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Abstract. Since the advent of pairing-based cryptography, various opti-
mization methods that increase the speed of pairing computations have
been exploited, as well as new types of pairings. This paper extends
the work of Kinoshita and Suzuki who proposed a new formula for the
β-Weil pairing on curves with even embedding degree by eliminating
denominators and exponents during the computation of the Weil pair-
ing. We provide novel formulas suitable for the parallel computation for
the β-Weil pairing on curves with odd embedding degree which involve
vertical line functions useful for sparse multiplications. For computa-
tions we used Miller’s algorithm combined with storage and multifunc-
tion methods. Applying our framework to BLS-27, BLS-15 and BLS-9
curves at respectively the 256 bit, the 192 bit and the 128 bit security
level, we obtain faster β-Weil pairings than the previous state-of-the-
art constructions. The correctness of all the formulas and bilinearity of
pairings obtained in this work is verified by a SageMath code.
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1. Introduction

Pairings have first been studied in mathematical research areas such as al-
gebraic number theory and algebraic geometry [2]. Then pairings on elliptic
curves have attracted significant attention and have been applied to many
cryptographic schemes, namely Boneh and Franklin’s identity based encryp-
tion scheme [3], Boneh, Lynn and Shacham’s short signature scheme [4] and
Joux’s one round tripartite key exchange [5]. Before the advent of pairings
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one did not know how to effectively build up these protocols. A pairing is
a bilinear map from the cartesian product of two abelian additive groups
to an abelian multiplicative group. For instance, the Weil pairing e over the
r-torsion E[r] of an elliptic curve E, satisfies the following basic properties :

• e is bilinear i.e. for every P1, P2, Q1 and Q2 in E[r], we have that e(P1 +
P2, Q1) = e(P1, Q1)·e(P2, Q1) and e(P1, Q1+Q2) = e(P1, Q1)·e(P1, Q2);
• e is non degenerate i.e. if e(P,Q) = 1 for all P ∈ E[r], then Q = O,

where O is the point at infinity;
• e is alternating i.e. e(P, P ) = 1 for all P in E[r].

The bilinearity is the most important property for building applications
with cryptographic pairings. The very first pairings used in cryptography were
the Weil and the Tate pairings [6, 3]. To date there are several variants of the
Tate pairing and the most efficient candidate is the optimal Ate pairing [7].
On the other hand variants of the Weil pairing such as α-Weil [8], β-Weil
[8, 9, 10] and ω-Weil pairings [11, 12] are elegant constructions tailored for
parallel executions. Viewed in this angle, the β-Weil pairing is more efficient
than the optimal Ate pairing [9, 10]. Moreover our motivation for computing
the β-Weil pairing rather than the Tate pairing or its variants, is that it has
no time-consuming final exponentiation and can be trivially parallelized [9].
The pairings can be implemented on a smart card, but due to the limited
computing power and constrained memory there is a need to faster evaluate
the pairings.

In this work, we focus on the β-Weil pairing defined over pairing-friendly
elliptic curves with odd embedding degrees 9, 15 and 27. These curves admit
twists of degree three which enable computations to be done in subfields
and also lead to the denominator elimination technique. It is noticed in [13]
that elliptic curves with embedding degree k = 27 are a suitable choice for
computing product of pairings. Moreover, Barbulescu et al. showed that at
the 256 bits security level, curve with k = 27 seem to be the best choice for
pairing efficiency [14]. Also in [10] Fouotsa et al. proposed a pairing denoted

β̂k-pairing different from β-pairing which is more efficient than the optimal
Ate pairing over BLS-15. Many works have been carried out for faster eval-
uation of the pairings in the literature such as [15, 16, 17, 18, 19] including
their security see [20, 21, 22].

The original β-Weil pairing that we consider here is the generalised for-
mula proposed by Fouotsa et al. in [10]. Their theoretical evaluation showed
some limitations such as:
− The inversions of Miller’s functions which are very costly,
− The precomputation of some points [pi]P that underestimated the total
cost of the β-Weil pairing,
− the β-Weil pairing was not tailored for multifunction technique, this tech-
nique extremely reduces the cost of squarings in the finite field.

Our main contribution is the extension of Kinoshita and Suzuki’s work
[1] who proposed a formula for the β-Weil pairing on the curves with even
embedding degree by eliminating the denominators and the exponents. But



Faster Beta Weil Pairing on BLS Curves with Odd Embedding Degree 3

their formula to simplify the denominators does not work for odd embedding
degrees. We then provide a novel formula for the β-Weil pairing on curves with
odd embedding degrees which involve vertical line functions useful for sparse
multiplications. To compute the new formula of our novel β-Weil pairing, we
use Miller’s algorithm based on storage and multifunction techniques.

Whereas, storage technique consists of compute and store line func-
tions for Miller’s loop that are reused to find another line functions for other
Miller’s function, multifunction technique evaluates the product of n Miller’s
functions and only requires a single squaring in the extension field per itera-
tion instead of n squarings in the naive way. The idea of precomputation and
storage of line functions and the exploitation of sparsity can be found in [23]
and for multi-function technique see [24].

The correctness of the formulas for curves with embedding degrees 27, 15
and 9 are ensured by a SageMath script available at [25] and inspired by
Aurore’s online SageMath repository for even embedding degree pairings. As
applications we applied the variant of Miller’s algorithm with these formulas
with the Miller loop parameters obtained by applying the recommendation in
[26] and [27, 28]. The pairings over these curves are resistant to the STNFS
attacks.

Detailed cost estimation of β-Weil pairing on BLS-27, BLS-15 and BLS-
9 at respectively the 256, 192 and 128 bits level of security are provided. Our
theoretical results reduce the number of multiplication operations on the
prime field in β-Weil pairing for BLS family with k = 27, 15 and 9 about
44.78%, 49.07% and 38.49%, as well as the number of divisions of about
87.1% 78.8% and 61.2% respectively for serial computation. The optimal Ate
pairing remains the fastest pairing in the serial computation. However, the
proposed β-Weil pairing on curve with k = 15 is competitive to optimal Ate
pairing on the same curve. In the parallel computation with 3 processors, the
β-Weil pairing on BLS-27, BLS-15 and BLS-9 is faster than the optimal Ate
pairing. For more details see Section 6, Appendix A and Table 3.

This paper is organized as follows. The Section 2 summarises the math-
ematical background on Weil pairing over elliptic curves and recalls the idea
of Kinoshita and Suzuki [1] to accelerate the β-Weil pairing computation.
Section 3 provides a new formula of the β-Weil pairing on curves with odd
embedding degrees. Section 4 describes storage and multifunction techniques.
Section 5 estimates the theoretical cost of the basic and special operations
of the pairing. Sections 6 provides theoretical costs of computing, the new
β-Weil pairing both in serial and parallel and section 7 compares our results
with those done on previous works. Finally, Section 8 concludes the work.

2. Mathematical Preliminaries.

In this section, we define the Weil pairing as well as its variant called β-Weil
pairing with some past results.
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2.1. The Weil pairing

Let E be an elliptic curve defined over Fp, where p is a large prime number
and let r be the largest prime number such that r divides #E(Fp). Let k be
the smallest positive integer such that r divides pk−1. The integer k is called
the embedding degree of E (with respect to r). For any P ∈ E[r], we denote
fr,P the rational function with divisor

div(fr,P ) = r[P ]− r[O].

The Weil pairing is defined as:

eW : E(Fpk)[r]× E(Fpk)[r] −→ µr : (P,Q) 7−→ (−1)r
fr,P (Q)

fr,Q(P )
.

The function fr,P is called the Miller function, it is obtained through
Miller’s algorithm [17] based on the following relations. For all a, b ∈ Z and
P ∈ E[r],

f1,P = 1, (2.1)

fa+b,P = fa,P · fb,P · h[a]P,[b]P , (2.2)

fab,P = fab,P · fa,[b]P = f ba,P · fb,[a]P , (2.3)

where h[a]P,[b]P = l[a]P,[b]P /V[a+b]P and l[a]P,[b]P is the straight line containing
[a]P and [b]P and V[a+b]P is the corresponding vertical line passing through
[a+ b]P .

