
The Ideal Functionalities for Private Set Union, Revisited

Yanxue Jia
Shanghai Jiao Tong University

Shi-Feng Sun
Shanghai Jiao Tong University

Hong-Sheng Zhou
Virginia Commonwealth University

Dawu Gu
Shanghai Jiao Tong University

June 13, 2022

Abstract

A Private Set Union (PSU) protocol allows parties, each holding an input set, to jointly compute the
union of the sets without revealing anything else. In the literature, when we design scalable two-party PSU
protocols, we follow the so-called “split-execute-assemble” paradigm, and also use Oblivious Transfer as
a building block. Recently, Kolesnikov et al. (ASIACRYPT 2019) pointed out that security issues could be
introduced when we design PSU protocols following the “split-execute-assemble” paradigm. Surprisingly,
we observe that the typical way of invoking Oblivious Transfer also causes unnecessary leakage.

In this work, to enable a better understanding of the security for PSU, we provide a systematic treat-
ment of the typical PSU protocols, which may shed light on the design of practical and secure PSU pro-
tocols in the future. More specifically, we define different versions of PSU functionalities to properly cap-
ture the subtle security issues arising from protocols following the “split-execute-assemble” paradigm and
using Oblivious Transfer as subroutines. Then, we survey the typical PSU protocols, and categorize these
protocols into three design frameworks, and prove what PSU functionality the protocols under each frame-
work can achieve at best, in the semi-honest setting.

1

Contents
1 Introduction 1

1.1 Our results . 2

2 Preliminaries 3
2.1 Universal Composability Framework . 4
2.2 Building Blocks . 5

3 KRTW-PSU: Review and Reflection 6
3.1 Overview of the protocol in [KRTW19] . 6
3.2 The PSU ideal functionality in [KRTW19] . 7
3.3 Reflection . 8

4 Ideal Functionalities for PSU 9
4.1 FPSU: A Standard PSU Functionality . 10
4.2 Fb

rPSU and Fb,s
rPSU: New Variants of PSU Functionalities . 10

5 Protocols for PSU 12
5.1 KRTW-PSU: Can Realize Fb,s

rPSU but Not Fb
rPSU . 13

5.2 OT-based PSU: Can Realize Fb
rPSU but Not FPSU . 18

5.3 AHE-based PSU: Can Realize FPSU . 21

6 Conclusion 23

A Simple Hashing and Cuckoo Hashing 25

B Leakage analysis for the KRTW-PSU protocol 25

C Details of Sub-protocols 27
C.1 Sub-protocol ΠBaRK-OPRF . 27
C.2 Sub-protocol ΠPS . 28
C.3 Sub-protocol ΠmpOPRF . 28
C.4 Sub-protocol Πg-RPMT . 29

2

1 Introduction

In a Private Set Union (PSU) protocol, two players, a sender and a receiver, holding input sets X and Y,
respectively, can jointly compute the union X ∪ Y as output. To ensure the joint computation is private,
any additional information except the union X ∪ Y, is not allowed to be learned by the players. Especially,
information about the items in the intersection set X ∩ Y should not be learned by the players. Often we
consider a simplified version of PSU: Instead of having both players to obtain the same output X ∪Y, in the
simplified version of PSU, the receiver obtains the output X ∪ Y, while the sender obtains, not the output
X ∪ Y, but a notification1 indicating that the protocol execution is complete.2 PSU, as a typical two-party
secure computation task, can be used in multiple application scenarios, and efficient PSU protocols have
been constructed in the literature [Fri07, DC17, KRTW19, GMR+21, JSZ+22].
“Split-execute-assemble” paradigm in PSU. In the context of developing Private Set Intersection (PSI)
protocols, in order to improve the performance for large datasets, many constructions (e.g., [PSZ14, PSSZ15,
KKRT16, PSZ18, PRTY19]) essentially follow a paradigm that we call “split-execute-assemble” paradigm:
first the two large input datasets are split into multiple small input subset pairs; then multiple PSI instances
are executed based on these small subset pairs respectively; finally the output results from these executed
instances are assembled together, forming the final output of the PSI protocol execution (for the large input
sets).

Very recently, Kolesnikov et al. [KRTW19] introduced for the first time this paradigm into the design of
efficient PSU protocols:
• “split:” First, the pair of input sets X and Y are split into multiple much smaller pairs of subsets,

i.e., {(X1, Y1), (X2, Y2), · · · , (Xβ, Yβ)}, where β ∈ N. Here, |X| = N1 and |Y| = N2; for all i ∈ [β],
|Xi| � N1 and |Yi| � N2.

• “execute:” Then, the two parties execute β number of PSU protocol instances, as subroutine, and each
instance is on pair of subsets (Xi, Yi). The receiver obtains Zi := Xi ∪Yi.

• “assemble:” Finally, the receiver assembles the outputs of all subroutine protocol instances, and ob-
tains the output Z := Z1 ∪ Z2 ∪ · · · ∪ Zβ.

The above is an oversimplified description of the “split-execute-assemble” paradigm; please find a com-
plete description in Section 3.1.
Security concerns about PSU protocols under the “split-execute-assemble” paradigm.3 Applying the
above paradigm for designing PSU protocols is definitely a natural and interesting idea. However, even if
the underlying subroutine, i.e. the PSU sub-protocol for the small-size input subsets, is UC-secure (i.e., it
can UC-realize the standard PSU functionality in Section 4.1), it is unclear if the “assembled” PSU protocol
is still UC-secure. We next discuss potential security concerns on the PSU protocols following the “split-
execute-assemble” paradigm.

As already indicated in [KRTW19], in the above “split-execute-assemble” paradigm, the receiver can
learn if a subset Yi includes items that are in the intersection X ∩ Y, which is not allowed in PSU. In order
to conceal this leakage information, Kolesnikov et al. introduced a careful padding strategy in [KRTW19].
Subsequently, Jia et al. [JSZ+22] pointed out that their strategy is insufficient to address the leakage issue:
Roughly, when observing the output Zi := Xi ∪ Yi is equal to Yi for the i-th PSU sub-protocol instance, the
receiver will know that the subset Yi includes the items in X ∩ Y with an overwhelming probability (see
Section 3.3 for more details). Nevertheless, a formal treatment of this leakage is still left open.

In this work, we revisit the problem pointed out in [JSZ+22]. We start with the definition of the ideal
functionality for PSU, and observe that the leakage can be deduced from the final output X∪Y; the standard
PSU functionality reveals nothing to the receiver but the final output. Intuitively, this means that a UC-
secure PSU protocol should allow the receiver to learn the above leakage only after obtaining the entire

1We remark that this notification is needed since in the real world protocol execution, the environment is indeed aware if the sender
completes its execution or not.

2In the semi-honest setting, the sender can easily obtain the output from the receiver.
3We remark that, the very similar security concerns also occur in many PSI protocols under the “split-execute-assemble” paradigm.

In this paper, we focus on the task of PSU only.

1

FPSU (Fig. 7)

ΠAHE
Unified (Fig. 12)

Fb
rPSU (Fig. 8)

ΠOT
Unified (Fig. 11)

Fb,s
rPSU (Fig. 9)

ΠKRTW
Unified (Fig. 10)

Thm. 5.1Thm. 5.2/5.3Thm. 5.4Thm. 5.5Thm. 5.6

Figure 1: The relationship between the PSU functionalities/protocols. Here, “FA =⇒ FB” means that if
a protocol can UC-realize FA, then it can UC-realize FB; “Π −→ F” means that the protocols following
framework Π can UC-realize F , and “Π 6−→ F” means that the protocols following framework Π cannot
UC-realize F .

output X ∪ Y. However, if the subroutine PSU instances are executed sequentially4, the receiver obtains
Zi := Xi ∪ Yi one by one, and will be able to learn (part of) the leakage information before obtaining all
the items in X ∪ Y. Therefore, to avoid leaking the information in advance, the subroutine PSU instances
are supposed to be executed at the same time; then the “assembled” PSU protocol could be proven to be
UC-secure when the underlying PSU sub-protocol is UC secure.
Security concerns about OT-based PSU protocols. We further observe that the PSU sub-protocol designed
in [KRTW19] (as shown in Fig. 11) is not UC-secure. More specifically, for each item in the input set X, the
receiver first learns whether it is a member of the set Y, and then obtains the output Z := X ∪ Y by invok-
ing Oblivious Transfer (OT) instances with the membership information. In other words, the OT-based PSU
sub-protocol in [KRTW19] leaks the membership information before the execution of the protocol is com-
pleted (see Section 3.3 for more details). This issue also exists in the most recent works [GMR+21, JSZ+22],
although the security concerns arising from the “split-execute-assemble” paradigm can be effectively ad-
dressed.
AHE-based PSU protocols. In contrast to above works that mainly rely on symmetric-key techniques,
Frikken et al. [Fri07] and Davidson et al. [DC17] proposed PSU protocols based on additively homomorphic
encryption (AHE). The AHE-based PSU protocols avoid using the “split-execute-assemble” paradigm or OT,
thus not suffering from the security concerns mentioned before, but they are much less efficient than the
protocols based on symmetric-key primitives. The latter are promising in practical applications, but due
to the above concerns it is unclear what security guarantees they can provide. Therefore, it is important to
figure out the functionalities they can realize in practice. In this work, we provide a systematic treatment
for understanding the security of the typical PSU protocols, and provably show what functionalities they
can achieve in the semi-honest setting.

1.1 Our results

Motivated by the above discussions, we revisit the ideal functionality of PSU and develop several versions
of PSU functionalities. Furthermore, we show what functionality the typical PSU protocols can achieve.
Our findings are summarized in Fig. 1 and the details are described as below:
Defining ideal functionalities for PSU: Starting with the PSU functionality in [KRTW19], denoted asF ∗PSU,
we develop different versions of PSU functionalities. Note that, in F ∗PSU, the interactions between the
simulator (ideal adversary) and the functionality are not explicitly specified. In order to address the subtle
issues in existing PSU protocols [KRTW19, GMR+21, JSZ+22], we explicitly specify these interactions in the
description of PSU functionalities.

The standard PSU functionalityFPSU (as in Fig. 7): Initially, both players provide inputs to the function-
ality. After receiving the input from each player, the simulator will be notified; to ensure the privacy,

4Notice that, it is not always feasible to execute all subroutine instances at the same time in practice, especially when the number
of instances is large.

2

the input is not allowed to reveal to the simulator. When both input sets are ready, the simulator can
enable the joint computation by issuing a “command” to the functionality, and the functionality at this
point will return the union of the input sets to the receiver and return a notification to the sender. Note
that, without explicitly presenting the interactions with the simulator, the PSU functionality is denoted
as F ∗PSU in [KRTW19].
Next we define two relaxed PSU functionalities to capture the OT-based protocols in [GMR+21, JSZ+22]
and the protocol in [KRTW19] that additionally leverages the “split-execute-assemble” paradigm, re-
spectively.

1. PSU functionality Fb
rPSU (as in Fig. 8) with set membership leakage: Different from the above stan-

dard version, the functionality does not return the union to the receiver directly. The simulator
first issues a “command” to the functionality to enable a set membership test, which means that
the functionality leaks a bit bi ∈ {0, 1} for each xi ∈ X to the receiver; bi = 1 if xi ∈ Y, otherwise,
bi = 0. After that, the functionality will receive the simulator’s “command” for computing union
and return the union to the receiver and return a notification to the sender.

2. PSU functionality Fb,s
rPSU (as in Fig. 9) with set membership and subsets leakage : The functionality

leaks more information than the above functionality Fb
rPSU. More specifically, the functionality

first splits the pair of input sets into multiple much smaller pairs of subsets. The simulator will
be notified when a subset of each input set is prepared; again, to ensure the privacy, the subset
input is not allowed to be revealed to the simulator. When a pair of input subsets are ready, the
simulator can enable the set membership test for the pair of input subsets by issuing a “command” to the
functionality, and the functionality at this point will record the bits for the pair of input subsets within
the functionality. Then, the simulator will issue another “command” to enable the joint computation
for the pair of input subsets, and the functionality at this point will record the union of the pair of input
subsets within the functionality. When all pairs of input subsets have been jointly computed, the
functionality will return the union of the input sets to the receiver and return a notification to the
sender.

Understanding the security of existing typical constructions: We classify the existing typical PSU proto-
cols into three design frameworks. Then, for each framework, we prove what functionality it can realize.

Design framework ΠKRTW
Unified (as in Fig. 10) using OT and “split-execute-assemble” paradigm: Currently,

only the PSU protocol in [KRTW19] follows this design framework. We prove that it can UC-realize
the relaxed PSU functionality Fb,s

rPSU in the semi-honest setting, as stated in Theorem 5.1. Moreover,
we show that no matter whether the sub-protocols are executed simultaneously or sequentially, the
PSU protocol in [KRTW19] cannot UC-realize the other relaxed PSU functionality Fb

rPSU that leaks less
information in the semi-honest setting, as stated in Theorem 5.2 and Theorem 5.3.
Design framework ΠOT

Unified (as in Fig. 11) only using OT: We unify the PSU protocols in [GMR+21,
JSZ+22] and the basic PSU protocol in [KRTW19] into this design framework. Then we prove that the
protocols following the design framework can UC-realize the relaxed PSU functionality Fb

rPSU but not
the standard PSU functionality FPSU in the semi-honest setting, as stated in Theorem 5.4 and Theo-
rem 5.5, respectively.
Design framework ΠKRTW

Unified (as in Fig. 12) using AHE: We observe that the PSU protocols in [Fri07,
DC17] can be unified to this design framework. We prove that the protocols following this framework
can UC-realize the standard PSU functionalityFPSU in the semi-honest setting as stated in Theorem 5.6.

2 Preliminaries

In this section, we briefly recall the Universal Composability (UC) framework and the main building blocks
used throughout this work, including Oblivious Transfer and the generalized Reversed Private Member-
ship Test. Also, we recall Simple hashing and Cuckoo hashing in Appendix A, which are helpful for con-
structing scalable PSU protocols.

3

2.1 Universal Composability Framework

In secure multi-party computation (MPC), a set of parties jointly compute a function of their private inputs
while preserving the privacy of each party’s input. The security of an MPC protocol can be established by
the ideal/real simulation paradigm. More concretely, the security requirements of a cryptographic task is
defined through a trusted party who locally carries out the computation. In the ideal process, all parties send
their private inputs to the trusted party, then obtain the prescribed outputs. A protocol in the real world is
said to securely realize a task if it can be executed to “emulate” the ideal process for the task. That is, for any
adversary attacking a real protocol execution, there is an adversary attacking the ideal process such that the
real execution and the ideal process are indistinguishable.

