
Fast Multi-party Private Set Operations in the Star Topology
from Secure ANDs and ORs

Jelle Vos
Delft University of Technology

Delft, The Netherlands
J.V.Vos@tudelft.nl

Mauro Conti
University of Padua

Padua, Italy
mauro.conti@unipd.it

Zekeriya Erkin
Delft University of Technology

Delft, The Netherlands
Z.Erkin@tudelft.nl

ABSTRACT
Today, our society produces massive amounts of data, part of which
are strictly private. So, a long line of research has worked to design
protocols that perform functions on such private data without re-
vealing them. One function that has attracted significant interest is
a multi-party private set operation, where each party’s input is a
set. The parties commonly intend to compute these sets’ collective
intersection (MPSI) or union (MPSU), which finds uses in various
applications, including private scheduling and threat intelligence.
Most current protocols use integer-based homomorphic encryption,
with large elements and expensive operations, or oblivious transfers,
which require communicationally-expensive pairwise interactions
between all parties. Thus, existing solutions introduce significant
overhead that hinders practical use. This paper considers a certain
class of previously-proposed MPSI and MPSU protocols. We pro-
pose to express them in terms of new private AND or OR operations
among all parties and use elliptic curves to realize these operations
efficiently. We achieve a significant performance gain: Firstly, our
protocols take only three rounds of communication. Secondly, our
constant-time open-source implementation is two orders of magni-
tude faster than the state-of-the-art MPSI for small universes and
outperforms the state-of-the-art MPSI for large universes for three
parties or more.

KEYWORDS
private set operations, multi-party computation, homomorphic en-
cryption

1 INTRODUCTION
Our increasingly digital society is making a growing amount of
data available to computers, networks, and third parties. As a conse-
quence, our sensitive data is in danger of getting exposed. The field
of multi-party computation attempts to mitigate this by studying
protocols that enable parties to perform their operations digitally
without the risk of privacy-violating data leaks. Among those oper-
ations are multi-party private set operations. We consider multi-
party private set intersections (MPSI) and unions (MPSU): Consider
𝑛 parties P1, . . . ,P𝑛 , who each have a set 𝑋1, . . . , 𝑋𝑛 , respectively.
For MPSIs, the task is to privately compute 𝑋1 ∩ · · · ∩ 𝑋𝑛 . For MP-
SUs, the parties must compute 𝑋1 ∪ · · · ∪ 𝑋𝑛 . Each set contains
at most 𝑘 elements from a finite universe U, so |𝑋𝑖 | ≤ 𝑘 . In our
setting, we select a leader who receives the result of the operation,
but all parties are allowed to learn it. We refer to the other parties
as assistants. We denote P1 as the leader, without loss of generality.

MPSI and MPSU protocols serve many different applications,
as set operations form a fundamental building block in day-to-
day functionality. For example, by using a private set intersection

on possible dates for a meeting, multiple colleagues can select a
meeting date at which they are all available without revealing other
information about their calendar. A use case of private set unions is
the creation of no-fly lists: Several agencies can prevent passengers
from flying, but it would leak information if an agency knew which
individuals the other agencies were investigating. The result of a
private set union reveals the complete set of banned passengers, but
without reference to which or how many agencies are investigating
them. Other use cases of MPSIs include confidential data sharing on
security incident information and botnet detection [4]. At the same
time, MPSUs form the basis of other privacy-preserving protocols
such as private data mining and graph algorithms [19].

These MPSI and MPSU protocols have been studied for almost
two decades now, but the current state of the art still suffers from
significant costs when the number of elements 𝑘 in the set or the
number of parties 𝑛 grows, making these protocols prohibitively
expensive in practice. For example, protocols using integer-based
homomorphic encryption require𝑂 (𝑘) 3072-bit ciphertexts [3] and
long run times due to the expensive public-key operations. Oblivi-
ous transfer-based protocols offer performance gains by offloading
public-key operations to an initial phase, but they require all in-
volved parties to send messages to all other parties.