The Weil pairing is composed of two executions of the Miller’s loop for
the evaluation of fr,P (Q) and fr,Q(P ). The efficiency of Miller’s loop highly
depends on the choice of the elliptic curve and the system of coordinates
of the elliptic curve. Pairing-friendly elliptic curves are curves allowing an
efficient implementation of pairings. These curves are parametrized by poly-
nomials p(x), r(x) and t(x) such that for a given security level, we find the
corresponding value of x such that #E(Fp(x)) = p(x) + 1 − t(x) is divisible
by r(x). The parameters p(x), r(x) and t(x) for elliptic curves with embed-
ding degrees 9, 15 and 27 denoted as BLS-9, BLS-15 and BLS-27 in [29] are
respectively represented as polynomials as follows:
BLS-27: r(x) = 1

3 (x18+x9+1), p(x) = 1
3 (x−1)2(x18+x9+1)+x, t(x) = x+1.

BLS-15: r(x) = x8 − x7 + x5 − x4 + x3 − x+ 1, p(x) = 1
3 (x12 − 2x11 + x10 +

x7 − 2x6 + x5 + x2 + x+ 1), t(x) = x+ 1.
BLS-9: r(x) = 1

3 (x6 + x3 + 1), p(x) = 1
4 ((x + 1)2 + 1

3 ((x − 1)2(2x3 + 1)2)),
t(x) = x+ 1.

2.2. Previous results on β-Weil pairing computation

The most efficient way to optimize a pairing is by using Miller’s algorithm
which computes the rational function fs,R where, s ∈ Z and R ∈ E[r].
This rational function is called Miller’s function with divisor div(fs,R) =
s(R) − ([s]R) − (s − 1)(O). Vercauteren [7] introduced the extended Miller
function fs,h,R with divisor div(fs,h,R) =

∑w
i=0 hi(([p

i]R) − (O)), where
h(x) =

∑w
i=0 hix

i in Z[x] is the optimal polynomial obtained by using a
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lattice-based method such that h(p) = 0 mod r. For m = h(p)/r and m - r,
this extended Miller function is expressed as

fs,h,R =
fmr,R∏w

j=0 f
hj
pj ,R

. (2.4)

The extended Miller’s function was used to propose efficient variants of Ate
pairing and Weil pairing such as optimal Ate pairing [7] and β-Weil pairing
[8] on curves of even embedding degrees where the Miller’s loop length is
reduced to log2(x) iterations.

In [10], Fouotsa et al. extended the work of Aranha et al. [8] on the
β-Weil pairing to curves with an odd embedding degree k. They provided
the following formula.

Theorem 2.1 ([10], Theorem 4). Let l be a proper divisor of k. There exists

a polynomial h(z) =
∑w
i=0 hiz

i ∈ Z[z] such that |hi| < r
1

ϕ(k) and h(p) = rs
so that the map

βk : G1 ×G2 → µr : (P,Q) 7→

(
e−1∏
i=0

(
fp,h,Q([pi]P )

fp,h,[pi]P (Q)

)pe−1−i)pl−1
,

is a pairing and e = k/d where d is the twisted degree of the curve. More
precisely, if r - spe−1−i and r - hj , for all 0 ≤ i ≤ e− 1 and 1 ≤ j ≤ w, then
the map βk is non-degenerate.

Note that the final powering pl − 1 sends to 1 the multiplicative factors
of the Miller’s function which lies in proper subfields of Fpk .

Remark 2.2. For curves of even embedding degrees, Aranha [8] et al. provided
the following formula of the β-Weil pairing

βk(P,Q) =

(
e−1∏
i=0

(
fp,h,Q([pi]P )

fp,h,[pi]P (Q)

)pe−1−i)pk/2−1
.

To avoid denominators and exponents in the computation of β-Weil
pairings for curves of even embedding degrees, Kinoshita et al. [1] considered
the useful results in the following lemma.

Lemma 2.3. 1. Elimination of the denominators (and thus an inversion) of
the β-Weil pairing. In the context of an elliptic curve of even embedding
degree, the following relations hold:

f−1a,R = fa,−R and f−1p,h,R = fp,h,−R

2. Elimination of the exponents of the β-Weil pairing. For any P ∈ G1

and Q ∈ G2 :

fp
i

p,h,P (Q) = fp,h,P (πpi(Q)) and fp
i

p,h,Q(P ) = fp,h,πpi (Q)(P ).
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Then they provided the simplified formula of the β-Weil pairing

βk(P,Q) =

(
e−1∏
i=0

fp,h,π
pδi

(Q)([p
i]P ) · fp,h,[pi]P (πpδi (Q))

)pk/2−1
(2.5)

where, P = −P and δi = e− 1− i.
The first item of the Lemma 2.3 does not work on elliptic curves with

odd embedding degrees. In the following we will derive an analogous lemma
as well as the new β-Weil pairing on elliptic curves of odd embedding degrees.

3. New Formula for β-Weil pairing

In this section we first provide a new general formula of β-Weil pairing on
elliptic curves of odd embedding degrees. Then we give the explicit formulas
of β-Weil pairing on BLS-27, BLS-15 and BLS-9.

3.1. New formula for β-Weil pairing: the case of odd embedding degrees

The following lemma gives nice properties of the Miller’s function in the case
of odd embedding degrees.

Lemma 3.1. For all a ∈ Z and R ∈ E, we obtain the following two relations:

(i) f−1a,R = fa,−R · V[a]R · V−aR .

(ii) f−1p,h,R = fp,h,−R ·
∏w
j=0 V

−hj
[pj ]R.

Proof. (i) From Eq. 2.3, We have that, f−1a,R =
fa−1,R · fa,[−1]R

f−1,[a]R
.

Since, div(f−1,[a]R) = −(([a]R) + ([−a]R))− 2(O) = div(V−1[a]R)

and div(fa−1,R) = di(V−aR ). Then, f−1a,R = fa,−R · V[a]R.V−aR .

(ii) From Eq. 2.4, we have that fp,h,R =
frm,R∏w
i=1 f

hi
pi,R

. Taken this equation

to power −1, it yields f−1p,h,R =
f−1rm,R∏w

i=1(f−1pi,R)hi
. Then from (i), f−1p,h,R =

frm,−R · V[rm]R · V−rmR∏w
i=1

(
fhipi,−R · V

hi
[pi]R · V

−pihi
R

) =
frm,−R∏w
i=1 f

hi
pi,−R

·
V[rm]R · V−rmR∏w

i=1(Vhi[pi]R) · V−
∑w
j=0 hip

i

R

.

Since, [r]R = O and
∑w
j=0 hjp

j = r ·m, the result follows

f−1p,h,R = fp,h,−R ·
∏w
j=0 V

−hj
[pj ]R.

�

A straightforward application of Lemma 3.1 in the Theorem 2.1 gives
the following theorem:
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Theorem 3.2. For every curves of odd embedding degrees, the new formula of
β-Weil pairing is given as follows

βk(P,Q) =

e−1∏
i=0

fp,h,π
pδi

(Q)([p
i]P ) · fp,h,[pi]P (πpδi (Q)) ·

w∏
j=0

V−hj[pi+j ]P (πpδi (Q))

pl−1

,

(3.1)
where P = −P and δi = e− 1− i.

Corollary 3.3. For pairing-friendly curves of embedding degrees k = 27, 15
and 9, the polynomial h(z) for the extended Miller’s function yields h(z) =
x− z, then fp,h,P = fx,P and Eq. 3.1 becomes

βk(P,Q) =

(
e−1∏
i=0

fx,Qi(Pi) · fx,P i(Qi) · V
−x
Pi

(Qi) · VPi+1
(Qi)

)pl−1
, (3.2)

where Pi = [pi]P and Qi = πpδi (Q).

