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Abstract. In recent years, several MILP models were introduced to
search automatically for boomerang distinguishers and boomerang at-
tacks on block ciphers. However, they can only be used when the key
schedule is linear. Here, a new model is introduced to deal with non-
linear key schedules as it is the case for AES. This model is more com-
plex and actually it is too slow for exhaustive search. However, when
some hints are added to the solver, it found the current best related-key
boomerang attack on AES-192 with 2124 time, 2124 data, and 279.8 mem-
ory complexities, which is better than the one presented by Biryukov and
Khovratovich at ASIACRYPT 2009 with complexities 2176/2123/2152 re-
spectively. This represents a huge improvement for the time and memory
complexity, illustrating the power of MILP in cryptanalysis.
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1 Introduction

Boomerang attacks have been first discovered by Wagner in [Wag99] to attack
block ciphers such as Khufu, COCONUT98, FEAL, and CAST at the end of
the nineties. This technique is a differential-like attack where one can merge two
high probability differential trails to attack more rounds and circumvent security
proofs against differential attacks. In particular, Wagner applied this technique
on COCONUT98 which has been proven resistant against differential attacks using
the decorrelation technique introduced by Vaudenay [Vau03]. Many techniques
can be used to prove the resistance of a cipher against differential attacks, for
instance the AES highlighted the wide trail strategy, but it seems more difficult
to prevent boomerang or any of its variants. Consequently, recent researches on
cryptanalysis focus on this powerful technique.
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Assuming two differentials α → β and γ → δ (with probability p and q)
on two halves of the algorithm, and considering them as independent, one can
build a boomerang distinguisher with probability p2q2. The basic idea consists
in encrypting pairs of messages with a fixed difference α, assuming that a high
proportion of them will follow the differential trail, and then apply another dif-
ference δ on both ciphertexts. After decrypting these new ciphertexts, one could
expect to have a difference α between the plaintexts with a significant proba-
bility. Such distinguishers can be extended using standard methods to attacks
recovering the secret key.

Since Wagner’s paper, a series of variants of boomerang attacks (amplified
boomerang, rectangle and sandwich) has drawn much attention on this tech-
nique. However, in 2011, Murphy et al. provided evidence on AES and DES that
the independence argument was not always valid [Mur11]: some boomerang dis-
tinguishers have probability 0 i.e., the boomerang never comes back. Moreover,
Kircanski showed in [Kir15] using an SAT solver that some previous rectangle
and boomerang attacks were based on incompatible characteristics.

Following such issues, the Boomerang Connectivity Table (BCT) has been
introduced in [CHP+18] as a new tool to study the connection between the two
trails. It can be seen as a precomputation of all the possible boomerangs at the
S-box level. BCT solved the problem of incompatibility in boomerang distin-
guishers pointed out by Murphy. Since then, many improvements and further
research into the BCT technique have enriched boomerang attacks.

Boomerang attacks have been applied successfully on AES [Bir04] and they
are the most efficient attacks on AES-192 and AES-256 [BKN09,BK09]. At
first glance, it is surprising that for these two versions, related-key boomerang
attacks allow to cover all the rounds of the cipher and do not break a reduced-
round version. However, it is well-known that for these versions, the diffusion
in the key schedule is slow. These papers rely on the fact that there are very
short local collisions if we can control the key schedule and the state of AES in a
related-key attack. Such model is useful since AES was considered to construct
a hash function at the end of the 2000s [GKM+09]. In [BKN09], Biryukov,
Khovratovich and Nikolic present an attack on AES-256 using 235 keys and
296 for each key in time and data. The same year, in [BK09], Biryukov and
Khovratovich improve the related key attack using only 4 keys on AES-192 with
2176/2123/2152 time/data/memory complexities and using 4 keys on AES-256
with 299.5/299.5/277 time/data/memory complexities. In [BDK+10], Biryukov et
al. show new attacks on 10-round AES-256 up to time complexity 245, data
244 and memory 233, illustrating the fact that these attacks can be very effec-
tive in practice on round-reduced versions, which have been used most recently.
The latter attack has been further extended by Biryukov and Khovratovich to
13 rounds with complexity 276 in time, data and memory, but still in the re-
lated subkey model [BK10]. More recently, Dunkelman et al. in [DKRS20] have
introduced a new technique, called retracing boomerang. By creating some cor-
relations, they have been able to improve the probability of the distinguisher to
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p2q. They apply it on round-reduced AES and show that on 5-round AES we can
recover the secret key with very low data complexity (216.5).

