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Abstract. Draco is a lightweight stream cipher designed by Hamann
et al. in IACR ToSC 2022. It has a Grain-like structure with two state
registers of size 95 and 33 bits. In addition, the cipher uses a 128-bit
secret key and a 96-bit IV. The first 32 bits of the key and the IV forms
a non-volatile internal state that does not change during the time that
the cipher produces keystream bits.

The authors claim that the cipher is provably secure against Time-
Memory-Data (TMD) Tradeoff attacks. However in this paper, we first
present two TMD tradeoff attacks against Draco. Both attacks leverage
the fact that for certain judiciously chosen IVs the state update function
of the cipher depend on only a small fraction of the non-volatile internal
state. This makes the state update function in Draco essentially a one
way function over a much smaller domain and range. The first attack
requires around 2114.2 Draco iterations and requires that the adversary
has access to 232 chosen IVs. The second attack is such that the attack
parameters can be tuned as per the requirements of the attacker. If the
attacker prioritizes that the number of different chosen IVs is limited to
220 say, then the attack can be done in around time proportional to 2126

Draco rounds. However if the total attack complexity is to be optimized,
then the attack can be performed in 2107 time using around 240 chosen
IVs.

1 Introduction

In FSE 2015, Armknecht and Mikhalev proposed the stream cipher Sprout [AM15]
whose internal state of was equal to the size of its key. This was counter-intuitive
since after [BS00], it was widely accepted that to be secure against generic TMD
Tradeoff attacks, the internal state of a stream cipher needed to be at least twice
the size of the secret key. However one novelty of the Sprout design ensured that
the cipher remained secure against generic TMD tradeoffs like the one in [BS00].
The state update function of Sprout required additional input from the secret
key and so the effective internal state still was double size of the key.

Stream ciphers with internal state makes the cipher particularly attractive
for compact lightweight implementations. Hence, although Sprout was cryptana-
lyzed in subsequent papers [Ban15,EK15,LNP15,ZG15], there have been lots of
research into designing secure stream ciphers with short internal states: Lizard
[HKM17], Plantlet [MAM16], Atom [BCI+21] are some of the constructions that
have been recently designed.



In [HMKM22], the authors designed the stream cipher Draco which has a
Grain like structure. It uses two non linear registers of sizes 95 and 33 respec-
tively. Additionally, it uses a 128 bit secret key and a 96 bit IV: the first 32
bits of the key and the IV forms a non-volatile 128-bit internal state that does
not change during the operation of stream cipher. This helps reduce the power
consumption of the stream cipher, since a part of the finite state machine is held
at a constant value. The keystream and state update functions are derived as
Boolean functions of both the non-volatile and the volatile internal state (i.e.
the non-linear registers). The authors stipulate that the maximum amount of
keystream that a key-IV pair can produce is 232 bits.

1.1 Contributions and Organization

In this paper, we present a key recovery attack on Draco that requires a com-
putational complexity of around 2114.2 but requires access to 232 chosen IVs.
We present a second attack, the parameters of which can be tuned as per the
requirements of the attacker: if the attacker prioritizes the optimization of at-
tack complexity then the 2nd attack can be done in 2107 time using around 240

chosen IVs. Both attacks take advantage of the fact for certain well chosen IVs
the state update function of the cipher depends on only a small fraction of the
non-volatile internal state. This makes the state update function in Draco essen-
tially a one way function over a much smaller domain and range. This allows the
attacker to construct tables in the offline phase over a much smaller domain and
range which can be used in the online stage to look for collisions. The paper is
organized in the following manner.

a. In Section 2, we present the mathematical description of the Draco stream
cipher.

b. In Sections 3 and 4 respectively, we present the first and second attacks.
c. Section 5, concludes the paper.

2 Description of Draco

The exact structure of Draco is explained in Figure 1. Draco uses a 128-bit key
K = k0, k1, . . . , k127 and a 96-bit initial vector IV = v0, v1, . . . , v95. It consists
of two NFSRs of size 95 and 33 bits each. Certain bits of both the shift registers
are taken as inputs to a combining Boolean function, whence the keystream is
produced. The volatile 128-bit inner state of Draco is distributed over the two
NFSRs, NFSR1 and NFSR2, whose contents at time t = 0, 1, . . . is denoted by
Bt = (bt0, b

t
1, . . . , b

t
94) and St = (st0, s

t
1, . . . , s

t
32) respectively.

