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Abstract

In recent years, the number of applications of the repeated squaring assumption has been
growing rapidly. The assumption states that, given a group element x, an integer T , and an

RSA modulus N , it is hard to compute x2T mod N—or even decide whether y
?
= x2T mod N—

in parallel time less than the trivial approach of computing T sequential squarings. This rise
has been driven by efficient interactive proofs for repeated squaring, opening the door to more
efficient constructions of verifiable delay functions, various secure computation primitives, and
proof systems for more general languages.

In this work, we study the complexity of statistically-sound interactive proofs for the repeated
squaring relation. Technically, we consider interactive proofs where the prover sends at most
k ≥ 0 elements per round and the verifier performs generic group operations over the group
Z⋆
N . As our main contribution, we show that for any one-round proof with a randomized verifier

(i.e., an MA proof) the verifier either runs in parallel time Ω(T/(k + 1)) with high probability,
or is able to factor N given the proof provided by the prover. This shows that either the prover
essentially sends p, q such that N = p ·q (which is infeasible or undesirable in most applications),
or a variant of Pietrzak’s proof of repeated squaring (ITCS 2019) has optimal verifier complexity
O(T/(k + 1)). In particular, it is impossible to obtain a statistically-sound one-round proof of
repeated squaring with efficiency on par with the computationally-sound protocol of Wesolowski
(EUROCRYPT 2019), with a generic group verifier. We further extend our one-round lower
bound to a natural class of recursive (multi-round) interactive proofs for repeated squaring.
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1 Introduction

An interactive proof system is a method that allows an all powerful but untrusted prover to convince
a resource-limited verifier of the validity of a computational statement. Since their introduction by
Goldwasser, Micali, and Rackoff [GMR89] and Babai [Bab85], our understanding of proof systems
has significantly evolved and has led to groundbreaking results in several different areas of computer
science such as the PCP theorem, hardness of approximation results, zero-knowledge proofs, and
more.

Interactive proofs are extremely expressive and this is largely due to interaction and randomness.
Indeed, the class of languages that have an interactive proof is characterized by PSPACE [LFKN92,
Sha90]. On the other hand, if we limit the prover to send only one message, this yields the class
AM that seems much closer to NP. The question of how efficient proof systems could be has drawn
significant attention over the years, both due to theoretical motivation of understanding the limits
of such systems as well as due to practical needs as some of these schemes are implemented and
deployed.

In this work, we study the efficiency of interactive proof systems for a particular language
that has received significant interest in recent years due to its many exciting applications. This
language is the repeated squaring language, defined with respect to a multiplicative group of integers
modulo N :

RSN =
{
(x, y, T ) | y = x2

T
mod N

}
,

where x and y are two group elements and T is an integer.
This problem is efficiently decidable by sequentially squaring T times given x and checking

whether the result equals y. That is, RSN ∈ DTime(T ·poly logN). If φ(N), the order of the group,

is known, then x2
T
mod N can be computed much faster by computing x2

T mod φ(N) mod N . Rivest,
Shamir, and Wagner [RSW96] conjectured that, unless one knows φ(N), the sequential algorithm
of computing T squarings is optimal and there is no better algorithm, even if significant parallel
processing power is available. A compelling explanation for the lack of progress on this conjecture in
the past 3 decades was given in two independent recent works by Katz, Loss, and Xu [KLX20] and
Rotem and Segev [RS20]. Both results show (in different and incomparable models) that “generic”
improvements to the trivial T -step sequential algorithm will directly yield a better algorithm for
factoring N and hence computing φ(N).

In their original work, Rivest et al. [RSW96] assumed the hardness of the repeated squaring lan-
guage in hidden order groups in order to build a cryptographic analogue of a “time capsule” called a
time-lock puzzle, namely, a mechanism for sending messages to the future. Since then, this assump-
tion has been instrumental in the design of many cryptographic primitives, including various vari-
ants and extensions of time-lock puzzles [BN00, Pie19, Wes20, MT19, EFKP20a, DKP21, FKPS21]
as well as other seemingly unrelated applications such as round-efficient non-malleable commit-
ment [LPS20, BL18] and secure computation protocols [FJK21].

Interactive proofs for RS. Several of the applications of the hardness of the RS language
are enabled by leveraging (public-coin1) interactive proofs for RS in some non-trivial way. These
applications include verifiable delay functions (VDFs) [BBBF18, Pie19, Wes20], fair multiparty

1In the public-coin model, at each round, the verifier tosses a predetermined number of coins and sends the
outcome to the prover. We focus only on this model.
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coin-flipping protocols [FKPS21], polynomial commitment schemes [BFS20], and highly efficient
zero-knowledge arguments for NP [BHR+21].

There are basically two classes of interactive proofs for repeated squaring:

• Statistically sound proofs: these proofs guarantee soundness for any, even unbounded, cheating
prover. This is the stronger notion of soundness and there are applications that necessarily
rely on it (see more on this below).

Reingold, Rothblum, and Rothblum [RRR21] give a generic interactive proof system for
polynomial-time and bounded space computations. This yields a constant-round interactive
proof with constant statistical soundness. Specifically, for any δ ∈ (0, 1/2), there is a protocol
with communication complexity and verifier’s running time are T δ · poly logN .

Pietrzak [Pie19] gave a specialized and significantly more efficient statistically sound interac-
tive proof for RS using its group structure. Viewing it as an r-round protocol, the prover in
this protocol sends r group elements in total and in each round the verifier responds with a
single, uniformly random, λ-bit integer. In the final round, the verifier runs in time O(T/2r)
to verify the relation. If r = log T , then the prover only communicated log T group elements.
The prover only performs roughly T group operations and the verifier also performs very few
group operations on the observed transcript.

Exponentially small (in λ) statistical soundness holds only if the underlying group has no
small order subgroups (e.g., Pietrzak [Pie19] considered the group QR+

N of signed quadratic
residues modulo N ∈ N, which is the product of two safe primes, and Rotem [Rot21] later
extended the protocol to Z⋆

N for general N = p · q without small order subgroups). This
assumption was lifted and a protocol for arbitrary hidden order groups was given by Block
et al. [BHR+21], albeit with an additional cost in efficiency.

• Computationally sound proofs: these are proofs that guarantee soundness only for compu-
tationally bounded attackers. While providing a weaker security guarantee, such proofs are
traditionally (asymptotically and concretely) much more efficient.

Such concrete schemes for RS were first given by Boneh et al. [BBBF18], relying on generic
succinct computationally sound proof [Kil92, Mic94, Val08] (see also [EFKP20b]). Being
generic, this approach still results with concretely inefficient protocols and is therefore mostly
of theoretical interest. A much more efficient scheme, given by Wesolowski [Wes20], requires
only a single round of interaction with proof size being a single group element and where the
verifier only performs O(λ) group operations, where λ is a security parameter, independent
of T . However, it requires a strong (and novel) hardness assumption called the adaptive root
assumption.

Overall, the existing computationally sound proofs are more efficient than their statistical coun-
terparts in theory and in practice. However, in some applications statistical soundness is necessary.
One reason could be that it is unacceptable to rely on strong or novel assumptions.2 For instance,

2In applications, interactive proofs are often made non-interactive using the Fiat-Shamir transform [FS86]. This
in turn adds another assumption to the system (either the random oracle model or that of a cryptographic hash
function). The security of instantiating the Fiat-Shamir transform with computationally sound proofs is not very
well understood; there are even examples of systems where it provably fails [Bar01, GK03]. In comparison, for
statistically sound proofs we can often instantiate it using standard assumptions (e.g., [CCH+19, LV20]).
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in a blockchain setting where the stakes are high, it might not be ideal to design a critical compo-
nent of the system with security relying on new and untested assumptions. Another reason is that
there are situations where relying on a computationally sound proof for RS actually results with
an insecure system.

Imagine that we compile a proof system into a VDF3 in order to generate a randomness beacon
for a blockchain (as suggested by Boneh et al. [BBBF18]). An important question is how the mod-
ulus N is chosen. In practice, a specialized distributed protocol is executed among few participants
with stake.4 If these participants later decide to become rouge, they can recover the order of the
group at hand. Clearly, this allows them to compute exponents much faster than other participants
and therefore “see into the future”. However, if the underlying interactive proof was an argument
system, then the situation would be much worse. Since for them the group is no longer of hidden
order, they can potentially generate accepting proofs for false statements, thereby allowing them to
“rewrite history”, the fundamental attack that blockchains were designed to prevent. We emphasize
that if the underlying interactive proof is statistically sound, then this problem does not exist as
it is impossible to generate accepting proofs for false statements (this is true even if P = NP and
factoring is easy).

A very related scenario actually comes up in the fair multiparty coin-flipping protocol of Freitag
et al. [FKPS21]. At a high level, Freitag et al. introduced a notion called strong trapdoor VDFs;
these are VDFs that can be computed fast if a trapdoor is known. They needed such a primitive in
order to prove the correctness of solving a time-lock puzzle (so that other parties in the system do
not need to re-solve it over and over again). A delicate point is that the participant who generated
the time-lock puzzle could be the one who also solves the VDF, meaning that they could know a
trapdoor. If VDF proofs that are verified yet they correspond to a false statement exist, the security
of their protocol is completely lost. Therefore, they had to rely on an underlying statistically sound
interactive proof for RS.

This raises the following very natural question which is the focus of our work:

What is the cost of statistically sound proof for RS? Is Pietrzak’s protocol [Pie19] optimal?
Ideally, can we build such a scheme which is as efficient as the computationally sound scheme of

Wesolowski [Wes20]?

Given that the uses of such interactive proofs have become more common and diverse, this urges
us to explore and obtain a rigorous understanding of the limits of such systems.

1.1 Our Results

We make progress towards resolving the above-mentioned questions. Within a certain restricted
model (the generic-group model relative to a hidden order group; see below), we prove two results
on the tradeoffs between the communication complexity and the verifier’s complexity in a large
class of interactive proofs for RS. Our results imply that for some class of protocols that we
consider, any improvement over known protocols would lead to a non-trivial factoring algorithm.

3A VDF is a function that requires some “long” time T to compute (where T is a parameter given to the function),
yet the answer to the computation can be efficiently verified given a proof that can be jointly generated with the
output (with only small overhead). VDFs can be obtained by applying the Fiat-Shamir transform [FS86] on a given
interactive proof for RS [Pie19, Wes20].

4For example, ZCash conducted a so called “ceremony” for the occasion with 6 publicly undisclosed participants
(see https://z.cash/technology/paramgen/).
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Thus, assuming that factoring is hard, any improvement must either be outside of the restricted
model or relax soundness to computational.

It may seem odd that we could prove a lower bound on the complexity of proof systems for RS
since the verifier could potentially decide RS without the prover’s help at all. This can be done in
one of the following ways. We rule out such (not interesting) proofs by limiting the power of the
verifier, as follows.

• The verifier could compute x2
T
mod N by first computing φ(N), say by factoring N .

We get around this by considering only generic-group verifiers. Recall that generic-group
verifiers can perform any group operation while ignoring any specific property of the rep-
resentation of elements. Rotem and Segev [RS20] show in this model that any non-trivial

method for computing x2
T
mod N directly implies a factoring algorithm in the plain model.

(We remark that the prover in our proof systems need not be generic.)

• The verifier could directly compute x2
T
mod N via T repeated squarings.

We get around this by placing a restriction on the verifier’s computational complexity. Specif-
ically, we consider polynomial-time verifiers with bounded parallel running time. This allows
us to capture parties that have hefty parallel processing power.

A bound for MA proofs. First, we consider 1-message protocols where the prover sends the
verifier a single possibly long message, and then the verifier decides whether to accept or not by
running a probabilistic polynomial time computation. This corresponds to the class MA (which
generalizes NP by allowing the verifier to be probabilistic). There are basically two extreme inter-
active proofs one may consider:

1. The prover (somehow) learns φ(N) and sends it to the verifier. The verifier can compute

x(2
T mod φ(N)) mod N . In this case, V is deterministic and its running time is basically inde-

pendent of T .

2. This protocol is parametrized by the communication complexity k and is an adaptation of
Pietrzak’s protocol [Pie19]. The prover computes k ≥ 0 midpoints: x1 = x2

T/(k+1)
, x2 =

x2
2T/(k+1)

, . . . , xk = x2
kT/(k+1)

and sends x1, . . . , xk to the verifier. The verifier computes a
random linear combination z =

∏k+1
i=1 ((xi−1)

ri)T/(k+1) (with x0 = x and xk+1 = y) and finally

accepts if z =
∏k+1

i=1 (xi)
ri . By a similar proof to that of Pietrzak [Pie19] (see also [EFKP20a]),

with high probability over the ri’s, the equality holds if and only if all of the midpoints were
computed correctly. Overall, the communication consists of k group elements and the verifier’s
running time is O(T/(k + 1)).

