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Abstract. Verifiable random functions (VRFs) are a useful extension of pseudo-
random functions for which it is possible to generate a proof that a certain image
is indeed the correct function value (relative to a public verification key). Due to
their strong soundness requirements on such proofs, VRFs are notoriously hard
to construct, and existing constructions suffer either from complex proofs (for
function images), or rely on complex and non-standard assumptions.
In this work, we attempt to explain this phenomenon. We show that for a large
class of pairing-based VRFs, it is not possible to obtain short proofs and a re-
duction to a simple assumption simultaneously. Since the class of “consecutively
verifiable” VRFs we consider contains in particular the VRF of Lysyanskaya and
that of Dodis-Yampolskiy, our results explain the large proof size, resp. the com-
plex assumption of these VRFs.

1 Introduction

Verifiable Random Functions. Pseudorandomness, and in particular pseudorandom gen-
erators [7, 51] and pseudorandom functions (PRFs, [22]) have proven to be immensely
useful and universal cryptographic building blocks. A PRF takes as input a short seed
(or key) sk, and an input x, and outputs a function value y = prfsk(x). The distinguish-
ing feature of a PRF is that for a fixed but random sk, oracle access to prfsk(·) cannot
be distinguished from oracle access to a truly random function. This allows to use prf
as a compact drop-in replacement for a truly random function.

In this work, we focus on a special class of PRFs whose image can be proven to be
correct (relative to a public key vk that fixes prf’s behavior). Indeed, a verifiable random
function (VRF [38]) vrf is a PRF for which it is possible to generate proofs π (from a
given sk and x) that show that a given y really satisfies y = vrfsk(x). We want such
proofs to be sound in a very strong sense: We require that for any vk and x, no two
y 6= y′ can both be proven to be vrfsk(x). This property, dubbed “unique provability”,
is crucial for most applications of VRFs, and is the main reason why constructing VRFs
is difficult. For instance, unique provability cannot be achieved by using non-interactive
zero-knowledge proofs on a given PRF. (This would require a trusted common refer-
ence string, which we cannot assume in the VRF setting.) We do note, however, that
(non-straightforward) solutions with non-interactive witness-indistinguishable (NIWI)
proofs are possible [6, 25].



VRFs have a number of interesting applications. These include signatures with very
strong verifiability guarantees [24], resettable zero-knowledge proofs [39], lottery sys-
tems [40], transaction escrow schemes [29], updatable zero-knowledge databases [35],
and e-cash systems [2, 4].

Existing Constructions of VRFs. There are a variety of constructions of VRFs al-
ready [1, 6, 9, 16, 17, 25–28, 32–34, 36, 38, 44, 46, 50]. These constructions are diverse
in the used techniques and the resulting features: For instance, some constructions (such
as Lysyanskaya’s VRF [36] and its variants [9, 26–28, 46]) are based on the specific al-
gebraic properties of the Naor-Reingold PRF [41], while others (such as [6, 25]) are
based on more generic primitives such as NIWI proofs. However, none of the above
VRF constructions achieves all of the following useful features simultaneously:

– its input space is large (i.e., exponential in the security parameter),
– its proofs π are short (i.e., comprise a constant number of group elements),
– its security proof is based on a “simple” (i.e., non-interactive and compact1) as-

sumption.

We do note that some of the constructions come close: E.g., Kohl’s VRF [32] achieves
all of the above properties, except that proofs π comprise ω(1) group elements. Con-
versely, the VRF of Dodis and Yampolskiy [17] enjoys very compact proofs, but relies
on a complex hardness assumption (with challenges as large as the input space). While
there exists work on the difficulty of achieving VRFs (e.g., from trapdoor one-way
functions [19], cf. [12], or in a tightly secure way [44]), the proof size and necessary
assumptions for VRFs are generally not well-understood.

Our Contribution. In this work, we are concerned with the reason why it is difficult,
even after a plethora of different approaches and 20 years of research, to construct useful
and compact VRFs from standard assumptions. In order to give a meaningful answer,
we will restrict ourselves to particular classes of VRFs (which however cover many of
the previous VRF constructions), and give lower bounds.

Specifically, we restrict ourselves to VRFs vrf in the standard model (i.e., that do not
use random oracles or generic groups) that are algebraic over a group, such that secret
keys sk are comprised of exponents, and public keys vk, images y, and proofs π are
all comprised of group elements. We do allow pairings, however, such that in particular
images may be elements of a target group.

Furthermore, we require that verification (of a proof π for an image y) operates in
a specific and “consecutive” way. We give more details on the conditions on verifica-
tion below in the technical overview. We stress, however, that we believe that this way
to verify is natural, and in fact many existing VRFs support consecutive verification,
including Lysyanskaya’s VRF [36], the VRF of Dodis and Yampolskiy [17], and many
more (see Fig. 1). A convenient consequence of this type of consecutive verification is
that the function image y has a specific form: We can deduce that y = vrfsk(x) is of
the form gσx(

−→v )/ρx(
−→v ), where

1 With a non-interactive and compact assumption, we mean one in which the adversary gets a
constant number of group elements as challenge and is then supposed to output a solution (e.g.,
a decision bit).
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– g is a fixed group generator,
– σx and ρx are multivariate polynomials (that depend in any efficiently computable

way on the preimage), and
– −→v is the vector of discrete logarithms of the verification key vk.

We finally assume a large (i.e., superpolynomial in the security parameter) input space.
Again, while this of course severely restricts the VRFs we consider, many previous
constructions fall into this class.2

For such algebraic VRFs with consecutive verification, we show necessary relations
between the size of proofs π and the “size” of the underlying assumption (i.e., the
size of the challenge in group elements in a non-interactive hardness assumption). To
develop and express these relations, it is useful to consider what we call the evaluation
degree of the VRF. Formally, this degree is simply the maximum of the degrees of the
(multivariate) polynomials σx and ρx from the image y = gσx(

−→v )/ρx(
−→v ) above (and

for this exposition, we assume that these degrees do not depend on x).
We show that for any VRF vrf that matches all of our formal requirements,

(a) if the size of π (in group elements) is small, then so is the degree of vrf,
(b) if vrf’s degree is small, then vrf cannot be proven secure with a generic reduction

to a constant-size non-interactive hardness assumption. (We note that almost all
existing cryptographic reductions are generic.)

As an example, our results show that the VRF of Dodis and Yampolskiy cannot be
proven secure (at least not generically) from more traditional hardness assumptions.
Our results also show that the (comparatively large) proofs in Lysyanskaya’s VRF are
inherent, at least when relying on standard hardness assumptions. Figure 1 lists more
VRFs that fulfill our requirements (and whose proof sizes and/or assumptions can hence
be justified with our results).

While our result (a) is a direct consequence of our requirement on consecutive ver-
ifiability, we in fact give two versions of statement (b) that differ in exact requirements
and formalization. For instance, one version of (b) even excludes algebraic reductions
(i.e., is formalized within the algebraic group model [21]) from non-interactive assump-
tions of any polynomial size, but only applies to VRFs whose verification keys only
depend on a single variable or from non-interactive computational assumptions that de-
pend on a single variable. This allows to model Dodis and Yampolskiy’s VRF, but not
Lysyanskaya’s. The other version of (b) allows more general verification keys, but only
excludes generic reductions (i.e., is formalized within the generic group model [37, 43,
48]). In the next section, we give a more technical overview over our results.

Discussion. While the formal requirements for our lower bounds seem restrictive, their
preconditions are met by most existing VRFs (see Fig. 1). In that sense, they justify the
limitations of existing constructions, resp. proofs. An obvious question is thus: How can

2 A prominent verifiable unpredictable function (VUF, a weaker form of VRF) that does not fall
into this class is the one by Brakerski et al. [12]. This VUF takes group elements as input,
and hence does not quite fit into our framework. We will discuss this particular construction in
Section 2.1, and argue that this approach is unlikely to yield purely group-based VRFs.
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one circumvent our lower bounds (in order to construct VRFs with short proofs from
standard assumptions)?

First of all, one could of course circumvent our results by not (or at least not com-
pletely) working over cyclic groups. However, while there are a few more generic VRF
constructions (e.g., [6, 25]) that do not rely on groups, it seems that generic VRF con-
structions are less well-investigated than constructions based on cyclic groups.

Second, one could try to circumvent the more specific requirements of our lower
bounds. In particular, our “consecutive verifiability” requirement seems like a very spe-
cific requirement. An “interesting” (as opposed to a purely mechanical) way to cir-
cumvent consecutive verifiability would be the following. Recall that consecutive ver-
ifiability implies that VRF images consist of rational functions, i.e., are of the form
y = gσx(

−→v )/ρx(
−→v ). Jumping ahead, we will be interested in small-degree polynomials

σx, ρx. The following VRF candidate does not have this property:

vk = e(g,g)s, y = g
3
√
s+x π = g( 3

√
s+x)2 .

Verification checks that e(y,y) = e(g, π) and e(π,y) = vk · e(g,g)x. The security of
this VRF candidate seems unclear, but observe that we require 3 6 | (ord(g) − 1) both
for uniqueness, and to be able to compute 3

√
s+ x mod ord(g).

More generally, our results do not exclude VRFs in which the image is an active
ingredient in intermediate verification computations, and not only considered in a final
verification step (that involves previously computed and/or verified proof elements). Of
course, for constructions that use, e.g., roots of exponents (like the above candidate), it
may be challenging to prove their security from Diffie-Hellman-like assumptions.

1.1 High-level Technical Overview

The Evaluation Degree of a VRF. Our technical results rely on the “evaluation degree”
of a VRF vrf as a helpful technical notion that connects vrf’s proof sizes and vrf’s
underlying hardness assumption. Hence, let us first take a closer look at this notion of
degree.

First, we recall one of our restrictions on the VRFs we consider. We assume that
vk and π consist of group elements, and that verification operates in a “consecutive”
way, in the following sense: Assume that verification wants to verify a proof π (which
consists of, say, κ group elements π1, . . . , πκ) for an alleged image πκ+1 := y (which
is a single group element). Then, we require that verification proceeds in κ+1 steps, and
in the i-th step checks an a priori fixed system of pairing product equations in variables
π1, . . . , πi and vk. We also require that in the equations for the check for πi, this element
only occurs linearly (but not quadratically, i.e., in both arguments of a pairing).

Verification succeeds if all these systems of equations hold. In other words, proof
elements (and eventually image y) are verified one at a time, each time checking a
quadratic equation in the corresponding exponents of this and all previous elements and
vk.

This notion of consecutive verification sounds natural in a pairing setting, and in-
deed many existing vrf constructions (including the ones from [17, 36]) have a con-
secutive verification procedure in the above sense. Intuitively, consecutive verification
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Reference CV degree |vk| |π| assumption remark
MRV99 [38] x — large large RSA tree-based
Lys02 [36] X λ 2λ λ q-type
Dod03 [16] X O(λ) O(λ) O(λ) ad-hoc
DY05 [17] X 1 2 1 q-type small inputs
ACF09 [1] X λ+ 2 2λ+ 2 λ+ 1 q-type
BCKL09 [4] x 1 3 O(1) q-type small inputs
BGRV09 [12] x — 1 1 gap-CDH weak security
BMR10 [9] X λ+ 1 (λ+ 2) λ q-type small inputs
HW10 [27] X λ+ 1 λ+ 3 λ+ 1 q-type
Jag15 [28] X O(λ) O(λ) O(λ) q-type
LLC15 [34] X λ+ 1 2λ+ 1 1 q-type multilinear maps
HJ16 [26] X O(λ) O(λ) O(λ) DLIN
Bit17 [6] x — depends large depends generic/NIWI-based
GHKW17 [25] x — depends large depends generic/NIWI-based
Kat17 [30] X ω(log(λ)2) ω(

√
λ log(λ)) ω(

√
λ) q-type

Yam17 [50] X O(log(λ)2) O(λ log(λ)2) O(log(λ)2) q-type
Ros18 [46] X O(λ) O(λ) O(λ) DLIN smaller π than [26]
Koh19 [32] X κ poly(λ) κ DLIN κ ∈ ω(1) parameter
Nie21 [44] X O(λ) ω(log(λ)) O(λ) q-type

Fig. 1. Existing VRF constructions. The “CV” column indicates whether the construction is con-
secutively verifiable in our sense. “Degree” denotes its evaluation degree (where applicable), and
|vk| and |π| denote its verification key size, resp. proof size in group elements. When possi-
ble, we have chosen parameters such that the input size is {0, 1}λ. For comparability, we clas-
sify assumptions with polynomially many challenge elements as “q-type”, and other nonstan-
dard assumptions as “ad-hoc”. “Small inputs” (as a remark) means that the VRF only supports
polynomially-small input spaces.

requires that “higher-degree” exponents in proof elements or image must be verified
using intermediate group elements with intermediate degrees. Fortunately, as already
outlined, consecutive verification also implies that images y are of the form

vrfsk(x) = y = gσx(
−→v )/ρx(

−→v )

for multivariate polynomials σx and ρx (which both are efficiently computable from x),
and the component-wise discrete logarithm −→v of vk. Now we say that the evaluation
degree of vrf (or y) is simply the maximum of the polynomial degrees of σx and ρx.
The evaluation degree of the VRF is then simply the maximal degree over all inputs x.

First Result: Proof Size Bounds Degree for VRFs with Consecutive Verification. Our
first result ((a) above, described in more detail in Section 2.1, and in full detail in Sec-
tion 4) shows that for VRFs vrf with consecutive verification (as above), the size of
proofs π imposes a limit on the vrf’s evaluation degree. Concretely, we show that the
evaluation degree of vrf is at most exponential in the proof size κ. Hence, if its proof
size is constant, then so is the evaluation degree of vrf.

This result is not too surprising, since intuitively, each additional proof element only
raises the degree of computed exponents (as algebraic fractions in−→v ) by a factor of 2. In
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fact, our proof largely consists in keeping track of expressions of all intermediate proof
elements (and finally of y) as expressions in −→v . The main technical work consists in
maintaining a suitable canonical form of these (rational) expressions at all times.

Interlude: the Case of Trivial Denominators. If function images are of the form y =
gσx(

−→v ) for a constant-degree (but multivariate) polynomial σx, already a very simple
linear algebra attack breaks the pseudorandomness of the given VRF. In fact, for suf-
ficiently many preimages xi, the polynomials σxi must eventually become linearly de-
pendent (because the set of their monomials is polynomially small). Hence, it is possible
to linearly combine sufficiently many given images to form the image of a fresh preim-
age. This breaks pseudorandomness, and we detail this attack in Appendix A for com-
pleteness. The case of rational function images y = gσx(

−→v )/ρx(
−→v ) (with deg(ρx) ≥ 1)

is hence not only more general (and covers, e.g., the Dodis-Yampolskiy VRF), but also
technically much more interesting.

Second Result: Security of Polynomial-Degree VRFs Requires Complex Assumptions
(for Univariate Verification Keys and in the Algebraic Group Model). Our second result
(first variant of (b) above, described in Section 2.2 more extensively, and in Section 5 in
full detail) shows that for any polynomial-degree VRF vrf, we can rule out the existence
of an “algebraic black-box” reduction to a class of non-interactive group-based compu-
tational assumptions. Here, an “algebraic black-box” reduction B fulfills the following
requirements:

– It is algebraic (in the sense of [21]): That means that whenever B outputs a group
element g∗, it also outputs (on a special channel) an explanation as to how g∗ is
computed from previously seen group elements.

– It uses the VRF adversary A only in a black-box way (i.e., it gets oracle access to
polynomially many instances of A).

Most existing reductions (in particular for VRFs) are simple in the above sense.
A non-interactive (group-based) computational assumption (NICA) states that it is

hard for any efficient adversary B to win the following game: B gets a challenge (that is
a vector of s group elements), and is then supposed to output a solution to that challenge
(which can be of any form).

We are now ready to state our result a bit more formally: Assume we are given a
polynomial-degree VRF vrf with verification key vk = gv . Furthermore, assume that
vrf enjoys a simple reduction B to a NICA. Then, we construct a meta-reduction [13]
that wins the NICA game without any external help. Our meta-reductionM interacts
with B (which gets a NICA challenge), and then attempts to take the role of a successful
VRF adversary A. In order to do this,M can query many VRF images yi, and use the
algebraicity of B to obtain representations of these yi in terms of the NICA challenge
elements. Hence, eventually B will find linear dependencies between the queried VRF
images by making sufficiently (but still polynomially) many queries. These linear de-
pendencies can then be used to compute the verification key’s exponent v. Using v, the
meta-reduction can predict any challenge image as gσx(v)/ρx(v). This allows A to win
the VRF security game, and henceM can use B to solve the NICA.
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This intuition neglects a number of technical obstacles: For instance, the linear de-
pendencies among the algebraic representations of VRF images linearly connect the
algebraic fractions σxi(v)/ρxi(v) of the corresponding images. To construct a new im-
age gσx∗ (v)/ρx∗ (v) from these, we need to distinguish the cases when the polynomial
fraction σx∗(X)/ρx∗(X) of the challenge can be expressed as a linear combination of
the polynomial fractions σxi(X)/ρxi(X) of the queries, and when this is not the case.
In the first case, the corresponding linear dependence immediately allows to compute
gσx∗ (v)/ρx∗ (v). Note that this is also possible for an adversary that does not get to see
the algebraic representations because the linear dependence holds for the fractions, not
only for the representations.

In the second case, we have to develop a linear dependence among the algebraic
representations (in the NICA challenge elements) of the σxi(v)/ρxi(v). In this case,
in fact the linear independence of the fractions σxi(X)/ρxi(X) guarantees that these
linearly dependent algebraic representations allow to extract the secret v.

In these observations, we crucially use that we deal with univariate polynomials
σxi and ρxi of small degree (which can be represented by short coefficient vectors).
In a separate result, we generalize this approach to multivariate σxi and ρxi where the
underlying assumption only depends on a single variable with polynomial degree.

Third Result: Security of Low-Degree VRFs Requires Complex Assumptions (in the
Generic Group Model). Our last result (second variant of (b) above, explained more
extensively in Section 2.3, and in full detail in Section 6.1 for the case of the Dodis-
Yampolskiy VRF, and in Section 6.3 for a more general case) is similar in spirit to our
second result, but features different requirements on the considered VRFs and reduc-
tions. Specifically, we prove that no generic reduction (i.e., that treats the underlying
group as generic in the sense of [48]) that is algebraic black-box (as outlined above) is
able to show security of a constant-degree VRF based on any “Uber-assumption” [8,
11] of arbitrary polynomial degree but constant challenge size.

An “Uber-assumption” is a special class of a NICA in which an adversary B is given
a number of group elements gfi(

−→z ), where the fi are multivariate polynomials specific
to the concrete assumption, and −→z is a vector of secret (and uniformly randomly cho-
sen) exponents. Typically, the task of B is then to compute a group element not in the
linear span of the given group elements (or to distinguish such an element from ran-
dom). Here, we restrict ourselves to Uber-assumptions in which the degree of the fi is
at most polynomial in the security parameter.

We again give a meta-reductionM that shows the following: Any simple generic
reduction B that shows the security of a constant-degree VRF under such an Uber-
assumption can be transformed into a successful Uber-solver. Again,M takes the role
of a VRF adversary that interacts with B. In the following, we outline our technique for
the specific case of the Dodis-Yampolskiy VRF, in which vk = (vk1, vk2) = (h,hs),
y = e(h,h)1/(s+x) (for a pairing e), and π = h1/(s+x).

Our meta-reductionM, when interacting with a reduction B in the role of a VRF
adversary A, first of all gets to see vk and an algebraic representation of vk in terms
of the NICA challenge. (In this work, we call an algorithm generic iff it is generic
in the sense of Shoup’s GGM and algebraic, cf. Definition 5.) This representation of

7



vk = (vk1, vk2) allows M to write vki = ggi(
−→z ) for polynomials gi in the Uber-

assumption secrets −→z .
Now we distinguish two cases: First, if the polynomial g2 is a scalar multiple of g1,

(i.e., if g2 = s′ · g1 for a scalar s′), then we have found the VRF secret key s = s′.
This s can directly be used to break VRF security and allowsM to imitate a successful
adversary for B (which in turn breaks the underlying Uber-assumption). But in case g2
is not a scalar multiple of g1, such a simple extraction of s is not possible.

The main technical work in our proof consists in showing that this second case
cannot, in fact, occur with non-negligible probability. Essentially, we do so by observing
that the representations of VRF proofs πi = h1/(s+xi) (i.e., of (s + xi)-th roots of
h = vk1) imply polynomial factors of g1. We prove that if g2 is not a scalar multiple of
g1, then these factors are coprime for different xi. Hence, querying sufficiently many
VRF proofs (for different xi) yields many non-trivial coprime factors of g1. Since we
assumed that the degree of g1 is polynomial (since the Uber-assumption polynomials
fi are of polynomial degree), this eventually yields a contradiction. Hence, g2 must be
a scalar multiple of g1, and our meta-reductionM can proceed as described above.

In Section 6.3, we also show how to generalize this argument to a broader class of
constant-degree VRFs which we call parameterized.

Omitted Details. All the above explanations have omitted or simplified a few details.
For instance, we did not discuss the role of group parameters (that fix the concrete
group and pairing setting). For VRFs, such group parameters should be certified [26]
(i.e., reliably defining an actual group), and they can be an additional part of vk or any
public parameters. Since generic groups can be viewed as “implicitly trusted”, we omit
this certification in the generic group model.

Furthermore, we have treated the VRF image always as a target group element.
However, since we are in a pairing setting, this image can also (and in fact with-
out loss of generality) be an element of the source group of the pairing. (This does
not change any of the arguments above.) Finally, we mostly consider verifiable un-
predictable functions (VUFs), a relaxation of verifiable random functions. Since we
present lower bounds, this only makes our results stronger.

