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Abstract. We revisit and improve performance of arithmetic in the bi-
nary GLS254 curve by introducing the 2DT-GLS scalar multiplication
algorithm. The algorithm includes theoretical and practice-oriented con-
tributions of potential independent interest: (i) for the first time, a proof
that the GLS scalar multiplication algorithm does not incur exceptions,
such that faster incomplete formulas can be used; (ii) faster dedicated
atomic formulas that alleviate the cost of precomputation; (iii) a table
compression technique that reduces the storage needed for precomputed
points; (iv) a refined constant-time scalar decomposition algorithm that
is more robust to rounding. We also present the first GLS254 implemen-
tation for Armv8. With our contributions, we set new speed records for
constant-time scalar multiplication by 34.5% and 6% on 64-bit Arm and
Intel platforms, respectively.
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1 Introduction

Elliptic Curve Cryptography (ECC) has become the de facto standard for in-
stantiating public key cryptography, with security based on the conjectured-as-
exponential hardness of solving discrete logarithms over elliptic curve groups
(ECDLP problem). Scalar multiplication, in particular for the unknown point
scenario, is the most expensive operation in cryptographic protocols with secu-
rity guarantees based on the ECDLP. Since its introduction in 1985, there was
plenty of research in finding efficient and secure implementation strategies, and
choosing optimal parameters to improve performance [2,23,5].

An early milestone in this research was the idea due to Gallant-Lambert-
Vanstone (GLV) [13] of exploiting efficient endomorphisms to accelerate scalar
multiplication. In the large characteristic case with the curve E : y2 = x3+ b de-
fined over Fp for prime p, it initially manifested as evaluating ψ : (x, y)→ (βx, y)
for β a non-trivial cube root of unity. The technique was later generalized to
Galbraith–Lin–Scott (GLS) curves defined over Fp2 , and to exploit two or more
endomorphisms as in the FourQ curve [27] and the genus-2 case [4]. In the char-
acteristic 2 case, Koblitz curves are the classical example of curves equipped with
endomorphisms [32]; a class later extended to include binary GLS curves [16].

Beyond performance, implementation security is also relevant, especially on
embedded targets where side-channel attacks are more feasible. The classical
countermeasure against these attacks is to formulate the arithmetic in a regular
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way, such as constant-time implementation against timing attacks. This trans-
lates to removing secret-dependent branches and memory accesses, and employ-
ing complete point addition formulas without corner cases [33]. In the case of
exploiting endomorphisms, additional care needs to be taken for a correct and
secure implementation, such as using the GLV-SAC recoding technique [10] or by
explicitly proving correctness of the specific scalar multiplication algorithm [9,5].

In this paper, we revisit the implementation of scalar multiplication in binary
GLS curves at the 128-bit security level by improving efficiency and correctness
of implementations of the GLS254 curve. Our contributions are:

– A variant of the GLS scalar multiplication algorithm that changes the com-
putation/storage trade-off to use a 2D table. The resulting 2DT algorithm
spends more precomputation to reduce point additions in the main loop.

– The first proof of correctness for the GLS scalar multiplication algorithm
with the λ-projective group law from [31]. We show that there are no corner
cases in the main loop of the algorithm (with exception of possibly the last
iteration), which enables the use of faster incomplete formulas.

– Faster dedicated formulas to reduce the cost of precomputation, and a table
compression technique that exploits the endomorphism to reduce storage.

– A refined scalar decomposition algorithm that can be easily implemented in
constant time. The algorithm has robust parity and length guarantees that
fill some gaps in previous works [31].

– An efficient formulation of arithmetic in F2254 targeting Arm processors. The
field arithmetic uses the interleaved representation proposed in the CHES’16
Rump Session [30]. We take the opportunity to include this formulation in
the formal research literature, initially presented informally. Furthermore,
this also closes affirmatively a question posed in [21] about the efficiency of
binary curves in Armv8 processors, deemed “unclear”.

With these contributions, we obtain speed records in the 64-bit Armv8 and
Intel platforms, improving on previous results by 34.5% and 6%, respectively.
While the latter speedup may seem small, we remark that it comes after decades
of successful research in improving performance of ECC, so diminishing returns
are expected. Due to the upcoming move to post-quantum cryptography, these
techniques could be of limited practicality, but we believe they are relevant for
applications not necessarily needing long-term security and involving the com-
putation of many scalar multiplications, such as private set intersection proto-
cols [34]. The proof and table compression technique may find further application
in accelerating GLV/GLS scalar multiplication in pairing-based cryptography.

The rest of the document is organized as follows. Section 1 discusses pre-
liminaries on binary GLS curves and their efficient implementation. Section 3
introduces the 2DT-GLS algorithm and its correctness proof. Section 4 pushes
these ideas further by presenting the scalar decomposition algorithm, followed
by dedicated formulas in Section 5. Section 6 discusses the implementation of
field arithmetic in Armv8, with experimental results in Section 7. The interested
reader will also find a treatment of point compression for binary GLS curves in
the Appendix, together with formulas that did not fit in the main body.
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2 Preliminaries

An ordinary binary elliptic curve in Weierstrass form is defined as

E/Fq : y2 + xy = x3 + ax2 + b (1)

with q = 2m and coefficients a, b ∈ Fq, b ̸= 0. For any extension field Fqk ,
the points P = (x, y) ∈ Fqk × Fqk that satisfy the equation form an abelian
group Ea,b(Fqk) together with a point at infinity ∞, which acts as the identity.
The group law is denoted with additive notation P + Q, such that the scalar
multiplication operation is written as kP .

2.1 Binary GLS curves

In the interest of defining notation for later use, we briefly summarize the theory
of binary GLS curves from [16].

Let E be an ordinary binary curve as defined previously. From Hasse’s the-
orem, #E(Fq) = q + 1 − t for some trace t satisfying |t| ≤ 2

√
q. Pick some

a′ ∈ Fq2 with Tr′(a′) = 1, where Tr′ is the field trace from Fq2 to F2 defined as

Tr′(c) =
∑2m−1
i=0 c2

i

. It can be shown that E′ = Ea′,b is the quadratic twist of E
over Fq2 with #E′(Fq2) = (q − 1)2 + t2, and that E and E′ are isomorphic over
Fq4 under an involutive twisting isomorphism ϕ.

An endomorphism ψ over Fq2 can be constructed for E′ by composing ϕ
with the q-power Frobenius map π as ψ = ϕπϕ−1. Evaluating ψ over points
P ∈ E′(Fq2) only requires field additions [31].

The curve E′ would in this scenario be referred to as a binary GLS curve.
Assume #E′(Fq2) = hr where h is a small cofactor and r is prime. Let G be the
unique order-r subgroup E′(Fq2)[r]. Then ψ restricted to G has an eigenvalue µ ∈
Z so that for P ∈ G, ψ(P ) = µP . The eigenvalue satisfies that µ2 = −1 mod r.

