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Abstract—The verifiable delay function (VDF), as a kind of cryptographic primitives, has recently been adopted quite often in
decentralized systems. Highly correlated to the security of VDFs, the fastest implementation for VDF evaluation is generally desired to
be publicly known. In this paper, for the first time, we propose a low-latency hardware implementation for the complete VDF evaluation
in the class group by joint exploiting optimizations. On one side, we reduce the required computational cycles by decreasing the
hardware-unfriendly divisions and increase the parallelism of computations by reducing the data dependency. On the other side,
well-optimized low-latency architectures for large-number divisions, multiplications, and additions are developed, respectively, while
those operations are generally very hard to be accelerated. Based on these basic operators, we devise the architecture for the
complete VDF evaluation with possibly minimal pipeline stalls. Finally, the proposed design is coded and synthesized under the TSMC
28-nm CMOS technology. The experimental results show that our design can achieve a speedup of 3.6x compared to the optimal C++
implementation for the VDF evaluation over an advanced CPU. Moreover, compared to the state-of-the-art hardware implementation
for the squaring, a key step of VDF, we achieve about 2x speedup.
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1 INTRODUCTION

D ECENTRALIZED systems have received extensive at-
tention in both academic and industrial societies. It

enables users to securely participate in a trustless system
and reduces the risk of systemic failure. With the popularity
of decentralized systems, there is a huge interest for timed-
cryptographic primitives in blockchain area [1] [2]. In 2018,
Boneh et al. proposed a promising scheme named verifiable
delay function (VDF), which evaluates in a prescribed time
and cannot be sped up by directly adding parallelism, but
the result can be exponentially faster verified [3]. VDFs have
numerous applications in decentralized systems. For exam-
ple, they can be used to enhance the security of generating
public verifiable random numbers [4], [5], [6] , which are
guaranteed to be unbiased and unpredictable. VDFs are
also effective as computational time-stamps and used in
proof of replication [7]. Recently, the notable applications
of VDFs are for designing resource-efficient blockchains,
such as Chia blockchain [8], IOTA [9], and Ethereum 2.0
[10]. However, these applications are at a great potential
risk. If an attacker can compute the VDF evaluation much
faster than any honest user, the decentralized system can
be broken. Therefore, for the security of VDF applications,
the fastest implementation for VDF evaluation should be
extensively studied and publicly known.

A VDF consists of a tuple of there algorithms : Setup,
Eval, and Verify, where the evaluation is the most time-
consuming and compute-intensive operation for any VDF
construction. As the base module in practical applications, a
stable VDF needs to satisfy two security requirements [3]:
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- Sequentiality: Any honest participant can evaluate a
function through a pre-defined t sequential steps and
in no less than a prescribed time T, while an adver-
sary has negligible chances to compute or guess the
correct output in less than time T, even with many
parallel processors.

- Uniqueness: For any input of Eval, exactly one output
will be verified, and there is an easy way to verify
the correctness of the function output.

The operation of repeated squaring over a group of un-
known orders is considered to meet these requirements, e.g.,
a, a2, a4, ..., a2

t

, and defined as a time-lock puzzle by Rivest,
Shamir, and Wagner [11]. Two efficient VDF constructions,
one proposed by Pietrzak [12] and the other by Wesolowski
[13], similarly exploit the serial nature of this computation.
Pietrzak’s and Wesolowski’s protocols are both based on
exponentiation over a group of unknown order, such as the
well-known RSA groups or class groups of binary quadratic
forms [14]. The RSA group is a multiplicative group Z/N
where N = pq (p, q ̸= 2) are both unknown large primes.
Z/N is considered as a group with an unknown order
because the difficulty of calculating the group order is
equivalent to the difficulty of factoring N . To guarantee
that the group order is unknown, a trusted setup needs to
be used to ensure that the factors chosen to generate the
group are not revealed. Once the factors are obtained by
adversaries, the sequentiality of the VDF will be attacked. In
contrast, using class groups of binary quadratic forms omits
the trusted setup [15], [16], because the order of this group
is believed to be almost impossible to compute, where the
discriminant of the form is a large negative prime. For this
property, class groups also have been used for numerous
decentralized protocols without trusted setup, including
accumulators [17], timed commitments [18], and succinct
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non-interactive argument of knowledge [19].
VDFs have been widely investigated in the theoretical

area (e.g., [3], [13], [12], [20], [21], [22], [23], [24]), which
greatly promotes the development of VDFs in decentralized
applications. However, to make VDFs practical, sufficient
research on implementation is required, especially develop-
ing specialized hardware. To date, a great deal of previous
research related to VDF implementation focused on VDF in
the RSA group. In 2019, VDF Alliance held a competition
to reward winners for achieving obvious speed-up in oper-
ating a number of sequential squarings in the RSA group
on FPGA platforms [25]. In the competition, the winner
adopted the effective low-latency modular multiplication
algorithm for a specific modulus proposed by Öztürk [26]
and given the possible fastest implementation for modular
squaring on the FPGA platforms [27]. Moreover, for the
implementation on ASIC, Mert et al. fully analyzed and
summarized the existing ultra-low latency ASIC algorithms
of modular squaring for VDF evaluation in the RSA group
[28].

However, in contrast to the significant progress made in
designing low-latency hardware for VDF evaluation in the
RSA group, to the best of our knowledge, there are very
limited implementation results for VDF evaluation in the
class group in the open literature, though the latter has more
superiority than the former in security. Competition for fast
software implementations for VDF in the class group has
been held by Chia’s Network and the optimized C++ imple-
mentations for low-latency VDF evaluation were obtained
from this competition [29]. Later, an efficient hardware
accelerator which speeds up the squaring in VDF evaluation
by a factor of 2 compared to C++ implementation over a
CPU has been proposed in [30]. So far, there is no complete
implementation of VDF evaluation in the class group in the
open literature, even though it has been used in many pop-
ular decentralized applications that do not support trusted
setup [8] [18]. Therefore, there is an urgent need to give
the complete low-latency implementation result for VDF
evaluation in the class group and thus ensure the security
and stability of related decentralized systems.

In this paper, for the first time, we propose a low-
latency architecture for VDF evaluation by utilizing many
algorithmic transformations and architectural optimizations
to reduce the critical path delay and calculation cycles.
Because the reduction and squaring need to be computed
sequentially and cannot be parallelized, the only way to
achieve a low-latency VDF evaluation design is speeding
up the squaring and reduction within each iteration.

For squaring, the most time-consuming operation is the
XGCD, which is extremely hard to speed up due to the
complexity associated with large-number computations. To
solve this problem, we study and modify a parallel XGCD
algorithm [31] that uses small integers to replace large
integers for the main calculation steps, which has been
preliminary presented in our conference paper [32]. For
the reduction, we improve a fast reduction algorithm [33]
that greatly reduces the latency by using small numbers
(such as 64-bit numbers) to approximate large numbers for
calculations. For these two steps with a large discriminant,
the basic arithmetic operations in them are made up of large-
number divisions, multiplications, and additions, which are

extremely hard to accelerate in hardware. To achieve a low-
latency design for VDF evaluation, highly parallelized and
pipelined architectures are devised.