2 Detailed Technical Overview

2.1 First Result: Connecting the Proof Size with the Evaluation Degree

Consecutively Verifiable VUFs/VRFs. To make the connection between the number
of group elements in the proof and the evaluation degree, we first define a class of
VUFs/VRFs that have a very straightforward verification algorithm. We assume that the
VUFs/VRFs in question operate over a symmetric3 pairing group with pairing e : G ×
G→ GT :

– The verification key vk consists of group elements v1, . . . ,vn ∈ G ∪GT
3 We note that our results can easily be transferred to asymmetric pairings, but for simplicity we

restrict ourselves to symmetric pairings.
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– For each input x, the proof consist of group elements π1, . . . , πκ ∈ G ∪GT
– For each input x, the evaluation value is a group element y ∈ GT

Each possible input element x of the VUF/VRF defines a set of pairing equations Ex
that can be efficiently derived4 from the input x. By pairing equations we mean a set
of polynomial equations of degree 2 in the input variables. We make the additional re-
striction that variables that represent elements from the target group may appear only
in monomials of degree 1. We require that the pairing equations can be verified consec-
utively, that is, there is an ordering of the group elements in the proof and subsets Ei,x
of the sets of pairing equations such that the following hold:

– in the pairing equation set Ei,x for the i-th proof element, only the verification key
elements and proof elements up to the i-th occur, i.e.,Ei,x ⊂ Zp[V1, . . . , Vn, P1, . . . Pi]

– in the pairing equation set Ei,x for the i-th proof element, there is at least one
equation where the i-th proof element occurs only linearly, i.e., there exist polyno-
mials ai ∈ Zp[V1, . . . , Vn, P1, . . . , Pi−1], bi ∈ Zp[V1, . . . , Vn, P1, . . . Pi] such that
ai · Pi + bi = 0 is an equation that occurs in Ei,x.

We further make a more technical requirement that the coefficient ai of the i-th proof
element in the equation where it occurs linearly cannot become zero. Let the proof have
κmany elements, then we consider the evaluation value to be the κ+1st proof element,
i.e., it is the last group element to be “verified” in this way.

This consecutive verification property on the one hand yields an efficient pairing-
based verification algorithm (for input x, first efficiently derive the pairing equation
sets Ei,x, then consecutively check them). On the other hand, the linearity requirement
actually implies that given the verification key and the previous proof elements, each
proof element is uniquely defined. As the evaluation value is the last element to be
verified, i.e., the κ+ 1st “proof element”, it is therefore also uniquely provable.

We note that this consecutive verification property applies to many known VRFs,
see Fig. 1 for a detailed overview.

We briefly sketch how the pairing equations look for the VRF of Dodis & Yam-
polskiy [17]: Recall that the evaluation key is sk = s ∈ Zp and the verification key is
vk = hs for a publicly known group generator h of G. Evaluation at value x computes
y = e(h,h)

1
s+x as well as the proof π = h

1
s+x . We can consecutively verify this as

follows: First verify the proof via E1,x = {(V + x) · P = 1} where V represents the
verification key, and P represents the group element. That is, the verification algorithm
checks e(vk · hx, π) = e(h,h). Then, we verify E2,x = {P · 1 = Y } where P is as
before and Y represents the evaluation value, that is the verification algorithm checks
e(π,h) = y.

Remark 1 (Consecutive Verifiability of the VUF of Brakerski et al. [12]). As we pointed
out above, the weak VUF of Brakerski et al. [12], where evaluation works by Evalvuf(sk,
h) = hsk for sk ∈ Zp and vk = gsk and an input h ∈ G, and verification accepts if
e(h, vk) = e(y,g), is not consecutively verifiable in the sense of this work. In fact,

4 We note that the weak VRF by Brakerski et al. [12] does not have this efficiency property, as
the inputs are group elements and the pairing equations can only be derived from the discrete
logarithm of the inputs.
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we would need to know the discrete logarithm of the input h to efficiently compute
a pairing equation for it. Therefore, the results of this paper are not applicable to this
VUF.

However, while this might seem to limit the class of VUFs we consider in this work,
we claim that weak VUFs that have group elements as inputs are – for the pursuit of
strong VRFs – not relevant, anyway. In fact, images of the weak VUF of Brakerski et
al. [12] can easily be predicted for adversially chosen inputs. This observation can be
extended to other weak VRF/VUF candidates that operate in a similar algebraic manner,
i.e., that take group elements as inputs and interpret them as group elements only and
use the group operations and pairing operations on them to compute the output. These
VRFs/VUFs become insecure by Theorem 10 as their evaluation degree is at most 2
in the inputs if the discrete logarithms of the input group elements are known to the
adversary.

Rational VUFs/VRFs. We want to show that the formerly mentioned class of consec-
utively verifiable VUFs/VRFs has a particularly straightforward way to describe their
evaluation algorithm. To this end, we define rational VUFs. These are VUFs whose
evaluation value consists of a (publicly known) group generator raised to a rational
function evaluated on the exponents of the verification key. More formally, for each
input value x, there are polynomials ρx and σx such that the output y evaluated at x is

y = g
σx(v1,...,vn)

ρx(v1,...,vn)

T

where v1, . . . , vn are the exponents of the group elements in the verification key vk. We
say that the total degree of the polynomials σx and ρx is the evaluation degree of the
VUF/VRF.

From Consecutive Verifiability to Rationality with Bounded Degree. We show, using
an inductive argument, that (a) consecutively verifiable pairing based VUFs/VRFs are
also rational VUFs/VRFs, and (b) that the evaluation degree is at most exponential in
the proof size – this implies that the proof size needs to be at least logarithmic in the
evaluation degree for consecutively verifiable VUFs/VRFs. The proof uses induction to
show that in fact all proof elements can be expressed through rational functions in the
exponent, i.e., there exist σx,πi and ρx,πi , and that the degree of the i-th proof element
is at most 4i. The base case is easy to see: To obtain σx,π1

and ρx,π1
from the first set of

pairing equations, we use the pairing equation that contains P1 as a linear factor. This
equation can be expressed as a · P1 + b = 0 where a, b are polynomials (a has degree
at most 1 and b degree at most 2). We can therefore express P1 = b/− a.

For the inductive step it is again crucial that the i-th proof element occurs only
linearly in at least one pairing equation, as it can then be viewed as a zero of a linear
equation and expressed as a rational function of the previous proof elements and the
verification key. We replace the previous proof element Pi−1 by its rational expression
σx,πi−1

ρx,πi−1
in the pairing equation set Ei,x to obtain Pi · a′i + b′i = 0 where the a′i and

b′i are rational functions in the verification key elements. We then derive the rational
expression for Pi = b′i/ − a′i = σx,πi/ρx,πi where σx,πi and ρx,πi are polynomials.
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It remains to show that the resulting polynomials have the degrees required by our
statement which can be done using some simple arguments.

Inductively replacing all proof elements by such rational expressions in the verifi-
cation key elements yields the result for the last element to be verified – the evaluation
value.

2.2 Second Result: Security of Univariate Polynomial-Degree VRFs Requires
Complex Assumptions

In current pairing-based constructions of VRFs there seems to be a tradeoff between
the size/complexity of the underlying assumption and the size of the proofs. Some
constructions, like [17], achieve constant-sized proofs but require a q-type assumption,
while others [32] achieve proofs of any superconstant size under a constant-sized as-
sumption. Here, we consider VRF constructions based on non-interactive (group-based)
computational assumptions (NICA), i.e., search problems as opposed to a decisional
assumptions. These NICAs state that any “efficient” algorithm only has a negligible
probability of solving the corresponding computational problem, e.g. finding some “se-
cret” exponent. In particular, we consider NICAs where the challenge elements’ ex-
ponents only depend on a single variable with polynomial degree (these include for
example the q-DLog-assumption and the q-DHI-assumption. There the challenge is
g,gα,gα

2

, . . . ,gα
q

and the secret exponent is α. We give two meta-reductions [14]
(for slightly different settings) that break the resp. underlying assumption if there is an
algebraic reduction from the assumption to the unpredictability (resp. pseudorandom-
ness) of the VUF (resp. VRF).

Theorem 1 (Informal Lower Bound for Univariate VUFs). Let vuf be a rational
VUF whose verification key exponents depend—with polynomial degree—on a single
common variable. Let NICA be any NICA of polynomial size. If there exists an algebraic
reduction that transforms an adversary for the weak selective unpredictability of vuf
into a solver for NICA, then NICA can be solved in polynomial time with some noticable
advantage.

Theorem 2 (Informal Lower Bound for Univariate NICAs). Let vrf be a rational
VRF. Let NICA be any NICA of polynomial size whose exponents depend—with poly-
nomial degree—on a single common variable (e.g. q-DLog or q-DHI). If there exists an
algebraic reduction that transforms an adversary for the adaptive pseudorandomness
into a solver for NICA, then NICA can be solved in polynomial time with some noticable
advantage.

Remark 2 (Separation between Decisional and Computational Assumptions). As a the-
oretical sidenote, we observe that on the one hand non-interactive decisional assump-
tions, like q-DDH, suffice for constructing VRFs [50], while on the other hand (univari-
ate) non-interactive computational assumptions, like the q-DLog or q-DHI assumption,
do not suffice via algebraic reductions. This yields in particular an algebraic separation
between the q-DDH and the q-DLog assumption.

11



Remark 3 (No Algebraic GL Construction). One can transform a VUF (e.g. the VUF
of Dodis & Yampolskiy [17] based on the q-DHI assumption) into a VRF via the con-
struction of Goldreich & Levin [23]. While this seems like a contradiction (because it
gives a VRF based on the q-DHI assumption), it is actually consistent with our results
because the GL hardcore bit is not an algebraic technique5, hence the reduction from
the q-DHI assumption to the pseudorandomness of the resulting VRF is not an alge-
braic reduction. By contraposition, our results show that there cannot be an algebraic
analogue of the GL construction.

Our Technique. Both meta-reductions share the same core idea. In a nutshell, the meta-
reduction—when simulating an adversary towards the reduction—uses the representa-
tion vectors6 of the received group elements to either (a) predict the challenge image,
e.g. as a linear combination of received representations, or (b) construct a polynomial
function over the exponent field Zp which has the NICA’s secret exponent as a zero.
Thus, in case (a) the meta-reduction could successfully answer the reduction’s chal-
lenge while in case (b) the meta-reduction can leverage the fact that polynomials over
some finite field can be efficiently factorized and solve its own challenge directly using
the NICA’s secret exponent.
In both cases the meta-reduction relies on the facts that the VUF (resp. VRF) has cor-
rectness and unique provability, and that the VUF (resp. VRF) is of rational form, i.e.,
vrfsk(x) = gT

σx(
−→v )/ρx(

−→v ) where σx, ρx are of polynomial degree and −→v is the vector
of verification key exponents. Because the reduction is algebraic, whenever it outputs a
group element y ∈ GT it must also provide a representation −→z ∈ ZLp w.r.t. the NICA
challenge elements s.t.

gT
σx(
−→v )/ρx(

−→v ) = y = gT
f1(s)z1+...+fL(s)zL (1)

⇐⇒ σx(
−→v )− (f1(s)z1 + . . .+ fL(s)zL)ρx(

−→v ) = 0 (2)

where g(f1(s),...,fL(s)) ∈ GL is the NICA challenge and s $← Zp is the secret exponent.
Equation (2) is the basis for both meta-reductions. For Theorem 1 the meta-reduction
queries many preimages x1, . . . , xQ and challenge x0 uniformly at random. We con-
sider two cases (for simple exposition we assume that the verification key only has one
group element gv):
In the first case (a) the rational functions σxi(V )/ρxi(V ) are linearly dependent. With
this linear dependence the meta-reduction can predict the challenge image by combin-
ing the representations of the queried images.7

In the second case (b) although the rational functions σxi(V )/ρxi(V ) are linearly inde-
pendent, by a counting argument there must exist a linear dependence α ∈ ZQp among
the representations of the queried preimages. The meta-reduction computes the poly-
nomial ψ(V ) := ρx1

(V ) · · · ρxQ(V ) ·
∑Q
`=1 α`σ`(V )/ρ`(V ). Because σxi(V )/ρxi(V )

5 The GL construction uses the bits of the representation of the group elements.
6 Recall that we consider algebraic reductions here, so they have to output a vector of represen-

tations with each group element.
7 If all σxi(V )/ρxi(V ) are q + 1-wise linearly dependent, then with high probability the chal-

lenge’s function σx0(V )/ρx0(V ) will be linearly dependent on the other rational functions
because all xi are independent and identitically distributed.
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are linearly independent, the polynomial is non-zero yet it contains the vk’s exponent
v as a zero (due to

∑Q
`=1 α`σ`(v)/ρ`(v) = 0). Thus the meta-reduction can factor

the polynomial ψ to obtain the secret exponent and predict the challenge image as
gT

σx0 (v)/ρx0 (v).
For Theorem 2 we consider adaptive pseudorandomness, hence the meta-reduction

obtains a representation for each verification key element and a representation −→z ∗ for
the challenge image y∗. That is, the meta-reduction knows a function8 t : Zp → ZLp
that maps the NICA challenge’s secret key to the verification key exponents −→v = t(s).
Plugging t into Eq. (2) gives

σx(t(s))− (f1(s)z1 + . . .+ fL(s)zL)ρx(t(s)) = 0 . (3)

Now, for any representation −→z of the real challenge image the univariate polynomial
ψ−→z (S) := σx(t(S))− (f1(S)z1 + . . .+ fL(S)zL)ρx(t(S)) must vanish on the secret
exponent s due to Eq. (3).
If ψ−→z (S) 6≡ 0 is non-zero for all −→z , then the meta-reduction can factorize ψ−→z ∗(S)
and find a list of polynomially many candidates for the NICA’s secret exponent. If no
candidate matches the NICA’s secret exponent, then the challenge image y∗ must be
random, otherwise the meta-reduction has trivially found the NICA’s secret exponent.
On the other hand, if ψ−→z (S) ≡ 0 is zero for some −→z , then the meta-reduction can
efficiently find such a representation −→z . Due to Eq. (3) such a −→z must correspond to
the correct challenge image, hence the meta-reduction can distinguish the given element
from random.

2.3 Third Result: Security of Low-Degree VRFs Requires Complex Assumptions

As explained before, Theorem 1 states that there is no algebraic reduction that trans-
forms an adversary for the unpredictability of a rational VUF with polynomial evalua-
tion degree to a solver for a hard polynomial size assumption. However, this result has
the caveat that the VUF in question needs to have univariate verification keys, i.e., the
verification key needs to be fully determined by one secret variable.

In the remaining part of this work, we will circumvent this problem and show lower
bounds for another class of VUFs – the class of rational parametrized VUFs (Defini-
tion 18) – which imposes no restrictions on the verification keys of its VUFs. This class
contains the candidates of Dodis & Yampolskiy [17] and of Belenkiy et al. [4] and all
other DY-inspired candidates.

However, this result comes at a cost: It only shows the impossibility of generic
reductions that transform adversaries for the unpredictability of parametrized VUFs
into solvers of extremely small – yet superconstant – Uber-assumptions.

Informally, our result states the following:

Theorem 3 (Informal Lower Bound for Rational Parametrized VUFs). Let vuf be
a parametrized rational VUF of constant evaluation degree, i.e., it is rational and the
numerators and denominators for evaluation depend polynomially on the input x ∈ Zp.
Let NICA be an Uber-assumption of size

√
log log poly(λ).

8 For simplicity assume that all fi and hence t are polynomials.

13



Then, there is no generic reduction that transforms an adversary for the weak se-
lective unpredictability of vuf to a NICA solver.

We want to emphasize the significance of Theorem 3 for the pursuit of pairing-based
VRFs with proofs of constant size. Theorem 3 shows that the security of each VUF in
the style of [17] with constant proofs cannot be generically based on a constant-size
Uber-assumption.

Now, we want to explain some details that appear in the statement of Theorem 3
before we jump to a proof:

Uber-Assumptions. We demand that NICA is an Uber-assumption [11], i.e., its chal-
lenges consist of group elements g,gf1(

−→z ), . . . ,gfq1 (
−→z ), gT

g1(
−→z ), . . . ,gT

gq2 (
−→z ) where

−→z $← Ztp has been sampled secretly and uniformly at random by the challenger and
f1, . . . , fq1 , g1, . . . , gq2 ∈ Zp[Z1, . . . , Zt] are publicly known polynomials.

Parametrized Rational VUFs. It is required that vuf is parametrized rational of constant
evaluation degree. Formally, this means there are constant-degree polynomials σ, ρ ∈
Zp[V1, . . . , Vn, X] s.t. we have for each input x ∈ Zp and each verification key vk and
corresponding secret key sk

Evalvuf(sk, x) = gT

σ(x,−→v )

ρ(x,−→v )

where −→v denotes the vector of exponents of the group elements of vk.
We are now able to sketch a proof for Theorem 3:

Sketch of Proof, Part 1. Assume that Theorem 3 is false for some parametrized VUF
vuf and letR be a reduction that solves instances of some Uber-assumption NICA when
given access to an adversary for the unpredictability of vuf. To show a contradiction we
construct a meta-reductionM that takes the role of a successful adversary in the weak
selective unpredictability game withR.
R is given a challenge g,gf1(

−→z ), . . . ,gfq1 (
−→z ),gT

g1(
−→z ), . . . ,gT

gq2 (
−→z ) by the NICA

challenger and has to compute some solution from this tuple of group elements while
having oracle access toM. Since R is a generic algorithm, we can apply a hybrid step
and change the groups G,GT which encode elements of Zp to groups GZ ,GZT that en-
code polynomials of Zp[Z1, . . . , Zt] without R noticing the internal change of groups.
Additionally, the NICA challenger will now give the group elements g,gf1(

−→
Z ), . . . ,

gfq1 (
−→
Z ),gT

g1(
−→
Z ), . . . ,gT

gq2 (
−→
Z ) as challenge to R. Further, because of the generic-

ness of R, the exponent of each target group element it outputs must be a polynomial
of the form

α+

q1∑
i=1

βi · fi(
−→
Z ) +

∑
i,j=1

γi,j · fi(
−→
Z ) · fj(

−→
Z ) +

q2∑
i=1

δi · gi(
−→
Z ) (4)

for scalars α, βi, γi,j , δi ∈ Zp. Let W denote the vector space of all polynomials that
can be expressed in the above way, i.e., W = spanZp{1, (fi)i, (fi · fj)i,j , (gi)i} ⊂
Zp[Z]. The space W contains the exponents of all target group elements that can be
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constructed by generic group operations and pairings from the elements of the NICA
challenge. In particular, the exponent of each group element outputted byR must lie in
W .

Now, whenR accessesM it sends a verification key vk, random inputs x0, . . . , xQ,
image values y1, . . . ,yQ and proofs π1, . . . , πQ to M. To win the unpredictability
game, M needs to return the evaluation y0 of vuf at x0 to R. As stated above, the
exponents of each group element of vk and of the image values y1, . . . ,yQ must lie
in W . Let v1(

−→
Z ), . . . , vn(

−→
Z ), y1(

−→
Z ), . . . , yQ(

−→
Z ) ∈ W be exponents of these group

elements. Since R is generic,M can extract those polynomials from R while playing
the unpredictability game with R (we assume in this work that genericness always
implies algebraicity, cf. Definition 5). With the help of π1, . . . , πQ the meta-reduction
M can ensure that for each i ∈ [Q] the equation

σ(xi, v1(
−→
Z ), . . . , vn(

−→
Z ))

ρ(xi, v1(
−→
Z ), . . . , vn(

−→
Z ))

= yi(
−→
Z ) (5)

holds.

Sketch of Proof, Part 2. In the first part of the proof, we showed that the fractions
σ(xi,

−→v (
−→
Z ))

ρ(xi,
−→v (
−→
Z ))

, i ∈ [Q], are not only polynomials, but additionally lie in W . This is

the point where we can spring our mathematical trap: we can show if all fractions
σ(x1,

−→v (
−→
Z ))

ρ(x1,
−→v (
−→
Z ))

, . . . ,
σ(xQ,

−→v (
−→
Z ))

ρ(xQ,
−→v (
−→
Z ))

lie in W for a large enough number Q then, in fact, the

fraction σ(x,−→v (
−→
Z ))

ρ(x,−→v (
−→
Z ))

must be an element of W for each x ∈ Zp. In particular, the expo-

nent σ(x0,
−→v (
−→
Z ))

ρ(x0,
−→v (
−→
Z ))

of y0 must be of this form and thereforeM can compute the element

y0 = gT

σ(x0,
−→v (
−→
Z ))

ρ(x0,
−→v (
−→
Z )) from the group elements of the NICA challenge on its own. Ergo,

M can successfully answer the queries of R for a large enough number of queries Q
which gives rise to a generic PPT NICA solver. A contradiction to the hardness of NICA!