2.2 λ-projective coordinates for GLS scalar multiplication

In [31], Oliveira et al. introduced the λ-projective coordinate system. To date,
it is empirically the most efficient point representation for binary elliptic curves.
Given an affine point P = (x, y) with x ̸= 0, its λ-affine representation is (x, λ)
with λ = x+ y

x . In λ-projective coordinates, the affine point can be represented by
any triple (X,Λ,Z) with X = xZ, Λ = λZ and Z ̸= 0. The point at infinity can
now be represented as∞ = (1, 1, 0). The curve equation in (1) is correspondingly
transformed to

(Λ2 + ΛZ + aZ2)X2 = X4 + bZ4. (2)

The constant-time binary GLS scalar multiplication algorithm from [31] is
included in Algorithm 1. It is a constant-time left-to-right double-and-add algo-
rithm using λ-projective coordinates, combining the Joye-Tunstall regular recod-
ing algorithm [20] with the GLV interleaving technique. For the GLV method,
the scalar k is decomposed into two subscalars k1, k2 such that k ≡ k1 + k2µ
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Algorithm 1: Constant-time scalar multiplication (Oliveira et al. [31])

Input: P ∈ G in λ-affine coordinates, k ∈ [1, r − 1], window size w
Output: kP in λ-affine coordinates

1 Decompose k into subscalars k1, k2.
2 cj ← 1− (kj mod 2) for j = 1, 2.
3 kj ← kj + cj
4 ℓ← ⌈ m

w−1
⌉

5 Compute width-w length-ℓ odd signed regular recoding k1, k2 of k1, k2.
6 Compute T [i] = (2i+ 1)P for all odd i ∈ {0, . . . , 2w−2 − 1}.
7 Convert T to λ-affine coordinates using a simultaneous inversion.

8 Perform a linear pass over T to recover Pj,ℓ−1 = kj,ℓ−1P for j = 1, 2.
9 Q← P1,ℓ−1 + ψ(P2,ℓ−1)

10 for i from ℓ− 2 downto 0 do
11 Q← 2w−2Q

12 Perform a linear pass over T to recover Pj,i = kj,iP for j = 1, 2.
13 Q← 2Q+ P1,i + ψ(P2,j)

14 Q← Q− c1P − c2ψ(P )
15 Convert Q to λ-affine coordinates.
16 return Q;

(mod r) and the subscalars are of roughly half the length of k. The two smaller
scalar multiplications can then be computed in an interleaved fashion to save
half of the point doublings.

The Joye-Tunstall regular recoding algorithm ensures the regular form of
the algorithm and allows for a width-w windowing strategy. Specifically, the
subscalars are recoded into ℓ = ⌈m/(w−1)⌉ odd signed digits of w−1 bits using
Algorithm 6 from [9] (which is a constant-length modification of Algorithm 6
from [20]). By initially computing a table T [i] = (2i+ 1)P for all positive digits
(in a phase known as the precomputation), the main loop can process the scalars
one digit at a time, reducing the number of iterations by a factor w − 1. To be
resistant against (cache-)timing attacks, each lookup requires a linear pass over
the entire table, and there can be no branches dependent on cj , kj . An additional
consideration is that the regular recoding algorithm requires the subscalars to
be odd. To ensure this, the subscalars are modified to be odd in line 3, and at
the end the result is corrected at the cost of two point additions.

However, both [31] and the subsequent [30] suffer from a lack of rigor. First
and foremost, no proof has been presented for correctness of the scalar multipli-
cation algorithm. The λ-projective group law formulas are incomplete, so it could
potentially fail in corner cases. It also relies on ad-hoc tricks for constant-time
scalar decomposition, with no proof of correctness or length guarantees.

2.3 GLS254 and the choice of parameters

Previous works have benchmarked their implementation of scalar multiplications
over a GLS curve specially crafted for efficiency at the 128-bit security level. For
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the GLS254 curve, one choosesm = 127, such that the base field can be defined as
Fq ≡ F2[z]/(z

127+z63+1) and its quadratic extension as Fq2 ≡ Fq[u]/(u2+u+1).
The curve coefficients should be chosen to have minimal Hamming weight such
that multiplying by them is as efficient as possible. We performed a parameter
search that reproduced the curve chosen at [30]. By fixing a′ = u and searching
for the shortest b = (zi + 1) such that the curve has order 2r for prime r, we
were able to confirm that i = 27 is the smallest choice, giving a 254-bit r. This
means that a multiplication by b can be computed with a single shifted addition.

To protect against Weil descent and generalized Gaudry-Hess-Smart (gGHS)
attacks [14,18], several precautions must be taken. We pick m to be prime,
as is the case for GLS254. In addition, the choice of b must be verified to
not allow the attack, which happens with negligibly small probability for ran-
dom b [16]. We used the MAGMA implementation of [7] available at https:
//github.com/JJChiDguez/gGHS-check to clear our particular choice. This par-
ticular check, together with the curve generation method geared towards effi-
ciency, satisfies rigidity concerns [3]. We stress that the ECDLP in binary curves
remains infeasible for the parameter range used in this work [11].

3 Scalar multiplication in GLS curves

In this section, we begin by presenting a new scalar multiplication variant for
binary GLS curves. It combines the Shamir-Straus’ trick [8] for multiple scalar
multiplication with a new table compression technique using the GLS endomor-
phism. We refer to it as the 2DT variant because it builds a two-dimensional
table T [i, j] = iP + jψ(P ) instead of T [i] = iP . Then, in Subsection 3.2, we
prove that the GLS scalar multiplication algorithms are exception-free.

3.1 The 2DT variant

As in some fast variants of the Shamir-Straus’ trick [8] for multiple scalar mul-
tiplication, the idea is to precompute T [i, j] = iP + jψ(P ) for odd i, j. In the
scalar multiplication loop, we then save roughly one point addition per iteration
of the main loop by computing 2Q+ T [i, j] instead of 2Q+ T [i] + ψ(T [j]).

This method was previously deemed noncompetitive due to the blowup in the
size of the table. Because the subscalar regular recoding uses signed digits, we
need to efficiently retrieve s1iP+s2jψ(P ) for any i, j ∈ {1, ..., 2w−1−1} and sign
combination s1, s2 ∈ {±1}. The standard approach would be to build a table of
iP±jψ(P ) and then use conditional negations to get the two other combinations.
The 2D table would then store 22(w−2)+1 points. Even with specialized formulas
for the precomputation, the cost in terms of storage and field operations is too
high compared to the conventional 1DT algorithm.

The crucial new observation is that the efficiently computable GLS endo-
morphism ψ can also be used to compress the 2D table by a factor of 2. As
ψ2(P ) = −P for any P ∈ G, we obtain the identity

−ψ(T [j, i]) = iP − jψ(P ).

https://github.com/JJChiDguez/gGHS-check
https://github.com/JJChiDguez/gGHS-check
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It implies that we can generate all combinations from a table that only stores
iP + jψ(P ) for positive i, j. The rest of the combinations can be efficiently
retrieved using conditional negations and conditional applications of ψ.

This compression trick not only halve the amount of precomputation needed,
but also halves the time needed to do a linear pass through the table in the
main loop. With new specialized group law formulas for the precomputation
(see Section 5), the 2DT algorithm is able to compete for the constant-time
scalar multiplication speed record (see Section 7). The 2DT variant is presented
in Algorithm 2. For w = 2, the only difference is that a complete formula must
be used for 2Q+ P1 at i = 1 as well.

Algorithm 2: Constant-time 2DT scalar multiplication

Input: P ∈ G in λ-affine coordinates, k ∈ [1, r − 1], window size w > 2
Output: kP in λ-affine coordinates

1 Decompose k into odd subscalars k1, k2 using Algorithm 3.
2 ℓ← ⌈m+1

w−1
⌉

3 Compute width-w length-ℓ odd signed regular recoding k1, k2 of k1, k2.

4 Compute T [i, j] = (2i+1)P + (2j +1)ψ(P ) for all odd i, j ∈ {0, . . . , 2w−2 − 1}.
5 Convert T to λ-affine coordinates using a simultaneous inversion.