Enge and Milan [30] proposed a variant of Miller’s algorithm (Algo-
rithm 2) which evaluates the function fx,P or fx,Q for any seed x, positive,
negative, sparse, in binary and in 2−NAF form, that is, x =

∑n
i=0 si2

i with
si in {0,−1, 1}.

Moreover, for a matter of efficiency, it is possible to find the parameters
x, so as to avoid the computation of V−xPi (Qi). The simplified formulas in this
case are given by corollary 3.4.

Corollary 3.4. The simplified formulas of the β-Weil pairing with x = −2n +∑n−1
i=0 si2

i, or x = 2n +
∑n−1
i=0 si2

i, where si ∈ {0,−1, 1}, is

βk(P,Q) =

(
e−1∏
i=0

fx,Qi(Pi) · f−x,Pi(Qi) · VPi+1
(Qi)

)pl−1
, (3.3)

where Pi = [pi]P and Qi = πpδi (Q).

Proof. If x < 0, that is x = −|x| since, P i = −Pi then, fx,P i(Qi) =

f−|x|,−Pi(Qi). From Eq. 2.3, f−|x|,−Pi(Qi) = f
|x|
−1,−Pi(Qi) · f|x|,Pi(Qi). But,

f−1,−Pi(Qi) = V−1−Pi(Qi) and V−1−Pi(Qi) = V−1Pi (Qi), therefore fx,P i(Qi) =

f|x|,Pi(Qi) · V
−|x|
Pi

(Qi) = f−x,Pi(Qi) · VxPi(Qi).
If x > 0, f−x,Pi(Qi) = fx,−Pi(Qi) · V−xPi (Qi) i.e fx,P i(Qi) = f−x,Pi(Qi) ·

VxPi(Qi).
For each case substitute, fx,P i(Qi) by f−x,Pi(Qi) · VxPi(Qi) in Eq. 3.2

and it becomes Eq. 3.3. �

Algorithm 1 computes fx,Q(P ) for positive x, whereas Algorithm 2 com-
putes fx,Q(P ) for negative x. In fact, fx,Q(P ) = f−x,−Q(P ) · VxQ(P ) and the

Algorithm 2 computes VxQ(P ) internally.
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Algorithm 1: Evaluate Full Miller’s function fx,Q(P ) for x > 0.

Input: x = 2n +
∑n−1
i=0 si2

i, where si ∈ {0, 1}
Output: fx,Q(P ), [x]Q

1 V ← Q,

2 f ← 1,

3 for i from n− 1 down to 0 do
4 f ← f2.hV,V (P ), V ← [2]V

5 if si = 1 then
6 f ← f.hV,Q(P ), V ← V +Q

7 return f, V.

Algorithm 2: Evaluate Full Miller’s function fx,Q(P ) for x < 0.

Input: x = −2n +
∑n−1
i=0 si2

i, where si ∈ {0,−1}
Output: fx,Q(P ), [x]Q

1 V ← −Q,
2 f ← V−1Q (P ),

3 for i from n− 1 down to 0 do
4 f ← f2.hV,V (P ), V ← [2]V

5 if si = −1 then
6 f ← f.hV,−Q(P ).V−1Q (P ), V ← V −Q

7 return f, V.

By direct analogy with Algorithm 1 and 2, exchanging P and Q gives
two algorithms for computing Miller Lite function this is, fx,P (Q) for positive
x and fx,P (Q) for negative x respectively. Note that the Miller Lite function
is defined over Fp and evaluated at a point of E(Fpk). Whereas the Full Miller
function is defined over Fpk and evaluated at a point of E(Fp).

Remark 3.5. Lin et al. [31] first observed that, for every point S in G1 and
R in G2, we have that

1

VR(S)
=

1

xS − xR
=
x2S + xSxR + x2R

y2S − y2R
.

This leads to the denominator elimination with cubic twist since, y2S−y2R lies

in a subfield. Then V−1R (S) can be replaced by

SR(S) = x2S + xSxR + x2R. (3.4)

3.2. Applications on BLS curves: explicit formulas

In this subsection, we apply the proposed Formula 3.3 to BLS pairing friendly
curves. BLS curves are available for several embedding degrees [29], in partic-
ular, the curves with embedding degrees k = 27, 15 and k = 9 named BLS-27,
BLS-15 and BLS-9 respectively. These curves have the form y2 = x3 + b and
admit a cubic twist.
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Table 1 provides explicit formulas of β-Weil pairing on BLS-27, BLS-15
and BLS-9 at different levels of security.

Table 1. New β-Weil pairing formulas on BLS curves. At
128-bit, 192-bit level of security the seeds provided come
from the recommendation of Guillevic in [26]. At 256−bit
security level no seed is given for k = 27 we then refer to
[27].

Curves Level of security Size of p the β-Weil pairing
and the x value

BLS-27 256-bit 1019
(∏8

i=0 fx,Qi (Pi) · f−x,Pi (Qi) · VPi+1
(Qi)

)p9−1

−251 − 231 − 221 − 28 − 24

BLS-15 192-bit 930
(∏4

i=0 fx,Qi (Pi) · f−x,Pi (Qi) · VPi+1
(Qi)

)p5−1

−277 − 276 − 268 − 250

BLS-9 128-bit 593
(∏2

i=0 fx,Qi (Pi) · f−x,Pi (Qi) · VPi+1
(Qi)

)p3−1

−274 − 272 − 246 − 231

These new formulas of the β-Weil pairing are more suitable for the
storage and multifunction techniques as explained in the next section.

4. Storage and Multifunction Techniques For Fast
Computation

The storage technique stores some line equations during the Miller’s algo-
rithm in order to speed up the computation, whereas the multifunction tech-
nique reduces the number of squarings in the pairing computation.

4.1. Storage technique

The computation of the Miller’s function fs,Q(P ) can be performed in two
steps: the first step consists of evaluating the line functions depending on Q,
while the second step is to evaluate the line functions at P . Storage technique
then computes and stores the line functions of the first step. As Algorithm 3
computes and stores all line functions of fs,Q or fs,P , Algorithm 4 computes
and stores line functions of fs,πpi (Q) by raising all the line functions of fs,Q

to the power pi.
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Algorithm 3: CSL: Compute and Store Line functions for s < 0

Input: R ∈ G1 (or R ∈ G2),

integer s = −2n +
∑n−1
i=0 si2

i, where si ∈ {0,−1}
Output: An array g of blog2 sc+HW (s)− 1 line functions and [s]R.
HW (s) is the Hamming weight of s

1 T ← −R and j ← 1

2 for i← n− 1 to 0 do
3 g[j]← hT,T , T ← 2T, j ← j + 1

4 if si 6= 0 then
5 g[j]← hT,R, T ← T −R, j ← j + 1

6 return g, T.

We remark that, for s > 0, item 1 becomes T = R and item 5 is
T = T +R.

Algorithm 4: CSLFrob: pi−th Frobenius for Stored Line functions
[1]

Input: An array g of line functions, integer i
Output: An array g′ of line functions

1 for j ← 1 to length of g do

2 g′[j]← g[j]p
i

3 return g′.

4.2. Multifunction technique

After computing and storing all line functions, we compute the products of e
Miller’s functions with the help of multifunction technique. The method only
requires a single squaring in the extension field per doubling step instead
of e squarings in the naive way. Algorithm 5 evaluates the product of e-
multifunction.
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Algorithm 5: EPM: Evaluate Product of e-Multifunction for s < 0

Input:
[
(g0, P0), ..., (ge−1, Pe−1), (h0, Q0), ..., (he−1, Qe−1)

]
s = −2n +

∑n−1
j=0 sj2

j , where sj ∈ {0,−1}
h′is are the stored line functions from f−s,Pi
g′is are the stored line functions from fs,Qi
Output:

∏e−1
i=0

(
fs,Qi([p

i]P ) · f−s,Pi(Qi)
)
,

1 f ←
∏e−1
k=0 S−Qk(Pk), (see Eq. 3.4)

2 j ← 1

3 for i from n− 1 down to 0 do
4 f ← f2

5 f ← f ·
∏e−1
k=0 gk[j](Pk) · hk[j](Qk), j ← j + 1,

6 if si 6= 0 then

7 f ← f ·
∏e−1
k=0 gk[j](Pk) · hk[j](Qk) · S−Qk(Pk), j ← j + 1,

8 return f.

