℎ, among which at least 𝑡 + 1 are from honest nodes. Hence, node 𝑖 will eventually

receive 𝑡 + 1 ⟨ECHO,𝑚𝑖 , ℎ⟩ messages from these honest nodes. □

Theorem 6 (Totality and Agreement). If an honest node outputs a message, then every honest node eventually outputs a

message. If an honest node outputs a message𝑀 ′ and another honest node outputs𝑀 ′′, then𝑀 ′
= 𝑀 ′′.

Proof. An honest node outputs a message 𝑀 only upon receiving at least 2𝑡 + 1 READY messages with a matching

hash ℎ = hash(𝑀). At least 𝑡 + 1 of them are sent by an honest node. Hence, all honest nodes will receive at least 𝑡 + 1

Manuscript submitted to ACM

READY messages with hash ℎ. By lemma 4, eventually all honest nodes will send READY messages with hash ℎ. Hence, all

honest nodes will receive READY messages from all other honest nodes. Furthermore, due to Lemma 3, all these READY

message contain correct symbols from the codeword RSEnc(𝑀,𝑛, 𝑡 + 1). Thus, every honest node will eventually output

𝑀 such that ℎ = hash(𝑀). □

Theorem 7 (Validity). If the broadcaster node is honest, has an input𝑀 , and 𝑃 (𝑀) = 𝑡𝑟𝑢𝑒 , then all honest nodes eventually

output the message𝑀 .

Proof. When the broadcaster is honest and has input𝑀 , it sends the correct symbols and hash to all nodes. Then,

all honest nodes send the SHARE messages with the correct symbols. Thus, after receiving all SHARE message from

honest nodes, any honest node can reconstruct𝑀 due to OEC and collision resistance of the hash. Also, the predicate

𝑃 (𝑀) = 𝑡𝑟𝑢𝑒 at all honest nodes, so at least 2𝑡 + 1 honest nodes will send ECHO messages with identical ℎ = hash(𝑀).

Hence, all honest nodes will eventually send READYmessages for ℎ. By lemma 3 no honest node will send READYmessage

for ℎ′ ̸= ℎ. As a result, all honest node will receive at least 2𝑡 + 1 READY message for ℎ with valid symbols in it, which is

sufficient to recover𝑀 . □

Next, we will analyze the communication complexity of the protocol.

Theorem 8 (Performance). Assuming existence of a collision resistant hash function whose outputs are 𝜅 bits long,

Algorithm 3 solves RBC with total communication cost of 𝑂(𝑛 |𝑀 |+𝜅𝑛2
), and per-node communication cost of 𝑂(|𝑀 |+𝜅𝑛).

Proof. In algorithm 3 the broadcaster sends a single PROPOSE to all other nodes. Moreover, each honest node sends

a single SHARE, ECHO and READY message. Each message in Algorithm 3 is𝑂(|𝑀 |/𝑛 + 𝜅) bits long, since |𝑚𝑖 |= |𝑀 |/(𝑡 + 1)

and hash outputs are 𝜅 bits long. Hence, each node incurs a per-node communication cost of 𝑂(|𝑀 |+𝑛𝜅). Hence, the

total communication cost is 𝑂(𝑛 |𝑀 |+𝜅𝑛2
). □

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Primitives

	3 AVID
	3.1 Analysis of AVID

	4 Lower Bounds
	5 Related Work
	6 Conclusion
	References
	A Balanced Reliable Broadcast