6 Perform a linear pass over T to recover Pℓ−1 = k1,ℓ−1P + k2,l−1ψ(P )
7 Q← Pℓ−1

8 for i from ℓ− 2 downto 1 do
9 Q← 2w−2Q

10 Perform a linear pass over T to recover Pi = k1,iP + k2,iψ(P )
11 Q← 2Q+ Pi

12 Repeat the steps for i = 0, but use a complete formula for 2Q+ P0.
13 Convert Q to λ-affine coordinates.
14 return Q;

3.2 Proof of exception-free scalar multiplication

We will now prove that the scalar multiplication algorithms presented here and
in [31] (with a minor modification) is correct on all valid inputs. The core issue is
that the underlying λ-projective group law formulas from [31] are not complete,
meaning that they output the wrong result in some corner cases. Without these
exceptions, correctness would be trivial.

One could explicitly handle these exceptions in constant time using complete
formulas, but this would come at a high performance cost. Here, we prove that
exceptional cases can only occur in the last iteration(s) of the main loop. By
using complete formulas at the very end, correctness is ensured at only a minor
performance penalty.

For clarity, the proof will be tailored to the 2DT algorithm. However, it
can be easily adapted to the 1DT algorithm. The proof can be seen as a two-
dimensional extension of the argument from Proposition 1 in [5]. We will for
now assume that the scalar decomposition produces subscalars of bit-length at
most m + 1, and defer the discussion about how to achieve this to Section 4.
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The proof crucially relies on the structure of the lattice discussed in [13,12] that
emerge in the GLV method for scalar decomposition;

L = {(x, y) ∈ Z2 : x+ yµ ≡ 0 (mod r)}.

Here r is the large prime order of #E′(Fq2) = hr and µ the eigenvalue of ψ
restricted to G. For our purposes, it is very useful to think about L as the lattice
of decompositions of zero (as done in [9]).

Our proof requires that the norm of the shortest non-zero vector in L is
at least (q − 1)/

√
2. The structure of L is determined by the order of E′(Fq2).

The bound required on the shortest norm might not be obtainable in general,
so we focus on the subclass of GLS curves most relevant for cryptography. As
the (affine) point (0, 0) is always in E′(Fq2), 2|h. To ensure that the discrete log
problem in G is as hard as possible, the optimal choice is to pick a curve with
h = 2, which is easy in practice. Restricting our proof to this subclass of GLS
curves, we can give an explicit solution to the SVP in L.

Lemma 1. Let q = 2m. Let E′ be a binary GLS curve with #E′(Fq2) = 2r for
an odd prime r. Let E/Fq be the curve such that E′ over Fq2 is the quadratic
twist of E(Fq2). Define

v1 =
( (q − 1) + t

2
,
(q − 1)− t

2

)
and v2 =

( (q − 1)− t
2

,
−(q − 1)− t

2

)
,

where t is the trace of the q-th power Frobenius endomorphism on E. Then v1, v2
form an orthogonal basis for the lattice L. ∥v1∥ = ∥v2∥ =

√
r = minv∈L\{0}∥v∥.

Proof. Smith gives in sections 6 and 4 of [35] the basis v′1 = (q − 1,−t), v2
for L. However it is not orthogonal and ∥v′1∥ =

√
2r. The latter follows from

#E′(Fq2) = (q−1)2+ t2 (see Theorem 2 in [12]). We make the small adjustment
of replacing v′1 with v1 = v′1 − v2. It can easily be checked that the basis v1, v2
is orthogonal and that ∥v1∥ = ∥v2∥ =

√
r. ⊓⊔

For the sake of proving scalar multiplication exception-free, the importance
of Lemma 1 is showing that the minimal norm in L is large. This is what enables
the subsequent proof to succeed. Note that we also require m to be prime, which
is needed for security reasons anyways.

Theorem 1. Let the notation be as in Lemma 1. Let m > 4 be prime and
2 ≤ w ≤ m. Then Algorithm 2 is exception-free.

Proof. Let us start by identifying the exceptional cases of the λ-projective for-
mulas. The formula for P + Q breaks down whenever P = ±Q, P = ∞ or
Q =∞. The point ∞ does not have a λ-affine representation, so these last two
cases are only a concern when the points are λ-projective. The 2P formula has
no exceptional cases. Finally, the atomic formula for 2Q+ P breaks down when
P = ±2Q or Q =∞.
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We will argue that all the exceptions that can occur in Algorithm 1 encode
an element of L. By this, we mean that they define some z1, z2 ∈ Z such that
z1P + z2ψ(P ) =∞. Then (z1, z2) ∈ L.

If (z1, z2) ̸= (0, 0), we can show that either |z1| or |z2| must be at least an
m-bit integer. v1, v2 form an orthogonal basis of L, and are both a solution to
the SVP in L with norm

√
r. Using the Hasse bound we get that ∥v1∥, ∥v2∥ ≥

(q − 1)/
√
2. Now assume for contradiction that |z1|, |z2| < q/2. Then

∥(z1, z2)∥ =
√
z21 + z22 ≤

√
2
(q
2
− 1

)2

=
q − 2√

2
< ∥v1∥, ∥v2∥.

This is a contradiction, since v1, v2 have minimal norm in L\{0}. Thus, it must
be the case that |z1| ≥ q/2 or |z2| ≥ q/2.

We now have all the tools needed to prove that no exceptions occur in Al-
gorithm 2, and we will start with the precomputation stage. Assume that an
exception did occur in the computation of iP + jψ(P ) for some odd i, j ∈
{1, . . . , 2w−1−1}. P,ψ(P ) ̸=∞, so there can only be an exception if iP = sjψ(P )
for some s ∈ {±1}. Then (i,−sj) ∈ L \ {0}. However, this is a contradiction, as
neither |i| = i nor | − sj| = j are m-bit integers.

Next is the main loop. Let Qi = z1,iP + z2,iψ(P ) denote the value of Q after
iteration i. No exception occurred in the precomputation stage, meaning Q is
correctly initialized to Qℓ−1 = k1,ℓ−1P + k2,ℓ−1ψ(P ). Then at iteration i,

Qi = (2w−1z1,i+1 + k1,i)P + (2w−1z2,i+1 + k2,i)ψ(P ).

Observe that as long as no exceptions occur, we have the invariant that

0 < |zj,i+1| ≤ |zj,i| ≤ 2(ℓ−i)(w−1) − 1 for j = 1, 2.

Assume the first exception occurs at iteration i. The w − 2 doublings are
exception-free, so the exception must have been caused by the computation of
2Qi+1 +Pi. Qi+1 cannot have been ∞. This is because 2Q ̸=∞ for any Q ̸=∞
and the incomplete 2Q+P formula does not output∞ for any P,Q on the curve.
Hence, the first exception must have occurred because 2w−1Qi+1 = sPi for an
s ∈ {±1}. This is equivalent to

(2w−1z1,i+1 − sk1,i)P + (2w−1z2,i+1 − sk2,i)ψ(P ) =∞

Define z′j,i = 2w−1zj,i+1 − skj,i. Notice that −skj,i is a valid digit of the regular
recoding. The invariants for |zj,i| also hold for |z′j,i|. Hence, (z′1,i, z

′
2,i) ∈ L\ {0}.