By direct analogy with Algorithm 5 exchanging P and Q yields another
algorithm for positive s.

To estimate the theoretical complexity of Algorithm 5, we need some
notations:
− Gkj cost of the multiplication by the line function gk[j],
− Subs(gkj) cost of substitution of Pk in the line function gk[j],
− Hkj cost of the multiplication by the line function hk[j],
− Subs(hkj) cost of substitution of Qk in the line function hk[j],
− MS−Qi (Pi)

cost of the multiplication by the line S−Qi(Pi),

− HW (x) the hamming weight of x,
− Sk cost of the squaring in Fpk .
Then, total operations cost of Algorithm 5 is given by

CostAlg. 5 = e× costS−Qi (Pi) + (e− 1)×MS−Qi (Pi)
+

log2(x)× (Sk + e× (Gkj + Subs(gkj) +Hkj + Subs(hkj)))+

HW (x)× e× (Gkj + Subs(gkj) +Hkj + Subs(hkj) +MS−Qi (Pi)
). (4.1)

5. Basic Operations for β-Weil on BLS Curves with Twisted
Degree 3

Under this section, basic and special operations for the β-Weil pairing on
BLS curves of cubic twist are computed.

Let M,S and I denote the cost of the multiplication, squaring and
inversion in Fp, whereas, Mk, Sk, Ik, Fp, Ex denote the cost of the multipli-
cation, squaring, inversion, p− th Frobenius operation and the power of x in
Fpk respectively. Let Icyc denote the cost of the inversion in the cyclotomic
subgroup Gφk .
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5.1. Tower extension

From Table 1, we have a specific value of x as well as the parameter p which
defines the field Fp for each curve BLS-27, BLS-15 and BLS-9. For efficient
arithmetic, the extension field Fpk (k = 27, 15, 9) can be constructed as fol-
lows:

Fpk/3 = Fpi [β]/(βk/(3i) − α),

Fpk = Fpk/3 [ω]/(ω3 − β),

where α is a primitive root in Fpi and i = 1 for k = 9, 15 and i = 3 for
k = 27. We then derived the cited BLS curves (E) : y2 = x3 + b from the
parameters p(x), r(x) and t(x) for the chosen value x (see table 1). The cubic
twisted curve E′ of E and their isomorphic mapping ψ3 are given as follows:
E′ : y2 = x3 + bβ2 and

ψ3 : E′(Fpk/3)[r] → E(Fpk)[r]

(x, y) 7→ (ω−2x, β−1y).

5.2. Elliptic curve doubling and elliptic curve addition

Let us consider T = (ω−2xT ′ , β
−1yT ′), Q = (ω−2xQ′ , β

−1yQ′) given in
affine coordinates on the group E(Fpk) such that T ′ = (xT ′ , yT ′) and Q′ =
(xQ′ , yQ′) are on the twisted curve E′ defined over Fpk/3 . Let the elliptic curve
doubling of T be 2T = (x2T , y2T ) and P = (xP , yP ) where xP , yP ∈ Fp.

The formulas for computing the doubling and the corresponding line
function in affine coordinates are obtained in [13] as follows:

• λT,T =
3x2
T

2yT
=

3ω−4x2
T ′

2β−1yT ′
=

3x2
T ′

2yT ′
ω−1 = λT ′,T ′ω

−1, where λT ′,T ′ =
3x2
T ′

2yT ′
.

• x2T = λ2T,T − 2xT = λ2T ′,T ′ω
−2 − 2ω−2xT ′ = (λ2T ′,T ′ − 2xT ′)ω

−2 =

x2T ′ω
−2, where x2T ′ = λ2T ′,T ′ − 2xT ′ .

• y2T = λT,T (xT −x2T )−yT = λT ′,T ′ω
−1(xT ′ω

−2−x2T ′ω−2)−yT ′β−1 =
[λT ′,T ′(xT ′ − x2T ′) − yT ′ ]β

−1 = y2T ′β
−1 where y2T ′ = λT ′,T ′(xT ′ −

x2T ′)− yT ′ .
• lT,T (P ) = x2P+x2TxP+x22T−λT,T (yP−y2T ) = x2P+[(x22T ′+y2T ′λT ′,T ′)β

−1−
λT ′,T ′yP ]ω−1 + x2T ′xPω

−2.

When considering the affine coordinates (x, y, t) = (x, y, x2), the previ-
ous affine formulas are given by computing the following sequences of oper-
ations:
A = 3tT ′ , B = 1

2yT ′
, C = A·B, x2T ′ = C2−2xT ′ , y2T ′ = C ·(xT ′−x2T ′)−yT ′ ,

D = x22T ′ , E = Dβ−1 + C · (y2T ′β−1 − yP ), F = x2T ′ · xP , x2T = x2T ′ω
−2,

y2T = y2T ′β
−1, lT,T (P ) = tP + Eω−1 + Fω−2. Therefore the doubling step

and line evaluation cost 1Ik/3 + 3Mk/3 + 2Sk/3 + k
3M. (See [13] for more

explanation).

The elliptic curve addition step (T 6= Q) and line evaluation can also be
optimized similarly to the above procedure. Let the elliptic curve addition of
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T and Q be R = T + Q = (xR, yR). The formulas for computing the point
addition and the corresponding line function are obtained as follows:

• λT,Q =
yQ−yT
xQ−xT =

yQ′−yT ′
xQ′−xT ′

β−1ω2 =
yQ′−yT ′
xQ′−xT ′

ω−1 = λT ′,Q′ω
−1, where

λT ′,Q′ =
yQ′−yT ′
xQ′−xT ′

.

• xR = λ2T,Q − xQ − xT = (λ2T ′,Q′ − xQ′ − xT ′)ω
−2 = xR′ω

−2, where

xR′ = λ2T ′,Q′ − xQ′ − xT ′ .
• yR = λT,Q(xT − xR) − yT = λT ′,Q′ω

−1(xT ′ω
−2 − xR′ω−2) − yT ′β−1 =

[λT ′,Q′(xT ′−xR′)−yT ′ ]β = yR′β
−1 where yR′ = λT ′,Q′(xT ′−xQ′)−yT ′ .

• lT,Q(P ) = x2P+xRxP+x2R−λT,Q(yP−yR) = x2P+[(x2R′+yR′λT ′,Q′)β
−1−

λT ′,Q′yP ]ω−1 + xR′xPω
−2

When considering the affine coordinates (x, y, t) = (x, y, x2), the previous
affine formulas are given by computing sequence of operations:
A = yQ′ − yT ′ , B = 1

xQ′−xT ′
, C = A · B, xR′ = C2 − xQ′ − xT ′ , yR′ =

C · (xT ′ −xR′)− yT ′ , D = x2R′ , E = Dβ−1 +C · (yR′β−1− yP ), F = xR′ ·xP ,
xR = xR′ω

−2, yR = yR′β
−1, lT,Q(P ) = tP + Eω−1 + Fω−2. Therefore the

addition step and line evaluation cost 1Ik/3 + 3Mk/3 + 2Sk/3 + k
3M.

5.3. Affine sparse multiplication and projective sparse multiplication

The sparse multiplication reduces the cost of the multiplications in Fpk for
Miller’s algorithm.