Some automatic tools have been developed for AES-128 in [BDF11] to look
for low data complexity attacks on round-reduced AES. Then, more advanced
differential attacks have been investigated in [DF13,DFJ13] leading to the best
attack on 7-round AES-128 with time/data/memory complexity around 2100

and 8 and 9 rounds for AES-192 and AES-256 respectively. Li et al. have
extended the former attack on AES-192 up to 9 rounds in [LJW14]. More
recently, Mixed-integer Linear Programming (MILP) have been considered to
automatically find boomerang distinguishers and attacks. For instance, Liu and
Sasaki in [LS19], Song et al. in [SQH19] and Delaune et al. in [DDV20] have
looked for the best distinguishers on the SKINNY blockcipher. In particular,
Song’s work shows that many boomerang distinguishers from [LGS17] against
SKINNY and AES have a higher probability than expected. Finally, in [QDW+21],
Qin et al. extend MILP capabilities to look for related-key rectangle attacks on
SKINNY and ForkSkinny. This is a much harder problem and it has been done
previously with ad-hoc tools in [BDF11,DF16] for Meet-in-the-middle (MITM)
attacks on AES and impossible differential attacks on AES, mCRYPTON, SIMON,
IDEA, KTANTAN, PRINCE and ZORRO. One of the most difficult task is to esti-
mate the complexity of the attacks.

The current best time complexity for an attack on all rounds of AES-192 is
2189.7 for biclique attacks, and 2176 for related-key attacks. Table 1 shows some
existing attacks against AES-192.

Table 1. Summary of existing attacks against AES-192. Note that biclique attacks
against AES-192 are only accelerated exhaustive searches, with a complete loop on
the key space.

Key Size Rounds Time Data Memory Type Reference

192 bits

8/12 2172 2107 296
MITM

[DFJ13]
9/12 2182.5 2117 2165.5 [LJW14]

10/12
2183 2124 N/A Related-key Rectangle [KHP07]
2156 2156 265 Related-key Differential [GLMS18]

12/12

2176 2123 2152 Related-key Boomerang [BK09]
2190.16 280 28

Biclique
[BKR11]

2190.83 2 260 [BCGS14]
2189.76 248 260 [TW15]
2124 2124 279.8 Related-key Boomerang Section 3

Our model and source codes will be publicly available at https://gitlab.
inria.fr/pderbez/asia-2022-aes

https://gitlab.inria.fr/pderbez/asia-2022-aes
https://gitlab.inria.fr/pderbez/asia-2022-aes
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Our Contributions

Looking for attacks instead of distinguishers is a harder problem. It is worth
mentioning that for instance our attack on AES-192 is built from a distin-
guisher that has a lower probability than Biryukov’s attack, but that is easier
to propagate through the rest of the cipher. To this end, we have to tweak
MILP models that look only for boomerang distinguishers and that work only
on linear key schedules. When there are differences in a nonlinear key, they may
not be predictable and the differences intervening in the trails cannot merely
be described as free or controlled as in [DDV20]. This makes the MILP model
more complex as it is discussed in Section 4.2. Finally, as mentioned before,
one important feature is the computation of the probability (Section 4.3) and
objective function to evaluate the cost of the attacks which is actually a rough
approximation (Sections 4.4).

Then, we propose the best related-key boomerang attack on AES-192 known
so far and we recover the one on AES-256 by Biryukov and Khovratovich,
showing that our tool is working.

Organization of the paper

We will begin by giving an overview of AES and related key boomerang attacks
in Section 2. Then we will describe our new attack on AES-192 in Section 3.
Next, in Section 4, we will recall the MILP model introduced in [DDV20] to
search for boomerang distinguishers and explain how we adapted it to find our
attack. Finally, Section 5 concludes the paper.

2 AES and Boomerang Attacks

2.1 Description of AES

The Advanced Encryption Standard [DR02] is a Substitution-Permutation Net-
work (SPN) that can be instantiated using three different key sizes: 128, 192,
and 256. The 128-bit plaintext initializes the internal state viewed as a 4 × 4
matrix of bytes as values in the finite field F256, which is defined using the irre-
ducible polynomial x8 + x4 + x3 + x + 1 over F2. Depending on the version of
the AES, Nr rounds are applied to that state: Nr = 10 for AES-128, Nr = 12
for AES-192 and Nr = 14 for AES-256. Each of the Nr AES rounds (Fig. 1)
applies four operations to the state matrix (except in the last round where the
MixColumns operation is missing):

– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times

in parallel on each byte of the state.
– ShiftRows (SR) shifts the i-th row left by i positions.
– MixColumns (MC) replaces each of the four columns C of the state by

M × C where M is a constant 4 × 4 maximum distance separable matrix
over F256.
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Fig. 1. Description of one AES round and the ordering of bytes in an internal state.

After the Nr-th round has been applied, a final subkey is added to the internal
state to produce the ciphertext. The key expansion algorithms to produce the
Nr + 1 subkeys are described in Fig. 2 for each keysize. We refer to the original
publication [DR02] for further details.

«S

(a) AES-128

«S

(b) AES-192

«S

S

(c) AES-256

Fig. 2. Key schedules of the variants of the AES: AES-128, AES-192 and AES-256.

Notations. In this paper, we count the AES rounds from 0 and we refer to a
particular byte of an internal state x by x[i], as depicted in Fig. 1. Moreover, in
the ith round, we denote the internal state after AddRoundKey by xi, after
SubBytes by yi, after ShiftRows by zi and after MixColumns by wi. To
refer to the difference in a state x, we use the notation ∆x. The first added
subkey is the master key k−1, and the one added after round i is denoted ki.