Overview of Section 6. The crucial point in the proof of Theorem 3 is that the fraction
σ(x,−→v (

−→
Z ))/ρ(x,−→v (

−→
Z )) lying in W for a large enough number of inputs x implies

that this fraction must lie in W for all x ∈ Zp. However, proving this statement in
general requires a great deal of mathematical tools for Groebner bases and projective
algebraic geometry (e.g. the Projective Extension Theorem 7). Therefore, in Section 6.1
we illustrate some of our ideas by first proving the unpredictability of the VUF of Dodis
& Yampolskiy [17] and then give the full proof of Theorem 3 in Section 6.3. At the be-
ginning of Section 6, we introduce a technical framework for both proofs and, in Sec-
tion 6.2, we summarize results in the field of Groebner bases and projective algebraic
geometry. We should note that in the actual proofs we avoid using hybrid steps directly.
Instead, we introduce a technical tool, which we call verification equations, that ensure
that Eq. (5) holds for each i ∈ [Q] without changing the actual groups G,GT in the
unpredictability game betweenR andM (Lemma 3).
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2.4 Organization of this Work

In Section 3, we introduce notations and preliminaries. In Section 4, we define consecu-
tive verifiable and rational VUFs and show our first result: a consecutive verifiable VUF
is rational and its evaluation degree is exponentially bounded by the size of its proofs.
In Section 5, we show our second result: Theorem 1 and Theorem 2, which state that
the security of rational VUFs cannot be based by an algebraic reduction on the hardness
of a NICA, if either the verification key of the VUF or the NICA is univariate. Finally,
in Section 6, we introduce the notion of parametrized rational VUFs and prove Theo-
rem 3, which states that the security parametrized rational VUFs cannot be based by a
generic reduction on an Uber-assumption.

3 Preliminaries

3.1 Notation

We denote the security parameter by λ. We denote vectors by −→x and group elements
by a. For a matrix M we denote by mi,j the entry in the i-th row and the j-th column.
For a finite set X we denote by x $← X that x is sampled uniformly at random from X .

For a probabilistic algorithm Alg we denote by y $← Alg(x) that y is computed
by Alg on input x with a uniform random tape. Set further poly(λ) := {f : N →
N | ∃a, b ∈ N,∀n ∈ N : f(n) ≤ a + nb} and negl(λ) := {ε : N → R | ∀c ∈ N :
limn→∞ nc · ε(n) = 0}. For any n ∈ N we set [n] := {1, . . . , n}. We call an algorithm
PPT iff it is probabilistic, and its time complexity lies in poly(λ).

3.2 Mathematical Foundations

Definition 1 (Rational Functions). For a prime p we define the field of rational func-
tions over Zp in variables X1, . . . , Xn by

Zp(X1, . . . , Xn) :=

{
σ(X1, . . . , Xn)

ρ(X1, . . . , Xn)

∣∣∣∣σ, ρ ∈ Zp[X1, . . . , Xn], ρ 6= 0

}
.

Given a rational function f ∈ Zp(X1, . . . , Xn), the degree of f is defined as

deg(f) := min{max(deg(σ),deg(ρ)) | σ, ρ ∈ Zp[X1, . . . , Xn], ρ 6= 0, ρ · f = σ}

where deg(σ),deg(ρ) denote the total degrees of the polynomials σ, ρ.

We recall the following helpful lemma:

Lemma 1 (Schwartz-Zippel-Lemma, [47]). Let f ∈ Zp[X1, . . . , Xn] be a non-zero
polynomial over Zp. Denote by deg(f) the total degree of f . Then

Pr
r1,...,rn

$←Zp
[f(r1, . . . , rn) = 0] ≤ deg(f)

p
.
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3.3 Cryptographic Groups

Definition 2 (Bilinear Group Generator, [26]). A bilinear group generator is a prob-
abilistic polynomial-time algorithm GrpGen that takes as input a security parameter λ
(in unary) and outputs Π = (p, ppG, ppGT , ◦, ◦T, e, φ(1))

$← GrpGen(1λ) such that
the following requirements are satisfied.

1. The parameter p is prime and log(p) ∈ Ω(λ).
2. G and GT as described by ppG and ppGT are subsets of {0, 1}∗, defined by algo-

rithmic descriptions of maps φ : Zp → G and φT : Zp → GT .
3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in λ) maps ◦ :

G×G→ G and ◦T : GT ×GT → GT , such that
(a) (G, ◦) and (GT , ◦T) form abstract groups and
(b) φ is a group isomorphism from (Zp,+) to (G, ◦) and
(c) φT is a group isomorphism from (Zp,+) to (GT , ◦T).

4. e is an algorithmic description of an efficiently computable (in λ) bilinear map
e : G × G → GT . We require that e is non-degenerate, i.e., x 6= 0 =⇒
e(φ(x), φ(x)) 6= φT(0).

Remark 4. For simplicity, we only consider symmetric pairings. However, while our
upcoming formulation of “consecutive verifiability” is easier to state with symmetric
pairings, our results do not depend on symmetry of the pairing.

Definition 3 (Certified Generator, [26]). We say a bilinear group generator GrpGen
is certified, if there exists a deterministic polynomial-time algorithm GrpVfy with the
following properties:

Parameter Validation. Given a string Π (which may not necessarily be generated
by GrpGen), algorithm GrpVfy(Π) outputs 1 if and only if Π has the form Π =
(p, ppG, ppGT , ◦, ◦T, e, φ(1)) and all requirements from Definition 2 are satisfied.

Recognition and Unique Representation of Elements of G (GT ). Furthermore, we re-
quire that each element in G (GT ) has a unique representation, which can be efficiently
recognized. That is, on input two strings Π and s, GrpVfy(Π, s) outputs 1 if and only
if GrpVfy(Π) = 1 and it holds that s = φ(x) (s = φT(x)) for some x ∈ Zp. Here
φ : Zp → G (φT : Zp → GT ) denotes the fixed group isomorphism contained in Π to
specify the representation of elements of G (of GT ) (see Definition 2).

We recall the definition of algebraic algorithms which was first used by [10, 45] in
the context of meta-reductions. Our definition of algebraic algorithms is closer to that
of [3, 21].

Definition 4 (Algebraic Algorithms [3, 21]). Let ppG = (p, ppG, ppGT , ◦G, ◦GT , e,
φG, φGT ) be as in Definition 2. Let A be an algorithm that receives as input source
group elements g1, . . . ,gs ∈ G, target group elements h1, . . . ,ht ∈ GT and some
non-group-element input x.
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We say thatA is algebraic if, wheneverA outputs a group element y, it also outputs
one of the following representations: If y ∈ G, a vector

−→z ∈ Zsp s.t. y =

s∏
i=1

gzii

and if y ∈ GT , a vector and a matrix

−→z ∈ Ztp,M = (mij)
s
i,j=1 ∈ Zs×sp s.t. y =

t∏
i=1

hzii ·

 s∏
i,j=1

e(gi,gj)
mij


Definition 5 (The Generic Group Model [43, 48]). An algorithm interacting with a
group (or pairing group) is called generic if it is algebraic in the sense of Definition 4
and it suffices that the algorithm accesses the group only through an oracle. More con-
cretely, all group elements gi that the algorithm receives as input are represented by
random strings σ(gi), called handles, and whenever the algorithm wants to compute
the product gi ·gj resp. the exponentiation gx, it passes (σ(gi), σ(gj)) resp. (σ(gi), x)
to the corresponding group operation oracle, and the oracle returns σ(gi · gj) resp.
σ(gxi ). In a pairing setting the algorithm is given access to a second such group or-
acle for the target group, as well as a pairing oracle that takes as input two handles
σ(gi), σ(gj) and outputs σ(e(gi,gj)) if both elements gi,gj are elements of the source
group.

Remark 5. It has been shown recently – despite popular belief – that an algorithm that
only interacts with a group by oracles in Shoup’s GGM does not need to be algebraic
[31, 52]. To circumvent this problem, we require in the definition of generic algorithms
explicitly that a generic algorithm is algebraic.

Remark 6. It is not clear how to adapt the notion of a certified group generator (Def-
inition 3) to generic groups. Indeed, in the generic group model, there are no group
descriptions as in Definition 2, and instead all algorithms have access to a group via
group operation oracles. However, these oracles can be viewed as “implicitly trusted”,
in the sense that the properties from Definition 2 are always guaranteed. Hence, we will
not consider certified (bilinear) group generators in the context of generic groups.

Definition 6 (Non-Interactive Computational Assumptions, NICAs [20]). A non-
interactive computational assumption NICA is defined by the following two oracles
available to the adversary:

Setup Generates a challenge c $← D(1λ) from a challenge distribution D(1λ) param-
eterized over the security parameter λ. Saves an internal state st.

Finalize On input of a candidate solution s and the internal state st, the Finalize sub-
routine outputs either 1 (indicating that s is a correct solution) or 0 (indicating that
s is not a correct solution)

We say that an adversary A (t, ε)-breaks the assumption if the adversary outputs a
correct solution with probability at least ε(λ) in time at most t(λ). We further say the
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assumption is (t, ε)-hard if there exists no adversary A that (t, ε)-breaks the assump-
tion. If NICA is (t, 1r )-hard for all t, r ∈ poly(λ), r > 0, we call NICA hard.

For a NICA in a group where the challenge consists ofm group elements, we callm
the size of the NICA. Ifm is linear in a parameter q, we call NICA a q-type assumption.
If m is constant we call NICA a constant-size assumption.

Definition 7 (Univariate Polynomial-Degree Assumptions). Let p = p(λ) be a su-
perpolynomial group order. Let l1, l2, dNICA ∈ poly(λ), let r1, . . . , rl1 , t1, . . . , tl2 ∈
Zp[S] be non-zero polynomials of degree at most dNICA. We say NICA is a univariate
polynomial-degree assumption, iff it is an (l1+ l2)-type NICA according to Definition 6
and if its challenge distribution9 isD(1λ)→ c = (Π,gr1(s), . . . ,grl1 (s),g1/t1(s), . . . ,g1/tl2 (s))
where s $← Zp is the secret exponent and Π = (p, ppG, ppGT , ◦, ◦T, e, φ(1))

$←
GrpGen(1λ) is a certified group description.

Definition 8 (DLog-Hard Assumptions). Let l1, l2, dNICA ∈ poly(λ), let r1, . . . , rl1 ,
t1, . . . , tl2 ∈ Zp[S] be non-zero polynomials of degree at most dNICA. We say NICA
is a DLog-hard assumption, iff it is an (l1 + l2)-type assumption according to Defi-
nition 7 and if no polynomial-time algorithm has noticable probability of solving the
corresponding DLog problem, i.e., outputting the secret exponent s ∈ Zp.

Remark 7. In particular the computational q-DHI assumption (Diffie-Hellman inver-
sion assumption) is a univariate polynomial-degree assumption for q ∈ poly(λ). The
decisional variant is not univariate because of the last challenge element.

3.4 Verifiable Unpredictable Functions

Definition 9 (Verifiable Unpredictable Functions, VUFs [38]). Let vuf = (Genvuf ,
Evalvuf ,Verifyvuf) be a tuple of algorithms of the following form:

– Genvuf(1
λ) outputs a secret key sk and a verification key vk.

– Evalvuf(sk, x) on input a secret key sk and x ∈ X = (Xλ)λ outputs an image
y ∈ Y = (Yλ)λ and a proof π. We assume that the input space Xλ has a super-
polynomial cardinality in the security parameter λ.

– Verifyvuf(vk, x, y, π) on input a verification key vk, a preimage x, an image y and
a proof π outputs a bit b ∈ {0, 1}.

We say that vuf is a (t, Q, ε)-verifiable unpredictable function (VUF) if the following
holds:

Statistical Correctness. There exists a negligible function µ ∈ negl(λ) s.t. for all λ ∈ N
and for all inputs x ∈ Xλ it holds that

Pr
(sk,vk)

$←Genvuf(1λ)

[Verifyvuf(vk, x, y, π) = 1 | (y, π)← Evalvuf(sk, x)] ≥ 1− µ(λ) .

9 For exposition, we assume all group element to be in the source group. Our technique applies
as well for assumptions with target group elements.
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Unique Provability. For all λ ∈ N and all possible vk (not necessarily generated by
Genvuf ), all x ∈ Xλ, all y1, y2 ∈ Yλ and all possible proofs π1, π2 it holds that

Verifyvuf(vk, x, y1, π1) = 1 ∧ Verifyvuf(vk, x, y2, π2) = 1 =⇒ y1 = y2

Weak Q-Selective Unpredictability [12]. For any adversary A running in time at most
t(λ), we have∣∣∣∣∣∣∣∣∣∣

Pr

A(vk,−→x ,−→y ,−→π ) = y0

∣∣∣∣∣∣∣∣∣∣

−→x = (x0, . . . , xQ)
$← XQ+1

λ

(sk, vk) $← Genvrf(1
λ)

(yi, πi)← Evalvrf(sk, xi)−→y = (y1, . . . ,yQ)−→π = (π1, . . . , πQ)

− 1

|Yλ|

∣∣∣∣∣∣∣∣∣∣
≤ ε(λ) .

Remark 8. Our notion of weak selective unpredicability is even weaker than the epony-
mous notion used by Niehues [44] with a loss of 1/Q by guessing the adversary’s
challenge index and reordering the preimages. However, our notion has the advantage
that it is a non-interactive game, in particular, no state has to be transmitted between
parts of the adversary (A1,A2) as in [44].

Remark 9. We note that we do not require perfect correctness as for some of the VUFs
we consider in this work this property does not hold perfectly (e.g. in the case where
Evalvuf(sk, x) is undefined for a small number of x ∈ X for some secret key sk).

Remark 10. We consider pairing-based VUFs where y ∈ (G∪GT ) and π ∈ (G∪GT )∗.
W.l.o.g. we assume that a VUF’s image is an element of the target group, i.e., Y = GT .
Otherwise, we can modify the VUF by appending the original (source group) image
yS ∈ G to the proof elements, and set the new image as yT := e(gS,yS) where gS

is a designated generator of the source group in the verification key. Obviously, the
unpredictability of the former VUF can be reduced to the unpredictability of latter,
without any loss.

Definition 10 (Verifiable Random Functions, VRFs [38]). Let vrf = (Genvrf ,Evalvrf ,Verifyvrf)
be a VUF according to Definition 9. We say that vrf is a (t, ε)-verifiable random func-
tion (VRF) if the following10 holds:

0-Adaptive Pseudorandomness. For any adversary A = (A1,A2) running in time at
most t(λ), we have∣∣∣∣∣∣∣∣∣∣

Pr

A2(st,yb) = b

∣∣∣∣∣∣∣∣∣∣
(sk, vk) $← Genvrf(1

λ)
(x, st) $← A1(1

λ, vk)
b $← {0, 1}
(y0, π0)← Evalvrf(sk, x)
y1

$← GT

− 1

2

∣∣∣∣∣∣∣∣∣∣
≤ ε(λ) .

10 To keep the definitions minimal, we choose to only present the 0-adaptive pseudorandomness
property since it is the security notion considered in our results.
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3.5 Reductions

Definition 11. For a VUF vuf and a NICA NICA, we say a Turing machine B is a
(tB, εB, r, Q, εA)-reduction from breaking NICA to breaking the weak selective unpre-
dictability of vuf, if for anyA that (tA, Q, εA)-breaks the weak selective unpredicability
of vuf, the TM BA (tB+ rtA, εB)-breaks NICA making at most r oracle queries11 toA.

4 Proof Size

4.1 Classes of VUFs over Pairing-Friendly Groups

In the following, we introduce the class of VUFs that we want to discuss. Informally
speaking, we consider VUFs whose verification algorithm only verifies group member-
ship and pairing equations over the proof, evaluation value, and verification key. We
further require that the verification algorithm is consecutive, i.e., it first verifies the first
element of the proof, then the second, then the third, and so on and at the end of its ex-
ecution it verifies that the evaluation value is correct. This class of VUFs covers many
existing VUFs, we refer to Fig. 1 for an overview of which VUFs are consecutively
verifiable.

In this section, we want to show that the evaluation function of VUFs that have such
a natural verification algorithm can be expressed as a target group element where the
exponent is a rational function in the discrete logarithms of the verification key element
and that, informally speaking, the degree of the rational function can be bounded as
exponential in the size of the proof. We begin by giving a formal definition of what we
consider a set of pairing equations.

Definition 12 (Pairing Equations). Let E ⊂ Zp[X1, . . . , Xm]. We call E a set of
pairing equations for a pairing group G with public parametersΠ = (p, ppG, ppGT , ◦, ◦T,
e, φ(1)) $← GrpGen(1λ) over variables

−→
X = X1, . . . , Xm with target indicator12 set

T ⊂ {1, . . . ,m} if the following hold:

1. maxf∈E(deg f) ≤ 2,
2. for all i ∈ T and f ∈ E it holds that if Xi appears in a monomial m of f , then
m = c ·Xi for some c ∈ Zp.

We describe the evaluation of a finite set of pairing equations E on input x1, . . . ,xm as
follows:

– We check that the input is a set of group elements (x1, . . .xm), i.e., xi ∈ G or
xi ∈ GT for all i, and output ⊥ if otherwise.

– For each i ∈ [m], we check if i ∈ T ⇐⇒ xi ∈ GT and output ⊥ if otherwise.
– For f =

(∑
m∈Mf

m
)
∈ E where Mf is the set of monomials of f , we compute

f(−→x ) :=
∏
m∈Mf

m(−→x ) where m(−→x ) are computed as follows:

11 Because our weak selective unpredictability is a non-interactive game, there are no concur-
rency issues.

12 This set indicates which verification key elements are in the target group. Hence, their expo-
nents should only occur linearly, while source group exponents can occur quadratically.
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• ifm = c ·Xi ·Xj for some i, j /∈ T and c ∈ Zp, compute m(−→x ) := e(xi,xj)
c,

• if m = c · Xi for some i /∈ T and some c ∈ Zp and if xi ∈ G, compute
m(−→x ) := e(xi,g)

c where g = φ(1) is the fixed generator of G as given in the
group parameters Π . If i ∈ T and xi ∈ GT compute m(−→x ) := xci ,

• if m = c for c ∈ Zp, compute m(−→x ) := e(g,g)c.
– We denote by E(−→x ) the function that outputs 1 if for all f ∈ E it holds that
f(−→x ) = e(g,g)0 (if E = ∅ this always holds) and otherwise outputs 0.

In the following we describe our class of VUFs that have a consecutive verification
algorithm.

Definition 13 (Consecutively Verifiable Pairing-Based VUFs). We say a VUF vuf =
(Genvuf ,Evalvuf ,Verifyvuf) with input space X is a consecutively verifiable pairing-
based VUF if the following hold:

1. Genvuf takes as input 1λ. It samples group parameters Π = (p, ppG, ppGT , ◦, ◦T,
e,g := φ(1)) $← GrpGen(1λ) and outputs a verification key vk = (Π,−→v ) such
that −→v consists of elements of G and GT (plus a secret key sk for which we make
no further constraints).

2. All function values y consist of values in GT .
3. All proofs consist of κ values in G ∪GT .
4. For all x ∈ X and all i ∈ [κ + 1], there exists a set Ei,x of pairing equations

that can be efficiently derived from x and the description of vuf. We require that
Ei,x ⊂ Zp[V1, . . . , Vn, P1, . . . , Pi] such that there is at least one polynomial of
the form ai,x · Pi + bi,x ∈ Ei,x where ai,x, bi,x ∈ Zp[V1, . . . , Vn, P1, . . . , Pi−1].
(We note that since the set Ei,x consists of pairing equations it holds that ai,x has
degree at most 1 and bi,x has degree at most 2.)

5. We require that Verifyvuf on input (vk = (Π,−→v ), x,y =: πκ+1,
−→π ) outputs 1 if

and only if the following hold: GrpVfy(Π) = 1, all vi, for i ∈ [n], and all πi, for
i ∈ [κ + 1], are valid group elements w.r.t. Π , and for all i ∈ [κ + 1] we have
Ei,x(

−→v , π1, . . . , πi) = 1.
6. We further require that the ideal (E1,x, . . . , Eκ+1,x, a1,x · . . . · aκ+1,x) (which is

generated by the elements ofE1,x, . . . ,Eκ+1,x and the polynomial a1,x ·. . .·aκ+1,x)
contains the constant polynomial 1 (i.e., (E1,x, . . . , Eκ+1,x, a1,x · . . . · aκ+1,x) =
Zp[V1, . . . , Vk, P1, . . . , Pκ+1]).

Requirement 4 will be useful in Lemma 2, as it basically means there needs to be at least
one equation that contains the current proof element as a linear factor only. This yields
in particular that the proof element in question is not a (non-unique) square root of other
elements. The last requirement on a consecutively verifiable pairing-based VUF might
seem odd, however, as we will see later, it makes sure that there is no tuple (vk, x,y, π)
s.t. any of the ai can evaluate to zero on the exponents of (vk, x,y, π).

We now define the class of VUFs that evaluate a rational function in the exponent.
We will show later that a VUF that fulfills Definition 13 and where the number of group
elements in the proof is in O(log(λ)) also fulfills Definition 14.

Definition 14 (Rational VUFs). Let d, n ∈ poly(λ). We say that a VUF vuf =
(Genvuf ,Evalvuf ,Verifyvuf) is rational of evaluation degree d with n = nS + nT ver-
ification key elements, if the verification key is of the form vk = (Π,−→v ) where Π :=
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(p, ppG, ppGT , ◦, ◦T, e,g = φ(1)) $← GrpGen(1λ) is a certified group description ac-
cording to Definition 3, and −→v := (gvS,1 , . . . ,gvS,nS , e(g,g)vT,1 , . . . , e(g,g)vT,nT ) ∈
GnS ×GnT

T .
Further, we require for a rational VUF of evaluation degree d that for each x ∈ X

there are coprime polynomials σx, ρx ∈ Zp[V1, . . . , Vn] of total degree at most d s.t. we
have for all vk, all π and all y ∈ GT

Verifyvuf(vk, x,y, π) = 1 =⇒ ρx(v1, . . . , vn) 6= 0 and y = e(g,g)
σx(v1,...,vn)

ρx(v1,...,vn) (6)

where (v1, . . . , vn) = (vS,1, . . . , vS,nS
, vT,1, . . . , vT,nT

) are the exponents of vk.
We require that – given x and a description of vuf – one can efficiently compute

descriptions of σx and ρx, e.g. as coefficient vectors.