Affine sparse multiplication. In affine coordinates, as we have previously seen,
the line function obtained from the elliptic curve doubling and addition steps
is

l(x, y) = x2 + (ay + bβ−1)ω−1 + cxω−2, (a, b, c ∈ Fpk/3),

where (x, y) ∈ Fp × Fp. Since ω3 = β, then ω−1 = β−1ω2 and ω−2 = β−1ω
hence,

l(x, y) = A+Bω + Cω2, (5.1)

where A = x2, B = cxβ−1 and C = ayβ−1 + bβ−2.

The sparse multiplication consists of computing f · l(P ) with f in Fpk
and it is evaluated through Algorithm 6.

Algorithm 6: Affine Sparse Multiplication (ASM) in Fpk
Input: a = a0 + a1ω + a2ω

2, where a0 ∈ Fp and a1, a2 ∈ Fpk/3
b = b0 + b1ω + b2ω

2 where b0, b1, b2 ∈ Fpk/3
Output: a · b ∈ Fpk

1 A← a0b0, B ← a1b1, C ← a2b2,

2 D0 ← a0 + a1, D1 ← a1 + a2, D2 ← a0 + a1 + a2,

3 E0 ← b0 + b1, E1 ← b1 + b2, E2 ← b0 + b1 + b2,

4 F0 ← D0E0 − (A+B), F1 ← D1E1 − (B + C),
F2 ← D2E2 − (A+ C + F0 + F1),

5 G0 ← A+ F1β, G1 ← F0 + Cβ,

6 return c← G0 +G1ω + F2ω
2.
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The Affine Sparse Multiplication cost 5Mk/3 + k
3M in the base field

(instead of 6Mk/3 multiplications with the Karatsuba formulas).

Moreover, the vertical line function from elliptic curve is given as follows

V(x, y) = x− a,

where a belongs to Fp. We substitute Q in the previous equation and obtain
V(Q) = β−1xQ′ω− a. The sparse multiplication f · V(Q) for f in Fpk can be
calculated by Algorithm 7.

Algorithm 7: Sparse Multiplication with vertical line in Fpk
Input: a = a0 + a1ω, where a0 ∈ Fp and a1 ∈ Fpk/3
b = b0 + b1ω + b2ω

2 where b0, b1, b2 ∈ Fpk/3
Output: a · b ∈ Fpk

1 A← a0b0, B ← a1b1, C ← a0b2, D ← a1b2,

2 E ← a0 + a1, F ← b0 + b1, H ← EF − (A+B),

3 I ← A+Dβ, J ← B + C,

4 return c← I +Hω + Jω2.

The affine Sparse Multiplication cost 3Mk/3 + 2(k3M) in the base field
(instead of 6Mk/3 multiplications with the Karatsuba formulas).

Projective sparse multiplication. In projective coordinates, the line function
from elliptic curve doubling and addition steps is given in [32] as follows

l(x, y) = ax2 + bx+ cy + d,

where a, b, c and d are in Fp. The point Q = (x, y) in E(Fpk) can be viewed

as ψ3(Q′) = (ω−2xQ′ , β
−1yQ′) for Q′ in E(Fpk/3). We substitute Q in the

previous equation and obtain l(Q) = A + Bω + Cω2, where A = cyQ′β
−1 +

d,B = bxQ′β
−1 and C = ax2Q′β

−2 are in Fpk/3 . We did not find an efficient

computation method for the following multiplication f · l(Q) where f ∈ Fpk .
The inverse of the vertical line. From Eq. 3.4, the inverse of the vertical line
1/VQ(P ) becomes SQ(P ) = x2P + xQxP + x2Q. For Q = (ω−2xQ′ , β

−1yQ′),

with (xQ′ , yQ′) in E(Fpk/3) we have, SQ(P ) = x2P + xQ′xPω
−2 + x2Q′(βω)−1.

This cost 1Sk/3 + k/3M.

pi−th Frobenius map for the line function. From Eq. 5.1 the line functions
for computing fx,Q are represented as :

l(x, y) = A+Bω + Cω2,

where, A ∈ Fp and B,C ∈ Fpk/3 . The pi−th Frobenius map is

lp
i

(x, y) = A+Bp
i

ωp
i

+Cω2pi , since A ∈ Fp. The cost of Frobenius map for
the extension field element is at most the degree of field extension, so the cost
of pi−th Frobenius map for B and C are 2k3M, since B,C ∈ Fpk/3 . Then for

a given ωp
i

and ω2pi , the pi−th Frobenius map for line function cost 2k3M.

pi−th Frobenius map for a point Q..

πpi(Q) = πpi(ω
−2xQ′ ;β

−1yQ′) =
(
(ωp

i

)−2xp
i

Q′ ; (βp
i

)−1yp
i

Q′

)
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For the given ω−p
i

and β−p
i

, the computational costs of πpi(Q) is the total

cost of the pi−th Frobenius map for xQ′ and yQ′ .

6. Application on BLS-27: theoretical costs of β-Weil
computation

We used the ideas of storage and multifunction techniques to evaluate the
β-Weil pairing on BLS-27 either in serial or parallel computation.

Proposition 6.1. For pairing-friendly curves of embedding degrees k = 27, 15
and 9, with the extended Miller function h(z) = x − z such that h(p) = 0
mod r, the relation [p]P = [x]P holds, for any P in G1 or G2 of order r.

Proof. : By hypothesis, h(p) = 0 mod r, then x = p mod r, and [x]P = [p]P,
since P is of order r. �

The proposed β-Weil pairing formula for BLS-27 in Table 1 is

β27(P,Q) =
[ 8∏
i=0

(fx,Qi(Pi) · f−x,Pi(Qi)) ·
8∏
i=0

VPi+1
(Qi)

]p9−1
.

The basic operations used to evaluate the theoretical cost of the β-Weil pair-
ing on BLS-27 are recapitulated in the following Table 2.

Table 2. Costs of arithmetic operations in a tower exten-
sion field Fp27 and special operations in the β-Weil pairing
computations on BLS-27 in this work and [17].

Field Multiplication Squaring Inversion

Fp3 M3 = 6M S3 = 5M I3 = I + 9M + 2S

Fp9 M9 = 36M S9 = 25M I9 = I + 63M + 12S

Fp27 M27 = 216M S27 = 125M I27 = I + 387M + 62S

Fp27 Arithmetic Operation count (S = M)

Affine sparse multiplication 189M

Projective sparse multiplication 216M

pi Frobenius ([17] table 2) 18M for i = 3, 6, 9 and 26M otherwise i

E′(Fp9) Arithmetic Operation count (S = M)

Point doubling with line I9 + 2S9 + 3M9 = 233M + I

Point addition with line I9 + 2S9 + 3M9 = 233M + I

Substitution of P in the line
l(x, y) = x2 + (aβ + by)ω + cxω2 9M

πpi(Q) ([17] table 2) 12M for i = 3, 6, 9 and 16M otherwise

E(Fp) Arithmetic (see [32], section 4) Operation count (S = M)

Point doubling with line 6M + 7S = 13M

Mixed point addition with line 13M + 3S = 16M

Substitution Q for line
l(x, y) = (ax+ b)x+ cy + d 27M
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6.1. Serial computation of the β-Weil pairing over BLS-27

In the first paragraph, we evaluate the theoretical cost of the line functions
for each of the Miller functions. In the second paragraph, we estimate the cost
of A =

∏8
i=0(fx,Qi(Pi) · f−x,Pi(Qi)) using Algorithm 5 and the line functions

previously obtained. After we evaluate the product of the vertical lines and
end with the final powering p9 − 1.

