
SoK: Assumptions Underlying Cryptocurrency
Deanonymizations

A Taxonomy for Scientific Experts and Legal Practitioners

Dominic Deuber1, Viktoria Ronge1, Christian Rückert2,1

1Friedrich-Alexander-Universität Erlangen-Nürnberg
{firstname.lastname}@fau.de

2Universität Mannheim {firstname.lastname}@uni-mannheim.de

June 14, 2022

In recent years, cryptocurrencies have increasingly been used in cybercrime and have become
the key means of payment in darknet marketplaces, partly due to their alleged anonymity.
Furthermore, the research attacking the anonymity of even those cryptocurrencies that claim
to offer anonymity by design is growing and is being applied by law enforcement agencies in
the fight against cybercrime. Their investigative measures require a certain degree of suspicion
and it is unclear whether findings resulting from attacks on cryptocurrencies’ anonymity can
indeed establish that required degree of suspicion. The reason for this is that these attacks
are partly based upon uncertain assumptions which are often not properly addressed in
the corresponding papers. To close this gap, we extract the assumptions in papers that are
attacking Bitcoin, Monero and Zcash, major cryptocurrencies used in darknet markets which
have also received the most attention from researchers. We develop a taxonomy to capture the
different nature of those assumptions in order to help investigators to better assess whether
the required degree of suspicion for specific investigative measures could be established. We
found that assumptions based on user behaviour are in general the most unreliable and thus
any findings of attacks based on them might not allow for intense investigative measures such
as pre-trial detention. We hope to raise awareness of the problem so that in the future there
will be fewer unlawful investigations based upon uncertain assumptions and thus fewer human
rights violations.
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1 Introduction
Over the past few years, the analyses of cryptocurrency data have become common investigative measures
and are now part of the daily business of law enforcement agencies [22]. Such analyses played a key role in
the seizure of the prominent darknet marketplace Wall Street Market [31]. US law enforcement agencies pay
millions of dollars every year to companies [28] such as Chainalysis [12], Elliptic [21] and CipherTrace [16]
which claim to be able to deanonymize transactions in major cryptocurrencies. Using techniques to analyse
cryptocurrency data always carries the risk of resulting in false positives. In an academic context, this
does not pose a huge problem as false positives have in general no direct consequences. In contrast, when
used by law enforcement the problem is far more serious. The reason for this is that investigations based
on findings obtained from anonymity analyses of cryptocurrencies might lead to severe interferences with
human rights. As investigative measures require a certain degree of suspicion, it is crucial to know how
reliable these findings are. A low reliability might not establish the required degree of suspicion and thus
might result in unlawful investigations. The reliability strongly depends upon the assumptions underlying
the analyses.

There has not been much related work regarding the reliability of assumptions in the context of
cryptocurrency attacks. Goldwasser and Kalai identify assumptions as being crucial to cryptography as
any security proof is only as good as the underlying assumptions [27]. They notice that there are an
increasing number of assumptions that restrict the possibilities of the attacker or depend heavily upon
the construction which is to be proved secure. To save the value of cryptographic proofs, Goldwasser and
Kalai propose a classification for cryptographic hardness assumptions. While the classification is highly
recommendable for hardness assumptions, it is not sufficient to deal with all the different assumptions
underlying cryptocurrency attacks. The reason for this is that the assumptions underlying cryptocurrency
attacks are extremely diverse and range from computational hardness assumptions to protocol assumptions
to assumptions about user behaviour. On the other side of related work, Conti, Kumar, Lal, and Ruj
provided a survey on security and privacy attacks on Bitcoin. In a similar vein, Kus Khalilov and Levi
focus on the anonymity and privacy of Bitcoin-like cryptocurrencies. However, both surveys focus on the
attacks and not on their underlying assumptions [17, 39]. Against this background, this SoK paper

1. illustrates the legal problems with uncertain assumptions and offers recommendations on how to
deal with them (Sections 3 and 5);

2. surveys the underlying assumptions of cryptocurrency attack papers and makes them explicit as the
papers often do not mention what those assumptions are or how reliable they are (Section 4); and

3. proposes a taxonomy of assumptions for attacks depending upon their reliability, that can be used
by expert witnesses and understood by legal decision-makers (Sections 4 and 5).

We focus on Bitcoin, Monero and Zcash as Bitcoin is the most widely used currency and still wrongfully
assumed by some people to be anonymous [40]. Monero and Zcash are of interest as they are the largest
anonymous currencies. Moreover, all three currencies are the ones most studied by academic research
and are the main drivers in darknet marketplaces [23]. In this work, we describe the proposed attacks
as they are discussed in the cited papers. Thus, it is possible that the attacks are no longer applicable
(see Table 3). Nevertheless, the assumptions used in these attacks are still of interest as the attacks were
applicable at some point and assumptions are often reused in other attacks.

2 Preliminaries
In this section we explain how Bitcoin, Monero and Zcash work and introduce basic terminology as used
throughout the paper.

2.1 Bitcoin (BTC)
We focus our introduction on Bitcoin [46] as Bitcoin helps to explain how the other cryptocurrencies
work. Bitcoin is a decentralized transaction ledger that is maintained in a peer-to-peer network. The
transactions are organized in blocks, which is why the ledger is also referred to as blockchain. Using a
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consensus mechanism, the network agrees on which blocks, i. e. transactions, should extend the ledger.
The network nodes participating in this consensus mechanism are called miners. The consensus leader,
which is the miner that suggests the next block, is rewarded for its participation with a block reward. A
block reward consists of newly generated units of the cryptocurrency and transaction fees.

Mining Pools In Bitcoin, Monero and Zcash miners usually group their consensus work in so-called
mining pools to reduce the variance of their payouts. If a miner successfully suggests a block, the block
reward is claimed by a mining pool address rather than by one of the miners. The pool leader(s) distribute(s)
the individual rewards according to certain rules agreed between the pool and the miners. In general, the
transaction that is used to claim the block reward is called coinbase transaction.

Transaction A transaction tx consists of a list of inputs and outputs. An output usually states an
amount of Bitcoin and the hash hpk of a public key pk, which is also referred to as address. To spend
this output, it is required to provide a public key pk′ whose hash equals hpk and a signature that verifies
under pk′. We also refer to outputs as coins and distinguish between unspent and spent coins. An input
is a reference to an output of another transaction tx′ which is uniquely described by the hash of that
other transaction tx′

hash and the position of the output in the transaction’s list of outputs outpos. Usually,
transactions have several in- and outputs. The input amount of transaction tx is the sum of the amounts
in the referenced outputs and is always consumed entirely. Thus, transaction tx might have a so-called
change output. A change output pays back to the sender(s) the difference between its input amounts and
the amount that the recipient(s) should receive.

Transaction Privacy Research showed early on that Bitcoin does not provide anonymity because it is
possible to link addresses [1, 42, 52, 51, 57]. Numerous countermeasures were subsequently developed [41,
53, 54], and new cryptocurrencies emerged that feature privacy by design [18, 43, 72]. The most important
of those cryptocurrencies are Monero [43] and Zcash [72], which will be discussed in Section 2.3 and
Section 2.2 respectively. The countermeasure that is significant in the context of this work is CoinJoin [41].
The central element of CoinJoin is a CoinJoin transaction whose inputs and outputs belong to multiple
entities by design. The goal of that design is to break address linkability.

Peer-to-Peer Network The blockchain of a cryptocurrency is usually maintained in a peer-to-peer
(P2P) network. A P2P network is a network without a central server as is the case in a client-server
architecture. All cryptocurrencies studied throughout this work are permissionless, meaning that anyone
can join and participate in the network at any time. In the following, we explain the basic functioning
of a P2P network using Bitcoin as an example. Since the networks of Monero and Zcash function in a
similar way, we do not present them separately and only refer to the differences, if necessary.

There are several different nodes participating in the Bitcoin network. Full nodes hold the entire
blockchain and verify all the data. In contrast, there are also light clients which are nodes that only
hold few data and therefore rely on communication with full nodes for verification. All nodes exchange
messages via TCP. Every 24 hours, or when initially joining the network, each node broadcasts its own
IP address to its peers using an addr message. The peers will relay this message to some of their peers.
Messages concerning transactions or blocks are propagated differently. First, an inv message is sent to all
peers. The peers that actually want the full data request it via a getdata message. Propagation works by
the receiving peers then broadcasting to their peers and so on where no peer requests data it already
has [7].

2.2 Zcash (ZEC)
While Zcash is commonly considered to be anonymous, this is only partly true. In fact, Zcash takes a
two-part approach, where coins are either part of the unshielded or the shielded pool. Zcash and Bitcoin
have in common that coins have to be spent entirely which results in the creation of new coins to retrieve
the change. The unshielded pool behaves like Bitcoin, while the shielded pool hides senders, recipients
and the transferred amount. The coin of the sender is hidden within the whole set of coins ever created
in the shielded pool. A zkSNARK [6] is used to prove knowledge of the secret key of this coin without
revealing which one as well as proving the coin has not been spent before. The sender also hides the
recipient by not putting the recipient’s public key directly into the transaction (and therefore on the
blockchain) but by using the key to encrypt the information needed to spend the generated coins later.