The main contributions of this paper are summarized as
follows:

• We introduce and optimize the squaring and re-
duction algorithms for VDF evaluation in the class
group of binary quadratic forms to achieve ultra-low
latency.

• Based on the proposed algorithms, we present a
highly parallelized top-level architecture for the VDF
evaluation design with possibly minimal pipeline
stalls.

• A parallel XGCD algorithm is modified to be practi-
cal in hardware and the architecture for that is well
designed for the low-latency implementation.

• We present extremely low-latency algorithms and
implement them for large-number divisions, multi-
plications, and additions.

• We code the proposed design in System Verilog lan-
guage and evaluate the complete design of our VDF
evaluation architecture with TSMC 28-nm CMOS
technology.

The hardware implementation results show that our im-
plementation takes an average of 7.1 µs per iteration (squar-
ing and reduction) for a 2048-bit discriminant. Our squaring
achieves a speedup of 2x compared to the prior hardware
implementation for VDF squaring in the class group [30],
and the design for the complete VDF evaluation achieves a
speedup of 3.6x compared to the software implementation
over an Intel(R) Core(TM) i9-9900X @3.50GHz CPU.

The rest of this paper is organized as follows. In Section
II, we introduce Wesolowski’s VDF and operations of binary
quadratic forms over a class group. The modified squaring
algorithm, parallel XGCD algorithm, and fast reduction al-
gorithm are detailed in Section III. In Section IV, we present
the hardware architecture for the VDF evaluation. We im-
plement our design and compare it to the prior hardware
implementation and software implementation in Section V.
Finally, this paper is concluded in Section VI.

2 BACKGROUND

2.1 Overview of Wesolowski’s VDF
To explain the role of evaluation in VDF, we first introduce
the complete VDF construction. A VDF can be expressed as
a triple of algorithms: setup, evaluation, and verification.
The two most popular and efficient VDF constructions
are Wesolowski’s and Pietrzak’s VDFs [20]. The setup and
evaluation parts of these two constructions are the same.
Therefore, we only introduce Wesolowski’s VDF in this
section as an example.

Wesolowski’s VDF can be expressed as a triple of algo-
rithms as follows:

• Setup(λ, t)→ (pp)

1) The inputs are security parameter λ (typically
128, 192, or 256) and delay parameter t.

2) The public parameter pp is set to be pp :=
(G, H, t). G is a finite Abelian group of un-
known order - in this paper, G denotes the
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class group of binary quadratic field. H is an
efficiently computable hash function, which
satisfies H : X → G.

• Eval(pp, x)→ (y, π)

1) The output y is computed by operating t
squarings in G, and y ← H(x)2

t ∈ G.
2) The proof π is computed as described later.

• Verify(pp, x, y, π)→ (state)

1) This is an operation to verify that y is indeed
the correct output for x. If y is the correct
output, then output accept, otherwise output
reject.

Evaluator

ElseIf not

ElseIf not

Inputs 

Calculates 

Verifier

             Checks 

Outputs 
reject

Randomly selects 
a prime  l  from 

Primes(2λ)

Calculates  
such that               
 , and

Calculates 

Prime l

 Computes                      and

Outputs reject

Checks            and 

Outputs accept

Proof π

𝑔 ≔ 𝐻(𝑥) ∈ 𝐺 

ℎ ← 𝑔2𝑡 ∈ 𝐺 

𝑞, 𝑟 ∈ 𝑍  

2𝑡 = 𝑞𝑙 + 𝑟 

0 ≤ 𝑟 < 𝑙 
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𝜋 ∈ 𝐺 ℎ = 𝜋𝑙𝑔𝑟 ∈ 𝐺 

No Yes

No Yes

Fig. 1: Overview of evaluation and verification in
Wesolowski’s VDF.

Wesolowski proposed a succinct method for verifying
y = H(x)2

t

in [13] and an overview of Wesolowski’s VDF
is shown in Fig. 1. Fistly, a public variable g := H(x) is
given to the VDF evaluator as a base element, then h :=
y = g2

t ∈ G is calculated and sent to the VDF verifier
with g. After that, the verifier should check whether g, h ∈
Z . If yes, the verifier will randomly select a prime l from
Primes(2λ) and send it to the evaluator. Primes(2λ) is a
set containing the first 22λ primes, namely 2, 3, 5, 7, etc. If
no, the verifier will output reject and end the verification.
With the yes answer, the evaluator computes the proof π =

gq ∈ G where q = ⌊ 2
t

l ⌋ and sends it to the verifier. Finally,
the verifier computes r ← 2t mod l which only takes log2t
multiplications in Z/l. Meanwhile, the verifier also needs to
compute πlgr which consists of two small exponentiations
in G, and outputs accept if π ∈ G and h = πlgr ∈ G.

In general, the evaluator needs to perform t sequential
squarings for h ← g2

t

and compute a proof π ← gq . The
computation of proof π can be sped up by using parallism
and storing the intermediate data in the calculation of
g2

t

, e.g., g2, g4, g8, etc [20]. The guaranteed time T is for
the sequential operation h ← g2

t

and the total time of
evaluation is (1 + ϵ) T, where ϵ is small and corresponds
to the number of processors. When the evaluator uses s
processors, the total evaluation time is around (1 + 1

20s )
T. As a result, the calculation time of VDF evaluation is

mainly determined by the number of squarings t and the
runtime for one squaring. Since t is a public parameter for
all evaluators, we are motivated to propose a high-speed
implementation of squaring for VDF evaluation publicly.

2.2 Binary Quadratic Forms
The operations of a VDF are based on groups of unknown
orders which are usually be an RSA group or a class
group of binary quadratic forms. Using class groups of
binary quadratic forms is more suitable for decentralized
systems since it omits a trusted setup compared to using
RSA groups. However, the operations in the class groups of
binary quadratic forms are more complex than the same op-
erations in RSA groups. We will succinctly introduce several
concepts that are related to the binary quadratic forms that
VDF construction uses. For a more detailed information of
binary quadratic forms, please refer to [16] and [34].

1) Form
A binary quadratic form is defined as:

f(x, y) = ax2 + bxy + cy2, (1)

where a, b, c ∈ R and a, b, c ̸= 0. When a, b, c ∈
Z, this form is also called integral binary quadratic
form which is used in Chia’s VDF. Moreover, f(x, y)
is written as f = (a, b, c) and called a form.

2) Discriminant
The discriminant of a form f is ∆(f) = b2 − 4ac,
where the discriminant ∆ is a negative prime and
|∆| ≡ 3 mod 4. In particular, |∆| is sufficiently large,
e.g., width of 2048 bits, making the order of the class
group effectively unknown. If and only if ∆ < 0 and
a > 0, the form f is positive definite.