We show that the above two protocols are essentially the best possible among all generic-group
MA proofs. Specifically, we show that either we can factor composite numbers (in which case
the first protocol can be constructed), or otherwise in any MA proof that includes k ≥ 0 group
elements, the verifier must run in parallel time at least Ω(T/(k + 1)). Additionally, if neither of
these hold, then the protocol must not be statistically sound—there must exist proofs for false
statements, even if they may be computationally hard to find.

We prove our result by presenting an algorithm that uses any too-good-to-be-true generic-group
MA proof to solve factoring in the plain model. To this end, we use Maurer’s [Mau05] generic-
group algorithms abstraction and extend it to capture MA proofs. In our model, we restrict the

4



verifier to be a generic-group algorithm (in Maurer’s sense) that makes a bounded number of group
multiplication and division queries, and we say that it accepts if it outputs the group’s identity 1.
Notice, for example, that this allows the verifier to compute two element g1, g2 and accept if they
are equal by outputting g1 ·g−12 . All efficient proofs specifically designed for RS fall into this model.
The prover, on the other hand, may still be an unbounded (not necessarily generic) algorithm whose
proof consists of a bit string and a sequence of group elements. Note that not restricting the prover
to be generic only makes our result applicable to larger classes of constructions, thereby making
it stronger. Refer to Section 3 for the precise model definition. We emphasize that even in this
simplified one-round setting, it turns out to be highly non-trivial to prove our result in a way that
captures the behaviors of arbitrary provers and verifiers; see Section 1.3 for an overview.

Theorem 1 (Simplified and Informal; see Theorem 3). For any generic-group MA proof system for
RSN , if the prover sends k ≥ 0 group elements and a string st, the verifier either runs in parallel
time Ω(T/(k + 1)), or is able to factor N given st.

In fact, we prove in Corollary 1 that the above holds for any hidden order group. In the general
case, we show that either the verifier runs in parallel time Ω(T/(k + 1)), or is able to compute (a
multiple of) the order of the group given the string st output by the prover. However, by a variant
of the Miller-Rabin primality test [Mil76, Rab80], it is well known that this immediately implies a
factoring algorithm for N .

We note that if the prover is efficient, we can compute st ourselves. So, the existence of a verifier
with o(T/(k + 1)) parallel runtime implies a standard model factoring algorithm.

A bound for IPs. We extend our lower bound for MA proofs to a certain natural class of general
(multi-round) interactive proofs. Specifically, we consider a class of recursive IPs, where in every
round of communication, the prover attempts to prove a new instance of RSN , although with a
different starting point x, a different endpoint y, and a different delay parameter T . Here, for a
bound on the round complexity r and a communication bound k, the adaptation of Pietrzak’s [Pie19]
protocol results with a recursive IP with total communication k · r and verifier’s running time
O(T/(k + 1)r). Here, we obtain a nearly optimal tradeoff between the message complexity, the
round complexity, and the verifier’s parallel running time.

Theorem 2 (Simplified and Informal; see Theorem 4). For any generic-group r-round recursive
interactive proof system for RSN , if the prover sends k group elements per round and results in a
transcript tr, the verifier either runs in parallel time Ω(T/(2(k+1))r), or is able to factor N given
tr.

Future Directions and Open Problems

Our work leaves many exciting open problems. We mention some of them next:

1. We prove our result in the generic-group model where we only allow multiplication and division
queries. It would be interesting to extend this to handle general equality queries or addition/
subtraction queries in the the generic-ring model [AM16, JS13, RS20].

2. Can we get a similar result to Theorem 2 for general (public-coin) IPs rather than just for
“recursive” IPs?
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3. Our bound from Theorem 2 says that (assuming factoring is hard) the verifier’s parallel
running time must be Ω(T/(2r(k + 1)r)) if the prover is efficient, while in Pietrzak’s proto-
col [Pie19] the running time is O(T/((k + 1)r)) (and has an efficient prover). The extra 2−r

term in our bound comes from a factor of 2 loss in Theorem 1. It would be interesting to
prove a tight bound (up to constants) for Theorem 1 for this reason.

1.2 Related Work

Complexity of interactive proofs. Goldreich and H̊astad [GH98] initiated the investigation of
interactive proofs with bounded communication. They showed that if a language L has an interac-
tive proof in which the total communication is bounded by c(n) bits then L ∈ BPTime(2c(n)·poly(n)).
Further relations between the communication complexity of interactive proof for a language and
its complement were shown by Goldreich, Vadhan, and Widgerson [GVW02].

The IP=PSPACE result [LFKN92, Sha90] says that languages that can be verified in polynomial
time are exactly those proofs that can be generated with polynomial space. In this interactive proof
system, the honest prover runs in super-polynomial time (even for log-space languages); this is true
even for the scaled down version which captures polynomially recognizable languages. Nevertheless,
the “easy” side of this result says that every language with an interactive proof of c bits is decidable
with c space [LFKN92, Sha90]. Therefore, languages that require a lot of space to decide cannot
have super efficient interactive proof systems.

Computationally sound proof systems can recognize any language in NP while using only poly-
logarithmic message complexity (assuming collision resistant hash functions) [Kil92].

In the statistical setting, the first interactive proofs with an efficient prover were given by
Goldwasser, Kalai, and Rothblumn [GKR15]. They designed an interactive proof system where the
honest prover is efficient and run in polynomial time. In their proof system the language is given
by a log-space uniform Boolean circuit with depth d and input length n. Their verifier runs in
time n · poly(d, log n), the communication complexity is poly(d, log n), and the prover runs in time
poly(n). This protocol is very useful for low-depth computations.

Reingold, Rothblum, and Rothblum [RRR21] showed a different protocol which suits polyno-
mial time and bounded-polynomial space computations. They give a constant round protocol for
polynomial time and space S = S(n) languages such that: the honest prover runs in polynomial
time, the verifier is almost linear time, and the communication complexity is O(S ·nδ) for δ ∈ (0, 1).
Applied on the repeated squaring language, (where S = poly log n) this protocol’s communication
roughly matches Pietrzak’s [Pie19] when adapted to run in constant rounds (in which case it also
requires the transmission of nδ group elements).

Generic models. The problem we consider can be placed in a long line of research on proving
efficiency trade-offs for various primitives, in some restricted class of constructions usually termed
“black-box” or “generic”. Generic or black-box constructions have the benefit of being applicable
to every instantiation of the underlying structure, irrespectively of the exact details of its descrip-
tion. For specific instances, this usually allows for cleaner and more efficient constructions. The
interactive proofs for RS of Pietrzak [Pie19] and Wesolowski [Wes20] are generic.

Our work is the first to study the complexity of interactive proofs for RS from a foundational
perspective. The most relevant previous works study the (“generic”) complexity of related cryp-
tographic primitives or assumptions. Rotem and Segev [RS20] and Katz et al. [KLX20] showed
that any generic algorithm for repeated squaring which is faster-than-trivial can be used to solve
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factoring. The result of [RS20] rules out generic constructions in the generic-ring model introduced
by Aggarwal and Maurer [AM16] (see also Jager and Schwenk [JS13]). The result of [KLX20] rules
out constructions in the strong algebraic group model (extending [FKL18]) wherein the adversary
may use the concrete representation of group elements to make its group queries. In another work,
Rotem, Segev, and Shahaf [RSS20] showed that hidden order groups are necessary for achieving
“delay” functions, at least generically. The result of [RSS20] rules out generic-group constructions
in Maurer’s model [Mau05] (same as our proof).

1.3 Technical Overview

Throughout this overview, we use λ ∈ N to refer to the security parameter and let N denote
the RSA modulus, where N is a product of two random λ-bit primes. We use Z⋆

N to denote the
multiplicative group of integers mod N . We consider interactive proof systems for the repeated
squaring relation RSN , which we represent via the function fN,T (x) = x2

T
mod N for any time

bound T ∈ N. As a warm up, we will start by considering single-round, NP-style, proof systems
where the verifier is a deterministic, generic group algorithm. We will later show how to deal with
randomized verifiers, and additionally extend to the class of recursive interactive proofs.

Overview of generic group proof systems. A (non-interactive) proof system consists of two
parties, the prover P and the verifier V . On input a group element x ∈ Z⋆

N , P ’s goal is to convince

V that another group element y is equal to fN,T (x) = x2
T
mod N . P is allowed to send V up to

k group elements π1, . . . , πk ∈ Z⋆
N as well as a bit string st ∈ {0, 1}∗. Throughout the overview, we

will always assume that P sends exactly k group elements as part of its proof. V processes this
information and outputs 1 to accept that y = x2

T
mod N or rejects otherwise. We require that

the proof system satisfies the standard notions of completeness and soundness. Completeness says
that if y = x2

T
mod N , then an honest prover P causes V to accept. We parameterize soundness

by a parameter δ, which says that if y ̸= x2
T
mod N , then no (potentially unbounded) cheating

prover P ⋆ can cause V to accept with probability more than δ.
We restrict the above model by requiring that V is a (straight-line) generic group verifier,

whereas we still allow the prover to be unbounded and behave arbitrarily. Specifically, V takes as
input the modulus N , the time bound T , the prover’s string st as explicit inputs. However, V only
has implicit access to the input group element x, the purported output y, and the proof elements
π1, . . . , πk sent by P . Intuitively, this means that V is allowed to multiply and divide these elements
arbitrarily, as long as it does so in a way that independent of their representation. We formalize
this following Maurer’s generic group model [Mau05], which we outline in Section 3.

At the end of the day, we leverage the fact that V uses its explicit inputs5 to effectively generate
various exponents α, β, γ1, . . . , γk such that its output is given by the group element corresponding
to

V (N,T, st, x, y, π1, . . . , πk) = xα · yβ ·
k∏

i=1

πγi
i = g.

Furthermore, we can always run V with dummy elements x, y, π1, . . . , πk and compute the exponents
(α, β, γ1, . . . , γk) by observing its group operations. We say that V accepts if the output group
element g is equal to the multiplicative identity 1 ∈ Z⋆

N , and V rejects otherwise. While this

5If we allowed V to also use the representation of the input group elements, this would correspond to the strong
algebraic group model of [KLX20].
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convention may seem restrictive, as V doesn’t even know whether it is accepting or rejecting, we
claim that this is still very expressive as V can compute two different group elements g1, g2 and
then output g1 · g−12 , which is 1 if and only if g1 = g2. Furthermore, most natural protocol for
repeated squaring including [Pie19, Wes20] fall into this category.

The complexity of deterministic (NP) proofs. As a warm-up, suppose that the verifier
V is deterministic. This means that for every set of explicit inputs N,T, st that V receives, it
generates the same exponents (α, β, γ1, . . . , γk). Given this knowledge, we want to characterize all
possible strategies a cheating prover may use. So, say a cheating prover P ⋆ wants to fool V on any
y = xd ̸= x2

T
mod N . Effectively, P ⋆ can only set each group element πi to be equal to xzi for

some value zi.
6 Then, it follows that V accepts if

xα · xd·β ·
k∏

i=1

xzi·γi = 1.

However, since the base x is shared by all of the group elements, the above holds if

α+ d · β +

k∑
i=1

zi · γi = 0 mod Carm(N),

where Carm(N) is Carmichael totient function, which is defined as the minimal value c such that
gc = 1 ∈ Z⋆

N for all g ∈ Z⋆
N .7 But, as long as γ⃗ = (γ1, . . . , γk) ̸= 0⃗ mod Carm(N), it follows that

P ⋆ can simply solve for a solution to z1, . . . , zk in the equation above to generate a proof that will
falsely convince V that xd = x2

T
.8

Still, it may be the case that V simply ignores the proof elements π1, . . . , πk by setting γ1, . . . , γk =
0. In this case, we leverage the completeness of the proof system to conclude that either V is in-
efficient and runs in parallel time T , or V must be able to factor N . If y = x2

T
mod N and

γ1, . . . , γk = 0, then we know, by the above equation, that V accepts if

α+ 2T · β = 0 mod Carm(N).

We consider two different cases, either (1) α + 2T · β = 0 ∈ Z or (2) α + 2T · β = c · Carm(N) for
some c ∈ Z.