Zcash calls recipient keys inside the unshielded pool t-addresses and inside the shielded pool z-addresses.
This leads to four types of transactions, which are t-to-t, z-to-z, t-to-z and z-to-t transaction. Based upon
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several attacks (e. g. [34, 4]), especially transactions between the two different pools seem to be vulnerable
to attacks, as illustrated later in more detail.

2.3 Monero (XMR)
The overall structure of Monero is similar to the shielded pool in Zcash, i. e. there is no “non-anonymous”
part in Monero. In contrast to Zcash, not all coins within the shielded pool are used as input, but rather
some kind of decoy selection from the shielded pool takes place. These decoys are other coins which are
included into the transaction as dummy inputs to hide the actual input of the spender. Decoy selection
was a promising target for attacks in the past (e. g. [71, 38, 45]).

Another crucial difference is the choice of the underlying proof system. While Zcash uses zk-SNARKs
and therefore requires a trusted setup, Monero uses zero-knowledge proofs without trusted setup, however,
at the cost of larger transactions. Besides that, the two currencies differ in the specific use of recipients’
public keys. While in Zcash the same key is used, but only a part of it is re-randomized, in Monero the
key is published in an altered way, i. e. the public key and therefore the secret key are re-randomized in
every transaction but still accessible by the recipient.

2.4 Attacks
In the context of privacy, we define an attack to be any attempt to gain additional knowledge about at least
one transaction. This knowledge can refer to the sender(s), recipient(s) or amount(s) of the transaction(s).
Attacks often use heuristics, i. e. methods that are not guaranteed to be optimal, but nevertheless lead to
results in a reasonable time. Heuristics and consequently attacks often rely on assumptions which decide
on the meaningfulness of the results, as further discussed in Section 3.

The goal of an attack is deanonymization and/or re-identification. We use the term “deanonymization”
in line with Kelly, Raines, Baldwin, Grimaila, and Mullins, who define anonymity as unidentifiability and
unlinkability [35]. Consequently, we refer to the following two methods as deanonymization: 1. Clustering:
Different addresses, keys or transactions are linked together/clustered and assumed to be controlled by the
same entity. 2. Identification: Identifying the actual spender/recipient in an anonymity set. In contrast,
re-identification refers to identifying the entity that controls an address.

In terms of Bitcoin, deanonymization is usually done by address clustering, while attribution tagging
might directly or indirectly allow to identify the entity which is controlling the addresses (re-identification).
Address clustering is linking several addresses that belong to the same entity. Attribution tagging is
tagging address clusters with attribution information that is either personally identifiable information or
can be used to retrieve such information. An example for the latter are clusters tagged with exchange
information. In that case, law enforcement agencies might retrieve personally identifiable information by
requesting it from the exchange.

We focus on passive attacks, as elaborated in Section 4. In general, passive attacks are characterized
by leaving the data in a system untouched. In terms of blockchain attacks, a passive attack is one that
analyses the blockchain data without altering it. In terms of network attacks, passive refers to participation
in the network, but without communicating beyond what is required. This means that such attacks only
listen and all requests from other participants are answered in accordance with the protocol. Thus, all
requests are answered as the standard software of the respective currency would do, without altering any
data.

3 Legal Relevance
Investigations involving cryptocurrency forensics typically start with a non-blockchain-related event,
such as the seizure of a darknet marketplace or a child-pornography platform. In many cases to identify
potential offenders, payments conducted via the seized market or platform are traced. As cryptocurren-
cies are criminals’ default payment method on the darknet [23], tracing payments necessarily requires
cryptocurrency forensics.

The most prominent example where cryptocurrency forensics were decisive for the success of the
investigations is the seizure of Wall Street Market, one of the largest darknet marketplaces [19]. Crucial to
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the investigation was an analysis of the Bitcoin blockchain performed by the US Postal Service [63]. In the
analysis, the investigators utilized proprietary software of an undisclosed company and argued that this
software had been found to be reliable through numerous unrelated investigations [63]. This statement
indicates that the investigators employed the cryptocurrency forensics software as a black box. The
problem with the black box usage of software is that the specific methods utilized cannot be observed and,
therefore, the quality of the results remains unclear. There are several proprietary cryptocurrency forensics
tools, such as Chainalysis [12], Elliptic [21], and CipherTrace [16]. US law enforcement agencies pay millions
of dollars every year to utilize those tools [28], which is why it can be assumed that the forensic methods
employed by those tools are relevant in practice. As law enforcement does not publicly reveal its methods,
in order to prevent criminals from developing and employing anti-forensic measures, publicly available
information must be relied upon to determine which techniques closed-source proprietary tools utilize.
Besides that, open-source cryptocurrency forensics tools such as BlockSci [33] or GraphSense [30] can be
analyzed in order to establish which methods they employ. WalletExplorer [64] was a tool that was capable
of address clustering and attribution tagging in Bitcoin. The address clustering of WalletExporer was
based on the so-called multi-input heuristic, which states that all addresses in the inputs of a transaction
are controlled by the same person [1, 42, 52, 51]. For attribution tagging, WalletExplorer’s former operator
registered and interacted with several services, such as exchanges. Through the interaction, he was able to
cluster the addresses of the services and tag the clusters with the name of the service. According to the
former operator, who works at Chainalysis today, Chainalysis offers the same service as WalletExplorer
but is far more advanced [64]. The open-source cryptocurrency forensics tool BlockSci performs mainly
address clustering and thereby enforces the multi-input heuristic by design [9]. While GraphSense extends
BlockSci, inter alia, with attribution tagging, this tool also focuses on the multi-input heuristic for address
clustering [30]. Against this background, it can be assumed that at least the multi-input heuristic is
crucial for cryptocurrency investigations in practice.

3.1 Uncertain Assumptions
The widely employed multi-input heuristic is based on the assumption that all inputs to a transaction are
controlled by the same person. This assumption concerns user behaviour as it excludes behaviour where
numerous persons contribute inputs to a transaction. However, it is not only possible for multiple persons
to contribute inputs to a single transaction, but also desirable as in the case of so-called CoinJoin [41]
transactions. In a CoinJoin transaction, addresses in the in- and outputs are controlled by multiple
persons by design. This design is intended to prevent address clustering. In specific terms, this means
that the multi-input heuristic applied to a CoinJoin transaction yields a false positive as it assumes that
the corresponding addresses are controlled by a single person. Avoiding such false positives would only be
possible if CoinJoin transactions could be clearly distinguished from other transactions. However, the
detection of CoinJoin transactions is also based upon methods of which their reliability is not known.
Apart from CoinJoin transactions, it is in general difficult to evaluate the reliability of assumptions
that concern user behaviour as user behaviour is subject to change. Evaluating the reliability would
require ground truth data about user behaviour at the time the transaction in question was issued. Such
ground truth data, however, is usually unavailable or extremely difficult to obtain [25]. Consequently,
some uncertainty remains in the multi-input assumption which can neither be assessed nor quantified due
to the lack of ground truth data. Uncertainty in assumptions can cause numerous legal issues as discussed
in the following.

3.2 Legal Issue Underlying Wall Street Market Investigation
The most practically relevant legal issue caused by uncertain assumptions is illustrated by the example
of the Wall Street Market (WSM) investigation. The blockchain analysis performed by the US Postal
Service can be summarized as identifying wallets, detecting payments between wallets, “de-mixing” and
associating wallets with darknet marketplaces. Results of the analysis were ultimately used to request
personal data about the sender of a specific transaction from a Bitcoin Payment Processing Company
(BPPC). This specific transaction was believed to have originated from a wallet that was used to pay
one of the marketplace’s administrators. The obtained personal data allowed to associate the wallet
(addresses) with a natural person (entity).
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In the following, we analyze the investigation with regard to the required degrees of suspicion and possible
effects of uncertain assumptions. The legal basis for the request to the BPPC cannot be ascertained from
the criminal complaint. If the request was conducted by means of a warrant under the Fourth Amendment,
probable cause would have been the required degree of suspicion. The probable cause requirement would
not be necessary in the case of a subpoena under the third-party doctrine. However, any subsequent
investigative measures, such as electronic surveillance or searches of premises, would require probable cause
on the basis of the Fourth Amendment, which must at least extend to the linkage of the wallet in question
to criminal activity. The third party doctrine therefore does not preclude the following explanations. The
legally relevant question is whether the results of the analysis were sufficient to establish the required
degree of suspicion. It is not sufficient that one of the suspected WSM administrators later confessed,
because the suspicion must exist at the time when the personal data was requested. The same applies
to the argument that the proprietary software employed in the analysis has always been reliable so
far. It can be assumed that in the WSM blockchain analysis uncertain assumptions played a role. This
follows from the fact that wallets were identified, which typically involves address clustering and thus
at least the multi-input heuristic. However, if the heuristic was applied to a CoinJoin transaction, for
example, addresses that have nothing to do with the WSM would be incorrectly associated with a WSM
wallet. The criminal complaint does not indicate that CoinJoin transactions were excluded and thus false
positives were prevented. As a result, the prosecution’s argumentation would be broken. Namely, the
questionable transaction could not be believed to have originated from a wallet that was used to pay
one of the marketplace’s administrators. If subsequent investigative measures, such as a search, were to
be based solely on the result of the blockchain analysis, it would be questionable whether the necessary
degree of suspicion could be established and thus whether the measure was lawful. The blockchain analysis
of the Wall Street Market investigation and the impact of uncertain assumptions is discussed in detail in
Section 5.5. A detailed explanation of the significance of degrees of suspicion in investigations and why
the legal problem extends in principle to all jurisdictions is set out in Appendix A.