On the first hand, we compute in projective coordinates and store
the line functions for each Miller-Lite function f−x,Pi where, x = −251 −
231 − 221 − 28 − 24, and Pi = [pi]P. This is done through Algorithm 3:
CSL([pi]P,−x) = hi. Each Miller’s function is composed by 51 doubling steps
(13M) and 4 mixed addition steps (16M). So for each 0 ≤ i ≤ 8, the addition
and doubling steps cost 51 · 13M + 4 · 16M = 727M. Since [pi]P is equal to
[−xpi−1]P (see Proposition 6.1) and that we obtain [−xpi−1]P after com-
puting CSL([pi−1]P,−x), we do not need to compute again [pi]P. For mixed
addition coordinate (see [32]), it is required to convert [pi]P = (Xi : Yi : Zi)
from projective to affine coordinates (Xi ·Z−1i , Yi ·Z−1i ) for a cost of I + 2M
for each i (1 ≤ i ≤ 8). Note that for i = 0, P0 = P is given in each coordi-
nate. Hence, the total cost of all line functions computation for all Miller-Lite
functions is 9 · 727M + 8(I + 2M) = 6559M + 8I.
On the other hand, we compute in affine coordinates and store the line func-
tions for computing fx,Q. This is done through Algorithm 3: CSL(Q, x) = g0.
The Full Miller’s function is composed by 51 doubling steps (233M+I) and 4
mixed addition steps (233M + I). This yields 51(233M + I) + 4(233M + I) =
12815M + 55I. From x is −251 − 231 − 221 − 28 − 24, fx,Q is made of 55 line
functions. Since the pi−th Frobenius map for line function is 18M, the cost of
one CSLFrob(g0, i) execution for fx,πp8−i (Q) is 55 · 18M = 990M. Therefore,

the total cost of all line functions computation for all Full-Miller’s functions
is (12815M + 55I) + 8 · 990M = 20735M + 55I.

Hence, the total cost of all line functions computation forA =
∏8
i=0(fx,Qi(Pi)·

f−x,Pi(Qi)) is (6559M + 8I) + (20735M + 55I) = 27294 M+ 63 I .

Secondly, we evaluate all line functions at a given point and compute
the product of Miller’s functions by using Algorithm 5. From Table 2, the
computational costs of πpi(Q) for 1 ≤ i ≤ 8 is 2 · 12M + 6 · 16M = 120M.
Since each S−Qi(Pi) (Eq. 3.4) costs S9 + 9M = 34M and the multiplication
by S−Qi(Pi) in Fp27 costs 189M. From Eq. 4.1, the execution cost for A is
9 · 34M + 8 · 189M + 51 · 125 + 51 · 9 · (189M + 9M + 216M + 27M) + 4 · 9 ·
(189M + 9M + 216M + 27M + 189M) = 233292M. Therefore the total cost
is 120M + 233292M = 233412 M.

Thirdly, we compute B = A ·
∏8
i=0 VPi+1

(Qi). To have B, we multiply
A by each VPi+1(Qi) for 0 ≤ i ≤ 8 for a cost of 9 · 126M = 1134 M (see
Algorithm 7). There is no need to evaluate the point P9 = [p9]Q as we obtain
P9 after computing f−x,P8 .

Finally, (B)p
9−1 is made of one inversion, one multiplication and one

p9−Frobenius in Fp27 , at the cost of I27 +M27 + 18M = 683 M+I.
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The total cost of serial computation of the β-Weil pairing is (27294M +
63I) + (233412M) + (1134M) + (683M + I) = 262523 M+64 I.

6.2. Parallel computation of β27(P,Q) using 3 processors

Here we parallelise the evaluation of β27(P,Q) and find its theoretical cost.
In the first step, each processor computes and stores 6 line functions. For step
2, each processor evaluates the stored line functions using the multifuction
technique. Whereas step 3 computes the additional factors of β27(P,Q) and
the last step combines each result. Since Pi = [pi]P and Qi = πp8−i(Q) for
0 ≤ i ≤ 8,

β27(P,Q) =
[
fx,π

p8
(Q)(P ) · f−x,P (π

p8
(Q)) · fx,π

p5
(Q)(P3) · f−x,P3

(π
p5

(Q)) · fx,π
p2

(Q)(P6)

· f−x,P6
(π
p2

(Q)) · VP1
(π
p8

(Q)) · VP4
(π
p5

(Q)) · VP7
(π
p2

(Q))

· fx,π
p7

(Q)(P1) · f−x,P1
(π
p7

(Q)) · fx,π
p4

(Q)(P4) · f−x,P4
(π
p4

(Q)) · fx,πp(Q)(P7)

· f−x,P7
(πp(Q)) · VP2

(π
p7

(Q)) · VP5
(π
p4

(Q)) · VP8
(πp(Q))

· fx,π
p6

(Q)(P2) · f−x,P2
(π
p6

(Q)) · fx,π
p3

(Q)(P5) · f−x,P5
(π
p3

(Q)) · fx,Q(P8)

· f−x,P8
(Q) · VP3

(π
p6

(Q)) · VP6
(π
p3

(Q)) · VP9
(Q)

]p9−1
.

That is,

β27(P,Q) =
[{
fx,π

p6
(Q)(P ) · f−x,P (π

p6
(Q)) · fx,π

p3
(Q)(P3) · f−x,P3

(π
p3

(Q)) · fx,Q(P6)

· f−x,P6
(Q) · VP1

(π
p6

(Q)) · VP4
(π
p3

(Q)) · VP7
(Q)

}p2
·
{
fx,π

p6
(Q)(P1) · f−x,P1

(π
p6

(Q)) · fx,π
p3

(Q)(P4) · f−x,P4
(π
p3

(Q)) · fx,Q(P7)

· f−x,P7
(Q) · VP2

(π
p6

(Q)) · VP5
(π
p3

(Q)) · VP8
(Q)

}p
· fx,π

p6
(Q)(P2) · f−x,P2

(π
p6

(Q)) · fx,π
p3

(Q)(P5) · f−x,P5
(π
p3

(Q)) · fx,Q(P8)

· f−x,P8
(Q) · VP3

(π
p6

(Q)) · VP6
(π
p3

(Q)) · VP9
(Q)

]p9−1
.

For parallel computation using 3 processors, β27(P,Q) can be regarded
as

β27(P,Q) = (Xp2 · Y p · Z)p
9−1,

where

X = fx,π
p6

(Q)(P ) · f−x,P (π
p6

(Q)) · fx,π
p3

(Q)(P3) · f−x,P3
(π
p3

(Q)) · fx,Q(P6) · f−x,P6
(Q) ·H1,

Y = fx,π
p6

(Q)(P1) · f−x,P1
(π
p6

(Q)) · fx,π
p3

(Q)(P4) · f−x,P4
(π
p3

(Q)) · fx,Q(P7) · f−x,P7
(Q) ·H2,

Z = fx,π
p6

(Q)(P2) · f−x,P2
(π
p6

(Q)) · fx,π
p3

(Q)(P5) · f−x,P5
(π
p3

(Q)) · fx,Q(P8) · f−x,P8
(Q) ·H3

and

H1 = VP1(πp6(Q)) · VP4(πp3(Q)) · VP7(Q),

H2 = VP2(πp6(Q)) · VP5(πp3(Q)) · VP8(Q),

H3 = VP3(πp6(Q)) · VP6(πp3(Q)) · VP9(Q).

Step 1.

1. The 1st processor computes and stores CSL([pi]P,−x) = hi for 0 ≤ i ≤
8 for a cost of 9 ·727M + 8(I+ 2M) = 6559M + 8I and CSL(Q, x) = g0
for a cost of 12815M + 55I. The total cost is 19374 M+63 I.

2. The 2nd processor computes and stores πp3(Q) and CSL(πp3(Q), x) =
g3 for a cost of 12M + 12815M + 55I = 12827M + 55I.
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3. The 3rd processor computes and stores πp6(Q) and CSL(πp6(Q), x) = g6
for the same cost as the 2nd processor.

Step 2.

1. From Eq. 4.1, the 1st processor computesX1 = EPM
([

(g6, P0), (g3, P3), (g0, P6),

(h0, πp6(Q)), (h3, πp3(Q)), (h6, Q)
]
, x
)

for a cost of 3 · 34M + 2 · 189M +
51S27 + 51 · 3 · (189M + 9M + 216M + 27M) + 4 · 3 · (189M + 9M +
216M + 27M + 189M) = 81922 M.

