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ABSTRACT
There are numerous settings in which people’s preferences are

aggregated outside of formal elections, and where privacy and

verification are important but the stringent authentication and

coercion-resistant properties of government elections do not apply,

a prime example being social media platforms. These systems are

often iterative and have no trusted authority, in contrast to the

centrally organised, single-shot elections on which most of the

literature is focused. Moreover, they require a continuous flow of

aggregation to take place and become available even as input is still

collected from the participants which is in contrast to “fairness” in

classical elections where partial results should never be revealed.

In this work, we explore opinion aggregation in a decentralised,

iterative setting by proposing a novel protocol in which randomly-

chosen participants take turns to act in an incentive-driven manner

as decryption authorities. Our construction provides public verifia-

bility, robust vote privacy and liveness guarantees, while striving

to minimise the resources each participant needs to contribute.

1 INTRODUCTION
Motivated by the need for decentralised crowdsourced content

curation, in this work we design and analyse a protocol that enables

a group of participants to aggregate their opinions in a privacy-

preserving and timely manner. Each party may vote once, choosing

among up/down/abstain, represented by +1, -1 and 0 respectively.

Contrary to existing e-voting protocols, our construction is not

single-shot, i.e. it does not forbid revealing the results until after

all votes have been cast, but instead reveals votes dynamically,

while multiple instances of it can be executed in tandem allowing a

continuous flow of opinions to be aggregated on various topics.

This makes our scheme suitable for aggregating user prefer-

ences on social media content on platforms such as Reddit [8],

Steemit [58], Slido [57] and BitClout [59] in an online fashion. Such

settings typically allow users to post, view and rate content contin-

uously. User-generated ratings are used to sort content, therefore

ratings have to be constantly updated.

What our system offers compared to existing content rating

systems is the ability to perform opinion aggregation in a privacy-

preserving fashion without relying on any centralized or even

distributed authority to be responsible for processing and revealing

the results. We stress that the requirements of (i) continuous flow
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of inputs aggregation and result generation, (ii) the lack of any

authority for processing, and (iii) the requirement for decentralized

operation and a large participant population, set aside our setting

to traditional e-voting protocols which are not fit for purpose.

At a high level, our construction is as follows. Votes are decrypted

in batches of (predetermined) size𝐵. Each party can choose to vote at

any time. Voting is done in a number of steps: first an 𝑛-sized subset

of the parties, called decryptors, is chosen in a verifiably random

fashion out of a large set of parties. Then the voter secret-shares

its vote using 𝑡-out-of-𝑛 Shamir’s Secret Sharing [51], creating one

share per decryptor. Next, the voter encrypts each share with the

public key of the corresponding decryptor, using an encryption

scheme that is homomorphic for at least 𝐵 additions (e.g. [47], or

the exponential form of [21]) where 𝐵 determines the anonymity

set size. Once done, the voter publishes the encrypted shares on a

Bulletin Board. An honest party also periodically checks whether

it is the decryptor of a batch of votes. A batch is formed when 𝐵

votes contain at least 𝑡 decryptors in common. If there is more than

one available batch, ties are broken in a deterministic manner. If a

party concludes that it is a decryptor of a batch, it sums its 𝐵 share

ciphertexts, decrypts and publishes the resulting aggregate share.

If at least another 𝑡 − 1 decryptors of the batch do the same, then

anyone can reconstruct the aggregate of said 𝐵 votes in a publicly

verifiable manner. As discussed later in more detail, the parameters

𝑡, 𝑛 and 𝐵 can be tuned to achieve different tradeoffs.

We note that the participantswill operate entirely asynchronously

coordinating only via the Bulletin board which in practice can be

implemented by a blockchain system. Moreover, participation can

be incentivized assuming the underlying Bulletin board supports

a cryptocurrency. Under this assumption, we design a mechanism

that incentivizes utility maximizing participants to be online and

engage with decryption as required.

RelatedWork. The field of content curation studies how opinions

can be combined into an aggregated outcome, generally with expres-

sive preferences, ongoing interaction, and little focus on privacy or

the risk of manipulation [1, 3, 4, 17, 19, 23, 26, 32, 36, 39, 43, 45, 48,

53, 56, 58, 60, 62, 64]. Content curation consists of algorithms and

protocols that ensure users of a system, commonly a social media

platform, access the most relevant and useful content. The constant

inflow of content in such platforms precludes manual classification

and ranking, and crowdsourcing the procedure by leveraging users’

judgement can vastly improve the quality of curation. Therefore our

voting protocol, which is suitable for aggregating parties’ opinions

in an online fashion (as opposed to single-shot protocols), stands

at the intersection of voting and content curation.
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E-voting refers to techniques and methodologies of aggregating

the votes of a group of voters for candidates or proposals and pub-

lishing this aggregate in a timely, privacy-preserving, incoercible,

yet accountable manner (or at least with some combination of these

properties). Academic schemes generally provide some form of

verifiability [14]: public verifiability means, informally, that anyone

can check that all included votes have been properly tallied, while

individual verifiability means that each voter can check whether

their vote has been properly included.

Internet voting schemes for public elections typically have a

designated set of election administrators who are, at least, trusted

for privacy [16, 20, 22]. These schemes scale to a very large number

of voters and a modest number of authorities, often with some

redundancy in case some of them fail or are corrupted. In our

setting, no such distinguished set of parties exists, something that

could be seen also as a strengthening of privacy guarantees since

there is no single point of failure. Among voting schemes with

publicly verifiable tallies, some focus on strong coercion resistance

properties [30], which is out of scope for our setting. Other schemes

focus on allowing the voter to verify that their vote is cast as they

intended from an untrusted device [2, 13, 15, 27, 33, 38, 49]. In this

work, we do not distinguish the intentions of a human voter from

the intentions of their device. Therefore schemes based on code

voting [29, 49] which are mainly focused on easy verification by

human users, generally in return for requiring some non-collusion

assumptions among the authorities are out of scope.

Boardroom voting schemes [24, 37, 40] are designed for a rela-

tively small group of voters to act as equals: all voters participate in

both voting and tallying. These schemes can be publicly verifiable

(i.e. including for those who did not participate in the protocol),

but suffer from problems of robustness and may fail if any party

refuses to participate in decryption. They are therefore not suitable

for large groups.

Zhang et al. [63] show how to use a distributed protocol to select

a verifiably-random subset (weighted by stake) to act as a decryp-

tion committee. Other participants can either vote directly or dele-

gate their votes to experts, a choice that is protected with privacy

guarantees. Voting occurs in epochs, after which a new decryption

committee is chosen. Their scheme achieves different goals from

ours, as it focuses on treasury management for cryptocurrencies

and it incorporates a vote weighting mechanism based on each

voter’s stake along with a stake delegation mechanism. Further-

more it does not provide a method that overcomes the single-shot

limitation when revealing the aggregate votes on any particular

topic and does not address the issue of participation incentives.

Our setting and contribution. In this work, we define an opinion
aggregation scheme for one topic as F 𝐵,𝑛,𝑡

vote
(Fig. 2, Sec. 6). We pro-

vide protocol Π𝐵,𝑛,𝑡
vote

which provably (Theorem 9.4) realises F 𝐵,𝑛,𝑡
vote

.

In Π𝐵,𝑛,𝑡
vote

, a subset of participants are randomly selected to act as

authorities. Everyone can vote once whenever they wish, but the

authorities’ responsibilities are allocated to a constantly refreshed

subset of participants. Thus voting can happen whenever a par-

ticipant wishes to, while decryption happens whenever there is a

large enough anonymity set, therefore providing privacy (Theo-

rem 9.2). In this respect, we improve upon boardroom voting in that

total number of participants is large while the need for separate

authorities is avoided and robustness against misbehaving parties

is guaranteed. Our scheme provides public verifiability (Subsec-

tion 9.1), in the sense that each (electronic) voter can verify the

inclusion of their vote and the overall correctness of the tally. We

also achieve liveness (Theorem 9.3), informally meaning that (under

reasonable assumptions) every vote will be promptly included. We

note that our protocol is not receipt-free. Furthermore honest par-

ticipants need to interact with the system beyond their own voting

phase, which however we deem an acceptable tradeoff in the era of

always-on mobile applications. In order to motivate parties to stay

online, we further propose a suitable incentive mechanism.

We also define continuous opinion aggregation as a protocol in

which a stream of topics is presented and parties can vote for each.

One independent execution of Π𝐵,𝑛,𝑡
vote

per topic trivially realises

continuous opinion aggregation. This setup can be used in practice

for enabling privacy-preserving decentralised content curation on

a social media platform.

2 PRELIMINARIES
Our protocol builds upon a number of preexisting cryptographic

constructions:

• An additive-homomorphic public key encryption scheme

with algorithms ⟨keyGen, enc, dec, pk⟩, realisable by, e.g.,
Paillier’s [47] or the exponential version of ElGamal’s en-

cryption schemes [21].

• An additive-homomorphic secret sharing scheme with algo-

rithms ⟨share, reconstruct⟩, realisable by, e.g., Shamir’s

scheme [50, 51].

• A public key infrastructure (PKI) for storing parties’ keypairs

abstracted via GPKI, realisable by having each party generate
its keypair locally and adding its public key to a bulletin

board [35], or a suitable smart contract running in a Turing-

complete, decentralised blockchain, e.g. Ethereum [61] or

Cardano [12]. Either method ensures no central authority

can influence the result, i.e. that GPKI is decentralised.
• A non-interactive zero-knowledge proof system for proving

vote and share validity, abstracted via F
proof

, that can be

instantiated, e.g., with one of Groth’s schemes [25].

• A common reference string (CRS) which is a public key of the

encryption scheme mentioned above, abstracted via FCRS.
An entity that knows the corresponding private key may

prove arbitrary statements to F
proof

. It is realisable via a

suitable multiparty computation (MPC) protocol, e.g. [18],

for the function keyGen, which returns the public key to all

parties and discards the secret key.