The non-volatile state consists of the key-bits k0, k1, . . . , k31 and the IV. For
each t, the non volatile state produces a bit dt defined as follows: first define an
augmented IV vector of 97 bits defined thus x0 = 0 and xi = vi−1 for i ∈ [1, 96],
then dt is defined thus:

dt =

{
xt mod 97 if t ≤ 255
xt mod 97 ⊕ kt mod 32 otherwise.
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Fig. 1: Block Diagram for Draco

The keystream is produced after performing the following steps:

Phase 1: Key-IV loading: Let K = (k0, k1, . . . , k127) denote the 128-bit key
and IV = (v0, v1, . . . , v95) be the 96-bit public IV. The registers of the
keystream generator are initialized as follows:

b0j =

{
kj ⊕ 1, for j = 0
kj , for j ∈ {1, 2, 3, . . . , 94}

The remaining key is loaded on to NFSR2, i.e. s0i = ki+95, for i ∈ {0, 1, 2, . . . , 32}
Phase 2: Mixing: During this phase the cipher is clocked for 512 cycles with-

out producing any keystream bits. During this phase the registers are up-
dated as follows. For t = 0, 1, 2, . . . , 511, we compute:

bt+1
i = bti+1, for i ∈ {0, 1, . . . , 93}
bt+1
94 = zt ⊕ st0 ⊕ f1(Bt)⊕ dt

st+1
i = sti+1, for i ∈ {0, 1, . . . , 31}
st+1
32 = zt ⊕ f2(St)



where f1(St), f2(Bt) and zt are computed as follows:

f2(St) = st0 ⊕ st2 ⊕ st7 ⊕ st9 ⊕ st10 ⊕ st15 ⊕ st23 ⊕ st25 ⊕ st30 ⊕ st8 · st15⊕
st12 · st16 ⊕ st13 · st15 ⊕ st13 · st25 ⊕ st1 · st8 · st14 ⊕ st1 · st8 · st18⊕
st8 · st12 · st16 ⊕ st8 · st14 · st18 ⊕ st8 · st15 · st16 ⊕ st8 · st15 · st17⊕
st15 · st17 · st24 ⊕ st1 · st8 · st14 · st17 ⊕ st1 · st8 · st17 · st18⊕
st1 · st14 · st17 · st24 ⊕ st1 · st17 · st18 · st24 ⊕ st8 · st12 · st16 · st17⊕
st8 · st14 · st17 · st18 ⊕ st8 · st15 · st16 · st17 ⊕ st12 · st16 · st17 · st24⊕

st14 · st17 · st18 · st24 ⊕ st15 · st16 · st17 · st24 ⊕
32∏
i=1

(1⊕ sti)

f1(Bt) = bt0 ⊕ bt26 ⊕ bt56 ⊕ bt89 ⊕ bt94 ⊕ bt3 · bt67 ⊕ bt11 · bt13 ⊕ bt17 · bt18⊕
bt27 · bt59 ⊕ bt36 · bt39 ⊕ bt40 · bt48 ⊕ bt50 · bt79 ⊕ bt54 · bt71 ⊕ bt58 · bt63⊕
bt61 · bt65 ⊕ bt68 · bt84 ⊕ bt8 · bt46 · bt87 ⊕ bt22 · bt24 · bt25 ⊕ bt70 · bt78 · bt82⊕
bt86 · bt90 · bt91 · bt93

Lt = bt7 ⊕ bt15 ⊕ bt32 ⊕ bt47 ⊕ bt66 ⊕ bt80 ⊕ bt92

Qt = bt5 · bt85 ⊕ bt12 · bt74 ⊕ bt20 · bt69 ⊕ bt34 · bt57

T 1
t = bt53 ⊕ bt38 · bt44 ⊕ bt23 · bt49 · bt83 ⊕ bt6 · bt33 · bt51 · bt73⊕

bt4 · bt29 · bt43 · bt60 · bt81 ⊕ bt9 · bt14 · bt35 · bt42 · bt55 · bt77⊕
bt1 · bt16 · bt28 · bt45 · bt64 · bt75 · bt88