In modern network settings, different protocol instances may be executed at the same time. Therefore, it
is not enough to analyze the security of a protocol in the stand-alone setting, where a single set of parties run
a single protocol instance in isolation. A protocol should remain secure when running with other protocol
instances. The Universal Composability (UC) framework, introduced by Canetti in [Can00, Can01], is to
analyze the security of cryptographic protocols under arbitrary composition. Next, we briefly describe the
framework. Please refer to [Can00] for more details.
The real-world model. In the real world, there is a system of interactive Turing Machines (ITMs), including
the execution of a protocol Π, an adversary A, and an environment E . More specifically, the protocol Π
involves a set of parties (in this work, we focus on two-party PSU protocol, and thus there are two parties),
the adversaryA represents all the adversarial activities against the protocol execution, and the environment
E represents all other protocol instances and adversaries. Once receiving inputs from E , the parties execute
the protocol Π and then hand outputs to E . Adversary A can corrupt any party to get its internal state and
control its behaviors. Moreover, the environment and the adversary are allowed to interact at any point
throughout the course of the protocol execution, which represents the “flow of information” between the
protocol instance under consideration and other protocol instances that are running concurrently. Finally,
the environment will output one bit and halt. Let EXECΠ,A,E denote the ensemble of random variables
describing the environment E ’s output in the real world.
The ideal-world model. An ideal functionality is used to capture the desired functionality of the given task.
In the ideal world, there is an environment E , an ideal functionality F , an ideal adversary (i.e., simulator)
Sim and a set of dummy parties. Once receiving an input from E , the dummy party directly forwards it to
F , and when F returns the output, the dummy party immediately outputs this value to E . The adversary
Sim can interact with F , such that Sim can get the “allowed leakage of information” from F and have
“allowed influence” on the computation of F . In addition, Sim can send corrupt messages to F to corrupt
parties. Once a party is corrupted, Sim will get its input and output. Let EXECF ,Sim,E denote the ensemble
of random variables describing the environment E ’s output in the ideal world.
Securely realizing an ideal functionality. A protocol Π can be determined whether to be UC-secure for a
task F by the following definition:

Definition 2.1. A protocol Π UC-realizes a taskF if for any real-world adversaryA that interacts with Π there exists
an ideal-world simulator Sim that interacts with F , such that for any environment E it holds that EXECF ,Sim,E

c≈
EXECΠ,A,E .

The hybrid model. The hybrid model with a functionality F , called F -hybrid model, is similar to the real-
world model, except that the parties may invoke an unbounded number of F subroutines. There are real
messages communicated between parties and ideal messages used for oracle access to functionality F .

Semi-honest Adversaries. In this work, we focus on semi-honest adversaries. A semi-honest adversary
runs the protocol honestly, but may try to learn as much as possible from the messages received from
other parties. Semi-honest adversaries are also considered passive, since they cannot take any actions other
than attempting to learn private information by observing a view of a protocol execution. Semi-honest
adversaries are also commonly called honest-but-curious.

4

Static Corruptions. The adversary corrupts parties before the protocol execution begins, and the set of
corrupted parties is fixed throughout the course of the protocol execution.

Parameters:
• The functionality interacts with two parties, the sender P0 and the receiver P1, and the simulator Sim;
• Let n be the set size for the receiver P1.

Functionality:
0. Initialize an ideal state stateU := ∅ for party U where U ∈ {P0, P1}; if U is corrupted, the simulator Sim is allowed to

access U’s state stateU;
1. Upon receiving input set X = {x1, · · · , xn1} from the sender P0, update state statep0 := 〈X〉, and send 〈REQUEST, P0〉 to

the simulator Sim;
2. Upon receiving input set Y = {y1, · · · , yn} from the receiver P1, update state stateP1 := 〈Y〉, and send 〈REQUEST, P1〉 to

the simulator Sim;
3. Upon receiving 〈RESPONSE, OK〉 from Sim, for each i ∈ [n1], if xi ∈ Y, set bi = 1, otherwise, set bi := 0; then add
〈FINISHED〉 to the sender’s state stateP0 and 〈{b1, · · · , bn1}〉 to the receiver’s state stateP1 ;

4. Output {b1, · · · , bn1} to P1, and FINISHED to P0.

Functionality Fg-RPMT

Figure 2: The generalized Reversed Private Set Membership Test functionality. Note that Fg-RPMT is equiv-
alent with FRPMT when n1 = 1.

2.2 Building Blocks

Next, we recollect the main building blocks, including Oblivious Transfer and (generalized) Reversed Pri-
vate Membership Test.

2.2.1 Oblivious Transfer

A 1-out-of-2 oblivious transfer (OT) is a two-party protocol, where the sender P0 takes as input two strings
{x0, x1}, and the receiver P1 chooses a random bit b ∈ {0, 1}. After the protocol, P1 obtains nothing other
than xb while P0 learns nothing about b. The first OT protocol was proposed by Rabin in [Rab05]. And
due to the lower bound in [IR89], all the OT protocols require expensive public-key operations. To improve
the performance, Ishai et al. [IKNP03] introduced the concept of OT extension that enables us to carry out
many OTs based on a small number of basic OTs. The functionality FOT of OT is shown in Fig. 3.

• The functionality interacts with two parties, the sender P0 and the receiver P1, and the simulator Sim;
• Let ` be the bit-length of each item in the sender’s input.

Functionality:
0. Initialize an ideal state stateU := ∅ for party U where U ∈ {P0, P1}; if U is corrupted, the simulator Sim is

allowed to access U’s state stateU;
1. Upon receiving input (x0, x1) from the sender P0 where xi ∈ {0, 1}`, update state statep0 := 〈(x0, x1)〉, and

send 〈REQUEST, P0〉 to the simulator Sim;
2. Upon receiving input b from the receiver P1 where b ∈ {0, 1}, update state stateP1 := 〈b〉, and send
〈REQUEST, P1〉 to the simulator Sim;

3. Upon receiving 〈RESPONSE, OK〉 from Sim, add 〈FINISHED〉 to the sender’s state stateP0 and 〈xb〉 to the
receiver’s state stateP1 ;

4. Output xb to P1, and FINISHED to P0.

Functionality FOT

Figure 3: 1-out-of-2 Oblivious Transfer functionality.

5

2.2.2 Generalized Reversed Private Membership Test

Reversed Private Membership Test (RPMT) was first proposed and formalized in [KRTW19]. More con-
cretely, there are two parties, the sender P0 holding an item x and the receiver P1 holding a set Y. Then, the
receiver P1 can learn a bit b without obtaining any information else about item x; if x ∈ Y, b = 1, otherwise,
b = 0. Meanwhile, the sender P0 knows nothing about P1’s set Y. We denote the RPMT functionality as
FRPMT.

Based on the above RPMT, a generalized RPMT was proposed in [JSZ+22] where the sender P0 inputs
a set X, rather than an item x. Likewise, for each item xi ∈ X, the receiver P1 can learn a bit bi without
obtaining any information else about the item xi; if xi ∈ Y, bi = 1, otherwise, bi = 0. Meanwhile, the sender
P0 knows nothing about P1’s set Y. The functionality Fg-RPMT is shown in Fig. 2.

We remark that given a protocol ΠRPMT that UC-realizes functionality the FRPMT, executing ΠRPMT
repeatedly can naturally achieve a generalized RPMT protocol Πg-RPMT that UC-realizes functionality
Fg-RPMT as in [KRTW19]. Note that in each ΠRPMT execution, the set Y needs to be processed at least once.
Therefore, in this way, the process on the set Y needs to be repeatedly performed, which is unacceptable in
practice when both sets X and Y are large. Jia et al. [JSZ+22] and Garimella et al. [GMR+21] designed more
efficient generalized RPMT protocols where the set Y only needs to be processed once; please find Fig. 18
and Fig. 19 in Appendix C.4 for more details.

3 KRTW-PSU: Review and Reflection

In this section, we recall the protocol in [KRTW19] where multiple PSU sub-protocol instances will be
executed to support large datasets, as well as the PSU functionality defined in [KRTW19]. Moreover, we
informally analyze the subtle issues in the protocol of [KRTW19], which motivate us to revisit the ideal
functionality of PSU.

3.1 Overview of the protocol in [KRTW19]

In a PSU protocol, there are two players, a sender and a receiver; initially, the sender holds a set X, and
the receiver holds a set Y; after a few rounds of communications/computations, eventually the receiver
obtains the set X ∪ Y as her output. Note that, except for the union X ∪ Y, the receiver is not allowed to
learn anything else, especially any additional information about the items in X ∩Y, while the sender is not
allowed to learn any output.

Of course, we can construct a PSU protocol based on any generic compiler for secure two-party com-
putation (2PC), since PSU is a special case of 2PC. To achieve high performance, the protocol in [KRTW19],
denoted as ΠKRTW, relies on a “split-execute-assemble” paradigm5, as illustrated in Fig. 4:
• “split:” First, the pair of input sets X and Y are carefully split into multiple much smaller pairs of

subsets, i.e., {(X1, Y1), (X2, Y2), · · · , (Xβ, Yβ)}, where β ∈ N. Then, each pair of subsets (Xi, Yi), will
be “padded” into (X̃i, Ỹi) by the sender and the receiver, respectively. Note that, here the padded
subsets are all with the same predefined size m ∈ N (i.e., |X̃i| = |Ỹi| = m). The padding strategies
from both players are slightly different: from the sender, each subset Xi will be augmented with
multiple special items e up to the (predefined) size m; then the augmented subset will be randomly
permuted, resulting in the subset X̃i. From the receiver, each subset Yi will be augmented with a
single special item e along with multiple distinct dummy items d1, d2, . . ., up to the (predefined) size
m, resulting in the subset Ỹi.

• “execute:” Second, the two parties execute β number of PSU sub-protocol instances: in the i-th in-
stance, the sender and the receiver provide subset X̃i and subset Ỹi as their inputs respectively, and
then the receiver obtains set Z̃i = X̃i ∪ Ỹi, as output. After discarding the special item e and dummy
items from set Z̃i, the receiver can obtain Zi = Xi ∪Yi.

5In [KRTW19], the paradigm is named as “bucketing” technique.

6

Sender () Receiver ()
Padding

Padding

Padding

 sub-protocol

 sub-protocol

 sub-protocol

Padding

Padding

Padding

Figure 4: The overview of the protocol in [KRTW19]. The sender’s set X and the receiver’s set Y are split into
multiple disjoint subsets {X1, X2, · · · , Xβ} and {Y1, Y2, · · · , Yβ}, respectively. Padding set Xi with several
special items e can obtain set X̃i. Padding set Yi with a special item e and some different dummy items can
obtain set Ỹi. The two parties execute a PSU sub-protocol instance on the pair (X̃i, Ỹi) and the receiver can
obtain set Z̃i = X̃i ∪ Ỹi. After discarding the special item e and dummy items from Z̃i, the receiver can
obtain Zi = Xi ∪Yi for each i ∈ [β]. Finally, the receiver obtains the output Z = Z1 ∪ Z2 ∪ · · · ∪ Zβ = X ∪Y.
As discussed in Section 3.3, once finding Zk = Yk, the receiver can learn that Yk has items belonging to
X ∩Y with overwhelming probability when the probability that Xk 6= ∅ is overwhelming.

• “assemble:” Finally, the receiver assembles the output (i.e., set Zi) of each PSU sub-protocol, and
obtains the output Z := Z1 ∪ Z2 ∪ · · · ∪ Zβ.

For :

Sender () Receiver ()

The -th sub-protocol instance

Randomly permute

Figure 5: The design framework of PSU sub-protocol in [KRTW19].

Each PSU sub-protocol follows the design framework shown in Fig. 5. More specifically, the two parties
first perform the “genaralized Reversed Private Membership Test” sub-protocol, denoted as Πg-RPMT, such
that for each item xj ∈ X̃i the receiver will learn a bit bj; if xj ∈ Ỹi, bj = 1, otherwise, bj = 0. Note that
the sender learns nothing about set Ỹi and the receiver also obtains no more information about each item
in X̃i than whether it belongs to Ỹi. Obviously, if xj /∈ Ỹi (i.e., bj = 0), the receiver should obtain the item
xj, otherwise learns nothing about the item xj. To this end, the two parties perform the OT sub-protocol,
denoted as ΠOT, for each item xj ∈ X̃i.

3.2 The PSU ideal functionality in [KRTW19]

In Fig. 6, we recall the ideal PSU functionality defined by Kolesnikov et al. in [KRTW19], and denote it as
F ∗PSU

6. Intuitively, in PSU, the two parties, the sender with input set X and the receiver with input set Y
can jointly compute the union set X ∪ Y as the output. Without loss of generality, in [KRTW19], only the
receiver obtains the output X ∪Y, while the sender does not.

6Note that in the PSU functionality defined in [KRTW19], the sender is not notified when the execution is finished.

7

We remark that, in the standard ideal functionality for PSU, a notification should be returned to the
sender once the joint computation has been carried out: the justification is that, in a natural real-world PSU
protocol execution, the sender should be aware if the protocol execution has been completed or not. Thus in
Fig. 6, we explicitly present the notification, and the functionality returns an output FINISHED to the sender
once the joint computation is completed.

Parameters:
• The functionality interacts with two parties, the sender S and the receiver R, and the simulator Sim;
• Set size for the sender S is n1; set size for the receiver R is n2.

Functionality:
1. Wait for input X = {x1, · · · , xn1} from S, abort if |X| 6= n1;
2. Wait for input Y = {y1, · · · , yn2} from R, abort if |Y| 6= n2;
3. Output Z = X ∪Y to R, and FINISHED to S.

Functionality F ∗PSU

Figure 6: The PSU ideal functionality defined in [KRTW19]. Note that, in this formulation, we explicitly
describe that the sender obtains a notification FINISHED as output when the PSU evaluation is complete;
please see the text in blue.

We further remark that, in the formulation of the PSU functionality in [KRTW19], the interactions be-
tween the functionality and the simulator (i.e., ideal world adversary), are not explicitly described. This
presentation is consistent with that in [CLOS02], in which the simulator is in charge of the message de-
livery in the ideal world execution. In this work, to address the subtle issues in existing PSU protocols,
we follow Canetti’s original formulation [Can00, Can01]; thus, we must explicitly present the interactions
between the functionality and the simulator. For example, when the PSU functionality receives an input,
the simulator must be notified, and an explicit notification message from the functionality to the simulator
will be described; when a player is corrupted, the simulator must be allowed to “see” the corresponding
“ideal state”. Jumping ahead, in Section 4.1, we provide an equivalent presentation, FPSU, of the standard
PSU functionality by following the original Canetti’s formulation.

3.3 Reflection

The “split-execute-assemble” paradigm (also called bucketing technique in [KRTW19]), that has been widely
used to support large input sets in PSI protocols, is definitely a promising and interesting idea to design
scalable PSU protocols. As pointed out by [KRTW19], however, this paradigm will enable the receiver to
learn if a subset Yi includes items that belongs to the intersection X ∩ Y. More concretely, suppose that the two
parties take subsets Xi and Yi as the inputs of Πg-RPMT, then the receiver will learn that Yi includes some
item belonging to X ∩ Y after obtaining a bit bj = 1. Notice that, this information is not allowed to be
learned by the receiver in PSU.

To address this concern, a careful padding strategy was introduced in [KRTW19]. More specifically,
after the input sets X and Y are split into multiple smaller pairs of subsets {(X1, Y1), · · · , (Xβ, Yβ)}, each
subset pair (Xi, Yi) is padded into (X̃i, Ỹi); the subset X̃i is padded by the sender with special items e, and
Ỹi is padded by the receiver with a special item e and distinct dummy items. In this way, when the PSU
sub-protocol is executed on the k-th subset pair (X̃k, Ỹk), even if the receiver learns that an item x∗ ∈ X̃k
belongs to Ỹk, she cannot determine whether x∗ is a real item (i.e., x∗ ∈ Yk) or a special item (i.e., x∗ = e).
Therefore, the receiver cannot learn whether or not Yk has items belonging to X ∩Y.

At first sight, the above strategy adopted by [KRTW19] works. However, Jia et al. [JSZ+22] pointed out
the strategy is in fact insufficient to avoid the “leakage” incurred by the “split-execute-assemble” paradigm.
In more details, Jia et al. [JSZ+22] observed that when finding Zk = Yk from the PSU sub-protocol instance
on the k-th pair of subsets (X̃k, Ỹk), the receiver can learn that Yk has the items belonging to X ∩ Y with an
overwhelming probability, as illustrated in Fig. 4. Roughly speaking, there are two cases in which the event
Zk = Yk happens: the first case Case1 is that Xk 6= ∅ ∧ Xk ⊆ Yk, and the second case Case2 is that Xk = ∅.