• A decentralised protocol for provably handling valid votes in

a publicly-verifiable way abstracted via GP
VoteBox

, that can be

realised by anMPC protocol, or by a smart contract, similarly

to GPKI. If MPC is chosen, public verifiability that extends

beyond the parties actively implicated in the MPC protocol

can be achieved with verifiable MPC [5]. Like in the case of

GPKI, either method ensures GP
VoteBox

is decentralised.

We exploit the additive-homomorphic property of the public key

encryption scheme to achieve voter privacy: multiple encrypted

votes are added together so, when decrypted, only the aggregate

result, not individual votes, are published.
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In an additive-homomorphic 𝑡-out-of-𝑛 secret sharing scheme the

following is possible: 𝐵 parties independently share 𝐵 distinct se-

crets. Then 𝑡 sums of shares are created, where each is the result

of adding 𝐵 shares, each coming from a distinct secret and with

no reuse of shares across the 𝑡 sums. The reconstruction of the 𝑡

sums reveals the sum of the 𝐵 secrets. For example, for 𝐵 = 𝑡 = 2

and 𝑛 = 3, secrets 𝑠1 and 𝑠2 are shared into (𝑠1,1, 𝑠1,2, 𝑠1,3) and
(𝑠2,1, 𝑠2,2, 𝑠2,3) respectively. Then the summed secret 𝑠1 + 𝑠2 can be

reconstructed using e.g. 𝑠1,1 + 𝑠2,3 and 𝑠1,2 + 𝑠2,2.
We leverage such a scheme to ensure that no party can indi-

vidually decrypt votes before a protocol-wide constant number of

voters 𝐵 has voted. Honest behaviour prescribes decrypting and

publishing only the sum of 𝐵 encrypted shares. The system param-

eters are chosen so that it is exceedingly unlikely for any single

vote to be secret-shared to 𝑡 or more malicious players.

The version of the PKI used in this work is simply a store of

private and public keys for all parties. GPKI also is responsible

for generating keys and only leaks the private key to its owner,

whereas it may send the public key of any player to any other player.

This modelling simply aids the separation of concerns and does

not impose a strong assumption, as the realization is as simple as

having parties generate their keypairs locally and publishing their

public keys to a bulletin board or blockchain.

This work leverages an idealised zero-knowledge proof system,

F
proof

, to ensure that every vote has a value among −1, 0, 1 and that
it has been secret-shared and encrypted correctly, and additionally

to ensure that every aggregate share is the result of the correct

decryption of a correct sum of valid ciphertexts.

We use the execution model of Universal Composition [11], ex-

ploiting its clearly defined and widely used entities (interactive

Turing instances – ITIs) and interactions between them. Our se-

curity treatment however follows the standalone simulation para-

digm [41] in the static corruption setting. At a high level, in this

model the environment E represents voting parties. The adversary

A can corrupt parties at the beginning of the protocol execution

and controls network communication. Both E and A may execute

the code of arbitrary PPT interactive Turing Machines. We define the

real-world protocol Π𝐵,𝑛,𝑡
vote

and the ideal-world functionality F 𝐵,𝑛,𝑡
vote

so that, from the point of view of E and A, these two are computa-

tionally indistinguishable. E and A can send messages to any ITI,

including GP
VoteBox

and GPKI, but not to Fproof or FCRS. The latter
are local functionalities and thus can only be accessed by protocol

parties.

3 CONTINUOUS OPINION AGGREGATION
Definition 3.1. A scheme for single-topic continuous opinion ag-

gregation accepts a single topic, a set of voting parties, and up to

one up/down/abstain vote per party. It periodically publishes a tally

of the votes. The detailed functional behaviour is specified in F 𝐵,𝑛,𝑡
vote

(Fig. 2).

In practice, social media platforms display a virtually endless

stream of posts to its users. This situation can be accommodated

in the decentralised setting by a continuous opinion aggregation

scheme.

Definition 3.2. A scheme for multi-topic continuous opinion ag-

gregation accepts a stream of topics, a stream of eligible parties per

topic, and up to one up/down/abstain vote per eligible party per

topic. It periodically publishes a tally of the votes of each topic.

This scheme can be instantiated by simply running one indepen-

dent instance of F 𝐵,𝑛,𝑡
vote

per topic. Due to the independence of the

executions any guarantees offered by F 𝐵,𝑛,𝑡
vote

can be extended to the

continuous opinion aggregation scheme.

The property of fairness [22, 37], i.e. the guarantee that prior cast

votes do not influence future votes, is not sought after on purpose.

Indeed, in the setting of social media it is beneficial to have an

up-to-date view of the public’s reaction to a specific topic. This can

promote user engagement, offer a current and realistic pulse of the

public’s opinions, help users decide which posts to pay attention to

and ultimately aid them in choosing how to vote.

4 OVERVIEW OF GP
VoteBox

GP
VoteBox

is the functionality that facilitates parties’ interactions,

producing sets of decryptors for each vote and ensuring parties

may only contribute honestly to the protocol. As we discussed

previously, GP
VoteBox

can be realised in a decentralised manner.

In particular, GP
VoteBox

keeps track of the identities of parties

implicated in the protocol. It also stores encrypted votes and de-

crypted batch shares. A party that wishes to vote asks GP
VoteBox

for a set of decryptors, which are decided by GP
VoteBox

through a

special procedure discussed later. GP
VoteBox

ignores the request if

the party has voted already, otherwise responds with the set of

decryptors. The party then sends its vote, which GP
VoteBox

verifies is

correctly created. If so, GP
VoteBox

stores the vote and takes a note to

ignore future votes by the same party. A decryptor that has handled

a batch may submit the result to GP
VoteBox

. Once again, GP
VoteBox

verifies that the decrypted batch share was generated correctly and

stores it. Lastly, parties may query both the encrypted vote shares

and the decrypted batch shares from GP
VoteBox

.

As we will see below, GP
VoteBox

leverages the zero-knowledge

proof functionality F
proof

to verify the correctness of votes and

batch shares. This way all possible malicious actions are effectively

checked for and guarded against. This functionality has to be re-

alised in a way that guarantees its randomness cannot be biased

(e.g. by an MPC or a smart contract with good quality randomness)

to ensure decentralisation.

5 OVERVIEW OF THE CONSTRUCTION
Consider a set of parties P, of which up to 𝑠 may be corrupted. Our

analysis is conducted in the static corruption setting, therefore all

corruptions are decided byA before the beginning of the execution

and no further corruptions are allowed during execution. Both the

real-world protocol and the ideal-world functionality (and therefore

the execution) are parametrised by the following constants:

• 𝐵, the size of each batch.

• 𝑛, the number of decryptors each vote is secret-shared for.

• 𝑡 , the number of shares needed to reconstruct a secret.

Protocol Description. We now focus on the real-world execution.

Honest parties follow theΠ𝐵,𝑛,𝑡
vote

protocol (Fig. 8). In the initialisation
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phase of the execution, each participant generates its keypair. This

happens when E sends (init) to a party (Fig. 8, l. 1), which in turn

asksGPKI to generate the keypair (Fig. 3, l. 1). Note that, even though
it is possible for E to skip to the next phase before initialisation is

complete by sending a (read), (vote, 𝑣) or (drainBatch) message

to a party, this will lead to the first activation of GP
VoteBox

(Fig. 8,

ll. 6, 21 and 34 respectively), which triggers the initialisation of

GP
VoteBox

(Fig. 1, ll. 1-9) in which GP
VoteBox

halts if there is any non-

initialised party, leading to protocol failure (and a satisfaction of all

security properties in vacuum). We thus focus only on the cases in

which initialisation of all parties takes place before the next phase.

Subsequently execution moves to the voting phase. E may at any

time send an instruction to any protocol party: (vote, 𝑣) instructs it

to cast vote 𝑣 , (drainBatch) tells it to attempt decryption of a full

batch of votes, and (read) has it read and reconstruct decrypted

vote tallies. These are described in detail below. Note that E decides

the value of the vote of honest parties, since E models, among

others, the human users using a practical software implementation

of our protocol.

When an honest party is instructed to vote, it does so in four

consecutive steps. It first asks GP
VoteBox

to provide it with a set of

decryptors (Fig. 8, l. 21). GP
VoteBox

first ensures that the party has

not attempted to vote (successfully or not) in the past (Fig. 1, l. 11)

and then chooses the decryptor set according to the following logic:

If the previous party that attempted to vote failed to do so (only

possible for a malicious party, see below), GP
VoteBox

reuses the same

set of decryptors (Fig. 1, l. 17 was executed but l. 20 was not, so

Fig. 1, l. 14 is not run and thus Fig. 1, l. 18 is executed with the

previously stored decryptors). Otherwise, if a number of votes

that is a multiple of 𝐵 has been successfully cast up to that moment,

a uniformly random 𝑛-sized subset of P is chosen (Fig. 6, ll. 5-6).

In case the number of successfully cast votes is not a multiple of 𝐵,

the previously used set of decryptors is used again (Fig. 6, l. 7). This

method of selecting decryptors ensures that valid batches will be

formed in a timely manner, while a malicious party cannot sabota

ge the completion of a valid batch of votes by asking for a set of

decryptors and then stalling, thus negatively affecting liveness.

In the second step, the party secret shares its vote and encrypts

each share under the public key of the respective decryptor (Fig. 8,

ll. 22-30). Note that the randomness for the share and enc algo-

rithms is sampled explicitly so that it can be subsequently passed

to F
proof

.

In the third step, the party submits its plaintext vote, the cipher-

texts it just built, the corresponding decryptors, the randomness it

used and the CRS to F
proof

(Fig. 8, l. 31), which in turn ensures that

the vote is −1, 0 or 1 and that the ciphertexts have been generated

correctly. F
proof

then stores this fact along with the passed CRS and

returns control to the party (Fig. 5, ll. 1-19). In a realistic software

implementation of the protocol, the party would locally generate a

zero-knowledge proof of these facts instead.

In the fourth step, the party sends the encrypted shares toGP
VoteBox

(Fig. 8, l. 32). GP
VoteBox

then checks whether the ciphertexts were

generated correctly by asking F
proof

(Fig. 1, l. 19). We note that in a

practical implementation, the party would instead have to pass the

noninteractive zero-knowledge proof to GP
VoteBox

for verification

instead. If verification succeeds, GP
VoteBox

records the vote locally

(Fig. 1, l. 21). The party has now voted successfully.