In case (2), this actually immediately implies a probabilistic factoring algorithm for N via a well
known adaptation of the Miller-Rabin primality test (formally stated in Lemma 2). Since we can
compute α and β, given the code of V and the prover’s string st, and hence α+2T ·β = c ·Carm(N),
this implies a factoring algorithm in the standard model given st. If the prover P is efficient, then
we can compute st by ourselves, so it implies a factoring algorithm for any N , without any auxiliary
advice. We emphasize, however, that it may be the case that the explicit string st sent by P helps

6Note that this is not true in general since Z⋆
N is not cyclic and hence there are group elements not represented as

xc for some c ∈ Z. However, we assume this in the overview for simplicity as it captures the main idea of the proof.
7We note that we can simply choose x to be a group element whose order attains the maximal value Carm(N).

This is what allows us to switch to working over the exponent without loss of generality.
8We note that this style of attack works for Wesolowski’s (computationally sound) proof of repeated squar-

ing [Wes20], which is an AM protocol. The adaptive root assumption essentially states that it is computationally
infeasible to perform such an attack, leveraging the randomness sampled by the verifier before the prover sends its
message.
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V to compute some value α = 2T mod Carm(N). For example, P could have just set st to be a
representation of Carm(N), and V simply set α = 2T mod Carm(N) and β = −1. This is why the
factoring algorithm must receive the proof string st as input in general.

We split case (1) into two further subcases, either (1A) β = 0 or (1B) β ̸= 0. In case (1B)
where β ̸= 0, this implies that

2T ≤ 2T · |β| ≤ |α|.

But that implies that V must run in parallel time T to compute xα since |α| ≥ 2T .
In case (1A) where β = 0 and α + 2T · β = 0, it must also be the case that α = 0. However,

we’ve already assumed that γ1, . . . , γk = 0, so this means that V just always outputs 1 and accepts!
So clearly, (P, V ) cannot be a valid proof system as V accepts any y ̸= x2

T
mod N with probability

1 in this case.
In summary, if (P, V ) is a sound proof system where V is a deterministic generic group verifier,

then either:

1. V must run in parallel time at least T , or

2. there is a standard model factoring algorithm for N given the code of V and the string st
output by P .

Stated another way, if V runs in parallel time less than T , then V must be able to factor N (with
the help of the prover via st).

Extending to randomized verifiers. The high level outline of the lower bound for randomized
verifiers is actually very similar to the case of deterministic verifiers. However, allowing the veri-
fier to use randomness to determine its exponents introduces many highly non-trivial challenges.
The key distinction between deterministic and randomized verifiers is that randomized verifiers are
allowed choose their exponents as a function of their randomness, so the attack where a cheating
prover simply solves a single equation to fool the verifier no longer works. Instead, the cheating
prover needs to satisfy a random equation with better than δ probability in order to violate sound-
ness. Still, we will show how we can use the verifier’s exponents to factor, or argue that the verifier
must have parallel running time greater than T/(k + 1) with high probability.

Throughout, we will consider a fixed set of explicit inputs N , T , and st received by the verifier.
Then, for any random string ρ ∈ {0, 1}λ sampled by the verifier, we use coef(ρ) to denote the
exponents that V uses to compute its output. So, if

V (N,T, st, x, y, π1, . . . , πk; ρ) = xα · yβ ·
k∏

i=1

πγi
i ,

then we say that coef(ρ) = (α, β, γ1, . . . , γk). We note that we refer to these exponents as “coef-
ficients” as they will correspond to coefficients in a system of equations over the exponent, hence
the notation coef(ρ).

Our main strategy is to sample many different values ρ1, . . . , ρn such that ||coef(ρi)||max <<
2T/(k+1) for each i ∈ [n], where || · ||max indicates the maximum absolute value in the coefficient
vector. If this isn’t possible, then that means that the verifier must run in parallel time at least
T/(k+1), and we are done. Otherwise, it remains to show that we can either use these coefficients
to factor or show that (P, V ) is not a valid proof system. For each randomness value ρi, let

9



coef(ρi) = (αi, βi, γi,1, . . . , γi,k) denote the corresponding coefficient vector for ρi. We combine all
of these coefficients together in the following way. Let Γ ∈ Zn×k be the matrix consisting of all
of the γi,j values, and let α⃗, β⃗ ∈ Zn be vectors of the αi and βi values. A key property we will

leverage is that the system of equations Γ · z⃗ = −α⃗− d · β⃗ mod Carm(N) has a solution for d = 2T

by completeness, but does not have a solution for any d ̸= 2T mod Carm(N) by soundness (with
high probability), which we explain next.

For simplicity, we will assume throughout this overview that the proof elements πj potentially

output by the prover are all equal to xzj for some zj ∈ Z. Then, for y = x2
T

and all i ∈ [n],
completeness tells us that there must be a solution for z1, . . . , zk to the equation

αi + 2T · βi +
k∑

j=1

γi,j · zj = 0 mod Carm(N).

Since the prover’s proof must work for all randomness values by completeness, we know that the
prover’s vector z⃗ = (z1, . . . , zk)

⊤ actually satisfies

Γ · z⃗ = −α⃗− 2T · β⃗ mod Carm(N).

However, for any d ̸= 2T mod Carm(N) corresponding to xd ̸= x2
T
, we use soundness to show that

̸ ∃z⃗, Γ · z⃗ = −α⃗− d · β⃗ mod Carm(N),

as long as we sample enough vectors n. At a very high level, this follows since each newly sampled
coefficient vector must restrict the space of solutions in a non-trivial way, since otherwise the same
solution will work with good probability for many different choices of exponents. So we set n large
enough such that, with high probability, the space of possible solutions for any d ̸= 2T mod Carm(N)
is empty. The details of this argument are given in Section 4.1.

Next, we prove a key technical lemma that allows us to relate whether or not a system of equa-
tions mod Carm(N) has a solution. Specifically, we show that there exists an efficiently computable
matrix M that satisfies the following two properties:

1. If there exists a solution z⃗ such that Γ · z⃗ = −α⃗− d · β⃗ mod Carm(N), then M · (−α⃗− d · β⃗) =
0⃗ mod Carm(N).

2. If M · (−α⃗ − d · β⃗) = 0⃗ over Z, then there exists a solution z⃗ such that Γ · z⃗ = (−α⃗ − d · β⃗)
over Z (and hence mod Carm(N)).

Furthermore, we show that ||M · v⃗||max < 2T when ||v⃗||max, ||Γ||max << 2T/(k+1). When working
over a field, such a result is well known by simply converting Γ into reduced row echelon form
and the linear function M is closely related to the determinant of Γ. However, working over the
integers mod Carm(N), this becomes much messier to work with. At a very high level, we show
the lemma by first converting Γ to its Hermite normal form H, which is the integer counterpart to
reduced row echelon form. We then augment the matrix H with the column (−α⃗−d · β⃗) and apply
linear operations to zero out the last column to construct the matrix M . However, working over
the integers, we must be careful to make sure that the values don’t blow up in order to get our
desired bound on ||M · v⃗||max. The full details for the proof of this technical lemma are provided
in Section 4.2.
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Armed with our key technical lemma and the observations above, we are ready to complete the
logic of our result, which follows the same high level structure as the deterministic case. Given M ,
we compute v⃗ = M · (−α⃗−2T · β⃗). By completeness, we know that there exists a vector z⃗ such that
Γ · z⃗ = (−α⃗− d · β⃗) mod Carm(N), so by the technical lemma, we know that v⃗ = 0⃗ mod Carm(N).
We consider two different cases, either (1) v⃗ = 0⃗ over Z or (2) there exists an index i such that
v⃗i = c ·Carm(N) for c ∈ Z. In case (2), we can factor given v⃗i using the variant of the Miller-Rabin
primality test, so we are done.

For case (1), we use the fact that M is linear, so

v⃗ = M · (−α⃗− 2T · β⃗) = −M · α⃗− 2T ·M · β⃗ mod Carm(N).

We consider two further subcases, either (1A) M · β⃗ = 0⃗ over Z or (1B) there exists an index i such
that Mi · β⃗ ̸= 0. In case (1B), this implies that

2T ≤ 2T · |Mi · β⃗| ≤ |Mi · α⃗|,

but we show in our key technical lemma that |Mi · α⃗| < 2T . So case (1B) cannot happen.
In case (1A) where M · β⃗ = 0⃗, this actually implies that M · α⃗ = 0⃗ since we have already

assumed that v⃗ = M · (−α⃗− 2T · β⃗) = 0⃗. But, this implies that M · (−α⃗− d · β⃗) = 0⃗ over Z for any
d ̸= 2T mod Carm(N)! So, by our key technical lemma, we conclude that there exists a solution
over Z, and hence mod Carm(N) for some d ̸= 2T mod Carm(N). However, we argued above that
this cannot be the case by soundness (with high probability).

Combining the above, we’ve ruled out the possibility of case (1), so case (2) must hold, which
implies we can factor with high probability. So, in summary, if (P, V ) is a sound proof system
where V is now a randomized generic group verifier and P sends at most k group elements in its
proof, then either:

1. V runs in parallel time at least T/(k + 1) with high probability, or

2. there is a standard model factoring algorithm for N given the code of V and the string st
output by P .

An alternative way to view this result is as follows. If V run in parallel time less than T/(k + 1)
with good probability, then either it must “know” a factorization of N to be able to reduce its
exponents mod Carm(N), or there must be a cheating strategy that falsely convinces V on such
randomness values. Hence, if you want both statistical security and an efficient verifier V , it must
be the case that V can factor N .

Recursive interactive proofs. We next discuss how our result for one-round, MA-style, proofs
extends to the class of recursive interactive proofs. First, we define what we mean by a r-round
recursive interactive proof for the function fN,T (x) = x2

T
mod N . In each round i, there is

an input statement (x, y, T ) claiming that y = x2
T

mod N . P starts the round by sending a
string st ∈ {0, 1}∗ and up to k group elements π1, . . . , πk. V then responds with a random string
ρ ← {0, 1}λ. If i is the last round, V uses its randomness ρ and the message from P to decide

whether or not y = x2
T
mod N . Otherwise, P and V both use a generic group algorithm Ai to

compute a new statement (x′, y′, T ′) given the prover’s message and the verifier’s random coins,
and they start a new independent (recursive) proof for this statement with one fewer round.
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The overall running time of V is simply the running time of Ai in each round i, plus its final
running time to compute its output at the end of the protocol. In addition to standard notions
of completeness and soundness, we require that if (x, y, T ) is valid at the beginning of the round,
then (x′, y′, T ′) is also valid for the start of the next round. However, if (x, y, T ) starts as invalid,

so y ̸= x2
T
mod N , then we require that (x′, y′, T ′) is invalid with probability at least 1− δ.

Due to the recursive nature of this interactive proof, we are able to reduce to the one-round
case to show that in each round T ′ cannot shrink too much relative to T , assuming Ai (and hence
V ) runs in low parallel time. If there exists a round i such that T ′ is much smaller than T , then we

could construct a proof system (P̂ , V̂ ) for y = x2
T
mod N as follows. The prover P̂ sends whatever

P would have sent in round i. Then, V̂ runs Ai to compute (x′, y′, T ′) and outputs (x′)2
T ′
· (y′)−1.

It follows that V̂ runs in time corresponding to the running time of Ai plus T
′, which is dominated

by T ′. By our result for one-round proofs, this means that T ′ must be at least T/(k+1) with high
probability, otherwise we can construct a factoring algorithm given the proof string st from P in
round i. Hence, after r − 1 rounds, the final time bound T ′ must be at least T/(k + 1)r−1 and V
must run in parallel time at least T/(k + 1)r to be a valid proof system.

In summary, if (P, V ) is a recursive, generic group, r-round interactive proof for fN,T (x) =

x2
T
mod N , where the prover sends at most k group elements per round, then either:

1. V runs in parallel time at least T/(k + 1)r with high probability, or

2. there is a standard model factoring algorithm for N given the code of V and the transcript
generated by an honest prover P .

We make note that in our formal result, we actually only get a bound of roughly (1/2r)·(T/(k+1)r).
This is because we actually lose a factor of 2 in the analysis of our one-round bound, and this
constant factor gets amplified over many rounds in the interactive setting. We leave it as an open
question whether or not this can be removed in a tighter analysis.