Since m is prime, it holds for all 2 ≤ w ≤ m that

2(⌈
m

w−1 ⌉−1)(w−1) − 1 ≤ 2(
m

w−1+
w−2
w−1−1)(w−1) − 1 = 2m−1 − 1

This means that |z′1,i| and |z′2,i| are of at most m−1 bits while i ≥ ℓ−⌈ m
w−1⌉+1.

The implication is that the first exception could not have occurred in these
iterations, so we must have that i ≤ ℓ− ⌈ m

w−1⌉.
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For w = 2, this means that i ≤ 1. For all other w, this means that i = 0. But
these are exactly the iterations that use a complete formula for the computation
of 2Qi+1 + Pi for the respective values of w. Thus, it is impossible for the first
exception to occur in these last iterations. The conclusion is that there can be
no exception in the main loop. ⊓⊔

4 Scalar decomposition with parity and length guarantees

The GLV method for scalar decomposition needs a bit of care when required to
run in constant-time while preserving length guarantees. The GLV method uses
a reduced basis {u1, u2} of some sublattice L′ of L (see Section 3.2) to solve the
CVP problem for (k, 0) in L′ using Babai rounding [13]. For a given basis, there
exist unique constants N,α1, α2 ∈ Z such that

(k, 0) = β1u1 − β2u2,

where βi =
αi

N k. The subscalars k1, k2 are then computed as

(k1, k2) = (k, 0)− b1u1 − b2u2,

where bi = ⌈βi⌋. The magnitude of the subscalars can then be bounded by some
expression depending on the norm of the basis vectors.

The issue for constant-time implementations is the computation of the bi’s.
Ideally we would compute them using divisions, but unfortunately divisions do
not run in constant time in most processors 1.

The standard solution was first introduced in [4] and further analyzed in [9].
The idea is to approximate the computation of the bi’s using integer divisions
by powers of 2, which can be implemented in constant-time using shifts. Choose
some integer d such that k < 2d, and precompute the constants ci = ⌊αi

N 2d⌉.
Then at runtime compute bi as b

′
i = ⌊ ci2d k⌋.

This approach introduces rounding errors. It was shown in Lemma 1 of [9]
that b′i will either be bi or incorrectly rounded down to bi − 1. This does not
affect the correctness of the decompositon. However, it does negatively impact
the bounds on |k1|, |k2|. If the bounds become too loose, we might need more
iterations of the main loop of the scalar multiplication to ensure correctness.

We present Algorithm 3 for constant time scalar decomposition using the
optimal basis from Lemma 1. In Lemma 2 we prove that it outputs subscalars
of at most m+1 bits. Without rounding errors it would be m, but the extra bit
does not affect the number of iterations of the main loop (see Corollary 1).

In fact, not handling rounding errors leads to more efficient scalar multipli-
cation. Using the fact that the rounding errors are one-sided, we introduce a
new trick to ensure that the k1, k2 are always odd, without affecting the length
guarantees. The two point additions needed to correct for even subscalars (see
Subsection 2.2) are no longer needed, leading to a simpler and faster algorithm.
Note that this optimization applies to both 1DT and 2DT scalar multiplication.

1 See https://www.bearssl.org/constanttime.html.

https://www.bearssl.org/constanttime.html
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Algorithm 3: Constant-time fixed-parity scalar decomposition for bi-
nary GLS curves with h = 2

Input: k ∈ [1, r − 1]
Consts.: N = #E′(Fq2), d = ⌈ 2m

W
⌉ ·W , for W the machine word size.

ci = ⌊αi
N
2d⌉ for i = 1, 2 and α1 = q − 1 + t, α2 = q − 1− t.

Output: Odd k1, k2 such that k1 + k2µ ≡ k (mod r)
1 bi ← cik ≫ d for i = 1, 2 and
2 (k1, k2)← (k, 0)− b1v1 − b2v2
3 if α1 ≡ 0 (mod 4) then (u1, u2)← (v2, v1)
4 else (u1, u2)← (v1, v2)
5 pi ← ki + 1 mod 2 for i = 1, 2
6 (k1, k2)← (k1, k2)− p1u1 − p2u2

7 return k1, k2

Lemma 2. Let the notation be as in Lemma 1 and assume that h = 2 and
m > 4. Algorithm 3 on input k ∈ [1, r − 1] outputs a valid decomposition k1, k2.
The subscalars are odd and |k1|, |k2| < 2q.

Proof. Let k1, k2 be the output of the GLV method on input k and let k′1, k
′
2 the

output of Algorithm 3. We start with correctness. Per definition, (k, 0) + L ∈
Z2/L is the set of valid decompositions of k. Algorithm 2 produces (k′1, k

′
2) by

adding integer multiples of v1 and v2 to (k, 0). Hence, (k′1, k
′
2) ∈ (k, 0) + L.

Next, let’s bound the magnitude of the subscalars. The basis vectors are
orthogonal with norm

√
r. By the same argument as in Lemma 3 of [12] it

follows that ∥(k1, k2)∥ ≤
√
r/2. To make the analysis independent of r, we can

upperbound it as r ≤ (q + 1)2/2 using the Hasse bound. Then ∥v1∥, ∥v2∥ ≤
(q + 1)/

√
2 and ∥(k1, k1)∥ ≤ (q + 1)/2.

It can be easily verified that α1, α2, N are specified such that (k, 0) = β1v1+
β2v2. Since k < r ≤ (q+1)2/2 ≤ q2 ≤ 2d, it follows from Lemma 1 of [9] that b′i
is either bi or incorrectly rounded down to bi − 1.

Let ri be the bit that is 1 if such a rounding error occurred when computing
b′i. Let si be the bit that is 1 if vi was subtracted from (k1, k2) at line 8. Then
using the triangle inequality, we can derive the bound on the subscalars.

|k′1|, |k′2| ≤ ∥(k′1, k′2)∥

=

∥∥∥∥ 2∑
i=1

(βi − (bi − ri + si))vi

∥∥∥∥
≤

∥∥∥∥ 2∑
i=1

(βi − bi)vi
∥∥∥∥+ ∥v1∥+ ∥v2∥

≤
(q + 1

2

)
+ 2

(q + 1√
2

)
< 2q (Assuming m > 4)
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Finally, we will show that k′1, k
′
2 are odd. The proof of Lemma 1 establishes

that t is odd. (q−1)+t
2 = (q−1)−t

2 + t, meaning exactly one of the the coordinates
of v1 are odd. By symmetry, only the other coordinate of v2 is odd. Because

α1 = 2
(

(q−1)+t
2

)
, α1 ≡ 0 (mod 4) exactly when the 1st coordinate of v2 is odd.

Then ui is the basis vector with the odd i-th coordinate. Subtracting (k′1, k
′
2) by

ui flips the parity of k′i but leaves the parity of the other subscalar unchanged.
pi = 1 exactly when ki is even, meaning that the subscalars output are odd. ⊓⊔

Corollary 1. Let m > 4 be a prime number. For any window size 2 < w ≤ m,
the number of digits needed to recode the subscalars output by Algorithm 3 is the
same as one would need for the subscalars output by the GLV method with no
rounding errors. For w = 2, one more digit is required.