Interestingly, several homomorphic encryption-based protocols
forMPSIs [4, 5, 15, 31] andMPSUs [4] implicitly rely on securemulti-
party logic in the form of private AND and OR operation. So, efficient
protocols for these building blocks directly lead to efficient MPSI
and MPSU protocols. In a private logic protocol, parties P1, . . . ,P𝑛
submit input bits 𝑥1, . . . , 𝑥𝑛 to privately compute 𝑥1 ∨ · · · ∨ 𝑥𝑛 .
Through DeMorgan’s law one can transform the same protocol to
compute 𝑥1 ∧ · · · ∧ 𝑥𝑛 . In this work we also consider the notion of
‘composed’ ORs and ANDs, where the parties submit multiple bits
at once, and a leader chooses the bits to compute these logical
operations over. While private logic protocols have been studied be-
fore [22], current solutions either provide weak privacy guarantees
or require a high degree of interaction between all parties.

In this paper, we propose efficient protocols for performing these
private AND and OR operations. Instead of offloading public key oper-
ations to an earlier phase like oblivious-transfer based protocols do,
we make the operations significantly cheaper by using elliptic curve
cryptography [6]. In this way, we decrease the computational over-
head of homomorphic encryption while the parties communicate
strictly in a star topology with minimal overhead.

We compare our work against four works that represent the
state of the art of MPSI and MPSU protocols [4, 5, 7, 28]. The MPSI
protocol by Kolesnikov et al. [28] scales efficiently with the number
of elements 𝑘 , but scales quadratically with the number of parties
𝑛 as it requires communication between all pairs of parties. This
protocol scales largely independent of the size of the universe |U|,

https://orcid.org/0000-0002-3979-9740
https://orcid.org/0000-0002-3612-1934
https://orcid.org/0000-0001-8932-4703

Vos et al.

and it is suitable for smaller numbers of parties. Bay et al. [4], on
the other hand, propose efficient MPSI and MPSU protocols that
scale linearly with the number of parties 𝑛 but also with the size
of the universe |U|. Therefore, these protocols are suitable for
many parties so long as the universe remains small; they would be
unsuitable to represent IP elements, where |U| = 232 ≈ 4×109. Bay
et al. [5] also propose another protocol that would be suitable for
many parties and large universes, but the final result can contain
false positives, and it only outperforms Kolesnikov et al. when the
number of parties is relatively large. For example, when 𝑘 = 128,
the number of parties must exceed 65. We consider the current
state of the art of MPSU protocols for large universes to be Blanton
& Aguiar’s [7]. Their secret sharing-based protocol is concretely
efficient for small set sizes 𝑘 , but the round complexity is𝑂 (log2 𝑘).

We propose to instantiate the protocols by Bay et al. [4, 5] with
our secure logic, providing significant improvements in computa-
tion and communication over the current state-of-the-art MPSIs
and MPSUs. Firstly, we achieve a run time improvement of two
orders of magnitude compared to the original integer-based ho-
momorphic MPSI protocol by Bay et al. [4], as we demonstrate in
Section 5. At the same time, our protocol consistently outperforms
the OT-based MPSI by Kolesnikov et al. [28] for as few as three
parties and onwards when we accept a false positive rate of 0.01%,
which we demonstrate in Section 6.4. We also provide run time re-
sults for our MPSU protocol that are similar to the work by Blanton
& Aguiar [7] but with a constant round complexity. We claim that
with these improvements and the fact that our protocols runs in the
star topology, these are the first multi-party private set operation
protocols both practically deployable [38] and performant enough
in practice. Concretely, our contributions are as follows:

• We present two private OR protocols in the star topology,
namely a standard and composed variant, both of which
can be transformed into private AND protocols. We prove
our protocols to be secure in the semi-honest model using
a simulation-based proof and experimentally demonstrate
that their run time is constant.

• We use this private logic to instantiate MPSI and MPSU pro-
tocols based on previous work [4] that compute the exact
set intersection and union efficiently for small universes.
The MPSI protocol is two orders of magnitude faster.
• We instantiate an approximate MPSI protocol based on

previous work [5] that scales independently from the size
of the universe. The protocol is faster than the state-of-the-
art protocol by Kolesnikov et al. [28] when the number of
parties grows.

• We present a novel efficient MPSU protocol that scales only
logarithmically with the size of the universe for a chosen
constant number of interactions.1

The rest of the paper is organised as follows. We discuss related
work in Section 2, and elliptic curve cryptography and Bloom fil-
ters in Section 3. In Section 4 we propose our private OR and AND
protocols. Then, we use these protocols in Section 5 to construct
an MPSI and and MPSU protocol for small universes. After that, we
construct an MPSI protocol for large universes in Section 6, and an

1All our implementations are at: https://github.com/jellevos/private-logic-and-mpso

MPSU protocol for large universes in Section 7. Finally, we state
opportunities for future work and conclude our paper in Section 8.