We note that in the UC execution model, a running ITI 𝑇 can-

not be interrupted by another machine; it is always allowed to

complete its current chunk of computation. This is realistic, as se-

cure real-world software is not interrupted by network messages

while performing computation. If 𝑇 sends a message𝑚 to another

machine 𝑇 ′, then 𝑇 ′ starts to run the code that corresponds to𝑚.

Furthermore, honest ITI failure is not modelled separately, but as

part of adversarial corruption.

Observe now that the communication flowwhen an honest party

𝑃 votes is 𝑃 → GP
VoteBox

→ 𝑃 → (GPKI → 𝑃 →)𝑛 FCRS → 𝑃 →
F
proof

→ 𝑃 → GP
VoteBox

. There is no instant in which this flow is

interrupted by A or E and all functionalities are always honest,

therefore this flow can only be broken if the party is corrupted.

This observation allows GP
VoteBox

to deduce that if a party has not

successfully completed voting before a new vote arrives, then this

party is corrupted.

When an honest party receives (drainBatch), it first reads all

votes from GP
VoteBox

(Fig. 8, l. 34). It then partitions the votes into

batches (Fig. 8, l. 35) using the deterministic Batch algorithm (Fig. 7).

This algorithm forms batches using the oldest votes first, adding the

oldest vote not considered yet in each new attempt to form a batch.

Lexicographic order of decryptors is used to break ties in case mul-

tiple batches are possible. Note that Batch is general enough to be

used if an arbitrarily more complex method of choosing decryptors

were used by GP
VoteBox

.

After batching the votes, the party finds the minimum batch for

which it is a decryptor and has not been drained by the party yet

(Fig. 8, l. 36) and, if such a batch exists, the party drains it. Draining

consists of the following steps. First the party calculates the sum

of all the ciphertexts in the batch encrypted that were the result of

encrypting a share with the public key of the party (Fig. 8, l. 39).

As discussed previously, these ciphertexts are guaranteed to be

valid, as GP
VoteBox

only stores ciphertexts that have been verified

by F
proof

. Then the party decrypts the sum, proves to F
proof

that

the process was correctly done (Fig. 8, l. 42) and sends the resulting

aggregate share to GP
VoteBox

(Fig. 8, l. 43), which in turn verifies its

correctness (Fig. 1, l. 25) and stores it (Fig. 1, l. 26). Note that, due to

the additive-homomorphic properties of both the encryption and

the secret sharing schemes, the resulting aggregate share can be

combined with 𝑡 − 1 other aggregate shares generated by other

decryptors using ciphertexts from the batch votes to reconstruct

the sum of the votes in the batch.

Lastly, when a party receives (read) from E, it first reads all
batch shares from GP

VoteBox
(Fig. 8, l. 6). For each batch, the party

tries to reconstruct all possible combinations of 𝑡 aggregate shares

from this batch until a valid vote is extracted. This vote is added to

the sum of votes and finally the end result is output (Fig. 8, ll. 7-18).

We note thatGP
VoteBox

can be readily implemented in a blockchain

that supports Turing-complete, stateful smart contracts, such as

Ethereum [61] or Cardano [12]. To avoid possible attacks (e.g. any

single party affecting the choice of decryptors), special care should

be given to ensuring that the randomness used for choosing decryp-

tors is unpredictable. To that end, a suitable distributed protocol

for implementing a randomness beacon such as [28, 44] should be
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employed. Furthermore, various optimisations should be designed

and incorporated to keep both the overall and the per-party smart

contract cost low. Since our protocol has no synchrony require-

ments, we do not need any additional assumptions on top of the

ones needed by the blockchain. To make analysis simpler, we as-

sume that our functionalities are executed in an idealised manner

and do not explicitly interact with a blockchain.

The parameter 𝑛 is considered the security parameter and used

as such in Theorem 9.2, which gives specific privacy guarantees. At

a high level it states that, as long as
𝑡
𝑛 > 𝑠

|P | (where 𝑠 is the number

of corrupted players), the probability of any one set of decryptors

throughout the entire execution containing 𝑡 or more corrupted

parties is negligible in 𝑛. This theorem provides a useful guideline

for choosing safe values for the protocol parameters 𝑛, 𝑡 given spe-

cific expectations on the number of corruptions 𝑠 and total number

of parties |P |. It also confirms the following appealing intuition: for

the voting system to be private, the ratio of the minimum shares

needed to reconstruct a batch over the shares each vote has been

split into must exceed the ratio of corrupted to total players overall.

The parameter 𝐵 on the other hand can be treated separately.

Changing its value is connected to trading off anonymity set size for

batch frequency. Indeed, for bigger values of 𝐵 more votes need to

be cast to complete a batch, therefore the anonymity set each party

enjoys is bigger, but at the same time each party will need to wait

for more votes to be submitted by other parties before this bigger

batch is completed and the party’s vote is counted. Theorem 9.3

proves that a party has to wait for at most 𝐵 − 1 more valid votes

to be cast before its vote may be counted.

Furthermore, individual verifiability in our scheme is very straight-

forward: each voter can see their vote on the Bulletin Board, observe

whether it has been incorporated into a batch, and, if so, verify the

aggregation of the batch. (Recall that we do not distinguish a human

operator from the computer that casts the vote.) Section 10 contains

further discussion on the parameters.

Properties of our constructionmodelled as a functionality. In
the ideal world, the protocol is replaced by the functionality F 𝐵,𝑛,𝑡

vote
.

As we will see later, we prove that Π𝐵,𝑛,𝑡
vote

realises the functional-

ity F 𝐵,𝑛,𝑡
vote

. The latter receives and handles inputs from all honest

parties, whereas inputs from malicious parties are forwarded di-

rectly to the simulator S. Likewise, an output addressed from a

malicious party to E is passed by S to F 𝐵,𝑛,𝑡
vote

and subsequently for-

warded to E unchanged, via the respective dummy party ITI.F 𝐵,𝑛,𝑡
vote

is responsible for handling the same messages from E that honest

parties handle in the real world. In the initialisation phase, it asks

S to generate a keypair for each party that is initialised. In the

voting phase, when a party is instructed to vote, F 𝐵,𝑛,𝑡
vote

asks for and

receives from S the corresponding vote number and decryptors,

it checks that the vote number has not been reused and that the

decryptor set does not include 𝑡 or more malicious parties. It then

stores the vote locally, before informing S of the successful vote. S
submits the vote to GP

VoteBox
. When a party is instructed to drain a

batch, F 𝐵,𝑛,𝑡
vote

finds the oldest complete, non-drained batch for this

player, if any, following steps similar to the real-world protocol,

and marks this batch as drained by this party. If the batch has been

drained by 𝑡 parties, F 𝐵,𝑛,𝑡
vote

then adds together the honest votes of

the batch, asks S for the sum of the votes of the malicious voters of

the batch, updates the locally stored results and sends the sum of

the honest votes toS. In any case, F 𝐵,𝑛,𝑡
vote

informsS on the outcome

of the draining. If draining succeeded, once again S submits the

result to GP
VoteBox

. S may also inform F 𝐵,𝑛,𝑡
vote

that a particular mali-

cious party has drained a particular batch. Lastly, when a party is

instructed to read the results, F 𝐵,𝑛,𝑡
vote

simply returns them as stored.

Observe that the functionality always counts in the results all

honest votes that have been included in a complete, fully drained

batch. Furthermore, as we will see in the proof of Theorem 9.4, S
knows the votes of all malicious parties and reports them truthfully

to F 𝐵,𝑛,𝑡
vote

, which in turn includes them in the results as well. These

two facts together show that we have public verifiability in the ideal

world, i.e. we can be certain that no votes have been neglected in the

result, as long as they are part of a drained batch. Furthermore, given

that Theorem 9.4 proves indistinguishability of the real and the

ideal world without any assumptions on the number of corruptions,

only having to trust the underlying ideal functionalities, we deduce

that the real world protocol provides public verifiability as well.

Observe that the only limitation on the number of corruptions is

imposed by l. 17 of Fig. 2, which is only relevant for providing

explicit privacy guarantees; the indistinguis hability proof would

go through if this line was missing, in which case any amount of

corruptions would be allowed.

Incentivising Decryptor Participation. Our construction ex-

pects honest parties to be able to come online if needed throughout

the entire protocol execution, even after casting their vote. This is

so they can serve as decryptors in case they are chosen by GP
VoteBox

.

On the other hand, some users of the protocol would presumably

prefer to come online just to vote and be able to stay offline through-

out the rest of the protocol; the aim of the protocol is to facilitate

expressing user opinion, so we expect it to be used by parties that

find utility in voting. A single party staying offline except when

voting would fail to fulfill its role as decryptor, but this would not

cause any problem as there is redundancy built into the secret

sharing scheme as long as 𝑛 > 𝑡 . If however all parties were to

follow this strategy, then no party would ever be online to act as

a decryptor and therefore no batch would ever be decrypted. This

situation constitutes a tragedy of the commons.

If parties are using a blockchain to execute the protocol and that

blockchain is endowed with a cryptocurrency, then we propose the

following incentive scheme to avoid this unfortunate situation. At

a high level, a voter has to pay a fee to cast its vote and conversely

a decryptor is paid out a set sum for its service. The two values are

tuned so that each party that stays online throughout the execution

gets 0 coins on expectation, but a party that only comes online to

vote and stays offline for the rest of the execution loses coins.

More specifically, let 𝑋 be the random variable that counts the

number of batches for which a specific party is chosen as decryptor

throughout the entire execution, let𝑏 be the total number of batches

and 𝑝 the probability that the party is chosen as the decryptor of

a particular batch, the latter stemming from Fig. 6, l. 6. Since the

decryptors of each batch are chosen independently, the expected

value of 𝑋 is E(𝑋 ) = 𝑏𝑝 . Since we have a total of |P | votes and
each group of 𝐵 votes forms a batch, it is 𝑏 = ⌊ |P |

𝐵
⌋. If we further
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assume that 𝐵 divides |P | (as is recommended later), then 𝑏 =
|P |
𝐵

.