3) Normal
A form f = (a, b, c) is called normal if −a < b ≤ a.

4) Reduced
A positive definite form f = (a, b, c) is called re-
duced, if it is normal and a ≤ c, and when a = c
then b ≥ 0.

5) Composition
Consider two binary quadratic forms that have the
same discriminant:

f1 = ax2
1 + bx1y1 + cy21 (2)

and
f2 = αx2

2 + βx2y2 + γy22 , (3)

where (x1, y1) and (x2, y2) are independent sets
of variables. The f1 and f2 can also be written as
f1 = (a, b, c) and f2 = (α, β, γ), respectively. The
composition is to find a form f3 such that

f1f2 = AX2 +BXY + CY 2 = f3. (4)

In particular, when f1 = f2, the composition of f1f2
is the squaring of f1 or f2.

2.3 VDF Evaluation in the Class Group
The VDF evaluation is mainly a serail calculation for h :=
g2

t ∈ G which includes squaring and reduction operations.
In this section, we will introduce these two algorithms
separately.
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2.3.1 Squaring Algorithm in the Class Group

Let a form f = (a, b, c), the squaring is to calculate

f2 = f ′ = (A,B,C), (5)

and the squaring algorithm uses set (a, b, c) to obtain the
value of (A,B,C). The detailed steps of the squaring algo-
rithm are shown in Alg. 1, and the proof of this algorithm
can be found in [34].

Algorithm 1: Squaring Algorithm in the Class
Group [34]

Input: f = (a, b, c), where a, b, c ∈ Z
Output: f ′ = f2 = (A,B,C), where A,B,C ∈ Z

1 (d, e, g)← XGCD(a,b) ▷satisfy bd+ ae = g
2 ρ← ⌊ cg ⌋, r ← c%g

3 if r ̸= 0 then
4 Return:no solution
5 else
6 µ← ρd%a
7 end
8 A← a2, B ← b− 2aµ, C ← µ2 − bµ−c

a

First, the XGCD algorithm is applied to compute the
Bézout coefficients d and e as well as the greatest common
divisor (GCD) g of (a, b). Then, a division c/g is performed
to compute the quotient ρ and the remainder r, and the al-
gorithm continues when r = 0. After that, an auxiliary value
µ is computed by the division ρd%a. Finally, f ′ = (A,B,C)
is obtained by one division, four multiplications, and three
subtractions.

In practical applications, e.g., Chia’s VDF, the discrimi-
nant ∆(f) = b2 − 4ac = −p, where p is a prime number,
resulting in GCD(a, b) = g = 1 in all cases. Therefore, the
step 2-7 in Alg. 1 can be removed and µ is directly calculated
by µ = cd%a.

2.3.2 Reduction Algorithm in the Class Group

Since f(a, b, c) is repeatedly squared, the values of a, b,
and c will keep growing until too large to be calculated.
To avoid this situation, each squaring needs to be followed
by a reduction operation. When −a < b ≤ a, a ≤ c, a
positive definite form f = (a, b, c) is called reduced. The
reduction algorithm in the class group is shown in Alg. 2.
First, a form f(a, b, c) is normalized by the normalization
algorithm which is shown in Alg. 3. The main operation in
normalization is a large-number division for a parameter r,
and η(f) is a normalization operator that makes f normal.
When f is normalized, another large-number division is
applied for a reduced parameter s ← ⌊ c+b

2c ⌋, and f is
updated by s. After each updating, f needs to be tested
to determine whether it is reduced. When f is not reduced,
repeat steps 2-6. According to our test results, for the Chia’s
VDF with a 2048-bit discriminant, the loop needs to be
repeated approximately 200 times.

Algorithm 2: Reduction Algorithm in the Class
Group

Input: f(a, b, c), ∆ < 0, a > 0
Output: f(a, b, c),−a < b ≤ a, a ≤ c, and if a =

c then b ≥ 0
1 Normalization(f)
2 while f is not reduced do
3 s← ⌊ c+b

2c ⌋
4 ρ(f)← (c,−b+ 2sc, cs2 − bs+ a)
5 f ← ρ(f)
6 end
7 Return f

Algorithm 3: Normalization Algorithm in the Class
Group

Input: f(a, b, c), ∆ < 0, a > 0
Output: f(a, b, c),−a < b ≤ a

1 r ← ⌊a−b
2a ⌋

2 η(f)← (a, b+ 2ra, ar2 + br + c)
3 f ← η(f)
4 Return f

3 IMPROVED ALGORITHM FOR VDF EVALUATION

For a reduced form f , we have

|∆| = 4ac− b2 (∆ < 0)

≥ 4a(a)− a2 (−a < b ≤ a, a ≤ c)

≥ 3a2,

(6)

and so,

a ≤

√
|∆|
3

. (7)

Supposing the discriminant ∆ of the form f is a 2N -bit large
number (usually be 512 or 1024), the bit width of a is N
according to Eq. (7). Moreover, since the form f is reduced,
the bit width of b is also N and that of c is 2N .

3.1 Improved Squaring Algorithm in the Class Group
As shown in Alg. 1, the squaring algorithm includes the
XGCD algorithm, divisions, multiplications, and subtrac-
tions of large numbers. The most time-consuming operation
in squaring is the calculation of XGCD, and the second is
the 3N -bit division µ = cd%a. However, we notice that the
division µ = cd%a cannot start until the XGCD is finished,
since d is the output of the XGCD algorithm.

To reduce the computation time for the squaring algo-
rithm, we separate the 3N -bit division µ = cd%a into two
2N -bit divisions r = c%a and µ = rd%a. The division
r = c%a can be calculated simultaneously with XGCD since
c and a are the initial input of squaring. In addition, since
the divisors of r = c%a and µ = rd%a are both a, the
division µ = rd%a follows XGCD and can be simplified
as multiplication µ = rd × 1

a by saving the value 1
a in

the calculation of r = c%a. In summary, we modify the
squaring algorithm from Alg. 1 to Alg. 4. The outputs B
and C are also calculated in parallel, which further reduces
the total calculation time of squaring.
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Algorithm 4: Modified Squaring Algorithm for
Low-latency Hardware Implementation

Input: f = (a, b, c), where a, b, c ∈ Z
Output: f ′ = f2 = (A,B,C), where A,B,C ∈ Z

1 do in parallel
2 (d, e, 1)← XGCD(a,b) ▷satisfy bd+ ae = 1
3 x← 1

a ▷saving 1
a

4 r ← c− ⌊c× x⌋ × a
5 A← a2

6 end
7 µ← rd%a
8 do in parallel
9 B ← b− 2aµ

10 C ← µ2 − bµ−c
a

11 end

3.2 Improved XGCD Algorithm

The XGCD algorithm is used to calculate Bézout coefficients
d and e which satisfy bd + ae = GCD(a, b) = 1 in Alg. 4.
The commonly used XGCD algorithms are the binary XGCD
algorithm and the extended Euclidean algorithm (EEA) [35].
For large numbers, the binary XGCD algorithm requires
too many iterations to achieve low-latency. In addition, the
original EEA includes extremely time-consuming operations
of large numbers. To solve this problem, Lehmer proposed
an algorithm based on EEA in [36], which uses the leading
bits of large integers for the main calculation steps and
greatly reduces the computational complexity. However,
it is still difficult to speed up Lehmer’s EEA by using
parallelism because of the strong data dependency. Inspired
by Lehmer’s idea, Sidi [31] proposed a parallel XGCD
algorithm to further accelerate this operation. In this paper,
we modify Sidi’s algorithm to be more practical in hardware
and devise low-latency architecture for the parallel XGCD
algorithm.