8

As analyzed by Jia et al. [JSZ+22], according to the parameters used in [KRTW19], the probability of Case1
happening is overwhelming; this means that the receiver can learn that Yk has items belonging to X ∩ Y
(with an overwhelming probability) when observing Zk = Yk. For completeness, we recall the detailed
analysis in Appendix B.

Although Jia et al. [JSZ+22] pointed out the above “leakage”, they did not make it clear how this
“leakage” is simulated in the ideal world or what is the gap between the real world and the ideal world.
Since the “leakage” is not explicitly captured in the ideal functionality F ∗PSU in Fig. 6 defined by Kolesnikov
et al. [KRTW19], it is reasonable to guess that the “leakage” could be deduced from the output Z = X ∪ Y.
It is indeed this case: to simulate the adversary A’s view, as shown in the proof of ΠKRTW in [KRTW19],
the simulator for the corrupted receiver must first obtain the entire output Z = X ∪ Y, and then deduce the
“leakage” from the output Z.

However, we observe that the “leakage” in the protocol ΠKRTW is subtly different from the leakage
implied in the functionality F ∗PSU: in F ∗PSU the receiver can only deduce the leakage after obtaining all the
items in X∪Y, while in ΠKRTW the receiver can learn this leakage during the execution process of the protocol.
To be more precise, in the real world (as exemplified in Fig. 4) , where we assume that the PSU sub-protocol
instances are executed sequentially, once the execution of PSU sub-protocol instance on the k-th subset pair
(X̃k, Ỹk) is completed and Zk = Yk happens, the receiver can learn with an overwhelming probability that Yk
has items belonging to X ∩Y according to above analysis. Note that at this point, the execution of protocol
ΠKRTW has not been finished. In the ideal world, however, to simulate the executions of the first k PSU
sub-protocol instances, the simulator for the corrupted receiver has to obtain the output Z = X ∪ Y first,
which means that the execution of the functionality F ∗PSU must have been finished. Therefore, the two
worlds can actually be distinguished. The formal analysis is given in Section 5.1.

From the above, we can see that ΠKRTW cannot UC-realize F ∗PSU, under the assumption that the PSU
sub-protocol instances are executed sequentially. Then a natural question is that if the PSU sub-protocol
instances are executed simultaneously, can ΠKRTW UC-realize F ∗PSU?

At a first glance, it seems that the answer is positive, as the receiver in the real world may obtain
Z1, · · · , Zβ at the same time, say t, and then the execution is finished. In this case, the simulator can simu-
late the leakage properly as it needs not to obtain the entire output Z before time t. However, there is still a
subtle issue: before obtaining Z1, · · · , Zβ, the receiver can learn the output, denoted as B̃i, of each Πg-RPMT

sub-protocol instance on (X̃i, Ỹi), where the bits in B̃i indicate if the items in X̃i belong to Ỹi. To properly
simulate B̃1, · · · , B̃β, the simulator still needs to obtain the output Z before time t. Therefore, the real world
can still be distinguished from the ideal world, and thus the answer is negative. We give the formal analysis
in Section 5.1.4. Recall that, whenever observing that B̃k only includes 1, the receiver learns that Zk = Yk
without needing to execute the ΠOT sub-protocol instances. In other words, even if the PSU sub-protocol
instances are executed simultaneously, the “leakage” in ΠKRTW pointed out by [JSZ+22] still exists during
the execution.

It can be seen from the above discussion that due to the ΠOT sub-protocol and the “split-execute-
assemble” paradigm utilized in the design, the receiver in ΠKRTW can learn B̃1, · · · , B̃β and Z1, · · · , Zβ

before obtaining the entire output Z, thus resulting in the extra “leakage” not allowed by the standard
functionality F ∗PSU. To understand what functionality the protocol ΠKRTW can achieve, we define a re-
laxed PSU functionality Fb,s

rPSU in Section 4.2.2. Before showing Fb,s
rPSU, we also present the functionality

Fb
rPSU to capture the security achieved by the subsequent works [JSZ+22, GMR+21] that avoids the “split-

execute-assemble” paradigm, but still rely on the ΠOT sub-protocol.

4 Ideal Functionalities for PSU

As discussed in Section 3.2, the PSU functionality F ∗PSU defined in [KRTW19] (as shown in Fig. 6) cannot
reflect the leakage during their protocol execution, since the messages between the dummy parties and
the ideal functionality are delivered straightforwardly by the simulator in F ∗PSU. In this section, we revisit
the ideal functionality for PSU by following Canetti’s original formulation [Can00, Can01]. Specifically, we

9

explicitly describe the instructions in the functionality, like the interactions between the ideal functionality
and the simulator, to address the issues in existing PSU protocols [KRTW19, GMR+21, JSZ+22].

4.1 FPSU: A Standard PSU Functionality

We provide an equivalent formulation of the standard functionality F ∗PSU, and denote it as FPSU, in Fig. 7.
In particular, we follow Canetti’s original formulation [Can00, Can01] and define FPSU by explicitly de-
scribing the interactions between the functionality and the simulator.

Parameters:
• The functionality interacts with two parties, the sender S and the receiver R, and the simulator Sim;
• Set size for the sender S is n1, and the set size for the receiver R is n2.

Functionality:
0. Initialize an ideal state stateU := ∅ for party U where U ∈ {S, R}; if U is corrupted, the simulator Sim is allowed to

access stateU;
1. Upon receiving input X = {x1, · · · , xn1} from the sender S, abort if |X| 6= n1; otherwise, update state stateS := 〈X〉,

and send 〈REQUEST, S〉 to the simulator Sim;
2. Upon receiving input Y = {y1, · · · , yn2} from the receiver R, abort if |Y| 6= n2; otherwise, update state stateR := 〈Y〉,

and send 〈REQUEST, R〉 to the simulator Sim;
3. Upon receiving 〈RESPONSE, OK〉 from Sim, compute Z := X ∪Y, and add 〈FINISHED〉 to the sender’s state stateS and
〈Z〉 to the receiver’s state stateR;

4. Output Z to R, and FINISHED to S.

Functionality FPSU

Figure 7: An equivalent formulation of the standard PSU functionality

In our formulation, whenever receiving an input, the PSU functionality notifies the simulator by sending
to it an explicit notification message. Beyond, an “ideal state” stateU for each party U is explicitly introduced
in our formulation for recording the party’s initial input and intermediate state as well as final output;
when one party is corrupted, the simulator is allowed to obtain the corresponding “ideal state”. As in
Canetti’s original formulation, the simulator here is enabled to decide when the joint computation in the
functionality starts, by issuing an “OK” message to the functionality. Once the joint computation is finished,
the receiver’s ideal state is updated from the initial state 〈Y〉 to 〈Y, Z = X ∪Y〉, and the sender’s ideal state
is updated from 〈X〉 to 〈X, FINISHED〉. Finally, the functionality sends X ∪ Y and FINISHED to the sender
and the receiver, respectively.

We remark that, the PSU functionality FPSU is essentially equivalent to the functionality F ∗PSU given by
[KRTW19] (see Fig. 6). By introducing the ideal states and the interactions (between the functionality and
the simulator) into FPSU, we can capture security requirements in a more fine-grained manner; it benefits
us a lot to refine the functionality. To address the issues mentioned before, we further present in Section 4.2
two relaxed variants of FPSU by taking into account of the practical leakage in the existing PSU protocols
[KRTW19, JSZ+22, GMR+21].

4.2 Fb
rPSU and Fb,s

rPSU: New Variants of PSU Functionalities

Next we define two relaxed versions, Fb
rPSU and Fb,s

rPSU, of the standard PSU functionality FPSU. In partic-
ular, Fb

rPSU can be used to capture the security of the OT-based protocols and Fb,s
rPSU is used to capture the

security of the protocols additionally using the “split-execute-assemble” paradigm.

4.2.1 Fb
rPSU: PSU Functionality with Set Membership Leakage.

To reflect the inherent leakage during all OT-based PSU protocols, we present a relaxed variant, Fb
rPSU, of

the standard functionality FPSU, as shown in Fig. 8. Compared to FPSU, the functionality Fb
rPSU further

10

leaks (to the receiver) the set membership bi ∈ {0, 1} for each xi ∈ X, prior to finishing the execution. Note
that bi = 1 if xi ∈ Y, otherwise bi = 0.

Parameters:
• The functionality interacts with two parties, the sender S and the receiver R, and the simulator Sim;
• Set size for sender S is n1; set size for receiver R is n2.

Functionality:
0. Initialize an ideal state stateU := ∅ for party U where U ∈ {S, R}; if U is corrupted, the simulator Sim is allowed to

access to U’s state stateU;
1. Upon receiving input X = {x1, · · · , xn1} from the sender S, abort if |X| 6= n1; otherwise, update state stateS := 〈X〉,

and send 〈REQUEST, S〉 to the simulator Sim;
2. Upon receiving input Y = {y1, · · · , yn2} from the receiver R, abort if |Y| 6= n2; otherwise, update state stateR := 〈Y〉,

and send 〈REQUEST, R〉 to the simulator Sim;
3. Upon receiving 〈RESPONSE, OK〉 from Sim, send 〈REQUEST IF〉 to the simulator Sim;
4. Upon receiving 〈RESPONSE IF, OK〉 from Sim, for each i ∈ [n1], set bi := 1 if X[i] ∈ Y, otherwise set bi := 0, then record
{b1, · · · , bn1} to the receiver’s state stateR and send 〈REQUEST ITEM〉 to Sim;

5. Upon receiving 〈RESPONSE ITEM, OK〉 from Sim, compute Z := X ∪Y, and record 〈FINISHED〉 and 〈Z〉 to the sender’s
sate stateS and the receiver’s state stateR, respectively;

6. Output Z to R, and FINISHED to S.

Functionality Fb
rPSU

Figure 8: A relaxed PSU ideal functionality leaking set membership in advance. Compared to the standard
PSU functionality FPSU shown in Fig. 7, Fb

rPSU additionally adds {b1, · · · , bn1} into the receiver’s state
stateR as shown in steps 3 - 4.

The functionality Fb
rPSU is similar to FPSU, except that it additionally leaks whether each item in X

belongs to Y. In more details, after receiving the input sets from the sender S and the receiver R, the
functionality Fb

rPSU sets bi = 1 if xi belongs to Y for each xi ∈ X, otherwise sets bi = 0. Then instead
of directly sending Z = X ∪ Y to the receiver as in FPSU, the functionality Fb

rPSU asks the simulator if
the receiver is allowed to obtain {b1, · · · , b|X|} through the message 〈REQUEST IF〉. After receiving the
response 〈RESPONSE IF, OK〉 from the simulator, Fb

rPSU records {b1, · · · , b|X|} to the receiver’s ideal state,
and asks the simulator if the receiver is allowed to get Z = X ∪Y via 〈REQUEST ITEM〉. When receiving the
response 〈RESPONSE ITEM, OK〉, the functionality Fb

rPSU records Z and FINISHED to the receiver’s and the
sender’s ideal state, and returns Z and FINISHED to the receiver R and the sender S, respectively.

It is clear that the relaxed functionality Fb
rPSU properly captures the extra leakage due to OT-based

designs. However, it still cannot reflect the issues incurred by the “split-execute-assemble” paradigm. To
capture the security of the protocols using both OT and the “split-execute-assemble” paradigm, we give a
more relaxed PSU functionality in the following.

4.2.2 Fb,s
rPSU: PSU Functionality with Set Membership and Subsets Leakage.

In this part, we present a second variant, Fb,s
rPSU, of the standard PSU functionality, as shown in Fig. 9.

Compared to the first relaxed PSU functionality Fb
rPSU, the functionality Fb,s

rPSU splits the pair of input sets
X and Y into multiple much smaller pairs of subsets, i.e., {(X1, Y1), (X2, Y2), · · · , (Xβ, Yβ)}. For each pair
(Xi, Yi), the functionality Fb,s

rPSU leaks Bi = {bi} and Zi = Xi ∪Yi to the receiver, where bi indicates whether
or not each item xi ∈ Xi belongs to Yi.

More precisely, after receiving the input sets from the sender S and the receiver R, the functionality
Fb,s

rPSU first updates the sender’s ideal state and the receiver’s state to 〈X〉 and 〈Y〉. Unlike the functionality
Fb

rPSU, in which X and Y are processed as a whole, the functionality Fb,s
rPSU splits them into disjoint sub-

sets {X1, X2, · · · , Xβ} and {Y1, Y2, · · · , Yβ} and then processes the subset pairs {(Xi, Yi)}i∈[β] separately.

In particular, for each i ∈ [β], the functionality Fb,s
rPSU asks the simulator if the receiver is allowed to

learn Bi through the message 〈REQUEST IF, i〉. After receiving the response “OK” from the simulator, the

11

Parameters:
• The functionality interacts with two parties, the sender S and the receiver R, and the simulator Sim;
• Set size for the sender S is n1 and the set size for the receiver R is n2;
• The functionality is parameterized with a function bucket which divides a set X into multiple disjoint subsets
{X1, X2, · · · , Xβ}; we write it as {X1, X2, · · · , Xβ} ← bucket(X).

Functionality:
0. Initialize an ideal state stateU := ∅ for party U where U ∈ {S, R}; if U is corrupted, the simulator Sim is allowed to

access stateU;
1. Upon receiving input X = {x1, · · · , xn1} from the sender S, abort if |X| 6= n1; otherwise, update state stateS := 〈X〉,

and send 〈REQUEST, S〉 to the simulator Sim;
2. Upon receiving input Y = {y1, · · · , yn2} from the receiver R, abort if |Y| 6= n2; otherwise, update state stateR := 〈Y〉,

and send 〈REQUEST, R〉 to the simulator Sim;
3. Upon receiving 〈RESPONSE, OK〉 from Sim, compute {X1, X2, · · · , Xβ} ← bucket(X) and {Y1, Y2, · · · , Yβ} ← bucket(Y),

then record {X1, X2, · · · , Xβ} and {Y1, Y2, · · · , Yβ} into stateS and stateR, respectively;
4. For each i ∈ [β]:

– Send 〈REQUEST IF, i〉 to the simulator Sim;

– Upon receiving 〈RESPONSE IF, i, OK〉 from Sim, for each j ∈ [|Xi |], set bj := 1 if Xi [j] ∈ Yi , otherwise set bj := 0,
then set Bi = {b1, · · · , b|Xi |} and add 〈i, Bi〉 to the receiver’s state stateR;

– Send 〈REQUEST BIN, i〉 to the simulator Sim;

– Upon receiving 〈RESPONSE BIN, i, OK〉 from Sim, compute Zi := Xi ∪Yi , add 〈i, FINISHED〉 to the sender’s state
stateS and 〈i, Zi〉 to the receiver’s state stateR;

5. Output Z := Z1 ∪ Z2 ∪ · · · ∪ Zβ to R, and FINISHED to S.

Functionality Fb,s
rPSU

Figure 9: A relaxed PSU ideal functionality leaking set membership and subsets in advance. Compared
to the functionality Fb

rPSU in Fig. 8, Fb,s
rPSU splits the pair of input sets X and Y into multiple much smaller

pairs of subsets, i.e., {(X1, Y1), (X2, Y2), · · · , (Xβ, Yβ)}. For each pair (Xi, Yi), the functionality Fb,s
rPSU adds

Bi and Zi = Xi ∪Yi to the receiver’s state stateR as shown in step 4.

functionality Fb,s
rPSU records 〈i, Bi〉 to the receiver’s ideal state, then asks the simulator if the receiver can

obtain Zi = Xi ∪ Yi through 〈REQUEST BIN, i〉. When receiving the response “OK” from the simulator,
Fb,s

rPSU records 〈i, Zi〉 and 〈i, FINISHED〉 to the sender’s ideal state. Finally, the functionality Fb,s
rPSU adds

Z = Z1 ∪ Z2 ∪ · · · ∪ Zβ and FINISHED to the receiver’s ideal state and the sender’s ideal state, and outputs
Z = Z1 ∪ Z2 ∪ · · · ∪ Zβ and FINISHED to the receiver R and the sender S, respectively. Notice that, from the
description of Fb,s

rPSU, we can see that if the receiver observes that each bi ∈ Bk is equal to 1 (i.e., Zk = Yk),
she will learn that there must be some items in Yk belonging to X ∩Y.