2 RELATEDWORK
In this section, we first highlight previous works on multi-party pri-
vate logic, and continue with multi-party private set operations. For
MPSI and MPSU protocols, there are solutions based on Oblivious
Transfer (OT) [24, 28], homomorphic encryption [27], and secret
sharing [29, 36], among others. For both MPSI and MPSU protocols,
we provide an overview of recent works with their characteristics
in Table 1, along with our constant-time protocols and the first
works on in this field. In the table, 𝑡 represents the maximum resis-
tance to collusion attacks. In other words, how large can a group of
colluding parties be before the protocol’s privacy guarantees fail.
For a fair comparison, we take 𝑡 = 𝑛 − 1.

2.1 Multi-party private logic
While oblivious transfer and garbled circuits provide fast solutions
for two-party private logic operations, they do not extend straight-
forwardly to the multi-party case. In this subsection, we discuss
previous works about multi-party private AND and OR operations.
Here, parties P1, . . . ,P𝑛 with input bits 𝑥1, . . . , 𝑥𝑛 want to compute
either 𝑥1 ∧ · · · ∧ 𝑥𝑛 or 𝑥1 ∨ · · · ∨ 𝑥𝑛 , respectively.

Private OR operations have been studied under the name veto vot-
ing. At the same time, previousMPSI protocols implicitly use similar
constructions as veto voting schemes but inversely to compute AND
operations.

One of the first veto voting schemes came in the form of anony-
mous veto networks (AV-nets) [22], which are closely related to the
dining cryptographers problem [12]. In an AV-net, any set of parties
can veto some decision without the other parties identifying them.
However, this requirement is not sufficient to guarantee a private
OR operation. Specifically, a party can locally perform the second
round of the protocol on a different input to examine the result had
they changed their mind. Essentially, this means that an AV-net
securely computes an OR operation between the parties outside of
each colluding set, but that makes it unusable for multi-party pri-
vate set operations. PriVeto [2] fixes these privacy problems using
NIZKs, but as a consequence, this requires a full mesh topology.

Another veto voting scheme by Kiayias & Yung [26] computes
𝑥 ′1+· · ·+𝑥

′
𝑛 , where 𝑥 ′𝑖 = 0 if 𝑥 = 0, and otherwise 𝑥 ′

𝑖
is some random

element. Debnath et al. [15] use a similar approach for an MPSI
protocol, where 𝑥 ′

𝑖
is either 0 or 1. The problem with the former

scheme is that a party can tell if it is the only one who submitted a
one [8]. The latter also leaks the number of ones in the output.

The MPSI protocol of Miyaji et al. [31] implicitly performs a pri-
vate AND operation by computing 𝑟1 (𝑥1+· · ·+𝑥𝑛) homomorphically,
and checking if the result is the identity element. The randomness
𝑟1 is generated by the leader to prevent revealing the number of sub-
mitted ones. However, since the leader knows this randomization,
it can revert it. A secure version of the protocol comes from Bay et
al. [4], which computes (𝑟1 + · · · + 𝑟𝑛) (𝑥1 + · · · + 𝑥𝑛). This scheme
is conceptually identical to the veto voting scheme by Brandt [9].

More generally, these MPSI protocols compute an AND operation
as r(𝑥1+· · ·+𝑥𝑛) and then check equality with the identity element,
where r is some randomness not known to any set of colluding

https://github.com/jellevos/private-logic-and-mpso

Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs

parties. One can also perform this arithmetic using general-purpose
multi-party computation techniques such as secret sharing, but this
has two major shortcomings. First, providing collusion resistance
for up to 𝑛 − 1 parties requires each party to communicate in a full
mesh topology. This would require significant bandwidth for an
assistant, especially when 𝑛 is large. Secondly, it is not trivial to
perform composed operations, where the leader selects the inputs
to perform the logical operation on, keeping this choice private.

An alternative arithmetic circuit for the AND operation is 𝑥1 ×
· · ·×𝑥𝑛 . Also, by the inclusion-exclusion principle, the OR operation
can be expressed as:

(𝑥1 + · · · + 𝑥𝑛) + · · ·
[other
terms

]
· · · − 1𝑛+1 (𝑥1 × · · · × 𝑥𝑛) , (1)

but both operations require an 𝑛-degree multiplication. As a re-
sult, instead of a constant-round protocol, the parties need at least
𝑂 (log𝑛) rounds of communication.