5 New formulas for faster precomputation

The 2DT scalar multiplication variant represents a different strategy for utilizing
precomputation. The table grows quadratically faster than its 1DT counterpart,
so reducing the cost of its precomputation is crucial. For both the 1DT and 2DT
variants, we present more efficient strategies for the precomputation stage. The
2DT precomputation (Algorithm 5) uses the 1DT precomputation (Algorithm 4)
as a subroutine, which makes a case for the fairness of our optimization efforts.

The precomputation algorithms depend on several new atomic group law for-
mulas. Compared to doing the operations using the existing formulas from [31],
they provide a significant saving in the number of field multiplications and squar-
ings needed. Because these formulas are derived by combining the original group
law formulas, they do not introduce additional exceptions. The new formulas that
are nontrivial to derive are included in Appendix B. An overview of the cost of
the specialized λ-projective group law formulas is given in Table 1.

It follows from the same argument as in Theorem 1 that the new precom-
putation algorithms are exception-free. At any step we compute iP + jψ(P ) for
small coefficients i, j, where at least one of them are nonzero. Then (i,±j) /∈ L,
meaning that there cannot be any exceptions.

Algorithm 4: Precomputation-1D

Input: P ∈ G in λ-affine coordinates, window size w > 2.
Output: Table T of size 2w−2 with T [i] = (2i+ 1)P in λ-affine coordinates.

1 T [0]← P
2 T [1]← 3P
3 for i from 0 to 2w−3 − 2 do
4 T [2i+ 3], T [2i+ 2]← 2T [i+ 1]± P
5 Convert T to λ-affine coordinates using simultaneous inversion.
6 return T
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Algorithm 5: Precomputation-2D

Input: P ∈ G in λ-affine coordinates, window size w > 2.
Output: Table T of size 2w−2 × 2w−2 with T [i, j] = (2i+ 1)P + (2j + 1)ψ(P )

in λ-affine coordinates.
1 R← Precomputation-1D(P , w)
2 for i from 0 to 2w−2 − 1 do
3 T [i, i]← R[i] + ψ(R[i])

4 for j from 1 to 2w−2 − 1 do
5 Q← ψ(R[j])
6 for i from 0 to j − 1 do
7 T [i, j], T [j, i]← R[i]±Q
8 T [j, i]← ψ(T [j, i])

9 Convert T to λ-affine coordinates using simultaneous inversion.
10 return T

Table 1. Cost of the λ-projective group law formulas with respect to the num-
ber of multiplications, multiplications by curve coefficients a and b and squarings
(m̃, m̃a, m̃b, s̃) over the extension field Fq2 . For the mixed point representations, Q
is λ-projective while P , P1 and P2 are λ-affine. The formulas that have not been de-
rived or that provided insignificant speedups are marked with ’-’.

Op.\Rep. Projective Mixed Affine

2P 4m̃+ m̃a + 4s̃/3m̃+ 4m̃a + m̃b + 4s̃ - m̃+ 3s̃
3P - - 4m̃+ m̃a + 4s̃
P +Q 11m̃+ 2s̃ 8m̃+ 2s̃ 5m̃+ 2s̃
P ±Q - 12m̃+ 5s̃ 6m̃+ 4s̃
2Q+P - 10m̃+ m̃a + 6s̃ -
2Q+ P1 + P2 - 17m̃+ m̃a + 8s̃ -
P + ψ(P ) - - 3.5m̃+ 1.5s̃

6 Binary field arithmetic for Arm

This section details our Arm implementation of the GLS254 curve. The focus
will be on the field arithmetic. It was implemented specifically for the platform,
relying heavily on 128-bit Arm Neon vector instructions to achieve high perfor-
mance. The rest of the curve implementation is almost exclusively written in C,
and therefore does not differ much from the Intel implementation from [31].

Specifically, our implementation targets Armv8 AArch64, which introduces
some new useful instructions for cryptographic implementations. In particular,
we take advantage of the new PMULL vector instruction for 64-bit binary polyno-
mial multiplication, a direct analogue of PCLMULQDQ for Intel. For convenience
of implementation, we use C intrinsics for the Arm Neon vector instructions.

This section first details the implementation of the base field Fq with q = 2m

and m = 127, then how we implement the quadratic extension field Fq2 on top.
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6.1 Arithmetic in the base field Fq

Representation of elements. One benefit of the choice of field, is that the bit
vector representation of a ∈ Fq is 127 bits long, meaning that we can fit it in a
single 128-bit Neon vector register. We denote a[0], a[1] as respectively the least
significant and most significant word of the 128-bit register that stores a ∈ F2127 .
a[0] stores the bit vector for the terms z0 to z63, a[1] terms z64 to z126. We will
sometimes use the notation a = {a[0], a[1]} to show the contents of the register.

An efficiency issue for Arm AArch64, compared to AArch32, is that it cannot
reference the upper word a[1] of a 128-bit register as a separate 64-bit regis-
ter [15]. Instead, one needs to use the Arm Neon instruction EXT. It takes two
registers a, b and outputs {a[1], b[0]}. The lower half of this output can then be
referenced for further computation. Table 2 gives an overview of all the Neon
instructions that we used for our implementation.

Table 2. Arm Neon 128-bit vector instructions used. The first 128-bit operand is
denoted a, the second b. The output is also stored in a 128-bit register.

Symbol Description Neon Instruction

⊕,∧ Bitwise XOR, AND EOR, AND
≪128,≫128 Logical shift (no carry between words) SHL, SHR
pmull bot Multiply binary polynomials a[0], b[0] PMULL

pmull top Multiply binary polynomials a[1], b[1] PMULL2

extract Outputs {a[1], b[0]} EXT

Polynomial multiplication. The polynomial multiplication algorithm takes
as input two binary polynomials a, b ∈ Fq and outputs their polynomial product
c. The degree of c can be up to twice the degree of the operands. Hence it must
be stored in two 128-bit vector registers c0, c1, where c0 stores the lower half.

For polynomial multiplication we use the Arm Neon implementation from
[15]. It efficiently performs 128-bit polynomial multiplication using the new
PMULL instructions. While they managed to implement it using 3 multiplica-
tions with the Karatsuba algorithm on AArch32, the high number of EXTs this
would require on AArch64 meant that they instead opted for an algorithm with
an extra PMULL.

Polynomial squaring and field multi-squaring. Polynomial squaring of an
a ∈ Fq can be trivially implemented as c0 ← pmull bot(a, a), c1 ← pmull top(a, a).

For multi-squaring in settings where it does not need to be computed in
constant time, we implemented the technique from [1,6]. It uses lookup tables

that are precomputed offline to compute the reduced result of a2
k

. However, for
smaller Arm processors like the Cortex-A55, this method only outperforms the
naive loop implementation for k > 12. This is a lot higher than the threshold
of k > 5 for Intel [31]. It is an example of the higher cost of memory access on
smaller devices, which results in a lower yield for precomputation strategies.
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Modular reduction. To compute a field multiplication or squaring, the result
of the polynomial algorithm must be reduced modulo f(z). We here present novel
algorithms for efficient modular reduction, using exclusively Arm Neon vector in-
structions. Like the polynomial multiplication algorithm from [15], they attempt
to minimize the number of accesses to the top half of the 128-bit registers, each
of which incurs the cost of an EXT.