Regarding 𝑝 , it is 𝑝 =
( |P |−1
𝑛−1

)
/
( |P |
𝑛

)
= 𝑛
|P | . On aggregate,E(𝑋 ) =

𝑛
𝐵
.

Therefore, for any 𝑐 > 0, if voting is charged with 𝑐 𝑛
𝐵
coins and

successfully decrypting a batch is compensated with 𝑐 coins, then a

party that is online throughout the execution gains on expectation 0

coins, whereas a party that comes online only to vote has to pay 𝑐 𝑛
𝐵

coins. Realistic implementations should choose a sufficiently small

𝑐 so that parties are not denied participation due to low available

funds or due to fears of becoming a decryptor too few times to

cover the cost of voting, but also 𝑐 should be sufficiently large to

ensure voting is expensive enough for most parties to prefer staying

online to be compensated. This solution avoids the tragedy of the

commons while leaving, on expectation, monetary value out of the

equation.

A necessary sanity check is whether the contract holds enough

money to compensate decryptors at every instant. After 𝐵 votes, the

contract has been paid 𝑐 𝑛
𝐵
· 𝐵 = 𝑐𝑛 coins and has paid out nothing.

If all 𝑛 chosen decryptors handle the resulting batch before the

next vote is cast, they will be compensated with 𝑐𝑛 coins in total,

thus the contract has just enough money to pay them after the first

batch. The same reasoning can be extended to every later batch.

Note that this incentives scheme does not hurt the privacy of

the overall protocol, as votes are still encrypted in exactly the

same way and payments are independent from the content of the

encrypted vote. Furthermore, the instances in which each party

interacts with the system and their observability does not change.

The fact that this incentives scheme leverages potentially traceable

coins introduces a new potential privacy goal, namely to ensure

funds untraceability. Extensive research [6, 7, 9, 10, 31, 34, 54, 55, 65]

has been conducted on untraceable money.

6 FORMAL DESCRIPTION OF GP
VoteBox

The GP
VoteBox

functionality provides the core functions regarding

handling vote and aggregate share submissions. When a player asks

to vote, it samples decryptors (using getDecryptors𝑛,𝐵,P (), Fig 6),
checks the validity of the vote and stores it. Similarly, when a player

asks to submit an aggregate share, GP
VoteBox

verifies and stores it.

1: Initialisation:

2: voted← ∅
3: V ← ∅
4: lastVoteSucceeded← true
5: send (getCRS) to FCRS and assign reply to pk

CRS

6: for 𝑃 ∈ P do
7: send (pk, 𝑃 ) to GPKI and assign reply to 𝑝𝑘

8: if 𝑝𝑘 is not a valid public key then halt

9: end for

10: On (getDecryptors) by 𝑃 :

11: if 𝑃 ∈ voted then yield execution token

12: add 𝑃 to voted
13: if lastVoteSucceeded then
14: decryptors← getDecryptors𝑛,𝐵,P ()

Functionality GP
VoteBox

15: parse decryptors as (𝑟, ⟨𝑃𝑖 ⟩𝑖∈[𝑛] )
16: end if// else reuse previous decryptors
17: lastVoteSucceeded← false
18: reply decryptors to 𝑃 and expect reply (vote, 𝑟 , ⟨𝑐𝑖 , 𝑃𝑖 ⟩𝑖∈[𝑛] )

by 𝑃 // received 𝑟 must match the one stored in decryptors
19: send (verifyVote, 𝑃 , pk

CRS
, ⟨𝑐𝑖 , 𝑃𝑖 ⟩𝑖∈[𝑛] ) to Fproof and ensure

reply is (ok)
20: lastVoteSucceeded← true
21: add (vote, 𝑟 , ⟨𝑐𝑖 , 𝑃𝑖 ⟩𝑖∈[𝑛] ) to V

22: On (read) by 𝑃 :

23: reply V

24: On (batchShare, 𝑗 , 𝑆) by 𝑃 :

25: send (verifyShare, 𝑃 , pk
CRS

, 𝑗 , 𝑆) to F
proof

and ensure reply is

(ok)
26: add (batchShare, 𝑗 , 𝑆) to V

Figure 1

7 FORMAL DESCRIPTION OF F 𝐵,𝑛,𝑡
vote

The ideal-world functionality F 𝐵,𝑛,𝑡
vote

is the idealised abstraction of

the intended protocol behaviour. It aggregates locally the votes of

all honest players. It also expects specific messages from the adver-

sary which let it knowwhen a corrupt player votes or drains a batch.

1: Initialisation:

2: results← 0

3: votes← ∅
4: maliciousEntries← ∅

5: On𝑀 by corrupted 𝑃 :

6: send (forward, 𝑃 ,𝑀) to A

7: On (forward, 𝑃 ,𝑀) by A where 𝑃 is corrupted:

8: send𝑀 to 𝑃

9: On first (init) by 𝑃 : // one init per player

10: send (init, 𝑃 ) to A and assign reply to pk𝑃

11: reply pk𝑃 to 𝑃

12: On (read) by 𝑃 :

13: reply (results, results)

14: On first (vote, 𝑣) by 𝑃 :

15: send (getDecryptors, 𝑃 ) to A, expect reply (𝑟, ⟨𝑃𝑘 ⟩𝑘∈[𝑛] ) by
A

16: if 𝑟 has appeared again in votes or in a voted message by A
then halt

17: if at least 𝑡 players in ⟨𝑃𝑘 ⟩𝑘∈[𝑛] are malicious then halt

Functionality F𝐵,𝑛,𝑡
vote
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18: append (𝑟, 𝑃, 𝑣, ⟨𝑃𝑘 ⟩𝑘∈[𝑛] ) to votes.
19: send (voted, 𝑃, ⟨𝑃𝑘 ⟩𝑘∈[𝑛] ) to A

20: On (voted, 𝑟 , ⟨𝑃𝑘 ⟩𝑘∈[𝑛] ) by A:

21: if 𝑟 has appeared in votes or in maliciousEntries then halt

22: add (𝑟, ⟨𝑃𝑘 ⟩𝑘∈[𝑛] ) to maliciousEntries

23: On (drained, 𝑗 , 𝑃 ) by A where 𝑃 is corrupted:

24: HasDrained(𝑃, B𝑗 ) ← True
25: if there are exactly 𝑡 distinct 𝑃𝑖 : HasDrained(𝑃𝑖 , B𝑗 ) = True

then
26: newVotes← ∑

𝑖∈[|𝐵 | ]
𝑣 : (B𝑗 .r𝑖 , 𝑣, ·) ∈ votes

27: send (getMaliciousVotes, 𝑗 ) to A and expect reply

maliciousVotes
28: results← results + newVotes + maliciousVotes
29: end if
30: reply (ok)

31: On (getHonestVotes, 𝑗 ) by A:

32: send (read) to GP
VoteBox

, keep (vote, _) entries from reply and

collect them into castVotes
33: if the 𝑗-th batch in castVotes is complete then
34: send (honestVotes, 𝑗 ,

∑
𝑖∈[|𝐵 | ]

𝑣 : (B𝑗 .r𝑖 , 𝑣, ·) ∈ votes) to

A
35: end if

36: On (drainBatch) by 𝑃 :

37: entries← votes.map( (𝑟, 𝑣, ⟨𝑃𝑘 ⟩𝑘∈[𝑛] ) ↦→
(𝑟, ⟨𝑃𝑘 ⟩)) ∪ maliciousEntries

38: B = ⟨{r : ⟨𝑟𝑖 ⟩𝑖∈[𝐵 ] , P : ⟨𝑃 𝑗 ⟩ }⟩ ← Batch(entries)
39: 𝑗 ← argmin

𝑖∈[|B|]
{𝑃 ∈ B𝑖 .P ∧ HasDrained(𝑃, B𝑖 ) = False}

40: if 𝑗 exists then HasDrained(𝑃, B𝑗 ) ← True else return
41: if there are exactly 𝑡 distinct 𝑃𝑖 : HasDrained(𝑃𝑖 , B𝑗 ) = True

then
42: newVotes← ∑

𝑖∈[|𝐵 | ]
𝑣 : (B𝑗 .r𝑖 , 𝑣, ·) ∈ votes

43: send (getMaliciousVotes, 𝑗 ) to A and expect reply

maliciousVotes
44: results← results + newVotes + maliciousVotes
45: end if
46: send (batchShare, 𝑃 , 𝑗 ) to A

Figure 2

8 FORMAL DESCRIPTION OF THE
CONSTRUCTION & PROTOCOL

The 𝑡-out-of-𝑛 secret sharing scheme provides the following algo-

rithms:

• (𝑠1, . . . , 𝑠𝑛) ← share(𝑚; 𝑟 ) where 𝑟 is sampled uniformly

from R
share

,

• 𝑚 ← reconstruct(𝑠1, . . . , 𝑠𝑡 ).
The asymmetric encryption scheme provides these algorithms:

• (pk, sk) $← keyGen(),
• 𝑐 ← enc(𝑚, pk; 𝑟 ) where 𝑟 is sampled uniformly from Renc,

• 𝑚 ← dec(𝑐, sk).
Key management is governed by the GPKI functionality.

1: On (init) by 𝑃 :

2: ensure this is the first time we receive (init) by 𝑃

3: (pk𝑃 , sk𝑃 )
$← keyGen()

4: reply (pk𝑃 )

5: On (pk, 𝑃 ):

6: reply (pk𝑃 )

7: On (sk) by 𝑃 :

8: reply (sk𝑃 )

9: On (verify, sk, 𝑃 ):

10: if sk = sk𝑃 then reply (ok) else reply (error)

Functionality GPKI

Figure 3: Key management functionality GPKI.

The FCRS functionality initially generates a CRS public key and

subsequently always returns it. The secret key is discarded.

1: Initialisation:

2: (pk
CRS

, _) $← keyGen()

3: On (getCRS) by 𝑃 :

4: reply pk
CRS

Functionality FCRS

Figure 4: Common Reference String functionality FCRS.