3.2.1 XGCD Reduction
Considering a pair of non-negative integers (a, b), where
a ≥ b, most of GCD algorithms use one or more transforma-
tions (a, b) → (a′, b′) that serially reduce the size of current
pairs (a, b) until a pair (a′, 0) is eventually obtained. The
last value a′ is the GCD of (a, b). For XGCD computation
that includes finding Bézout coefficients (x, y) such that
ax + by = GCD(a, b), a 2 × 2 matrix M is used, which
is defined by:

(a, b)→ (a′, b′) = (a, b)×M, (8)

where det(M) = ±1. In this paper, distinguishing from
“reductions” in the class groups, these transformations are
called ” XGCD reductions”.

3.2.2 Parallel XGCD Algorithm
The parallel XGCD algorithm is shown in Alg. 5, where the
inputs are a, b, and m. The parameter m is related to the
degree of parallelism, e.g., when m = 3, the parallelism of
XGCD algorithm is 23 = 8. For hardware implementations,
m is a fixed number determined by software simulation
results.

This algorithm contains three XGCD reduction algo-
rithms for three different situations, where the input (a, b)
is reduced by them. A matrix N needs to be initialized for
calculating Bézout coefficients, and updated by matrix M
after each XGCD reduction as shown in step 9 in Alg. 5.

Algorithm 5: Parallel XGCD Algorithm
Input: a ≥ b > 0, m
Output: g, d, e ▷where bd+ ae = g = GCD(a, b)

1 N ←
(
1 0
0 1

)
2 while b > 220 do
3 (n, p)←the number of significant bits of (a, b)
4 if n− p < m− 1 then
5 (M,a, b)← PERA(a, b,m)
6 else
7 (M,a, b)← ρ-Euclid(a, b,m)
8 end
9 N ← N ×M

10 end
11 (g, d′, e′)← EEA(a′, b′)
12 (d, e)← (d′, e′)×N

We use n and p to represent the number of significant
bits of a and b, respectively, where 2n−1 ≤ a < 2n and
2p−1 ≤ b < 2p. As shown in Alg. 5, when b > 220 and
n−p < m−1 , a parallel XGCD reduction algorithm (PERA)
[31] detailed in Alg. 6 is adopted.

Algorithm 6: Parallel XGCD Reduction Algorithm
Input: a ≥ b > 0, m, n, p

Output: M ←
(
x1 y1
x2 y2

)
,
(
a
b

)
←

(
R1

R2

)
1 λ← 2m+ n− p+ 2
2 a1 ← ⌊ a

2p−λ ⌋, b1 ← ⌊ b
2p−λ ⌋, d← 1

b1
3 for i = 1 : 2m do
4 do in parallel
5 qi ← i× a1d, ri ← ia1 − qib1, si ← b1 − ri
6 if ri < b1

2m then
7 X ← ri, (x2, y2)← (i,−qi)
8 end
9 if si < b1

2m then
10 Y ← si, (x1, y1)← (−i, qi + 1)
11 end
12 end
13 if X > Y then
14 (x2, y2)← (x1, y1), R2 ← ax2 + by2
15 end
16 if (R2 < 0) then
17 (x2, y2)← (−x2,−y2), R2 ← −R2

18 end
19 end
20 (x1, y1)←Bézout(x2, y2)
21 R1 ← ax1 + by1
22 if (R1 < 0) then
23 (x1, y1)← (−x1,−y1), R1 ← −R1

24 end

The PERA is used for the case where a and b are close to
each other, which is also the most complex case for XGCD
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reduction. The inputs of PERA are a, b, m, n, and p, where
n − p < m − 1 and 2p > n + 2m + 2, and the outputs are
a matrix M where |x1y2 − x2y1| = 1 and a pair (R1, R2)
which satisfy GCD(R1, R2) = GCD(a, b).

The core idea of PERA is to replace large numbers with
their leading bits and reduce the number of iterations by
parallel computing. As shown in Alg. 6, first, a parameter
λ is obtained for the calculation of small numbers a1 and
b1. At the same time, the reciprocal of b1 is calculated
and used in step 5, which makes the parallel divisions be
replaced by parallel multiplications. Step 3 to step 19 in Alg.
6 are computed in parallel and the degree of parallelism is
equal to 2m. After step 19 is finished, a set of parameters
(x2, y2, R2) is obtained that satisfies R2 = ax2 + by2. Then
another set (x1, y1, R1) that satisfies R1 = ax1 + by1 is
calculated by the Bézout algorithm as shown in Alg. 7.

The input of Bézout algorithm are (x2, y2) where
GCD(x2, y2) = 1, and the output are (x1, y1) where
x1|y2| + y1|x2| = 1. This algorithm has similar parallel op-
erations as steps 3-12 in Alg. 6 and the degree of parallelism
is equal to 2m−1.

Algorithm 7: Bézout Algorithm

Input: |x| ≤ |y| ▷where GCD(x, y) = 1
Output: u, v ▷where u|y|+ v|x| = 1

1 for i = 1 : 2m−1 do
2 do in parallel
3 qi ← ⌊i× |y| × 1

|x|⌋, ri ← i|y| − qi|x|
4 si ← |x| − ri
5 if ri == 1 then
6 (u, v) ← (i,−qi)
7 end
8 if si == 1 then
9 (u, v) ← (−i, qi + 1)

10 end
11 end
12 end

When b > 220 and n − p ≥ m − 1, an efficient XGCD
reduction algorithm, named ρ-Euclid algorithm is used. As
shown in Alg. 8, the ρ-Euclid algorithm also uses the leading
bits of large numbers a and b for the division q ← ⌊a1

b1
⌋,

which is also the main operation. This algorithm is simple
but only valid when a is much larger than b.

After serial PERA or ρ-Euclid XGCD reductions, when b
is reduced to smaller than 220, the traditional EEA described
in Alg. 9 is employed. Since both a′ and b′ of EEA are
small numbers, operations involved in this algorithm are
simple. After several iterations, the output g = GCD(a′, b′)
is obtained, and it is also the final GCD(a, b) of Alg. 5. In
addition, d′ and e′ are calculated as b′d′ + a′e′ = g, and
the final Bézout coefficients (b, e) of (a, b) are computed by
(d, e)← (d′, e′)×N .