3.3 Towards a Solution
Insufficient exclusionary or admission rules as well as rash trust in IT expert witnesses even in the highest
courts (see Appendix A) demonstrate that there is a need for action especially against the background
of uncertain assumptions employed by cryptocurrency forensic methods. Even though the common law
and the continental European systems differ greatly in some respects, they have in common that legal
decision-makers need to have a precise understanding of the reliability of forensic methods in order to be
able to reach a proper judgment. The first step concerning an uncertain assumption is to create awareness
of the problem by making the assumption and its uncertainty transparent in research papers. As a result,
an expert witness can present assumptions with their uncertainties in criminal proceedings. Only in this
way can decision-makers take uncertain assumptions into account and not run the risk of blindly following
an expert witness. Another advantage of transparency is that the defence or prosecution can challenge
the evidential weight of circumstantial evidence. Likewise, in pre-trial stages, investigators can consider
assumptions and their uncertainties when determining whether a required degree of suspicion can be
established.

Transparency can be achieved by stating the nature of the assumption following the taxonomy presented
in Section 4. In Appendix B we outline how our taxonomy could be used in practice. The taxonomy enables
argumentation regarding the general uncertainty because, for example, well-established computational-
hardness assumptions are not as uncertain as those on user behaviour. While, at first glance, relying on
a taxonomy seems to be imprecise, with respect to legal decision-making it is not. Using a taxonomy
to classify assumptions results in a normative statement which naturally fits the legal decision-making
process. Thus, such a taxonomy can be the basis of a common comprehensible language between expert
witnesses and legal decision-makers and also be a first step towards a standard for the interpretation of
any findings, as proposed in the literature [15].
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Type Assumption Usage

User Behaviour

Multi-Input [32, 47, 48, 29, 57, 24, 1, 42, 52, 51, 34, 2]
Change-Address [42, 57, 1, 47, 34]
Cluster-Intersection [26, 20]
No-Proxy [36]
Miner-Payout [3, 34]
Value-Input-Output [4, 50, 34]
Fingerprinting [4]

Protocol Response Time [61]
Wallet Communication [61]

Computational Hardness No Double-Spending [38, 45, 71, 69]

Statistical

Unique Entry Nodes [5]
and No-Collision
Multi-Output [38]
Newest-Account [38, 45]

Table 1: Overview of assumptions and their usage grouped by their type in accordance with our taxonomy.

4 Taxonomy of Assumptions
Different assumptions which underly heuristics targeting (anonymous) cryptocurrencies have often been
neglected in academic discourse. Consequently, no system has yet evolved to address different types of
assumptions, their applicability and their quality. To fill this gap, we propose a taxonomy for classifying
the assumptions which consists of four classes. The first of these is user behaviour, which relies on e. g.
patterns that users follow. The second one is the class of protocol assumptions. We understand the term
protocol broadly and refer to its meaning in the context of networks, implementations, etc. The third class
are computational hardness assumptions and the last one statistical assumptions, which uses statistical
arguments.

We classify all assumptions according to our taxonomy and explain which heuristics/attacks are based
upon them. Thereby, we focus on assumptions which are the basis of passive attacks. The reason for this
is, firstly, that passive attacks make up the majority of the proposed attacks. Second, because active
attacks often rely on protocol specifics which would be so extensive in their presentation that we can
only give a high-level description and third, because the motivation for a taxonomy is based upon the
increasing use of attacks in criminal investigations. As law enforcement agencies by their very nature
operate in the aftermath of crimes, they will predominantly use passive attacks. This is also indicated by
the fact that the US spends millions on commercial analysis software [28] that arguably perform mostly
passive analysis [13].

Most of the time, heuristics or attacks are based on several assumptions, which is why we locate them at
the main assumption. We understand the main assumption as the one whose uncertainty has the greatest
impact on the probative value of results obtained by the heuristics/attacks, as discussed in Section 3.
By the uncertainty of an assumption, we refer to the probability that the assumption is wrong. If this
probability is 0%, the assumption is absolutely reliable. Likewise, if the uncertainty of an assumption is
100%, this states that the assumption is wrong and therefore diminishes the probative value. Depending
on the exact definition of an assumption, its uncertainty is also its false positive rate, as illustrated by the
following example. Let the assumption be that in a Monero transaction, the key with the smallest hash
value always refers to the spender. Then the uncertainty is the probability that this assumption is wrong
and therefore the key with the smallest hash is not the spender, i. e. the false positive rate.

An overview of all assumptions and their usage in the sense of our taxonomy is depicted in Table 3.
Note that whenever it was appropriate, we named the assumption as the corresponding heuristics/attacks.
If they were not named, we provide a suitable name.
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4.1 User Behaviour Assumptions
User behaviour assumptions are based upon common behavioural patterns of the users of a cryptocurrency.
An example could be that there is a payout transaction from a mining pool every day at around 8pm. In
part, such behavioural patterns are derived from the standard implementation or known applications
of the cryptocurrency in question. It is often assumed that these patterns can be transferred to many
other users while it is unclear in reality how precise this assumption is. User behaviour changes over time
as, for example, new applications evolve. Kus Khalilov and Levi also categorize attacks based upon user
behaviour but without focusing on the underlying assumptions [39].

4.1.1 Multi-Input Assumption

The multi-input assumption assumes that all inputs to a transaction are controlled by the same entity [1,
42, 52, 51]. This directly leads to the multi-input heuristic which uses this assumption to cluster input
addresses. In combination with other clustering heuristics, this enables the tracking of payment flows
through the blockchain. Address clustering heuristics are part of deanonymization attacks. Re-identifying
the entity behind an address cluster requires additional steps, as discussed in Section 2.4.

For CoinJoin transactions, the assumption is false as such transactions combine the inputs of multiple
entities by design. Consequently, applying the multi-input heuristic to CoinJoin transactions would lead
to false positives which is problematic, as discussed in Section 3.1.

The multi-input heuristic is used quite often in Bitcoin and also Zcash analyses [32, 47, 48, 29, 57, 24,
1, 42, 52, 51, 34, 2], although the discussion of how reasonable the assumption is differs greatly. There
are papers that completely forgo any discussion of whether the assumption is reasonable. This is done
by either directly referencing the Bitcoin whitepaper [51] or by saying that the assumption is safe to
make [57]. Other papers recognize the possibility of false-positive results and therefore take greater
argumentative effort. Ron and Shamir asked several members of the Bitcoin community who confirmed
that overestimations of common ownership are very unlikely [52]. Androulaki, Karame, Roeschlin, Scherer,
and Capkun argue that Bitcoin client software does not support that different users participating in a
single transaction [1]. The authors see the possibility of CoinJoin-like transactions, however they argue
that these are unlikely to become the most common transactions in the network. Meiklejohn et al. argue
in a similar way by saying that the multi-input heuristic exploits inherent properties of the Bitcoin
protocol. Therefore it is unlikely that several entities spend together in one transaction as they would
need to reveal their secret keys to each other [42]. In contrast, Koshy, Koshy, and McDaniel explicitly
removed all multi-input transactions from their analysis as they wanted to be sure that each transaction
was only controlled by a single entity. According to the authors, related work would not acknowledge
that a multi-input transaction might be controlled by several entities [36]. For Zcash, Kappos, Yousaf,
Maller, and Meiklejohn argue that the assumption is used a lot in Bitcoin and suggest it might be even
better in Zcash as they are not aware of any protocols such as CoinJoin which explicitly contradict the
assumption [34].