2. The 2nd processor computes Y2 = EPM
([

(g6, P1), (g3, P4), (g0, P7), (h1, πp6(Q)),

(h4, πp3(Q)), (h7, Q)
]
, x
)

for the same cost as the 1st processor.

3. The 3rd processor computes Z3 = EPM
([

(g6, P2), (g3, P5), (g0, P8), (h2, πp6(Q)),

(h5, πp3(Q)), (h8, Q)
]
, x
)

for the same cost as the 1st processor.

Step 3.

1. The 1st processor computesX = X1·H1 = X1·VP1
(πp6(Q))·VP4

(πp3(Q))·
VP7

(Q) at cost of 3 · 126M = 378 M.
2. The 2nd processor computes Y for the same cost as the 1st processor.
3. The 3rd processor computes Z for the same cost as the 1st processor.

Step 4.

Since β27(P,Q) = ((Xp · Y )p · Z)p
9−1, in the final step one processor

computes two p− and one p9−Frobenius maps, three multiplications and one
inversion in Fp27 which yields 2 · 26M + 18M + 3M27 + I27 = 1167 M+I.

The total cost of parallel computation of the β-Weil pairing using 3 pro-
cessors is (19374M+63I)+81922M+378M+(1167M+I) = 102841 M+64I.

The other cases of the β-Weil pairing on the BLS-15 and BLS-9 curves
are computed in the similar ways the complete version will be published in
the in Mathematics and Computer Science (MCS).

7. Comparison

In this section, we compare the theoretical costs of the optimal Ate pairing
(see Appendix B, C, D), the original β-Weil pairing (see Appendix A) and
the proposed β-Weil pairing (Corollary 3.4) on the BLS-27, BLS-15, BLS-9
curves. The parallel computation of the optimal Ate pairing is obtained when
parallelising the computation of Miller loop only [8], since to date there is not
a way to parallelise the final exponentiation. Given that in the literature there
is no parallel computation of the optimal Ate pairing on the aforementioned
curves, we estimate the costs by dividing a Miller loop cost by the number
of processors (see B.1) and add this to the final exponentiation cost. Then
our theoretical results reduce the number of multiplication operations on the
prime field in β-Weil pairing for BLS family with k = 27.15 and 9 about
44.78%, 49.07% and 38.49%, as well as the number of divisions of about
87.1% 78.8% and 61.2% respectively for serial computation. The optimal Ate
pairing when compared with the new β-Weil pairing in the sequential case,
it is approx. 33% more efficient for k = 27 and approx. 17% more efficient
for k = 9. Also, the two pairing types for k = 15 have pretty much the same
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execution time. However, the proposed β-Weil pairing on curve with k = 15
is competitive to optimal Ate pairing. Indeed, since the final exponentiation
in the optimal Ate pairing is expensive and it is about 5, 4 and 2 times the
Full Miller functions for k = 27, 15 and 9 respectively with one extra Full
Miller function the optimal Ate pairing is about 6, 5 and 3 times the Full
Miller functions for k = 27, 15 and 9 respectively. In the other hand without
the Miller Lite functions and the simple final exponentiation, the new β-
Weil pairing is made of 9, 5 and 3 the Full Miller functions that need to be
evaluate by only one processor for k = 27, 15 and 9 respectively. This explain
the difference between the two pairings on the BLS-27, BLS-15 and BLS-9.

In the parallel computation with 3 processors, the β-Weil pairing on
BLS-27, BLS-15 and BLS-9 is faster than the optimal Ate pairing. See the
Table 3 for a complete comparison.

Table 3. Theoretical cost of the optimal Ate pairing, the
original β-Weil pairing (without storage technique and mul-
tifunction technique) and the proposed β-Weil pairing.

curve pairing Serial computation Parallel computation
(with 3 processors)

Optimal Ate [17] 176, 881M + 56I 156, 301M + 20I
BLS-27 original β-Weil pairing [10] 475, 463M + 497I 163, 815M + 167I

at 256-bit Proposed β-Weil pairing 262,523 M + 64 I 102,841 M+64 I

Optimal Ate [17] 91, 469M + 81I 81, 220M + 41I
BLS-15 original β-Weil pairing [10] 177, 657M + 401I -

at 192-bit Proposed β-Weil pairing 90,477 M + 85 I 46,666 M+ 85 I

Optimal Ate [17] 22, 365M + 78I 18, 379M + 40I
BLS-9 original β-Weil pairing [10] 43, 873M + 232I -

at 128-bit Proposed β-Weil pairing 26,984 M+90 I 11,414 M+78 I

Table 4 gives the number of Fp elements required to store for the β-
Weil pairing computation. The total storage of elements is determined by
the following formula a1b1c1 + a2b2c2, where,
− a1 and a2 are the number of stored extended Miller functions fp,h,Pi and
fp,h,Qi respectively,
− b1 and b2 are the number of stored lines in fp,h,Pi and fp,h,Qi respectively,
− c1 and c2 are the number of Fp elements of line coefficients in fp,h,Pi and
fp,h,Qi respectively.

Table 4. Number of Fp elements required to be stored for
our method.

Curve Serial computation Parallel computation (with 3 processors)

BLS-27 9 · 55 · 4 + 9 · 55 · 27 = 15, 345 9 · 55 · 4 + 3 · 55 · 27 = 6, 435

BLS-15 5 · 80 · 4 + 5 · 80 · 15 = 7, 600 5 · 80 · 4 + 3 · 80 · 15 = 5, 200

BLS-9 3 · 77 · 4 + 3 · 77 · 9 = 3, 003 3 · 77 · 4 + 2 · 77 · 9 = 2, 310
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8. Conclusion

In this paper, we extended the work of Kinoshita and Suzuki [1] by providing
a new formula for the β-Weil pairing on curves with odd embedding degrees.
This formula involves vertical line functions useful for the sparse multipli-
cations during Miller’s loop. For faster computation of the proposed β-Weil
pairing we compute and store line functions for some Miller’s functions that
are reused to find other line functions for other Miller’s functions. The mul-
tifunction technique evaluates the product of n Miller’s functions and only
requires a single squaring in the extension field per iteration instead of n
squarings in the naive way. Then our theoretical results give faster β-Weil
computation on the BLS family with k = 9, 15 and 27 than the original β-
Weil pairing on the same curves. The proposed β-Weil pairing on curve with
k = 15 is competitive to optimal Ate pairing. The implementation results of
the proposed methods and the original β-Weil pairings on BLS−9, BLS−15
and BLS−27 curves are left for future work to confirm the theoretical results.
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Appendix A. Original β-Weil pairing on BLS curves with
embedding degree 27, 15 and 9.

In this section, we find the theoretical cost of the original β-Weil pairing
computation on BLS-27, BLS-15, and BLS-9 curves without storage tech-
nique and multifunction technique.
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The original β-Weil pairing (see theorem 2.1) on BLS-27 for seed x =
−251 − 231 − 221 − 28 − 24 is given as:

β27(P,Q) =

8∏
i=0

(
fx,Q([pi]P )

fx,[pi]P (Q)

)(p8−i)(p9−1)

=

[(
fp

8

x,Q(P ) · fp
7

x,Q([p]P ) · fp
6

x,Q([p2]P ) · fp
5

x,Q([p3]P ) · fp
4

x,Q([p4]P )

· fp
3

x,Q([p5]P ) · fp
2

x,Q([p6]P ) · fpx,Q([p7]P ) · fx,Q([p8]P )
)

·
(
fp

8

x,P (Q) · fp
7

x,[p]P (Q) · fp
6

x,[p2]P (Q) · fp
5

x,[p3]P (Q) · fp
4

x,[p4]P (Q)

· fp
3

x,[p5]P (Q) · fp
2

x,[p6]P (Q) · fpx,[p7]P (Q) · fx,[p8]P (Q)
)−1]p9−1

A.1. Serial computation

Original β-Weil pairing for serial computation are 9 Miller lite functions, 9
full Miller functions, 2 p, 2 p2, 2 p3, 2 p4, 2 p5, 2 p6, 2 p7, 2 p8, and 1 p9

Frobenius maps, 18 multiplications, 2 inversions in Fp27 . From Algorithm 2,
the cost of Miller Lite is 34M + 51(125M) + 51(13M + 27M + 216M) +
4(16M + 27M + 216M + 216M) = 21365M. The cost of Full Miller is 34M +
51(125M)+51(233M+I+9M+189M)+4(233M+I+9M+189M+189M) =
30870M + 55I. The total cost is 9 ·21365M + 9(30870M + 55I) + 2(3 ·18M +
6 · 26M) + 18M + 18 · 216M + 2(I + 449M + 62S) = 475463M + 497I.