Definition 15 (Rational Univariate VUFs). Let d, n, df ∈ poly(λ) and let f1, . . . ,
fn : Zp → Zp be n efficiently computable polynomials of degree at most df . Let vuf =
(Genvuf ,Evalvuf ,Verifyvuf) be a rational VUF evaluation degree d with n = nS + nT
verification key elements as in Definition 14. We say vuf is a rational univariate VUF of
internal degree df relative to f1, . . . , fn, iff for all vk, all x ∈ X , all π and all y ∈ GT
a successful verification Verifyvuf(vk, x,y, π) = 1 implies the existence of an “effective
secret key” s, i.e.,

∃s ∈ Zp s.t. −→v = (gf1(s), . . . ,gfnS
(s), e(g,g)fnS+1(s), . . . , e(g,g)fn(s)) , (7)

thus y = e(g,g)
σx(f1(s),...,fn(s))

ρx(f1(s),...,fn(s)) = gσ̃x(s)/ρ̃x(s) where σx and ρx are defined in Defi-
nition 14, and σ̃x(s) = σx(f1(s), . . . , fn(s)) and ρ̃x(s) = ρx(f1(s), . . . , fn(s)). Note
that deg(σ̃x),deg(ρ̃x) ≤ d · df .

Remark 11. In particular, the popular VRF of Dodis & Yampolskiy [17] is a rational
univariate VUF with n = d = df = 1 (if extended by a certified group description).

4.2 From Consecutively Verifiable Pairing-Based VUFs to Rational VUFs

We now turn to proving that the evaluation outputs of consecutively verifiable pairing-
based VUFs can be expressed through rational functions in the exponents.

Lemma 2. Let vuf = (Genvuf ,Evalvuf ,Verifyvuf) be a pairing-based consecutively ver-
ifiable VUF with proofs of size κ and a verification key of size n.

Then, vuf is a rational VUF of evaluation degree at most 4κ+1 over n variables.

Proof. Fix x ∈ X . We want to show inductively that for each k ∈ [κ + 1] there exist
polynomials σx,πk , ρx,πk ∈ Zp[V1, . . . , Vn, P1, . . . , Pk−1] such that deg(σx,πk) ≤ 1 +∑k−1
i=0 4i, deg(ρx,πk) ≤ 4k−1 and such that for each tuple (vk, x,y, π) accepted by

Verifyvuf we have:

πk = g
σx,πk

(−→v )

ρx,πk
(−→v ) or πk = e(g,g)

σx,πk
(−→v )

ρx,πk
(−→v )

and ρx,πk(
−→v ) 6= 0. (Recall that we denote y by πκ+1).

We first prove a useful statement.
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Claim 1. As we required that 1 ∈ (
⋃κ+1
i=1 Ei,x, a1,x · · · aκ+1,x) (i.e., (

⋃κ+1
i=1 Ei,x, a1,x ·

. . . · aκ+1,x) = Zp[V1, . . . , Vn, P1, . . . , Pκ, Y ]), no ai,x has a root that is common
between all E1,x, . . . , Eκ+1,x.

Proof. In fact, if there were some point (−→v ,−→p , y) ∈ Zn+κ+1
p and one j ∈ [κ + 1]

such that aj,x and each f ∈
⋃κ+1
i=1 Ei,x were to vanish on (−→v ,−→p , y), then the con-

stant polynomial 1 ∈ (
⋃κ+1
i=1 Ei,x, a1,x · . . . · aκ+1,x) which can be written as 1 =∑κ+1

i=1

∑
f∈Ei,x hf · f + h′ · aj,x (for fitting hf , h′ ∈ Zp[V1, . . . Vn, P1, . . . , Pκ, Y ])

would need to vanish on (−→v ,−→p , y). Clearly, a contradiction!

We now turn to the inductive proof. In the following we denote by −→v := dlog(−→v ) and
−→p := dlog(π) where the discrete logarithms are component-wise. First, we show that
our induction hypothesis holds for k = 1.

By Item 4 in Definition 13, we can find h1,x = a1,x · P1 + b1,x ∈ E1,x where
P1 is the formal variable representing the exponent p1 of π1. By Claim 1 it holds that
a1,x(

−→v ) 6= 0 if (vk, x,y, π) is accepted by Verifyvuf . We can therefore express p1 as a
fraction p1 = − b1,x(

−→v )

a1,x(
−→v )

. We define σx,π1
:= −b1,x and ρx,π1

:= a1,x. We further note
that deg(σx,π1) ≤ 2 = 1+1 and deg(ρx,π1) ≤ 1 = 40 = 41−1 Setting the polynomials
σx,π1

:= −b1,x and ρx,π1
:= a1,x yields the hypothesis for π1, where ρx,π1(

−→v ) never
vanishes on accepted verification keys vk because of Claim 1.

We now turn to the inductive step. Fix k ∈ {2, . . . , κ} and assume that for all
i < k it holds that there exist polynomials σx,πi , ρx,πi ∈ Zp[V1, . . . , Vn, P1, . . . , Pi−1]

of degrees deg(σx,πi) ≤ 1 +
∑i−1
j=0 4

j , deg(ρx,πi) ≤ 4i−1 s.t. pi =
σx,πi (

−→v )

ρx,πi (
−→v )

and

ρx,πi(
−→v ) 6= 0 for the exponents of tuples accepted by Verifyvuf .

We again consider the polynomial hk,x = ak,x · Pk + bk,x from Ex,k (which exists
due to Item 4 in Definition 13). We note that as hk,x has degree at most two, ak,x
has degree at most 1 in the variables

−→
V , P1, . . . Pk−1. If (vk, x,y, π) is accepted by

Verifyvuf , we know that ak,x(−→v , p1, . . . , pk−1) 6= 0 by Claim 1.
We now want to plug in the induction hypothesis into ak,x and bk,x. Knowing from

the induction hypothesis that the exponents of πi with i = 1, . . . , k − 1 can all be

expressed as σx,πi (
−→
V )

ρx,πi (
−→
V )

where σx,πi and ρx,πi have degrees at most 1+
∑j−1
j=0 4

i and 4i−1,

respectively, we obtain that there exist alternative rational functions ak,x, bk,x ∈ Zp(
−→
V )

ak,x(
−→
V ) := ak,x

(
−→
V ,

σx,π1
(
−→
V )

ρx,π1
(
−→
V )

, . . . ,
σx,πk−1

(
−→
V )

ρx,πk−1
(
−→
V )

)
,

bk,x(
−→
V ) := bk,x

(
−→
V ,

σx,π1
(
−→
V )

ρx,π1(
−→
V )

, . . . ,
σx,πk−1

(
−→
V )

ρx,πk−1
(
−→
V )

)

which coincide with ak,x, bk,x on the exponents of each tuple (vk, x, π,y) accepted
by Verifyvuf . In fact, ak,x and bk,x are well-defined for input −→v , if there exist val-
ues −→π ,y for which Verifyvuf(

−→
vk, x,y,−→π ) = 1 as our induction hypothesis states that
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ρx,π1
(−→v ), . . . , ρx,πk−1

(−→v ) are non-zero on that input. Further, we have for those in-
puts, ak,x(−→v ) = ak,x(

−→v , p1, . . . , pk−1) and bk,x(−→v ) = bk,x(
−→v , p1, . . . , pk−1) as our

induction hypothesis states pi =
σx,πi (

−→v )

ρx,πi (
−→v )

for i < k.

Since hk,x(−→v , p1, . . . , pk) = ak,x(
−→v , p1, . . . , pk−1) · pk + bk,x(

−→v , p1, . . . , pk−1)
= 0 holds for all valid (−→v , p1, . . . , pk), we have the equation

pk =
−bk,x(−→v , p1, . . . , pk−1)
ak,x(

−→v , p1, . . . , pk−1)
=
−bk,x(−→v )
ak,x(

−→v )
=
−
∏k−1
j=1 ρx,πj (

−→v )2 · bk,x(−→v )∏k−1
j=1 ρx,πj (

−→v )2 · ak,x(−→v )
.

Since each fraction σx,π1 (
−→
V )

ρx,π1 (
−→
V )
, . . . ,

σx,πk−1
(
−→
V )

ρx,πk−1
(
−→
V )

appears at most quadratically in ak,x and

bk,x, the functions

σx,πk(
−→
V ) := −

k−1∏
j=1

ρx,πj (
−→
V )2 · bk,x(

−→
V ),

ρx,πk(
−→
V ) :=

k−1∏
j=1

ρx,πj (
−→
V )2 · ak,x(

−→
V )

are indeed polynomials in Zp[
−→
V ] such that we have for the exponents of each tuple

(vk, x,y, π) accepted by Verifyvuf

pk =
σx,πk(

−→v )
ρx,πk(

−→v )
.

Further, ρx,πk(
−→v ) 6= 0 since ak,x(−→v ) 6= 0 and our induction hypothesis stated that

each ρx,πj (
−→v ) does not vanish.

We now want to argue that deg(σx,πk) ≤ 1 +
∑k−1
i=0 4i and deg(ρx,πk) ≤ 4k−1.

Let σ∗ be the polynomial σx,πj of maximal degree for some j ∈ {1, . . . , k − 1}. Then,
it holds that

deg(ρx,πk)
(∗)
≤ deg(σ∗) + 2 deg

(
k−1∏
i=1

ρx,πi

)
I.H.
≤ 1 +

k−2∑
i=0

4i + 2 ·
k−1∑
i=1

4i−1

= 1 + 3 ·
k−2∑
i=0

4i = 4k−1

where the last equality is easily verified by induction and in (∗) we used that ρx,πk =

ak,x ·
∏k
i=1(ρx,πi)

2 and σ∗ appears at most linearly in the numerator of ax,πk and thus
the highest degree that can appear in the numerators of ax,πk can be deg(σ∗).

For σx,πk we compute the following

deg(σx,πj )
(∗)
≤ 2 · deg(σ∗) + 2 deg

(
k−1∏
i=1

ρx,πi

)
I.H.
≤ 2 + 2 ·

k−2∑
i=0

4i + 2 ·
k−2∑
i=0

4i−1
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= 2 + 4 ·
k−2∑
i=0

4i = 1 +

k−1∑
i=0

4i

where in (∗) we used that σx,πk = bk,x·
∏k
i=1(ρx,πi)

2 and σ∗ appears at most squared in
the numerators bk,x and thus the highest degree of the numerators in bk,x is 2 ·deg(σ∗).

We note here that since the sets Ei,x can be efficiently derived from x and the
description of vuf, and the proof is bounded in size, and the replacement steps used in
this proof, the description of σx and ρx can also be efficiently derived from x and the
description of vuf.

5 Algebraic Attacks on Rational VUFs

In this section we prove that the unpredictability of rational univariate VUFs cannot be
based algebraically on some non-interactive computational assumptions. To this end,
for any algebraic reduction from the NICA to the unpredictability of the VUF, we give
a meta-reduction that internally runs the reduction and supplies it with an adversary
for the unpredictability of the VUF. This meta-reduction finds a non-zero, low-degree,
univariate target polynomial that contains the reduction’s effective secret key as a root.
Because the target polynomial has low (polynomial) degree and is non-zero, the meta-
reduction can simply factor it and test each of its polynomially many roots against
the reduction’s verification key. Using the previously obtained secret key the meta-
reduction can predict the reduction’s challenge image.

Theorem 1. Let p be a superpolynomial group order. Let NICA be a non-interactive
computational assumption of size q ∈ poly(λ). Let n, d, df ∈ poly(λ) and let f1, . . . , fn ∈
Zp[S] be some polynomials of degree at most df . Let vuf be a rational univariate VUF
of evaluation degree d and internal degree df over n variables relative to the polyno-
mials f1, . . . , fn.

If there exists an algebraic (tB, εB, r,Q, 1/(Q + 1))-reduction B from NICA to
the weak Q-selective unpredictability of vuf s.t. Q ≥ q2 + 1 and r ∈ poly(λ), then
there exists an adversary M that (tM, εM)-breaks NICA with εM ≥ εB − 2−λ and
tM ≤ tB + poly(λ).

Proof. We describe the adversaryM as a meta-reduction [14] that takes inputs −→c =
(−→c S,

−→c T) ∈ GqS × GqTT from NICA, forwards it to the reduction B and simulates an
adversary for the weak selective unpredictability that is indistinguishable from a com-
putationally unbounded adversary that does not get to see the algebraic representation
of group elements. Let us first describe the unbounded adversary with success probabil-
ity at least 1/(Q+1). The adversary obtains as input the verification key vk = (Π,−→v ),
the challenge preimage x0 ∈ Xλ, the evaluation preimages x1, . . . , xQ ∈ Xλ, its corre-
sponding images y1, . . . ,yQ ∈ GT and proofs π1, . . . , πQ. If the group validation fails
or Verifyvrf(vk, x`,y`, π`) = 0 for any ` ∈ {1, . . . , Q} the adversary aborts. For each
` ∈ {0, . . . , Q} the adversary computes the rational function ζ` :=

σ̃x`
ρ̃x`
∈ Zp(V ) where

σ̃x` and ρ̃x` are as in Definition 15.
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If the rational functions ζ0, . . . , ζQ are linearly dependent but ζ0 6∈ span(ζ1, . . . ,
ζQ) ⊂ Zp(V ), then the adversary aborts. If x0, . . . , xQ are uniform, i.e., honestly gen-
erated, then this happens with probability13 at most 1 − 1/(Q + 1). Otherwise, the
adversary bruteforces the correct image for the challenge x0.

Now, we describe the meta-reduction. It forwards its input to the reduction; the
NICA challenge has the form−→c = (cS,1, . . . , cS,qS , cT,1, . . . , cT,qT) where q = qS+qT.
Because the reduction is algebraic, whenever it outputs a group element y ∈ GT it must
also provide a representation (−→z ,M = (mi,j)i,j∈[qS]) ∈ ZqTp × ZqS×qSp w.r.t. the NICA
challenge elements s.t.

y =

qT∏
i=1

cziT,i ·
qS∏

i,j=1

e(cS,i, cS,j)
mi,j (8)

As such, the representation (−→z ,M) gives a concise way of writing an element relative
to the NICA challenge.

The meta-reduction simulates an unbounded adversary as follows: It obtains from
the reduction as input the verification key vk, the challenge preimage x0 ∈ Xλ, the
evaluation preimages x1, . . . , xQ ∈ Xλ, its corresponding images y1, . . . ,yQ ∈ GT
and proofs π1, . . . , πQ, and the algebraic representations of the images (−→z 1,M1), . . . ,
(−→z Q,MQ) ∈ ZqTp × ZqS×qSp . Let g be the generator designated in the public parame-
ters of the group’s description. Denote by s ∈ Zp the “effective secret key” s.t. −→v =
(gf1(s), . . . ,gfnS

(s), e(g,g)fnS+1(s), . . . , e(g,g)fn(s)) as guaranteed by Definition 15.
If the group validation fails or Verifyvrf(vk, x`,y`, π`) = 0 for any ` ∈ {1, . . . , Q} the
meta-reduction aborts.

We now distinguish two cases:

Case 1: The rational functions ζ0, . . . , ζQ are linearly dependent, i.e.,

∃−→α ∈ ZQ+1
p \ {0} :

Q∑
`=0

α`ζ`(V ) ≡ 0 ∈ Zp(V ) . (9)

If there exists such a vector −→α with α0 6= 0, the meta-reduction scales −→α s.t.
α0 = −1. Otherwise, if ζ0 6∈ span(ζ1, . . . , ζQ) ⊂ Zp(V ), then the meta-reduction
aborts.14

Now, due to the correctness of the scheme it holds for each ` ∈ {0, . . . , Q}

y` = e(g,g)σ̃x` (s)/ρ̃x` (s) = e(g,g)ζ`(s) . (10)

Consequently, the meta-reduction can predict the image value y0 of the challenge
preimage x0 as

y0
Eq. (10)
= e(g,g)ζ0(s)

Eq. (9)
= e(g,g)

∑Q
`=1 α`ζ`(s)

Eq. (10)
=

Q∏
`=1

yα`` (11)

because y1, . . . ,yQ and −→α are known by the meta-reduction.
13 This follows from ∃−→α ∈ ZQ+1

p \ {0} :
∑Q
`=0 α`ζ`(V ) = 0 ∈ Zp(V ). Hence ∃ι̂ ∈

{0, . . . , Q} : αι̂ 6= 0. Because xi are uniform, it holds that Pr[ι̂ 6= 0] ≤ 1− 1/(Q+ 1).
14 Note that the unbounded adversary also aborts in this case.
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Case 2: Now, we consider the case where all ζ0, . . . , ζQ are linearly independent. Be-
cause the meta-reduction obtains images and representations for Q = q2 + 1 >
q2S + qT many15 queries, it can compute some linear dependence between the rep-
resentations, i.e.,

∃−→α ∈ ZQp \ {0} :
Q∑
`=1

α`
−→z ` = 0 ∈ ZqTp ∧

Q∑
`=1

α`M` = 0 ∈ ZqS×qSp . (12)

In particular, we have for such a vector −→α ∈ ZQp

Q∏
`=1

yα``
Eq. (8)
=

Q∏
`=1

 qT∏
i=1

c
z`,i
T,i ·

qS∏
i,j=1

e(cS,i, cS,j)
m`,i,j

α`

(13)

=

qT∏
i=1

(
Q∏
`=1

c
α`·z`,i
T,i

)
·

qS∏
i,j=1

(
Q∏
`=1

e(cS,i, cS,j)
α`·m`,i,j

)
(14)

Eq. (12)
=

qT∏
i=1

c0T,i ·
qS∏

i,j=1

e(cS,i, cS,j)
0 = e(g,g)0 (15)

and hence
∑Q
`=1 α`ζ`(s) = 0 is implied by

e(g,g)
∑Q
`=1 α`ζ`(s) =

Q∏
`=1

e(g,g)α`ζ`(s) =

Q∏
`=1

yα`` = e(g,g)0 . (16)

The meta-reduction uses this dependence −→α to compute the univariate target poly-
nomial

ψ(V ) := ρ̃x1(V ) · · · ρ̃xQ(V ) ·
Q∑
`=1

α`ζ`(V ) (17)

=

Q∑
`=1

α`σ̃x`(V )
∏
`′ 6=`

ρ̃x`′ (V ) ∈ Zp[V ] (18)

which fulfills the following properties:
1. ψ is non-zero, since otherwise the rational functions ζ1(V ), . . . , ζQ(V ) would

be linearly dependent (because none of the ρ̃x`(V ) can be zero).
2. ψ is a polynomial whose degree is bounded by Q · d · df ∈ poly(λ).
3. ψ must vanish at the effective secret key s. This follows from Eq. (16).

In the next step the meta-reduction factors the polynomial ψ to obtain its set of roots
Z(ψ) := {r ∈ Zp | ψ(r) = 0}. Factoring a univariate polynomial ψ over a field of
size p is possible in time poly(deg(ψ), log p) = poly(λ) through a PPT algorithm
[5]; see [49] for a survey on factoring univariate polynomials. Via standard success

15 Q is larger than the sum of the dimensions of the vector spaces of the algebraic representations
for the source and target group elements, i.e., q2S + qT = dim(ZqS×qSp × ZqTp ).
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boosting, i.e., repeating the factoring algorithm polynomially many times, the meta-
reduction can find all irreducible factors of ψ with overwhelming probability, e.g.
1− 2−λ. The meta-reduction then takes all linear factors16 (V − r1), . . . , (V − rt)
to obtain the set Z(ψ) = {r1, . . . , rt} with |Z(ψ)| ≤ deg(ψ) ≤ Qddf .
Since the exponent of the reduction’s verification key is s ∈ Z(ψ) the meta-
reduction can find s = ri by trying out each candidate ri, i.e., checking if −→v ?

=
(gf1(ri), . . . ,gfnS

(ri), e(g,g)fnS+1(ri), . . . , e(g,g)fn(ri)). The meta-reduction can
finally compute the challenge image

y0 = gσ̃x0 (s)/ρ̃x0 (s) (19)

and return it to the reduction.

Note that in both cases, the meta-reduction behaves indistinguishably from the un-
bounded adversary, which does not get to see the algebraic representations of group
elements. Therefore, the meta-reduction has the same winning probability as the reduc-
tion εM ≥ εB − 2−λ except for when the factorization of the target polynomial fails.
The meta-reduction runs the reduction once and has to simulate the adversary r times.
Hence, the meta-reduction’s runtime is tM = tB + rpoly(λ) = tB + poly(λ).

Remark 12. Indeed, Theorem 1 can be applied if the input space X is only of polyno-
mial size for a suitable definition of weak selective unpredictiability. Here, one has to
make sure that the challenge preimage is not contained in the Qmany query preimages,
otherwise the adversary could predict trivially.

Corollary 1. If the reduction in Theorem 1 is efficient, then NICA is efficiently solvable.
In other words, tB/εB ∈ poly(λ) =⇒ tM/εM ∈ poly(λ).

We move on to our next result.

Theorem 2. Let p = p(λ) be a superpolynomial group order. Let NICA be some uni-
variate DLog-hard assumption according to Definition 7 with l1, l2, dNICA ∈ poly(λ),
and polynomials r1, . . . , rl1 , t1, . . . , tl2 ∈ Zp[S] of degree at most dNICA. Let n, d, r ∈
poly(λ). Let vrf be a rational VRF of evaluation degree d with n verification key ele-
ments s.t. ∀x ∈ X : σx(

−→
V ) = V1.17

If there exists an algebraic (tB, εB, r, 0, 1)-reduction B (that forwards its group
description as part of the verification key) from NICA to the 0-adaptive pseudoran-
domness of vrf, then there exists an adversary M that (tM, εM)-breaks NICA with
εM ≥ εB − 2−λ and tM ≤ tB + poly(l2, dNICA, d, log p, r) = tB + poly(λ).