2 Preliminaries

For any n ∈ N, we use [n] = {1, . . . , n} to denote the set from 1 to n. For a distribution X, we
denote by x ← X the process of sampling a value x from the distribtion X. For a set X , we use
x ← X to denote the process of sampling a value x from the uniform distribution over X . For a
bit string st ∈ {0, 1}∗, we use |st| to denote the length of st. Throughout, we use λ ∈ N to denote
the security parameter.

2.1 Number Theory

In this work, we consider the multiplicative group of integers mod N , denoted by Z⋆
N , where N

is a product of two primes. Specifically, for any λ ∈ N, we let ModGen(1λ) denote the algorithm
that samples two random primes p, q in the interval [2λ, 2λ+1) and outputs N = p · q. The group
is given by Z⋆

N = {x ∈ [1, N) : gcd(x,N) = 1}, and multiplication in the group corresponds to
multiplication over Z mod N . When it is clear from context we are working in the group Z⋆

N , we
will omit mod N when discussing multiplication of group elements.
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The main language we consider in this work is the repeated squaring relation, RSN , defined as
follows

RSN =
{
(x, y, T ) | y = x2

T
mod N

}
.

For a particular value of N and T , we represent this relation by the function fN,T (x) = x2
T
mod N .

It is widely believed that fN,T cannot be computed andRSN cannot be decided in depth less than T
even with poly(λ, T ) parallel processors. We focus on the proof complexity of this language in this
work.

For any a, b ∈ Z, we use gcd(a, b) and lcm(a, b) to denote the greatest common divisor and least
common multiple of a and b, respectively. Specifically, gcd(a, b) is the maximal c ∈ N such that
c divides a and b, and lcm is the minimal c ∈ N such that a and b both divide c. Let a, b ∈ Z,
then there always exist integers c, d such that c · a+ d · b = gcd(a, b). c and d are known as Bezout
coefficients for a and b. While Bezout coefficients may not be unique, we note that there always
exist bezout coefficients such that |c|, |d| ≤ max(|a|, |b|), and these are the coefficients given by the
standard euclidean algorithm.

We denote by φ(N) = |Z⋆
N |, known as the Euler totient function of N , and Carm(N) =

min{a ∈ N : ∀g ∈ Z⋆
N , ga = 1}, known as the Carmichael totient function. For λ ∈ N and

N ∈ Supp
(
ModGen(1λ)

)
such that N = p · q, it holds that

φ(N) = (p− 1) · (q − 1), and Carm(N) = lcm(p− 1, q − 1).

For a specific element g ∈ Z⋆
N , we define the order of g, ord(g), to be the minimum c ∈ N such that

gc = 1 ∈ Z⋆
N .

In this work, we use the fact that for N = p · q, Z⋆
N
∼= Z⋆

p×Z⋆
q , where Z⋆

p and Z⋆
q are each cyclic

groups of order φ(p) = p − 1 and φ(q) = q − 1, respectively. Let gp and gq be generators for the
corresponding subgroups. Then, we can write any group element h ∈ Z⋆

N in the form h = gap · gbq
for some a, b ∈ N. For convenience of notation, we will use h|p to denote the p “component” of h
and h|q to denote the q component, so a = h|p and b = h|q above.

In order to translate between results mod a composite number Φ and its solutions mod its prime
power divisors, we make use of the Chinese remainder theorem (CRT). We use the following version
of CRT.

Lemma 1. Let k ∈ N, n1, . . . , nk, a1, . . . , ak ∈ N. Then, the set of equations

x = ai mod ni

has a solution over Z if and only if for all i, j ∈ [k], ai = aj mod gcd(ni, nj). Moreover, any two
solutions x1, x2 satisfy x1 = x2 mod lcm(n1, . . . , nk).

The following lemma, based on the Miller-Rabin primality test [Mil76, Rab80], gives a proba-
bilistic factoring algorithm given any non-zero multiple of Carm(N). For the proof of the lemma
and further discussion, we refer the reader to Section 10.4 of Shoup [Sho06].

Lemma 2 (Factoring Lemma). Let λ ∈ N, N ∈ Supp
(
ModGen(1λ)

)
, and m = c · Carm(N) for

c ∈ Z such that c ̸= 0. For any δ : N → [0, 1], there exists a probabilistic algorithm A that runs in
poly(λ, log(1/δ(λ))) time such that

Pr
[
p, q ← A(1λ, N,m) : N = p · q

]
≥ 1− δ(λ).
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2.2 Linear Algebra

Let M be a matrix in Zm×ℓ. For i ∈ [m], j ∈ [ℓ], we use Mi to denote the ith row and Mi,j

to denote the element in the ith row and jth column. We use M⊤ to denote the transpose of a
matrix. We treat vectors v⃗ ∈ Zn as column vectors, so implicitly of the form v⃗ ∈ Zn×1. To take
the dot product of two vectors v⃗, u⃗, we write v⃗⊤ · u⃗. If v ∈ Zm×1 is a vector, we simply write vi to
denote the ith component. We write ||M ||max = maxi∈[m],j∈[ℓ] |Mi,j | to denote the largest element

in absolute value in the matrix M . For a matrix M (1) ∈ Zm×ℓ1 and a matrix M (2) ∈ Zm×ℓ2 , we
write M ′ = (M (1)|M (2)) to denote the augmented matrix which appends M (2) to the right of M (1)

to get the matrix M ′ ∈ Zm×(ℓ1+ℓ2).
For any composite Φ, let ZΦ be the ring of integers mod Φ. We say that a function f : Zn

Φ → Zn
Φ

is linear if for any vectors g⃗, h⃗ ∈ ZΦ and a, b ∈ Z, it satisfies f(a · g⃗+ b · h⃗) = a · f(g⃗) + b · f (⃗h). For
the purpose of this work, it suffices to say that a function is linear if there exists some matrix M
such that f(g⃗) = M · g⃗′ where g⃗′ is equal to g⃗ appended by 1.

Let Perm(n) denote the set of all permutations over [n]. For a permutation σ ∈ Perm(n),
we write sign(σ) to denote the sign of σ, i.e. 1 if there are an even number transpositions from
the identity to σ, and −1 otherwise. For a square matrix M , the determinant of M is given
by det(M) =

∑
σ∈Perm(n) sign(σ) ·

∏n
i=1Mi,σ(i). It follows by definition of the determinant that

det(M) ≤ n! · ||M ||nmax. We say that an integer matrix U ∈ Zm×m is unimodular if det(U) ∈
{+1,−1}.

Let v⃗(1), . . . , v⃗(n) ∈ Zm be a set of vectors. This determines a lattice

L = L
(
v⃗(1), . . . , v⃗(n)

)
=

{
m∑
i=1

ci · v⃗(i) : c1, . . . , cm ∈ Z

}

of points spanned by these vectors. For a lattice L, we refer to a basis of the lattice as a set of vectors
b⃗(1), . . . , b⃗(m), often written in matrix matrix B = (⃗b(1)| . . . |⃗b(m)), that are linearly independent over
R and L = L(B). A lattice is unique up to multiplication of B by a unimodular matrix U , so
when the basis is clear from context, we refer simply to the lattice L. The determinant of a lattice
det(L) is defined to be the volume of the parallelepiped formed by a set of basis vectors over Rm.
By Hadamard’s inequality, it is known that

det(L(B)) ≤ ||B||mmax ·mm/2.

We next define the Hermite normal form (HNF) of an integer matrix M ∈ Zm×n. We use the
notion of column-style HNF, defined via right multiplication by a unimodular matrix, in contrast
to row-style HNF.

Definition 1 (Hermite Normal Form). A matrix H ∈ Zm×n is in Hermite normal form if the
following hold:

1. Lower triangular: For some h ≤ n, there exists a sequence 1 ≤ i1 < i2 < . . . < ih ≤ n such
that Hi,j ̸= 0⇒ i > ij .

2. Row-reduced: For all k ≤ j ≤ n, 0 ≤ Hij ,k ≤ Hij ,j .

We additionally use the fact that the HNF of a matrix M ∈ Zm×n has entries bounded by
||M ||nmax. See [KB14] for a proof of this claim.
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When working over a field F, such as the integers mod a prime p or the rationals Q, we can
define standard notions like span and rank. The span of a set over vectors over an n dimensional
vector space over a field F is defined as the set of all linear combinations of the vectors, with
coefficients from the field F. When clear from context, we use span in the context of integers to
refer to the set of linear combinations with coefficients from Z, as in the definition of a lattice. The
rank of a matrix or vector space over a field F is the size of the minimal set of vectors that spans
the space over F.

2.3 Concentration Inequalities

Concentration inequalities allow us to bound the probability that certain random variables take
values too far away from their mean. In this work, we use the following version of the well known
Chernoff-Hoeffding bound [Hoe63].

Lemma 3 (Chernoff-Hoeffding Bound [Hoe63]). Let X =
∑m

i=1Xi such that Xi ∈ [0, 1] are inde-
pendent random variables. Let µ = E[X]. Then, for all t,

Pr[|X − µ| > t] ≤ 2e−2t
2/m.

3 Generic Group Proof Systems

We next give the details for the generic group model we use in this work. Then we define proof
systems where the verifier is restricted to generic group operations.

3.1 The Generic Group Model

In this work, we use Maurer’s generic group model abstraction [Mau05], following the related works
of Aggarwal and Maurer [AM16] and Rotem and Segev [RS20]. We note that this is not the same
as Shoup’s random representation model [Sho97]. See the work of Zhandry [Zha22] for a detailed
comparison between these two models.

Informally, a generic group algorithm is one that can perform arbitrary group operations as
long as the operations performed are independent of the representation of the group elements. At
a high level, we model this by giving the algorithm indirect access to its input group elements via
pointers into a table, and each new multiplication or division adds a new element to the table and
returns the corresponding pointer.

Formally, we consider the multiplicative group Z⋆
N in this work, where N is an RSA modulus

in Supp
(
ModGen(1λ)

)
for some security parameter λ ∈ N. A generic group algorithm A receives

N as input as an explicit bit string and also receives access to a table Table via an oracle O that
stores the group elements computed so far. Initially, Table contains the identity v0 = 1 ∈ Z⋆

N at
index 0, and all of the group elements x1, . . . , xk ∈ Z⋆

N provided as input to A in indices 1, . . . , k.
A can make queries to the oracle O via the following syntax:

• Mutliplication: On input (i1, i2, j,×), the oracle O checks that the values vi1 and vi2 at indices
i1 and i2 in Table are non-empty and not ⊥. If so, O computes vi1 ◦ vi2 and stores the result
at index j in Table. Otherwise, O stores ⊥ at index j.
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• Division: On input (i1, i2, j,÷), the oracle O additionally checks vi2 is invertible. If so, O
computes v−1i2

and stores vi× v−1i2
at index j in Table, if applicable. Otherwise, O stores ⊥ at

index j.

We note that Maurer’s generic group model usually includes equality queries, which we do not
handle in this work. An algorithm A that does not issue any equality queries is known as a
straight-line algorithm, so for this reason, we state our formal results for straight-line generic group
algorithms to avoid confusion. We note that generic-ring algorithms are defined similarly as above,
but they also include addition and subtraction queries with essentially the same syntax.

For a group element g computed by A, we use ĝ to denote the pointer to the corresponding
element g in the table Table. We abuse notation slightly and whenever we write that A receives a
group element g as input, we mean that it receives a pointer ĝ to the element in the corresponding
table Table.

We allow generic group algorithms to receive and output both “explicit” values, represented
by bit strings, and “implicit” values indicating group elements, represented by pointers into Table.
We can think of all of the explicit values as helping the generic algorithm decide how to invoke the
oracle O to perform generic operations.

A randomized generic group algorithm also receives as input a string ρ ∈ {0, 1}λ (we assume λ
bits of randomness for simplicity, however this could be extended arbitrarily). For any input inp,
We denote A(1λ, N, inp; ρ) the randomized generic group algorithm with random tape ρ.

Measuring complexity. Let A be a generic group algorithm. We denote by TimeA(1
λ, N, inp; ρ)

the total running time of A on the given inputs with random tape ρ, where each oracle query costs
a single unit of time. Additionally, we allow A to be a parallel algorithm. Following Rotem and
Segev [RS20], we model parallel generic group algorithms A by allowing A to issue oracle queries
in “rounds”. In each round, A can issue any number of oracle queries to O in a single time step
via multiple processors. We use WidthA(1

λ, N, inp; ρ) to denote the maximum number of processors
used by A at any time step and ParTimeA(1

λ, N, x⃗; ρ) to denote the number of sequential time
steps that it takes for A to compute its output. Whenever we omit input/ randomness parameters
from TimeA, WidthA, or ParTimeA, we mean the worst case running time over an arbitrary choice
of input parameters.