T 2
t = st26 ⊕ st5 · st19 ⊕ st11 · st22 · st31

T 3
t = bt76 ⊕ st3 · bt10 ⊕ st20 · bt21 · bt30 ⊕ st6 · st29 · bt62 · bt72

zt = Lt ⊕Qt ⊕ T 1
t ⊕ T 2

t ⊕ T 3
t

Phase 3: Keystream Generation: During this phase the feedback of the keystream
bit is discontinued, and the cipher starts producing keystream bits. Thus for
t = 512, 513, 514, . . ., we compute:



bt+1
i = bti+1, for i ∈ {0, 1, . . . , 93}
bt+1
89 = st0 ⊕ f2(Bt)⊕ dt

st+1
i = sti+1, for i ∈ {0, 1, . . . , 31}
st+1
30 = f1(St)

The cipher produces the keystream bit zt using the expression given above.
Note that the authors stipulate that the maximum amount of keystream bits
generated from any key-IV pair is limited to 232. Also note that throughout
the paper we use one Draco iteration/round interchangeably as a unit of time
required for cryptanalysis. This unit refers to the set of operations required to
update the Draco volatile state by one clock cycle.

3 First Attack

We begin this section by making a few observations about the algebraic structure
of Draco. The first is that given access to the non-volatile state, the state update
routines during both the initialization and keystream generation phase are one-
to-one and invertible. Note that the functions f1, f2 can be written as f1(Bt) =

bt0 ⊕ st0 ⊕ dt ⊕ f ′1(B
t
) and f2(St) = st0 ⊕ f ′2(S

t
), where B

t
= [bt1, b

t
2 . . . , b

t
94] and

S
t

= [st1, s
t
2 . . . , s

t
32] are all the trailing bits of St, Bt. We present in Table 1 and

2 algorithms Init−1 and Update−1 which clocks back the state registers by one
round during the initialization and keystream generation phases respectively.

Note that during Phase 3, when the cipher starts producing keystream bits
the value dt is always calculated as kt mod 32 ⊕ xt mod 97. This sequence dt plays
a major role in updating the volatile 128-bit internal state of the stream cipher,
i.e. the state contained in the two NFSRs. We make the following observations:

Observation 1 The sequence dt is periodic with period equal to 3104. This is
easy to see since the key bits and augmented IV bits repeat in cycles of 32 and
97 respectively. Since 32 ∗ 97 = 3104, after 3104 cycles the key and IV bits get
synced again. Consider some τ ≡ 0 mod 3104. Then we have

dτ+i =


k0 if i = 0
ki ⊕ vi−1 if i ∈ {1, 2, 3, . . . , 31}
ki−32 ⊕ vi−1 if i ∈ {32, 33, 34, . . . , 63}
ki−64 ⊕ vi−1 if i ∈ {64, 65, 66, . . . , 95}
k0 ⊕ v95 if i = 96

Consider an initial vector IV ∗ of the form

IV ∗ = k1, k2, . . . , k31 || k0, k1, . . . , k31 || k0, k1, . . . , k31 || k0,



Algorithm Init−1

1. Input: St, Bt: The NFSR states at time t

2. Input: k0, k1, . . . , k31, v0, v1, . . . , v95: The non-volatile state

3. Output: St−1, Bt−1: The NFSR states at time t− 1

• s← st32, b← bt94.

• Note that B
t−1

= (bt0, b
t
1 . . . , b

t
93), S

t−1
= (st0, s

t
1 . . . , s

t
31)

• Compute dt−1 from the non-volatile state.

• Compute ẑ from B
t−1

, S
t−1

.

• ŝ = s⊕ f ′2(S
t−1

)⊕ ẑ, b̂ = b⊕ f ′1(B
t−1

)⊕ ŝ⊕ ẑ ⊕ dt−1

• St−1 ← (ŝ, st0, s
t
1 . . . , s

t
31), Bt−1 ← (b̂, bt0, b

t
1 . . . , b

t
93)

• Return St−1, Bt−1

Table 1: Algorithm Init−1 inverts one initialization round

Algorithm Update−1

1. Input: St, Bt: The NFSR states at time t

2. Input: k0, k1, . . . , k31, v0, v1, . . . , v95: The non-volatile state

3. Output: St−1, Bt−1: The NFSR states at time t− 1

• s← st32, b← bt94.

• Note that B
t−1

= (bt0, b
t
1 . . . , b

t
93), S

t−1
= (st0, s

t
1 . . . , s

t
31)

• Compute dt−1 from the non-volatile state.