2.2 Probability of Boomerang Distinguishers

In a boomerang distinguisher, a cipher E is regarded as the composition of
two sub-ciphers E0 and E1 so that E = E1 ◦ E0. Suppose there exist both a
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differential γ → θ for E0 and a differential λ → δ for E1 with probabilities p and
q respectively.

If we assume the two differentials are independent then we obtain a boomerang
distinguisher of probability:

P
(
E−1(E(P )⊕ δ)⊕ E−1(E(P ⊕ γ)⊕ δ) = γ

)
= p2q2.

But in practice the independence assumption does not always hold, especially
at the junction of both the lower and upper differentials, and many counter-
examples have already been found [WKD07,Mur11,Kir15]. However, since the
work of Delaune et al. [DDV20], we know how to precisely compute the proba-
bility of a boomerang characteristic for any SPN, assuming round independence.
The idea is to compute the probability of transitions for each S-box indepen-
dently, using five different tables covering all the possible cases.

Definition 1. Given a n-bit S-box S and four differences γ, θ, λ, δ ∈ Fn
2 , the

DDT, BCT [CHP+18], U(pper)/L(ower)BCT [WP19] and EBCT [DDV20] are
defined as

DDT(γ, θ) = #{x ∈ Fn
2 | S(x)⊕ S(x⊕ γ) = θ}

BCT(γ, δ) = #{x ∈ Fn
2 | S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ}

UBCT(γ, θ, δ) = #

{
x ∈ Fn

2

∣∣∣∣∣S(x)⊕ S(x⊕ γ) = θ

S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

}

LBCT(γ, λ, δ) = #

{
x ∈ Fn

2

∣∣∣∣∣S(x)⊕ S(x⊕ λ) = δ

S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

}

EBCT(γ, θ, λ, δ) = #

x ∈ Fn
2

∣∣∣∣∣∣∣
S(x)⊕ S(x⊕ γ) = θ

S(x)⊕ S(x⊕ λ) = δ

S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ
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S
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Fig. 3. Boomerang through
one S-box

Fig. 3 helps to understand the notations used
in these definitions. Note that all those tables are
particular cases of the Extended BCT (EBCT)
in which some differences are free. Intuitively, the
UBCT (resp. LBCT) corresponds to the junc-
tion between the upper (resp. lower) trail and the
boomerang switch, while the EBCT deals with the
middle rounds of the switch. From them, one can
determine the associated probabilities by dividing
by 2n. Then the probability of a boomerang distin-
guisher is merely the product of the probabilities
of the transitions through all the S-boxes of the
characteristic. For a specific S-box, the table to be
used is determined by the set of its inputs/outputs
which are set to a fixed value in the upper and the
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lower trail. This technique does not need middle
rounds to be defined, so it handles smoothly the switch between the lower and
the upper differentials of a boomerang.

2.3 Boomerang Attacks on AES

In [BK09], Biryukov and Khovratovich described the first attacks against the full
versions of both AES-192 and AES-256 working for all keys. These attacks
are related-key boomerang attacks relying on the low diffusion in the AES key
schedules.

Related keys. In the related-key model, the attacker is allowed to ask for the
encryption and/or the decryption of messages under different unknown keys,
related by chosen properties. More precisely, the attacker should be able to
provide an algorithm A which takes as input a master key kA and outputs the
related keys.

For boomerang attacks, the algorithm A typically specifies the differences
between some key bits. Because the key schedules of AES each involves non-
linear S-boxes, we need to take care of the values of the differences. In particular,
specifying non-zero differences both at the input and output of an S-box makes
the algorithm A unable to generate outputs for all keys, leading to a weak-key
attack. This is because there is no non-trivial differential transition through the
AES S-box that holds with probability one. Regarding related-key boomerang
attacks on AES, this means that the differences in the key bytes going through
S-boxes in the middle of the distinguisher will most likely be null. This can be
observed in both attacks as depicted in Fig. 4 and Fig. 5: the last column of
almost each subkeys (as well as the fourth column for AES-256) is fully inactive
for at least one of the trails.

Fig. 4. Difference in the subkeys for the attack against AES-192 in [BK09]. First line
is ∆k, second line is ∇k. No difference are depicted in white bytes, known differences
in green bytes and unknown differences in blue bytes.

Boomerang attack against AES-256. It is based on a boomerang distin-
guisher of probability 2−96 covering all rounds but the first one. The distin-
guisher is extended by one round at the beginning as depicted in Fig. 6. The
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Fig. 5. Difference in the subkeys for the attack against AES-256 in [BK09]. First line
is ∆k, second line is ∇k. No difference are depicted in white bytes, known differences
in green bytes and unknown differences in blue bytes.

four keys kA, kB , kC and kD are generated such that they have the differences
as specified in Fig. 5.

SB

⊕
SR+MC SB

⊕
SR+MC

Fig. 6. Cancellations of difference in the first round of the attack against AES-256 in
[BK09]. No difference in white bytes, known differences in green bytes and unknown
differences in blue and gray bytes. Differences in blue bytes fully depend on the keys
and known differences.