4.1.2 Change-Address Assumption

Generally, the multi-input heuristic does indeed only allow tracking of the payment flow of an entity
throughout the blockchain in combination with other heuristics. The reason is that the multi-input
heuristic is only considering the inputs of a transaction. In order to create address clusters covering
several transactions, the outputs of a transaction also need to be taken into account.1 This is exactly what
change-address heuristics [42, 57, 1, 47, 34] are doing. As Bitcoin requires the input values of a transaction
to be spend completely, there could be change addresses paying back the remainder to the (potential
single) entity that created the transaction. The most basic form of a change-address heuristic works as
follows. For every transaction with two output addresses aO and aN , if aN never appeared before but aO
did, then aN is considered the change address [1, 57]. In combination with the multi-input heuristic, this
results in an address cluster consisting of the change address and the input addresses of a transaction.
This heuristic is based upon the assumption that no transaction spends to two different users [1, 57].

1An exception is the reuse of addresses which is however considered bad practice and therefore prevented by most wallets.
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With the rise in gambling sites and mining pools, the assumption no longer holds [42]. Mining pools
usually have huge payout transactions rewarding their participants with shares of the block reward. This
is why Meiklejohn et al. proposed several refinements [42]. The refined version states that some output
address of a non-coinbase transaction (see Section 2.1) is the change address if it is the only address in
the outputs that appeared for the first time and there is no “self-change address”, meaning no output
address that appeared in the inputs [42]. According to Meiklejohn et al. this heuristic is not robust as it
is based on the “idiom of use” where the change address is created internally by the bitcoin client and
never reused. The authors acknowledge that the heuristic might need to be discarded if usage patterns
change. In fact, they found false positives by comparing their cluster results to tags associated with the
respective addresses which they obtained by employing off-chain information [42]. This lead to further
refinements making the heuristic far more conservative than its basic form. Nevertheless, even after the
refinements had been published, the non-refined basic version of the heuristic has been used and also
stated to be conservative [57]. Finally, the change-address assumption in Bitcoin can be seen as two-fold.
First, there is the implicit assumption that there is any change at all, and, second, that transactions are issued
using a Bitcoin client which generates a fresh change address for every new transaction.

The first part of the assumption, namely that there is any change at all, is also found in Zcash. In
Zcash there were so-called vJoinSplit transactions which allow to have up to two t-inputs and t-outputs
(as well as z-inputs and z-outputs). The t-input-output heuristic states that in a vJoinSplit transaction
the t-input(s) and a t-output belong to the same entity if there is exactly one t-output [34]. The intuition
behind this heuristic is that the t-output is probably the change output when only some of the input
amount is moved to the shielded pool. Thus, the heuristic is based on the implicit assumption that there
is any change at all. However, Kappos, Yousaf, Maller, and Meiklejohn did not use the heuristic in their
anonymity analysis of Zcash as they assumed there might be too many false positive in case a transaction
just spends to an address in the shielded and one in the unshielded pool [34]. In other words, they did
not use the heuristic because they considered the assumption that there is any change at all to be too
unreliable.

4.1.3 Cluster-Intersection Assumption

The cluster-intersection attack [26] tries to link address clusters by intersecting the anonymity sets of
CoinJoin transactions. The attack exploits additional knowledge about outputs from different CoinJoin
transactions being controlled by the same entity. We illustrate the attack with the following example
based upon [26]. Let Alice be in control of addresses A1 and A2. Assume that those addresses are linkable
by the multi-input and/or change-address heuristic, resulting in address cluster Cpre where pre means
pre-mixing. Now Alice uses CoinJoin to break this linkability. A1 will be input to CoinJoin transaction
ctx1 and A2 will be input to CoinJoin transaction ctx2. The addresses A1∗ and A2∗ in the outputs of
ctx1 and ctx2 respectively, should no longer be linkable as there are multiple other entities participating
in CoinJoin besides Alice. Furthermore, assume that Alice pays a merchant using A1∗ and at some point
in the future pays the same merchant using A2∗. Now the merchant learns that A1∗ and A2∗ belong
together, i. e. belong to address cluster Cpost, where post means post-mixing. It is further possible for the
merchant to determine the anonymity sets of ctx1 and ctx2 by applying the cluster-intersection attack.
Both anonymity sets contain the address cluster Cpre as Alice participated in both CoinJoin transactions.
By intersecting the anonymity sets, which also contain several address clusters controlled by different
entities, the merchant might learn that Cpre is linkable to Cpost.

The cluster-intersection assumption assumes that an entity uses a single wallet where all addresses prior to
some mixing procedure are linkable, i. e. those addresses can be clustered into a single address cluster (Cpre).
Thus, the assumption is at least as uncertain as the most uncertain assumption used in address clustering
(to create Cpre). As it is unclear which assumption that is, we explicitly state the cluster-intersection
assumption. We deliberately list the assumption under user behaviour as we already examined the two
uncertain address-clustering assumptions (multi-input and change in the previous sections). Besides that,
the part of the assumption stating that a user uses a single wallet refers to user behaviour. There is
some additional uncertainty beyond the most uncertain assumption used in address clustering because
addresses of the wallet need to be linkable. In the above example, A1 and A2 might not have been linkable
before mixing. If another entity Eve also participated in ctx1 and ctx2 with the two linkable addresses
A1e and A2e , the attack might link Cpost to those addresses. This would clearly be a false positive link.
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Goldfeder, Kalodner, Reisman, and Narayanan showed the general applicability of the attack in Bitcoin
on simulated data. The authors further acknowledge that, in reality, a users wallet may not be linkable
into a single address cluster [26]. Deuber and Schröder applied the attack on real transactional data of
the cryptocurrency Dash [18]. To cope with the uncertainty in the assumption, they, inter alia, added a
mechanism to reject obvious false positives [20].

4.1.4 No-Proxy Assumption

The no-proxy assumption states that no proxies have been used. The assumption is used in an attack
by Koshy, Koshy, and McDaniel. The authors link Bitcoin addresses and IP addresses by exploiting how
transactions are propagated in Bitcoin’s P2P network [36]. In contrast to address-clustering attacks,
linking clusters to IP addresses is a re-identification attack (see Section 2.4). To link Bitcoin with IP
addresses, Koshy, Koshy, and McDaniel build a custom Bitcoin node that connects to all peers. Now
the custom Bitcoin node can record the entire transaction propagation history, i. e. the times when a
transaction has been relayed and the IP addresses of the relaying peers. The authors identified relaying
patterns, the simplest and most common one being that a transaction is relayed by several peers, but
only once per peer. By exploiting relaying patterns, it is possible to link the IP address of the relaying
node to the Bitcoin addresses in the transaction. The no-proxy assumption is crucial, as the attack might
result in false positives if users are relaying transactions through a proxy or use TOR [36]. Besides that,
the attack also assumes that there are no false positives due to slow internet connections [36].

4.1.5 Miner-Payout Assumption

Generally, every transaction requires a fee, which motivates mining pools to pay all their miners in a
single transaction. This behaviour leads to transactions with over 100 outputs that sometimes occur
regularly at fixed times. The miner-payout assumptions states that a transaction with over 100 outputs is
issued by a mining pool. In Zcash, Biryukov and Feher studied this behaviour using addresses and won block
information published by mining pools on their websites [3]. This was done for mining pools that receive
the reward on t-addresses as well as for those that receive it on z-addresses. While the authors suggest the
miner-payout assumption is reasonable, they also admit that it is difficult to find pools with only a small
proportion of the overall mining power. Additionally to this problem, mining pools can use t-addresses or
z-addresses, where z-addresses make linking harder. Kappos, Yousaf, Maller, and Meiklejohn assume as
well that transactions with many outputs are issued by mining pools, but give less specific numbers [34].
In any case, the miner-payout assumption only helps clustering addresses from mining pools, but most
likely will not deanonymize single users.

4.1.6 Value-Input-Output Assumption

The unique structure of Zcash requires transactions between the shielded and unshielded pool, which
reveal the value of transactions. This reveal is utilized in the value-input-output assumption which states
that if a z-to-t transaction appears after a t-to-z transaction containing the same unique value, they are
linked. It is argued that a t-to-z transaction and a subsequent z-to-t transaction which both contain the
same unique value, are very unlikely to happen by chance [4, 50, 34]. Only Biryukov, Feher, and Vitto
try to provide a false-positive rate by checking how long the uniqueness of a value is sustained in the
blockchain, while other direct evidence seems to be hard to obtain at all [4]. The idea was extended to
also account for a number of transactions within the shielded pool, which would decrease the value of
the z-to-t transaction by that number multiplied by the transaction fee [50, 4]. Kappos, Yousaf, Maller,
and Meiklejohn only mention the extension but do not apply it [34]. In [34], a special variant of the
value-input-output assumption caused by transactions done by the founders, i. e. entities who obtain
a share of the mining reward as inventors of Zcash. The corresponding t-addresses are specified in the
protocol itself.

Kappos, Yousaf, Maller, and Meiklejohn observed that the values send from these t-addresses to
the shielded pool are quite unique. They used the value-input-output assumption to link withdrawal
transactions from the shielded pool containing these specific values to the founders. Thus, besides address
clustering, this linkage also allows re-identification as the founders are known.
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In general, however, the attacks using the value-input-output assumption are address-clustering attacks
and additional knowledge is required for re-identification.