The F
proof

functionality handles proofs of correct construction

of votes and aggregate shares.

1: On

(proveVote, 𝑣, 𝑔0, pkCRS, ⟨𝑔𝑠𝑘 , 𝑔
CRS

𝑘
⟩𝑘∈[𝑛] , ⟨𝑐𝑠𝑘 , 𝑐

CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] , sk)

by 𝑃 :

2: if sk is given as input and pk(sk) = pk
CRS

then
3: store (𝑃 , ⟨𝑐𝑠

𝑘
, 𝑐CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] , pkCRS)

4: reply (ok)

5: end if
6: if 𝑣 ∉ {−1, 0, 1} then
7: reply (error)

8: end if
9: ⟨𝑠𝑘 ⟩𝑘∈[𝑛] ← share(𝑣;𝑔0)
10: for 𝑘 from 1 to 𝑛 do
11: send (pk, 𝑃𝑘 ) to GPKI and assign reply to pk𝑘

Functionality F
proof
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12: 𝑐𝑠 ← enc(𝑠𝑘 , pk𝑘 ;𝑔𝑠𝑘 )
13: 𝑐CRS ← enc(𝑠𝑘 , pkCRS;𝑔CRS𝑘

)
14: if 𝑐𝑠 ≠ 𝑐𝑠

𝑘
∨ 𝑐CRS ≠ 𝑐CRS

𝑘
then

15: reply (error)

16: end if
17: end for
18: store (𝑃, ⟨𝑐𝑠

𝑘
, 𝑐CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] , pkCRS)

19: reply (ok)

20: On (verifyVote, 𝑃, pk
CRS

, ⟨𝑐𝑠
𝑘
, 𝑐CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] ):

21: if (𝑃, ⟨𝑐𝑘 , 𝑐CRS𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] , pkCRS) is stored then reply (ok)

else reply (error)

22: On (proveShare, 𝑟 , 𝑆 , pk
CRS

, sk) by 𝑃 :

23: if pk(sk) = pk
CRS

then
24: store (𝑃 , 𝑟 , 𝑆 , pk

CRS
)

25: reply (ok)

26: end if
27: send (verify, sk, 𝑃 ) to GPKI and assign reply to𝑇

28: if 𝑇 = (error) then reply (error)

29: send (read) to GP
VoteBox

, keep (vote, (𝑟, ⟨𝑐𝑘 , 𝑃𝑘 ⟩𝑘∈[𝑛] ))
entries from reply and collect them into

votes = ⟨𝑟𝑖 , ⟨𝑐𝑖,𝑘 , 𝑃𝑖,𝑘 ⟩𝑘∈[𝑛] ⟩𝑖∈[𝑅 ]
30: B = ⟨{r : ⟨𝑟𝑖 ⟩𝑖∈[𝐵 ] , P : ⟨𝑃 𝑗 ⟩ }⟩ ← Batch(votes)
31: if any entry in B𝑟 contains no ciphertext for 𝑃 then reply

(error)

32: 𝐶 ← ∑
𝑖∈[|𝐵 | ]

𝑐 : (B𝑟 .r𝑖 , ⟨. . . , (𝑐, 𝑃 ), . . . ⟩) ∈ votes

33: if 𝑆 = dec(𝐶, sk) then
34: store (𝑃, 𝑟, 𝑆, pk

CRS
)

35: reply (ok)

36: else
37: reply (error)

38: end if

39: On (verifyShare, 𝑃 , pk
CRS

, 𝑟 , 𝑆):

40: if (𝑃, 𝑟, 𝑆, pk
CRS
) is stored then reply (ok) else reply (error)

Figure 5

getDecryptors𝑛,𝐵,P () is used internally by GP
VoteBox

to sample

the decryptors of each vote.

1: Initialisation:

2: 𝑟 ← 0

3: Execution:

4: 𝑟 ← 𝑟 + 1
5: if 𝑟 mod 𝐵 = 1 then
6: 𝐾𝑟

$←
(P
𝑛

)
//

(P
𝑛

)
is the set of 𝑛-sized subsets of P

7: else
8: 𝐾𝑟 ← 𝐾𝑟−1
9: end if
10: return (𝑟, 𝐾𝑟 )

Stateful Function getDecryptors𝑛,𝐵,P ()

Figure 6

The Batch𝐵,𝑡 () function is used internally by F
proof

, the proto-

col Π𝐵,𝑛,𝑡
vote

and the functionality F 𝐵,𝑛,𝑡
vote

. It groups votes into valid

batches in a deterministic manner.

1: B ← ⟨⟩ // vector
2: for top from 𝐵 to max{votes.map( (𝑟, ·) ↦→ 𝑟 ) } do
3: entries_up_to_top← votes.filter( (𝑟, ·) ↦→ 𝑟 ≤ top)
4: // a valid batch consists of a vector of rounds

r = ⟨𝑟𝑖 ∈ [top] ⟩𝑖∈[𝐵 ] (𝐵 natural numbers up to top) and a vector

of parties P = ⟨𝑃𝑖 ∈ P⟩𝑖∈[𝑚] of length 𝑡 ≤𝑚 ≤ 𝑛 such that 𝑃𝑖 is

in every vote of votes.filter(𝑟 ∈ r) . If some 𝑃 ∈ P appears

multiple times in P, it must also be in each each vote of interest at

least as many times. (∀𝑖 ∈ [𝑚], ∀vote ∈ votes.filter(𝑟 ∈
r), |vote.filter(𝑃 = 𝑃𝑖 ) |) ≥ |P.filter(𝑃 = 𝑃𝑖 ) |)

5: if ∃ a valid batch {r : ⟨𝑟𝑖 ⟩𝑖∈[𝐵 ] , P : ⟨𝑃𝑖 ⟩𝑖∈[𝑚] } in
entries_up_to_top then

6: append the batch to B; if there are more than one valid

batches, choose the minimum, compared based on the

lexicographic ordering of the concatenation of the identifiers of all

involved parties, 𝑃1𝑃2 . . . 𝑃𝑚 . // It is impossible that exactly the

same parties are involved in two different batches, as that would

mean that the batches’ difference is in their entries’ 𝑟 . In that case

each of the two batches would have 𝐵 − 1 entries with 𝑟 ≠ top with
at least one difference in these entries. This means that there would

be at least 𝐵 distinct entries with 𝑟 ≠ top and 𝑡 common parties.

These entries would however form a batch 𝐷 without the entry

that has 𝑟 = top. If top = 𝐵, the exclusion of the entry with 𝑟 = 𝐵

would mean that there are not enough entries to form any batch,

else 𝐷 would have been already consumed in a previous iteration.

7: remove every entry involved in the new batch from

entries // This removal invalidates all alternative batches of the

line above, therefore asserting the argument that there cannot be

two or more valid, disjoint batches per iteration.

8: end if
9: end for
10: return B

Algorithm Batch𝐵,𝑡 (votes)

Figure 7

Protocol Π𝐵,𝑛,𝑡
vote

is executed by each protocol party. At any time,

E can ask a party to vote, drain the next available batch, or read de-

crypted results. As we show in Theorem 9.4, Π𝐵,𝑛,𝑡
vote

realises F 𝐵,𝑛,𝑡
vote

.

1: On first (init) by E:
2: send (getCRS) to FCRS and assign reply to pk

CRS

3: send (init) to GPKI and assign reply to pk

4: reply pk to E

5: On (read) by E:

Process Π𝐵,𝑛,𝑡
vote

(self is 𝑃 )
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6: send (read) to GP
VoteBox

, keep (batchShare, 𝑗, 𝑆) entries from
reply and collect them into shares = ⟨𝑗, 𝑆 ⟩

7: results← 0

8: for 𝑖 from 1 to max{shares.map( ( 𝑗, 𝑆) ↦→ 𝑗) } do
9: while there are 𝑡 (𝑖, 𝑆) entries in shares that have not

been given as input to reconstruct() while handling the current

read message do
// makes robust against malicious batchShare entries

10: assign the shares of these 𝑡 entries to (𝑆1, . . . , 𝑆𝑡 )
11: newVotes← reconstruct(𝑆1, . . . , 𝑆𝑡 )
12: if newVotes ≠ ⊥ then
13: results← results + newVotes
14: break

15: end if
16: end while
17: end for
18: reply results to E

19: On first (vote, 𝑣) by E:
20: ensure 𝑣 ∈ {−1, 0, 1}, otherwise ignore
21: send (getDecryptors) to GP

VoteBox
and assign reply to

(𝑟, ⟨𝑃𝑘 ⟩𝑘∈[𝑛] )

22: 𝑔0
$← R

share

23: ⟨𝑠𝑘 ⟩𝑘∈[𝑛] ← share(𝑣;𝑔0)
24: for 𝑘 in 1 to 𝑛 do
25: send (pk, 𝑃𝑘 ) to GPKI and assign reply to pk𝑘

26: 𝑔𝑠
𝑘

$← Renc
27: 𝑐𝑠

𝑘
← enc(𝑠𝑘 , pk𝑘 ;𝑔𝑠𝑘 )

28: 𝑔CRS
𝑘

$← Renc
29: 𝑐CRS

𝑘
← enc(𝑠𝑘 , pkCRS;𝑔CRS𝑘

)
30: end for
31: send

(proveVote, 𝑣, 𝑔0, pkCRS, ⟨𝑔𝑠𝑘 , 𝑔
CRS

𝑘
⟩𝑘∈[𝑛] , ⟨𝑐𝑠𝑘 , 𝑐

CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] ) to

F
proof

and expect reply (ok)

32: send (vote, 𝑟 , ⟨𝑐𝑠
𝑘
, 𝑐CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] ) to GP

VoteBox

33: On (drainBatch) by E:
34: send (read) to GP

VoteBox
, keep (vote, (𝑟, ⟨𝑐𝑘 , 𝑃𝑘 ⟩𝑘∈[𝑛] ))

entries from reply and collect them into

votes = ⟨𝑟𝑖 , ⟨𝑐𝑖,𝑘 , 𝑃𝑖,𝑘 ⟩𝑘∈[𝑛] ⟩𝑖∈[𝑅 ]
35: B = ⟨{r : ⟨𝑟𝑖 ⟩𝑖∈[𝐵 ] , P : ⟨𝑃 𝑗 ⟩ }⟩ ← Batch(votes)
36: 𝑗 ← argmin

𝑖∈[|B|]
{𝑃 ∈ B𝑖 .P ∧ Drained(B𝑖 ) = False}

37: if 𝑗 exists then
38: Drained(B𝑗 ) ← True
39: 𝐶 ← ∑

𝑖∈[|𝐵 | ]
𝑐 : (B𝑗 .r𝑖 , ⟨. . . , (𝑐, 𝑃 ), . . . ⟩) ∈ votes

// ∀𝑟 ∈ B𝑗 .r, ∃(𝑐, 𝑃 ) since 𝑃 ∈ B𝑗 .P
40: send (sk) to GPKI and assign reply to sk

41: 𝑆 ← dec(𝐶, sk)
42: send (proveShare, 𝑗 , 𝑆 , pk

CRS
, sk) to F

proof
and expect

reply (ok)

43: send (batchShare, 𝑗 , 𝑆) to GP
VoteBox

44: end if

Figure 8

9 SECURITY, PRIVACY & LIVENESS
GUARANTEES

Here we formulate three theorems regarding the assurances pro-

vided by our scheme.