The behavior of generic group algorithms. Let λ ∈ N and N ∈ Supp
(
ModGen(1λ)

)
. Let

A be a straight-line generic group algorithm such that A(1λ, N, st, x⃗; ρ) takes as input an explicit
string st ∈ {0, 1}∗ and group elements x⃗ = x1, . . . , xk ∈ Z⋆

N and outputs a group element g. As A

is only allowed to perform generic operations, it follows that A’s output is of the form
∏k

i=1 x
γi
i for

γ1, . . . , γk ∈ Z. Furthermore, by running A, we can compute these coefficients by providing arbitrary
pointers as input to A in place of x⃗. We use the notation coefV,λ,N,st(ρ) = (γ1, . . . , γk)

⊤ to denote
the coefficient vector of V on input ρ for security parameter λ, modulus N , and explicit string
st. We note that the main distinction between our model and the strong algebraic group model
of [KLX20] is that they allow the coefficient vector to additionally depend on the bit representations
of the input group elements.

Relating parallel running time to degree. Its easy to see that a straight-line generic group al-
gorithm that computesA(1λ, N, st, x⃗; ρ) =

∏k
i=1 x

γi
i , where γ1, . . . , γk are given by γ⃗ = coefA,λ,N,st(ρ),
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must run in depth at least log ||γ⃗||max. This can be shown by induction for ||γ⃗||max equal to 2i for
i ≥ 0. If ||γ⃗||max = 20 = 1, then it may be the case that A just immediately outputs a group
element in 0 steps, satisfying the base case. Suppose that ||γ⃗||max = 2i. After i − 1 steps, the
maximum exponent in absolute value of any group element in Table is 2i−1 by assumption. So,
in the next time step, A can issue a multiplication query multiplying two such elements together.
However, this will result in an element with depth at most 2i, as required. It follows that

ParTimeA(1
λ, N, st, x⃗; ρ) ≥ log ||coefA,λ,N,st(ρ)||max

for all λ ∈ N, N ∈ Supp
(
ModGen(1λ)

)
, string st ∈ {0, 1}∗, input elements x⃗, and random string

ρ ∈ {0, 1}λ.
We additionally note that, even if we only require A to compute a high degree function with

high probability and with pre-processing over a random input, then the same lower bound holds
by the work of Rotem and Segev [RS20].

3.2 Proof Systems in the Generic Group Model

A proof system consists of two algorithms: the prover P and the verifier V . For a language L,
P and V interact on common input x over potentially many rounds until V either accepts or
rejects. In order to be non-trivial, the prover P must have some additional capabilities compared
to the verifier V . For classical proof systems, the prover P is an unbounded algorithm while
V is polynomially bounded. The two main properties of a proof system are completeness and
soundness. Completeness stipulates that P convinces V on x ∈ L, and δ-soundness stipulates no
cheating prover P ⋆ can convince V on x ̸∈ L with probability better than δ.

We consider generic group proof systems for languages defined by a function f defined over a
group Z⋆

N for λ ∈ N and N ∈ Supp
(
ModGen(1λ)

)
. For such proof systems, we restrict V to be a

generic group algorithm that makes a bounded number of group multiplication and division queries,
whereas P may still be an unbounded (not necessarily generic) algorithm that sends a bit string
and group elements to V . So, for a function f , P and V receive an input a security parameter 1λ,
the group description N , an input group element x, and the output of the function f(x) as common
input. P sends a bit string st ∈ {0, 1}∗ and sequence of group elements π1, . . . , πk to V , which V
receives access to via pointers into a table as a generic group algorithm. V then performs generic
computations and outputs a pointer to a group element ĝ and “accepts” if the corresponding group
element g = 1.

Definition 2 (Generic Group Proof Systems). Let δ : N → [0, 1] and k : N → N. For any λ ∈ N,
N ∈ Supp

(
ModGen(1λ)

)
, let f : Z⋆

N → Z⋆
N be a function. We say that the pair (P, V ) is a k-element

generic group proof system for f with δ-soundness if V is a generic group algorithm, and for all
λ ∈ N, N ∈ Supp

(
ModGen(1λ)

)
, and k = k(λ), the following hold:

• Completeness: For all x ∈ Z⋆
N , let st, π1, . . . , πk be the output of P (1λ, N, x, f(x)), then it

holds that
V (1λ, N, st, x, f(x), π1, . . . , πk) = 1.

• Soundness: For all x ∈ Z⋆
N , y ̸= f(x), and algorithms P ⋆ such that P ⋆(1λ, N, x, y) outputs a

string st and group elements z1, . . . , zk, it holds that

Pr
ρ←{0,1}λ

[
V (1λ, N, st, x, y, z1, . . . , zk) = 1

]
≤ δ(λ).
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If the verifier V is a straight-line algorithm, we say that (P, V ) is a straight-line generic group proof
system.

4 One Round Proofs

In this section, we prove our main theorem. Let λ ∈ N and N ∈ Supp
(
ModGen(1λ)

)
. We show

that if there is a generic group proof system with a straight-line verifier that runs in parallel time
less than T/2(k+1) with probability ϵ, then there is a poly(1/ϵ) ·TimeV algorithm that factors N .
We define some useful notation for the theorem first, and then provide a high level outline of the
proof structure.

For each randomness ρ, let coefV,λ,N,st(ρ) = (γ1, . . . , γk, α, β)
⊤ be the coefficients such that

V (1λ, N, st, x, y, z1, . . . , zk) outputs x
α ·yβ ·

∏k
i=1 z

γi
i . As V is a generic group algorithm, we can com-

pute coefV,λ,N,st(ρ) by simply running V (1λ, N, st, x, y, z1, . . . , zk) for generic elements x, y, z1, . . . , zk
and keep track of the operations of V . For notational convenience, when V, λ,N, st are clear
from context, we simply write coef(ρ). We also define dcoefV,λ,N,st(ρ, d) to denote the vector
(γ1, . . . , γk, α + d · β)⊤, where (γ1, . . . , γk, α, β) are given by coef(ρ), which will be useful in our
analysis.

For simplicity of presentation, the following theorem contains the core argument in the proof.
We have two key cases that come up in the analysis. We analyze case (1A) in Section 4.1 and case
(1B) in Section 4.2. We additionally provide proofs of additional claims needed after the proof of
the theorem.

Theorem 3. Let λ ≥ 2, T ∈ N, k : N → N, δ, ϵ : N → [0, 1], N ∈ Supp
(
ModGen(1λ)

)
, and (P, V )

be a k-element straight-line generic-group proof system for the function fN,T (x) = x2
T
mod N with

soundness error δ. For any (st, π1, . . . , πk(λ)) ∈ Supp
(
P (1λ, N, T, x, fN,T (x))

)
. If

Pr
ρ

[
ParTimeV (1

λ, N, T, st) <
T

2(k(λ) + 1)
− log(2k(λ))

]
≥ max(2δ(λ), ϵ(λ)),

then there exists a standard model probabilistic poly(λ, k(λ), T, 1/ϵ(λ)) ·TimeV (1
λ, N, st) time algo-

rithm A such that

Pr
[
p, q ← A

(
1λ, N, k, T, st, 1/ϵ(λ)

)
: N = p · q

]
≥ 1− 2−λ.

Proof. In order to prove the theorem, we show the existence of a factoring algorithm assuming

Pr
ρ

[
||coefV,λ,N,st(ρ)||max <

1

2k(λ)
· 2T/2(k(λ)+1)

]
≥ max(2δ(λ), ϵ(λ)).

This implies the theorem since ParTimeV (1
λ, N) < T/2(k+1)−log(2k) implies ||coefV,λ,N,st(ρ)||max <

1
2k · 2

T/2(k+1).
Fix any λ ∈ N, and for notational convenience we define k = k(λ), ϵ = ϵ(λ), and δ = δ(λ). For

any T ∈ N and N ∈ Supp
(
ModGen(1λ)

)
, we construct a factoring algorithm A(1λ, N, k, T, st, 1/ϵ)

as follows.

1. Let n = 16λ3(k+1). Sample 2nλ/ϵ2 coefficient vectors, and let ρ1, . . . , ρn be vectors such that
||coef(ρi)||max < 1

2k ·2
T/2(k+1) for all i ∈ [n]. If there are fewer than n such vectors, abort and

output ⊥. Otherwise, for each ρi, let coef(ρi) = (γi,1, . . . , γi,k, αi, βi). We define the matrix

Γ ∈ Zn×k such that Γi,j = γi,j and vectors α⃗ = (α1, . . . , αn)
⊤ and β⃗ = (β1, . . . , βn)

⊤.
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2. Compute the matrix M ∈ Z(n−r)×n for Γ guaranteed by Lemma 6, where r is the rank of Γ
over Q, and compute v⃗ = M · (−α⃗− 2T · β⃗) ∈ Zn−r.

3. For all i ∈ [n − r] such that v⃗i ̸= 0, run the factoring algorithm of Lemma 2 with failure
probability 2−2λ. If any succeed of the factoring attempts succeed and output p, q such that
N = p · q, output p, q. Otherwise, output ⊥.

We start by analyzing the running time of A. In step 1, the algorithm samples (32λ4(k +
1))/ϵ2 potential vectors and determines the corresponding coefficients, which takes poly(λ, k, T ) ·
TimeV (1

λ, N, st) time per choice of randomness. Step 2 can be computed in poly(λ, k, n, log ||Γ||max)
time by Lemma 6. The factoring algorithm of Lemma 2 takes time poly(λ) to achieve the desired
failure probability, which is repeated at most n − k times. Thus, the entire algorithm A runs in
expected poly(λ, k, T, 1/ϵ(λ)) · TimeV (1

λ, N, st) time, as required.
We next show that A succeeds in outputting p, q such that N = p · q with probability at

least 1 − 2−λ. First, by Claim 1, the probability that A aborts in Step 1 due to not finding n
randomness values ρi such that ||coef(ρi)||max < 1

2k2
T/2(k+1) is at most 2−2λ. It remains to analyze

the probability A succeeds in factoring N in step 3.
Let v⃗ = M · (−α⃗ − 2T · β⃗) ∈ Zn be the vector computed in step 2. In Claim 2, we show

that, for all x ∈ Z⋆
N and each prime prm ∈ {p, q}, there exists a solution π⃗ ∈ Zk such that

Γ · π⃗ = x|prm · (−α⃗ − 2T · β⃗) mod (prm − 1). This implies by Lemma 6 that x|prm · v⃗ = 0⃗ mod
(prm − 1). Since this holds for every x ∈ Z⋆

N , it must hold for x such that x|prm is invertible mod
(prm− 1), so we conclude that v⃗ must actually be equal to 0⃗ mod (prm− 1). As this holds for both
prm ∈ {p, q}, it must be the case that v⃗ = 0⃗ mod lcm(p − 1, q − 1) = Carm(N). We consider two
cases, either: (1) v⃗ = 0⃗ over Z, or (2) there exists an i such that v⃗i = c · Carm(N) for some c ∈ Z,
c ̸= 0. If case (2) holds, then the factoring algorithm of Lemma 2 will succeed with probability
1− 2−2λ, and we are done.

We proceed to bound the probability that case (1) holds by 2−2λ. We note that by linearity,
M · (−α⃗−2T β⃗) = −M · α⃗−2T ·M · β⃗ = 0⃗. We consider two further subcases under case (1), either:
(1A) M · β⃗ = 0⃗, or (1B) there exists an index i such that Mi · β⃗ ̸= 0. If case (1B) holds, this implies
that

2T ≤ |Mi · β⃗| · 2T ≤ |Mi · α⃗|.

However, by Lemma 6, we know that

|Mi · α⃗| ≤ (2k)k · ||Γ||2kmax · ||α⃗||max.