Then, the attack procedure is quite straightforward:

1. Ask for the encryption through both kA and kB of a structure of 29×8 plain-
texts such that bytes 0, 1, 2, 3, 5, 9, 10, 13 and 15 take all the possible values
while the remaining ones are constant.

2. For each plaintext pA, look at the corresponding ciphertext cA, apply the
right difference to compute cC and ask for its decryption under key kC .
Store the resulting plaintext pC into a hash table indexed by the 7 constant
bytes as well as pA[2]⊕ pC [2] and pA[3]⊕ pC [3]. Indeed, while unknown, the
difference in bytes 2 and 3 of the plaintexts should be equal for both pairs
to satisfy the distinguisher.

3. Repeat the previous step from plaintext pB and key kD.
4. Look for collisions in the hash table to obtain 272+72−56−16 = 272 possible

quartets.
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5. For each quartet, regarding the 2 pairs (pA, pB) and (pC , pD), we know the
difference at the input and at the output of 9 × 2 = 18 S-boxes. Each of
them has on average one solution for the corresponding values and thus each
quartet leads on average to one value for 18×2 = 36 bytes of key (9 for each
key). Each time a value is reached, we increase a counter.

6. Because the probability of the distinguisher is 2−96 and the probability that
one pair of the structure passes the first round is 2−72, we need on aver-
age 296+72−2×72 = 224 structures to get one right quartet. Thus we repeat
the previous steps until a counter reaches the value 3 which should hardly
correspond to a wrong value. This requires around 225.5 structures.

7. The remaining key bytes are gradually recovered as detailed in [BK09].

This attack thus requires to encrypt and decrypt 225.5+72 = 297.5 messages for
each of the four related keys and to process the same number of quartets leading
to an overall complexity of 4× 297.5 = 299.5. Note that in the original attack the
authors propose to perform more filtering on the quartets before increasing the
counter, reducing the memory complexity to 277.5.

Boomerang attack against AES-192. The attack against this AES version is
similar to the attack against AES-256. But the key schedule of AES-192 has a
better diffusion and, in particular the differences in the ciphertexts are no longer
fully known. As a result, Biryukov and Khovratovich describe a procedure to
recover the keys with a data complexity of 2123, a time complexity of 2176 and
a memory complexity of 2152. We refer to [BK09] for further details.

3 New Attack on AES-192

In this section we describe our new attack against full AES-192 which is actually
very similar to the ones of Biryukov and Khovratovich. We found a slightly better
boomerang distinguisher that can be much easily turned into a key-recovery
attack.

3.1 Related Keys

Generating keys kB , kC and kD from an original key kA actually relies on a
boomerang distinguisher with probability 1 on the key schedule algorithm. First
we note that AES key schedules are such that all subkeys can be constructed
from one of them. Thus, starting from kA we apply the chosen difference on the
second subkey and compute the corresponding key kB . Then for both kA and
kB we apply the chosen difference on the eighth subkey and compute kC and
kD respectively. Because the differences form a boomerang of probability 1, we
can ensure that the difference between keys kC and kD on the second subkey is
equal to the difference between keys kA and kB .

In our new attack, we use related keys with differences as depicted in Fig. 7.
Actual values of the differences are given in Table 2.
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Fig. 7. Key schedule for this attack. The subkeys for the upper trail are represented
above the ones of the lower trail

3.2 The Attack

Our attack is based on the boomerang trail depicted in Fig. 8. The boomerang
distinguisher covers all rounds but the first and the last one and has proba-
bility 2−2(4×6) × 2−2(5×6) = 2−108. Internal state differences are given in Ap-
pendix A. It is worth mentioning here that the boomerang distinguisher used
in the original attack had probability 2−110, highlighting that a small change in
the distinguisher might lead to a much better attack.

The attack procedure is as follows:

1. We first observe in Fig. 7 that the differences in the last row of the ciphertext
all come from the unknown difference at the output of the S-box of k11[12]
(the active byte on the last column of the round-key before the last round-
key). Thus differences in 8+3 = 11 linear combinations of bytes are fixed.
Then, because the number of bytes for which the difference is known is bigger
for the plaintexts than for the ciphertexts, it is better to start the attack from
the ciphertexts. Thus we first ask for the decryption under kA of a structure
of 25×8 = 240 ciphertexts such that bytes 1, 2, 5, 6, 9, 10, 13 and 14 are
constant as well as c[3]⊕ c[7], c[3]⊕ c[11] and c[3]⊕ c[15], and while bytes 0,
3, 4, 8 and 12 take all the possible values.

2. We ask for the decryption of a similar structure under kC , taking care that
the constant values match the required difference in the 11 linear combina-
tion of bytes given above.

3. In the trail, 2 plaintext bytes have an unknown difference. Luckily, for both
of them we know the expected difference after application of the S-box and
thus there are only 214 possible differences for the plaintexts. Hence, for
each ciphertext cA and each of the 214 possible differences, we look at the
corresponding plaintext pA, apply the difference to compute pB and ask for
its encryption under key kB . We finally store the resulting ciphertext cB into
a hash table.