We can see that the relaxed PSU functionality Fb,s
rPSU splits the pair of the input sets to multiple smaller

pairs of subsets. For each pair of subsets, Fb,s
rPSU performs the procedure as in the relaxed PSU function-

ality Fb
rPSU. Therefore, compared to Fb

rPSU, the relaxed PSU functionality Fb,s
rPSU additionally captures the

leakage incurred by the “split-execute-assemble” paradigm.

5 Protocols for PSU

In this section, we formally analyze the security of the existing typical PSU protocols, including [KRTW19,
JSZ+22, GMR+21, Fri07, DC17]. In Section 5.1, we prove that the (sequential/simultaneous version of) PSU
protocol using the “split-execute-assemble” paradigm in [KRTW19] can only UC-realize the relaxed PSU
functionality Fb,s

rPSU. Then in Section 5.2, we show that the basic protocol in [KRTW19] (i.e., without using
the “split-execute-assemble” paradigm) and the follow-ups [JSZ+22, GMR+21] designed under the same
framework can UC-realize the relaxed PSU functionality Fb

rPSU, but not the standard PSU functionality
FPSU. At last, we prove that the protocols [Fri07, DC17] based on the additively homomorphic encryption

12

(AHE) can UC-realize the standard PSU functionality FPSU in Section 5.3.

5.1 KRTW-PSU: Can Realize Fb,s
rPSU but Not Fb

rPSU

To the best of our knowledge, the PSU protocol in [KRTW19] is the first and the only one that leverages
the “split-execute-assemble” paradigm. Following this way, a large number of PSU sub-protocol instances
need to be executed, especially for large datasets. According to the parameters set in [KRTW19], when both
input sets X and Y are with size 220, they are split into 0.06 · 220 bins β (i.e., the number of PSU sub-protocol
instances). We assume that, without loss of generality, all the PSU sub-protocols instances are executed
sequentially or simultaneously7. Then we formally analyze the security of the protocol in [KRTW19] in this
section.

5.1.1 ΠKRTW
Unified : KRTW-PSU design framework

We give the design framework ΠKRTW
Unified of the protocol in [KRTW19] in Fig. 10. More specifically, the sender

and the receiver first use simple hashing to split their input sets X and Y into multiple subsets {X1, · · · , Xβ}
and {Y1, · · · , Yβ}, respectively. Then the sender pads each subset Xi with special items e to obtain X̃i, and
the receiver pads Yi with a special item e and dummy items to obtain Ỹi. After that, for each subset pair
(X̃i, Ỹi), the two parties perform a PSU sub-protocol ΠOT

Unified shown in Fig. 11. The formal security analysis
of ΠOT

Unified is postponed to Section 5.2. Since the PSU sub-protocol instances can be executed sequentially or
simultaneously, we will analyze the security of sequential version and simultaneous version, respectively.

5.1.2 The sequential version of KRTW-PSU can realize Fb,s
rPSU

In this section, we prove that the sequential version of the protocol in [KRTW19] can UC-realize the relaxed
PSU functionality Fb,s

rPSU. When the PSU sub-protocol instances are executed sequentially, we can see from
the above that the receiver can obtain the subsets Zi for i < β during the execution. Moreover, for each
execution of the PSU sub-protocol over (X̃i, Ỹi), the receiver can obtain a bit bj for each xj ∈ X̃i; if xj ∈ Ỹi,
bj = 1, otherwise bj = 0. Next we show that the protocol ΠKRTW

Unified can only securely realize the relaxed
PSU functionality Fb,s

rPSU in Fig. 9, which as shown in Section 4.2 is the sole functionality that allows leaking
subsets and bits to the receiver in advance. The security is formally stated in Theorem 5.1.

Theorem 5.1. The sequential version of protocol following the framework ΠKRTW
Unified in Fig. 10 UC-realizes the func-

tionality Fb,s
rPSU (as in Fig. 9), against static, semi-honest adversaries.

Proof. We will show that for any efficient adversary A who can corrupt the sender or the receiver, we can
construct a simulator Sim to simulate the view of adversary A, so that any PPT environment E cannot
distinguish the execution in the ideal world from that in the real world.

Corrupted Sender: Sim first sends the input set X to Fb,s
rPSU. For each bin i, Sim simulates A’s view as fol-

lows: After receiving 〈REQUEST IF, i〉 from Fb,s
rPSU, Sim can simulate A’s view before invoking ΠOT as in

[KRTW19]. Then, Sim sends 〈RESPONSE IF, i, OK〉 to Fb,s
rPSU. Once receiving 〈REQUEST BIN, i〉 from Fb,s

rPSU,
Sim can simulate ΠOT for this bin as in [KRTW19]. After that, Sim sends 〈RESPONSE BIN,
i, OK〉 to Fb,s

rPSU and obtains (i, FINISHED) from the sender’s state stateS. Compared to the simulator for cor-
rupted sender constructed in [KRTW19], Sim additionally receives some request messages and additionally
sends some response messages for each bin. Moreover, due to the request/response messages, the envi-
ronment E will receive the honest receiver’s output X ∪ Y at the same time in the real and ideal worlds.
Therefore, Sim can simulate A’s view such that E cannot distinguish between the two worlds.

7In practice, for large datasets, it is impossible to execute all the PSU sub-protocols at the same time, but it is possible to parallelize
the protocol in multiple threads. For example, Kolesnikov et al. [KRTW19] leveraged 32 threads to parallelize the protocol. However,
in each thread, the PSU sub-protocols are executed sequentially.

13

Parameters:
• Let n1 and n2 denote the size of the sender S’s and the receiver R’s input set, respectively; Let ` be the bit-length of

each item in the sender’s set or the receiver’s set.
• Let β be the number of bins, and m be the maximum bin size;
• Let H(·) be a hash function H : {0, 1}` → [β];
• Let e denote a special item, where e ∈ {0, 1}`, and d1, d2, · · · , dn ∈ {0, 1}` \ (X ∪Y) be the distinct dummy items; n

denotes the maximum set size, i.e., n = max(n1, n2).
Inputs:

• Sender S: set X = {x1, · · · , xn1}, where xi ∈ {0, 1}`;
• Receiver R: set Y = {y1, · · · , yn2}, where yi ∈ {0, 1}`.

Protocol:
1. S and R split their input sets X and Y into β bins using hash function H. Let Xi and Yi denote the set of items in the

sender’s and receiver’s i-th bin, respectively;
2. S pads each Xi with special items e up to the maximum bin size m, then randomly permutes all items in the bin and

gets X̃i ;
3. R pads each Yi with one special item e and different dummy items chosen from {d1, d2, · · · , dn} to the maximum bin

size m, then get the padded set Ỹi ;
4. R initializes set Z := ∅;
5. The sender S and the receiver R execute the PSU sub-protocol instances ΠOT

Unified sequentially / simultaneously (see
Fig. 11 for the sub-protocol description); the i-th sub-protocol instance is based on the input sets X̃i and Ỹi , where
i ∈ [β]. More concretely,

– S acts as sender with input set X̃i ;

– R acts as receiver with input set Ỹi ;

– R obtains output Z̃i , then R discards the special item e and dummy items from Z̃i and obtains Zi = Xi ∪Yi ; S
obtains output FINISHED;

6. R outputs Z := Z1 ∪ Z2 ∪ · · · ∪ Zβ, and S outputs FINISHED.

Protocol ΠKRTW
Unified

Figure 10: The design framework in [KRTW19]. The formal security analysis of ΠOT
Unified is given in Sec-

tion 5.2.

Corrupted Receiver: Likewise, Sim first sends the input set Y to Fb,s
rPSU. For each bin i, Sim simulates A’s

view as follows: after receiving 〈REQUEST IF, i〉 fromFb,s
rPSU, Sim can simulateA’s view before sending sj for

each xj in this bin as in [KRTW19]. Then, Sim sends 〈RESPONSE IF, i, OK〉 to Fb,s
rPSU. After obtaining 〈i, Bi〉,

Sim can simulate sj. Once receiving 〈REQUEST BIN, i〉 from Fb,s
rPSU, for each ΠOT protocol instance, Sim

simulates the steps before sending items. To simulate the last step (i.e., sending items), Sim needs to obtain
subset Zi. Therefore, Sim sends 〈RESPONSE BIN, i, OK〉 to Fb,s

rPSU and obtains (i, Zi) from the receiver’s state
stateR. Then, Sim can simulate sending items for each ΠOT protocol instance. Compared to the simulator
for corrupted receiver constructed in [KRTW19], Sim just additionally receives some request messages and
additionally sends some response messages for each bin. Likewise, due to the request/response messages,
the environment E will receive the honest sender’s output FINISHED at the same time in the real and ideal
worlds. Therefore, Sim can simulate A’s view such that E cannot distinguish between the two worlds.

At this point, we complete the proof that the sequential version of the protocol in [KRTW19] can UC-
realize the relaxed PSU functionality Fb,s

rPSU, which allows leaking subsets and set membership to the re-
ceiver in advance. It is natural to ask if the protocol can UC-realize the functionality Fb

rPSU that leaks less
information (say, only bits) than functionality Fb,s

rPSU. A negative answer is given in the next part.

5.1.3 The sequential version of KRTW-PSU cannot realize Fb
rPSU

In this section, we prove that the sequential version of the protocol in [KRTW19] cannot UC-realize the
relaxed PSU functionality Fb

rPSU. Now, we divide time into non-overlapping slots t1, t2, · · · , tβ and the i-
th PSU sub-protocol instance is executed in time slot ti. At the end of time slot tk where 1 < k < β, the

14

environment can learn the unions in the first k bins, i.e., Z1, Z2, · · · , Zk but does not receive the sender’s
output FINISHED. In the ideal world, the simulator Sim for the corrupted receiver needs to simulate the
unions in the first k bins. To this end, the simulator Sim can have the following two strategies:

One strategy is to send 〈RESPONSE ITEM, OK〉 to the functionality Fb
rPSU to obtain set Z. By using set

Z, the simulator Sim can obliviously simulate the unions Z1, Z2, · · · , Zk. However, the strategy will result
in that the environment receives the sender’s output FINISHED immediately. Note that in the real world,
the environment will not receive output FINISHED from the sender at the end of time slot tk. Then, the
environment can distinguish the two worlds.

The other strategy is not to send 〈RESPONSE ITEM, OK〉 to the functionality Fb
rPSU such that in the ideal

world, the environment cannot obtain output FINISHED from the sender while the simulator cannot ob-
tain set Z. Therefore, the simulator has to guess the unions Z1, Z2, · · · , Zk. Note that the simulator Sim
can obtain the corrupted receiver’s input set Y, and thus learns subsets Y1, Y2, · · · , Yk. The simulator Sim
actually needs to guess Z1 \ Y1, Z2 \ Y2, · · · , Zk \ Yk without knowing the sender’s input set X. If the items
in set X are chosen from a large range, the simulator guess Z1 \ Y1, Z2 \ Y2, · · · , Zk \ Yk correctly with a
very low probability. Whereas, in the real world, the probability that the environment obtains the correct
Z1, Z2, · · · , Zk is 1 except negligible probability. Then, the environment can distinguish the two worlds.

According to the above informal analysis, we can see that for any simulator, we can construct an en-
vironment to distinguish the execution in the two worlds. Therefore, we have Theorem 5.2, and we will
prove it next.

Theorem 5.2. The sequential version of protocol following the framework ΠKRTW
Unified Fig. 10 cannot UC-realize func-

tionality Fb
rPSU (as in Fig. 8), against static, semi-honest adversaries.

Proof. To complete the proof, we now first construct an environment E . Then we will show that for any
simulator Sim, this constructed E can tell the difference between the execution in the real world and that in
the ideal world, with at least non-negligible probability.

Construction of environment E . The environment E chooses sets X and Y as the inputs of the sender and
receiver, respectively. Without loss of generality, let the real world semi-honest adversary A be a dummy
adversary who will follow environment E ’s instructions, and immediately forward each corrupted player’s
state to the environment.

Based on function bucket(), the environment E knows that set X will be split into subsets X1, X2, · · · , Xβ,
and set Y will be split into subsets Y1, Y2, · · · , Yβ. Thus, E knows sets Z1, Z2, · · · , Zβ where Zi = Xi ∪Yi for
each i ∈ [β].

The environment E , instructs the dummy adversary A, to corrupt the receiver at the beginning of the
protocol execution. The environment E chooses an integer k, where 1 < k < β. Finally, if the tuple
(Z1, Z2, · · · , Zk) has been reported by the dummy adversary A and message FINISHED has not been re-
ported by the honest sender S, the environment E outputs 1, otherwise, outputs 0.

The real world execution. In the real world, the PSU sub-protocol instances are executed sequentially. We
divide time into non-overlapping slots t1, t2, · · · , tβ. In time slot ti, the i-th PSU sub-protocol instance is
executed based on the i-th pair of subsets, and thus the receiver obtains the output Zi at the end of the
time slot. Therefore, at the end of time slot tk, the receiver obtains Z1, Z2, · · · , Zk. Note that, the receiver
is corrupted and under the control by the semi-honest real world adversary A, the tuple (Z1, Z2, · · · , Zk)
must be reported to the environment at the end of time slot tk. Note also that, the protocol execution has
not been finished, the honest sender S is not supposed to return the message FINISHED to the environment E
at the end of time slot tk.

The ideal world execution. In the ideal world, since the (dummy) receiver is corrupted, the simulator Sim
is allowed to access to the ideal state stateR = 〈Y〉. After receiving from the functionality the message
〈REQUEST IF〉, to obtain more information, the simulator Sim can send 〈RESPONSE IF, OK〉 to the function-
ality Fb

rPSU. Then, the simulator Sim can obtain {b1, · · · , bn1} from the receiver’s state stateR. However, the
bits {b1, · · · , bn1} are not enough for the simulator Sim to simulate Z1, Z2, · · · , Zk. Therefore, the simulator
Sim must face the following two simulation strategies:

15

1. Do send 〈RESPONSE ITEM, OK〉 to the functionality Fb
rPSU, immediately.

Note that, now the functionality will update the ideal states into stateS := 〈X, FINISHED〉 and stateR :=
〈Y, Z〉, and immediately report FINISHED to the environment E .

2. Do not send 〈RESPONSE ITEM, OK〉 to Fb
rPSU, immediately.

Note that, now the functionality will not update the ideal states into stateS := 〈X, FINISHED〉 and
stateR := 〈Y, Z〉; of course, no output FINISHED will be reported to the environment E immediately.
Note again that, the simulator Sim is aware of the ideal state stateR = 〈Y〉. We must emphasize that,
however, Sim cannot obtain Z. At the same time, Sim must simulate the view of A for the first k
executions of sub-protocol instances. Let (Zideal

1 , Zideal
2 , · · · , Zideal

k) denote the tuple in the view of A,
which will be reported to the environment.