Since ||Γ||max < 1
2k2

T/2(k+1), it follows that

|Miα⃗| < (2k)k ·
(

1

2k
· 2T/2(k+1)

)2k

·
(

1

2k
· 2T/2(k+1)

)
≤ 2T ,

in contradiction, so case (1B) cannot hold.
Moving on to case (1A) where M · β⃗ = 0⃗ over Z, note that this implies that M · α⃗ = 0⃗ over Z as

well. Thus, for any d ∈ Z such that xd ̸= x2
T
, it holds that M ·(−α⃗−d·β⃗) = 0⃗ over Z. By Lemma 6,

that implies that there exists π⃗ ∈ Zk such that Γ · π⃗ = (−α⃗ − d · β⃗) over Z, but that also implies
the existence of a solution mod (p − 1) and (q − 1) and hence mod lcm(p − 1, q − 1) = Carm(N)
by Chinese Remainder theorem. But, by Lemma 5, the probability that this can be the case is at
most 2−2λ.
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Combining the above, we conclude that A(1λ, N, k, T, st, 1/ϵ) fails to factor N if A aborts at
step 1, case (1) holds, or case (2) holds but the factoring algorithm fails. The probability of each
of these three events is bounded by 2−2λ, so we conclude that A factors N with probability at least
1− 3 · 2−2λ ≥ 1− 2−λ as long as λ ≥ 2, as required.

We proceed to provide proofs for Claims 1 and 2, and provide proofs of the lemmas for the
analysis of case (1A) and (1B) in Sections 4.1 and 4.2, respectively.

For the following claim, recall that Z⋆
N
∼= Z⋆

p × Z⋆
q , where each of the subgroups are cyclic. Let

gp and gq be generators for the corresponding subgroups. Then, for any group element h ∈ Z⋆
N , we

denote integers h|p and h|q such that h = g
h|p
p · gh|qq .

Claim 1. A aborts during step 1 with probability at most 2−2λ.

Proof. For each sampled ρ ← {0, 1}λ, the probability that ||coef(ρ)||max < 1
2k2

T/2(k+1) is at least
ϵ by assumption. Let Xi = 1 if the ith sampled ρ has small coefficients or 0 otherwise. Define

X =
∑2nλ/ϵ2

i=1 Xi, and note that E[X] ≥ 2nλ/ϵ. Then if A aborts, it must hold that X < n, which
happens with probability at most

Pr[|X − E[X]| > 2nλ/ϵ− n] ≤ Pr[|X − 2nλ/ϵ| > nλ/ϵ],

as nλ/ϵ ≥ n. By the Chernoff bound of Lemma 3, we can upper bound this quantity by

2e−2(
nλ
ϵ )

2· ϵ2

2nλ ≤ 2e−nλ ≤ 2−2λ,

where the last inequality holds since n = 16λ3(k + 1) ≥ 4.

Claim 2. For all x ∈ Z⋆
N and each prm ∈ {p, q}, there exists π⃗ ∈ Zk such that

Γ · π⃗ = x|prm · (−α⃗− 2T · β⃗) mod (prm− 1).

Proof. By completeness, for every x ∈ Z⋆
N , there exists a k-element proof z1, . . . , zk that causes V

to accept for every randomness ρ ∈ {0, 1}λ. In particular, for every ρ ∈ {0, 1}λ with coef(ρ) =
(γ1, . . . , γk, α, β)

⊤, we have that

V (x, x2
T
, z1, . . . , zk) = xα · x2T ·β ·

k∏
i=1

zγii = 1.

Fix some prm ∈ {p, q} with out loss of generality. We translate the fact that V accepts in Z⋆
N

to a statement with respect to Z⋆
prm, so it must be the case that

g
x|prm·α
p · gx|prm·2

T ·β
p ·

k∏
i=1

g
zi|prm·γi
p = 1,

or equivalently, the exponents must satisfy

x|prm · α+ x|prm · 2T · β +

k∑
i=1

zi|prm · γi = 0 mod (prm− 1)

=⇒
k∑

i=1

zi|prm · γi = x|prm · (−α− 2T · β) mod (prm− 1).

20



The same proof z1, . . . , zk must work for all randomness values ρ, so there must exist a solution
π⃗ ∈ Zk given by π⃗i = zi|prm such that Γ · π⃗ = −α⃗− 2T · β⃗ mod (prm− 1), as required.

4.1 Case (1A) Analysis

We note that this section is not fully self-contained and relies on some notation from the proof
of Theorem 3. In this section, we prove two lemmas that are used to show that if you sample
enough vectors with small coefficients, by soundness, there cannot exist a solution π⃗ such that
Γ · π⃗ = −α⃗ − d · β⃗ mod Carm(N). In Lemma 4, we show that each new vector must restrict the
space of solutions with good probability, otherwise we can come up with a cheating prover that
breaks soundness. In Lemma 5, we use this to show that if you sample a polynomial number of
such vectors, it must restrict the space of solutions to the point that there can no longer exist a
solution to the set of equations.

We recall the following notation defined in the preliminaries. Let p be a prime and e ∈ N an
exponent. For a set of integer valued vectors V , we use the notation Span (pe, V ) to denote the set
of all vectors spanned by V over the integers mod pe.

Lemma 4. Let N ∈ Supp
(
ModGen(1λ)

)
such that N = p · q and Carm(N) =

∏m
j=1 p

ej
j for unique

primes pj and ej ∈ N. Let d ∈ Z such that xd ̸= y ∈ Z⋆
N . For any ℓ ≥ 0, let ρ1, . . . , ρℓ ∈ {0, 1}λ

with d-coefficient vectors dcoef(ρi, d) = (γi,1, . . . , γi,k, αi + dβi)
⊤ for i ∈ [ℓ] with corresponding

coefficient matrix Γ and vectors α⃗ and β⃗ such that there exists a vector π⃗ such that Γ · π⃗ = −α⃗ −
d · β⃗ mod Carm(N). Then,

Pr
ρ

[
∀j ∈ [m],dcoef(ρ) ∈ Span

(
p
ej
j , {dcoef(ρi) : i ∈ [ℓ]}

)
∣∣∣ ||coef(ρ)||max <

1

2k
2T/2(k+1)

]
≤ 1/2.

Proof. Suppose the probability is greater than 1/2, then we construct a cheating prover P ⋆ that
convinces V that fN,T (x) = xd mod N with fresh randomness ρ as follows.

P ⋆ hardcodes ρ1, . . . , ρℓ and computes a vector π⃗ such that Γ · π⃗ = −α⃗− d · β⃗ mod φ(N), which
must exist by assumption. P ⋆ outputs the proof elements z1, . . . , zk where zs = xπs for all s ∈ [k].

Let ρ← {0, 1}λ be the randomness sampled by V with d-coefficient vector dcoef(ρ) = (γ1, . . . , γk, α+

dβ). This implies that V accepts y = xd ̸= x2
T
if

xαyβ
k∏

s=1

zγss = xα+dβ+
∑k

s=1 πsγs = 1,

which holds if

α+ d · β +
k∑

s=1

πsγs = 0 mod Carm(N).

For simplicity of notation, let Ej be the event that dcoef(ρ) ∈ Span
(
p
ej
j , {dcoef(ρi) : i ∈ [ℓ]}

)
.

Suppose Ej holds for all j ∈ [m], and fix any particular prime power p
ej
j . By definition of span,
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there exist integers c1, . . . , cℓ such that dcoef(ρ) =
∑ℓ

i=1 ci · dcoef(ρi). This implies that

α+ d · β +
k∑

s=1

πsγs =
ℓ∑

i=1

ci ·

(
αi + d · βi +

k∑
s=1

γi,sπs

)

=
ℓ∑

i=1

(ci · 0) = 0 mod p
ej
j

As this holds for all prime power divisors of Carm(N), it also holds that

α+ d · β +

k∑
s=1

πsγs = 0 mod Carm(N).

Thus, P ⋆ succeeds with probability at least

Pr
ρ
[∀j ∈ [m], Ej ]

≥ Pr
ρ

[
∀j ∈ [m], Ej

∣∣∣ ||coef(ρ)||max <
1

2k
2T/2(k+1)

]
· Pr

ρ

[
||coef(ρ)||max <

1

2k
2T/2(k+1)

]
> 1/2 · 2δ = δ,

in contradiction with the soundness of (P, V ).

Lemma 5. Let N ∈ Supp
(
ModGen(1λ)

)
such that N = p · q and Carm(N) =

∏m
j=1 p

ej
j for unique

primes pj and ej ∈ N. Let d ∈ Z such that xd ̸= y ∈ Z⋆
N . Let n = 16λ3(k + 1) and ρ1, . . . , ρn be a

collection of random values in {0, 1}λ conditioned on satisfying ||coef(ρi)||max < 1
2k2

T/2(k+1) for all
i ∈ [n]. For each i ∈ [n], let coef(ρi) = (γi,1, . . . , γi,k, αi, βi)

⊤ with corresponding coefficient matrix

Γ and vectors α⃗ and β⃗. Then,

Pr
[
∃π⃗,Γ · π⃗ = −α⃗− d · β⃗ mod Carm(N)

]
≤ 2−2λ.

Proof. Consider the augmented matrix Γaug = (Γ|(−α⃗ − dβ⃗)) ∈ Zn×(k+1). First, we observe that

any solution π⃗ to the system of equations Γ · π⃗ = −α⃗ − d · β⃗ mod Carm(N) is also a solution mod
any prime power p

ej
j that divides Carm(N). Our high level plan is to show that after sampling

n′ ≥ 4λ2(k+ 1) vectors that non-trivially reduce the space of possible solutions, then there cannot
be any solutions to the equation Γ · π⃗ = −α⃗ − d · β⃗ mod Carm(N). By Lemma 4, each newly
sampled vector will reduce the space of solutions with probability at least 1/2 (assuming there
space of solutions is non-empty). So, the only way there are remaining solutions is if after sampling
n = 16(k + 1)λ3 vectors, we get fewer than n′ = 4(k + 1)λ2 “good” vectors that reduce the space
of solutions. However, we reduce this to a coin flipping problem to show this bad event happens
with probability at most 2−2λ.

We start by showing that after at least n′ = 4(k+1)λ2 vectors that reduce the space of solutions,
there must be no solutions remaining. Since Carm(N) ≤ 22λ, we note that there can be at most
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m ≤ 2λ many prime powers p
ej
j that divide Carm(N), and each exponent ej ≤ 2λ as well. We fix a

particular prime power p
ej
j and look at the solutions over Z mod p

ej
j . Let B = (⃗b(1), . . . , b⃗(k+1)) be

a basis that spans all possible vectors in Zk+1
pj

ej . This means that all vectors can be written in the

form
∑k+1

i=1 ci · b⃗(i) for integers c1, . . . , ck+1.
We prove by induction on the dimension i ∈ [k + 1] that there can be at most i · ej successive

vectors that cut the space of solutions down mod p
ej
j with respect to the first i dimensions based

on the basis vectors b⃗(1), . . . , b⃗(i). First, for the base case of i = 1, all possible solutions are of the
form c · b(1) for some integer c. Note that if c is invertible mod p

ej
j , then such a vector spans the

entire space. So, we want to find the values of c that spans the fewest vectors. This corresponds to
values of c such that gcd(c, p

ej
j ) = p

ej−1
j , which only covers p many points. The next smallest way

to cut the space down is with c such that gcd(c, p
ej
j ) = p

ej−2
j . This continues until the only way

to cut down the space is with invertible c mod p
ej
j , so there are at most ej successive vectors that

reduce the space of solutions until none are left.
Now suppose that this holds for i− 1 ≥ 1 dimensions. Then for i dimensions, we want to cover

as few points as possible, so we extend all of the previous vectors so that they cover no points in
dimension i spanned by b(i). To cover dimension i, we again need vectors with ith components
corresponding to c · b(i) where gcd(c, p

ej
j ) is equal to p

ej
j then p

ej−1
j and so on until the gcd is 1.

This adds ej more vectors, which suffices for the induction.
Thus, for each prime power p

ej
j , after (k + 1) · ej ≤ 2(k + 1)λ many vectors are sampled, there

will be no solutions mod p
ej
j . However, each vector can reduce the space potentially via different

prime powers, so that implies after m · 2(k+1)λ ≤ 4(k+1)λ2 = n′ many “good” vectors, there will
be no possible solutions left.

We now bound the corresponding coin-flipping problem. We sample n = 16λ3(k + 1) many
vectors, each which curs the space of solutions with probability at least 1/2. So we need to bound
the probability that fewer than n′ = 4λ2(k + 1) of the n coin flips come up heads. To do so, let Ci

denote a random variable which is 1 with probability 1/2 and 0 otherwise. Let C =
∑16λ3(k+1)

i=1 Ci,
so E[C] = 8λ3(k + 1). By the Chernoff-Hoeffding bound of Lemma 3, it holds that

Pr[|C − E[C]| > 8λ3(k + 1)− 4λ2(k + 1)] ≤ Pr[|C − E[C]| > 4λ3(k + 1)]

≤ 2e−2(4λ
3(k+1))

2
/(16λ3(k+1)) = 2e−2λ

3(k+1) ≤ 2−2λ,

where the last inequality holds as long as 2λ3(k + 1) ≥ 2λ + 1, which is true for k ≥ 1 and
λ ≥ 2. As discussed above, this also bounds the probability that there exists π⃗ satisfying Γ · π⃗ =
−α⃗− d · β⃗ mod Carm(N), as required.