4. We repeat the previous step from ciphertext cC and key kD.
5. We now look for collisions in the hash table on the 11 linear combinations of

bytes and should obtain on average 22(40+14)−11×8 = 220 possible quartets.
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6. For each quartet, regarding the 4 pairs (pA, pB), (pC , pD), (cA, cC) and
(cB , cD), we know the difference at the input and at the output of 7×2 = 14
S-boxes (2 from (pA, pB), 2 from (pC , pD), 5 from (cA, cC) and 5 from
(cB , cD)). In particular, this applies a 14 − 4 = 10-bit filter (4 Sboxes are
already used at Step 3) on the quartets and thus only 220−10 = 210 of them
pass this test. Each of them leads on average to 214 values for 28 bytes of
key (7 for each key). Each time a value is reached, we increase a counter.

7. Because the probability of the distinguisher is 2−108 and the probability that
one pair of the structure passes the last round is 2−40, we need on average
2108+40−2×40 = 268 structures to get one right quartet. Thus we repeat the
previous steps until a counter reaches the value 2. This requires around 269

structures.
8. The remaining key bytes are gradually recovered using a right quartet and

available data.

Data complexity. In this attack we decrypt 269+40 = 2109 messages under the
keys kA and kC respectively but we encrypt 269+40+14 = 2123 messages under
the keys kB and kD.

The counter. As described in the procedure, we have to update a counter
around 210+14+69 = 293 times. This can be reduced to 279 by storing sequences
of 14 ordered pairs of 2 bytes instead of sequences of 28 bytes. Indeed, given the
input and output differences of an S-box, the symmetric of any solution for the
actual values is a solution as well. Furthermore, this barely affects the success
of the procedure since more than half of the sequences of 28 bytes are actually
sequences of 14 ordered pairs of 2 bytes.

Noisy quartets. We generate through the procedure 279 sequences of 14 or-
dered pairs of 2 bytes. Theoretically, there are more than 28×28−1 = 2223 such
sequences. Hence, we expect on average 2−49 noisy quartets increasing the same
counter.

Memory complexity. The hash table used during Step 5 contains 2 × 240+14

= 255 messages. We also need to store 279 sequences of 28 bytes for the counter.
Thus the memory complexity is 279.8 128-bit blocks.

Time complexity. Filling the hash table 269 times requires to process 2 ×
2109 + 2 × 2123 messages and the counter is updated 279 times. Regarding the
missing key bytes, we used the tool developed by Bouillaguet et al. [BDF11]
which found a procedure to enumerate all their possible values using only the
constraints on the round keys in 2104 operations. The idea is once we know the
value of the 4 keys on one byte, we know the differences on this byte in both
trails. In particular we obtain the differences in some of the blue bytes leading
to the knowledge of new actual values and so on. Then the 2104 solutions can be
tested against available data.

All in all, the data complexity is 2 × 2109 + 2 × 2123 ≈ 2124, the memory
complexity is 279.8 and the time complexity is 2× 2109 + 2× 2123 + 279 ≈ 2124.
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Fig. 8. Boomerang attack against AES-192. We recall that white stands for no differ-
ence, blue for a set difference, green for a known difference and gray for a free variable.
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4 New MILP Model

Our new attack against AES-192 was found using a new MILP model dedicated
to AES. In this section we thus describe this new model and discuss its limitation.

4.1 Previous Works

In 2020, both Delaune et al. [DDV20] and Hadipour et al. [HBS21] independently
proposed new MILP models to search for boomerang distinguishers and applied
them to the block ciphers SKINNY. Recently, at EUROCRYPT’22, Dong et
al. [DQSW21] improved those models by adding some new constraints and a new
objective function to directly search for the best rectangle attacks. Their attacks
were applied to two more rounds than the previous attack on SKINNY and found
better attacks on other block ciphers such as ForkSkinny, Deoxys, GIFT,
Serpent.

All those models highly rely on the linearity of the key schedule and the
simplicity of the internal linear layer of each target. Thus they are not well-
suited to study AES. When the key schedule is nonlinear, the differences in it
may be unpredictable. Therefore, the differences intervening in the trails cannot
merely be described as free or controlled as in [DDV20]: some differences take a
known specific value, some take an unknown (coming from the key) specific value
and some are free (they can take any value uniformly). Following the previous
model of [DDV20], we thus introduce a new model to search for boomerang
attacks.

4.2 New Variables and Constraints

For each step and for each trail, each of the 16 differences of the state or the
round key has to be described by three values answering the three following
questions: is it null? is it known? is it set to a specific value? Thus for any byte
a of an internal state or a round key we define three binary variables az, ak,
as containing the Boolean answers to those questions. Because we directly want
to search for attacks and not only distinguishers we also add an extra binary
variable ad indicating whether the byte a belongs to the distinguisher or to the
key-recovery phase.