Proof. For short notation, let L := l1 + l2 and let −→c (S) := (1, r1(S), . . . , rl1(S),
1/t1(S), . . . , 1/tl2(S)) ∈ Z1+L

p denote the function that maps the NICA’s secret ex-
ponent to its elements actual exponents (plus the generator as the first element). We

16 Note that for irreducible non-linear factors, i.e., of degree more than 1, all roots must be in the
algebraic closure Zp \ Zp, otherwise the factor would not be irreducible.

17 Essentially, the first verification key element h := v1 is the new generator relative to which
the VRF is evaluated.
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describe the adversaryM as a meta-reduction [14] that takes input a group description
Π and group elements−→c from NICA (where g is the generator designated in the public
parameters of the group’s description), forwards it to the reduction B and simulates an
adversary for the 0-adaptive pseudorandomness that is indistinguishable from a com-
putationally unbounded adversary that does not get to see the algebraic representation
of group elements. Because the reduction is algebraic, whenever it outputs a group el-
ement y ∈ GT it must also provide a representation18 M ∈ Z(1+L)×(1+L)

p w.r.t. the
NICA challenge elements s.t.

y = gT
−→c (s)ᵀM−→c (s) (20)

As such, the representation M gives a concise way of writing an element relative to the
elements of the NICA challenge.
Let us first describe the unbounded adversary with success probability 1. The adversary
obtains as input the verification key vk = (Π,−→v ). Then the adversary samples and
submits x∗ $← X as the challenge (in fact, arbitrary x∗ works as well) and obtains
the image y∗ and its representation M∗. If the group validation fails, the adversary
aborts. Otherwise, the (unbounded) adversary computes the secret evaluation key from
vk and uses it to compute y′ = Evalvrf(sk, x

∗). It outputs REAL if y′ = y∗, RANDOM
otherwise.

Now, we describe the meta-reduction. It forwards its input to the reduction; the
NICA challenge has the form −→c = (gr1(s), . . . ,grl1 (s),g1/t1(s), . . . ,g1/tl2 (s)). The
meta-reduction simulates an unbounded adversary as follows: It obtains from the reduc-
tion as input the verification key vk and its algebraic representations Mvk,1, . . . ,Mvk,n.
The meta-reduction proceeds analogously to the unbounded adversary in that it submits
x∗ $← X as the challenge and obtains the image y∗ and its representation M∗. If the
group validation fails, the meta-reduction aborts.

Denote by s ∈ Zp the concrete exponent of the NICA challenge. Let Mh :=

Mvk,1 6= 0 ∈ Z(1+L)×(1+L)
p and let h := v1 = gv1 = gσx(

−→v ) = g
−→c (s)ᵀM−→c (s).

Let

t : Zp → Znp : S 7→


−→c (S)ᵀMvk,1

−→c (S)
...

−→c (S)ᵀMvk,n
−→c (S)

 (21)

be the function that maps the exponent of the NICA challenge to the verification key
exponents, i.e.,

−→
V = t(S). Furthermore, for any preimage x ∈ X let ρ′x(S) := (ρx ◦

t)(S) = ρx(
−→
V ).

By the correctness and unique provability of the VRF, for each correct (and only for
correct) representation M of the image y of x it holds that

gT
−→c (s)ᵀM−→c (s) = y (22)

= gT
σx(
−→v )/ρx(

−→v ) (23)

18 Since Definition 7 considers NICAs with only source group elements (for simply exposition)
we have no −→z term here. Considering target group NICAs does not affect our result.
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= e(g,g)
σx(
−→v )/ρx(

−→v ) (24)

= e(h,g)
1/ρx(

−→v ) (25)

= e(g
−→c (s)ᵀM−→c (s),g)

1/ρx(
−→v )

(26)

= gT
−→c (s)ᵀM−→c (s)/ρx(

−→v ) (27)

= gT
−→c (s)ᵀM−→c (s)/ρ′x(s) (28)

where −→v are the exponents of the verification key, and thus

0 = −→c (s)ᵀ (M · ρ′x(s)−Mh)
−→c (s) . (29)

Hence, the polynomial

ψ′x,M (S) =

 l2∏
i,j=1

titj

d+1

· −→c (S)ᵀ (M · ρ′x(S)−Mh)
−→c (S) (30)

contains the exponent of the NICA challenge s as a zero. Note that ψ′x,M (S) is a poly-
nomial of degree at most dψ := 8d · d2NICA ∈ poly(λ). Now, consider the two cases:

– ∃M : ψ′x∗,M (S) ≡ 0, then the meta-reduction finds such a representation19 M ′

s.t. ψ′x∗,M ′(S) ≡ 0 is zero, and outputs REAL iff y∗ =
∏L
i,j=0 e(ci, cj)

M ′i+1,j+1

where c0 := g, and RANDOM otherwise.
– ∀M : ψ′x∗,M (S) 6≡ 0, then the meta-reduction computes the target polynomial
ψ′x∗,M∗(S) 6≡ 0, and factorizes it to obtain a set of at most dψ zeros Z(ψ′x∗,M∗) =
{s1, . . . , sd}. We assume that the factorization is repeated sufficiently often (poly-
nomial many times) so that it fails with probability at most 2−λ. If any candidate
zero si is the NICA exponent, the meta-reduction solves its NICA challenge di-
rectly. If no candidate zero si is the NICA exponent, then the meta-reduction an-
swers RANDOM.

Analysis. In the first case, we know that any M ′ s.t. ψ′x∗,M ′(S) ≡ 0 is a valid repre-
sentation for the image of x∗ by Eq. (29). Thus, if M∗ and M ′ describe the same group
element, then the image y∗ is the real image of x∗, otherwise it is a random element.

In the second case, suppose that the image y∗ is the real image, then the poly-
nomial ψ′x∗,M∗(S) must contain the NICA exponent s as a zero. However, we know
that ψ′x∗,M (S) 6≡ 0 for any M , and it is of degree at most dψ . Therefore, factoring it
takes time at most poly(l, dψ, log p) and yields a set of at most dψ zeros. If any zero is
the NICA exponent, the meta-reduction has solved the corresponding DLog-challenge
which—by Definition 8—can only happen with negligible probability. Consequently,
if no zero is the NICA exponent, then the representation M∗ must describe a random
group element; the meta-reduction outputs RANDOM.

19 This amounts to solving a system of polynomially many linear equations.
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6 Generic Attacks on Parametrized Rational VUFs

In the previous section, we showed two results which rule out VUFs with logarithmic
proofs whose security can be algebraically based on a non-interactive computational
hardness assumption. However, both results have caveats: Theorem 1 requires that the
exponent of each verification key element can be expressed as a univariate polynomial
in one secret variable, i.e., the secret key consists of basically just one element, while
Theorem 2 requires a similar restriction for the exponents of the assumption on which
the security of the VUF is based.

To circumvent the restrictions of the previous results, we want to show a lower
bound for a different class of VUFs where neither the verification key nor the NICA
needs to be univariate. The class of VUFs that we consider here will be the class of
parametrized rational VUFs: If vuf is rational of evaluation degree dvuf , we know that
there are families of polynomials (σx)x, (ρx)x s.t. we have for each tuple (x, vk,y, π)
accepted by Verifyvuf

y = e(h,h)σx(dlogh(vk))/ρx(dlogh(vk))

for some dedicated generator h in vk. We call vuf parametrized rational of evalua-
tion degree dvuf , if the set of inputs X equals Zp and if there are polynomials σ, ρ ∈
Zp[V,X] of total degree dvuf s.t. we have for each x ∈ X

σx(V ) = σ(V, x) and ρx(V ) = ρ(V, x).

I.e., the members of the family (σx)x resp. (ρx)x are derived from a universal polyno-
mial σ(·, X) resp. ρ(·, X) of total degree dvuf . We give a formal definition of parametrized
rational VUFs later (Definition 18).

For the class of parametrized VUFs we can show that there can be no reductions
which base their security on hard NICAs. However, now there are two new restrictions
that we need to impose on the reduction. First, we can only exclude generic reductions
now, while our previous bounds did hold for algebraic reductions. Second, we can only
exclude reductions that solve extremely small Uber-assumptions [11]. Under those two
restrictions, we get the following result:

Theorem 3. Let vuf be a parametrized rational VUF of evaluation degree dvuf ∈
O(1). Let NICA be an Uber-assumption of degree dNICA ∈ poly(λ) and of size q ≤√
log log(w) for some w ∈ poly(λ).

If NICA is hard and Q > 2 · (1 + log logw) ·w2 log(dvuf+1), then there is no generic
reduction that can transform an adversary for the weak Q-selective unpredictability of
vuf to a NICA solver.

Unfortunately, the proof of Theorem 3 is very technical and requires, among other
things, notions and results from the field of Groebner bases and projective algebraic ge-
ometry. We will therefore not directly prove Theorem 3. Instead, we will first introduce
a new technicality which we call verification equations. Then, in Section 6.1, we will
illustrate the use of verification equations and some key ideas in the proof of Theorem 3
by proving a lower bound for a toy example (the VUF of Dodis & Yampolskiy [17]).
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In Section 6.2, we will summarize necessary results of the field of Groebner bases and
algebraic geometry and finally, in Section 6.3, we will give a proof of Theorem 3 using
verification equations and algebraic geometry.

Before we start, we explain the setting in which we prove our results. Since we are
only considering generic algorithms here, we will assume in this section that the groups
G,GT and the pairing e : G×G→ GT form a bilinear generic group [8, 48]. Note that
the generic bilinear group (G,GT , e) does not need an explicit verification algorithm in
the sense of Definition 3 anymore, since generic groups are certified by default. Indeed,
the group operation oracles given to the reduction reject each handle that does not point
to a valid group element. Further, in this section, we will no longer demand that there
is a publicly known group generator of G. Instead, we expect the verification key of
each VUF vuf to contain a dedicated group generator of G. Further, note that in this
work we call an algorithm only generic iff it is generic in the sense of Shoup’s GGM
and algebraic (cf. Definition 5). Therefore, whenever we require that a reduction R is
generic, we additionally require, implicitly, thatR is algebraic.

Let us start with our technical framework. We first introduce a notion of Uber-
assumptions that is similar to the definition of Boyen [11], but differs in two subtle
points: first, we do not make any requirements about the solution that a challenger has
to compute when given a sample of NICA, while Boyen expects the adversary to com-
pute a concrete polynomial in the exponent. Second, we require that the polynomials
fA1 , . . . , fAq1 , fB1 , . . . , fBq2 that we use to compute the exponents of the challenge
elements are sparse, i.e., only have a polynomial number of non-zero coefficients and
can efficiently be written in normal form, while Boyen makes no special restriction on
the polynomials fA1

, . . . , fAq1 , fB1
, . . . , fBq2 .

Definition 16 (Computational Uber-Assumptions). Let NICA be a non-interactive
computational assumption.

We call NICA an Uber-assumption if there is a polynomial bound t = t(λ) and a
set of sparse polynomials fA1 , . . . , fAq1 , fB1 , . . . , fBq2 ∈ Zp[Z1, . . . , Zt] that can be
computed efficiently and uniformly s.t. the distributions of challenge samples of NICA
is identical to the output of the following algorithm:

D(1λ) := {
draw g by any distribution s.t. g is a generator of G;

draw (z1, . . . , zt)
$← Ztp uniformly and indpendently at random;

set a1 := fA1
(z1, . . . , zt), . . . , aq1 := fAq1 (z1, . . . , zt);

set b1 := fB1
(z1, . . . , zt), . . . , bq2 := fBq2 (z1, . . . , zt);

return (g,ga1 , . . . ,gaq1 , e(g,g)b1 , . . . , e(g,g)bq2 );

}.

Let dNICA = max{deg fA1 , . . . ,deg fAq1 ,deg fB1 , . . . ,deg fBq2}. We call dNICA the
degree of NICA and q = 1 + q1 + q2 the size of NICA.

Now, we introduce the notion of verification equations. To this end, let vuf =

(Genvuf ,Evalvuf ,Verifyvuf) be a VUF. In this section, we denote by
−→
vkS ∈ Gn1 resp.
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−−→
vkT ∈ Gn2

T the vectors of source resp. target group elements of vk and by −→πS ∈ Gu1

resp.−→πT ∈ Gu2

T the vectors of source resp. target group elements of π. Let n := n1+n2
denote the size of vk and u := u1 + u2 the size of π. Remember that we denoted by
X = (Xλ)λ the domain of Evalvuf(skvuf , _).

Definition 17. Consider the polynomial ring in n+ u+ 1 variables

Zp[V, P, Y ] :=

Zp[VS,1, . . . , VS,n1
, VT,1, . . . , VT,n2

, PS,1, . . . , PS,u1
, PT,1, . . . , PT,u2

, Y ].

We want to evaluate elements of Zp[V, P, Y ] on exponents of tuples (vk, π,y). The
formal variables VS,i resp. VT,i are placeholders for the exponents of the source resp.
target group elements of vk. Analogously, the variables PS,i resp. PT,i evaluate the
exponents of π and the variable Y evaluates the exponent of y.

Let φ = (φx)x∈X be a family of polynomials, φx ∈ Zp[V, P, Y ]. φ is called a
(family of) verification equation(s) of vuf if for each tuple (vk, x,y, π) accepted by
the verification algorithm Verifyvrf and for each generator h ∈ G and corresponding
generator hT := e(h,h) ∈ GT it holds that

φx(vS,1, . . . , vS,n1 , vT,1, . . . , vT,n2 , pS,1, . . . , pS,u1 , pT,1, . . . , pT,u2 , y) = 0

where vS,i := dlogh(vkS,i), vT,j := dloghT (vkT,j), pS,l := dlogh(πS,l),
pT,m := dloghT (πT,m) and y := dloghT (y) for i ∈ [n1], j ∈ [n2], l ∈ [u1] and
m ∈ [u2]. We define the degree of φ as dφ = maxx∈X deg φx.

A verification equation is a necessary implication of the exponents of a correct tuple
(vk, x,y, π). I.e., if (vk, x,y, π) is accepted by Verifyvuf , then φx must vanish on the
exponents of vk, π,y. This means a certain equation holds over the discrete logarithms
of vk, π,y. Note that the evaluation of a verification equation φ is independent of the
chosen generator h of G. This is important, since a reduction – like the one in [17] –
may give the adversary a special group generator that allows the reduction to answer
some evaluation queries.

In comparison with the notion of pairing equations, which we introduced in Defini-
tion 12, we note three differences: first, the formula φx(−→v ,−→p , y) = 0 is invariant under
the group generator relative to which the discrete logarithms −→v ,−→p , y are computed to,
while the evaluation of a pairing equation is dependent of a fixed group generator. Sec-
ond, verification equations are allowed to be of arbitrary degree, while pairing equations
can at most be quadratic. Third, verification equations are defined relative to a VUF and
must vanish on the exponents of each tuple of group elements accepted by its verifica-
tion algorithm.

Given the tool of verification equations, we can now formally define parametrized
rational VUFs:

Definition 18. A VUF vuf = (Genvuf ,Evalvuf ,Verifyvuf) is called parametrized ratio-
nal of evaluation degree dvuf = dvuf(λ), if the following things hold:

1. The set of possible inputs of vuf is X = Zp.
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2. There are polynomials σ, ρ ∈ Zp[VS,1, . . . , VS,n1
, VT,1, . . . , VT,n2

, X] of total de-
gree dvuf such that the family (φx)x∈X of polynomials

φx(V, P, Y ) := ρ(V, x) · Y − σ(V, x)

is a family of verification equations of vuf.
3. For each generator h ∈ G and each tuple (vk, x,y, π) accepted by Verifyvuf we

have
ρ(−→vS ,−→vT , x) 6= 0

where −→vS resp. −→vT denote the exponents of the elements vkS,1, . . . , vkS,n1
resp.

vkT,1, . . . , vkT,n2
relative to the basis h resp. e(h,h).

The notion of a parametrized rational VUF is more restrictive than the notion of a ra-
tional VUF, which we introduced in Definition 14. It requires that there is a strong
algebraic connection between the fractions that describe the exponents of different im-
ages, while the normal definition of a rational VUF does not demand any correlation
between the fractions that are induced by different inputs. Obviously, the VUF of Dodis
& Yampolskiy [17] is parametrized rational.

However, for now let vuf be any VUF and assume there is a generic reduction R
that can solve instances of the Uber-assumption NICA of degree dNICA ∈ poly(λ) when
given access to a successful adversary A against the weak selective Q-unpredictability
of vuf.
R is given a tuple (g,g

−→a , e(g,g)
−→
b ) sampled from D. Recall that a tuple (g,g

−→a ,

e(g,g)
−→
b ) $← D(1λ) is of the form

(g,gfA1
(−→z ), . . . ,gfAq1 (

−→z ), e(g,g)fB1
(−→z ), . . . , e(g,g)fBq2 (

−→z ))

where z1, . . . , zt ∈ Zp are drawn uniformly at random. Let A1, . . . , Aq1 , B1, . . . , Bq2
be formal variables that represent the exponents a1, . . . , aq1 , b1, . . . , bq2 of (g,g

−→a ,

e(g,g)
−→
b ). The polynomials fA1 , . . . , fB1 , . . . induce a homomorphism of rings F2 :

Zp[A,B]→ Zp[Z] that maps each Ai to fAi and each Bj to fBj .

R has to solve (g,g
−→a , e(g,g)

−→
b ) while it may make black-box use of a weak se-

lective adversary A that asks for Q evaluations of the VUF. We may model R’s usage
of A as an oracle access.

WheneverR accessesA, it sendsA a verification key vk, a list of inputs x0, . . . , xQ,
a list of proofs π1, . . . , πQ and a list of image group elements y1, . . . ,yQ. Since R is
algebraic, the exponents of the source group elements (vkS,i)i∈[n1], (πS,i,j)i∈[Q],j∈[u1]

and the target group elements (vkT,i)i∈[n2], (πT,i,j)i∈[Q],j∈[u2], (yi)i∈[Q] must be rep-
resentable by polynomials

(vS,i)i, (pS,i,j)i,j(vT,i)i, (pT,i,j)i,j , (yi)i ⊂ Zp[A,B]

of degree 1 resp. 2 in the variables A1, . . . , Aq1 , B1, . . . , Bq2 , since those variables
represent the exponents of g

−→a and g
−→
b . Let (VS,i)i, (VT,i)i, (PS,i,j)i,j , (PT,i,j)i,j and

(Yi)i be the formal variables that represent the exponents of (vkS,i)i, (vkT,i)i,
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(πS,i,j)i,j , (πT,i,j)i,j and (yi)i. Then, the algebraic representations of those group ele-
ments induce a morphism of rings F1 : Zp[VS , VT , PS , PT , Y ] → Zp[A,B] that maps
each variable VS,i, VT,i, PS,i,j , PT,i,j resp. Yi to the corresponding polynomial vS,i,
vT,i, pS,i,j , pT,i,j resp. yi of degree ≤ 2.

By composing F1 and F2, we get a ring homomorphism

F := F2 ◦ F1 : Zp[V, P, Y ]→ Zp[Z], (31)

which maps each variable to a sparse polynomial of degree ≤ 2dNICA that explains the
corresponding group element outputted by R in terms of the values z1, . . . , zt drawn
by D.

Now, let (φx)x be a family of verification equations of constant degree dφ. For
i ∈ [Q], the polynomial φxi lies in Zp[V, Pi, Yi]. Assume that for each i ∈ [Q], Verifyvuf
accepts the tuple (vk, xi,yi, πi) (otherwise, we assume that the adversary A aborts).
Then, the polynomial φxi must vanish over the exponents of (vk, xi,yi, πi). This trans-
lates to

F(φxi)(z1, . . . , zt) = 0

where F(φxi) ∈ Zp[Z] is the polynomial yielded by replacing each variable VS,j , VT,j ,
PS,i,j , PT,i,j resp. Yi by the polynomial F(VS,j), F(VT,j), F(PS,i,j), F(PT,i,j) resp.
F(Yi) ∈ Zp[Z].

Now, note thatF(φxi) is a polynomial of degree dφ ·2dNICA ∈ poly(λ). A Schwartz-
Zippel-like argument (see Lemma 1) guarantees that – since the values z1, . . . , zt ∈ Zp
have been drawn uniformly at random – F(φxi) can only vanish with non-negligible
probability at −→z if it is the zero polynomial in Zp[Z]. The next lemma makes this
observation formal.

Lemma 3. Let dNICA = dNICA(λ) > 0 and dφ ∈ O(1) be such that p
dNICA

grows faster
than any polynomial. Let Q ∈ poly(λ).

Let R be a generic PPT reduction as above. Let (φx)x be a family of verification
equations for vuf of degree dφ. Let A be an adversary on the weak Q-selective unpre-
dictability of vuf. Assume that A aborts (i.e., returns ⊥) if it is given at least one tuple
(vk, xi,yi, πi) that is rejected by Verifyvuf .

Draw (g,g
−→a , e(g,g)

−→
b ) $← D(1λ) and let

vk, x0, . . . , xQ, π1, . . . , πQ,y1, . . . ,yQ

be the information sent by R to A in their first interchange of a run of R(g,g−→a ,
e(g,g)

−→
b ) where A does not abort. Let F : Zp[V, P, Y ] → Zp[Z] be the correspond-

ing morphism from Eq. (31), which is determined by the algebraic explanations of the
group elements vk, π1, . . . , πQ,y1, . . . ,yQ.

With overwhelming probability over the randomness ofR and D, we have for each
i ∈ [Q]

F(φxi)(Z) = 0 ∈ Zp[Z].