For reducing the result of a polynomial multiplication, we use Algorithm 6.
It implements the lazy reduction technique from [30]. Instead of reducing f(z),
we reduce by the redundant trinomial z · f(z) = z128 + z64 + z. Reductions by
zf(z) are roughly 40% faster than proper reductions by zf(z). The result can
have degree up to 127 instead of 126, but as the result still fits in a 128-bit
register, this makes no difference. As (c mod zf(z)) mod f(z) = c mod f(z),
one can easily recover the properly reduced result from the output of the lazy
reduction. This is done by conditionally adding z63 +1 to it when bit 127 is set.

Algorithm 6: Lazy reduction by z · f(z) = z128 + z64 + z

Input: 254-bit polynomial stored in two 128-bit registers c0, c1.
Output: 128-bit register a storing c(z) mod f(z).
Temps.: Uses 128-bit registers t0, t1, t2.

1 t0[0]← 0
2 t1[0]← c1[0]≫ 63
3 t0 ← extract(c1, t0)
4 t2[0]← c1[0]⊕ t0[0]
5 t1[0]← t1[0]⊕ t2[0]
6 t0 ← extract(t0, t1)
7 a← c0 ⊕ t0
8 t2 ← t2 ≪128 1
9 a← a⊕ t2

10 return a

It is possible to reduce a squaring slightly faster, exploiting the fact that the
result only has bits set at even positions. Thus, we can remove the logic from
Algorithm 6 that handles the carry of bit 191 from the left shift by 1. Concretely,
this means removing lines 2 and 5, and replacing t2 by t1.

Field inversion. Field inversion is done in the same way as described in [31],
using the Itoh-Tsujii algorithm [19]. We generated our addition chain form−1 =
126 using McLoughlin’s addchain library [29].

1→ 2→ 3→ 6→ 12→ 24→ 30→ 48→ 96→ 126

The cost of a field inversion is therefore m− 1 squarings and 9 multiplications.
The steps after 30 involve multi-squarings with k > 12. When the inversion
does not have to be in constant time, these steps can then be sped up using the
table-based multi-squaring approach.
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6.2 Arithmetic in the extension field Fq2

The elements of Fq2 can be represented as polynomials a1u+a0, with coefficients
a0, a1 ∈ Fq. Therefore, we need two 128-bit registers to represent them. The
extension field arithmetic can be implemented from the base field arithmetic,
using the identities presented in [31].

In [30], Oliveira et al present an algorithm for simultaneously reducing both
coefficients of an element in Fq2 at the cost of only a single base field reduction.
We have included the Arm Neon implementation in Algorithm 7.

Algorithm 7: Lazy simultaneous reduction by zf(z) = z128 + z64 + z
for coordinate-wise reduction in Fq2 (Oliveira et al. [30])

Input: Unreduced polynomial stored in interleaved 128-bit registers
c0, c1, c2, c3.

Output: 128-bit register a storing c(z) mod zf(z).
Temps.: Uses 128-bit register t.

1 c2 ← c2 ⊕ c3
2 t← c3 ≪128 1
3 c1 ← c1 ⊕ t
4 c1 ← c1 ⊕ c2
5 t← c2 ≫128 63
6 c1 ← c1 ⊕ t
7 t← t≪128 c2
8 c0 ← c0 ⊕ t
9 return c0, c1

However, the reduction algorithm requires the field elements to be kept in
an interleaved representation. For an a ∈ Fq2 , let a0, a1 be the 128-bit registers
storing each of its coefficients. Then the interleaved representation of a is

a′0 = {a0[0], a1[0]}, a′1 = {a0[1], a1[1]}. (3)

Note that a′0, a
′
1 store a0 in the lower half and a1 in the upper half. The larger

input to the reduction algorithm must also be in an interleaved representation.
Let c0, c1, c2, c3 be the non-interleaved 128-bit registers storing the result of a
polynomial multiplication or squaring. Because this result is computed using
the identites from [31], the result is already reduced as a polynomial in u, but
has coefficients that need further reduction in Fq. Then c0, c1 store the unre-
duced constant coefficient and c2, c3 the other. The interleaved representation
c′0, c

′
1, c

′
2, c

′
3 of these unreduced coefficients continue the pattern from (3). c′0, c

′
1

are c0, c2 interleaved, and c′2, c
′
3 are c1, c3 interleaved.

In order to reap the benefits of the reduction algorithm, we had to imple-
ment the Fq2 arithmetic directly in the interleaved representation. To do this,
we manually merged and interleaved the base field algorithms to compute the
identities from [31]. The only exception is inversion, where a standard base field
inversion is used as a subroutine, which again uses all the arithmetic operations
discusses in the previous section. While the abstraction between base field and
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extension field is somewhat broken for the sake of performance, the base field
implementation is still the crucial foundation.

7 Results and discussion

Our implementations, together with SAGE scripts for verification and operation
counts, can be found at https://github.com/dfaranha/gls254.

7.1 Operation counts for binary GLS scalar multiplication

Table 3. The cost of the scalar multiplications with respect to the number of inversions,
multiplications and squarings (̃i, m̃, s̃) over Fq2 . The total cost in field multiplications

are estimated using ĩnon-ct = 18m̃, ĩct = 27m̃ and s̃ = 0.4m̃ based on our benchmarks,
and rounded to the nearest integer. “prev” denotes the cost for previous work.

Variant\w 3 4 5 6

Precomp.

1DT (prev) ĩ+ 12m̃+ 6s̃ ĩ+ 38m̃+ 14s̃ ĩ+ 90m̃+ 30s̃ ĩ+ 194m̃+ 62s̃

1DT ĩ+ 6m̃+ 4s̃ ĩ+ 31m̃+ 13s̃ ĩ+ 81m̃+ 31s̃ ĩ+ 181m̃+ 67s̃

2DT 2̃i+ 36m̃+ 11s̃ 2̃i+ 158m̃+ 43s̃ 2̃i+ 594m̃+ 155s̃ 2̃i+ 2234m̃+ 571s̃

Main loop
1DT (both) 1273m̃+ 764s̃ 979m̃+ 680s̃ 819m̃+ 628s̃ 738m̃+ 608s̃
2DT 823m̃+ 633s̃ 676m̃+ 591s̃ 593m̃+ 561s̃ 554m̃+ 553s̃

Total

1DT (prev) 2̃i+ 1309m̃+ 780s̃ 2̃i+ 1041m̃+ 704s̃ 2̃i+ 933m̃+ 668s̃ 2̃i+ 956m̃+ 680s̃

1DT 2̃i+ 1281m̃+ 768s̃ 2̃i+ 1012m̃+ 693s̃ 2̃i+ 902m̃+ 659s̃ 2̃i+ 921m̃+ 675s̃

2DT 3̃i+ 861m̃+ 644s̃ 3̃i+ 839m̃+ 634s̃ 3̃i+ 1189m̃+ 716s̃ 3̃i+ 2790m̃+ 1124s̃

Est. mult.
1DT (prev) 1666m̃ 1368m̃ 1245m̃ 1273m̃
1DT 1633m̃ 1334m̃ 1211m̃ 1236m̃
2DT 1182m̃ 1155m̃ 1538m̃ 3303m̃

Throughout our work, we have used field operation counts as a measure of the
complexity of the scalar multiplication variants. With an understanding of the
relative cost of the operations, the count gives a platform-independent estimate
of the relative performance of the algorithms. In particular, it guided our choice
of window size. However, it crucially does not capture the space-time trade-offs
of a particular architecture. For the variants discussed in this paper, which are
precisely different strategies for how to use space, this trade-off has a significant
impact. This will be apparent in the next subsection.