In this work, we propose private AND and OR protocols that
strictly function in a star topology and run in a constant number
of rounds. We also provide composed versions. Instead of comput-
ing the aforementioned circuit for r = 𝑟1 + · · · + 𝑟𝑛 , we compute
r = 𝑟1𝑟2 + 𝑟1𝑟3 + · · · + 𝑟1𝑟𝑛 , allowing for further optimizations.

2.2 Multi-party private set intersections
In this subsection, we highlight several of the latest works on MPSI,
but we omit developments in two-party set intersections and thresh-
old intersections, as these works pertain to a different setting.

Kissner & Song [27] proposed one of the first MPSI protocols in
2005, along with protocols that perform more complex set opera-
tions. Their approach involves encoding set elements as the roots
of a polynomial. Then, using a threshold version of the Paillier
cryptosystem, they add and randomize encrypted polynomials by
passing them around the group of parties. The resulting polynomial
only reveals the elements that were in each input set, along with
a negligible probability of false positives. In Table 1 we refer to
the topology as a ‘wheel’, because next to a channel between each
assistant and the leader, each assistant has a channel to one other
assistant, creating the shape of a wheel. After Kissner & Song [27],
Li & Wu [29] proposed a similar protocol based on Shamir’s secret
sharing. Later works used the same set encoding [13, 35].

Later, Miyaji & Nishida [31] proposed a Bloom filter-based MPSI
that yields the filter representing the intersection, extending the
idea of Kerschbaum et al. [25] to multiple parties. They encrypt the
Bloom filters using a threshold version of exponential ElGamal.

In 2017, Hazay et al. [23] proposed a protocol that uses the poly-
nomial set encoding. They evaluate the polynomials obliviously
using an additive homomorphic threshold cryptosystem, and pro-
vide an extension of the protocol secure in the malicious model.

Kolesnikov et al. [28] propose a protocol that uses an OT-based
primitive called oblivious programmable pseudo-random functions
(OPPRFs), which return a pre-programmed value when queried
on elements in the receiver’s set. The authors provide a public
implementation with which they set speed records, but the protocol
requires each pair of parties to interact with each other.

Inbar et al. [24] propose another OT-based protocol that uses
garbled Bloom filters. Their protocol is a multi-party version of a
similar 2-party protocol [17]. While in a regular Bloom filter one
checks if the selected bins are set to 1, in a garbled Bloom filter one

performs an XOR operation between those bins to check if the result
is some specific value. The protocol requires all parties to interact.

Since then, Abadi et al. [1] proposed an MPSI protocol in the
delegated setting, where the majority of computation is outsourced
to a semi-honest third party that cannot collude with any of the
other parties participating in the protocol. Thus, this setting is
different from ours, as we are interested in defending against any
collusion. For this reason, we exclude that work.

Bay et al. [4, 5] propose multi-party private set operations based
on bitsets and Bloom filters using the threshold Paillier cryptosys-
tem, extending the ideas of Ruan et al. [34] and fixing the security
problem of Miyaji & Nishida [31]. The bitset-based protocols scale
linearly with the size of the universe, while the Bloom filter-based
MPSI scales with the number of elements 𝑘 in exchange for a chance
of false positives. Debnath et al. [16] proposed a similar Bloom filter-
based protocol using a threshold version of ElGamal.

Finally, Chandran et al. [11] and Nevo et al. [32] published pre-
prints that propose protocols inspired by Kolesnikov et al. [28],
using OPPRFs as a core functionality. The work by Nevo et al. is
secure in the malicious model and it outperforms both Chandran
et al. and Kolesnikov et al. in their experiments. In the case when
the collusion resistance 𝑡 = 𝑛 − 1, their protocol is equivalent to the
protocol by Kolesnikov et al. that is secure in the (augmented) semi-
honest model. For this reason, we do not compare their concrete
performance, but we list their complexities in Table 1.