We give a proof of this lemma in Appendix B.
We will illustrate the use of Lemma 3 by giving a lower bound for the security of

the VUF of Dodis & Yampolskiy [17] in Section 6.1. In Section 6.3, we will finally use
Lemma 3 to prove Theorem 3, i.e., a lower bound for parametrized rational VUFs.
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6.1 Toy Example: the VUF of Dodis and Yampolskiy

In this subsection, we will show lower bounds for the VRF resp. VUF of Dodis &
Yampolskiy [17]. To do so, we use Lemma 3 together with a mathematical trick to
show that the weak selective unpredictability of the VUF of Dodis & Yampolskiy [17]
cannot be based on the hardness of an Uber-assumption NICA of polynomial degree
dNICA if the number Q of evaluation queries is higher than dNICA + 1.

We do so by describing an efficient meta-reductionM that plays the weak selective
unpredictability game of the VUF against an efficient and generic reduction R. We
show that – with overwhelming probability –M is able to simulate a perfect unbounded
adversary for the weak selective unpredictability of the VUF. It then follows that there
is a generic PPT algorithm that can solve NICA. This is a contradiction to the hardness
of NICA.

Similar to the proof idea of Theorem 1,M uses the fact thatRmust supply for each
random input xi a proof πi and an image value yi ∈ GT . Since the exponent of each yi
is mathematically uniquely determined by the verification key, to which R committed,
and the input xi, M is able to extract a secret key corresponding to the reduction’s
verification key vk by querying enough image values y1, . . . ,yQ.

It can then in turn use this secret key to evaluate the function and thereby break
unpredictability. However, with the techniques presented in this section, we obtain a
bound on the number Q of queries that depends on the degree of NICA instead of its
size like in the previous section. In fact, we show thatQ ≥ dNICA+2 evaluation queries
ofM suffice to extract the secret key.

Now, let us recall the VUF vufDY = (GenDYvuf ,Eval
DY
vuf ,Verify

DY
vuf ) by Dodis & Yam-

polskiy [17] over a pairing group (G,GT , e):

GenDYvuf (1
λ): Given the parameter λ, compute a generator h of the cyclic source group

G of prime order p, sample s $← Z×p and set vk1 := h, vk2 := hs.
Output vk = (vk1, vk2) as verification key and sk = (h, s) as secret key.

EvalDYvuf (sk, x): Given the secret key sk = (h, s) and an input20 x ∈ Zp, we compute
the source group element π = h

1
s+x , the target group element y = e(h,h)

1
s+x and

output both. (We output ⊥, if s+ x = 0.)
VerifyDYvuf (vk, x,y, π): Given the verification key vk = (vk1, vk2), an input x ∈ Zp,

a proof π ∈ G and an output value y ∈ GT , we first check21 that vk1 is indeed a
generator of the group G. After that, verification checks that the following equalities
of target group elements hold

e(vkx1 · vk2, π) = e(vk1, vk1) and e(vk1, π) = y.

We accept if vk1 is indeed a generator and both equations hold, and reject otherwise.

We want to analyze the verification algorithm of vufDY. To this end, let x ∈ Zp and let
V1, V2, Y, P be formal variables that represent the discrete logarithms of vk1, vk2,y, π.
20 In [17], x is a binary string and there exists an efficient, injective mapping into Zp. For sim-

plicity, we skip this step and consider x to be an element of Zp.
21 We can generically check that vk1 is a non-trivial group element by making sure vk1 · vk1 6=
vk1, and in a prime order group any non-trivial element is a generator.

37



The two checks from the verification algorithm can be formalized as verification equa-
tions in the sense of Definition 17 as follows:

αx = (x · V1 + V2) · P − V 2
1 and βx = V1 · P − Y ∈ Zp[V1, V2, P, Y ].

By eliminating P , we get the following polynomial

φx := V1 · αx − (x · V1 + V2) · βx = (x · V1 + V2) · Y − V 3
1 .

φx vanishes on the discrete logarithms of vk1, vk2,y, π whenever αx and βx vanish.
Therefore, the collection (φx)x is a family of verification equations for vufDY.

To prove that the unpredictability of vufDY cannot be generically based on the hard-
ness of NICA for an unbounded number of evaluation queries, we recall some notions
from algebra and prove a simple mathematical lemma.

Remark 13. Let R be a domain, i.e. a zero divisors free commutative ring. Remember
that the group of units R× is defined as the set of multiplicatively invertible elements
of R, i.e.

R× = {a ∈ R | ∃b ∈ R : ab = 1}.

An element r ∈ R is called irreducible, if r 6= 0 and for each decomposition r = ab
with a, b ∈ R, we have a ∈ R× or b ∈ R×.

Now, let k be a field and consider k[X] := k[X1, . . . , Xn]. Note that the group of
units of k[X] is exactly k× = k \{0}. An element f ∈ k[X] is said to divide g ∈ k[X],
if there is an h ∈ k[X] s.t. fh = g. We will write f | g in this case. Two elements
f, g ∈ k[X] are called coprime if we have for each h ∈ k[X]

h|f ∧ h|g =⇒ h ∈ k×.

f, g are coprime iff they do not share an irreducible component. If f, g are irreducible,
they are coprime iff they are not scalar multiples of each other. The greatest common
divisor gcd(f, g) of two polynomials f, g ∈ k[X] is defined as some polynomial h
of maximum degree s.t. h divides f and g. h is not determined uniquely but up to
multiplication with a unit. (The greatest common divisor of 0 and 0 is 0).

Lemma 4. Let H,S ∈ Zp[Z1, . . . , Zt] be non-zero. Let x1, . . . , xQ ∈ Zp be Q distinct
scalars. Assume that S /∈ Zp ·H .

Then, the polynomials (S+x1H), . . . , (S+xQH) contain Q− 1 irreducible com-
ponents, which are coprime to each other.

Proof. Let a be the greatest common divisor of S and H . Then, Ŝ := S
a and Ĥ := H

a

are coprime polynomials. Since S /∈ Zp · H , Ĥ and Ŝ cannot both be scalars. For
i ∈ [Q], set

gi :=
S + xiH

a
= Ŝ + xiĤ.

We claim gi, gj are coprime if i 6= j. In fact, let d be a common divisor of gi and gj .
Write Ŝ + xi · Ĥ = b · d and Ŝ + xj · Ĥ = c · d for fitting b, c ∈ Zp[Z]. Then,
(xi − xj) · Ĥ = Ŝ + xi · Ĥ − (Ŝ + xj · Ĥ) = (b − c) · d. Since b 6= c and xi 6= xj
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it follows that d|Ĥ . As we assumed d|(Ŝ + xi · Ĥ), it follows that d|Ŝ. Since Ŝ, Ĥ are
coprime, it follows d ∈ Z×p . Ergo, gi, gj are coprime whenever i 6= j.

We further claim that there is at most one i ∈ [Q] s.t. gi ∈ Zp. Assume – for the
sake of contradiction – that gi, gj ∈ Zp for two different i, j. Since xj 6= xj , it follows
that Ŝ and Ĥ lie in Zp. However, we ruled this out in the beginning. Therefore, there is
at most one i ∈ [Q] s.t. gi is constant.

W.l.o.g., we can now assume that the polynomials g1, . . . , gQ−1 have positive de-
gree and are all coprime to each other. In particular, each one of them contains an
irreducible component that is coprime to each other gi. Therefore, our claim follows.

We can now use Lemma 3 and Lemma 4 to prove that adversaries for the weak
selective unpredictability of the VUF of Dodis & Yampolskiy [17], for an unbounded
number of evaluation queries, cannot be generically transformed to NICA solvers.

Theorem 4. Let NICA be an Uber-assumption of polynomial degree dNICA ∈ poly(λ).
If NICA is hard, then there is no generic PPT reduction R that solves samples

of NICA with non-negligible advantage when given access to an adversary against
the weak (dNICA + 2)-selective unpredictability of the VUF vufDY = (GenDYvuf ,Eval

DY
vuf ,

VerifyDYvuf ) of Dodis & Yampolskiy [17].

Proof. Set Q = dNICA + 2. Let A be a computationally unbounded adversary against
the weak selective Q-unpredictability of vufDY that proceeds as follows:

1. A receives vk, x0, . . . , xQ, π1, . . . , πQ,y1, . . . ,yQ fromR.
If there are i, j ∈ {0, . . . , Q} s.t. i 6= j and xi = xj , A returns ⊥.

2. A checks if VerifyDYvuf accepts each tuple (vk, xi, πi,yi). If VerifyDYvuf rejects at least
one (vk, xi, πi,yi), then A returns ⊥.

3. A computes the discrete logarithms of the verification key to extract the secret
key s ∈ Zp. If s + x0 6= 0, A uses this secret key to compute and output y0 =

e(vk1, vk1)
1

s+x0 , otherwise it returns ⊥.

Since X = Zp is exponentially large, the probability that A aborts in its first step in the
real unpredictability game is negligible.

Assume, for the sake of contradiction, there is a generic PPT reduction R that –
when given access to A – is able to solve NICA challenges.

We will show that there is an efficient meta-reductionM that can break NICA by
usingR and imitating the ideal adversary A forR.

Let φx(V1, V2, P, Y ) = (x ·V1+V2) ·Y −V 3
1 be the verification equation of vufDY

that we described above.
In the first successful interaction between R and A, let F : Zp[V1, V2, P1, . . . ,

PQ, Y1, . . . , YQ] → Zp[Z] be the morphism of Eq. (31) that is derived from the al-
gebraic explanations of the group elements vk1, vk2, π1, . . . , πQ,y1, . . . ,yQ. Then,
F(V1),F(V2) are polynomials of degree dNICA, while F(Y1), . . . ,F(YQ) are polyno-
mials of degree 2dNICA.

Due to Lemma 3, we know that each F(φxi) = (xi · F(V1) + F(V2)) · F(Y ) −
F(V1)3 must be – with overwhelming probability – the zero polynomial in Zp[Z]. That
is, for each i ∈ [Q] it holds that

(xi · F(V1) + F(V2)) · F(Yi) = F(V1)3
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as polynomials in Zp[Z]. If F(V2) is not a scalar multiple of F(V1), i.e., there exists
no scalar s ∈ Zp such that s · F(V1) = F(V2), then – by Lemma 4 – the polynomials
(x1 ·F(V1)+F(V2)), . . . , (xQ ·F(V1)+F(V2)) contain at least (dNICA+1) irreducible
coprime components that all divide F(V1)3. Since those components are irreducible,
they all divide F(V1). However, F(V1) is of degree dNICA and cannot be divided by
Q − 1 = dNICA + 1 coprime irreducible components, which are no scalars. Therefore,
F(V2) must be a scalar multiple of F(V1), i.e., there is one s ∈ Zp s.t. we have the
equality of formal polynomials

F(V2) = s · F(V1).

The scalar s is the secret key of vufDY. Since M can compute F (recall that M has
access to the algebraic explanations of the group elements issued byR), it can compute
s on its own.

Therefore, the meta-reductionM – which uses R to solve NICA – can efficiently
simulate the ideal adversary A in its first successful interaction with R. Subsequently,
M can simulate the ideal adversary A in each call ofR, and therefore,M’s advantage
on solving NICA equalsR’s advantage when given oracle access to A.

Since we assumed that NICA is hard and sinceM is a PPT algorithm, it must follow
thatR’s advantage on solving NICA is negligible.

6.2 Preliminaries on Groebner Bases and Projective Algebraic Geometry

To prove Theorem 3, we need to introduce the tool of so called Groebner Bases and the
Projective Extension Theorem [15]. Therefore, we will give here an overview of some
notions and results regarding Groebner bases and algebraic projective geometry, which
we will be using in Section 6.3.

We assume that the reader is familiar with the notion of ideals of rings. An ideal I
of a ring R is a subset of R that is nonempty, closed under addition of elements of the
ideal and closed under multiplication with arbitrary elements of R. The ideal generated
by a set S ⊂ R is the smallest ideal of R that contains S. We will denote this ideal by
(S).

Definition 19 (Monomial Orders). Let R = k[X1, . . . , Xn] be the polynomial ring of
the variables X1, . . . , Xn with coefficients in a field k.

A monomial order ≤ on R is a linear order on the set of monomials Mon :=
{Xα1

1 · · ·Xαn
n | α1, . . . , αn ∈ N0}. We call ≤ admissible, if the following two proper-

ties hold:

1. ∀m ∈ Mon : 1 ≤ m.
2. ∀a, b, c ∈ Mon : a ≤ b =⇒ a · c ≤ b · c.

Definition 20 (Leading Terms). Let ≤ be an admissible monomial order on R =
k[X1, . . . , Xn].

Each f ∈ R can be written as

f =
∑
α∈Nn0

cα ·Xα
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where only finitely many cα are non-zero. LetXβ be the maximum of the set {Xα | cα 6=
0} according to ≤.

Then, the leading term lt(f) of f is defined as cβXβ .

Definition 21 (Groebner Bases). Let ≤ be an admissible monomial order on R =
k[X1, . . . , Xn] and let I ⊂ R be an ideal.

A set G ⊂ I is called a Groebner basis of I , if for each f ∈ I there is a g ∈ G s.t.
lt(g)|lt(f).

Note, that each Groebner basis of I is, in particular, a generating set of I .
It is well known that, given a Groebner basis, the ideal membership problem can

be efficiently solved. However, it is usually infeasible to compute a Groebner basis for
a given generator set. Dubé [18] showed that the degrees of the elements a Groebner
basis can be bounded from above by a function that is double exponential in the number
of variables.

Theorem 5 (Dubé [18]). Let I ⊂ k[X1, . . . , Xn] be an ideal generated by degree d
polynomials f1, . . . , fm ∈ k[X1, . . . , Xn].

Then, there is a finite Groebner basis G of I such that we have for each g ∈ G

deg(g) ≤ 2

(
d2

2
+ d

)2n−1

∈ O(d2
n

).

A monomial order of special interest is the so-called lexicographical order ≤lex,
which is given by

Xα1
1 · · ·Xαn

n ≤lex X
β1

1 · · ·Xβn
n

:⇐⇒ ∃i ∈ [n+ 1] : (∀j < i : αj = βj) ∧ (i = n+ 1 ∨ αi > βi).

The lexicographical order is useful for eliminating variables. For i ∈ {0, . . . , n}, set
Ii := I ∩ k[X1, . . . , Xi]. Then Ii is an ideal of the polynomial ring k[X1, . . . , Xi]. The
elimination theorem states that each Groebner basis of I with respect to ≤lex contains a
Groebner basis of Ii.

Theorem 6 (Elimination Theorem). Let I ⊂ k[X1, . . . , Xn], let ≤lex be the lexico-
graphical order as explained above (with X1 <lex X2 <lex . . . <lex Xn).

For i ∈ {0, . . . , n}, set Ii := I ∩ k[X1, . . . , Xi]. Let G be a Groebner basis of I
with respect to ≤lex.

Then,G∩k[X1, . . . , Xi] is a Groebner basis of Ii with with respect to≤lex restricted
to k[X1, . . . , Xi].

A proof of the Elimination Theorem can be found in [15] (note, that we reversed the
order of the variables X1, . . . , Xn in <lex here).

We can now combine the above theorems to get the following corollary:

Corollary 2. Let I ⊂ k[X1, . . . , Xn] be an ideal generated by elements f1, . . . , fm of
degree d.

Then, if the principal ideal I ∩ k[X1] is not zero, it is generated by an element of

degree ≤ 2
(
d2

2 + d
)2n−1

.
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We assume that the reader is familiar with the notion of projective spaces.If k is a
field, we can define a relation ∼ on kn+1 \ {0} by

a ∼ b :⇐⇒ ∃λ ∈ k× : λa = b

for a, b ∈ kn+1 \ {0}. Equivalence classes of ∼ are denoted as [x0 : . . . : xn] for
(x0, . . . , xn) ∈ kn+1 \{0}. The relation∼ is an equivalence relation on kn+1 \{0} and
its quotient set Pn(k) := (kn+1 \ {0})/ ∼ is called the projective space of dimension
n.

One can imagine Pn(k) to be the affine space kn together with a set of additional
points that describe kn’s geometry at infinity. E.g., P1(R) ≈ R ∪ {∞} can be imag-
ined as the line R together with a point∞ that connects both ends of R and turns the
line into a sphere. P2(R) ≈ R2 ∪ P1(R) can be somewhat imagined as the Euclidean
plane together with a sphere at its infinity boundary that turns the plane into a compact
manifold.

Definition 22. A polynomial f ∈ k[X0, X1, . . . , Xn, Y1, . . . , Ym] is called (X0, X1,
. . . , Xn)-homogenous, if there is a d ∈ N0 s.t. f can be written as

f =
∑

α∈Nn+1
0 :|α|=d

Xα · gα

for gα ∈ k[Y1, . . . , Ym].
An ideal I ⊆ k[X0, X1, . . . , Xn, Y1, . . . , Ym] is called (X0, X1, . . . , Xn)-homo-

genous if it is generated by (X0, X1, . . . , Xn)-homogenous polynomials.

A polynomial f ∈ k[X0, X1, . . . , Xn, Y1, . . . , Ym] that is X-homogenous cannot be
evaluated on points of Pn(k)× km. However, for a point

([x0 : . . . : xn], (y1, . . . , ym)) ∈ Pn(k)× km,

the statement

f([x0 : . . . : xn], (y1, . . . , ym)) = f(x0, . . . , xn, y1, . . . , ym) = 0

is independent of the concrete representation (x0, . . . , xn) of [x0 : . . . : xn], and there-
fore well-defined.

Definition 23. Let k be the algebraic closure of k. If S ⊂ k[X0, X1, . . . , Xn, Y1, . . . ,
Ym] is a set of X-homogenous polynomials, we define the variety V(S) ⊂ Pn(k)× km

by
V(S) := {([x], y) ∈ Pn(k)× km | ∀f ∈ S : f([x], y) = 0}.

We will now cite a result, presented in [15], which will be – for the sake of simplicity
– the combination of two different results of [15] (Theorem 6 and Proposition 8 of the
chapter Projective Algebraic Geometry):
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Theorem 7 (Projective Extension Theorem).
Let f1, . . . , fs ∈ k[X0, . . . , Xn, Y1, . . . , Ym] be X-homogenous polynomials. Let

π : Pn(k)× km −→ k
m

([x], y) 7−→ y

be the projection to the last m coordinates. For each i ∈ {0, . . . , n}, define the follow-
ing morphism of k-algebras

di : k[X0, . . . , Xn, Y1, . . . , Ym] −→ k[X0, . . . , Xi−1, Xi+1, . . . Xn, Y1, . . . , Ym]

f(X0, . . . , Xn, Y1, . . . , Ym) 7−→ f(X0, . . . , Xi−1, 1, Xi+1, . . . Xn, Y1, . . . , Ym).

Then, we have
π(V(f1, . . . , fs)) = V(Î)

where the ideal Î is given by

Î =

n⋂
i=0

((di(f1), . . . , di(fs)) ∩ k[Y1, . . . , Ym]) .

Now, one can combine the projective extension theorem with our knowledge of Groeb-
ner bases to get the following corollary:

Corollary 3. Let f1, . . . , fs ∈ k[X0, . . . , Xn, Y ] be X-homogenous polynomials of
total degree d.

Then, either π(V(f1, . . . , fs)) = k or there is a non-zero polynomial g ∈ k[Y ] of

degree ≤ (n+ 1) · 2
(
d2

2 + d
)2n

s.t.

π(V(f1, . . . , fs)) = V(g).

Proof. Set Ai := (di(f1), . . . , di(fs)) ∩ k[Y ]. The projective extension theorem states
that

π(V(f1, . . . , fs)) = V(Î)

for

Î =

n⋂
i=0

Ai.

According to Corollary 2, Ai is either zero or generated by an element gi of degree

≤ 2
(
d2

2 + d
)2n

.

If one of the Ai is the zero ideal, then Î = 0 and V(Î) = k. Otherwise, since k[Y ]
is a principal ideal domain, the intersection

Î = A0 ∩ . . . ∩An = (g0) ∩ . . . ∩ (gn)

is generated by the smallest common multiple g of g0, . . . , gn. The degree of g is at

most deg(g0) + . . .+ deg(gn) ≤ (n+ 1) · 2
(
d2

2 + d
)2n

.
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6.3 Proof of Theorem 3

We are finally going to prove Theorem 3.
For this end, let NICA be an Uber-assumption of degree dNICA ∈ poly(λ) and size

q = 1 + q1 + q2 =
√
log logw for some w ∈ poly(λ).

Let fA1
, . . . , fAq1 , fB1

, . . . , fBq2 ∈ Zp[Z] be the polynomials that are used byD to
compute the exponents of the group elements of a sample of NICA. We will now define
when we call a polynomial a constructible target exponent.

Definition 24. Let WS ⊂ Zp[Z] be the Zp-vector space generated by the elements
1, fA1

, . . . , fAq1 , i.e.
WS := spanZp{1, fA1

, . . . , fAq1}.

Set further
WT :=W 2

S + spanZp{fB1
, . . . , fBq2}.

Polynomials in WT are called constructible target exponents.

The intuition behind this notion is that, if we were to apply a hybrid step and replace the
groups G,GT by groups GZ ,GZT that encode elements of Zp[Z], then WS contains the
exponents of all group elements in GZ that can be computed by a generic algorithm that
is given the group elements g,gfA1

(Z), . . . ,gfAq1 (Z), whileWT contains the exponents
of all group elements in GZT that can be computed by a generic algorithm that is given
the group elements g,gfA1

(Z), . . . ,gfAq1 (Z), e(g,g)fB1
(Z), . . . , e(g,g)fBq2 (Z). Note,

that WT is a vector space of dimension ≤ (1 + q1)
2 + q2 ≤ q2 = log logw.