• ŝ = s⊕ f ′2(S
t−1

), b̂ = b⊕ f ′1(B
t−1

)⊕ ŝ⊕ dt−1

• St−1 ← (ŝ, st0, s
t
1 . . . , s

t
31), Bt−1 ← (b̂, bt0, b

t
1 . . . , b

t
93)

• Return St−1, Bt−1

Table 2: Algorithm Update−1 inverts one round during keystream generation
phase



or in other words IV ∗ = (κ||κ||κ) ≪ 1, where κ = k0, k1, . . . , k31. For such an
IV it is not too difficult to see that the 96-bit sequence dτ+1, dτ+2, . . . , dτ+96 =
096, ∀τ ≡ 0 mod 3104.

The above observation is significant since it shows us that for every 32 bit key
prefix there exists one IV so that the contribution of the non-volatile state to the
update function of the volatile internal state is 0 for 96 consecutive cycles. Once
this happens, (a) the state update function and (b) the keystream produced
by the cipher in these 96 consecutive cycles, i.e. τ + 1 to τ + 96 is completely
independent of the non-volatile state.

For the next three cycles τ +{97, 98, 99}, although the state update becomes
once again dependent on the non-volatile state, the keystream bits produced in
these cycles are still independent. This is because bt92 is the highest tap location
in NFSR1 that is input to the output filter function. Since dτ+96 = 0, all state
bits at τ + 97 are independent of the non-volatile state and so is the keystream
bit. At τ + {98, 99}, the non-volatile state affects the register locations 94 and
{93, 94} respectively of NFSR1, and so the keystream bit is still independent of
the non-volatile state.

This gives rise to a set of weak configurations in the cipher which can be
exploited in the following way.

Offline Stage In the offline stage, the attacker tries to form a table containing
tuples [State, Keystream] for cipher states in the weak configuration described
above. More formally the steps can be described thus:

1. For i = 1 to N do the following:

– Select Statei
R←− {0, 1}128 randomly.

– Assume Statei is the volatile internal state of Draco with dt = 0 for 96
consecutive cycles.

– Generate the 99 bit keystream vector Zi for Statei.
– Store Statei in a hash table Tab indexed by Zi.

2. End for

Note that if N > 299, then whp, there will be multiple state vectors that produce
the same 99 bit keystream segment. Hence the table cells should be equipped
to accommodate multiple state vectors. The total time complexity required to
generate the table is around P = 99 ·N Draco rounds. This is typically less than
N Draco encryptions. The total memory complexity is 128 · N bits. By stan-
dard randomness assumptions, we can assume that the N states are distributed
uniformly among the 299 table entries, and so each table cell has on average
J = N · 2−99 state vectors.

Online Stage In the online, stage the attacker queries 232 IVs, where each IV
is of the form (V ||V ||V ) ≪ 1, ∀ V ∈ {0, 1}32. Note that when V = κ, then
there will several instances during the keystream generation phase when dt = 0
for 96 consecutive cycles. In fact this will happen whenever t = τ ≡ 0 mod 3104.



Since we are allowed to extract 232 keystream bits from every key-IV pair, such

instances will occur around U = 232

3104 ≈ 220.4 times.
However the attacker naturally does not know the exact value of κ before-

hand. So for each IV of form (V ||V ||V ) ≪ 1 the attacker does the following. For
all τ ≡ 0 mod 3104, the attacker takes the keystream vector Z = [zτ+1, zτ+2,
. . . , zτ+99] and tries to locate the corresponding entry in the table Tab. In other
words he proceeds under the assumption that the keystream was produced by
the cipher in a weak configuration, i.e. he assumes that the value of V is in-
deed equal to κ. For all the states Stj found in the Z entry of Tab, the attacker
takes the state vector and computes few more keystream bits ẑτ+100+w, (for
w = 0, 1, 2 . . .) using Stj and the assumed non-volatile state V, (V ||V ||V ) ≪ 1,
and compares them with the keystream bits zτ+100+w obtained from the key-IV
query. More often than not after a few iterations some computed keystream bit
and keystream bit obtained from query will not match and the attacker can
discard the state.