We note that the privacy of an individual honest voter 𝑃 may be

still be broken if 𝐵 − 1 malicious players are included in the same

batch as 𝑃 , as they can act honestly until they learn the aggregate re-

sult of the batch and then subtract their own votes from the sum. In

the current protocol, E can arrange the order of votes as it pleases,

therefore this attack against privacy is feasible. In a practical im-

plementation however, and given that there is a constant stream of

votes, such an attack could be harder to carry out. An alternative

protocol could instead have GP
VoteBox

decide the order of players’

votes, thus thwarting this attack against privacy. Such a measure

would however impede the ability of each party to vote when it

decides to (which is the case in a practical implementation of the

current protocol) and would make the protocol prone to stalling

every time the expected voter happens to be unavailable. The im-

plications of this attack depend on the probability distribution of

votes, because much larger batches (anonymity sets) are required

if the votes are highly biased. We therefore define privacy relative

to an idealised reporting mechanism that tallies each batch.

Definition 9.1 (Privacy). In a real-world execution with parties in

P of which at most 𝑠 are malicious, let 𝐸 be the event under which at

least one of the sets of decryptors returned by getDecryptors𝑛,𝐵,P
contains at least 𝑡 malicious parties. We say that Π𝐵,𝑛,𝑡

vote
is private if

Pr[𝐸] ≤ negl(𝑛) in exec

GP
VoteBox

,F
proof

Π𝐵,𝑛,𝑡
vote

,A,E
.

Theorem 9.2.

∀ PPT A, E,∀ set of parties P,
∀0 < 𝛼 ≤ 1 : 𝛼 |P | ∈ N, 𝑛 = 𝛼 |P |,
∀0 < 𝛾 ≤ 1 : 𝛾𝑛 ∈ N, 𝑡 = 𝛾𝑛,

∀0 ≤ 𝛽 < 1 : 𝛽 |P | ∈ N, 𝑠 = 𝛽 |P |, 𝐵 ∈ N,

If

𝑡

𝑛
>

𝑠

|P | then Π𝐵,𝑛,𝑡
vote

is private.

Note that this does not preclude the possibility of the adversary

learning all individual votes in specific cases. For example, if all

honest parties are unanimous, then the adversary can deduce the

vote of each just by looking at the aggregate tally.

Proof of Theorem 9.2. In a real-world execution with parties

inP of which at most 𝑠 are malicious, let 𝐸 be the event under which

at least one of the sets of decryptors returned by getDecryptors𝑛,𝐵,P
contains at least 𝑡 malicious parties. We will show that

∀ PPT A, E,∀ set of parties P,
∀0 < 𝛼 ≤ 1 : 𝛼 |P | ∈ N, 𝑛 = 𝛼 |P |,
∀0 < 𝛾 ≤ 1 : 𝛾𝑛 ∈ N, 𝑡 = 𝛾𝑛,

∀0 ≤ 𝛽 < 1 : 𝛽 |P | ∈ N, 𝑠 = 𝛽 |P |, 𝐵 ∈ N,

If

𝑡

𝑛
>

𝑠

|P | then Pr[𝐸] ≤ negl(𝑛) in exec

GP
VoteBox

,F
proof

Π𝐵,𝑛,𝑡
vote

,A,E
.

getDecryptors𝑛,𝐵,P is called at most |P | times. The first time

and every 𝐵 times going forwards, a new, uniformly random subset
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of 𝑛 players is chosen (Fig. 6, l. 6), for a maximum total of ⌈ |P |
𝐵
⌉

independent choices. Each random choice of 𝑛 decryptors can be

modelled as 𝑛 consecutive single-ball draws without replacement

and with replacement scheme 𝑅(white) = 𝑅(black) = 0 (i.e. after

drawing any ball, no balls are added back to the urn) from an urn

that initially has 1 white and 1 black ball for each honest and each

malicious player respectively, for a total of 𝑠 black and |P | −𝑠 white
balls. The random variable 𝑏 = “number of black balls drawn after 𝑛

draws” follows a hypergeometric distribution [52]. From the above

we deduce that Pr[𝐸] ≤ Pr[𝑏 ≥ 𝑡] ⌈ |P |
𝐵
⌉. It is

𝐸 [𝑏] = 𝑛
𝑠

|P | and ∀𝑞 ≥ 0, Pr[𝑏 ≥ 𝐸 [𝑏] + 𝑞𝑛] ≤ 𝑒−2𝑞
2𝑛 .

We want to upper bound Pr[𝑏 ≥ 𝑡], therefore 𝑡 = 𝐸 [𝑏] + 𝑞𝑛 =

𝑛 𝑠
|P | + 𝑞𝑛 ⇔ 𝑞 = 𝑡

𝑛 −
𝑠
|P | , thus 𝑞 is always positive due to the

theorem prerequisite. It is

Pr[𝑏 ≥ 𝑡] ≤ 𝑒
−2( 𝑡

𝑛
− 𝑠
|P | )

2𝑛
= 𝑒−2(𝛾−𝛽)

2𝑛 . (1)

Therefore Pr[𝐸] ≤ ⌈ 𝑛
𝛼𝐵
⌉𝑒−2(𝛾−𝛽)2𝑛 ≤ negl(𝑛). □

Theorem 9.3 (Liveness). In a real-world execution, every honestly

cast vote becomes part of a valid batch inV of GP
VoteBox

after at most

𝐵 − 1 more votes for the topic at hand have been successfully cast.

We note that no synchrony assumptions are made, therefore all

party activations are controlled by E. The latter may thus choose

to never activate enough honest parties to complete a batch (with

a vote message) or enough honest decryptors to decrypt it (with a

drainBatch message). Nevertheless, in a realistic software imple-

mentation these two actions would be initiated spontaneously, not

at the whim of E.

Proof of Theorem 9.3. In a real-world execution, sending a

getDecryptors and then a vote message to GP
VoteBox

is the only

way for 𝑃 to vote, whether 𝑃 is honest or malicious (sinceV , which

contains all votes, is stored locally by GP
VoteBox

). GP
VoteBox

only

accepts votes for which the decryptors have been generated by

getDecryptors𝑛,𝐵,P (Fig. 1, ll. 14-18). getDecryptors𝑛,𝐵,P in turn

keeps choosing the same decryptors until a batch of submitted

votes is complete (Fig. 6). In particular, a batch is complete every

exactly 𝐵 calls to getDecryptors𝑛,𝐵,P , as in case a player does not

cast its vote successfully (by either getting its decryptors but not

submitting its vote before another player tries to vote, i.e. not pro-

viding the expected reply of Fig. 1, l. 18, or by submitting an invalid

vote, i.e. having Fig. 1, l. 19 fail), GP
VoteBox

reuses the same decryp-

tors (as l. 20 of Fig. 1 was not run after l. 17 was run), therefore a

party has to wait at most 𝐵 − 1 successfully cast votes before its

vote is included in a valid batch. □

Theorem 9.4 shows that the adversary cannot alter the tallies.

Theorem 9.4 (Security).

∀ PPT A, ∃ PPT S : ∀ PPT E it is

exec

GP
VoteBox

,F
proof

,GPKI
Π𝐵,𝑛,𝑡
vote

,A,E
≈ exec

GP
VoteBox

,GPKI
S,E .

Proof of Theorem 9.4.

Finds 𝑆𝑡 = (𝑥𝑡 , 𝑦𝑡 ) : reconstruct(𝑆1, . . . , 𝑆𝑡 ) = 𝑉 and the source

polynomial of the secret, 𝑃 (𝑥) . Works for Shamir’s Secret Sharing

scheme [51].

1: for 𝑖 from 1 to 𝑡 − 1 do
2: parse 𝑆𝑖 as (𝑥𝑖 , 𝑦𝑖 ) // 𝑥𝑖 , 𝑦𝑖 are finite field elements

3: end for

4: Solve linear equation𝑉 =
𝑡∑
𝑖=1
𝑦𝑖

𝑚=𝑡∏
𝑚=1
𝑚≠𝑗

𝑥𝑚
𝑥𝑚−𝑥𝑖 to find the only

unknown, 𝑦𝑡 // 𝑦𝑡 is a finite field element

5: for 𝑖 from 1 to 𝑡 do

6: 𝑙𝑖 (𝑥) =
𝑡∏

𝑚=1
𝑚≠𝑖

𝑥−𝑥𝑚
𝑥𝑖−𝑥𝑚

7: end for

8: return ( (𝑥𝑡 , 𝑦𝑡 ),
𝑡∑
𝑖=1
𝑦𝑖𝑙𝑖 )

Algorithm findShare(𝑆1, . . . , 𝑆𝑡−1, 𝑥𝑡 ,𝑉 )

Figure 9

S takes over the interface of FCRS and uses pkCRS in FCRS as generated
by S in l. 3.