In Theorem 3, we stated that there is no generic reduction that – when given access
to an adversary for the weak selective unpredictability of a parametrized rational VUF
of constant evaluation degree – can efficiently solve NICA if NICA is hard.

Now, let vuf = (Genvuf ,Evalvuf ,Verifyvuf) be a parametrized rational VUF of con-
stant evaluation degree dvuf . Remember that, since vuf is parametrized rational, there
must be two universal polynomials σ, ρ ∈ Zp[VS , VT , X] of degree dvuf s.t. the family
(φx)x∈ZP of polynomials

φx(V, P, Y ) := ρ(V, x) · Y − σ(V, x)

is a family of verification equations for vuf.
Let R be a generic reduction for the weak selective unpredictability of vuf. R

attempts to solve a NICA challenge (g,g
−→a , e(g,g)

−→
b ) $← D(1λ) by making oracle

queries to an adversary A on the weak Q-selective unpredictability of vuf. To prove
Theorem 3, we will describe here a meta-reductionM that will use R and efficiently
simulate an ideal adversaryA in the unpredictability game withR. The ideal adversary
A is described as follows:

1. A receives as input vk, x0, . . . , xQ,y1, . . . ,yQ, π1, . . . , πQ byR.
2. It checks that Verifyvuf accepts each tuple (vk, xi,yi, πi). If one of the tuples is not

accepted, A returns ⊥.
3. If there are i, j ∈ {0, . . . , Q} s.t. i 6= j and xi = xj , then A returns ⊥.
4. Otherwise, it extracts the exponents−→v of the group elements of vk relative to some

group generator h ∈ G of vk.
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5. A computes ρ(−→v , x0). If ρ(−→v , x0) = 0, then A returns ⊥.

6. Otherwise, A computes σ(−→v , x0) and outputs y0 = e(h,h)
σ(−→v ,x0)

ρ(−→v ,x0) where h is the
group generator it used in step 4.

Note, that the probability of A returning ⊥ in the steps 1 - 4 is negligible in the real
weak Q-selective unpredictability game of vuf, since we assume that vuf is correct and
since the probability of two x’s drawn uniformly from Zp to be equal is negligible.

If A does not return ⊥ in the steps 1 - 4, it will always win, since y0 is the only
image value in GT for that there can exist a proof π0 s.t. Verifyvuf accepts the tuple
(vk, x0,y0, π0). In fact, if Verifyvuf accepts (vk, x0,y0, π0), then φx0

must vanish on
the exponents −→v , y0 of vk,y0 relative to h, e(h,h), which implies

ρ(−→v , x0) · y0 = σ(−→v , x0)

and in particular dloge(h,h)(y0) = y0 = σ(−→v , x0)/ρ(−→v , x0). Therefore, A has an
overwhelming win probability in the real weak Q-selective unpredictability game of
vuf.

Again, in each interaction betweenR andM, we let F be a ring morphism of type

Zp[V, P, Y ]→ Zp[Z]

where

Zp[V, P, Y ] :=

Zp[(VS,j)j∈[n1], (VT,j)j∈[n2], (PS,i,j)i∈[Q],j∈[u1], (PT,i,j)i∈[Q],j∈[u2], (Yi)i∈[Q]].

F is induced by the algebraic representations of the exponents of vk, π1, . . . , πQ,
y1, . . . ,yQ and by the polynomials fA1

, . . . , fB1
, . . ., which specify the Uber-

assumption NICA. Again, F maps each single variable to a polynomial in Zp[Z] of
degree ≤ 2dNICA. Since M knows the polynomials fA1

, . . . , fB1
and since M can

extract algebraic representations of vk, π1, . . . , πQ,y1, . . . ,yQ out of R,M can effi-
ciently evaluate F on elements of Zp[V, P, Y ] of constant degree.

Now, our meta-reductionM simulates the ideal adversary A as follows:

1. When receiving the verification key vk, the inputs x0, . . . , xQ ∈ Zp, the proofs
π1, . . . , πQ and the image values y1, . . . ,yQ,M checks that Verifyvuf accepts each
tuple (vk, xi,yi, πi) for i ∈ [Q]. If one of the tuples is not accepted,M returns ⊥.

2. If there are i, j ∈ {0, . . . , Q} s.t. i 6= j and xi = xj , thenM returns ⊥.
3. M extracts the map F : Zp[V, P, Y ] → Zp[Z] that explains algebraically each

group elementM received byR.
4. M computes ρ(F(V ), x0) ∈ Zp[Z]. M can do so, since each F(VS,i) resp.
F(VT,i) is sparse and ρ is a polynomial of constant degree dvuf . If ρ(F(V ), x0) =
0, thenM returns ⊥.

5. Now,M computes σ(F(V ), x0). By mere linear algebra,M checks if

σ(F(V ), x0) ∈ ρ(F(V ), x0) ·WT .

It can do so, since ρ(F(V ), x0) ·WT is a vector space of dimension O(log log(w))
that is generated by sparse polynomials.
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6. If σ(F(V ), x0) ∈ ρ(F(V ), x0) ·WT ,M computes

y0 = e(g,g)σ(F(V )(−→z ),x0)/ρ(F(V )(−→z ),x0)

as follows:
By mere linear algebra,M computes scalars (αi,j)i,j=0,...,q1 ⊂ Zp, β1, . . . , βq2 ∈
Zp, s.t.

σ(F(V ), x0) = ρ(F(V ), x0) ·

 q1∑
i,j=0

αi,j · fAi · fAj +
q2∑
i=1

βi · fBi


(where we set fA0

(Z) := 1 for simplicity).
We now have for the rational functions in Zp(Z)

σ(F(V ), x0)

ρ(F(V ), x0)
=

q1∑
i,j=0

αi,j · fAi · fAj +
q2∑
i=1

βi · fBi .

Let −→z ∈ Ztp be the concrete values drawn by D and let −→v be the exponents of vk
relative to the basis g, e(g,g). If ρ(F(V ), x0)(

−→z ) = ρ(−→v , x0) 6= 0, then we have

σ(F(V ), x0)

ρ(F(V ), x0)
(−→z ) = σ(−→v , x0)

ρ(−→v , x0)

=

q1∑
i,j=0

αi,j · fAi(−→z ) · fAj (−→z ) +
q2∑
i=1

βi · fBi(−→z )

=

q1∑
i,j=0

αi,jaiaj +

q2∑
i=1

βibi

where a0 := 1, a1, . . . , aq1 , b1, . . . , bq2 are exponents of the elements of the chal-
lenge (g,g

−→a , e(g,g)
−→
b ) relative to the basis g resp. e(g,g).

Therefore,M computes and outputs

e(g,g)
σ(−→v ,x0)

ρ(−→v ,x0) =

q1∏
i,j=0

e(gai ,gaj ) ·
q2∏
i=1

e(g,g)bi .

7. Otherwise,M returns ⊥.

It is easy to show that – if σ(F(V ), x0) ∈ ρ(F(V ), x0) ·WT – the meta-reduction
M will succeed in simulating A:

Lemma 5. Assume that dvuf ∈ O(1) and dNICA ∈ poly(λ).
If σ(F(V ), x0) ∈ ρ(F(V ), x0) ·WT , then – with overwhelming probability –M

simulates the behaviour of A in its interaction withR.
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Proof. Let z1, . . . , zt be the real values for the variables Z1, . . . , Zt that have been
drawn by D. We then have for the exponents of vk relative to the generator g

vS,1 = F(VS,1)(−→z ), . . . , vS,n1 = F(VS,n1)(
−→z ),

vT,1 = F(VT,1)(−→z ), . . . , vT,n2 = F(VT,n2)(
−→z ).

It is easy to see that – if ρ(−→v , x0) 6= 0 – thenM andAwill output the same element
y0.

However, if ρ(−→v , x0) = 0 and ρ(F(V ), x0) 6= 0, then A will return ⊥ while
M may not return ⊥. Since −→z ∈ Ztp is drawn uniformly at random by D and since
ρ(F(V ), x0) is a polynomial of degree ≤ 2 · dvuf · dNICA in Z, the probability that

ρ(v, x0) = ρ(F(V ), x0)(
−→z ) = 0

is bounded by 2·dvuf ·dNICA

p ∈ negl(λ).

So, it suffices to show that, by setting Q high enough, we can force σ(F(V ),x0)
ρ(F(V ),x0)

to
lie in WT . Therefore, we will prove the following theorem.

Theorem 8. Assume that dvuf ∈ O(1) and dNICA ∈ poly(λ). Let there be a w ∈
poly(λ), s.t. NICA is of size q =

√
log logw.

Then, if Q > 2 · (q2 + 1) ·
(

(dvuf+1)2

2 + dvuf + 1
)2q2

, one has in the game between
R andM either

σ(F(V ), x0)

ρ(F(V ), x0)
∈WT

or
ρ(F(V ), x0) = 0.

To prove this theorem, let ω := dimZpWT ≤ q2 = log logw be the vector space
dimension of WT and let u1, . . . , uω ∈ Zp[Z] be a basis of WT . Since WT is generated
by sparse polynomials of degree ≤ 2dNICA, u1, . . . , uω are sparse of degree ≤ 2dNICA,
too.

Now, we introduce new formal variables H0, . . . ,Hω and let

g ∈ Zp[H,X,Z] := Zp[H0, . . . ,Hω, X, Z1, . . . , Zt].

We can consider g as a polynomial in Z whose coefficients are polynomials in H and
X and write it as

g =
∑
α∈Nt0

cα · Zα

with cα ∈ Zp[H,X] where only finitely many cα are non-zero. If we set

T (g) := {cα | α ∈ Nω+1
0 }

we get a map

T : Zp[H,X,Z] −→ P(Zp[H,X]).
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If g is sparse, then T (g) only contains a polynomial number of elements.
Note, that we have for each (h0, . . . , hω, x) ∈ Zp

ω+2

g(
−→
h , x, Z) = 0 ⇐⇒ ∀c ∈ T (g) : c(

−→
h , x) = 0

⇐⇒ (
−→
h , x) ∈ V(T (g))

where V(T (g)) is the affine zero locus of the elements of T (g).
Now, let x0, . . . , xQ ∈ Zp, vk,y1, . . . ,yQ, π1, . . . , πQ and F : Zp[V, P, Y ] →

Zp[Z] be the products of the interaction between R and M. We can assume that
x0, . . . , xQ are pairwise distinct.

Set

g(H,X,Z) := ρ(F(V )(Z), X) ·

 ω∑
j=1

Hj · uj

− σ(φ(V )(Z), X) ·H0

where u1, . . . , uω is the basis of WT . The polynomial g ∈ Zp[H,X,Z] is homogenous
in H . It is easy to see that each element of T (g) ⊂ Zp[H,X] is homogenous in H , too.
Therefore, we can consider the semi-projective variety

V(T (g)) = {([h], x) ∈ Pω(Zp)× Zp | ∀c ∈ T (g) : c(
−→
h , x) = 0}

where Zp is the algebraic closure of Zp.
Since ρ and σ are of degree dvuf in X , the total degree of each element of T (g) is

bounded by dvuf+1. Corollary 3 now states for the projection πZp : Pω(Zp)×Zp → Zp
onto the last coordinate one of the following two cases occur:

– either πZp(V(T (g))) = Zp,
– or there is a non-zero polynomial g′ ∈ Zp[X] of degree

deg g′ ≤ (ω + 1) · 2 ·
(
(dvuf + 1)2

2
+ dvuf + 1

)2ω

< Q

such that we have
πZp(V(T (g))) = V(g

′).

Assume – for the sake of contradiction – that the second case would occur. Then, the
polynomial system T (g) would only be solvable for at most deg g′ different x values.
However, we asked the reduction for evaluation queries for at leastQ > deg g′ different
x values.

In fact, let i ∈ [Q]. Since F(Yi) must lie in WT , there must be scalars h1, . . . , hω ∈
Zp, s.t. we have F(Yi) =

∑ω
i=1 hi · ui(Z) and therefore

g(1, h1, . . . , hω, xi, Z) = ρ(F(V ), xi) · F(Yi)− σ(F(V ), xi) = 0,

since (ρ(V, x) · Y − σ(V, x))x is a family of verification equations for vuf.
In particular, for each i ∈ [Q], there are h1, . . . , hω ∈ Zp s.t. the point

([1 : h1 : . . . : hQ] , xi) lies in V(T (g)). Therefore, πZp(V(T (g))) must contain the Q
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different points x1, . . . , xQ ∈ Zp. Therefore, πZp(V(T (g))) cannot be the zero locus
of a polynomial of degree < Q.

It follows that the first case must hold, i.e., πZp(V (T (g))) = Zp. This implies, that
for x0 ∈ Zp, there must exist h0, . . . , hω ∈ Zp, not all zero, such that we have

ρ(F(V ), xi) · y0(Z)− σ(F(V ), xi) · h0 = 0

for y0(Z) =
∑Q
i=1 hi · ui(Z). Again, we distinguish two cases:

– if h0 = 0, then we have ρ(F(V ), xi) = 0, since y0(Z) =
∑Q
i=1 hi · ui(Z) 6= 0,

since at least one hi must be non-zero and the polynomials u1, . . . , uω are linearly
independent.
In this case, the claim of Theorem 8 holds.

– Otherwise, h0 6= 0. Without loss of generality, we can assume that h0 = 1 and
ρ(F(V ), xi) 6= 0. We then have

y0(Z) =
σ(F(V ), x0)

ρ(F(V ), x0)
=

Q∑
i=1

hi · ui(Z) ∈ spanZp(WT ).

In the second case, it remains to show that the scalars h1, . . . , hω ∈ Zp can be chosen
such that they lie in Zp. In fact, the following lemma finishes the proof of Theorem 8:

Lemma 6. Let u0, . . . , uω be vectors in Znp . If there are scalars h1, . . . , hω ∈ Zp s.t.

u0 =

ω∑
i=1

hi · ui,

then there are b1, . . . , bω ∈ Zp s.t.

u0 =

ω∑
i=1

bi · ui.

Proof. Choose an embedding
ι : Zp −→ Zp

of fields. Since ι is a Zp-linear map and Zp is a Zp-vector space, there is a Zp-linear
map r : Zp → Zp such that

r ◦ ι = idZp .

Now, we set bi := r(hi) for i ∈ [ω] and have

u0 =

ω∑
i=1

hi · ui = r

(
ω∑
i=1

hi · ui

)
=

ω∑
i=1

r (hi) · ui =
ω∑
i=1

bi · ui

by applying r component-wise.

Remark 14. In this section, we only presented and proved results for reductions that
transform adversaries against the weak selective unpredictability of a VUF to solvers for
computational Uber-assumptions. However, our results and techniques can – by simple
methods – be extended to decisional Uber-assumptions. We detail this in Appendix C.
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Supplementary Material

A Linear Attacks on Constant-Degree UFs

An unpredictable function (UF) is a cryptographic primitive that – given a secret key sk
and a preimage x – outputs an image y that looks somewhat random to any party that
does not know the secret key sk.

In this section, we will discuss two attacks on unpredictable functions whose evalu-
ation function can be represented as a polynomial of constant degree on either its secret
key or the user input.

Let us first give a formal definition of UFs.

Definition 25 (Unpredictable Functions, UFs [42]). Let uf = (Genuf ,Evaluf) be a
pair of algorithms of the following form:

– Genuf(1
λ) outputs a secret key sk.

– Evaluf(sk, x) is a deterministic algorithm that – on input a secret key sk and a
preimage x ∈ X = (Xλ)λ – outputs an image y ∈ Y = (Yλ)λ.

Definition 26 (Weak Selective Unpredictability). Let Q ∈ poly(λ). We call a UF
uf = (Genuf ,Evaluf) weakly Q-selectively unpredictable if for each PPT adversary A
there is a negligible function ε(λ) s.t.:∣∣∣∣∣∣∣∣Pr

A(1λ,−→x ,−→y ) = y0

∣∣∣∣∣∣∣∣
−→x = (x0, . . . , xQ)

$← XQ+1
λ

sk $← Genuf(1
λ)

yi ← Evalvrf(sk, xi)−→y = (y1, . . . , yQ)

− 1

|Yλ|

∣∣∣∣∣∣∣∣ ≤ ε(λ)
Now, let uf = (Genuf ,Evaluf) be a candidate unpredictable function. We denote

the space of possible outputs of Genuf by Kuf = (Kuf ,λ)λ. Assume further that X =
{0, 1}n for n = n(λ) ∈ poly(λ) and that Evaluf is of the following type for an arbitrary
pairing group (G,GT , e):

Evaluf : Kuf × {0, 1}n −→ GT

for a poly-bit prime p = p(λ) = |GT |.
Furthermore, let d = d(λ) ∈ N be arbitrary and assume that for each sk ∈ Kuf

there is an element h ∈ GT and a polynomial fsk ∈ Zp[X1, . . . , Xn] of total degree
deg fsk ≤ d(λ) s.t.

Evaluf(sk, x1, . . . , xn) = hfsk(x1,...,xn).

Theorem 9. Let uf be as described above and let n ∈ Ω(λ), d ∈ O(1). Then, uf is not
weakly Q-selectively unpredictable for Q ≥ nd + 1.



Proof. For n ≥ d ≥ 1, set

Nd =

(
n

d

)
+

(
n

d− 1

)
+ . . .+

(
n

1

)
+

(
n

0

)
.

We claim
Nd ≤ nd + 1.

In fact, we have by induction on d

Nd =

(
n

d

)
+Nd−1 ≤

(
n

d

)
+ nd−1 + 1 ≤ nd

d!
+ nd−1 + 1.

For n ≥ d ≥ 2, it follows

nd

d!
+ nd−1 ≤ nd

2
+ nd−1 = nd−1(

n

2
+ 1) ≤ nd.

Let M = {Xα = Xα1
1 · · ·Xαn

n | ∀i = 1, . . . , n : αi ∈ {0, 1},
∑n
i=1 αi ≤ d} be

the set of all monomials of degree at most d that contain each variable at most once.
Then |M | = Nd.

Let m1, . . . ,mNd be any ordering of the elements of M and consider the following
mapping:

vd : Znp −→ ZNdp
x 7−→ (m1(x), . . . ,mNd(x)).

While img(vd) is not a vector space, we claim that its elements span the whole space
ZNdp . Set

Sd := {x ∈ {0, 1}n | ||x||1 ≤ d}.
That is, Sd is the set of bitstrings of length nwhere at most d entries are non-zero. Then,
|Sd| = Nd. We claim that vd(Sd) is a basis of ZNdp . It suffices to show that the elements
of vd(Sd) are linearly independent as we already know that |S|d = Nd. We will show
this statement by induction on d:

Induction Start: Let d = 1. Then, Nd = n+ 1 and v1 is given by

v1 : Znp −→ ZNdp
(x1, . . . , xn) 7−→ (1, x1, . . . , xn)

(depending on the ordering of the monomials m1(x), . . . ,mNd ). S1 is the set of all
binary vectors that contain at most one non-zero entry and v1(S1) is given by

v1(S1) =




1
0
0
...
0

 ,


1
1
0
...
0

 ,


1
0
1
...
0

 , . . . ,


1
0
0
...
1




.

Therefore, it is easy to see that v1(S1) does not contain any linear dependencies.
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Induction Step: Let d > 2 and let us assume that the statement holds for d − 1. I.e., we know
that the vectors in vd−1(Sd−1) are linearly independent. Assume – for the sake of
contradiction – there exists a non-zero −→ρ ∈ ZNdp s.t. we have

Nd∑
i=1

ρivd(si) = 0

where we denote Sd = {s1, . . . , sNd}.
Since vd−1(Sd−1) is linearly independent, there must be at least one ι ∈ [Nd] s.t.
ρι 6= 0 and ||sι||1 = d. That is, sι is 1 exactly on d distinct indices j1, . . . , jd ∈
{1, . . . , n}. Choose α ∈ [Nd] s.t.

mα(X) = Xj1 · · ·Xjd ∈M.

mα is one at sι and zero at each other point of Sd. We now have

0 =

Nd∑
i=1

ρi · (vd(si))α =

Nd∑
i=1

ρimα(si) = ριmα(sι) = ρι.

This contradicts our previous assumption that ρι 6= 0.
Ergo, vd(Sd) is linearly independent and therefore a basis of ZNdp .

We now describe our adversary A against the unpredictability of the uf. A gets
1λ, x0, . . . , xQ,y1, . . . ,yQ as input and has to output y0 = Evaluf(sk, x0).

Since Q ≥ Nd, the vectors vd(x0), . . . , vd(xQ) must be linearly dependent. If
vd(x0) /∈ spanZp{vd(x1), . . . , vd(xQ)}, thenA returns⊥. Since the preimages x0, . . . ,
xQ have been drawn uniformly and independently at random, this will happen with
probability at most Q

Q+1 .
IfA does not return⊥, then vd(x0) ∈ spanZp{vd(x1), . . . , vd(xQ)} and there exists

a vector ρ ∈ ZQp s.t.

vd(x0) =

Q∑
i=1

ρi · vd(xi).

This allows the adversary to compute the value y0 such that y0 = Evaluf(sk, x
∗) by

y0 := yρ11 · · ·y
ρQ
Q .

The adversary then returns y0 as its candidate solution to the game.
We claim that A can always correctly compute y0 ← Evaluf(sk, x0). Fix sk and let

h ∈ GT and fsk ∈ Zp[X1, . . . , Xn] be a polynomial of total degree d s.t.

Evaluf(sk, X1, . . . , Xn) = hfsk(X1,...,Xn).

Note, that there is a reduced polynomial

fsk ∈ Zp[X1, . . . , Xn]/(X
2
1 −X1, . . . , X

2
n −Xn)
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s.t. fsk and fsk coincide on {0, 1}n.
Since each monomial of fsk contains each variable at most once, fsk ∈ spanZp(M).