3.3 Modified Reduction Algorithm in the Class Group

As seen in Alg. 2, reduction includes complex calculation
of large-number divisions and multiplications so that the
reduction is extremely slow to compute. To solve this prob-
lem, the Chia company hosted competition in 2019, and the

Algorithm 8: ρ-Euclid Algorithm
Input: a ≥ b > 0, m, n, p ▷where n− p ≥ m− 1

Output: M ←
(
0 1
1 q

)
,
(
a
b

)
←

(
b
Rρ

)
1 λ← n− p+ 2
2 a1 ← ⌊ a

2p−λ ⌋, b1 ← ⌊ b
2p−λ ⌋

3 q ← ⌊a1

b1
⌋

4 Rρ ← a− qb

Algorithm 9: Extended Euclidean Algorithm (EEA)

Input: a′ ≥ b′ > 0
Output: g, d′, e′ ▷where b′d′ + a′e′ = g

1 r0 ← a′, r1 ← b′

2 s0 ← 1, s1 ← 0, t0 ← 0, t1 ← 1
3 k ← 1
4 while rk+1 ̸= 0 do
5 qk ← ⌊ rk−1

rk
⌋, rk+1 ← rk−1 − qkrk

6 sk+1 ← sk−1 − qksk
7 tk+1 ← tk−1 − qktk
8 k ← k + 1
9 end

10 g ← rk, d′ ← sk, e′ ← rk

fast reduction algorithm was proposed by Akashnil Dutta
[33]. According to Akashnil’s test, the reduction operations
in repeated squaring in the class group of binary quadratic
forms are sped up by almost 5x by applying the fast
reduction algorithm. The main idea of this algorithm is
using the leading bits of large numbers for the reduction
iterations detailed in Alg. 10. In this paper, we modify
this fast reduction algorithm to implement our hardware
accelerator.

In Alg. 10, the input f needs to be tested to deter-
mine whether it is reduced by the test function shown
in Alg. 11. The non-reduced conditions are simplified as
|a| < |b| ∥ |c| < |b|, and the reduced conditions are
increased with minor transformation. When f is reduced,
output flag = 1; otherwise output flag = 0.

When f is not reduced, execute the loop in Alg. 10 for
reduction. First, a leading one detector (LOD) is used to
calculate the effective bits of the inputs (a, b, c). After anum,
bnum, and cnum are obtained, the maximum and minimum
of these values are calculated. Then, determine whether
maxnum − minnum is greater than 31, if not, normalize f .
For the normalization algorithm shown in Alg. 3, the large-
number division is an extremely complex calculation for
hardware implementation. We notice that the normalization
algorithm makes variables (a, b, c) close to each other, and
hence the iterations of reduction will be decreased. There-
fore, we choose specified parameters to update (a, b, c),
which achieves the same target without the large-number
division shown in Alg. 12. As a result, the large-number
division is replaced by shifts, subtractions, and an addition
of large numbers.

After normalization, we use (x, y, z) to represent the
most significant 64 bits of (a, b, c), respectively. Next, adjust
the values of (x, y, z) according to (anum, bnum, cnum) by
shifting. Meanwhile, small auxiliary coefficients (u, v,m, n)
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Algorithm 10: Fast Reduction Algorithm

Input: f(a, b, c), ∆ < 0, a > 0
Output: f(a, b, c),−a < b ≤ a, a ≤ c, and if a =

c then b ≥ 0
1 flag ← TestReduced(f)
2 if flag == 1 then
3 Return f
4 else
5 repeat
6 (anum, bnum, cnum)← LOD(a,b,c)
7 maxnum ← MAX(anum, bnum, cnum)
8 minnum ← MIN(anum, bnum, cnum)
9 if maxnum −minnum > 31 then

10 ModifiedNorm(f)
11 else
12 (x, y, z)← the most significant 64 bits of

(a, b, c)
13 x >> (maxnum − anum + 1)
14 y >> (maxnum − bnum + 1)
15 z >> (maxnum − cnum + 1)
16 u← 1, v ← 0,m← 0, n← 1
17 while x ≥ z&&z ≤ 0 do
18 δ ← (y ≥ 0)?(y+z)/2z : −(−y+z)/2z
19 (x′, y′, z′)← (z,−y+2δz, x−δy+δ2z)
20 (u′, v′,m′, n′)←

(v,−u+ δv, n,−m+ δn)
21 (x, y, z)← (x′, y′, z′)
22 (u, v,m, n)← (u′, v′,m′, n′)
23 end
24 a′ ← u2a+ umb+m2c
25 b′ ← 2uva+ (un+ vm)b+ 2mnc
26 c′ ← v2 + vnb+ n2c
27 (a, b, c)← (a′, b′, c′)
28 end
29 until f is reduced;
30 end
31 Return f

are initialized and calculated in the small loop steps 17-22
for updating (a, b, c). The operators involved in this loop are
all with 64 bits, which are much smaller than those in Alg.
2. When x ≥ z&&z ≤ 0, output coefficients (u, v,m, n) and
update (a, b, c) until f is reduced.

4 HARDWARE ARCHITECTURE

4.1 Top-level Hardware Architecture for VDF Evaluation

The overall architecture of the VDF evaluation is shown
in Fig. 2, which mainly includes the squaring module
and reduction module. For the squaring operation in an
iteration, a reduced form f = (a, b, c) is imported into
the squaring module, and after a series of operations,
f ′ = (A,B,C) = f2 is obtained and used as the input
of the reduction module. Then the form f ′ is reduced to be
f̃ = (Ã, B̃, C̃) through reduction module. Supposing that
the discriminant ∆ of the form f is a 2N -bit large number
(N is 1024 in our design), the inputs (a, b, c) of the squaring
module are N bits, N bits, and 2N bits, respectively. The
outputs (A,B,C) of the squaring module all both 2N bits,

Algorithm 11: Test Reduced Algorithm

Input: f(a, b, c), ∆ < 0, a > 0
Output: f(a, b, c), f lag

1 if |a| < |b| ∥ |c| < |b| then
2 Return f(a, b, c) and flag = 0
3 else
4 if a > c then
5 f(a′, b′, c′) = f(c,−b, a)
6 else if a == c&&b < 0 then
7 f(a′, b′, c′) = f(a,−b, c)
8 else
9 f(a′, b′, c′) = f(a, b, c)

10 Return f(a′, b′, c′) and flag = 1
11 end

Algorithm 12: Modified Normalization Algorithm

Input: f(a, b, c), ∆ < 0, a > 0
Output: f(a, b, c)

1 η(f)← (c, 4c− b, a− 2b+ 4c)
2 f ← η(f)
3 Return f

and the outputs (Ã, B̃, C̃) of the reduction module are N
bits, N bits, and 2N bits, respectively. A complete VDF
evaluation needs to operate 2t squarings and reductions,
where t is a delay parameter.