4.2 Case (1B) Analysis

The following lemma is self-contained and is a key ingredient in the proof of Theorem 3. At a high
level, we show how to reduce the existence of a solution π⃗ to a system of equations Γ · π⃗ = α⃗ mod Φ
for some composite number Φ, to computing a linear function M · α⃗. Additionally, M is efficient
to compute, depends only on Γ, and ||M · α⃗||max cannot grow too much relative to ||Γ||max and
||α⃗||max. One interpretation of this lemma is generalizing the corresponding result over a field,
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where it suffices to simply compute the rank or determinant of a matrix, to the setting of the
integers mod Φ.

Towards proving the lemma, we provide proofs for two additional claims at the end of this
subsection. These culminate in Claim 4 which shows that if x⃗ is a solution to H · x⃗ = 0⃗ mod Φ for a
square, lower triangular matrix H, then for any vector α⃗, it must be the case that α⃗⊤ · x⃗ ·det(H) =
0 mod Φ.

Lemma 6. Let n, k ∈ N such that n ≥ k + 1, and let Φ ∈ N be any modulus. For every matrix
Γ ∈ Zn×k with rank r over Q, there exists a matrix M ∈ Z(n−r)×n such that the following holds for
all α⃗ ∈ Zn:

(A) If there exists π⃗ ∈ Zk such that Γ · π⃗ = α⃗ mod Φ, then M · α⃗ = 0⃗ mod Φ.

(B) If M · α⃗ = 0⃗ over Z, then there exists π⃗ ∈ Zk such that Γ · π⃗ = α⃗ over Z.

Furthermore, M can be computed in time poly(λ, k, n, log ||Γ||max), and ||Mα⃗||max ≤ (2k)k · ||Γ||2kmax ·
||α⃗||max for all α⃗ ∈ Zn.

Proof. First, let H ∈ Zn×k be the lower triangular Hermite normal form for the matrix Γ, as
specified in Definition 1. For simplicity, we permute the rows of H such that the top r rows and
first r columns form an r× r lower triangular matrix, with all remaining rows below. Note that the
remaining k − r columns of H will be all zeroes since Γ has rank r. We can think of applying this
transformation first to Γ, which does not change the space of solution. This means that H = Γ ·U
for U ∈ Zk×k, where det(U) ∈ {1,−1} and ||Γ||max ≤ D. For each i ∈ [n], j ∈ [k], we denote each
entry Hi,j of H by hi,j . Since det(U) ∈ {1,−1}, it follows that H and Γ span the same lattice, so

there is an integer solution π⃗ ∈ Zk to Γ · π⃗ = α⃗ if and only if there is an integer solution π⃗′ ∈ Zk to
H · π⃗′ = α⃗.

We start by describing how to construct the matrix M at a high level. Our approach is to
augment the matrix H with a vector α⃗ to get the matrix H(0) = (H|α⃗). We then apply a sequence
of right multiplications U (1), . . . , U (r) by unimodular matrices in order to zero out the first r rows
of the last column in the augmented matrix. Let H(i) = H(0) · U (1) · . . . · U (i) be the ith such
intermediate matrix where the first i values of the last column are zeroed out. For the final matrix
H(r), let c =

∏r
i=1H

(r)
i,i be the product of the diagonal entries of the first r columns. We show

there is a matrix M such that, for each j ∈ [n− r], Mj · α⃗ = c ·H(r)
j+r,k+1, so M is a linear function

that on input α⃗ outputs the multiple c times the (potentially) non-zero entries in the final column
of H(r).

We construct the sequence of matrices U (1), . . . , U (r) in order as follows. Recall that our goal
is to define these matrices such that, for all i ≤ r, the matrix

(H|α⃗) · U (1) · . . . · U (i) ∈ Zn×(k+1)

will be lower triangular in the first k columns and the k+1st column will have a 0 in the first i rows.
We start with the construction of U (1). If α⃗1 is already equal to 0, we set U (1) to be the identity
and continue. Otherwise, let g1 = gcd(h1,1, α⃗1), and define bz1,L, bz1,R to be Bezout coefficients
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such that bz1,L · h1,1 − bz1,R · α⃗1 = g1. Then, we set

U (1) =


bz1,L 0 · · · 0 −α⃗1/g1
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
bz1,R 0 · · · 0 h1,1/g1

 ∈ Zk×k.

Note that by definition of g1, bz1,L, bz1,R, det(U
(1)) = 1 and (−α⃗1/g1), (h1,1/g1) ∈ Z. The resulting

matrix has the form

H(1) = H(0) · U (1) =


g1 0 0 · · · 0
h′2,1 h2,2 0 · · · (h1,1α⃗2 − h2,1α⃗1)/g1
h′3,1 h3,2 h3,3 · · · (h1,1α⃗3 − h3,1α⃗1)/g1
...

...
...

. . .
...

h′n,1 hn,2 hn,3 · · · (h1,1α⃗n − hn,1α⃗1)/g1

 ,

where h′i,1 ∈ Z for all i ≤ n. Let α⃗(1) ∈ Zn be the last column of H(1).

We next define the matrix U (2). Again, if α
(1)
2 = 0, U (2) will simply be the identity. Otherwise,

we let g2 = gcd(h2,2, α⃗
(1)
2 ) and let bz2,L, bz2,R be Bezout coefficients such that bz2,L · h2,2 − bz2,R ·

α⃗
(1)
2 = g2. Then, we set

U (2) =


1 0 0 · · · 0

0 bz2,L 0 · · · −α⃗(1)
2 /g2

0 0 1 · · · 0
...

...
...

. . .
...

0 bz2,R 0 · · · h2,2/g2

 ∈ Zk×k.

We continue this process to compute U (3), . . . , U (r) and eventually get the matrix

H(r) = H(0) · U (1) · . . . · U (r) =



g1 0 · · · 0 · · · 0
h′2,1 g2 · · · 0 · · · 0
...

... · · ·
... · · ·

...
h′r,1 h′r,2 · · · gr · · · 0

h′r+1,1 h′r+1,2 · · · h′r+1,r · · · α
(r)
r+1

...
... · · ·

... · · ·
...

h′n,1 h′n,2 · · · h′n,r · · · α⃗
(r)
n


.

We define the vector β⃗ such that, for all i ∈ [n − r], β⃗i = α⃗
(r)
i+r ·

∏r
s=1 gs. We claim that the

values β⃗ are of the form M · α for a matrix M which is defined based on the entries of H. Recall
that α⃗(i) ∈ Zn is the last column of the matrix H(i), and similarly let α⃗(0) = α⃗. We can write a
recursive formula for the value of each entry in α⃗(i) based on α⃗(i−1) using U (i−1). Namely, for all

i ≤ r and i ≤ j ≤ n, α
(i)
j is given by

α⃗
(i)
j =

1

gi
·
(
hi,i · α⃗(i−1)

j − hj,i · α⃗(i−1)
i

)
.
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Using this recursive expression, we prove the following subclaims by induction on i = 0, 1, . . . , r
below:

(1) For all i ≤ j ≤ n,
∏i

s=1 gs · α⃗
(i)
j is a linear function of α⃗.

(2) For all i ≤ j ≤ n, there exist 2i sets S1, . . . , S2i such that each set contains i − 1 elements,

from distinct rows in H from the set of rows {1, . . . , i− 1, j}. It holds that
∣∣∣∏i

s=1 gs · α⃗
(i)
j

∣∣∣ ≤
||α⃗||max ·

∑2i

ℓ=1 ·
∏

a∈Sℓ
a.

By setting i = r in (1), we conclude that there exists a matrix M ∈ Z(n−r)×k such that β⃗ = M · α⃗.
Setting i = r for (2), we notice that for each set Sℓ, if it contains an element from row j ≤ r, it is
upper bounded by hj,j by the row reduced property of HNF. Thus, the product of these elements
is at most

∏r
j=1 hj,j , which is an upper bound on the determinant of the matrix. This is bounded

by ||Γ||kmax · kk/2 by Hadamard’s inequality. The potential element from the row j > r is simply at
most ||H||max ≤ ||Γ||k. Thus, we conclude that β⃗ ≤ (2k)k · ||Γ||2kmax · ||α⃗||max, as required.

Now to prove (1), note that for i = 0 and 0 ≤ j ≤ n,
∏0

s=1 gs · α⃗
(0)
j = α⃗j , so this is clearly a

linear function in α⃗. Assume inductively that the claim holds for i− 1 ≥ 0. For any i ≤ j ≤ n, we
can write

i∏
s=1

gs · α⃗(i)
j = hi,i ·

i−1∏
s=1

gs · α⃗(i−1)
j − hj,i ·

i−1∏
s=1

gs · α⃗(i−1)
i . (⋆)

However, the individual terms
∏i−1

s=1 gs · α⃗
(i−1)
j and

∏i−1
s=1 gs · α⃗

(i−1)
i−1 are linear in α⃗ by assumption,

so the combined term
∏i

s=1 gs · α⃗
(i)
j is also linear in α⃗, as required.

We next prove (2). For the base case of i = 0, note that for all 1 ≤ j ≤ n, we can take the set

S20 = ∅ and note that the empty product is simply 1. It follows that α⃗
(0)
j = 1 · α⃗j ≤ ||α⃗||max, as

required for the base case. Assume inductively this holds for i− 1 ≥ 0. We refer to the individual
terms in Equation (⋆). Let S1, . . . , S2i−1 be the corresponding sets for the first term in Equation (⋆)
and S′1, . . . , S

′
2i−1 be the sets for the second term. Then,∣∣∣∣∣hi,i ·

i−1∏
s=1

gs · α⃗(i−1)
j

∣∣∣∣∣ ≤ hi,i ·

||α⃗||max ·
2i−1∑
ℓ=1

·
∏
a∈Sℓ

a

 ,

and for the second term∣∣∣∣∣hj,i ·
i−1∏
s=1

gs · α⃗(i−1)
i

∣∣∣∣∣ ≤ hj,i ·

||α⃗||max ·
2i−1∑
ℓ=1

·
∏
a∈S′

ℓ

a

 .

Combining these terms, note that for all ℓ ∈ [2i−1], Sℓ contains only elements from row j and rows
in [i− 1], so if we add hi,i to each of these sets, they now contain i− 1 unique elements from row j
and [i]. For S′ℓ, these elements contain elements only from [i], so if we add hj,i to each of these sets,
they also now contain i− 1 unique elements from j and [i]. This results in 2i new sets S⋆

1 , . . . , S
⋆
2i

such that ∣∣∣∣∣
i∏

s=1

gs · α⃗(i)
j

∣∣∣∣∣ ≤ ||α⃗||max ·
2i∑
ℓ=1

·
∏
a∈S⋆

ℓ

a,
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as required.
To conclude the proof of the lemma, we show why the matrix M such that M · α⃗ = β⃗ satisfies

(A) and (B) from the lemma statement. For (A), suppose there exists π⃗ such that Γ · π⃗ = α⃗ mod Φ.
As H(r) is constructed by applying right unimodular multiplications to Γ, then the first r columns
of H(r) span the same space as Γ. So, if we let S be the square, lower triangular matrix from the
first r rows and columns of H(r), then we know that there exists a vector x⃗ such that S ·x⃗ = 0⃗ mod Φ

and H
(r)
j · x⃗ = α⃗

(r)
j for all j ∈ [r+1, n]. However, by Claim 4, we have that α⃗

(r)
j ·

∏r
s=1 gs = β⃗j−r =

0⃗ mod Φ. So M · α⃗ = β⃗ = 0⃗ mod Φ, as required.
For (B), suppose now that M · α⃗ = 0⃗ over Z. This implies that for each j ∈ [n − r], β⃗j =

α⃗
(r)
j+r ·

∏r
s=1 gs = 0. As gs ̸= 0 for all s ∈ [r], this means that α⃗

(r)
j+r = 0 for all j ∈ [n − r], so

α⃗(r) = 0⃗ ∈ Zn. This implies that 0⃗ ∈ Zk is a solution to the system of equations specified by H(r)

over Z, so there must also exist an integer solution π⃗ such that Γ · π⃗ = α⃗ over Z.