Similarly, the computational cost of the original β-Weil pairing on BLS-

15 given as β15(P,Q) =
∏4
i=0

(
fx,Q([pi]P )

fx,[pi]P (Q)

)(p4−i)(p5−1)

with x = −277 −

276 − 268 − 250 is 5Miller.Lite + 5Full.Miller + 2(F1 + F2 + F3 + F4) +
10M15 + F5 + 2I15 = 177657M + 401I, where Miller.Lite = 14747M and
Full.Miller = 20498M + 80I.

Also, the computational cost of the original β-Weil pairing on BLS-9

given as β9(P,Q) =
∏2
i=0

(
fx,Q([pi]P )

fx,[pi]P (Q)

)(p2−i)(p3−1)

with x = −274 − 272 −

246 − 231 is 3Miller.Lite + 3Full.Miller + 2(F1 + F2) + 6M9 + F3 + 2I9 =
43874M + 232I, where Miller.Lite = 6441M and Full.Miller = 7972M +
77I.

A.2. Parallel computation of β-Weil pairing on BLS-27 using 3 processors

1st processor computes(
fp

8

x,Q(P ).fp
7

x,Q([p]P ) · fp
6

x,Q([p2]P )

)
·
(
fp

8

x,P (Q) · fp
7

x,[p]P (Q) · fp
6

x,[p2]P (Q)

)−1
2nd processor computes(
fp

5

x,Q([p3]P )·fp
4

x,Q([p4]P )·fp
3

x,Q([p5]P )

)
·
(
fp

5

x,[p3]P (Q)·fp
4

x,[p4]P (Q)·fp
3

x,[p5]P (Q)

)−1
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3rd processor computes(
fp

2

x,Q([p6]P )·fpx,Q([p7]P )·fx,Q([p8]P )

)
·
(
fp

2

x,[p6]P (Q)·fpx,[p7]P (Q)·fx,[p8]P (Q)

)−1
We see that, 3rd processor’s cost is greater than 1st and 2nd proces-

sors’ cost because 3rd processor require the extra computation of [pi]P (1 ≤
i ≤ 6) which does not require in 1st and 2nd processors. Therefore, the
computational cost of the 3rd processor is cost.of.([p6]P ) + 3Miller.Lite +
3Full.MIller+2(F1+F2)+5M27+I27 = 6·727M+3(21365M)+3(30870M+
55I)+2(26M+26M)+5 ·216M+(449M+I) = 162700M+166I. In the last
step, one processor multiplies the three results of each processor and com-
putes the p9−1 power at a cost of 3 ·216M+18M+(I+449M) = 1115M+I.
Therefore, the total cost is 163815M + 167I.

Appendix B. Computation of the optimal Ate pairing on
BLS−27 curve with a new parameter

Remark B.1. The method of [33] (section 3 page 6 ) for parallelizing the
computation of the Miller function fx,Q is the following. We first write x =
2wx1 + x0, where x0 < 2w. We obtain

fx,Q = f2
w

x1,Q · f2w,x1Q · fx0,Q ·
l2wx1Q,x0Q

VxQ

Thus the computation of fx,Q can be parallelized by computing f2
w

x1,Q
on one

processor, f2w,x1Q on a second processor and fx0,Q ·
l2wx1Q,x0Q

VxQ
on a third

processor. This is the case where the three processors are independent. The
parameter w should be carefully selected in order to balance the time of
the three function computations. And if it is done in the right way we can
estimate the cost one processor (the more costly) to be about 1

3 of the initial
Miller loop. Note that we can only parallelize the Miller function but not the
final exponentiation.

The optimal Ate pairing on BLS − 27 curve in [13] is given by:

e0(Q,P ) = fx,Q(P )(p
27−1)/r.

For x = −251−231−221−28−24, the Miller loop executes 51 doubling steps,
4 addition steps, 51 squarings and 59 multiplications in Fp27 . As in [17], the
Miller loop cost of M27 = 34M +51(233M + I+9M)+ 4(233M + I+9M)+
51(125M) + 59 · 189M = 30870M + 55I.

The final exponentiation is divided into two parts: the easy part A =

fp
9−1 and the hard part Ad, where d = (p18 + p9 + 1)/r.

the easy part is 1 p9−Frobenius, 1 multiplications and 1 inversion in Fp27 .
That is 18M + 1M27 + 1I27 = 682M + I. The element d = (p18p +9 +1)/r,
is decomposed as
(x− 1)2 · (p9 +x9 + 1) · (p8 +x.p7 + ...+x7.p+x8) + 3. The evaluation of the
hard part is as follows:
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A1 = Ap
8 ·Axp7 ·Ax2p6 ·Ax3p5 ·Ax4p4 ·Ax5p3 ·Ax6p2 ·Ax7p ·Ax8

,

A2 = A
(x−1)2
1 , A3 = Ax

9

2 ·A
p9

2 ·A2, A4 = A3 ·A3.
The computation of the hard part requires 17 powers of x, 2 powers of x−1, 11
multiplications in Fp27 and p, p2, p3, p4, p5, p6, p7, p8, p9−Frobenius maps. The
negative coefficient in the value of x requires 19 inversions in the cyclotomic
subgroup when raising to the power of x during the final exponentiation.

(Note that A−1 = Ap
9 · Ap18 and cost 2 · 18M + 1M27 = 252M ). The hard

part then cost
17(51S27+4M27)+2(51S27+5M27)+11M27+2·18M+6·26M+19IGϕ3(p9)

=

145329M. The computational cost of the optimal Ate pairing over BLS −
27−curve is then (31365M+55I)+(682M+I)+145329M = 176881 M+56I.

Appendix C. Computation of the optimal Ate pairing on
BLS-15 curve with a new parameter

Similarly, we evaluate e0(Q,P ) = fx,Q(P )(p
15−1)/r with x = −277−276−268−

250 on BLS-15 curve. The computational cost of Miller full is 20498M + 80I
and best cost of the final exponentiation is 9Ex+2Ex−1+12M15+S15+I15+
3Icyc + 3F1 + F2 + F3 + F4 + 2F5 + F6 + F7 see [34]) for this we will add 11
cyclotomique inversion due to the negative parameter x. Ex = 77S15 +3M15,
Ex−1 = 77S15 + 4M15 and Icyc = 54M. Thus the final exponentiation cost
70971M + I and the computational cost of the optimal ate is then 91469M +
81I.

Appendix D. Computation of the optimal Ate pairing on
BLS-9 curve with a new parameter

We evaluate e0(Q,P ) = fx,Q(P )(p
9−1)/r with x = −274 − 272 − 246 − 231

on BLS-9 curve. The computational cost of Miller full is 7972M + 77I and
the optimal cost of the final exponentiation is 5Ex + 2Ex−1 + 7M9 + S9 +
I9 + F1 + F2 + 2F3 see [34]) for this we will add 7 cyclotomique inversion
due to the negative parameter x. Ex = 74S9 + 3M9, Ex−1 = 74S9 + 4M9

and Icyc = 33M. Thus the final exponentiation cost 14393M + I and the
computational cost of the optimal Ate is then 22365M + 78I.
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