There are several straightforward constraints involving those variables. The
first and most important one is az ≤ ak ≤ as which states that if the difference is
zero then it is known and if it is known it is set to a specific value. Furthermore,
if a is a key variable then its difference cannot be free and thus as = 1. We also
impose that each variable a belongs to the distinguisher in either the upper trail
or the lower one which is translated into the constraint:

ad,lo + ad,up ≥ 1.

Let us now describe precisely the constraints for each inner component of AES.
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SubBytes Let b = S(a) where S is the AES S-box. The first simple con-
straint is az = bz since if the input or output difference is null then both the
input and output differences are null.
ShiftRows This operation being a permutation of the bytes it does not
affect the variables.
MixColumns Let (b1, b2, b3, b4) = MC(a1, a2, a3, a4). Because the matrix
used in this operation is Maximum Distance Separable (MDS) we can sim-
plify the constraints between the variables into

au1 + . . .+ bu4 ∈ {0, 1, 2, 3, 8}, for u ∈ {z, k, s, d}.

This can be easily translated into MILP constraints by adding an extra
binary variable e and enforcing:

8− au1 − . . .− bu4 ≥ 5e

8− au1 − . . .− bu4 ≤ 8e

AddRoundKey In this operation, variables are related by an equation of
the form a⊕ b⊕ c = 0. This corresponds to the 3 inequalities:

au − bu − cu ≥ −1

bu − cu − au ≥ −1

cu − au − bu ≥ −1

which ensure au + bu + cu ̸= 2 for u ∈ {z, k, s, d}.

We now need some constraints about the variables that belong to the distin-
guisher and the other ones. First we force that all key variables belong to the
distinguisher. For the state variables, belonging to the distinguisher is a prop-
erty propagated with probability 1. According to the notation introduced in
Section 2, this means that for any r and i we have the following constraints:

propagation through SubBytes:

{
xr[i]

d,up ≤ yr[i]
d,up

xr[i]
d,lo ≥ yr[i]

d,lo

propagation through MixColumns:

{
4zr[i]

d,up ≤
∑3

j=0 wr[4⌊i/4⌋+ j]d,up

4wr[i]
d,lo ≤

∑3
j=0 zr[4⌊i/4⌋+ j]d,lo

In order to simplify the computation of the probability of the inner distin-
guisher, and more generally to simplify the whole attack, we add several extra
constraints, mainly to ensure that transitions through the linear layers happen
with probability 1. Here, we use the property that the constraint a + b + c ≥ 1
only removes the solution a = b = c = 0 and its variants (e.g. a+ b+ 1− c ≥ 1
only removes a = b = 1− c = 0). The new constraints are:
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– Do not control difference outside the distinguisher:
xr[i]

d,up + 1− xr[i]
s,up + yr[i]

z,up ≥ 1

yr[i]
d,lo + 1− yr[i]

s,lo + xr[i]
z,lo ≥ 1

wr[i]
d,up + wr[i]

s,up + 1− zr[4⌊i/4⌋+ j]s,up ≥ 1 for j ∈ {0, 1, 2, 3}
zr[i]

d,lo + zr[i]
s,lo + 1− wr[4⌊i/4⌋+ j]s,lo ≥ 1 for j ∈ {0, 1, 2, 3}

– Transitions through the linear layers happen with probability 1:{
1− zr[i]

d,up + zr[i]
s,up + 1− wr[4⌊i/4⌋+ j]s,up ≥ 1 for j ∈ {0, 1, 2, 3}

1− wr[i]
d,lo + wr[i]

s,lo + 1− zr[4⌊i/4⌋+ j]s,lo ≥ 1 for j ∈ {0, 1, 2, 3}

– Do not take back control inside the distinguisher:
1− xr[i]

d,up + 1− yr[i]
s,up + xr[i]

s,up ≥ 1

1− yr[i]
d,lo + 1− xr[i]

s,lo + yr[i]
s,lo ≥ 1

xr[i]
s,up + xr[i]

s,lo ≥ xr[i]
d,up + yr[i]

d,lo − 1

yr[i]
s,up + yr[i]

s,lo ≥ xr[i]
d,up + yr[i]

d,lo − 1

Finally, as explained in Section 2.3, we want to ensure that all transitions
through the keyschedule happen with probability 1. In particular, if a is a key
variable and b = S(a), we need to ensure that if the difference in both a and b
are known then it is zero:{

2ak,up + bk,up + bk,lo ≤ 2az,up + 2az,lo + 2

2ak,lo + bk,up + bk,lo ≤ 2az,up + 2az,lo + 2

Note that the above inequalities involve both trails because there is no non-trivial
transition through the BCT occurring with probability one.