4.1.7 Fingerprinting Assumption

The fingerprinting assumption can be seen as a variant of the value-input-output assumption in Zcash.
However, it is not about the actual value of a t-to-z transaction but rather about the last few digits of
the value, i. e. from 10−2 to 10−8 ZEC2. Thereby, Biryukov, Feher, and Vitto say a value has a unique
fingerprint if either the last four digits, i. e. 10−5 to 10−8, are not round and unique or at least 5 of the last
7 digits, i. e. 10−2 to 10−8 build a unique pattern [4]. The fingerprinting assumption assumes that if a t-to-z
transaction and a z-to-t transaction share a unique fingerprint, they are linked by a sequence of transactions.
Uniqueness is only considered for a certain time range and the authors assume that fingerprints occur
either intentionally by crafted coins or are the product of mining rewards split by mining pools [4]. For
the second case, the authors provide a model to estimate the quality of the assumption. Attacks based on
the fingerprinting assumption are address-clustering assumptions.

4.2 Protocol Assumptions
Protocol assumptions can be seen as distinguished from the three other ones as they do not depend on
behaviour or theory behind cryptocurrencies but on practical means. If there are flaws in the protocol
itself, then exploiting them does not require any additional “protocol” assumption as they simply exist.

One part of protocol assumptions are assumptions depending on the network topology, e. g. a node
directly connected to a client will propose a transaction. Another part are assumptions regarding
implementations. A known problem of implementations are different execution paths in the code depending
on the validity of the input. While this problem has been well known for several decades, it still appears
from time to time.

4.2.1 Response-Time Assumption

Tramèr, Boneh, and Paterson noticed that depending on whether a transaction is destined for a certain
node in Zcash, this node responds slower to network requests sent to it after receiving this particular
transaction [61]. The response-time assumption states that it takes longer for a node in Zcash using the
common wallet software to respond after receiving a transaction destined for this node. The first step when
receiving a transaction in Zcash is to check whether decryption works, which is only the case if the node
is the actual recipient. If the decryption succeeds, an additional Pedersen commitment [49] check is done
to check for the well-formedness of the message. Answering further network requests is delayed until this
additional check is completed. Thus, the time can be measured and results in the attack described in [61].

4.2.2 Wallet-Communication Assumption

The three major wallet implementations for the Monero client have in common that by default they
connect to a remote node that is responsible for network communication. The wallet-communication
assumption states that there are different communication patterns between a remote P2P node and a wallet
depending on whether a previously received transaction belonged to the wallet or not [61]. The patterns
are due to default strategies of the wallets for requesting transactions. Upon each request, the wallet
requests a list of hashes of transactions unconfirmed so far. After that, the wallet requests the bodies of
transactions which it has either not processed so far or where it is the payee. At time of publishing of
[61], the transaction rate of Monero was so low that the arrival of new transactions unlikely occurred
between two wallet refreshes. An adversary can observe which transaction bodies are requested several
times and thus belong to the requesting wallet.

2These values lie beyond the transaction fee and have basically no economic meaning.

11



4.3 Computational Hardness Assumption
Computational hardness assumptions are assumptions about the impossibility of solving computational
problems efficiently, i. e. in polynomial time. For most of the currently used assumptions in cryptography
and related fields of computer science and mathematics it is not known how to prove such hardness.
Nevertheless, some of theses assumptions like the Discrete Logarithm assumption enjoy almost complete
trust. Thus, if a heuristic is based on such an assumption, the results have a huge probative value. On
the other side, if the assumptions turn out to be wrong, it would have tremendous impact, not only on
the probative value, but also on the security of cryptographic primitives and protocols.

4.3.1 No Double-Spending Assumption

While the prevention of double spending is not a cryptographic primitive itself, it directly depends
upon cryptographic assumptions such as the discrete logarithm assumption. Attacks based upon graph
analysis [38, 45, 71, 69] all implicitly use this assumption as they assume that spenders of different
transactions are distinct. The attacks consider each ring as a set with exactly one true signer and search
for unions of such sets so that the number of sets in these unions equals the number of accounts. If double
spending is impossible, then each account within the union already spent. If the account is part of another
set outside the union it can not be the signer and thus reduces this set’s anonymity. The extreme case is
a union of size one, i. e. a transaction with only the actual signer as ring, which is called a zero-mixin
transaction. The attacks can be combined with a black marble attack where the attacker owns several
coins in the system. If these coins are included as decoys in Monero, the attacker can rule out all of their
own coins as spender [70, 66, 67].

Another attack vector relying solely on the no double-spending assumption occurs with hard forks in
Monero. Wijaya, Liu, Steinfeld, Liu, and Yu observed the issue of key reuse, where the same key image
appears in transactions in two different forks of Monero [68]. The intersection of the two rings for such
transactions necessarily contains the true spender and therefore is at least partly deanonymized.

4.4 Statistical Assumptions
Statistical assumptions are assumptions about “how likely” an event is. Such an event can either be caused
by randomness used in the cryptocurrency on purpose or caused by outside effects. Examples of the two
causes are probabilities for certain accounts being part of a ring in Monero (Section 4.4.3) and the set of
entry nodes for a Bitcoin client (Section 4.4.1) respectively. Statistical assumptions always include some
error probability, which can, however, be dealt with accordingly, as it can be computed.

4.4.1 Unique Entry-Nodes and No-Collision Assumption

Biryukov, Khovratovich, and Pustogarov propose a re-identification attack that links Bitcoin addresses to
IP addresses, similar to the attack proposed by Koshy, Koshy, and McDaniel discussed in Section 4.1.4.
The attack distinguishes two types of nodes in Bitcoin’s P2P network, namely servers and clients. The
goal of an attacker is to learn which transactions a specific client issued. Clients only establish at most
eight outgoing connections, whereas servers allow for both outgoing and incoming connections. Thus,
an attacker cannot directly connect to a targeted client. The basic idea of the attack as proposed by
Biryukov, Khovratovich, and Pustogarov [5] is that the attacker connects to as many servers as possible
and analyses the transactions relayed by these servers. The attack utilizes the fact that a server that is
directly connected to the targeted client will learn about the client’s transaction earlier and therefore
relay it earlier. The servers to which a client connects directly (via one of its eight outgoing connections)
are called entry nodes3. The unique entry-nodes assumption assumes that a client’s entry nodes are unique.
For any transaction, the attacker checks whether the first few propagating servers belong to the targeted
client’s entry node set, which the attacker learned in a previous step. If the first propagating servers
match the targeted client’s entry nodes, the attacker can infer that the transaction originated from that
client. The matching relies on the assumption that there are no collisions, i. e. among the first ten servers
that propagate a client’s transaction, there is no subset of three servers that accidentally belong to some

3Biryukov, Khovratovich, and Pustogarov show how to learn the entry node set of a client utilizing address propagation [5].
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other client’s entry note set. This assumption essentially excludes false positives because if something went
wrong with the attack, the attack does not point to a client that did not issue the transaction. Biryukov,
Khovratovich, and Pustogarov argue that the probability of a collision is negligible [5].

4.4.2 Multi-Output Assumption

In Monero, decoy members of the input ring to a transaction are sampled randomly according to a gamma
distribution with fixed parameters [44]. According to this distribution, the likelihood is very low for two
outputs of the same transaction to appear together in different input rings of another transaction. This
is captured by the multi-output assumption which says that if two outputs of the same transaction appear
together in different input rings of another transaction, these two outputs belong to the same entity and are
the actual spenders of the other transaction. Kumar, Fischer, Tople, and Saxena use this assumption in
their heuristic of the same name to deanonymize some senders but are aware of the possibility of false
positives [38].

4.4.3 Newest-Account Assumption

The newest-account assumption states that the newest account in an input ring of a transaction in Monero
is the actual spender [38, 45]. This assumption was proposed by Kumar, Fischer, Tople, and Saxena
and Möser et al. for older versions of Monero. In the literature, the heuristic using the newest-account
assumption is sometimes referred to as “guess-newest heuristic” (e. g. [45]) to emphasise the guess an
adversary would make to deduce the actual spender. It is shown that the heuristic delivers reasonable
results by comparing the results with ground-truth data gained from the so-called zero-mixin attack
(see Section 4.3.1) [38, 45]. The current version of Monero uses a gamma distribution [44], which gives
preference to newer accounts and therefore the false-positive rate should be increased. Furthermore, the
ground-truth data can no longer be generated as before as Monero demands a minimum ring size which
prevents the zero-mixin attack.