4.2 Architecture for the Squaring Algorithm

According to Alg. 4, the architecture of the squaring algo-
rithm is shown in the left dashed block in Fig. 2. It contains
a parallel XGCD module, a Newton’s iteration (NI) module
for computing reciprocal, several multipliers, and adders.

The operations in the squaring are listed in TABLE 1.
Since the maximum bits of (a, b, c) are (N,N, 2N), we can
obtain the sizes of different operations. In addition to the
parallel XGCD module and NI module, the squaring mod-
ule contains 10 multiplications and 5 additions. As shown
in TABLE 1, #1, #7, and #11 are N×N-bit multiplications,
and #4, #9 are 2N×N-bit multiplications. In particular, #3,
#8, and #13 are used for calculating quotients, and since the
divisors are 2N-bit, 2N×2N-bit multiplications are required.
Since these multiplications have dependencies that cannot
be computed in parallel, we only need to apply four N×N-
bit multipliers. The 2N×N-bit multiplier can be composed
of two N×N-bit multipliers, and the 2N×2N-bit multiplier
can be composed of four N×N-bit multipliers. In addition,
#5, #10, #12, and #14 are all 2N-bit subtractions that can be
computed by 2N-bit adders.

Considering the dependencies between operations in the
squaring, the longest path in the squaring is: #6→ #7→ #8→
#9→ #10→ #11→ #12→ #13→ #14. The longest path of the
squaring module is shown as the red dashed line in Fig.
2, which includes the delay of the parallel XGCD module,
five multipliers, and three 2N -bit adders. Therefore, to re-
duce the calculation time for squaring, a low-latency XGCD
module and fast large-number multipliers and adders are
required.
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Fig. 2: The overall hardware architecture for the VDF evaluation.

TABLE 1: Bit-width and Dependencies of Operations in
Squaring

Number Operation Size (bits) Dependence
#1 A← a2 N ×N \
#2 a−1 ← NI(a) \ \
#3 q1 ← c× a−1 2N × 2N #2
#4 q1 × a 2N ×N #3
#5 r1 ← c− q1a 2N − 2N #4
#6 (d, e)← XGCD(a, b) \ \
#7 r1 × d N ×N #5, #6
#8 q2 = r1d× a−1 2N × 2N #2, #7
#9 q2 × a 2N ×N #8
#10 µ← r1d− q2a 2N − 2N #7, #9
#11 a× µ, b× µ, µ2 N ×N #10
#12 bµ− c, B ← b− 2aµ 2N − 2N #11
#13 (bµ− c)× a−1 2N × 2N #12
#14 C ← µ2 − (bµ− c)× a−1 2N − 2N #13

4.3 Architecture for the Reduction Algorithm
According to Alg. 12, the architecture for the reduction
algorithm is shown in the right dashed block in Fig. 2. The
reduction needs a test reduced module which only contains
several 2N-bit (N is 1024 in our design) comparators and
simple control logic to determine if the input f ′(A,B,C) is
reduced, and outputs the final reduced result. If the input
is not reduced, then f ′(A,B,C) needs to be updated. First,
LODs are used to calculate the number of significant bits
(Anum, Bnum, Cnum) of (A,B,C). Next, 12-bit comparators
are applied to find the maximum maxnum and the min-
imum minnum of the three values (Anum, Bnum, Bnum).
If maxnum − minnum is greater than 31, then (A,B,C)
will be input to the Norm module. The Norm module only
contians 2048-bit adders and used to normalize the input
based on Alg. 12. Both input and output of this module

are f(A,B,C). After normalization, a loop is used to cal-
culate the auxiliary parameters (x, y, z) and (u, v,m, v) for
updating (A,B,C), which mainly requires a 64-bit divisor,
64-bit multipliers, and 64-bit adders. When x ≥ z&&z ≤ 0,
the loop stops and (A,B,C) are updated by 64×2048-bit
multipliers and 2048-bit adders until the reduced result
f̃(Ã, B̃, C̃) is obtained.

4.4 Architecture for the Parallel XGCD Algorithm

The parallel XGCD module is the most complex and time-
consuming module in the squaring block. The computation
of this algorithm includes the parallel XGCD reduction
algorithm, the ρ-Euclid algorithm, and the EEA algorithm
for repeated XGCD reductions. The total time for XGCD is
mainly decided by the number of XGCD reductions and the
delay of one reduction. As shown in Alg. 5, the parameter m
is closely related to the degree of parallelism. For example,
when m = 3, the degree of parallelism of the parallel XGCD
reduction module is 2m = 8. Intuitively, the larger m is, the
less the XGCD reduction is required. At the same time, the
larger m is, the more complex the XGCD reduction modules
are. Therefore, we choose the parameter by using Monte
Carlo simulation to obtain a good trade-off. According to
our simulation, when inputs (a, b) are 1024-bit numbers, m
set to 8 can achieve a relatively small latency for the parallel
XGCD module.

According to Alg. 5, the overall architecture of the par-
allel XGCD algorithm is shown in Fig. 3, which mainly
includes multipliers, adders, and the Newton iteration mod-
ule for divisions. First, an LOD is used to calculate the
number of significant bits (n, p) of inputs (a, b). Then,
according to the relationship between n and p, the control
signal generator will update the Start 1, Start 2, or Start 3
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Fig. 3: The architecture for the parallel XGCD algorithm.

signal to select the parallel XGCD reduction module, the ρ-
Euclid module, or the EEA reduction module, respectively.
At the same time, the matrix N is also updated by 2 × 2
matrix M .

The parallel XGCD reduction module is the most compu-
tationally intensive and has the largest area among the three
modules. To get x2 and y2 for updating the R2, it needs
a Newton’s iteration unit for calculating b−1, 2m 9×32-bit
multipliers, and corresponding 2m units for calculating the
quotients si and remainders ri in parallel. To get x1 and
y1 for updating the R1, it also needs a Newton’s iteration
unit for calculating |x2|−1, 2m−1 8×20-bit multipliers, and
corresponding 2m−1 units for calculating the quotients si
and remainders ri in parallel. When (x1, y1) and (x2, y2) are
obtained, the new pair (R1, R2) are calculated by 20×1024-
bit multipliers and 1024-bit adders. Compared to the parallel
XGCD reduction module, the ρ-Euclid module is simple,
it only contains a divider of small number, a 20×1024-bit
multiplier and a 1024-bit adder. When the signal is Start3
for the EEA reduction module, it means that the input (a, b)
has been reduced to small numbers (b ≤ 220), so the EEA
reduction module only needs a divider, multipliers and
adders for small numbers. When the EEA module finishes,
the whole XGCD module stops and the final results (x, y)
are obtained.