Security analysis. Now, we can see, if the simulator follows the first simulation strategy, the environment
will tell the difference with probability 1, since in the real world, no output FINISHED will be reported while
there is FINISHED in the ideal world.

If the simulator follows the second simulation strategy, the probability that E outputs 1 in the real world
is 1 except negligible probability. However, in the ideal world, assuming that the items in set X are selected
from a large range, the probability that Zideal

i = Zi for all i ∈ [k] is far less than 1. Thus, the probability
that E outputs 1 in the ideal world is far less than 1. Therefore, E can distinguish the two worlds with
non-negligible probability.

Note that, all simulation must follow one of the two strategies. Therefore, for all simulator, our con-
structed environment can tell the difference between the two worlds with at least non-negligible probability.
This completes the proof.

Currently, we complete the proof that the sequential version of the protocol in [KRTW19] cannot UC-
realize the functionality Fb

rPSU. We can see from the proof of Theorem 5.2 that if the simulator can obtain
the set Z, then it can simulate each subset Zi properly. To guarantee that the environment cannot distinguish
between the two worlds through the output FINISHED from the honest sender, the receiver in the real world
should obtain Z1, Z2, · · · , Zβ at the same time, which means that all PSU sub-protocol instances in [KRTW19]
need to be executed simultaneously. At first glance, the simultaneous version of the protocol of [KRTW19]
could UC-realize the relaxed PSU functionality Fb

rPSU. In fact, we show it is not this case in Section 5.1.4.

5.1.4 The simultaneous version of KRTW-PSU cannot realize Fb
rPSU

In this section, we prove that even if all PSU sub-protocol instances are executed simultaneously in [KRTW19],
the simultaneous version of the protocol in [KRTW19] cannot yet UC-realize Fb

rPSU.
In the simultaneous version, although the output FINISHED cannot be leveraged to distinguish between

the two worlds, we can still construct an environment to distinguish the real world from the ideal world for
any simulator. Roughly speaking, the main reason is that the simulator only obtaining {b1, · · · , bn1} from
the functionality Fb

rPSU does not know the associated item with bi, and thus knows nothing about which
bin bi should be in. More specifically, even if the PSU sub-protocol instances are executed simultaneously,
for each instance over (Xi, Yi), the receiver can obtain a bit bj for each item xj ∈ Xi in advance. We denote
the bit set for (Xi, Yi) as Bi. Therefore, in the real world, there is a time t when the receiver has obtained all
the bit sets B̃1, B̃2, · · · , B̃β but has not received any subset Zi, where B̃i is obtained by padding Bi with 1 up
to the maximum bin size. Moreover, the environment is not supposed to receive FINISHED from the sender
since the protocol execution has not been finished. In the ideal world, the simulator for the corrupted
receiver have the following two strategies to simulate the A’s view before time t:

One strategy is to send 〈RESPONSE ITEM, OK〉 to the functionality Fb
rPSU to obtain set Z. By using set

Z, the simulator Sim can obliviously simulate the bit sets B̃1, B̃2, · · · , B̃β. However, the strategy will result
in that the environment receives the sender’s output FINISHED immediately. Note that in the real world,
the environment will not receive output FINISHED from the sender until the execution ends. Then, the
environment can distinguish the two worlds.

16

The other strategy is not to send 〈RESPONSE ITEM, OK〉 to the functionality Fb
rPSU, so that in the ideal

world, the environment cannot obtain output FINISHED from the sender while the simulator cannot obtain
set Z. Therefore, the simulator has to guess the bit sets B̃1, B̃2, · · · , B̃β. Note that the simulator can obtain
{b1, · · · , bn1} by sending 〈RESPONSE IF, OK〉 to Fb

rPSU, where bi ∈ {0, 1}. In other words, the simulator
can learn the size of X \ Y, i.e., the number of 1’s in {b1, · · · , bn1}. However, the simulator cannot know
the size of Xi \ Yi, i.e., the number of 1’s in B̃i. More concretely, for an item xk, which bin xk is put into
depends on the value h(xk) where h is the hash function used in simple hashing. Assuming that bk = 1, the
simulator does not know the associated item xk, and thus cannot know h(xk). This means that the simulator
does not know which B̃i should include bk = 1. Thus, the simulator guess B̃1, B̃2, · · · , B̃β correctly with a
very low probability. Whereas, in the real world, the probability that the environment obtains the correct
B̃1, B̃2, · · · , B̃β is 1 except negligible probability. Then, the environment can distinguish between the two
worlds.

According to the above informal analysis, we can see that for any simulator, we can construct an envi-
ronment to distinguish between the execution in the real world from that in the ideal world. The formal
statement is given in Theorem 5.3.

Theorem 5.3. The simultaneous version of protocol following the framework ΠKRTW
Unified cannot UC-realize the func-

tionality Fb
rPSU (as in Fig. 8), against static, semi-honest adversaries.

Proof. Similar to the proof of Theorem 5.2, we first construct an environment E . Then we will show that
for any simulator Sim, the constructed E can tell the difference between the execution in the real world and
that in the ideal world, with at least non-negligible probability.

Construction of environment E . The environment E chooses sets X and Y as the inputs of the sender and
receiver, respectively. Without loss of generality, let the real world semi-honest adversary A be a dummy
adversary who will follow E ’s instructions, and immediately forward each corrupted player’s state to E .

Based on the function bucket(), E knows that the set X will be split into subsets X1, X2, · · · , Xβ, and
Y will be split into subsets Y1, Y2, · · · , Yβ. Therefore, E knows X1 \ Y1, X2 \ Y2, · · · , Xβ \ Yβ, and thus the
number of 0 in each B̃i.

The environment E instructs the dummy adversary A to corrupt the receiver at the beginning of the
protocol execution, and then chooses a time t. Finally, if the tuple (B̃1, B̃2, · · · , B̃β) has been reported by the
dummy adversary A and the message FINISHED has not been reported by the honest sender S at that time,
the environment E outputs 1, otherwise, outputs 0.

The real world execution. In the real world, the ΠOT sub-protocol instances will not be executed until the
execution of Πg-RPMT sub-protocol instance is finished. Therefore, there is a time t when the receiver obtains
(B̃1, · · · , B̃β) but not the items in subset Zi. Note that, the receiver is corrupted and under the control of
the semi-honest real world adversary A, the tuple (B̃1, · · · , B̃β) must be reported to the environment at the
time t. Note also that, the protocol execution has not been finished, the honest sender S is not supposed to
return the message FINISHED to E at the time t.

The ideal world execution. In the ideal world, since the (dummy) receiver is corrupted, the simulator Sim
is allowed to access to the ideal state stateR = 〈Y〉. After receiving from the functionality the message
〈REQUEST IF〉, to obtain more information, the simulator Sim can send 〈RESPONSE IF, OK〉 to the function-
ality Fb

rPSU. Then, the simulator Sim can obtain {b1, · · · , bn1} from the receiver’s state stateR. However, the
bits {b1, · · · , bn1} are not enough for the simulator Sim to simulate (B̃1, · · · , B̃β). Therefore, the simulator
Sim must face the following two simulation strategies:

1. Do send 〈RESPONSE ITEM, OK〉 to the functionality Fb
rPSU, immediately.

Note that, now the functionality will update the ideal states into stateS := 〈X, FINISHED〉 and stateR :=
〈Y, Z〉, and immediately report FINISHED to the environment E .

2. Do not send 〈RESPONSE ITEM, OK〉 to Fb
rPSU, immediately.

Note that, now the functionality will not update the ideal states into stateS := 〈X, FINISHED〉 and
stateR := 〈Y, Z〉; of course, no output FINISHED will be reported to the environment E immediately.

17

Note again that, the simulator Sim is aware of the ideal state stateR = 〈Y〉. We must emphasize that,
however, Sim cannot obtain Z. At the same time, Sim must simulate the view ofA before the execution
of ΠOT sub-protocol instances. Let (B̃ideal

1 , B̃ideal
2 , · · · , B̃ideal

k) denote the tuple in the view of A, which
will be reported to the environment.

Security analysis. Now, we can see, if the simulator follows the first simulation strategy, the environment
will tell the difference with probability 1, since in the real world, no output FINISHED will be reported while
FINISHED is reported in the ideal world.

If the simulator follows the second simulation strategy, the probability that E outputs 1 in the real world
is 1 except negligible probability. In the ideal world, however, the probability that B̃ideal

i = B̃i for all i ∈ [k]
is far less than 1 as the simulator does not know |Xi \Yi|. Thus, the probability that E outputs 1 in the ideal
world is far less than 1. Therefore, E can distinguish the two worlds with non-negligible probability.

Note that, all simulation must follow one of the two strategies. Therefore, for all simulator, our con-
structed environment can tell the difference between the two worlds with at least non-negligible probability.
This completes the proof.

5.2 OT-based PSU: Can Realize Fb
rPSU but Not FPSU

In the previous section, we show that the protocol in [KRTW19] cannot UC-realize Fb
rPSU, even if all

PSU sub-protocol instances in [KRTW19] are executed simultaneously. As analyzed before, the main rea-
son is that the receiver’s input set Y is split into multiple subsets following the “split-execute-assemble”
paradigm. In [KRTW19], a basic scheme without using the “split-execute-assemble” paradigm has also
been proposed, in which the input set Y is processed as a whole (i.e., the number of bins β = 1). However,
the basic scheme is not efficient enough especially for large datasets8. Subsequently, two practical PSU pro-
tocols [JSZ+22, GMR+21] were put forward without relying on the “split-execute-assemble” paradigm. We
observe that these two protocols [JSZ+22, GMR+21] together with the basic protocol in [KRTW19] follow
the same design framework as shown in Fig. 11. In this section, we prove that all the protocols following
this framework can UC-realize Fb

rPSU, but cannot realize the functionality FPSU.

5.2.1 ΠOT
Unified: OT-based PSU design framework

We unify the three protocols [JSZ+22, GMR+21, KRTW19] into the same framework ΠOT
Unified as shown in

Fig. 11. More specifically, the two parties first perform a “generalized Reversed Private Membership Test”
sub-protocol Πg-RPMT

9 with input sets X and Y, respectively. After Πg-RPMT, the receiver can obtain a bit
bi for each item in X; if X[i] ∈ Y, bi := 1, otherwise bi := 0. At last, for each item in X, the receiver can
obtain X[i] via ΠOT if bi = 0, otherwise obtain ⊥. Note that, in practice, the n1 number of ΠOT instances
can be implemented by OT extension [IKNP03], so that the receiver can obtain all the items in X \ Y at the
same time.

We remark that the only difference between the three protocols is the way of designing the sub-protocol
Πg-RPMT. (Note that, the sub-protocol Πg-RPMT of [KRTW19, JSZ+22, GMR+21] can be found in Ap-
pendix C.4.)

5.2.2 OT-based PSU can realize Fb
rPSU

Next we prove that all the protocols following the framework ΠOT
Unified in Fig. 11 can UC-realize Fb

rPSU.
Recall that in ΠOT

Unified, the receiver does not split her input set Y into multiple subsets; that is, all the

8For each item xi ∈ X, the receiver in the basic scheme needs to perform a n2-degree polynomial interpolation, where n2 is the size
of set Y. The computational cost of n2-degree polynomial interpolation is O(n2 log2 n2), and thus the overall computational cost will
be O(n1n2 log2 n2), which is not acceptable for large n1 and n2 in practice.

9The sub-protocol Πg-RPMT is almost equivalent to the “permuted characteristic” sub-protocol Πpc in [GMR+21] except that Πpc

includes the permutation on input set X. Here, the sender randomly permutes the set X before invoking Πg-RPMT.

18

Parameters:
• Let n1 and n2 denote the set size for the sender S’s input set, and for the receiver R’s input set, respectively; Let ` be

the bit-length of each item in the sender’s set or the receiver’s set;
Inputs:

• Sender S: set X = {x1, · · · , xn1}, where xi ∈ {0, 1}`
• Receiver R: set Y = {y1, · · · , yn2}, where yi ∈ {0, 1}`;

Protocol:
1. The sender S randomly permutes the set X into the set X∗;
2. The two players S and R invoke the “generalized Reversed Private Membership Test” sub-protocol Πg-RPMT shown in

Fig. 18:

– S acts as sender with input set X∗;

– R acts as receiver with input set Y;

– R obtains output bi for each i ∈ [n1];

3. R initializes set Z := Y;
4. The two players S and R simultaneously execute n1 number of ΠOT instances.

In the i-th instance, where i ∈ [n1],

– R acts as receiver with input bi ;

– S acts as sender with input (X∗[i],⊥);
– If R obtains X∗[i], R sets Z := Z ∪ {X∗[i]};

5. R outputs Z, and S outputs FINISHED.

Protocol ΠOT
Unified

Figure 11: The design framework unifying PSU protocols in [KRTW19, JSZ+22, GMR+21]. Here, the proto-
col in [KRTW19] refers to the basic scheme without using “split-execute-assemble” paradigm.

items in Y are processed as a whole. Then after obtaining the bits {b1, b2, · · · , bn1} that indicate if each
item X[i] ∈ Y, the receiver invokes the ΠOT instances with {b1, b2, · · · , bn1} as the inputs, and gets the
items X \ Y. Intuitively, ΠOT

Unified can UC-realize the relaxed functionality Fb
rPSU, which leaks only the set

membership information and can be seen a special case of Fb,s
rPSU (i.e., the number of bins β is 1). Formally,

the security of ΠOT
Unified is stated in Theorem 5.4.

Theorem 5.4. The protocol following the framework ΠOT
Unified in Fig. 11 UC-realizes the functionality Fb

rPSU (as in
Fig. 8), against static, semi-honest adversaries.

Proof. To prove this theorem, we will show that for any efficient adversary A, we can construct a simulator
Sim to properly simulate the view of the corrupted sender and the corrupted receiver, such that any PPT
environment E cannot distinguish between the execution in the ideal world from that in the real world.
In particular, according to the modular design of ΠOT

Unified from the sub-protocols Πg-RPMT and ΠOT, the
simulator Sim can be constructed by invoking the simulator Sim′ in [KRTW19], [JSZ+22] or [GMR+21].
Corrupted Sender: Simulator Sim first sends the input set X to Fb

rPSU. After receiving 〈REQUEST IF〉 from
Fb

rPSU, Sim first invokes Sim′ to simulate the execution of the sub-protocol Πg-RPMT. Then, Sim sends
〈RESPONSE IF, OK〉 to the functionality Fb

rPSU. Once receiving 〈REQUEST ITEM〉 from Fb
rPSU, Sim simulates

the execution of sub-protocol ΠOT by invoking Sim′. When A sends items in all ΠOT instances, Sim sends
〈RESPONSE ITEM, OK〉 to Fb

rPSU and then obtains 〈FINISHED〉 from the sender’s state stateS. Compared to
the simulator for corrupted sender in [KRTW19], [JSZ+22] or [GMR+21], Sim just additionally receives some
request messages and additionally sends some response messages. Moreover, due to the request/response
messages, the environment E will receive the honest receiver’s output X ∪ Y at the same time in the real
and ideal worlds. Therefore, Sim can simulate A’s view such that E cannot distinguish the two worlds.
Corrupted Receiver: Likewise, simulator Sim first sends the input set Y toFb

rPSU. After receiving 〈REQUEST IF〉
from Fb

rPSU, Sim first invokes Sim′ to simulate the execution of the sub-protocol Πg-RPMT except for the

19

last steps (i.e., computing and sending si for each xi ∈ X in [KRTW19], computing and sending Ii for
each xi ∈ X in [JSZ+22], computing a′i for each xi ∈ X and invoking FbEQ in [GMR+21]). To simu-
late the last steps of Πg-RPMT, Sim sends 〈RESPONSE IF, OK〉 to the functionality Fb

rPSU and then obtains
{b1, b2, · · · , bn1}. Given {b1, b2, · · · , bn1}, Sim can invoke Sim′ to simulate the last steps of Πg-RPMT. Once
receiving 〈REQUEST ITEM〉 from Fb

rPSU, Sim invokes Sim′ to simulate the execution of the sub-protocol
ΠOT except for the last step (i.e., sending items). Then, Sim sends 〈RESPONSE ITEM, OK〉 to Fb

rPSU and then
obtains set Z. By using the items in set X \ Y, Sim can simulate the last step of each ΠOT instance. Com-
pared to the simulator for corrupted receiver in [KRTW19], [JSZ+22] or [GMR+21], Sim just additionally
receives some request messages and additionally sends some response messages. Likewise, due to the re-
quest/response messages, the environment E will receive the honest sender’s output FINISHED at the same
time in the real and ideal worlds. Therefore, Sim can simulate A’s view such that E cannot distinguish the
two worlds.