4.3 Computing Probabilities

The probability of the inner distinguisher is computed as the product of the
probability of each individual S-box transition. However, since some differences
can be set but unknown, we have to extend the definitions of the BCT, UBCT,
LBCT, EBCT and DDT tables. More precisely, given b = S(a), we need to com-
pute the probability of the transition for each value of az,up, ak,up, as,up, bz,up,
bk,up, bs,up, az,lo, ak,lo, as,lo, bz,lo, bk,lo and bs,lo. In practice, only 59 configu-
rations are possible and for each of them we have to compute the associated
probability. The novelty here is that some of the differences cannot be chosen to
maximize the probability. For instance let consider the transition ∆in −→ ∆out

through the AES S-box. It is well known that we can choose (∆in, ∆out) so that
the probability of this transition is 2−6. But now let assume that ∆in is set to
an unknown non-zero value and we have to choose ∆out. Whatever the choice
we make for it, in 126 cases the transition holds with probability 2−7, in 1 case
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it holds with probability 2−6 and in 128 cases in holds with probability 0. Trans-
lated to the distinguisher, we would be able to compute the probability that the
probability of the distinguisher is not zero and, in that case, its average proba-
bility. Unfortunately, performing such precise computation for all configurations
was out of reach. Instead, we only computed the average probability and would
say that the transition ∆in −→ ∆out holds with probability 2−8 in the studied
case.

Overall we found 11 different possible probabilities: 20, 2−5.4, 2−6, 2−8, 2−12,
2−13.4, 2−14, 2−16, 2−20, 2−21.4 and 2−24. Using classical techniques to lower the
number of inequalities (mainly using the Quine-McCluskey algorithm), we were
able to include the computation of the probability into our MILP model by using
5 extra binary variables and 33 inequalities per S-box.

Because the distinguisher should allow to actually distinguish the block cipher
from a random permutation, we added a constraint to ensure that its probability
is higher than 2−127.

4.4 Objective function

Precisely evaluating the complexity of a boomerang attack is highly non-trivial
and thus we chose to explore another direction. In our opinion, what matters the
most for the complexity of the whole attack is on the one hand the probability of
the distinguisher (pdist, the − log2 of the probability) and on the other hand the
number of bytes in which the differences are known in both the plaintexts and the
ciphertexts. Furthermore, variables set to a specific values are more interesting
than free ones since they may depend on the same unknown differences. This is
actually the case in our new attack against AES-192. Thus, we set as objective
the following expression:

2×

(
15∑
i=0

p[i]k,up + c[i]k,lo

)
+ 6×

(
15∑
i=0

p[i]s,up + c[i]s,lo

)
− pdist,

and we asked the MILP solver Gurobi to maximize it. Note that we can choose
other coefficients than (2, 6) as long as they both are positive and sum to 8. It
mainly depends on how confident we are that unknown but set differences will
be related to each other.

4.5 Callback

The problem with our model is that we cannot exhaust all the possible relations
between the variables. For instance, whenever 5 variables of the same column of
zr and xr+1 are known, a linear combination of the round key bytes is known as
well. We used a callback to overcome this issue. When the MILP solver found a
solution, the callback checks whether it is a valid solution, and otherwise removes

https://www.gurobi.com/

https://www.gurobi.com/
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it via lazy constraints. We refer interested readers to [DL22] for more information
regarding lossy modelization.

Assuming we have an equation of the form α1a1 ⊕ . . .⊕αnan = β where the
αi’s and β are constant, we need to add to the MILP model the constraints:

az1 + . . .+ azn ̸= n− 1

ak1 + . . .+ akn ̸= n− 1

as1 + . . .+ asn ̸= n− 1

ad1 + . . .+ adn ̸= n− 1

Because of the main constraints of the model, it is quite unlikely that the two
last constraints are violated. However, it happens regularly for the two first
ones. Checking if one such constraint is violated is actually pretty simple. We
first perform a Gauss-Jordan elimination on the system of equations describing
AES, echelonizing on the variables a for which au = 0 in the solution. Then we
go through those equations and for each of them we check whether it satisfies
the au1 + . . . + aun ̸= n − 1. If one equation does not, and say for instance that
au1 = 0, we add the constraint au2 + . . .+ aun ≤ n− 2 + au1 to the model.

During the callback, we check as well whether generating the keys can be
done using a boomerang of probability 1. Given the system of equations, we first
echelonize on state variables a for which ak,up = ak,lo = 0. Then we recursively
echelonize on the key variables a for which ak,up = ak,lo = 0 and appearing
linearly in the remaining equations (i.e. only a or S(a) appears). At the end
of the process, all the remaining variables should be known. Otherwise a lazy
constraint is added to the model.

4.6 Limitations

Actually our model was too slow to exhaust boomerang attacks on AES. We
identified two main problems:

1. When solving the relaxed problem in which all variables are not restricted to
integers, Gurobi does set az = ak = as whenever it is possible. For an integer
solution this would be either (0, 0, 0) which corresponds to a free variable or
(1, 1, 1) which corresponds to a zero difference. Unfortunately, this scales
badly with our constraints related to the probability of the distinguisher as
this leads to a probability equals to 1. Thus the bound in Gurobi is moving
very slowly.

2. Looking at the solutions for which the callback has to add a lazy constraint,
we noticed that in most cases Gurobi sets a column of xr+1 and 3 bytes of
the same column of zr with a null difference while the corresponding column
on kr was fully set to non-zero difference (known or unknown). The problem
is that on itself this configuration is possible but, in practice, it rarely passes
the callback constraint regarding the keys generation process.
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Thus we had to add some additional constraints to the model. More precisely,
we ran the model by setting the number of active S-boxes in most of the relevant
states (3 on the upper trail and 3 on the lower one). As a result, we obtained the
attack against AES-192 described in Section 3. We also recovered the attack of
Biryukov et al. against AES-256.