Table 3 gives an overview the operation counts for the variants. Additions
and multiplications by the curve coefficients are ignored due to their insignificant

https://github.com/dfaranha/gls254
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impact on performance. We include the costs of the 1DT algorithm without the
new formulas and scalar decomposition to highlight the impact of our contribu-
tions. For the sake of fairness, it has been modified to be exception-free in the
same way as the others.

As expected, the 2DT algorithm spends more time on precomputation and
less in the main loop. We see that the model predicts w = 5 to be the sweet spot
for 1DT and w = 4 for 2DT. Notably, 2DT w = 3 is predicted to be faster than
1DT w = 5 using only half the amount of space.

For a simpler comparison, we estimate the total cost in terms of field multi-
plications. The relative cost of each operation will of course differ from processor
to processor, so we tried to go for the middle-ground based on our benchmarks.
With this simplification, the model predicts that 1DT with w = 5 should be
2.7% faster from our contributions. The 2DT approach with w = 4 is predicted
to be 7.2% faster than 1DT in previous work with w = 5, and 4.6% faster than
1DT with w = 5 from this work. Non-constant-time field inversion is used to
convert points from projective to affine in the precomputation table only, since
it does not depend on the (secret) scalar.

7.2 Implementation timings

We start by describing our benchmarks for the Armv8 AArch64 implementation,
written from scratch. We used the ODROID C4 single board computer, as we
wanted a smaller device that could be representative for the majority of Arm
devices. It comes with a Quad-Core Cortex-A55, which is considered a mid-range
processor. We employ clang from LLVM 13 with optimization level -O3.

Table 4. Benchmarks (in clock cycles) of the field arithmetic on an Arm Cortex-
A55 2.0 GHz. The cost of reduction is included in the cost of the multiplication and
squaring. Base field reduction is mod zf(z). Op/mb, Op/m̃ denotes the cost relative
to respectively base/extension field multiplication.

Field op. F2127 F2254

Cycles Op/mb Cycles Op/m̃

Multiplication 35 1.00 68 1.00
Reduction 16 0.46 15 0.22
Squaring 18 0.51 26 0.38
Inversion (ct.) 1 716 49.03 1 815 26.69

(non-ct.) 1 165 33.29 1 228 18.06

The benchmarks for our field implementation are presented in Table 4. Notice
that non-constant time inversions that use lookup tables are roughly 33% faster.

Table 5 presents our scalar multiplication timings in GLS254 and compar-
isons to related work. Compared to Intel, there are not a lot of efficient imple-
mentations specialized for Arm at the 128-bit security level. FourQ [9] is the
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Table 5. Constant-time variable base scalar multiplication benchmarks that are mostly
performed on an Arm Quad-Core Cortex-A55 2.0 GHz. Memory is measured in terms
of the number of elliptic curve points stored in the online precomputed table.

Implementation Algorithm Memory Cycles

Lenngren [24] (Cortex-A55) Curve25519 0 157,182
Longa [27] (Cortex-A55) FourQ 8 191,184
Longa [27] (Cortex-A15) FourQ 8 132,000

This work (Cortex-A55) GLS254 1DT w = 5 8 92,460
GLS254 2DT w = 3 4 86,525
GLS254 2DT w = 4 16 91,682

Table 6. Protected variable base scalar multiplication benchmarks for 64-bit Intel
Core i7 4770 Haswell at 3.4GHz, and Core i7 7700 Kaby Lake at 3.6GHz, both with
TurboBoost disabled. Memory is measured in terms of the number of elliptic curve
points stored in the online precomputed table.

Implementation Algorithm Memory Cycles

Longa et al. [9] (Haswell) FourQ 8 56,000
Longa et al. [9] (Kaby Lake) FourQ 8 47,052
Oliveira et al. [31] (Haswell) GLS254 1DT w = 5 8 48,301
Oliveira et al. [30] (Skylake) GLS254 1DT w = 5 8 38,044

This work (Haswell) GLS254 1DT w = 5 8 45,966
GLS254 2DT w = 3 4 45,253
GLS254 2DT w = 4 16 47,184

This work (Kaby Lake) GLS254 1DT w = 5 8 36,480
GLS254 2DT w = 3 4 35,739
GLS254 2DT w = 4 16 38,076

closest competitor on Intel, and they also provide specialized implementations
for Arm [27]. We benchmarked their Armv8 AArch64 implementation on our
machine and included their Armv7 timings from [27] for the sake of fairness. A
notable outlier is Lenngren’s implementation for Curve2559, which is a much
closer competitor on Arm than any Curve25519 implementation on Intel.

As the first GLS254 implementation for Armv8, we are able to claim the
constant-time scalar multiplication speed record by 34.5% in comparison to the
previous state of the art. Contrary to the operation counts in Table 3, it is the
2DT w = 3 algorithm that is the superior variant. We do not compare against [26]
due to the radically different choices of target platform.

For our Intel implementation, we extended the AVX-accelerated code from [34]
with the new formulas and 2DT variant. Due to space limitations, we report tim-
ings for field arithmetic in Appendix C. The scalar multiplication benchmarks
are presented in Table 6. We benchmarked our code on an older Core i7 4770
Haswell processor, and a Core i7 7700 Kaby Lake as the closest to the Skylake
in [30]; both using clang from LLVM 13 and optimization level -O3. For 1DT
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w = 5, we achieve small speedups of 4.8% in Haswell and 4.1% for Skylake
over the previous state of the art. The 2DT w = 3 variant achieves a further
speedup of 2%. Surprisingly, 2DT w = 4 performs relatively poorly due to ex-
pensive conditional moves within the longer linear pass. The cumulative speedup
over previous work is around 6% on both machines. In comparison to FourQ,
our timings are 24% faster and set a new speed record for constant-time scalar
multiplication in Intel processors.

Removing the linear pass for the sake of experimentation, 2DT w = 4 out-
performs the other variants on all the platforms benchmarked, as predicted by
the operation counts. The relative cost of the linear pass seems to be the deter-
mining factor for how much of a speedup the new approach yields in practice.
In general, the linear pass incurs a relatively high cost, favoring solutions that
minimize the size of the lookup table. Hence, we see that the 2DT w = 3 variant
claims the speed record across the board, using only half as much space as the
previous record holder 1DT w = 5.
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Appendix

A Point compression for binary GLS curves

As a last construction, we present a new point compression algorithm for binary
GLS curves for points in λ-affine form. The best known point compression al-
gorithm for elliptic curves over F2n is Algorithm 5 from [28]. It compresses an
affine point (x, y) of 2n bits to n bits, and is the first to do so without needing an
inversion. However, it requires Tr(a) = 1 and n to be odd. The latter condition
is a problem for binary GLS curves, since they are defined over F22m for an odd
prime m. Our new algorithm adapts the techniques of [28] to this setting.

First we need some notation. Let E = Fqm be the finite field extension of

K = Fq. Then the field trace TrE/K : E → K is defined as TrE/K(c) =
∑m−1
i=0 cq

i

[25]. For our purposes, we define q = 2m, Tr′ = TrFq2/F2
and Tr = TrFq/F2

.