Now we complete the proof that the protocol following the framework ΠOT
Unified can UC-realize the re-

laxed PSU functionality Fb
rPSU, which allows the set membership to the receiver in advance. It is natural

to ask whether it can UC-realize the functionality FPSU. Next we give a negative answer in the following
part.

5.2.3 OT-based PSU cannot realize FPSU

In this section, we show that the protocols unified in Fig. 11 cannot UC-realize the standard PSU func-
tionality FPSU. We can see from the proof of Theorem 5.4 that to simulate the corrupted receiver’s view,
the simulator has to obtain {b1, b2, · · · , bn1} in advance. Therefore, these protocol cannot UC-realize the
standard PSU functionality FPSU, as FPSU leaks nothing to the receiver before sending the final output Z.
Formally, the security is stated in Theorem 5.5.

Theorem 5.5. The protocol following the framework ΠOT
Unified in Fig. 11 cannot UC-realize functionality FPSU (as

in Fig. 7), against static, semi-honest adversaries.

Proof. To complete the proof, we first construct an environment E . Then we show that for any simulator
Sim, this constructed E can tell the difference of the execution in the real world from that in the ideal world,
with at least non-negligible probability.

Construction of environment E . The environment E chooses sets X and Y as the inputs of the sender and the
receiver, respectively. Without loss of generality, let the real world semi-honest adversary A be a dummy
adversary who will follow E ’s instructions, and immediately forward each corrupted player’s state to the
environment. Since the environment E knows both X and Y, E of course knows the size of X ∩ Y, denoted
as m. In other words, the environment E knows the number of 1’s in {b1, · · · , bn1} is m.

The environment E instructs the dummy adversary A to corrupt the receiver at the beginning of the
protocol execution, and then chooses a time t. Finally, if the number of 1’s in {b1, · · · , bn1} reported by the
dummy adversary A is m and the message FINISHED has not been reported by the honest sender S at the
time t, the environment E outputs 1, otherwise, outputs 0.

The real world execution. In the real world, the ΠOT sub-protocol instances will not be executed until the
execution of Πg-RPMT sub-protocol instance is finished. Therefore, there is a time t when the receiver
obtains {b1, · · · , bn1} but not the items in the set X \ Y. Note that, the receiver is corrupted and under
the control by the semi-honest real world adversary A, the bit set {b1, · · · , bn1} must be reported to the
environment at the time t. Note also that, the protocol execution has not been finished, the honest sender S
is not supposed to return the message FINISHED to the environment E at the time t.

The ideal world execution. In the ideal world, since the (dummy) receiver is corrupted, the simulator Sim is
allowed to access the ideal state stateR = 〈Y〉. After receiving from the functionality FPSU the message
〈REQUEST,R〉, the simulator Sim must face the following two simulation strategies:

20

1. Do send 〈RESPONSE, OK〉 to the functionality FPSU, immediately.

Note that, now the functionality will update the ideal states into stateS := 〈X, FINISHED〉 and stateR :=
〈Y, Z〉, and immediately report FINISHED to the environment E .

2. Do not send 〈RESPONSE, OK〉 to the functionality FPSU, immediately.

Note that, now the functionality will not update the ideal states into stateS := 〈X, FINISHED〉 and
stateR := 〈Y, Z〉; of course, no output FINISHED will be reported to E immediately.
Note again that, the simulator Sim knows nothing about Z in this case, although it is aware of the
ideal state stateR = 〈Y〉. At the same time, Sim has to simulate the view of A before the executions of
ΠOT sub-protocol instances. Let {bideal

1 , · · · , bideal
n1
} denote the bit set in the view of A, which will be

reported to the environment.

Security analysis. Now, we can see, if the simulator follows the first simulation strategy, the environment
will tell the difference with probability 1, since in the real world, no output FINISHED will be reported while
there is FINISHED in the ideal world.

If the simulator follows the second simulation strategy, the probability that E outputs 1 in the real world
is 1 except negligible probability. However, in the ideal world, the simulator Sim does not know m. The
probability that there are m 1’s in {bideal

1 , · · · , bideal
n1
} is 1/n1, which is far less than 1 when n1 is large enough.

Thus, the probability that E outputs 1 in the ideal world is far less than 1. Therefore, E can distinguish
between the two worlds with non-negligible probability.

Note that, all simulation must follow one of the two strategies. Therefore, for all simulator, our con-
structed environment can tell the difference between the two worlds with at least non-negligible probability.
This completes the proof.

5.3 AHE-based PSU: Can Realize FPSU

As analyzed in previous sections, the existing PSU protocols relying only on symmetric-key operations
cannot UC-realize the standard PSU functionality FPSU due to the leverage of the Oblivious Transfer. More
specifically, in the OT-based protocols (see Fig. 11), the receiver before receiving the final output Z = X ∪Y,
obtains a bit bi for each item xi ∈ X; if xi ∈ Y, bi := 1, otherwise, bi := 0. Obviously, each bi reveals the set
membership of xi ∈ X, indicating whether xi belongs to the set Y. However, the standard PSU functionality
FPSU is not allowed to leak anything to the receiver prior to sending the final output Z := X ∪Y. Therefore, to
realize the functionality FPSU, it seems necessary for a protocol to enable the receiver to obtain the output
Z := X ∪ Y directly, rather than by first getting the set membership leakage {bi} and then obtaining X \ Y
obliviously.

We observe that the typical PSU protocols in [Fri07, DC17], both of which are based on additively ho-
momorphic encryption (AHE), allow the receiver to obtain the output Z := X ∪Y directly, and they are the
only two protocols that satisfy the property. In this section, we first unify them into the same framework
(as given in Fig. 12) and then show the protocols under this framework can UC-realize the standard PSU
functionality FPSU.

5.3.1 ΠAHE
Unified: AHE-based PSU design framework

In this part, we present a design framework ΠAHE
Unified in Fig. 12 based on the additively homomorphic en-

cryption (AHE), by unifying the protocols in [Fri07, DC17]. More specifically, the receiver first generates
a representation of her input set Y; in [Fri07] Y is represented by a polynomial P(x) = ∏n2

i=1(x − yi) s.t.
P(x∗) = 0 if x∗ ∈ Y, and in [DC17] it is represented by an inverted Bloom Filter 10 B that inserts Y by
using hash functions h1, · · · , hγ. Since the schemes in [Fri07] and [DC17] share the similar idea, we use
fY(·) to denote the representation of Y. For an item x ∈ Y, fY(x) = 0, otherwise fY(x) 6= 0. Therefore,
fY(·) can be used to check if x ∈ Y. Then the receiver generates a key pair (pk, sk) of AHE and shares

10The “inverted” means each entry value of the Bloom Filter containing Y is flipped, s.t. ∑γ
i=1 B[hi(x∗)] = 0 if x∗ ∈ Y.

21

the public key pk with the sender. By using pk, the receiver encrypts fY(·) into Enc(fY)
11 and sends the

ciphertext to the sender. Due to the additive homomorphic property, the sender holding pk can compute
ci = (Encpk(ri fY(xi)),Encpk(rixi fY(xi))) for each xi ∈ X, where ri is a random value chosen by the sender.
Upon receiving ci, the receiver can decrypt it into (d1

i , d2
i). If d1

i 6= 0, the receiver learns xi /∈ Y (i.e., bi = 0),
otherwise xi ∈ Y (i.e., bi = 1). At last, when d1

i 6= 0, the receiver can obtain xi = d2
i /d1

i , otherwise learn
nothing about xi from (d1

i , d2
i) = (0, 0).

Parameters:
• Let n1 and n2 denote the set size for the sender S’s and the receiver R’s input set, respectively; Let ` be the bit-length

of each item in the sender’s set and the receiver’s set;
• An AHE scheme includes an encryption algorithm Encpk(·) and a decryption algorithm Decsk(·).

Inputs:
• Sender S: set X = {x1, · · · , xn1}, where xi ∈ {0, 1}`
• Receiver R: set Y = {y1, · · · , yn2}, where yi ∈ {0, 1}`;

Protocol:
1. The receiver R generates a key pair (pk, sk) and sends pk to the sender S;
2. R represents set Y as fY(·), generates c = Encpk(fY) and then sends c to S;
3. S randomly permutes set X to X∗;
4. R initializes set Z = ∅;
5. For each i ∈ [n1], S chooses a uniformly random value ri , then generates

ci = (Encpk(ri fY(X∗[i])), Encpk(riX∗[i] fY(X∗[i]))) based on the additive homomorphic property;
S sends {c1, · · · , cn1} to R;

6. For each i ∈ [n1], R decrypts ci to get (d1
i , d2

i); if d1
i 6= 0, R obtains X∗[i] = d2

i /d1
i and sets Z = Z ∪ {X∗[i]}, otherwise R

obtains nothing;
7. R outputs Z, and S outputs FINISHED.

Protocol ΠAHE
Unified

Figure 12: The design framework unifying PSU protocols in [Fri07, DC17]. Note that fY(·) in [Fri07] is a
polynomial P(x) = ∏n2

i=1(x− yi) such that P(x∗) = 0 if x∗ ∈ Y, and fY(·) in [DC17] is an inverted Bloom
Filter B where Y is inserted by using hash functions h1, · · · , hγ such that ∑γ

i=1 B[hi(x∗)] = 0 if x∗ ∈ Y (the
“inverted” means that each bit value of the Bloom Filter containing Y is flipped).

5.3.2 AHE-based PSU can realize FPSU

As in the protocols [GMR+21, JSZ+22], the AHE-based protocols also process the receiver’s set Y at the
same time, and thus can avoid leaking subsets. Moreover, the receiver in the AHE-based protocols can
obtain the items in X \ Y directly from the corresponding ciphertexts without interacting with the sender
anymore. Thus, the receiver does not obtain bi in advance. Intuitively, the AHE-based protocols can UC-
realize FPSU. Next, we give a formal analysis.

Theorem 5.6. Given an IND-CPA secure AHE scheme, the protocol following the framework ΠAHE
Unified in Fig. 12

UC-realizes the functionality FPSU (as in Fig. 7), against static, semi-honest adversaries.

Proof. We will show that for any adversary A, we can construct a simulator Sim that can simulate the view
of the corrupted sender and the corrupted receiver, such that any PPT environment E cannot distinguish
the execution in the ideal world from that in the real world.
Corrupted Sender: The simulator Sim for the corrupted sender first sends the input set X to FPSU. After
receiving 〈REQUEST,S〉 from FPSU, Sim generates a key pair (pk, sk) and sends pk to A. To simulate the
ciphertext c from R, Sim randomly generates a fY(·) according to the set size n2 of Y, then encrypts it to c
by using pk and sends c to A. After A sends back {c1, · · · , cn1} to R, Sim sends 〈RESPONSE, OK〉 to FPSU.
We can see that the only difference between the ideal world and the real world is that fY(·) is randomly

11In [Fri07], Enc(fY) refers to encrypting each coefficient of the polynomial P(·). In [DC17], Enc(fY) refers to encrypting each bit
value of the inverted Bloom Filter B.

22

generated in the ideal world while fY(·) is generated based on Y in the real world. The IND-CPA security
of AHE scheme guarantees that any PPT environment E cannot distinguish between the real world from
the ideal world.
Corrupted Receiver: The simulator Sim for the corrupted receiver first sends the input set Y toFPSU and then
receives 〈REQUEST,R〉. Sim will receive a public key pk and a ciphertext c fromA. To simulate {c1, · · · , cn1},
the simulator sends 〈RESPONSE, OK〉 to FPSU and obtains the union Z = X ∪Y. Then for i ∈ {1, 2, · · · , |Z \
Y|}, Sim randomly picks αi and generates ci = (Encpk(αi),Encpk(αixi)), where xi ∈ Z \ Y. After that, for all
i ∈ {|Z \ Y|+ 1, · · · , n1}, Sim generates ci = (Encpk(0),Encpk(0)) by using pk. After randomly permuting
the set {c1, · · · , cn1}, the simulator Sim sends the ciphertexts to A. In both the ideal world and the real
world, if xi ∈ X \ Y, the corresponding ci is a pair of ciphertexts for two messages αi and αixi, otherwise
it is the encryption of 0’s. Moreover, A receives the items in X \ Y in a random order in both worlds.
Therefore, the ideal world and the real world are indistinguishable.

6 Conclusion

In this work, we provide a systematic treatment for understanding the security of the typical PSU protocols.
More concretely, we define different PSU functionalities in a more fine-grained manner, in order to reflect
the practical leakage due to the “split-execute-assemble” paradigm and Oblivious Transfer. Moreover, we
unify the typical PSU protocols into KRTW, OT-based and AHE-based PSU frameworks, and prove what
functionality each PSU framework can achieve. It is shown that only the protocols following the AHE-
based framework can UC-realize the standard PSU functionality. However, the AHE-based protocols are
not efficient enough in practice, especially for large datasets. Therefore, how to design a scalable PSU
protocols that can UC-realize the standard PSU functionality is still an open problem.

References

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. https://eprint.iacr.org/2000/067.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May
2002.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from lightweight
oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 34–63. Springer, Heidelberg, August 2020.

[DC17] Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations. In
Josef Pieprzyk and Suriadi Suriadi, editors, ACISP 17, Part II, volume 10343 of LNCS, pages
261–278. Springer, Heidelberg, July 2017.

[Fri07] Keith B. Frikken. Privacy-preserving set union. In Jonathan Katz and Moti Yung, editors, ACNS
07, volume 4521 of LNCS, pages 237–252. Springer, Heidelberg, June 2007.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal Singh. Pri-
vate set operations from oblivious switching. In Juan Garay, editor, PKC 2021, Part II, volume
12711 of LNCS, pages 591–617. Springer, Heidelberg, May 2021.

23

https://eprint.iacr.org/2000/067

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer,
Heidelberg, August 2003.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way per-
mutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

[JSZ+22] Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu. Shuffle-based private
set union: Faster and more secure. Cryptology ePrint Archive, Report 2022/157, 2022. https:
//ia.cr/2022/157.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivi-
ous PRF with applications to private set intersection. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 818–
829. ACM Press, October 2016.

[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union from
symmetric-key techniques. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part II, volume 11922 of LNCS, pages 636–666. Springer, Heidelberg, December 2019.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge university press,
1995.