In fact, choose c1, . . . , cNd ∈ Zp s.t.

fsk(X) =

Nd∑
i=1

cimi(X).

Then, we have

fsk(x0) =

Nd∑
i=1

cimi(x0) =

Nd∑
i=1

ci

 Q∑
j=1

ρjmi(xj)


=

Q∑
j=1

ρj

Nd∑
i=1

cimi(xj) =

Q∑
j=1

ρjfsk(xj)

Thus, Evaluf(sk, x0) = yρ11 · · ·y
ρQ
Q as claimed. Therefore, A can compute

Evaluf(sk, x0) on its own with probability at least 1
Nd+1 .

While Q ≥ Nd, note that A only needs Nd preimages and values of Evaluf , store
Nd(Nd+1) values of Zp, solve anNd×Nd linear equation system over Zp and compute
Nd exponentiations and Nd − 1 multiplications in the target group. Therefore, A has a
time complexity of O(N3

d ) = O(n3d) and a space complexity of O(N2
d ) = O(n2d).

We will now consider a different kind of UF where the evaluation function is poly-
nomial in the secret key.

Let m = m(λ) ∈ poly(λ). We consider the following evaluation function of uf that
is given by an efficiently computable function

Evaluf : Zmp ×X −→ GT .

I.e., the secret key lies now in Zmp while we do not impose any restrictions on the input
space X .

Let d = d(λ) be arbitrary and assume, that there is a group element h ∈ GT s.t. for
each x ∈ X there is a polynomial fx ∈ Zp[S1, . . . , Sm] of total degree ≤ d(λ) s.t.

Evaluf((s1, . . . , sm), x) = hfx(s1,...,sm).

We assume that – by knowing x and a description of uf – one can efficiently compute
fx.

We then have the following attack on uf.

Theorem 10. If we have |X | >
(
m+d
d

)
, then there is an adversary with time complexity

O
((
m+d
d

)3)
who can break the unpredictability of uf by asking O

((
m+d
d

))
values of

uf at arbitrary inputs.
If d ∈ O(1),m ∈ poly(λ), then uf is not weakly Q-selectively unpredictable for

Q ≥
(
m+d
d

)
.
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Proof. The number of monomials in m variables of total degree at most d is
(
m+d
d

)
.

Therefore, the vector space of all polynomials in Zp[Y1, . . . , Ym] of total degree ≤ d is
at most

(
m+d
d

)
. For

(
m+d
d

)
+ 1 different inputs x0, . . . , x(m+d

d ) ∈ X , there must be a

non-trivial linear dependency of the polynomials fx0(S), . . . , fx(m+d
d )

(S).

This leads to the following adversaryA:A receives 1λ, x0, . . . , xQ,y1, . . . ,yq and
has to compute y0 = Evaluf(sk, x0) = fx0

(sk).
Since Q ≥

(
m+d
d

)
, the polynomials fx0

(S), . . . , fxQ(S) must be linearly depen-
dent. If fx0

/∈ spanZp(fx1
, . . . , fxm), A outputs ⊥.

Otherwise, A can compute scalars κ1, . . . , κQ s.t.

fx0(S) =

Q∑
i=1

κi · fxi(S)

by using Gauss-elimination. This allows A to predict y0 by computing

y0 = hfx0 (s) = h
∑Q
i=1 κi·fxi (s) =

Q∏
i=1

hκi·fxi (s) =

Q∏
i=1

yκii .

Therefore, A can break the weak Q-selective unpredictability of uf with probability at
least 1

(m+d
d )+1

.

B On the Lemma of Verification Equations

We want to give here a proof of Lemma 3.
For this end, let (GZ ,GZT , eZ) be a generic group with a pairing that encodes el-

ements of Zp[Z1, . . . , Zt]. I.e., the exponents of elements of GZ and GZT are formal
polynomials.

Let NICA be an Uber-assumption as defined in Definition 16. I.e., there is a distri-
bution procedure that has the form

D(1λ) := {
draw g by any distribution s.t. g is a generator of G;

draw (z1, . . . , zt)
$← Ztp uniformly and independently at random;

set a1 := fA1
(z1, . . . , zt), . . . , aq1 := fAq1 (z1, . . . , zt);

set b1 := fB1
(z1, . . . , zt), . . . , bq2 := fBq2 (z1, . . . , zt);

return (g,ga1 , . . . ,gaq1 , e(g,g)b1 , . . . , e(g,g)bq2 );

}.

and samples challenges (g,g
−→a ,g

−→
b ) of NICA.
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For a distribution D as above, we set DZ to be the distribution over (GZ)q1+1 ×
(GZT )q2 given by

DZ(1λ) :=
{

draw g by any distribution s.t. g is a generator of GZ ;
set a1(Z) := fA1(Z1, . . . , Zt), . . . , aq1(Z) := fAq1 (Z1, . . . , Zt) ∈ Zp[Z];
set b1(Z) := fB1

(Z1, . . . , Zt), . . . , bq2(Z) := fBq2 (Z1, . . . , Zt) ∈ Zp[Z];

return (g,ga1(Z), . . . ,gaq1 (Z), e(g,g)b1(Z), . . . , e(g,g)bq2 (Z));

}.

I.e., DZ acts like D but does not replace the place-holder variables of fA1 , . . . , fAq1 ,
fB1 , . . . , fBq2 with real values.

We claim that a generic distinguisher has a negligible advantage in distinguishing
D from DZ :

Lemma 7. Let dNICA be the degree of the Uber-assumption NICA. The advantage of
an adversary A running in time at most tA at distinguishing between the following two
games is at most ∣∣∣Pr [G0

A = 1
]
− Pr

[
G1
A = 1

]∣∣∣ ≤ t2A · 2dNICA
p

Game G0:

Setup: Sample z1, . . . , zt $← Zp uniformly at random. Evaluate ai = fA1(
−→z ), . . . ,

aq1 = fAq1 (
−→z ), b1 = fB1

(−→z ), . . . , bq2 = fBq2 (
−→z ). Add a1, . . . , aq1 , b1, . . . bq2

along with group element handles to internal lists of elements of G and GT . Output
the handles to A.

Online Phase: Whenever the adversary makes a request to the group oracle with two
handles, the game looks up the internal representation of the two group elements.
If they exist, it adds the two group elements and looks up if there is already a
handle. Otherwise it samples a new handle and adds it to the list. Same for pairing
operations. It outputs the resulting handle to the adversary.

Output Determination: Once the adversary outputs a bit b′, the game G0 outputs 1
if b′ = 0 and 0 otherwise.

Game G1:

Setup: The game internally generates a list of handles corresponding to polynomials
over the variables Z1, . . . Zt. It puts fA1

(Z), . . . fAq1 (Z), fB1
(Z), . . . , fBq2 (Z) in

the internal list. It then outputs the handles of fA1
, . . . fAq1 , fB1

, . . . , fBq2 to the
adversary.

Online Phase: Whenever the adversary makes a group oracle query or a pairing query,
the game looks up the handles (if they are not in the list it returns⊥) and then either
adds (in case of group operation) or multiplies (in case of pairing operation and
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both elements being from GZ) the polynomials. It then checks if the resulting poly-
nomial already exists in the list and if yes returns the handle, and if not it samples
a new handle, adds the polynomial and its handle to the list and returns the handle.

Output Determination: When the adversary outputs its final output bit b′, the game
returns 1 if b′ = 1 and 0 otherwise.

Proof. We consider the following case. Take G1 as above. Let the adversary play G1.
Once the game is finished, sample a vector −→z $← Ztp. Then evaluate all polynomials
in the internal representation lists at −→z . We say a collision occurs if during the run of
G1, two different group handles were given out for two group elements whose internal
polynomials evaluated to the same value at −→z . It is easy to see, that the games G0

and G1 are perfectly indistinguishable if no collisions occur. We therefore consider the
probability that such a collision occurs. As the adversary runs in time tA, it can make
at most tA queries to the group oracles. Each pair of such queries yields a potential col-
lision. Thus, there are t2A possible collision points. The game G1 only outputs different
handles if the internal representations differ as polynomials, i.e., the difference of two
colliding polynomials is not the zero polynomial. As the polynomials fA1

, . . . , fB1
, . . .

in NIDA have degree up to dNICA, the resulting polynomials in the group representations
from pairing operations can have degree up to 2dNICA. Thus, the difference between two
internal representations can also have degree up to 2dNICA. Lemma 1 tells us that the
probability for each single potential collision is therefore at most 2dNICA

p . Thus, the over-

all difference that at least one collision occurs is t2A·2dNICA
p . This yields the statement.

Lemma 8. Let NICA be an Uber-assumption of degree dNICA. Let dh = dh(λ) be any
non-negative number.

Let A be a generic algorithm of time complexity tA that on input

(g,gfA1
(−→z ), . . . , gfAq1 (

−→z ), e(g,g)fB1
(−→z ), . . . , e(g,g)fBq2 (

−→z )) $← D(1λ)

outputs a list of sparse polynomials h1, . . . , hl ∈ Zp[Z1, . . . , Zt] of degree≤ dh s.t. we
have for each i ∈ [l]

hi(z1, . . . , zt) = 0.

Then, we have

Pr

∃i ∈ [l] : hi(Z) 6= 0

∣∣∣∣∣∣ (g,g
−→a , e(g,g)

−→
b ) $← D

(h1(Z), . . . , hl(Z))
$← A(g,g

−→a , e(g,g)
−→
b )


≤ l · dh

p
+ t2A ·

2dNICA
p

.

Proof. The lemma basically states that the sample from D only gives a negligible ad-
vantage in "solving the Schwartz-Zippel-problem".

By Lemma 7, we know that altering A’s source of inputs from D to DZ affects A’s
outputs only with probability ≤ t2A·2dNICA

p .
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However, the outputs of DZ are obviously devoid of any information about the
values z1, . . . , zt ∈ Zp. Therefore, we can use Schwartz-Zippel again and gain for each
polynomial hi outputted by A(DZ)

Pr[hi(z) = 0 ∧ hi(Z) 6= 0] ≤ dh
q
.

In total, the claim of the lemma follows by a union bound over all i ∈ [l].

Equipped with Lemma 8, we can prove Lemma 3.
For this end, let vuf = (Genvuf ,Evalvuf ,Verifyvuf) be a verifiable unpredictable

function that maps inputs x ∈ X = (Xλ)λ to target group elements y ∈ GT . In
Section 6, we made the following conventions about vuf:

1. We assumed that a verification key vk of vuf always has (besides other infor-
mation) n1 source group and n2 target group elements. We denoted the source
group elements of vk by vkS,1, . . . , vkS,n1

and all target group elements of vk by
vkT,1, . . . , vkT,n2

.
Further, we assumed that a verification key vk of vrf contains – besides other infor-
mation – always a declared generator of the group G.

2. We assumed that a proof outputted by Evalvrf will always have u1 = u1(λ) source
and u2 = u2(λ) target group elements (besides other information).
For (π,y)← Evalvrf(sk, x), we denote the source group elements of π by πS,1, . . . ,
πS,u1 and the target group elements by πT,1, . . . , πT,u2 .

3. The verification algorithm always checks that the declared generator in vk is indeed
a generator of G.

Now, let (φx)x∈X be a family of verification equations for vuf of degree dφ. I.e.,
each φx is a polynomial in Zp[VS,1, . . . , VS,n1

, VT,1, . . . , VT,n2
, PS,1, . . . , PS,u1

, PT,1,
. . . , PT,u2

, Y ] such that we have for each tuple (vk, x,y, π) accepted by Verifyvuf

φx(
−→vS ,−→vT ,−→pS ,−→pT , y) = 0

where −→vS ,−→pS denote the exponents of the group elements vkS,1, . . . , vkS,n1 , πS,1, . . . ,
πS,u1

relative to any generator h ∈ G and −→vT ,−→pT , y denote the exponents of the group
elements vkT,1, . . . , vkT,n2

, πT,1, . . . , πT,u2
,y relative to the corresponding generator

e(h,h) ∈ GT .
Now, consider an interaction between a generic PPT reduction R and an adversary

A on the weak selective unpredictability of vuf. When querying A, R will compute
some inputs x0, . . . , xQ ∈ X ,a verification key vk, proofs π1, . . . , πQ, image values
y1, . . . ,yQ and send them to A. If this happens, we will assume that A will return ⊥ if
there is one i ∈ [Q] s.t. Verifyvuf rejects (vk, xi,yi, πi). If all tuples (vk, xi,yi, πi) are
accepted by Verifyvuf , A will return ⊥ or a target group element y0 toR.

In the above interaction, the algebraic representations of the exponents of the group
elements of vk, π1, . . . , πQ,y1, . . . ,yQ induces a morphism of rings

F : Zp[V, P, Y ]→ Zp[Z]
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as explained in Section 6 where

Zp[V, P, Y ] :=

Zp[(VS,j)j∈[n1], (VT,j)j∈[n2], (PS,i,j)i∈[Q],j∈[u1], (PT,i,j)i∈[Q],j∈[u2], (Yi)i∈[Q]].

F maps each single variable to a polynomial in Zp[Z] of degree ≤ 2dNICA.
If A does not return ⊥, Verifyvuf must accept each tuple (vk, xi,yi, πi) in the

above interaction. Therefore, each φxi ∈ Zp[(VS,j)j∈[n1], (VT,j)j∈[n2], (PS,i,j)j∈[u1],
(PT,i,j)j∈[u2], Yi] must vanish on the exponents of (vk, xi,yi, πi) relative to the basis
g. However, if −→z ∈ Ztp is the value drawn by D, then the exponents of (vk, xi,yi, πi)
are exactly the evaluations

(F(VS,j)(−→z ))j∈[n1], (F(VT,j)(
−→z ))j∈[n2],

(F(PS,i,j)(−→z ))j∈[u1], (F(PT,i,j)(
−→z ))j∈[u2] and F(Yi)(−→z ).

In particular, we have for each i ∈ [Q]

F(φxi)(−→z ) = 0.

Now, Lemma 3 states that with overwhelming probability we additionally have on the
level of polynomials of Zp[Z]

F(φxi)(Z) = 0.

We will prove this now formally:

Proof (Lemma 3). To prove the claim we construct the following meta-algorithmM:

1. On input (g,g
−→a , e(g,g)

−→
b ),M starts runningR(g,g−→a , e(g,g)

−→
b ).

2. Whenever R tries to access A, M pauses R and reads the input vk, x0, . . . , xQ,
π1, . . . , πQ, y1, . . . ,yQ thatR tries to send to A.

3. If there is a i ∈ [Q] s.t. Verifyvuf(vk, xi,yi, πi) = 0,M will answerR’s query with
⊥ and continue runningR.

4. Otherwise,M stopsR and extracts polynomial representations of the exponents of
the group elements in (vk, π1, . . . , πQ,y1, . . . ,yQ)) fromR.

5. M now outputs the sparse polynomials F(φx1
), . . . ,F(φxQ) and stops.

6. IfR stops before making a successful interaction withA, thenM outputs an empty
list of polynomials and stops.

The time complexity ofM is bounded by a polynomial, sinceM simulatesR and since
we assume thatM can efficiently extract polynomials for the outputs ofR. Denote the
time complexity ofM by tM.

Now, draw (g,g
−→a , e(g,g)

−→
b ) $← D(1λ). According to Lemma 8, the probability

that at least one of the polynomials F(φx1
), . . . ,F(φxQ) ∈ Zp[Z] is not the zero-

polynomial is upper-bounded by

Q · 2dφdNICA
p

+ tM ·
2dNICA
p

∈ poly(λ) · dNICA
p
⊆ negl(λ).

This completes the proof of Lemma 3.
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C A Note on Decisional Uber-Assumptions

We define non-interactive decisional assumptions as a natural analogue to non-inter-
active computational assumptions.

Definition 27. A non-interactive decisional assumption (NIDA), is defined by two dis-
tributions D0(1

λ) and D1(1
λ) (parameterized over the security parameter λ) and the

following game where two oracles (each of which may be called only once) are avail-
able to the adversary:

Setup. Sample a bit b $← {0, 1}. Sample a challenge c $← Db. Output c to the adver-
sary.

Finalize. When the adversary outputs a bit b′ as a candidate solution, the game outputs
1 if b = b′. Otherwise, the game outputs 0.

We say that an adversary A (t, ε)-breaks the assumption if A runs in time at most t(λ)
and ∣∣∣∣Pr [NIDAA(λ) = 1

]
− 1

2

∣∣∣∣ ≥ ε(λ).
We say that the assumption is (t, ε)-hard if no adversary (t, ε)-breaks the assumption.
We say, NIDA is hard, if it is (t, 1r )-hard for all t, r ∈ poly(λ).

It is easy to see that Theorem 1 also holds for algebraic reductions that try to trans-
form adversaries against the weak selective unpredictability of a rational univariate
VUF to solvers of decisional assumptions.

To see that Theorem 4 and Theorem 3 also hold for decisional assumptions, we need
to discuss decisional Uber-assumptions, which we will do in the following.

Boyen [11] introduced two different variants of Decisional Uber-Assumptions: a
strict and a general variant. It is easy to see that both variants of decisional Uber-
assumptions are – if all involved polynomials are sparse – subsumed by the following
definition:

Definition 28 (Decisional Uber-Assumptions). Let t = t(λ) be polynomially bounded
and let fA1 , . . . , fAq1 , fB1 , . . . , fBq2 ∈ Zp[Z1, . . . , Zt] be a set of sparse polynomials.

Let NIDA be a non-interactive decisional assumption whose challenges consist of
1 + q1 source group and q2 target group elements.

Further, let E0, E1 be two distributions over Ztp s.t. E0 is the uniform distribution
over Ztp.

We call NIDA a decisional Uber-Assumption, if the distributionsD0,D1, which are
specified in Definition 27, work as follows (for b ∈ {0, 1}):

Db(1
λ) := {

draw g by any distribution s.t. g is a generator of G;

draw (z1, . . . , zt)
$← Eb(1λ);

set a1 := fA1
(z1, . . . , zt), . . . , aq1 := fAq1 (z1, . . . , zt);

set b1 := fB1(z1, . . . , zt), . . . , bq2 := fBq2 (z1, . . . , zt);

return (g,ga1 , . . . ,gaq1 , e(g,g)b1 , . . . , e(g,g)bq2 );

}.
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Let dNIDA = max{deg fA1
, . . . ,deg fAq1 ,deg fB1

, . . . ,deg fBq2 }. We call dNIDA the
degree of NIDA and q = 1 + q1 + q2 the size of NIDA.

It is easy to see that Theorem 4 and Theorem 3 hold for decisional Uber-assumption,
if we can prove a decisional version of Lemma 3.

For this end, let NIDA be a decisional Uber-assumption of degree dNIDA and let
R be a generic reduction that tries to decide instances of NIDA while given black-
box access to an adversary A for the weak selective unpredictability of a VUF vuf =
(Genvuf ,Evalvuf ,Verifyvuf).

Then, we can formulate the decisional version of Lemma 3 as follows:

Lemma 9. Let dNIDA = dNIDA(λ) > 0 and dφ ∈ O(1) be such that p
dNICA

grows faster
than any polynomial. Let Q ∈ poly(λ).

Let R be a generic PPT reduction as above. Let (φx)x be a family of verification
equations for vuf of degree dφ. Let A be an adversary on the weak Q-selective unpre-
dictability of vuf. Assume that A aborts (i.e., returns ⊥) if it is given at least one tuple
(vk, xi,yi, πi) that is rejected by Verifyvuf .

Draw b $← {0, 1} and (g,g
−→a , e(g,g)

−→
b ) $← D(1λ) and let

vk, x0, . . . , xQ, π1, . . . , πQ,y1, . . . ,yQ

be the information sent by R to A in their first interchange of a run of
R(g,g−→a , e(g,g)

−→
b ) whereA does not abort. Let F : Zp[V, P, Y ]→ Zp[Z] be the cor-

responding morphism, which is determined by the algebraic explanations of the group
elements vk, π1, . . . , πQ,y1, . . . ,yQ.

If NIDA is hard, then, with overwhelming probability, we will have for each i ∈ [Q]

F(φxi)(Z) = 0 ∈ Zp[Z].

Proof. Lemma 3 already states that with overwhelming probability each polynomial
F(φxi)(Z) is zero, if b = 0.

It remains to show, that the same holds for b = 1, if NIDA is hard. For this end, we
construct the following meta-reductionM that tries to decide NIDA:

1. On receiving (g,g
−→a , e(g,g)

−→
b ), M has to decide if (g,g

−→a , e(g,g)
−→
b ) has been

sampled by D0(1
λ) or D1(1

λ).
2. To this end,M runsR with input (g,g

−→a , e(g,g)
−→
b ).

3. IfR calls A with information

vk, x0, . . . , xQ, π1, . . . , πQ,y1, . . . ,yQ,

M returns⊥, if there is one i ∈ [Q] s.t. Verifyvuf(vk, xi,yi, πi) = 0, and continues
runningR.

4. Otherwise,M stopsR and extracts the morphism F : Zp[V, P, Y ]→ Zp[Z].
5. If we have

F(φxi)(Z) = 0

for each i ∈ [Q], thenM outputs 0.
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6. Otherwise,M outputs 1.

Assume, that the claim of the lemma would be false for b = 1. Then, with non-
negligible probability, in the above run of M – when given (g,g

−→a , e(g,g)
−→
b ) $←

D1(1
λ) – there would be one i ∈ [Q] s.t.

F(φxi)(Z) 6= 0

Therefore,M would have a non-negligible advantage on deciding NIDA if the claim of
the lemma were to be false. Since we assumed the hardness of NIDA, the lemma must
be true.
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