Claim 3. Let Φ ∈ N. Let H ∈ Zk×k be a lower triangular, square matrix. Let x⃗ ∈ Zk be a vector
such that H · x⃗ = 0⃗ mod Φ. Then for all i ∈ [k],

xi ·
i∏

s=1

hs,s = 0 mod Φ.

Proof. This is true for i = 1 as h1,1 · x1 = 0 mod Φ since H · x⃗ = 0⃗ mod Φ. Let i > 1 and assume it
is true for all j < i inductively. By the following sequence of equalities, we conclude that

xi ·
i∏

s=1

hs,s =

i−1∑
j=1

(−1 · hi,j · xj) ·
i−1∏
s=1

hs,s

=
i−1∑
j=1

(
xj ·

j∏
s=1

hs,s

)
·

−1 · hi,j · i−1∏
s=j+1

hs,s


= 0 mod Φ

Claim 4. Let H ∈ Zk×k be a lower triangular, square matrix. Let x⃗ ∈ Zk be a vector such that
H · x⃗ = 0⃗ mod Φ. For any vector α⃗ ∈ Zn, if α⃗⊤ · x⃗ = γ mod Φ, then

γ ·
k∏

s=1

hs,s = 0 mod Φ.

Proof. This follows from the previous claim via the following sequence of equalities:

γ ·
k∏

s=1

hs,s =

(
k∑

i=1

αixi

)
·

k∏
s=1

hs,s

=

k∑
i=1

(
xi ·

i∏
s=1

hs,s

)
·

(
αi ·

k∏
s=i+1

hs,s

)
= 0 mod Φ.
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4.3 Extension to General Hidden Order Groups

Let G be any finite, abelian, multiplicative group. For any λ ∈ N, we let GroupGen(1λ) be an
algorithm that outputs some group of size [2λ, 2λ + 1) such that it is believe that it is hard to
compute the order of a random group G ← GroupGen(1λ). Any such group G must be finitely

generated, so there exist elements g1, . . . , gs such that every h ∈ Z⋆
N is equal to

∏s
i=1 g

h|i
i , where

h|i ∈ Z is the ith component of h. We use ord(G) to denote the size of the group, and ord(g) to
denote the minimum c such that gc = 1. Borrowing notation from Z⋆

N , we use Carm(G) to denote
the maximum value of ord(g) for any g ∈ G. In particular, there must exist some g ∈ G such that
ord(g) = Carm(G).

The proof of Theorem 3 goes through by considering an arbitrary group G via the following
modifications. We consider inputs x such that ord(x) = Carm(G), so we can equivalently work in the
exponent mod Carm(G). Claim 2 easily generalizes to the setting of any set of s ≥ 1 generators forG,
which implies a solution mod ord(gi) for all i ∈ [s] and hence mod lcm({ord(gi) : i ∈ [s]}) = Carm(G).
Lemmas 4 and 5 only depend on the prime power factorization of Carm(G) and not any specific
structure of Z⋆

N . Lemma 6 is generic for any system of equations mod Φ, so that still holds mod
Carm(G). Finally, case (2) shows that we can compute a multiple of Carm(G), which just happens
that in the particular case of Z⋆

N , implies a factoring algorithm. Therefore, we immediately get the
following corollary.

Corollary 1. Let λ ≥ 2, T ∈ N, k : N→ N, δ, ϵ : N→ [0, 1], G ∈ Supp
(
GroupGen(1λ)

)
, and (P, V )

be a k-element straight-line generic-group proof system for the function fG,T (x) = x2
T ∈ G with

soundness error δ. For any (st, π1, . . . , πk(λ)) ∈ Supp
(
P (1λ,G, T, x, fG,T (x))

)
. If

Pr
ρ

[
ParTimeV (1

λ,G, T, st) <
T

2(k(λ) + 1)
− log(2k(λ))

]
≥ max(2δ(λ), ϵ(λ)),

then there exists a standard model probabilistic poly(λ, k(λ), T, 1/ϵ(λ)) ·TimeV (1
λ,G, st) time algo-

rithm A such that

Pr
[
c← A

(
1λ,G, k, T, st, 1/ϵ(λ)

)
: ord(G) divides c

]
≥ 1− 2−λ.

5 Recursive Interactive Proofs

Recall that we consider proofs for functions of the form fN,T (x) = x2
T

mod N for λ ∈ N and
N ∈ Supp

(
ModGen(1λ)

)
. We show how our one round lower bound implies a lower bound for

“recursive” interactive proofs. At a high level, these are public-coin proofs where after each round
i, P and V compute group elements xi, yi and a time bound Ti. Then, they start a new proof
(recursively) for the claim that fN,Ti(xi) = x2

Ti mod N . We use ⟨P, V ⟩rec(1λ, N, x, y, T, r, k), where
r is the number of rounds and k is the bound on the number of group elements sent by P in each
round, to denote the output of V in the following interaction:

1. P sends a bit string st ∈ {0, 1}∗ and k group elements π1, . . . , πk to V .

2. V responds with a random string ρ← {0, 1}λ.

3. If r > 1, P and V both compute (x′, y′, T ′) = A(1λ, N, x, y,msg, ρ) for a generic group
algorithm A. P and V then execute an r − 1 round recursive proof for the statement y′ =

fN,T ′(x′) = (x′)2
T ′

mod N .
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4. If r = 1, V outputs g = A(1λ, N,msg; ρ) for a generic algorithm A.

In the above protocol, let A1, . . . , Ar be the generic algorithms in each round. We define TimeV =∑r
i=1 TimeAi , and similarly for ParTimeV andWidthV . Given the syntax above, we define a recursive

proof system as follows.

Definition 3 (Recursive Generic Group Proofs). Let T ∈ N, δ : N → [0, 1], and k, r : N → N. For
any λ ∈ N, N ∈ Supp

(
ModGen(1λ)

)
, let fN,T : Z⋆

N → Z⋆
N be the function such that fN,T (x) =

x2
T

mod N . We say that the pair (P, V ) is a k-element, r-round recursive generic group proof
system for fN,T with δ soundness if for all λ ∈ N, N ∈ Supp

(
ModGen(1λ)

)
, k = k(λ), and r = r(λ),

the following holds, where (xi, yi, Ti) is the input statement at round i ∈ [r]:

• Completeness: For all x ∈ Z⋆
N , it holds that

1 = ⟨P, V ⟩rec(1λ, N, x, fN,T (x), T, r, k).

Furthermore, fN,Ti(xi) = yi for all i ∈ [r].

• Soundness: For all x ∈ Z⋆
N , y ̸= fN,T (x), and algorithms P ⋆

Pr
[
1 = ⟨P ⋆, V ⟩rec(1λ, N, x, y, T, r, k)

]
≤ δ(λ).

Furthermore, if fN,Ti(xi) ̸= yi for a round i ∈ [r − 1], then Pr[fN,Ti+1(xi+1) = yi+1] ≤ δ(λ).

We are now ready to state our main result for recursive interactive proofs.

Theorem 4. Let λ ≥ 2, T ∈ N, k, r : N→ N, δ, ϵ : N→ [0, 1], N ∈ Supp
(
ModGen(1λ)

)
, and (P, V )

be a k-element, r-round recursive straight-line generic group proof system for fN,T with soundness
error δ. Let s⃗t ∈ ({0, 1}∗)r be any sequence of bit strings where s⃗ti is an explicit bit string in the
support of P for round i. If

Pr

[
ParTimeV (1

λ, N) <
T

3 · (2(k(λ) + 1))r(λ)
− 6 · log(2k(λ))

]
≥ max(2δ(λ), ϵ(λ)),

then there exists a standard model probabilistic poly(λ, k(λ), T, r(λ), 1/ϵ(λ)) · TimeV (1
λ, N, s⃗t) time

algorithm A such that

Pr
[
p, q ← A

(
1λ, N, k(λ), T, r(λ), s⃗t, 1/ϵ(λ)

)
: N = p · q

]
≥ 1− 2−λ.

Proof. For each round i ∈ [r], let (xi, yi, Ti) be the statement of the round, so P is trying to convince

V that yi = x2
Ti

i mod N . In particular, (x1, y1, T1) is simply the input statement (x, y, T ). Let Ai be
the generic group algorithms used in each round to compute the next statement (xi+1, yi+1, Ti+1).
We emphasize that (xi, yi, Ti) are all random variables for i ≥ 2.

We define the following two events: E1 and E2. Let E1 be the event that ParTimeV (1
λ, N) <

T/(3 · (2(k + 1))r) − 6 · log(2k). Let E2 be the event where there exists an i ∈ [r] such that
ParTimeAi(1

λ, N, sti)+Ti+1 < Ti/2(k+1)− log(2k), where we define Tr+1 = 0. Below, we first show
(1) that ¬E2 implies ¬E1, and hence E1 implies E2. Then, we show (2) that if Pr[E2] ≥ max(2δ, ϵ),
this implies a factoring algorithm by Theorem 3. (1) and (2) suffice to prove the theorem since
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together they show that if Pr[E1] ≥ max(2δ, ϵ), then there exists a factoring algorithm, and E1 is
the event assumed in the theorem statement, as required.

For (1), we assume that ¬E2 holds and want to show that implies ¬E1 must hold. This means
that for all i ∈ [r], it holds that ParTimeAi +Ti+1 ≥ Ti/2(k+1)− log(2k), where Tr+1 = 0. We use
the fact that ParTimeV ≥ ParTimeAi for all i ∈ [r], and we also rearrange the above to conclude
that Ti+1 > Ti/2(k + 1)− log(2k)− ParTimeAi . We then get a lower bound on ParTimeAr via the
following sequence of inequalities.

ParTimeAr ≥
Tr

2(k + 1)
− log(2k)

≥
Tr−1/2(k + 1)− log(2k)− ParTimeAr−1

2(k + 1)
− log(2k)

≥ Tr−1
(2(k + 1))2

− (log(2k)− ParTimeV ) ·
(
1 +

1

2(k + 1)

)
≥ Tr−2

(2(k + 1))3
− (log(2k)− ParTimeV ) ·

(
1 +

1

2(k + 1)
+

1

(2(k + 1))2

)
. . .

≥ T1

(2(k + 1))r
− (log(2k)− ParTimeV ) ·

r−1∑
i=0

1

(2(k + 1))i

≥ T

(2(k + 1))r
− 2 · (log(2k)− ParTimeV ) ,

where the last line holds since 1/(2(k+1)) ≥ 1/2. Using that ParTimeAr ≤ ParTimeV , we rearrange
terms to get that

ParTimeV ≥
T

3(2(k + 1))r
− 6 log(2k),

which is the event ¬E1, as desired.
For (2), recall that we want to show if Pr[E2] ≥ max(2δ, ϵ), then we can construct a factoring

algorithm as stated in the theorem. As E2 holds, this implies that there exists an i ∈ [r] such that
ParTimeAi + Ti+1 < Ti/2(k + 1) − log(2k). We focus on the case where i < r. The case of i = r
follows similarly however there the verifier does not need to perform any additional squarings at
the end.

We construct a proof system (P̂ , V̂ ) for the repeated squaring with exponent 2Ti as follows. P̂
simply outputs whatever P would have output in round i of the recursive IP on input (x, y, Ti), call it
(st, π1, . . . , πk). V̂ then samples random coins ρ← {0, 1}λ and runsAi(1

λ, N, Ti, x, y, st, π1, . . . , πk, ρ)

computing group elements x′, y′ and a time bound Ti+1. V̂ outputs (x′)2
Ti+1 · (y′)−1. It is clear that

V̂ runs in parallel time ParTimeAi+Ti+1 < Ti/2(k+1)−log(2k) with probability at least max(2δ, ϵ),
by assumption. To apply Theorem 3, it remains to show that completeness and soundness hold.

For completeness of (P̂ , V̂ ), note that completeness of the recursive proof guarantees that

(x′)2
Ti+1

= y′. Since V̂ checks this directly, it follows that V̂ outputs 1 as required. For soundness,

we rely on the fact that if (x)2
Ti ̸= y, then it must be the case that (x′)2

Ti+1 ̸= y′ with probability
at least 1− δ. Therefore, V̂ will accept with probability at most δ, as required.

In order to construct the factoring algorithm A, we run the algorithm A′ guaranteed by The-
orem 3 given (P̂ , V̂ ) on input (1λ, N, k, T, s⃗ti, 1/ϵ) for all i ∈ [r]. This increases the running time
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by a factor of r, but will still succeed with probability 1− 2−λ when run on round i, achieving the
desired success probability.
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