[MS13] Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in MPC an efficient frame-
work for private function evaluation. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 557–574. Springer, Heidelberg, May 2013.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Algorithms - ESA 2001, volume
2161 of Lecture Notes in Computer Science, pages 121–133. Springer, 2001.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight private
set intersection from sparse OT extension. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 401–431. Springer, Heidelberg,
August 2019.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersec-
tion using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz, editors, USENIX
Security 2015, pages 515–530. USENIX Association, August 2015.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on
OT extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 797–812.
USENIX Association, August 2014.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based
on OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive,
Report 2005/187, 2005. https://eprint.iacr.org/2005/187.

24

https://ia.cr/2022/157
https://ia.cr/2022/157
https://eprint.iacr.org/2005/187

A Simple Hashing and Cuckoo Hashing

Simple Hashing. In the simple hashing scheme, there are γ hash functions hi : {0, 1}∗ → [b], where
i ∈ [γ], used to map n items into b bins B1, · · · , Bb. An item x will be added into Bh1(x), Bh2(x), · · · , Bhγ(x),
regardless of whether these bins are empty. According to the following inequality [MR95], the maximum
bin size ρ can be set to ensure that no bin will contain more than ρ items except with probability 2−λ when
hashing n items into b bins.

Pr[∃ bin with ≥ ρ items] ≤ b

[
n

∑
i=ρ

(
n
i

)
·
(

1
b

)i
·
(

1− 1
b

)n−i
]

Cuckoo Hashing. Cuckoo hashing was introduced by Pagh and Rodler in [PR01]. In this hashing scheme,
there are γ hash functions h1, · · · , hγ used to map n items into b = εn bins and a stash, and we denote the
i-th bin as Bi. Unlike the simple hashing, the Cuckoo hashing can guarantee that there is only one item in
each bin, and the approach to avoid collisions is as follows: For an item x, it can be inserted into any empty
bin of Bh1(x), Bh2(x), · · · , Bhγ(x). If there are no empty bins in the k bins, randomly select a bin Bhr(x) in these
γ bins, and evict the prior item y in Bhr(x) where hr(x) = hr(y) to a new bin Bhi

(y) where i 6= r. The above
procedure is repeated until no more evictions are necessary, or until the number of evictions has reached
a threshold. In the latter case, the last item will be put in the stash. According to the empirical analysis in
[PSZ18], we can adjust the values of γ and ε to reduce the stash size to 0 while achieving a hashing failure
probability of 2−40.

B Leakage analysis for the KRTW-PSU protocol

To be self-contained, we recall the leakage analysis in [JSZ+22] here.
In order to improve the performance, Kolesnikov et al. [KRTW19] proposed to optimize their protocol

by using the “split-execute-assemble” paradigm, as shown in Fig. 13. More specifically, the sender and
receiver in [KRTW19] first assign their items in X and in Y, into two simple hash tables with the same
number of bins, and the maximum bin sizes are both m. Then they perform a PSU sub-protocol on the
items of each bin separately. As pointed out by Kolesnikov et al. in [KRTW19], however, the “split-execute-
assemble” paradigm will leak the information “which bins contain items in X ∩ Y” to the receiver. To avoid this
leakage, in [KRTW19] the receiver is required to put a special item e into each bin, and to pad the bins
with different dummy items d1, d2, · · · , while the sender pads his bins with the special item e. For example,
in Fig. 13, the items {x6, x2, x10} of X are mapped to the first bin of the sender’s simple hash table, and
the items {y3, y8} of Y are mapped to the first bin of the receiver’s hash table. Without the special item
e, if x2 = y3, the receiver can learn that an item belonging to X ∩ Y is in {y3, y8} after executing the PSU
sub-protocol. By adding the special item e to both sides, if the receiver learns that an item from the sender
belongs to {y3, e, y8, d}, it seems that the receiver cannot learn whether the item is a real item (namely, in X)
or the special item e. Unfortunately, Jia et al. [JSZ+22] pointed out that this strategy is insufficient to avoid
the leakage incurred by the “split-execute-assemble” paradigm, and the detailed analysis is given below.

For ease of exposition, we take the 4th PSU sub-protocol instance in Fig. 13 as an example to explain
why the optimization in [KRTW19] fails to hide the intersection information. After the execution of the
sub-protocol over the 4th bins, if the receiver does not obtain any items from the sender (that is, all items in
the sender’s 4th bin belong to the subset in the receiver’s 4th bin i.e., {d, e, y5, y7}), then the receiver could
obtain additional information about the intersection. Concretely, one of the following will occur:

Case1: all the real items that are mapped to the sender’s bin (say x4 in Fig. 13) belong to {y5, y7};
Case2: no real items are mapped to the sender’s bin (i.e., all items are special item e).

The probabilities that Case1 and Case2 occur are denoted as Pr[Case1] and Pr[Case2], respectively. Clearly,
if the receiver is able to determine that Case1 occurs with certain (high) probability, she will learn that items

25

Sender ()

pad with
special item

add a
special

item to
each bin

pad with different
dummy items

Receiver ()

or

 sub-protocol

 sub-protocol

 sub-protocol

 sub-protocol

 sub-protocol

Figure 13: The “split-execute-assemble” paradigm in [KRTW19].

belonging to X ∩Y are in {y5, y7} with the same probability. According to the parameters in [KRTW19], Jia
et al. [JSZ+22] estimated Pr[Case2] in Table 1. Note that Pr[Case1] = 1− Pr[Case2]. From the results, we
can see that the probability Pr[Case2] is very small. For example, when the set size is n = 220, Pr[Case2] =
5.778× 10−8. This means that when the receiver finds that all items in a bin belong to the intersection, she
can learn that this bin has at least one real item with probability 1− 5.778× 10−8, and that her corresponding
bin contains at least an item in X ∩ Y with the same probability. Hence, their approach is insufficient to
avoid the leakage incurred by the “split-execute-assemble” paradigm.

Table 1: The probability of Case2 for different set sizes

parameters set size n
28 210 212 214 216 218 220 222

α 0.043 0.055 0.05 0.053 0.058 0.052 0.06 0.051
Pr(×10−11) 7.946 1270 206.1 639.4 3252 444.8 5778 305.1

Here, αn is the number of bins.

26

C Details of Sub-protocols

We describe here the “batched related-key OPRF” sub-protocol ΠBaRK-OPRF, the “Permute+ Share” sub-
protocol ΠPS, the “multi-point OPRF” sub-protocol ΠmpOPRF and the “generalized Reversed Private Mem-
bership Test” sub-protocol Πg-RPMT.

C.1 Sub-protocol ΠBaRK-OPRF

Kolesnikov et al. [KRTW19] used the batched related-key OPRF protocol designed in Kolesnikov et al.
[KKRT16] to implement ΠBaRK-OPRF, and the details are shown in Fig. 14. This protocol is suitable for
batch generation of a large number of OPRF instances.

Roughly speaking, Kolesnikov et al. [KKRT16] viewed the OT extension in the paradigm of IKNP
[IKNP03] from a new angle; the secret key corresponding to a selection string x can be seen as the PRF
value of the selection string x. In the j-th OPRF instance, P0 can obtain the key k j = ((C, s), (j, qj)) and
P1 can obtain the PRF value of his value xj, i.e., F(k j, xj) = H(j||tj). Note that F(k j, xj) = H(j||tj) =
H(j||(qj⊕ (C(xj) · s))). Then, P0 holding k j can obtain the PRF value of any item y, i.e., F(k j, y) = H(j||(qj⊕
(C(y) · s))). As mentioned in [KRTW19], the protocol in [KKRT16] actually achieves a slightly weaker
variant of OPRF, since that (1) the keys are related as (C, s) is the same in all keys, and (2) the protocol
additionally reveals tj to P1 besides the PRF output H(j||tj). However, Kolesnikov et al. [KRTW19] stressed
that the protocol in [KKRT16] is sufficient to be used in their scheme.

Parameters:
• A (κ, ε) pseudorandom code family C with output length k = k(κ) where κ is the computational security parameter

and a (κ, ε) pseudorandom code guarantees that the hamming distance of two codewords is less or equal to κ with
probability at most 2−ε;

• A κ-Hamming correlation-robust H : [m]× {0, 1}k → {0, 1}v;
• Ideal functionality FOT.

Inputs:
• P0: no input;
• P1: set X = {x1, x2, · · · , xm}, where xi ∈ {0, 1}∗.

Protocol:
1. P0 chooses a random C ← C and sends it to P1;
2. P0 chooses s← {0, 1}k at random. Let si denote the i-th bit of s;
3. P1 forms m× k matrices T0, T1 in the following way:

– For j ∈ [m], choose t0,j ← {0, 1}k and set t1,j = C(xj)⊕ t0,j. Let ti
0, ti

1 denote the i-th column of matrices T0, T1
respectively.

4. For i ∈ [k]:

– P0 and P1 invoke FOT:

∗ P0 acts as receiver with input si ;
∗ P1 acts as sender with input (ti

0, ti
1);

∗ P0 receives output qi ;

5. P0 forms m× k matrix Q such that the i-th column of Q is the vector qi . Note that qi = ti
si

. Let qj denote the j-th row
of Q. Note that qj = ((t0,j ⊕ t1,j) · s)⊕ t0,j, i.e., qj = (C(xj) · s)⊕ t0,j.

6. For j ∈ [m], P0 outputs the PRF key ((C, s), (j, qj)), P1 outputs relaxed PRF output (C, j, t0,j) and PRF output
H(j||t0,j).

Sub-Protocol ΠBaRK-OPRF

Figure 14: The batched related-key OPRF Protocol designed in [KKRT16].

27

C.2 Sub-protocol ΠPS

Jia et al. [JSZ+22] used the protocol in [MS13] to implement ΠPS, and the details are shown in Fig. 15.
Generally speaking, the protocol leverages a switching network to realize the permutation, and the random
labels of wires are used to form secret shares. A switching network consists of q switches and 2q + n wires
where n is the number of items to be permuted. The party P0 who inputs the permutation π will transfer π
into a selection bit set S, in which each item is used to control a switch. The other party P1 randomly chooses
the label of each wire, and uses the labels of input wires to mask the input set X = {x1, · · · , xn}. The masked
values are then sent to P0 and taken as the switching network’s input. Then, in topological order, the two
parties jointly compute an atomic swap on each switch. And each atomic swap is implemented by using
oblivious transfer according to the corresponding selection bit in the set S. After this, set X is permuted to
π(X), and each share is re-randomized by the labels in the path. At last, P0 obtains the blinded values for
all the output wires as the share set, and P1 uses the labels of output wires as the other share set.

Parameters:
• A switching network with q switches and n inputs/outputs, and the 2q + n wires are denoted as w1, · · · , w2q+n.

Inputs:
• P0: a permutation π;
• P1: set X = {x1, · · · , xn}, where xi ∈ {0, 1}`.

Protocol:
1. P0 transfers the permutation π to the selection bit set S = {(s0(1), s1(1)), · · · , (s0(q), s1(q))} for the switching network;
2. For each wire, P1 randomly chooses ri ← {0, 1}` as the wire’s label;
3. For each switch u with input wires wi and wj, and output wires wk and wl :

– P1 computes T0 = T0
0 ||T1

0 = (ri ⊕ rk)||(ri ⊕ rl), T1 = T0
1 ||T1

1 = (ri ⊕ rk)||(rj ⊕ rl), T2 = T0
2 ||T1

2 = (rj ⊕ rk)||(ri ⊕ rl)

and T3 = T0
3 ||T1

3 = (rj ⊕ rk)||(rj ⊕ rl);

– P0 and P1 engage in a 1-out-of-4 oblivious transfer where P0’s (the receiver) input is s(u) = 2s1(u) + s0(u) and
P1’s (the sender) input is (T0, T1, T2, T3), and P0 obtains (T0

s(u)||T
0
s(u));

4. For each input wire wi , P1 sends xi ⊕ ri to P0;
5. In topological order, for each switch u with input wires wi and wj, and output wires wk and wl , P0 does the following:

– If s0(u) = 0, then yk = yi ⊕ T0
s(u), else, yk = yj ⊕ T0

s(u);

– If s1(u) = 0, then yl = yi ⊕ T1
s(u), else, yl = yj ⊕ T1

s(u);

6. P0 outputs the blinded values for all the output wires of the switching network as the share set, and P1 outputs the
output wires’ labels as the other share set.

Sub-Protocol ΠPS

Figure 15: The Permute+ Share Protocol designed in [MS13].

C.3 Sub-protocol ΠmpOPRF

Chase and Miao in [CM20] proposed a new construction for multi-point OPRF, and they leveraged the new
construction to realize a lightweight private set intersection (PSI) protocol. In essence, the construction in
[CM20] is an extension of BaRK-OPRF in [KKRT16], and Chase and Miao have pointed it out in their paper.
To be self-contained, we rewrite their construction in Fig. 16. The key of the multi-point OPRF is (C, k̂) and
the pseudorandom function is as follows:

v = F̂(k̂, H1(xi))

F((C, k̂), xi) = H2(C1[v[1]]|| · · · ||Cw[v[w]])

Generally speaking, the two parties both know a pseudorandom function F̂ with key k̂ that maps a `1-bit
item into a vector v ∈ [m]w. Firstly, P1 prepares two m× w binary matrices A and B. More concretely, all
the items in X will be mapped to some positions in a m× w matrix (i.e., DX in Fig. 16) by F̂. A is randomly

28

chosen, and in B, the 1-bit elements that are located in these position are equal to the corresponding values
in A while the other elements will be different. P0 picks a random string s ∈ {0, 1}w, then P0 and P1 perform
w number of OTs. For the i-th OT, P0 takes s[i] as input, and P1 takes Ai and Bi as input, then P0 will obtain
output Ai or Bi according to s[i]. After OTs, P0 will obtain w column vectors, which will form matrix C. P1
obtains PRFs of her items using A and k̂. Note that for ∀ x ∈ X, F((C, k̂), x) = F((A, k̂), x). The protocol
needs O(n) communication and computation cost, and only involves cheap symmetric-key and bitwise
operations.

Parameters:
• Two hash functions H1 : {0, 1}∗ → {0, 1}`1 and H2 : {0, 1}w → {0, 1}`2 ;
• Pseudorandom function F̂ : {0, 1}λ × {0, 1}`1 → [m]w;

Inputs:
• P0: no input;
• P1: set X = {x1, · · · , xn}, xi ∈ {0, 1}∗;

Protocol:
1. P0 samples a random string s← {0, 1}w;
2. P1 does the following:

– Initialize an m× w binary matrix D to all 1’s. Denote its column vectors by D1, · · · , Dw. Then
D1 = · · · = Dw = 1m;

– Sample a uniformly random PRF key k̂← {0, 1}κ , and send it to P0;

– For each x ∈ X, compute v = F̂(k̂, H1(x)) where v = (v[1], v[2], · · · , v[w]) with the i-th coordinate v[i] ∈ [m], and
set Di [v[i]] = 0 for all i ∈ [w], then denote the new matrix as DX ;

– Randomly sample an m× w binary matrix A, and compute matrix B = A⊕ DX ;

3. P0 and P1 run w oblivious transfer where P1 is the sender with inputs {Ai , Bi}i∈[w] and P0 is the receiver with inputs
s[1], · · · , s[w]. As a result P0 obtains w number of m-bit strings as the column vectors of matrix C (with dimension
m× w). So far, P0 obtains the key (C, k̂) of the multi-point OPRF.