1: Initialisation:

2: drained← (0, . . . , 0
⌈|P|/𝐵⌉

) // 1 entry for each possible batch

3: (pk
CRS

, skCRS)
$← keyGen()

4: On (forward, 𝑃 ,𝑀):

5: send𝑀 , addressed from 𝑃 , to internal A

6: On𝑀 for corrupted party 𝑃 by A:

7: if 𝑀 = (vote, 𝑟 , ⟨𝑐𝑠
𝑘
, 𝑐CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] ) then

8: send (verifyVote, 𝑃 , pk
CRS

, ⟨𝑐𝑠
𝑘
, 𝑐CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] )) to Fproof

9: if reply by F
proof

is (ok) then
10: send (voted, 𝑟 , ⟨𝑃𝑘 ⟩𝑘∈[𝑛] ) to F𝐵,𝑛,𝑡vote

and expect reply

(ok)

11: if this vote completes the 𝑗-th batch then
12: assign number of corrupted decryptors in 𝑗-th batch

to drained𝑗
13: end if
14:

𝑣𝑃 ← reconstruct(dec(skCRS, 𝑐CRS
1
), . . . , dec(skCRS, 𝑐CRS𝑡 ))

15: end if
16: else if 𝑀 = (batchShare, 𝑗, 𝑆) then
17: send (verifyShare, 𝑃 , pk

CRS
, 𝑗 , 𝑆) to F

proof

18: if reply by F
proof

is (ok) then
19: send (drained, 𝑗, 𝑃 ) to F𝐵,𝑛,𝑡

vote
and expect reply (ok)

20: end if
21: end if
22: send (forward, 𝑃 ,𝑀) to F𝐵,𝑛,𝑡

vote

23: On (init, 𝑃 ):

24: send (init) to GPKI as 𝑃 and assign reply to pk𝑃 // “as 𝑃”

messages are implicitly routed through F𝐵,𝑛,𝑡
vote

25: reply pk𝑃 to F𝐵,𝑛,𝑡
vote

Simulator S – all messages by F𝐵,𝑛,𝑡
vote

, unless otherwise noted
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26: On (getDecryptors, 𝑃 ):

27: send (getDecryptors) to GP
VoteBox

as 𝑃 and forward reply to

F𝐵,𝑛,𝑡
vote

28: On (voted, 𝑃 , ⟨𝑃𝑘 ⟩𝑘∈[𝑛] ):
29: for 𝑘 from 1 to 𝑛 do
30: send (pk, 𝑃𝑘 ) to GPKI and assign reply to pk𝑘

31: 𝑐𝑠
𝑘
← enc(pk𝑘 , 0)

32: 𝑐CRS
𝑘
← enc(pk

CRS
, 0)

33: send (proveVote,⊥,⊥,⊥,⊥, ⟨𝑐𝑠
𝑘
, 𝑐CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] , skCRS) to

F
proof

and expect reply (ok)

34: end for
35: if this vote completes the 𝑗-th batch then
36: assign number of corrupted decryptors in 𝑗-th batch to

drained𝑗
37: end if
38: send (vote, 𝑟 , ⟨𝑐𝑠

𝑘
, 𝑐CRS

𝑘
, 𝑃𝑘 ⟩𝑘∈[𝑛] ) to GP

VoteBox
as 𝑃

39: On (getMaliciousVotes, 𝑗 ):

40: send (read) to GP
VoteBox

and keep votes from reply

41: calculate the 𝑗-th batch B𝑗

42: reply with sum of votes 𝑣𝑃 of all corrupted voters in B𝑗

43: On (batchShare, 𝑃 , 𝑗 ):

44: if all voters of the 𝑗-th batch are corrupted then
45: execute ll. 34-35 and 39-42 of Fig. 8 as 𝑃 // copy actions of

Π𝐵,𝑛,𝑡
vote

46: reply (batchShare, 𝑗 , 𝑆) // use 𝑆 as calculated in l. 45

47: end if
48: find index 𝑘 of decryptor 𝑃 in 𝑗-th batch

49: drained𝑗 ← drained𝑗 + 1
50: if drained𝑗 < 𝑡 then

51: 𝑠𝑃,𝑗
$← RSSS // RSSS is the finite field of Shamir’s Secret

Sharing

52: 𝑆 ← (𝑘, 𝑠𝑃,𝑗 )
53: send (proveShare, 𝑗 , 𝑆 , pk

CRS
, skCRS) to Fproof as 𝑃 and

expect reply (ok)

54: reply (batchShare, 𝑗, 𝑆)
55: else if drained𝑗 = 𝑡 then
56: send (getHonestVotes, 𝑗 ) to F𝐵,𝑛,𝑡

vote
, add to the reply the

sum of corrupted votes in the 𝑗-th batch (as stored in l. 14) and

assign result to𝑉𝑗

57: send (read) to GP
VoteBox

, from the reply extract the 𝑡 − 1
aggregate shares of the 𝑗-th batch and assign them to 𝑆1, . . . , 𝑆𝑡−1

58: (𝑆𝑡 ,𝑄 𝑗 ) ← findShare(𝑆1, . . . , 𝑆𝑡−1, 𝑘,𝑉𝑗 )
59: send (proveShare, 𝑗 , 𝑆𝑡 , pkCRS, skCRS) to Fproof as 𝑃 and

expect reply (ok)

60: reply (batchShare, 𝑗, 𝑆𝑡 )
61: else // drained𝑗 > 𝑡
62: 𝑆 ← (𝑘,𝑄 𝑗 (𝑘))
63: send (proveShare, 𝑗 , 𝑆 , pk

CRS
, skCRS) to Fproof as 𝑃 and

expect reply (ok)

64: send (batchShare, 𝑗, 𝑆) to GP
VoteBox

as 𝑃

65: end if

Figure 10

The contents of messages that involve corrupted parties are fully

controlled by the internal, simulated adversary A. Simulator S
(Fig. 10) extracts some data from some of these messages (Fig. 10,

l. 12) and reads information from F
proof

without changing its state

(Fig. 10, ll. 8 and 17). S also informs F 𝐵,𝑛,𝑡
vote

whenever a corrupted

player successfully votes (Fig. 10, l. 10) or drains a batch (Fig. 10,

l. 19), with which information F 𝐵,𝑛,𝑡
vote

decides when a batch is fully

drained and thus whether it can disclose the aggregate votes for

this share to S. As we will see later, this information is needed to

ensure indistinguishability and F 𝐵,𝑛,𝑡
vote

could anyway obtain it read-

ing GP
VoteBox

directly. Thus the way S handles corrupted players’

messages cannot provide a distinguishing advantage.

In the real world, an honest party 𝑃 that receives (init) sends

(init) to GPKI and forwards its reply pk to E. In the ideal world,

the F 𝐵,𝑛,𝑡
vote

notifies S that 𝑃 received (init). S in turn sends (init)

as 𝑃 to GPKI and forwards its reply to F 𝐵,𝑛,𝑡
vote

, which stores and

forwards it to E. Since in both cases the response is generated by

GPKI with the same input by the same player, the reply received by

E is perfectly indistinguishable in the two cases.

In the real world, an honest party that receives (vote, 𝑣) first

gets the decryptors from GP
VoteBox

and then shares its vote and en-

crypts each share for each decryptor and with the CRS public key,

proves correct ciphertext generation to F
proof

and submits the vote

to GP
VoteBox

. In the ideal world, an honest party that receives (vote,

𝑣) allows S to generate and send the vote to GP
VoteBox

. S chooses

decryptors by asking GP
VoteBox

, as in the real world. This means that

F 𝐵,𝑛,𝑡
vote

will not trigger the halt of Fig. 2, l. 16, as the local variable

votes of F 𝐵,𝑛,𝑡
vote

only contains honestly generated votes, the same

holds for voted messages by S and every honestly generated vote

has a unique round. The same argument precludes the triggering

of the halt of Fig. 2, l. 21. Also the halt of Fig. 2, l. 17 will only

trigger with negligible probability by virtue of Theorem 9.2. Since

it doesn’t learn the plaintext vote, S then generates ciphertexts of

0 and proceeds to fake a proof of correctness of these, exploiting

its knowledge of the secret corresponding to the CRS. It then sends

the generated vote to GP
VoteBox

. The round and decryptors of the

vote are generated exactly as in the real world, so they are perfectly

indistinguishable. The ciphertexts’ distribution is negligibly close

to uniform independent of the input to enc due to the IND-CPA

property of the encryption scheme so the ciphertexts are indistin-

guishable. Lastly, in both worlds F
proof

verifies the same statement,

namely that the prover either knows the secret corresponding to the

key that the prover provided as CRS (possible in the real world only

if the prover maliciously sets its own key as CRS, which is irrelevant

for honest verifiers who only accept proofs made with the pk
CRS

given by FCRS) or that the prover has generated the ciphertexts

honestly and in both worlds the proofs are correct. Therefore the

state changes caused by a (vote, 𝑣) message to an honest party are

indistinguishable between the two worlds.

In the real world, an honest party that receives (drainBatch)

reads all published votes, deterministically chooses a completed

batch for which it is a decryptor (if any), sums the ciphertexts en-

crypted for itself, decrypts the sum to obtain one aggregate share,

proves correct decryption and sends the share to GP
VoteBox

. In the
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ideal world, when an honest party receives (drainBatch), F 𝐵,𝑛,𝑡
vote

is

aware of the same votes that it would know in the real world, since

F 𝐵,𝑛,𝑡
vote

knows all honest votes by virtue of the dummy parties relay-

ing them, as well as all malicious votes’ rounds and decryptors since

S sends a voted message with such data whenever a malicious

player votes correctly. F 𝐵,𝑛,𝑡
vote

can therefore proceed to calculate

the same batches and deterministically find the same batch for the

party to drain as in the real world, if any. In case this drain is the

𝑡-th for this batch, F 𝐵,𝑛,𝑡
vote

asks S for the sum of malicious votes for

this batch and updates the total vote accordingly. It finally asks S to

form a valid share, which in turn does so and sends it to GP
VoteBox

.