4.5 Architecture of Multipliers, Dividers, and Adders

4.5.1 Architecture of the Large-Number Multiplier
Since large-number multiplications are extremely time-
consuming operations, it is necessary to accelerate them to
achieve a low-latency implementation of VDF evaluation.
Hence, we design a low-latency large-number multiplier by
utilizing the Karatsuba multiplication approach [37].

For the multiplication of n-bit A and B, they can be
written as:

A = AH2n/2 +AL, B = BH2n/2 +BL. (9)

Then, the multiplication C = A×B equals:

C = (AH2n/2 +AL)× (BH2n/2 +BL)

= AHBH2n + (AHBL +ALBH)2n/2 +ALBL.
(10)

Moreover, based on the Karatsuba multiplication scheme,
the multiplication can be written as:

C = AHBH2n +ALBL

+ [(AH +AL)(BH +BL)−AHBH −ALBL]2
n/2.

(11)

As a result, for each Karatsuba multiplication performed,
the number of sub-multiplication is reduced from 4 to 3. If
we apply k-level Karatsuba multiplication, an n×n-bit mul-
tiplier can be split into 3k (n/2k) × (n/2k)-bit multipliers.
In our design, we apply 6-level Karatsuba multiplication to
1024 × 1024-bit multiplier, and the multiplier is deposed
to 729 16 × 16-bit multipliers. The architecture for this
Karatsuba multiplier is shown in Fig. 4. By splitting the
large-number multiplication into multiplications of small
numbers and additions of large numbers, the critical path
delay can be effectively reduced.
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Fig. 4: Architecture for the Karatsuba multiplier.

4.5.2 Architecture of Divider
Division q = n/a can be written as the product of the
dividend and the reciprocal of the divisor: q = n × 1

a .
Therefore, a divider contains a Newton’s iteration module
for calculating the reciprocal and a multiplier.

This module is used to calculate the reciprocal of input a,
i.e., a−1 in the squaring block. To compute a−1 by applying
Newton’s method, we choose a function f(x) = 1

x − a that
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has a zero at x = 1/a. Newton’s method is used to find an
approximation to a−1:

xi+1 = xi −
f(xi)

f ′(xi)
= xi +

1/xi − a

1/x2
i

= xi(2− axi), (12)

where f ′(xi) is the first order derivative of f(xi). Spe-
cially, a in Eq. (12) should be scaled to [0.5, 1] to make
the function converge faster. First, an LOD is applied to
calculate the number of significant bits na of a. Then,
a′ = a >> (1024 − na), where “>>” means the right shift
operation, can be used for iterations. After several iterations,
the reciprocal of a can be obtained by simply bit shifting
the final result as 1

a = xi+1 >> na. The approximation
error decreases quadratically after each iteration and an
appropriate initial estimate x0 is needed. To reduce the
absolute error of approximation to the reciprocal and be
efficient for hardware implementation, we choose

x0 = 3− 2a′ (x0 ∈ [1, 2]). (13)

In our design, a′ is a 1024-bit unsigned number, where
one bit is for the integer part and 1023 bits are for the
decimal part. The subtraction 3− 2a′ can be written as:

3− 2a′ = (3 << 1023 + (∼ (2a′) << 1023 + 1)) >> 1023,
(14)

where “<<” means the left shift operation and “∼” means
the not operator. The difference between ∼ 2a′ << 1023
and∼ 2a′ << 1023+1 is quite small and can be ignored. We
calculate x0 = 3+(∼ 2a′) rather than x0 = (3 << 1023+(∼
2a′ << 1023 + 1)) >> 1023 to avoid the latency caused by
carry-propagation of adding “1”. In addition, 1023 decimal
bits of “3” are zeros, and then 3 + (∼ 2a′) only requires
inverter for not operation. Thus, the 1024-bit subtraction is
reduced to a 1024-bit inversion.

Similarly, the formula xi+1 = xi(2 − a′xi), which in-
volves two multiplications and a subtraction can be written
as xi+1 = xi(2+ ∼ a′xi). Then, each iteration for xi+1

only needs two multiplications and one not operation. As
a result, the hardware architecture for the iteration is shown
in Fig. 5. In particular, the bits in dashed boxes are for expla-
nation purposes only and do not exist in the actual design.
The signal sel 1 is used to choose whether to calculate the
initial estimate x0 or intermediate value xi. The signal sel 2
is used to decide when to stop the iteration. For a 1024-
bit division d = n

a , 10 iterations are enough to obtain the
accurate integer quotient.

4.5.3 Architecture of the Large-Number Adder

VDF evaluation contains many additions and subtractions
of large numbers, where subtractions are also calculated
with adders. To reduce the latency of a large-number adder,
the square-root carry-select (SRCS) [38] method is adopted.
For example, a 1024-bit unsigned addition can be divided
into 2-bit, 3-bit, ..., 35-bit, 35-bit, 36-bit, ..., 43-bit, and 44-
bit additions by using SRCS method. The architecture of
the 1024-bit adder is shown in Fig. 6, where RCA is ripple
carry adder. As a result, the delay of the 1024-bit adder is
dramatically reduced from the delay of 1024 full adders to
about 44 full adders.
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5 EXPERIMENTAL RESULTS AND COMPARISONS

In this section, both the behavioral-level simulation results
and the synthesis results are given. The proposed design of
the VDF evaluation in the class group of binary quadratic
forms is coded in SystemVerilog, and a testbench is built to
verify the correctness of the model. After that, the design is
synthesized under TSMC 28-nm CMOS technology.

5.1 Behavioral-level Simulation and Hardware Imple-
mentation Results

We code the proposed design with SystemVerilog and use
Vivado 2018.3 EDA platform for behavioral-level simula-
tion. In the simulation, we randomly generate 1000 pairs
f(a, b, c) of 2048-bit discriminants and calculate the average
number of clock cycles for the main operations.

The proposed design is synthesized under TSMC 28-
nm CMOS technology, and the implementation results are
shown in TABLE 3. As shown, the clock frequency of this
implementation is 455 MHz, and the critical path delay is 2.2
ns. Moreover, the time for each operation can be calculated
as: runtime = calculation cycles × period.
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TABLE 2: Runtime Comparison of Our Implementation Results and Software Results

Operation Runtime of software Proportion of total
time in software

Clock cycles
in hardware

Proportion of total
time in hardware

Runtime of our
implementation Speedup

Squaring+Reduction 25.6 µs 100% 3214 100% 7.1 µs 3.6x
Squaring 9.7 µs 38% 1573 49% 3.5 µs 2.8x

Reduction 15.9 µs 62% 1641 51% 3.6 µs 4.4x
XGCD 8.2 µs 32% 1283 40% 2.8 µs 2.9x

As shown in TABLE 2, the average clock cycles required
to calculate per VDF evaluation is 3214. The squaring oper-
ation and reduction operation take up 49% and 51%, respec-
tively. The XGCD calculation is the most time-consuming
operation in the squaring, which occupies 40% of the VDF
evaluation and 82% of the squaring.