Note that the model is very sensitive to those extra constraints. In practice,
when setting the right number of active S-boxes for 6 well-chosen states, Gurobi
takes less than an hour to output the optimal pattern. But for instance if we only
set the number of active S-boxes to be at most 3 (for the same 6 states), then
Gurobi was still far from the optimal pattern after few days. Thus we believe
it is worth improving the modelization of the problem to ensure the boomerang
attack we found against AES-192 is truly optimal.

5 Conclusion

In this paper we described a new related-(sub)keys attack against full AES-192.
Its complexity is 252 times lower than the original attack of Biryukov and
Khovratovich published at ASIACRYPT’09 while relying on a slightly better dis-
tinguisher. This highlights once again that directly searching the attack is very
important as distinguishers with similar probabilities might lead to key-recovery
attacks with very different complexities. Contrary to AES-256, AES-192 has
a faster diffusion which makes the search of such attacks harder and is a good
testbed for our tool.

We also described the MILP model which helped us to find this attack. We
believe this model can still be improved a lot and opens an interesting research
direction regarding automatic search of boomerang attacks with nonlinear key
schedule.
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A New Distinguisher on AES-192

∆K0

? 21 21 21 00 00

∆K1

21 00 21 00 00 00

∆K2

21 21 00 00 00 00
3e 3e 3e 3f 00 01 3e 00 3e 01 01 00 3e 3e 00 01 00 00
1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00 00
1f 1f 1f 1f 00 00 1f 00 1f 00 00 00 1f 1f 00 00 00 00

∆K3

21 00 00 00 00 00

∆K4

? ? ? ? ? ?

∆K5

? ? ? ? ? ?
3e 00 00 01 01 01 3e 3e 3e 3f 3e 3f ? ? ? ? ? ?
1f 00 00 00 00 00 1f 1f 1f 1f 1f 1f ? ? ? ? ? ?
1f 00 00 00 00 00 1f 1f 1f 1f 1f 1f ? ? ? ? ? ?

∆K6

? ? ? ? ? ?

∆K7

? ? ? ? ? ?

∆K8

? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

∇K0

? ? ? f8 33 f8

∇K1

? ? 33 cb f8 00

∇K2

? f8 cb 00 f8 f8
? ? ? 7c 7c 7c ? ? 7c 00 7c 00 ? 7c 00 00 7c 7c
? ? ? 7c 7c 7c ? ? 7c 00 7c 00 ? 7c 00 00 7c 7c
? ? ? ? 84 84 ? ? ? 00 84 00 ? ? 00 00 84 84

∇K3

f8 00 cb cb 33 cb

∇K4

f8 f8 33 f8 cb 00

∇K5

f8 00 33 cb 00 00
7c 00 00 00 7c 00 7c 7c 7c 7c 00 00 7c 00 7c 00 00 00
7c 00 00 00 7c 00 7c 7c 7c 7c 00 00 7c 00 7c 00 00 00
? 00 00 00 84 00 84 84 84 84 00 00 84 00 84 00 00 00

∇K6

f8 f8 cb 00 00 00

∇K7

f8 00 cb cb cb cb

∇K8

f8 f8 33 f8 33 f8
7c 7c 00 00 00 00 7c 00 00 00 00 00 7c 7c 7c 7c 7c 7c
7c 7c 00 00 00 00 7c 00 00 00 00 00 7c 7c 7c 7c 7c 7c
84 84 00 00 00 00 84 00 00 00 00 00 ? ? ? ? ? ?

Table 2. Key schedule difference in the AES-192 trail
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∆P

? 00 00 00

∆y1

00 00 00 00

∆y2

00 00 00 00

∆y3

00 00 00 00
00 00 00 ? 00 00 00 1f 00 1f 00 00 00 1f 1f 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

∆y4

00 00 00 00

∆y5

00 00 00 00

∆y6

00 00 00 00

∆y7

? ? ? ?
00 00 00 1f 00 00 00 00 00 ? ? ? ? ? ? ?
00 00 00 00 00 00 00 00 00 00 00 00 ? ? ? ?
00 00 00 00 00 00 00 00 00 00 00 00 ? ? ? ?

∇y6

7c 7c 7c 7c

∇y7

00 00 7c 00

∇y8

7c 00 00 00

∇y9

7c 7c 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

∇y10

00 00 7c 00

∇y11

00 00 00 00

∇y12

? ? ? ?

∆C

? ? ? ?
00 00 00 00 00 00 00 00 00 00 00 00 7c 7c 7c 7c
00 00 00 00 00 00 00 00 00 00 00 00 7c 7c 7c 7c
00 00 00 00 00 00 00 00 00 00 00 00 ? ? ? ?
Table 3. Internal state difference in the AES-192 trail
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