S produces the share in the following fashion. In case all voters

of this batch are malicious, they have produced all shares and

ciphertexts correctly (otherwise their vote would have been ignored

by GP
VoteBox

), so the ciphertexts correspond to the actual votes

of the malicious players. In this case S follows the same steps

that an honest decryptor would follow in the real world, therefore

introducing no opportunity for distinguishability. In case however

at least one voter is honest, S had faked its ciphertexts when the

former voted. In order to generate the needed share now, S exploits

the fact that it is free to decrypt the sum of the honest player’s

ciphertexts to any share, as long as its 𝑥 component is equal to the

index of the player in the batch’s decryptors and fake a proof of

correct decryption, by virtue of knowing the secret of the CRS. If

the sum of total corrupted decryptors in this batch plus the number

of honest decryptors that have drained this batch (including the

current one) is less than 𝑡 (call this number 𝑑), then the current

drain will not contribute the 𝑡-th share for this batch, therefore it

will not add anything to any party’s existing knowledge. Also no

party knows the value that the aggregate share would have in the

real world, since at least one of the voters is honest and thus the

shares that it encrypted for honest decryptors are never published.

Note also that there is at least one honest decryptor in this batch,

as S receives the current message, batchShare, by F 𝐵,𝑛,𝑡
vote

only

when an honest decryptor drains a batch. Therefore S generates

a random 𝑦 value for the share, uses the secret part of the CRS to

fake a proof of correct share and sends it to GP
VoteBox

.

In case 𝑑 = 𝑡 , the share that will be created by S has to be such

that reconstructing the 𝑡 shares returns an aggregate vote matching

that of the real world. To that end, S learns the sum of honest

voters’ votes in this batch by F 𝐵,𝑛,𝑡
vote

and adds the corrupted voters’

votes in this batch to get the aggregate batch vote. Note that having

F 𝐵,𝑛,𝑡
vote

disclose this sum does not leak any more information that

what a malicious party in the real world could deduce after the

aggregate share currently under generation would be made public.

It then uses the aggregate vote and the 𝑡 − 1 existing batch shares

to solve a linear equation and obtain the 𝑦 value of the new share,

such that reconstruction leads to the correct value. It also calculates

the polynomial that corresponds to the aggregate shares for future

use (Fig. 9). It then fakes a proof of correct share generation and

sends it to GP
VoteBox

. In this way, S has managed to only change

data that cannot be known by malicious parties in the real world

and keep all other data consistent between the two worlds.

In case 𝑑 > 𝑡 , S simply uses the previously determined polyno-

mial to generate a new aggregate share that can be combined with

the existing ones to correctly reconstruct the aggregate vote. It then

fakes a proof of correct share generation and sends it to GP
VoteBox

.

In the real world, an honest party that receives (read) reads all

aggregate shares from GP
VoteBox

and for each batch that has at least

𝑡 such shares, the party reconstructs the aggregate vote and adds it

to the sum. Once done, it returns the total. In the ideal world, F 𝐵,𝑛,𝑡
vote

simply returns the results as it has stored them locally. These two

values necessarily coincide, since F 𝐵,𝑛,𝑡
vote

only updates the results

once for each batch, exactly when the latter can be reconstructed

for the first time. F 𝐵,𝑛,𝑡
vote

knows the honest votes of this batch, as

it receives them from the honest dummy parties, and the correct

malicious votes are given honestly by S. Therefore the two worlds

are indistinguishable. □

9.1 Public Verifiability
We here note that in no part of the security proof did we put any

specific bounds on the number of corrupted players except, in the

interests of privacy, to require that no set of decryptors contained

𝑡 or more malicious players, a property enforced by F 𝐵,𝑛,𝑡
vote

(Fig. 2,

l. 17). The indistinguishability argument would work even if this

property were not enforced, allowing for a truly arbitrary number

of corruptions. Furthermore, by simple inspection of F 𝐵,𝑛,𝑡
vote

, we can

see that honest votes are counted correctly once in an opened batch,

irrespective of the number of corrupted parties. This means that our

construction enjoys public verifiability, i.e. it has the property that,

informally, any observer (whether it participated in the process or

not) can check that the votes of other parties that belong to fully

opened batches have not been ignored or counted wrongly.

9.2 Multi-Topic Continuous Opinion
Aggregation Guarantees

As discussed earlier, a multi-topic continuous opinion aggregation

scheme consists of one independent execution of F 𝐵,𝑛,𝑡
vote

per topic.

Both the batch privacy and the liveness properties hold for each

F 𝐵,𝑛,𝑡
vote

execution and these executions do not share any state, there-

fore the adversary cannot leverage information from one execution

to break the guarantees of another. Thus the properties carry over

to each vote batch of the combined scheme. Regarding security,

Theorem 9.4 ensures that each F 𝐵,𝑛,𝑡
vote

instance can be realised by

a Π𝐵,𝑛,𝑡
vote

protocol, as long as no state is shared, e.g. parties must

use independently generated keys for each Π𝐵,𝑛,𝑡
vote

execution. It can

be however proven that privacy, liveness and security also hold if

parties reuse public keys across Π𝐵,𝑛,𝑡
vote

executions for efficiency.

10 RECOMMENDED PARAMETERS
Theorem 9.2 provides a valuable result regarding privacy in the

asymptotic case, i.e. as 𝑛 increases to infinity. In practice though it

is useful to calculate the probability of a bad event – namely that a

uniformly random set of decryptors has 𝑡 or more malicious parties,

in which case they would be able to reconstruct the corresponding

vote directly, i.e. without waiting for the completion of a batch, and

thus break privacy – for specific values of the system parameters 𝑛,

𝑡 , 𝑠 and number of total players |P |. In particular, when choosing a
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uniformly random 𝑛-sized subset of P, the probability of obtain-

ing a decryptor set with at least 𝑡 malicious parties is given by

the expression 𝑃 [bad event] =

min (𝑠,𝑛)∑
𝑖=𝑡
(𝑠𝑖) ( |P |−𝑠𝑛−𝑖 )
( |P |𝑛 )

and the probability

of one or more bad events occurring throughout an entire execu-

tion is upper bounded by ⌈ |P |
𝐵
⌉ Pr[bad event]. We visualised the

value of this probability for various values of the parameters when

|P | = 10000 (Fig. 11).
1
. We also determined that the bad event

only happens one or more times throughout an execution with

probability less than 0.001 for |P | ≥ 8200, 𝑛 = ⌊ |P |
100
⌋, 𝑠 = ⌊ |P |

4
⌋

and 𝑡 = ⌊𝑛
2
⌋. The provided code can be used to plot and calculate

exactly these probabilities for an expected number of users in order

to choose suitable parameters.

Regarding the batch size 𝐵, we recommend a value of 11, which is

the size of the anonymity set of each Monero [46] transaction
2
. This

recommendation should however be taken with some reservation,

as a higher value may be needed due to the increased privacy

requirements of votes as opposed to coins, or a lower value may be

preferred if batch completion is too slow. Experimentation with a

realistic implementation would be needed to specify the best value

for 𝐵, if any. Furthermore, having 𝐵 be a divisor of |P | ensures that
no incomplete batch remains at the end of the execution, therefore

that all votes are considered.

11 FUTUREWORK
A number of directions for further exploration are discussed next.

One possible enhancement to the scheme would be to instanti-

ate a single, efficient protocol for continuous opinion aggrega-

tion, avoiding the need to execute a separate copy of F 𝐵,𝑛,𝑡
vote

per

topic. To achieve this improvement, a way to extend the additive-

homomorphic properties of the secret sharing and the encrpytion

schemes from a single, scalar integer to a vector of integers would

be needed. A simple trick would be to multiply the vote of each

topic with an increasing power of 2, such that each topic has enough

bits between each power of 2 and that of the next topic to represent

all practically plausible results, and add the votes together to form

a single, albeit longer, integer. This would however introduce the

limitation that each party would need to vote for all topics at once.

Lifting this limitation, possibly employing a range proof for each

vote to ensure its topic does not clash with that of a previously

submitted vote, would be of interest.

Two further goals regarding the number and availability of play-

ers are firstly allowing dynamic participation, i.e. not requiring

the set of all players to be known from the onset of the protocol –

which, among others, needs a method to eliminate the initialisation

phase – and secondly allowing participants to vote again in case

their batch is not drained by at least 𝑡 decryptors after a set amount

of time (invalidating their old vote in the process), thus further

enhancing liveness. Achieving these two targets while maintaining

1
https://gitlab.com/anonymized-submission/democratic-decision-making-

parameters

2
https://www.getmonero.org/resources/moneropedia/ring-size.html

Figure 11: Visualisation of probabilities of bad event for |P | =
10000 and various parameter values

good performance properties may also require employing a rep-

utation system that rewards well-behaving, available parties and

punishes misbehaving ones.

Furthermore, the current protocol could be improved by making

the security model more robust. There are two such directions: on

the one hand dynamic corruptions could be permitted, which would

https://gitlab.com/anonymized-submission/democratic-decision-making-parameters
https://gitlab.com/anonymized-submission/democratic-decision-making-parameters
https://www.getmonero.org/resources/moneropedia/ring-size.html
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likely need to make the order of votes and/or the corresponding sets

of decryptors less predictable. On the other hand, proving security

in a framework that supports composition, such as Universal Com-

position [11] or Constructive Cryptorgraphy [42], would enable

composing this protocol with other, independent protocols that

either run concurrently in the same machines or use our protocol

as a subroutine.

12 CONCLUSION
In this work we formally defined and analysed the privacy and

timely progress of a novel decentralised voting scheme for opinion

aggregation. We leveraged a variety of underlying primitives to

create a protocol that enables a large number of parties to express

their opinion on a particular subject while maintaining their privacy

within an anonymity set of a given size. Votes are revealed in

batches that only disclose a single number, the votes’ summary

opinion. Our simulations showed that tuning the parameters allows

for a variety of tradeoffs between, among others, the speed with

which vote batches are revealed and the size of the anonymity sets.

Our scheme may be extended to incorporate a variety of features,

such as parallel voting of multiple subjects and an unbounded

number of players.
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