TABLE 3: Hardware Implementation Results

Frequency
(MHz)

Critical Path Delay
(ns)

Area
(mm2)

455 2.2 10.761

5.2 Comparisons with Previous Works
We compare our design to the state-of-the-art work for VDF
squaring acceleration and also compare our design with the
Chia Network’s C++ implementation [39] over an Intel(R)
Core(TM) i9-9900X @3.50GHz CPU.

Considering that the work in [30] is only for squar-
ing rather than the whole VDF evaluation which includes
squaring and reduction, we just compare the squaring block
of our implementation with it. As shown in TABLE 4, the
clock period of [30] is 2 ns, and the runtime for squaring is
6.319 µs. The runtime for squaring of our implementation
is : 1573 × 2.2 ns = 3.460 µs, which achieves a speedup
of 1.8x compared to [30]. The main reason for the speedup
is that we adopt the parallel XGCD algorithm instead of
the multi-precision Euclidean algorithm. By replacing the
XGCD algorithm, the calculation cycles of the XGCD algo-
rithm are reduced from approximately 3000 to 1283 cycles,
bringing almost 60% reduction.

TABLE 4: Comparison of This Work and the State-of-the-art
Work Under TSMC 28-nm CMOS Technology

Area
(mm2)

Clock Period
(ns)

Runtime
(µs)

Squaring of [30] 9.895 2 6.3
Squaring of this work 6.474 2.2 3.5

XGCD of [30] \ 2 6.0
XGCD of this work \ 2.2 2.8

To demonstrate the efficiency of our design, we also
compare our implementation results of VDF evaluation with
an optimized C++ implementation proposed by the Chia
Network Competition [39], which takes an average of 25.6µs
per squaring and reduction over an Intel(R) Core(TM) i9-
9900X @3.50GHz CPU (fabricated in 14 nm). A detailed
runtime comparison of our implementation results and
software results is shown in TABLE 2. For squaring, we
achieve a 2.8x speedup, and a 2.9x speedup for XGCD.
Meanwhile, we also achieve 4.4x speedup for reduction,
resulting in a 3.6x speedup for the VDF evaluation which
includes squaring (38%) and reduction (62%).

6 CONCLUSION

In this paper, we present the first hardware architecture for
VDF evaluation in the class group of binary quadratic forms.
Algorithm and hardware co-optimization is performed to
achieve a possible minimum latency hardware implementa-
tion. First, a fast reduce algorithm is modified and a parallel
XGCD algorithm is chosen for the latency optimization tar-
get. Second, highly parallelized and pipelined architectures
for large-number divisions, multiplications, and additions
are devised to reduce the calculation latency further. Fi-
nally, we code and synthesize the proposed design. The
implementation results show that, with these optimization
methods, our design can achieve a VDF squaring speedup of
approximately 2x compared to the prior class-group-based
VDF squaring accelerator, and a VDF evaluation speedup
of 3.6x compared to the optimal Chia Network’s software
implementation.
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[28] A. C. Mert, E. Öztürk, and E. Savas, “Low-latency asic algorithms
of modular squaring of large integers for vdf evaluation,” IEEE
Transactions on Computers, 2020.

[29] Chia’s Network, https://github.com/Chia-Network/vdf-
competition, Jul. 2019, accessed: 2022-3-NA.

[30] D. Zhu, Y. Song, J. Tian, Z. Wang, and H. Yu, “An efficient
accelerator of the squaring for the verifiable delay function over
a class group,” in 2020 IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), 2020, pp. 137–140.

[31] S. M. Sedjelmaci, “A parallel extended gcd algorithm,” Journal of
Discrete Algorithms, vol. 6, no. 3, pp. 526–538, 2008.

[32] D. Zhu, J. Tian, and Z. Wang, “Low-latency architecture for the
parallel extended gcd algorithm of large numbers,” in 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), 2021, pp.
1–5.

[33] A. Dutta, “Fast reduction,” https://github.com/Akashnil/chia-
vdf-competition/tree/master/Entry1, 2019, accessed: 2021-6-4.

[34] L. Long, “Binary quadratic forms,” https://github.com/Chia-
Network/vdf-competition/blob/master/classgroups.pdf, 2018.

[35] T. Jebelean, “Comparing several gcd algorithms,” in Proceedings
of IEEE 11th Symposium on Computer Arithmetic. IEEE, 1993, pp.
180–185.

[36] D. H. Lehmer, “Euclid’s algorithm for large numbers,” The Ameri-
can Mathematical Monthly, vol. 45, no. 4, pp. 227–233, 1938.

[37] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital
numbers by automatic computers,” in Doklady Akademii Nauk, vol.
145, no. 2. Russian Academy of Sciences, 1962, pp. 293–294.

[38] Y. He, C.-H. Chang, and J. Gu, “An area efficient 64-bit square
root carry-select adder for low power applications,” in 2005 IEEE
International Symposium on Circuits and Systems. IEEE, 2005, pp.
4082–4085.

[39] Akashnil, “VDF Competition,” https://github.com/Chia-
Network/vdftrack1results/tree/main/akashnil, 2019.

Danyang Zhu received the B.S. degree in com-
munication engineering from Nanjing University,
Nanjing, China. Now she is working toward her
Ph.D. degree in information and communication
engineering from Nanjing University, Nanjing,
China.

Her research interests include very large scale
integration design, specifically VLSI design for
digital signal processing and cryptographic en-
gineering.

Jing Tian received her B.S. degree in micro-
electronics and Ph.D. degree in information and
communication engineering from Nanjing Uni-
versity, Nanjing, China, in 2015 and 2020, re-
spectively. She is now an associate research
fellow in Nanjing University. She has published
over 20 technical papers. Her research interests
include VLSI design for digital signal processing
and cryptographic engineering.

Minghao Li received his B.S. degree in Inte-
grated Circuit Design and Integrated System
from Nanjing University, China, in 2021.He is
currently pursuing the M.S. degree in Electronic
Information at Nanjing University.

His research interests include VLSI design for
digital signal processing.

Zhongfeng Wang has been working for Nanjing
University, China, as a Distinguished Professor
since 2016. Previously he worked for Broadcom
Corporation, California, and Oregon State Uni-
versity. Dr. Wang is a world-recognized expert
on Low-Power High-Speed VLSI Design for Sig-
nal Processing Systems. He has published over
200 technical papers with multiple best paper
awards received from the IEEE technical so-
cieties, among which is the VLSI Transactions
Best Paper Award of 2007. In the past, he has

served as Associate Editor for IEEE Trans. on TCAS-I, TCAS-II, and
TVLSI for many terms. He has also served as TPC member and
various chairs for tens of international conferences. Moreover, he has
contributed significantly to the industrial standards. So far, his technical
proposals have been adopted by more than fifteen international network-
ing standards. His current research interests are in the area of Optimized
VLSI Design for Digital Communications and Deep Learning.