The point decompression algorithm needs to solve a quadratic equation λ2+
λ = c in Fq2 . The equation has a solution if and only if Tr′(c) = 0 [22, p. 54]. If
a solution exists, it can be efficiently found using the technique from [16] that

was generalized in [31]. Given a solution λ̂, the other solution is λ̂+ 1.
Our algorithm works for any point P = (x, λ) in the subgroup S of large

prime order r. The compression algorithm computes CP = x + lsb(λ0)u of m
bits. Here lsb : Fq → F2 is the function that on input d = d0+ ...+dq−1z

q−1 ∈ Fq
outputs d0. P can then be recovered from CP as follows.

Algorithm 8: Decompression algorithm

Input: CP = x+ lsb(λ0)u
Output: P = (x, λ) ∈ G

1 t← Tr(CP,1) + 1
2 x← c+ tu
3 Find solution λ′ for λ2 + λ = b/x2 + x2 + a
4 if t = lsb(λ′

0) then
5 λ← λ′

6 else
7 λ← λ′ + 1

8 return (x, λ)

Lemma 3. Let P = (x, λ) ∈ G. Then Algorithm 8 recovers P from CP .

Proof. We are going to need some properties of the trace function. Firstly, TrE/K
is a linear transformation from E ontoK, where E,K are viewed as vector spaces
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over K [22, p. 55]. The trace is also transitive, meaning for a finite extension F
of E, TrF/K(c) = TrE/K(TrF/E(c)) [22, p. 56]. For binary elliptic curves it holds
that for all P = (x, λ) of odd order, Tr′(x) = Tr′(a) [17, p. 130]. Finally, because
m is odd, Tr(d) = d for d ∈ F2.

From the transitivity of the trace function, we get that for c = c0+c1u ∈ Fq2
that Tr′(c) = Tr(c+ cq) = Tr((c0 + c1u) + (c0 + c1 + c1u)) = Tr(c1). As binary
GLS curves have Tr′(a) = 1, it follows that Tr(x) = 1 for all P = (x, λ) ∈ S.
Then t = Tr(CP,1) + 1 = (Tr(x1) + Tr(lsb(λ0))) + Tr(x1) = lsb(λ0).

Next, we correctly recover x as CP +tu. The λ-affine curve equation is λ2x2+
λx2 = x4 + ax2 + b. Dividing both sides by x2, we get a quadratic equation in
standard form, which can be solved using the technique from [16]. Note that x ̸=
0 when P is represented in λ-affine coordinates. Given the candidate solutions
λ̂ and λ̂+ 1, we recover the correct one from t. ⊓⊔

B The new formulas used for precomputation and
exception-free execution

Proposition 1. Let P = (x, λ) be a point on E′
a,b(Fq2) with 3P ̸= O. Then 3P

can be computed in λ-projective coordinates as follows.

T = λ2 + λ+ a

A = (x+ T )2 + T

X3P = x ·A2

Z3P = A · (A+ T )

Λ3P = T 2 · T + Z3P (λ+ 1)

Proposition 2. Let P = (xP , λP ) and Q = (XQ, ΛQ, ZQ) be points on E
′
a,b(Fq2)

with P ̸= ±Q. Then P + Q and P − Q can be simultaneously computed in λ-
projective coordinates as follows.

A = λP · ZQ + ΛQ

B = (xP · ZQ +XQ)
2

C = (xP · ZQ) ·XQ

XP+Q = A2 · C
ZP+Q = A ·B · ZQ
ΛP+Q = (A ·XQ +B)2 + ZP+Q · (λP + 1)

XP−Q = XP+Q + C · Z2
Q

ZP−Q = ZP+Q +B · Z2
Q

ΛP−Q = ΛP+Q + (XQ · ZQ)2 + (B · Z2
Q) · (λP + 1)
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Proposition 3. Let P = (X,Λ,Z) on E′
a,b(Fq2). For c ∈ Fq2 , let c0, c1 denote

its coefficients in Fq such that c = c0 + c1u. Then ψ(P ) can be computed in
λ-projective coordinates as follows.

Xψ(P ) = X +X1

Λψ(P ) = Λ+ Λ1 + Z1 + Z0u

Zψ(P ) = Z + Z1

Proposition 4. Let P = (x, λ) on E′
a,b(Fq2). For c ∈ Fq2 , let c0, c1 denote its

coefficients in Fq such that c = c0 + c1u. Then P + ψ(P ) can be computed in
λ-projective coordinates as follows.

A = (x0 · λ1 + x1) + (x1 · λ1 + x0 + x1)u

B = x1 · λ1 + x1u

XP+ψ(P ) = A · (A+B)

ZP+ψ(P ) = (x21 · λ1) + x21u

ΛP+ψ(P ) = (A+B + x21)
2 + ZP+ψ(P ) · (λP + 1)

Finally, we also include how to compute 2Q+P and 2Q+P1+P2 for respec-
tively the 1D and 2D variant in the last iteration of the scalar multiplication loop,
using complete formulas. Our approach was to compute them non-atomically
from left to right. We do a normal doubling which is exception-free and use Al-
gorithm 9 for the complete mixed additions. A complete mixed addition costs
11m̃+ 5s̃, which is slightly more than a full addition. To make Algorithm 9 run
in constant time, CMOV instructions are used for the conditional assignments.

Algorithm 9: Complete mixed addition

Input: P = (xP , λP ) in λ-affine coordinates, Q = (XQ, ΛQ, ZQ) in
λ-projective coordinates.

Output: P +Q in λ-projective coordinates.
1 R← P +Q using the incomplete formula.
2 RD ← 2P
3 XP ← xP · ZQ

4 ΛP ← λP · ZQ

5 if ZQ = 0 then
6 R← P

7 if XP = XQ and ΛP = ΛQ then
8 R← RD

9 if XP = XQ and ΛP = ΛQ + ZQ then
10 R← O
11 return R



24 Marius A. Aardal and Diego F. Aranha

C Timings for field arithmetic on 64-bit Intel platforms

The best timings in the literature for binary field arithmetic on Intel platforms
can be found for Sky Lake [31]. We update the timings below with by bench-
marking in more modern platforms, including optimizations proposed in [30].

Table 7. Benchmarks (in clock cycles) of the field arithmetic on an Intel Core i7 4770
Haswell CPU running at 3.40GHz, with HyperThreading and TurboBoost disabled.
The cost of reduction is included in the cost of the multiplication and squaring. Base
field reduction is mod zf(z). Op/mb, Op/m̃ denotes the cost relative to respectively
base/extension field multiplication.

Field op. F2127 F2254

Cycles Op/mb Cycles Op/m̃

Multiplication 24 1.00 40 1.00
Reduction 9 0.37 6 0.15
Squaring 15 0.63 20 0.50
Inversion (ct.) 2219 92.46 2251 56.28

(non-ct.) 602 25.08 668 16.70

Table 8. Benchmarks (in clock cycles) of the field arithmetic on an Intel Core i7 7700
Kaby Lake CPU running at 3.6GHz, with HyperThreading and TurboBoost disabled.
The cost of reduction is included in the cost of the multiplication and squaring. Base
field reduction is mod zf(z). Op/mb, Op/m̃ denotes the cost relative to respectively
base/extension field multiplication.

Field op. F2127 F2254

Cycles Op/mb Cycles Op/m̃

Multiplication 24 1.00 30 1.00
Reduction 9 0.38 6 0.20
Squaring 15 0.63 18 0.60
Inversion (ct.) 1912 79.67 1965 65.50

(non-ct.) 573 23.88 628 20.93
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