However when V = κ, then the attacker may actually find a state stored in
Tab after querying it with one of the keystream segments Z. When this happens,
each successive computed keystream bit and keystream bit obtained from query
will be always equal. The attacker then clocks the state back to the beginning
of the key-IV loading phase, i.e. he finds B0, S0 using repeated executions of the
algorithms in tables 1 and 2, using non-volatile internal state is V, (V ||V ||V ) ≪
1. Then it can be easily seen that [b00⊕1, b01, b

0
2, . . . , b

0
94, s

0
0, s

0
1, . . . , s

0
32] is a reveals

the secret key K.
More formally the algorithm can be presented as follows. First the attacker

queries all 232 IVs of the form (V ||V ||V ) ≪ 1. For each IV he does the following:

1. Assume non-volatile state is A = (V, (V ||V ||V ) ≪ 1)
2. For all τ ≡ 0 mod 3104 (there are U = 220.4 iterations here):

– Denote Z = [zτ+1, zτ+2, . . . , zτ+99]
– Find all the states stored in Tab[Z].
– For each such state Stj
→ Set w ← 0
→ Do the following

• Compute the keystream ẑτ+100+w using Stj , A
• If ẑτ+100+w 6= zτ+100+w discard and exit the do loop.
• Else update w ← w + 1
• If w is sufficiently large, then St∗ = Stj is the correct candidate.
• If so exit the all loops and goto step 4.

3. End for
4. Clock back St∗ to get the state B0, S0 at the beginning of key-IV loading.
5. Return K = [b00 ⊕ 1, b01, b

0
2, . . . , b

0
94, s

0
0, s

0
1, . . . , s

0
32]

The above algorithm is guaranteed to succeed whp, if when V = κ, there is a
collision between one of the register states encountered during the production of
232 keystream bits and the states stored in Tab. We encounter around U ≈ 220.4

internal states during the keystream generation, whereas N state vectors are



stored in the table. By standard birthday assumptions, we will get a collision
with high probability when N · U = 2128, i.e. we need N ≈ 2107.6.

The total complexity of the online phase is determined by the number of
Draco rounds required to eliminate all candidate states. Note that for each IV,
we generate 220.4 · J = 220.4 · N · 2−99 ≈ 220.4−99+107.6 = 229 internal states
on average. And so the total number of internal states extracted from the table,
during the course of the entire online phase, is around 229+32 = 261. By standard
randomness assumptions, half of them get eliminated after 1 iteration, 1

4 after 2
iterations, 1

8 after 3 iterations etc. Hence the total number of iterations required
to eliminate all incorrect candidate internal states is given by

61∑
i=1

i · 2−i · 261 ≈ 262

A correct internal state is therefore obtained, when it does not get eliminated
after sufficiently many iterations (i.e. some integer higher than 61, say ≈ 100).
After recovering the correct state we have to clock the cipher back to the key-IV
loading stage. This requires a maximum of 232 + 512 inverse Draco iterations.
Assuming that one forward and inverse iteration take the same time to compute,
the total complexity of the online stage is given as T = 262 + 232 + 512 ≈ 262

Draco iterations. The total time complexity of the online and offline stages is
given by P+T = 99 ·N+T ≈ 2114.2 iterations of Draco. The memory complexity
is M = 128 ·N ≈ 2114.6 bits.

4 Second Attack

In the first attack we banked on the fact that if the attacker queried the cor-
rect IV, then he would be able to encounter states which can update itself and
produce keystream bits without any contribution from the non-volatile internal
state. In the second attack the idea is to store more tables in the offline stage,
ideally one for every 32-bit key prefix.

Before we look at the attack formally, let us look at it informally. Let’s say
that the IV is fixed to 096. In that case the non-volatile state effectively only
contains the 32-bit key prefix. For all 32-bit key prefixes k, the attacker could
take around 296−D (for some integer D) randomly chosen internal states St and
generate 128 bit keystream bit vector Z from it. As before store Tabk[Z] = St.
The total time complexity of this phase 232·296−D·128 = 2135−D Draco iterations,
and so is the total memory complexity.

In the online stage the attacker requests keystream for the all zero IV. For
each 128-bit keystream segment so obtained (there are a total of 232 − 128 of
them), the attacker will then try to locate the internal state in each of the
232 tables. Note that, as before, each incorrect internal state so obtained can
be eliminated by computing a few more keystream bits and comparing with
the keystream bits obtained from the oracle. Again, as before, if the state does
not get eliminated after sufficiently many iterations, it can be considered to be



correct. We then clock it back to the key-IV loading stage to recover the key.
For the attack to succeed whp, by standard randomness assumptions, we need
(232 − 128) · 296−D = 2128. In other words, we need D ≈ 0 for which the offline
complexity alone becomes 2135 Draco iterations. Although one Draco iteration
takes time much less than one encryption, 2135 Draco iterations is very close to
the complexity of exhaustive search.