4. For each x ∈ X, P1 computes v = F̂(k̂, H1(x)) and obtains its OPRF value H2(A1[v[1]]|| · · · ||Aw[v[w]]).

Sub-Protocol ΠmpOPRF

Figure 16: The Multi-Point OPRF Protocol designed in [CM20].

C.4 Sub-protocol Πg-RPMT

C.4.1 Sub-protocol Πg-RPMT in [KRTW19]

Firstly, the two parties invoke the “batched related-key OPRF” sub-protocol ΠBaRK-OPRF for a pseudoran-
dom function F; the sender takes the set X̃i as input and obtains F(k j, xj) for each xj ∈ X̃i (without knowing
k j), and the receiver obtains the PRF keys {k1, k2, · · · , km}. Then for each sender’s item xj, the receiver
picks a random value s and interpolates a polynomial P over points {(y, s⊕ F(k j, y))}y∈Ỹi

, and sends P to
the sender. Once receiving the polynomial P, the sender calculates sj = P(xj) ⊕ F(k j, xj) and returns sj

to the receiver. The receiver then checks if sj = s; if not, meaning that xj /∈ Ỹi, the receiver sets bj = 0,
otherwise bj = 1. To achieve “generalized” RPMT, the two parties repeat the above process for all the items
in the sender’s set.

C.4.2 Sub-protocol Πg-RPMT in [JSZ+22]

The sub-protocol Πg-RPMT uses a simple way to check whether an item xi is in the receiver’s set Y: Each
item yj ∈ Y are shared into shares s1

j and s2
j such that yj = s1

j ⊕ s2
j . Then, the sender obtains one share set

S1 = {s1
1, s1

2, · · · , s1
n2
}, and the receiver holds the other one S2 = {s2

1, s2
2, · · · , s2

n2
}. The sender can obtain

Ii = {s1
1 ⊕ xi, s1

2 ⊕ xi, · · · , s1
n2
⊕ xi}. Obviously, if xi ∈ Y, Ii ∩ S2 6= ∅. Therefore, the sender can send Ii

to the receiver and the receiver checks if Ii ∩ S2 6= ∅. If so, the receiver obtains the bit bi = 1, otherwise,

29

Parameters:
• Let m1 and m2 denote the set size for the sender S̃’s and the receiver R̃’s input set, respectively; let ` be the bit-length

of each item in the sender’s set or the receiver’s set.
• Let h(·) be a hash function h : {0, 1}` → {0, 1}σ ;

Inputs:
• Sender S̃: set X′ = {x1, · · · , xm1}, where xi ∈ {0, 1}`;
• Receiver R̃: set Y′ = {y1, · · · , ym2}, where yi ∈ {0, 1}`;

Protocol:
1. The sender S̃ with input set set X′ and the receiver R̃ invoke the “batched related-key OPRF” sub-protocol

ΠBaRK-OPRF, where F : {0, 1}∗ × {0, 1}` → {0, 1}σ is the underlying pseudorandom function, please refer to Fig. 14 for
the description of ΠBaRK-OPRF. After ΠBaRK-OPRF, for each i ∈ [m1], S̃ receives qi = F(ki , xi) and R̃ receives ki ;

2. For each xi ∈ X′:

– R̃ randomly picks s $←− {0, 1}σ , and interpolates a polynomial P(y) over points {(h(yj), s⊕ qj)}j∈[m2]
; here s⊕ qj

is computed as the XOR operation on σ-bit strings.

– R̃ sends the coefficients of P(y) to S̃;

– S̃ computes si := P(h(xi))⊕ qi and sends it to R̃;

– If si = s, then R̃ sets bi := 1, otherwise, bi := 0;

3. R̃ outputs {b1, · · · , bm1}.

Sub-protocol Πg-RPMT in [KRTW19]

Figure 17: Sub-protocol Πg-RPMT in [KRTW19].

bi = 0. However, if Ii ∩ S2 = s2
k , the receiver learns that the item yk in Y corresponding to s2

k belongs to
intersection, which is not allowed in PSU. To solve the problem, the sender and receiver in [JSZ+22] invoke
the “Permute+ Share” sub-protocol ΠPS. In sub-protocol ΠPS, the receiver takes set Y as an input, and the
sender selects a random permutation π as the other input. After ΠPS, the sender and receiver obtain the
shuffled share sets Ŝ1 = {a′1, a′2, · · · , a′n2

} and Ŝ2 = {a1, a2, · · · , an2} respectively, where a′i ⊕ ai = yπ(i),
and the receiver does not learn the permutation π. Please refer to Appendix C.2 for more details of sub-
protocol ΠPS. In this way, the receiver cannot learn which item in Y corresponds to ak. In addition, to hide
xi, the two parties invoke the “multi-point OPRF” sub-protocol ΠmpOPRF where the receiver takes Ŝ2 =

{a1, a2, · · · , an2} as an input. After ΠmpOPRF, the receiver obtains Ŝ∗2 = {F(k, a1), F(k, a2), · · · , F(k, an2)}
and the sender obtains PRF key k. Please refer to Appendix C.3 for more details of sub-protocol ΠmpOPRF.
Then, the sender sends Ii = {F(k, a′1 ⊕ xi), F(k, a′2 ⊕ xi), · · · , F(k, a′n2

⊕ xi)} to the receiver. Likewise, if
Ii ∩ Ŝ∗2 6= ∅, the receiver obtains bi = 1, otherwise, bi = 0. For each xi ∈ X, the sender can use the same
Ŝ1 and k to generate the corresponding Ii. To improve the efficiency, [JSZ+22] leveraged Cuckoo hashing to
reduce the size of each Ii to a constant γ, which is much smaller than n2. Note that in protocol of [JSZ+22],
although the set Y is inserted to a Cuckoo hashing, the set Y is still processed as a whole, rather than being
split into multiple subsets as in [KRTW19].

C.4.3 Sub-protocol Πg-RPMT in [GMR+21]

The core idea to construct the sub-protocol Πg-RPMT in [GMR+21] is similar to that in [KRTW19]. However,
the sub-protocol Πg-RPMT in [GMR+21] avoids the repetitive high-degree polynomial interpolations in the
sub-protocol Πg-RPMT constructed in [KRTW19] by using the shuffling technique.

More specifically, the sender inserts his input set X to a Cuckoo hash table with b bins by using three
hash functions h1, h2, h3, and the receiver inserts her input set Y to a simple hash table with b bins by using
the same hash functions. We denote the filled Cuckoo hash table as XC. After performing the “batched
related-key OPRF” sub-protocol, for the jth bin, the sender obtains a PRF value f j of the item x ∈ X assigned
to this bin and the receiver obtains the corresponding PRF key k j. Then, for each bin, the receiver randomly
chooses a value sj where j ∈ [b]. The receiver interpolates a polynomial P such that P(y||i) = shi(y) ⊕
PRF(khi(y), y||i) where y ∈ Y and i ∈ {1, 2, 3}, and sends P to the sender. Given the polynomial P, the

30

Parameters:
• Let m1 and m2 denote the set size for the sender S̃’s input set, and for the receiver R̃’s input set, respectively; Let `1 be

the bit-length of each item in the sender’s set or the receiver’s set;
• Let h1(·), · · · , hγ(·) be hash functions hi : {0, 1}`1 → [b], where i ∈ [γ];
• A Cuckoo hash table without stash is based on h1, · · · , hγ and has b = ε ·m2 bins;

Inputs:
• Sender S̃: set X = {x1, · · · , xm1}, where xi ∈ {0, 1}`1 ;
• Receiver R̃: set Y = {y1, · · · , ym2}, where yi ∈ {0, 1}`1 ;

Protocol:
1. R̃ inserts set Y into the Cuckoo hash table based on h1, · · · , hγ, and adds a dummy item d in each empty bin, then

denotes the filled Cuckoo hash table as YC and the item in i-th bin as YC [i];
2. S̃ and R̃ invoke the “Permute + Share” sub-protocol ΠPS shown in Fig. 15:

– R̃ acts as P1 with input set YC , and S̃ acts as P0 with a permutation π;

– R̃ obtains the shuffled share set Ŝ2 = {a1, a2, · · · , ab}, and S̃ obtains the other shuffled share set
Ŝ1 = {a′1, a′2, · · · , a′b} where YC [π(i)] = a′i ⊕ ai ;

3. S̃ and R̃ invoke the “multi-point OPRF” sub-protocol ΠmpOPRF shown in Fig. 16; let F(·, ·) be the underlying
pseudorandom function F : {0, 1}∗ × {0, 1}`1 → {0, 1}`2 :

– R̃ acts as P1 with her shuffled share set Ŝ2 = {a1, a2, · · · , ab}, and obtains the output
Ŝ∗2 = {F(k, a1), F(k, a2), · · · , F(k, ab)};

– S̃ acts as P0 and obtains the key k;

4. For i ∈ [m1] :

– S̃ initializes sets Qi := ∅ and Ii := ∅;

– For j ∈ [γ]:

- S̃ computes qj := π−1(hj(xi));

- if qj /∈ Qi , Qi := Qi ∪ {qj}, Ii := Ii ∪ {F(k, xi ⊕ a′qj
)}, else, r ← {0, 1}`2 and Ii := Ii ∪ {r};

5. S̃ sends {I1, I2, · · · , Im1} to R̃, then outputs FINISHED;
6. For each i ∈ [m1], R̃ checks if Ŝ∗2 ∩ Ii 6= ∅;

if so, R̃ sets bi := 1, otherwise, sets bi := 0; then R̃ outputs {b1, · · · , bm1}.

Sub-protocol Πg-RPMT in [JSZ+22]

Figure 18: Sub-protocol Πg-RPMT in [JSZ+22].

sender can compute tj = P(XC[j]) ⊕ f j where j ∈ [b]. We can see that if the item XC[j] is in the subset
Yj of set Y mapped to the jth bin of the simple hash table, tj = sj. However, if the sender sends tj to the
receiver directly, the receiver can learn that the subset Yj has an item that is in the intersection X ∩Y, which
is not allowed in PSU. Therefore, the two parties perform the “Permute+ Share” sub-protocol ΠPS such
that {s1, · · · , sb} are shared and permuted into {s1

1, · · · , s1
b} and {s2

1, · · · , s2
b} obtained by the sender and

receiver, respectively, where s1
i ⊕ s2

i = sπ(i) and the permutation π is not known by the receiver. Obviously,
if sπ(i) = tπ(i), then tπ(i) ⊕ s1

i = s2
i . Therefore, the sender computes {a′1, · · · , a′b} where a′i = tπ(i) ⊕ s1

i .
Finally, through the “batched equality testing” ideal functionality FbEQ as shown in Fig. 20, the receiver
can obtain {b1, · · · , bb}; if a′i = s2

i , then bi = 1, otherwise, bi = 0.

31

Parameters:
• Let m1 and m2 denote the set size for the sender S̃’s input set, and for the receiver R̃’s input set, respectively; Let `1 be

the bit-length of each item in the sender’s set or the receiver’s set;
• Let h1(·), · · · , h3(·) be hash functions hi : {0, 1}`1 → [b], where i ∈ [3];
• A Cuckoo hash table without stash is based on h1, · · · , h3 and has b = ε ·m2 bins;
• Let FbEQ denote the “batch equality testing” ideal functionality;

Inputs:
• Sender S̃: set X = {x1, · · · , xm1}, where xi ∈ {0, 1}`1 ;
• Receiver R̃: set Y = {y1, · · · , ym2}, where yi ∈ {0, 1}`1 ;

Protocol:
1. The sender S̃ inserts set X into the Cuckoo hash table based on h1, · · · , h3, and adds a dummy item d in each empty

bin, then denotes the filled Cuckoo hash table as XC and the item in i-th bin as XC [i];
2. The parties invoke the “batched related-key OPRF” sub-protocol ΠBaRK-OPRF as shown in Fig. 14:

– S̃ acts as P1 with input set XC and R̃ acts as P0;

– R̃ receives output (k1, · · · , kb) and S̃ receives output (f1, · · · , fb) such that, for each x ∈ X assigned to jth bin by
hash function hi , we have f j = PRF(k j, x||i);

3. For each j ∈ [b], R̃ choose a random sj;
4. R̃ interpolates a polynomial P of degree < 3m2 such that for every y ∈ Y and i ∈ {1, 2, 3}, we have

P(y||i) = shi(y) ⊕ PRF(khi(y), y||i). He sends P to S̃;
5. S̃ computes {t1, · · · , tb} where tj = P(XC [j])⊕ f j;
6. Recall that S̃ places her m1 items into m bins, with each item placed exactly once. Alice chooses a random

permutation π : [b]→ [b];
7. The parties invoke the “Permute + Share” sub-protocol ΠPS as shown in Fig. 15:

– S̃ acts as P with input π and R̃ acts as sender with input {s1, · · · , sb};
– S̃ receives output {s1

1, · · · , s1
b} and R̃ receives output {s2

1, · · · , s2
b}, where s1

i ⊕ s2
i = sπ(i);

8. S̃ locally computes {a′1, · · · , a′b} where a′i = s1
i ⊕ tπ(i), so that a′i and s2

i are secret shares of sπ(i) ⊕ tπ(i), i.e., a′i = s2
i

whenever sπ(i) = tπ(i);
9. The parties invoke FbEQ, where S̃ is sender with input {a′1, · · · , a′b} and R̃ is receiver with input {s2

1, · · · , s2
b}, then R̃

receives output {b1, · · · , bb};
10. R̃ outputs {b1, · · · , bb}.

Sub-protocol Πg-RPMT in [GMR+21]

Figure 19: Sub-protocol Πg-RPMT in [GMR+21].

• The functionality interacts with two parties, the sender P0 and the receiver P1, and the simulator Sim;
Functionality:

0. Initialize an ideal state stateU := ∅ for party U where U ∈ {P0, P1}; if U is corrupted, the simulator Sim is allowed to
access to U’s state stateU;

1. Upon receiving input set X = {x1, · · · , xn} from the sender P0 where xi ∈ {0, 1}`, update state statep0 := 〈X〉, and send
〈REQUEST, P0〉 to the simulator Sim;

2. Upon receiving input set Y = {y1, · · · , yn} from the receiver P1 where yi ∈ {0, 1}`, update state stateP1 := 〈Y〉, and
send 〈REQUEST, P1〉 to the simulator Sim;

3. Upon receiving 〈RESPONSE, OK〉 from Sim, for each i ∈ [n], if xi = yi , set bi := 1, otherwise, set bi := 0; then add
〈FINISHED〉 to the sender’s sate stateP0 and 〈{b1, · · · , bn}〉 to the receiver’s state stateP1 ;

4. Output {b1, · · · , bn} to P1, and FINISHED to P0.

Functionality FbEQ

Figure 20: The batched equality testing functionality.

32

	Introduction
	Our results

	Preliminaries
	Universal Composability Framework
	Building Blocks

	KRTW-PSU: Review and Reflection
	Overview of the protocol in AC:KRTW19
	The PSU ideal functionality in AC:KRTW19
	Reflection

	Ideal Functionalities for PSU
	FPSU: A Standard PSU Functionality
	FbrPSU and Fb,srPSU: New Variants of PSU Functionalities

	Protocols for PSU
	KRTW-PSU: Can Realize Fb,srPSU but Not FbrPSU
	OT-based PSU: Can Realize FbrPSU but Not FPSU
	AHE-based PSU: Can Realize FPSU

	Conclusion
	Simple Hashing and Cuckoo Hashing
	Leakage analysis for the KRTW-PSU protocol
	Details of Sub-protocols
	Sub-protocol BaRK-OPRF
	Sub-protocol PS
	Sub-protocol mpOPRF
	Sub-protocol g-RPMT