4.5 Practical Relevance
The assumptions differ in their practical relevance. The overview in Table 2 indicates how relevant each
assumption might be. We consider all assumptions where the weaknesses exploited by the corresponding
attacks have been fixed as having low relevance. The reason is their limited effect on current and future
blockchain activity. As there are attacks requiring little effort, we consider assumptions employed by
attacks that require significant effort, such as relay-pattern attacks which need active engagement in the
Bitcoin network, to have low practical relevance as well. We determined medium relevance as follows. For
the Zcash assumptions, Chainalysis stated that they are aware of the corresponding attacks [14], thus
they might be actually used. In the case of Monero, Internal Revenue Service entered into two contracts
with Chainalysis and Integra FEC for $625,000 to develop tracing methods for Monero [56], so there
are also potential use-cases for the corresponding attacks and assumptions they rely upon. Finally, the
multi-input and change-address assumption are highly relevant as it is very likely that they are actually
relied upon by law enforcement as discussed for the multi-input assumption in Section 3.

5 Arguing Reliability
Stating assumptions in terms of our taxonomy can just be a first step towards more informed legal
decision-making. A further requirement is a general understanding of how reliable an assumption category
is and how reliable categories are compared to each other. To this purpose we will discuss the general
reliability of the four categories, which leads to a natural relation and partial order between them. Note
that this comparison can only be a guideline of how to deal with different categories of assumptions in
general, as concrete assumptions might be studied and understood better or worse. Furthermore, it is
possible that the reliability of a well-studied assumption deviates from other assumptions in its category.

An overview of our result is shown in Figure 1. We identify well-established computational hardness
assumptions to be the most reliable ones, as they have been studied extensively over a longer time period
and independent of cryptocurrencies. Protocol assumptions might also be very reliable but are probably
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(Main) assumption(s) Affected Type Exploited weakness fixed Relevance
Multi-Input BTC, ZEC User Behaviour NO HIGH
Change-Address BTC, ZEC User Behaviour NO HIGH
No-Proxy BTC User Behaviour NO LOW
Unique Entry-Nodes / No-
Collision

BTC Statistical NO LOW

Miner-Payout ZEC User Behaviour NO LOW
Value-Input-Output ZEC User Behaviour NO MEDIUM
Fingerprinting ZEC User Behaviour NO MEDIUM
Response-Time ZEC Protocol YES LOW
Wallet-Communication XMR Protocol YES LOW
No Double-Spending XMR Computational Hardness PARTLY MEDIUM
Multi-Output XMR Statistical NO MEDIUM
Newest-Account XMR Statistical YES LOW

Table 2: Overview over the assumptions with indication of their practical relevance and whether the
weaknesses exploited by the corresponding attacks have been fixed. A high relevance means that
the attack is very likely actually employed by law enforcement; medium means that it is not
known whether the attack is used but we see potential use-cases; low means that we do not see a
potential use-case because the exploited weakness has been fixed or the attack would require too
much effort. For a general overview on reliability of the assumptions see Section 5.

less reliable than computational hardness assumptions. The reason is that they heavily depend on the
protocol which, for example, can be changed by the integration of new features or because parts that
where shown to be vulnerable to attacks were removed or fixed. On the other hand, if several protocols,
e. g. wallet implementations, are allowed in the same environment, to make attacks using a protocol
assumption reliable in practice it has to be known which protocol is used. The last assumption in this
order are user behaviour assumptions, which appear to be the most unreliable ones in general, as user
behaviour is subject to change and hard to assess. Statistical assumptions are not part of this order
as, in contrast to the other three, their reliability can be computed due to the definition of statistical
assumptions (see Section 4.4).

While it might seem desirable to order the assumptions within a category, this is neither possible nor
useful for the application of our taxonomy. To see why it is not possible, let there, for example, be two
user behaviour assumptions. Both of them might rely on the use of some special (but different) wallet but
otherwise rely on similar ideas. If we do not know anything about the actual use of the wallets, there is
no reasonable way to rank one assumption as “better” than the other. It is also not useful because our
taxonomy aims to work for every assumption within one of the categories. Therefore, even if a kind of
ordering within the considered category could be established, it cannot easily be extended to new/other
assumptions. For this reason, rather than providing orderings within the categories, we point out factors
which influence the individual quality of assumptions. Thereby, these factors might both improve or
downgrade the quality. We will discuss, by way of example, what practical consequences the factors can
have, guided by whether investigative measures are lawful regarding whether the degree of suspicion
necessary for the investigative measures could be established. However, we would like to point out that
our taxonomy should only be understood as an argumentation tool, which is why we cannot reach a
conclusive assessment. The reason for this is that the assessment of whether the necessary degree of
suspicion has been reached must be decided by legal practitioners on a case-by-case basis. The need for
a normative assessment on a case-by-case basis results from the facts of the case, which can be highly
complex and diverse. In addition, circumstances beyond blockchain transactions potentially affect the
interpretation of results obtained from blockchain analyses.

5.1 User Behaviour Assumptions
The most unreliable assumptions are in general user behaviour assumptions. The two main reasons are
that they are subject to change, as user behaviour changes, and that assessing their reliability would
require ground-truth data on user behaviour at (a) specific point(s) in time which depends on the use case.
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Figure 1: General reliability of assumptions by category from highest to lowest

The changing nature of user behaviour assumptions can be best seen by the very different treatment of
the multi-input assumption (see Section 4.1.1) and change-address heuristic (see Section 4.1.2). Although
in the past it could be argued that the multi-input assumption was reasonable, this can no longer be
done against the background of false positives in case heuristics are applied to CoinJoin transactions. In
the case of change-address heuristics, one assumption is always that change exists at all. On top of that,
the open-source Bitcoin analysis software BlockSci implements ten different change-address heuristics [33]
which depend on the client(s) used. This makes the heuristics heavily dependent upon the assumptions
about the usage of the corresponding clients.

Obtaining the requisite ground-truth data for user behaviour in cryptocurrencies is hard [25]. The
existing work of user studies [37] or the development of user mental models [40] does not solve the problem
of missing ground-truth data as they try to answer different research questions. They do not focus on
obtaining any ground-truth data to assess the reliability of user behaviour assumptions in the context
of cryptocurrency anonymity. Thus, their results only permit the drawing of marginal and very limited
conclusions about user behaviour in the context of this work. Besides that, the participant population in
user studies might not reflect the population that is actually targeted by the attacks surveyed here. It is
particularly difficult to find representative participant populations that can be trusted and provide the
necessary information to establish a ground truth. For example, criminals might behave very differently
from users who are willing to participate in user studies, however criminals are usually the ones targeted
by law enforcement investigations. The conclusion is that it is crucial to treat user behaviour assumptions
with care by making them explicit and discussing whether they are reasonable every time anew.

Factors: 1) Ground truth: For the quality of user behaviour assumptions, ground truth is a crucial
factor. We denote with this term insights into actual user behaviour, which have to be gained by other
means than using the assumption it is used for. 2) False positive detection: Parallel to ground truth,
the detection of false positives is important, especially if no ground truth data is available. This can
be seen in the example of the multi-input assumption in Bitcoin. While there is often no ground truth,
a perfect detection of CoinJoin transactions would remove all false positives produced by them and
therefore improve the quality of attacks using the multi-input assumption. 3) Additional information
gained from other sources: If a specific user is targeted it might be possible to improve the quality by
some additional information gained from, for example, a forum post where a Bitcoin address is posted
together with a (user)name. Another example would be some information about whether users exchanged
secret keys offline. 4) Protocol-induced behaviour: It describes user behaviour that is due to properties of
the protocol. An example of this are change outputs. Change is something that usually occurs naturally
as the input amount of a transaction is consumed entirely. A characteristic of protocol-induced behaviour
is that it needs active engagement to deviate from, for example, the decision not to generate change.
Thus, assumptions based on protocol-induced behaviour can in principle be considered more reliable than
those based on non-protocol-induced behaviour.

Practical Consequences: As long as there is no ground-truth data, the findings of attacks based on
user behaviour assumptions might only establish the degree of suspicion which is necessary for less intense
investigative measures such as requesting personal data form third parties. Without ground truth, other
factors are needed for more intensive measures, such as that the user behaviour was protocol induced. A
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prerequisite for establishing a degree of suspicion at all is that a false positive control has been performed,
which will be explained using the example of the multi-input heuristic. If it is known that the multi-input
heuristic was applied to CoinJoin transactions when identifying a wallet, no degree of suspicion for any
investigative measures might be established solely on the basis of the obtained address clusters, as false
positives will necessarily occur in this case. Consequently, in order to establish any degree of suspicion at
all, it must be ruled out that the multi-input heuristic was applied to CoinJoin transactions according
to the current state of the art. The CoinJoin detection of the open-source cryptocurrency forensic tool
BlockSci [33] is tailored to specific CoinJoin transactions [8]. As a consequence, CoinJoin transactions of
recent services such as Wasabi [65] or Samourai [55] will in general not be detected which might result
in false positives when applying BlockSci’s multi-input heuristic. As a consequence, BlockSci must be
extended by methods to detect Wasabi and Samourai CoinJoin transactions such as the ones proposed
by Stockinger, Haslhofer, Moreno-Sanchez, and Maffei [58]. Even with these extensions, it can not be ruled
out that CoinJoin transactions from lesser known or custom services remain undetected. While this might
be unsatisfying, it still satisfies that false positives have been excluded as far as possible according to the
current state of the art. Thus, to establish a degree of suspicion at all solely based on some blockchain
analyses, a minimum requirement must be to detect false positives according to the current state of the
art. If there is no false positive detection, there must be other blue (additional) indications to establish
the necessary degree of suspicion, even for less intensive investigative measures.