4.1 Query more IVs

Although we did not compute the online complexity above, it is much less than
the offline complexity. This is easy to see since, for every keystream segment, we
generate 232 states (one from each of the 232 tables) and so the total number of
states generated is 232 · (232 − 128) ≈ 264. We have already seen that we need

only around
∑64
i=1 i ·264−i ≈ 265 Draco iterations to eliminate all of them. Now if

we generated more internal states in the online stage, simply by querying more
IVs, we may be able to make the attack work for larger D, and at the same time
not increase the online complexity too much.

Let us say we take 2E initial vectors of the form 096−E ||e, where e ∈ {0, 1}E ,
i.e. vi = 0 for all i < 96 − E. Now consider the value of dt = kt mod 32 ⊕
xi mod 97 during the keystream generation phase in each cycle of 97 iterations.
Consider some λ ≡ 0 mod 97. Then it can be seen that the (97−E)-bit sequence
dλ, dλ+1, . . . , dλ+96−E does not depend on the last E bits of the IV. This is
because (a) dλ = kλ mod 32⊕x0 = kλ mod 32, and (b) for all other i ∈ [1, 96−E],
we have

dλ+i = kλ+i mod 32 ⊕ xλ+i mod 97 = kλ+i mod 32 ⊕ xi mod 97

= kλ+i mod 32 ⊕ vi−1 mod 97 = kλ+i mod 32

This implies that for all such IVs the state update function (and hence the
keystream bit) for 97 − E consecutive cycles depends only on the key-prefix.
By arguments similar to those presented in Section 3, we can deduce that the
keystream bits in the next 3 cycles are also independent of the last E bits of
the initial vector and dependent only on the key prefix and the register state.
Therefore if the initial vectors are of the form 096−E ||e, then in every cycle of 97
iterations, a total of min(97, 100 − E) keystream bits depends only on the key
and register state. If E ≥ 3, then this figure is exactly 100−E. This again gives
rise to a set of weak configurations, which we exploit in the following way.

Offline Stage In the offline stage, the attacker tries to form tables for each
32-bit key prefix k. So for each k ∈ {0, 1}32 the attacker does the following:

1. Choose some integers D and E ≥ 3.
2. For i = 1 to 296−D do the following:

– Select Statei
R←− {0, 1}128 randomly.

– Assume Statei is the volatile internal state of Draco for some IV ∈
096−E ||e



– Generate the (100− E)-bit keystream vector Zi for Statei.

– Store Statei in a hash table Tabk indexed by Zi.

3. End for

Again if 96−D > 100−E, each table cell may need to accommodate multiple
internal states, and each table cell will on average have J1 = 296−D−100+E =
2E−D−4 state vectors. The total offline time complexity is P1 = 232 · 296−D ·
(100 − E) = (100 − E) · 2128−D number of Draco rounds. The total memory
complexity is M1 = 232 · 296−D · 128 = 2135−D bits.

Online Stage The algorithm in the online stage is similar to the previous
attack. Now the attacker queries 2E IVs, where each IV is of the form 096−E ||e.
For each IV, and for each λ ≡ 0 mod 97, the attacker extracts the keystream
vector Z = [zλ, zλ+1, . . . , zλ+99−E ], the attacker tries to locate Z in each of the
232 tables constructed in the offline phase. Since the number of keystream bits

per key-IV pair is limited to 232, there are U1 = 232

97 ≈ 225.4 keystream segments
for every IV.