5.2 Protocol Assumptions
Protocol assumptions themselves can be seen as very reliable as random behaviour within a protocol
is usually very limited. Thus, if a specific protocol, for example, the implementation of communication
between a wallet and a full node, shows specific behaviour, this behaviour can always be found. While
protocol assumptions seem very reliable, it must not be forgotten that, in practice, they always come with
the drawback that they might become outdated and are only useful for data specifically produced within
the correct time frame. Likewise, if a currency allows for several protocols to be used, for example, when
an update to a newer encryption is done over several months, there will always be an accompanying user
behaviour assumption. This assumption is about the concrete use of the protocol and has to be taken into
account when applying an attack. We note that these types of user behaviour assumptions are at least
sometimes of a more reliable nature as there might be concrete identifiers of which protocol was used.
For these reasons, we declare protocol assumptions to be slightly more unreliable than computational
hardness assumptions, however still more reliable than plain user behaviour assumptions.

Factors: 1) Spread of technology: If, for example, the assumption relies on the special behaviour of
wallets, it is necessary to know about the spread of these wallets, i. e. if a wallet is “the” standard wallet,
the assumption might be very reliable, but for some rarely used wallets it is not. 2) Delays: In particular
for assumptions about timing patterns, delays within the network have to be taken into account as they
strongly influence the patterns observed. 3) Packet loss: Similar to timing patterns, for communication
patterns it is important to consider how many packets were lost in communication, as this might, for
example, increase the number of communication rounds between node and wallet.

Practical Consequences: Protocol assumptions have presumably not played a role in blockchain
forensics so far, as they have also played a rather subordinate role in research and the corresponding
attacks have been fixed by software updates (see Table 3). Consequently, very little can be said about
the practical consequences. Nevertheless, the following considerations are intended to assist in the event
that protocol assumptions become relevant to investigations in the future. If analyses are based on
implementation details of a certain wallet, then the circulation of the wallet determines the established
degree of suspicion. If the circulation is not known and other popular wallets exist that stand up to these
analyses, then only less intense investigative measures might be employed. On the other hand, if the
cryptocurrency in question is less widespread and only one wallet exists, then the corresponding analyses
might be sufficient even for intensive investigative measures.

5.3 Computational Hardness Assumptions
Computational hardness assumptions are the most reliable ones as they are quite stable, i. e. not subject
to change as user behaviour or protocol assumptions are. Besides that, they have usually been well
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established and thus studied for a long time. Computational hardness assumptions do not require any
ground-truth data. Finding ground-truth data would mean ascertaining specific examples where the
assumption does not hold and immediately breaking the security of possibly the entire system and many
other systems which use the same parameters, groups, etc. If an attack is solely based on a well-established
computational hardness assumption, the findings might have high probative value and thus establish the
required degree of suspicion even for intense investigative measures.

Factors: Acceptance within the research community: To assess the reliability of a hardness assumption,
for example, the discrete logarithm assumption, it has to be taken into account how well established the
assumption is within the community. Thereby, the assumption can be considered accepted if it has been
studied intensively without proving it wrong and/or the assumption is utilized in many different protocols.
In contrast, new assumptions that are “invented” for a specific protocol should be handled with great
caution as Goldwasser and Kalai [27] already pointed out.

Practical Consequences: If an analysis solely relies on some well-established hardness assumption, the
degree of suspicion required for any investigative measures might be established. On the other hand, if
the assumption is relatively new and cannot be said to be “accepted” by the community, then only less
intensive measures such as requesting personally identifiable information from third parties might be
lawful. However, such new assumptions are probably not sufficient for pre-trial detention.

5.4 Statistical Assumptions
Statistical assumptions differ in two dimensions from the aforementioned three. First, by the very nature
of statistical assumptions, we can (in theory) asses the reliability exactly, as probabilities can be computed.
Second, the variance in reliability is very high. This might sound counter-intuitive, but the fact that we
can compute something concrete solely means that we can compute how “good” or “bad” an assumption
is, which does not strengthen the assumption itself. For example, the newest suggestion in Monero for
sampling rings favours recent accounts over older ones by using a gamma distribution [44]. Doing some
computations with conditional probabilities for a concrete ring provides the exact probability for the
newest-account assumption (see Section 4.4.3) to be correct, but with high probability will tell us that
the probability for correctness is very low. This makes it impossible to put statistical assumptions into a
relation concerning reliability with the other three assumptions.

Factors: 1) Correct use of protocol: Statistical assumptions can only be made if the protocol specifies
some probability distribution or some behaviour. Therefore, they have to rely on the correct use of the
protocol. 2) Likelihood of preconditions: In addition to the correct use of protocol, the likelihood of
preconditions needs to be taken into account, i. e. that some events happen at all and if they happen how
likely it is that they are the desired events. The multi-output assumption in Monero states that if two
different outputs from the same transaction tx1 occur in two different rings of the same transaction tx2

(which we call double link for now), then they are likely to be the real spenders of that transaction as
solely being part of the decoy set is very unlikely. While it is true that it is very unlikely that they are
part of the decoy set, the conclusion that they must be the real spender is problematic. The probability
that a double link can be observed is the sum of the probabilities that it happens by chance and that
someone does it on purpose. The latter probability not only depends on the behaviour of the owner of
these two outputs but also on the probability that a transaction contains two outputs actually belonging
to the same owner. Thus, the probability that a double link happens on purpose might still be smaller
than that it happening by chance. Additionally, according to the decoy selection algorithm, such a double
link is more likely to happen for a newer tx1 by chance. These two are thus preconditions that have to be
taken into account when evaluating the quality of that statistical assumption.

Practical Consequences: The multi-output assumption for Monero states that it is very unlikely that
two outputs of the same transaction appear as inputs in another transaction by chance. The assumption
further states that the appearance of two such outputs would imply that they belong to the same entity.
In probabilities, this would mean the following. Let MO be the event that a transaction spends to two
different addresses but the same entity. Let RMI be the event that two outputs of the same transaction
appear as inputs of another transaction by chance and PMI the probability that they are used intentionally
in the same transaction. Note that RMI does not exclude the case that the two outputs actually belong
to the same entity. Let MI be the event that we can observe two outputs from the same transaction
in the input ring of another transaction. The assumption states that Pr [RMI|MI] < Pr [PMI|MI]. If
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the assumption is wrong, it cannot establish a link between the two addresses. As a consequence, no
investigative measures can be based on such a link. This means that in the end, the assessment of the
probabilities determines whether the degree of suspicion could be established or not.

5.5 Consequences Using Wall Street Market as an Example
We show how our taxonomy can be applied to real criminal cases, using the Wall Street Market (WSM)
investigations as an example, and more specifically the example of one of its alleged administrators called
“Frost” [63]. In the case of Frost, blockchain analyses were used, at the end of which personal data was
requested from a Bitcoin payment processing company (BPPC). Subsequent investigative measures made
possible by obtaining the personal data, such as a search of Frost’s premises, would require a degree of
suspicion and we will discuss what reasons there are to believe whether it was established or not. First,
we summarize the analysis that preceded the request. There were mainly four wallets reported in the
analysis, wallets W1, W2, W4 and W5.4 Each wallet was detected by the US Postal Service (USPS) using
proprietary software [63, p. 20, footnote 2]. Wallets W1, W4 and W5 were found to be origin of payments
to various services via BPPC. Prior to the payments, the corresponding Bitcoins were supposedly mixed
via a commercial mixing service. However, the USPS stated that they reversed the mixing (“de-mix”). The
request to the BPPC for personal data on the payments was finally conducted because the wallets that
funded wallets W1, W4 and W5 were associated with WSM. One of these funding wallets was wallet W2.
In other words, four analytical steps were involved in the analysis: identifying wallets, detecting payments
between wallets, de-mixing and the association of wallets with darknet marketplaces. All these steps are
based on user behaviour assumptions.