Given any fixed IV, for each keystream segment Z the attacker gets J1 =
2E−D−4 states from each table Tabk, and so around U1 ·232+E−D−4 = 253.4+E−D

states are generated from all the tables and from all the keystream segments. As
before each incorrect internal state so obtained can be eliminated by computing
a few more keystream bits and comparing with the keystream bits obtained from
the oracle. If the state does not get eliminated after sufficiently many iterations,
it can be considered to be correct. We then clock it back to the key-IV loading
stage to recover the key. We state the algorithm formally here. First the attacker
queries all 2E IVs of the form 096−E ||e. For each IV he does the following:

1. For all λ ≡ 0 mod 97 (there are U1 = 225.4 iterations here):

– Denote Z = [zλ+1, zλ+2, . . . , zλ+99−E ]

– For all k ∈ {0, 1}32
A: Find all the states stored in Tabk[Z].
B: For each such state Stj
→ Set w ← 0
→ Do the following

• Non-volatile state is A1 = (k, 096−E ||e)
• Compute the keystream ẑλ+99−E+w using Stj , A1

• If ẑλ+99−E+w 6= zλ+99−E+w discard and exit the do loop.
• Else update w ← w + 1
• If w is sufficiently large, St∗ = Stj is the correct candidate.
• If so exit the all loops and goto step 3.

2. End for

3. Clock back St∗ to get the state B0, S0 at the beginning of key-IV loading.

4. Return K = [b00 ⊕ 1, b01, b
0
2, . . . , b

0
94, s

0
0, s

0
1, . . . , s

0
32]



Complexity Estimation To estimate the complexity, let us look at a few
details regarding the state update function of Draco. We have already seen that
when queried with an IV of the form 096−E ||e, at all λ ≡ 0 mod 97 in the
keystream phase, the state update is determined the dλ, dλ+1, . . . sequence which
happens to be kλ||kλ|| · · · where kλ := kλ mod 32, kλ+1 mod 32, . . . , kλ+31 mod 32 =
(k0, k1, . . . , k31) ≪ (λ mod 32). Thus during the course of keystream generation
kλ can take 32 values depending on the residue λ mod 32. In the offline phase we
have constructed tables for all possible keystream prefixes. In the online phase
our goal is to find a collision in one of these 32 tables Tabkλ

.

Let us suppose we want a collision for some λ = λ∗. Whatever be the value
of the unknown 32-bit key prefix, the value of kλ equals kλ∗ exactly when the
following system of modular equations are simultaneously satisfied:

λ ≡ 0 mod 97

λ ≡ λ∗ mod 32
(1)

By Chinese remainder theorem, we know that the above always has a unique
solution mod 3104. Thus for any single IV we would be encountering kλ∗ a total

of U2 = 232

3104 ≈ 220.4 times. For 2E initial vectors, this figure is 2E ·U2 = 220.4+E .
Thus in the online phase we generate 220.4+E states corresponding to the Tabkλ∗

table. Since Tabkλ∗ has 296−D states stored in it, this algorithm is guaranteed
to succeed whp, when 220.4+E · 296−D = 2128, i.e. we need E −D > 11.6.

The total complexity of the online phase is determined by the number of
Draco rounds required to eliminate all candidate states. We have seen that for
each IV, we generate 253.4+E−D internal states on average. And so the total num-
ber of internal states extracted from the tables, during the course of the entire
online phase, is around 253.4+E−D+E = 253.4+2E−D. By arguments introduced
in the previous section, the total number of iterations required to eliminate all
incorrect candidate internal states is given by

d53.4+2E−De∑
i=1

i · 2−i · 253.4+2E−D ≈ 254.4+2E−D

After recovering the correct state we have to clock the cipher back to the key-
IV loading stage. This requires a maximum of 232 +512 inverse Draco iterations.
Thus the total complexity of the online stage is given as T1 = 254.4+2E−D+232+
512 Draco iterations.

We need to choose D,E judiciously to balance attack complexities. For ex-
ample, D = 28, E = 40 seems to balance the online and offline complexities:
we get P1 = 2105.9, T1 = 2106.4 iterations of Draco and the memory complexity
is M1 = 2107 bits. The total attack complexity is therefore P1 + T1 ≈ 2107.1.
However this requires keystream bits from 240 IVs. If we want to limit the total
number of different IVs to 220 say, we can choose D = 8, E = 20 for which we
get P1 = 2126.3, T1 = 286.4 iterations of Draco and the memory complexity is
M1 = 2127 bits.



5 Conclusion

In this paper, we look at the security of the stream cipher Draco. Although
the cipher comes with provable security against TMD attacks, we introduce two
different flavors of chosen IV attacks, both of which seem to disprove the security
claims. Both attacks leverage the fact that for certain judiciously chosen IVs the
state update function of the cipher depend on only a small fraction of the non-
volatile internal state. In order to be secure the design should probably correct
these flaws.
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