Even though it is unclear how exactly the proprietary software utilized by the USPS works, we can
at least assume that it employs the most common technique, namely address clustering based on the
multi-input heuristic. As there is no meaningful ground truth data for the multi-input heuristic so far, it
is not possible to argue with ground truth as a factor. Furthermore, we do not know whether any form
of false positive detection has taken place, for example, whether it was excluded that the heuristic was
applied to CoinJoin transactions. On the other hand, at least for wallet W2 there might be additional
information that confirms the address clustering, which was obtained in the course of a seizure of another
darknet marketplace [63, p. 28 f.]. This marketplace had already been under independent investigation
before. For the other wallets, no such additional information is known. Therefore, it would be possible
that there were only some addresses in wallets W1, W4 and W5 that could be linked to WSM. The
addresses that could not be linked to WSM could belong to unsuspicious third parties. As a result, the
request to the BPPC could reveal personal data of an unsuspicious third party. Only based on the results
of the blockchain analysis, the premises of this party may not be searched. The reason is that in the
case of a search, the suspicion must be particularized against the person being searched. In summary,
the reliability of clustering determines the individualization of suspicion, with individualization being a
prerequisite for the lawfulness of certain investigative measures.

6 Conclusion
We demonstrated that cryptocurrency forensic methods based on uncertain assumptions might cause
legal issues. One example is the question whether further investigative measures are lawful that are based
solely on findings from cryptocurrency analysis using uncertain assumptions. To address these issues, we
proposed a taxonomy in which we categorized common assumptions underlying deanonymization attacks
found in research papers. We elaborated that in general assumptions based on user behaviour are the
least reliable, while at the same time they are amongst those with the highest potential to be practically
relevant. The user behaviour assumptions include the multi-input and the change heuristic, which we
believe are currently the most relevant in practice, as there is strong indication that both are already
relied upon by law enforcement agencies. As the reliability of forensic methods must always be evaluated
on a case-by-case basis, we complement our taxonomy with factors that serve to argue reliability on that
basis. In the case of the multi-input heuristic, one important factor is the detection of false positives
introduced by CoinJoin transactions that by design break the heuristic.

4The chosen numbering of the wallets is based on the one used in the criminal complaint [63].
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Attack/Heuristic Used (Main) assump-
tion(s)

Affected Type Fixed

Multi-Input [32, 47, 48,
29, 57, 24,
1, 42, 52, 51,
34, 2]

Multi-Input BTC, ZEC User Behaviour NO: would require
to prevent multiple
inputs

Change-Address [42, 57, 1,
47, 34]

Change-Address BTC, ZEC User Behaviour NO: would require
to change the trans-
action structure

Cluster-Intersection [26] depends on
the actually
used address-
clustering heuris-
tics

BTC User Behaviour NO: would at least
require that the re-
striction of many
mixing services to
a fixed value be re-
moved [20]

Relay-Pattern Attacks [36, 5] No-Proxy /
Unique Entry-
Nodes / No-
Collision

BTC User Behaviour /
Statistical

NO: would require
to change Bitcoin’s
P2P network

Mining Pool Heuristics [3, 34] Miner-Payout ZEC User Behaviour NO: would require
different user be-
haviour

Value-Input-Output [4, 50, 34] Value-Input-
Output

ZEC User Behaviour Partly fixed: No
founder’s reward
anymore by design

Fingerprinting [4] Fingerprinting ZEC User Behaviour NO: would require
to hide the value

Response-Time [61] Response-Time ZEC Protocol YES: Software up-
date

Wallet-Communication [61] Wallet-
Communication

XMR Protocol YES: Software up-
date

Zero-Mixin [38, 45, 71,
69]

No Double-
Spending

XMR Computational
Hardness

YES: Protocol up-
date

Closed-Set [71, 69] No Double-
Spending

XMR Computational
Hardness

NO: would require
to change user be-
haviour or signa-
ture generation

Multi-Output [38] Multi-Output XMR Statistical NO: would require
different user be-
haviour, unclear if
fix needed

Newest-Account [38, 45] Newest-Account XMR Statistical YES: Monero sug-
gests a different dis-
tribution

Table 3: Overview over attacks with corresponding assumptions indicating if they have been fixed

A Generalizability and Scope of the Legal Issues
Uncertain assumptions underlying forensic methods might raise legal issues at any stage of the criminal
proceedings and independent of the jurisdiction. In the pre-trial stages, the uncertainty could be too
high to establish the required degree of suspicion for investigative measures. During the actual trial, the
uncertainty could either hinder the scientific evidence from being admitted or decrease its probative value,
which affects its assessment. These issues are not specific to a particular jurisdiction but apply generally
in both the common law and the continental European system as elaborated in the following.

Pre-Trial Stages The most important element in the pre-trial stages are investigations in order to
obtain evidence. As investigative measures, such as searches or even arrests, interfere with the fundamental
and human rights of the persons concerned, they require a legal basis. This basis defines the prerequisites
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that must be satisfied before investigative measures can be conducted. One of those requirements is
always some degree of suspicion [60, 11]. The effects that uncertain assumptions exert on this degree will
be illustrated using the example of a search of a suspect’s premises,5 referring to England and the US for
the common law system and to Germany for the continental European system. In the US, the Fourth
Amendment stipulates that the requisite degree of suspicion for searches and seizures is “probable cause”,
while in England it is “reasonable grounds” pursuant to Section 8 (1) Police and Criminal Evidence Act
1984 (PACE). In Germany, the required degree of suspicion is “sufficient factual indications” as enshrined in
Section 102 German Code of Criminal Procedure (Strafprozessordnung ; StPO) in conjunction with Section
152 (2) StPO. These degrees of suspicion have in common that they must be sufficiently individualized
[59]. This means that the mere suspicion that a criminal offense was committed is not sufficient; rather,
the suspicion must be individualized with respect to the person whose premises are to be searched. This
individualization is precisely where uncertain assumptions become pertinent. Cryptocurrency addresses
associated with a crime could be assigned to a person by means of address clustering and attribution
tagging. If that person’s premises are to be searched, the uncertainty in the assumptions determines how
much the suspicion against that person is individualized. With maximum uncertainty in the assumption, no
individualization is possible, which is why a search in such a case would be unlawful. As a consequence, any
evidence obtained in the course of an unlawful search might be rendered inadmissible under exclusionary
rules that exist not only in common law but also in most civil law jurisdictions [62]. In general, despite
the different prerequisites regarding the admissibility of evidence, in all jurisdictions there is at least a
real danger of exclusion if there was no suspicion.

Actual Trial In the pre-trial stages, the question was whether further investigative measures could
be based on the findings of cryptocurrency forensics methods and what the consequences would be if
this question were to be answered in the negative. As further evidence is often found in the course of
such investigations, the findings themselves play a subordinate role, if any, in the actual trial. However,
it might also occur that the findings of cryptocurrency forensics methods become the direct subject of
main proceedings as scientific evidence. This may be the case if they are directly employed to prove
a certain element of a crime, for example, in cases of money laundering or terrorist financing, or if no
further evidence was obtained during the pre-trial stages. In this case, the questions of the admissibility
of such evidence and its assessment arise. US law distinguishes strictly between the admission6 and the
assessment7 of expert evidence and provides precise rules for the former. Continental European legal
systems, however, follow the principle of freedom of evidence, which means that, in general, there are no
rules of admissibility and any issues that may arise in this context are addressed in the assessment of the
evidence [15]. A major problem in jurisdictions where the question of admissibility is neglected is that there
is often a great deal of trust placed in the expert witness who provides the scientific evidence [15]. The
problem became evident in a recent decision of the German Federal Court of Justice (Bundesgerichtshof ;
BGH) where an IT expert witness not only did not have to explain his methodology but also did not
have to justify the conclusions drawn in his expert testimony [10].

B Utilizing the Taxonomy
Our survey and taxonomy are meant to provide support in the following three situations, which are at
the same time the major points of this paper.

First, research in the area of cryptocurrency attacks should treat underlying assumptions with great care
and whenever possible argue how reliable those assumptions are. This could be done by explicitly stating
the employed assumptions and classifying them according to our taxonomy. Besides that, factors (see
Section 5) that might play a relevant role in the practical application of the attacks should be discussed.
The cautious handling of assumptions in research is a basic prerequisite for the following points.

Second, expert witnesses presenting any findings based on assumptions should address their reliability
such that legal decision-makers can draw informed conclusions. To do this, the experts must explicitly
state the assumptions and argue the reliability thereof in the light of the factors that played a role in the

5For the sake of clarity, the search of non-suspects’ premises is ignored at this point, although similar considerations apply.
6Admission refers to whether the evidence is allowed for consideration.
7Assessment refers to the evaluation of the evidence’s probative value.
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individual case. Thus, our taxonomy can be the basis of a common comprehensible language between
expert witnesses and legal decision-makers and also be a first step towards future standardization.

Finally, law enforcement agencies should question whether any results of attacks based on uncertain
assumptions really establish the necessary degree of suspicion for more intensive investigative measures.
For this purpose, analysis software must not be used as a black box or pressure must be built up on the
companies developing such software so that they disclose the methods employed and, if necessary, argue
their reliability.

Even though substantial differences between legal systems exist, our taxonomy targets their common
basis, which is the necessity to reason. Only if the points listed are complied with, can legal decision-makers
take into account the uncertainty in the assumptions and reach decisions that are in accordance with the
law.
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