All of the papers above fall into one of two categories. Those in
the first category use integer-based homomorphic encryption, do
not require pairwise communication, and generally scale linearly
with the number of parties. These protocols incur high computa-
tional costs for large numbers of elements 𝑘 . The second category
contains secret sharing and oblivious transfer-based protocols that
scale quadratically with the number of parties since the complexity
for an assistant scales with 𝑛 or 𝑡 , and require a full mesh topology.
While they are concretely efficient for small numbers of parties, the
protocols become prohibitively expensive for large 𝑛.

2.3 Multi-party private set unions
Frikken [19] presents one of the first MPSU protocols. Each party
represents its set as an encrypted polynomial. In turn, each party
receives an encrypted polynomial, multiplies it with their polyno-
mial, and evaluates it for their elements. The parties shuffle and
decrypt the resulting ciphertexts so that for each corresponding
element, there is only one ciphertext that does not decrypt to 0.
Since parties pass their ciphertexts around in a circular fashion, the
number of rounds in the protocol scales with the number of parties.

While the work by Shishido & Miyaji [37] refers to a set union in
its title, the actual functionality reflects that of a multiset union as
it reveals the multiplicity of each element in the resulting set. For
this reason, we omit this work from our comparison. The MPSU
protocol by Seo et al. [36] does not have this problem, as the par-
ties compute the least common multiple of the polynomials that
represent their sets, removing any multiplicities from the polyno-
mial roots. After this operation, the polynomials must be factored.
The authors use reversed Laurent series to speed up this step. The
protocol revolves around arithmetic on the rational randomized
polynomials, which are shared using Shamir’s secret sharing. As

Vos et al.

Table 1: Comparison of selected works in terms of communication, computation and security using the notation from Table 2.
*We adapted these complexities from the original works, see Appendix A & B.

Work Communication Computation Security
Ref. Year Topology Leader Assistant Rounds Leader Assistant Collusion Assumption

Multi-party Private Set Intersection (MPSI) protocols

[27] 2005 Wheel 𝑂 (𝑛𝑘)* 𝑂 (𝑡𝑘)* 𝑂 (𝑛) 𝑂 (𝑡𝑘2)* 𝑂 (𝑡𝑘2)* 𝑛 − 1 DCR
[23] 2017 Star 𝑂 (𝑛𝑘) 𝑂 (𝑘) 𝑂 (1) 𝑂 (𝑛𝑘2)* 𝑂 (𝑘)* 𝑛 − 1 DCR
[28] 2017 Full mesh 𝑂 (𝑛𝑘) 𝑂 (𝑡𝑘) 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑡) 𝑛 − 1 TDP
[24] 2018 Full mesh 𝑂 (𝑛𝑘)* 𝑂 (𝑛𝑘)* 𝑂 (1) 𝑂 (𝑛𝑘)* 𝑂 (𝑛𝑘)* 𝑛 − 1 TDP
[4] 2021 Star 𝑂 (𝑛𝑘) 𝑂 (|U|) 𝑂 (1) 𝑂 (𝑛𝑘ℎ) 𝑂 (|U|) 𝑛 − 1 DCR
[16] 2021b Star 𝑂 (𝑛𝑘)* 𝑂 (𝑘)* 𝑂 (1) 𝑂 (𝑛𝑘ℎ)* 𝑂 (𝑘)* 𝑛 − 1 DDH
[11] 2021 Full mesh 𝑂 (𝑛𝑘 log𝑘) 𝑂 (𝑘 log𝑘) 𝑂 (1) 𝑂 (𝑛𝑘) 𝑂 (𝑘) 𝑛 − 1 TDP
[32] 2021 Full mesh 𝑂 (𝑘 max(𝑡, 𝑛 − 𝑡)) 𝑂 (𝑘) 𝑂 (1) 𝑂 (𝑘 (𝑛 − 𝑡)) 𝑂 (𝑡𝑘) 𝑛 − 1 TDP
[5] 2022 Star 𝑂 (𝑛𝑘)* 𝑂 (𝑘)* 𝑂 (1) 𝑂 (𝑛𝑘ℎ)* 𝑂 (𝑘)* 𝑛 − 1 DCR
MPSI small Star 𝑂 (𝑛 |U|) 𝑂 (|U|) 𝑂 (1) 𝑂 (𝑛 |U|) 𝑂 (|U|) 𝑛 − 1 ECDDH
MPSI large Star 𝑂 (𝑛𝑘) 𝑂 (𝑘) 𝑂 (1) 𝑂 (𝑛𝑘ℎ) 𝑂 (𝑘) 𝑛 − 1 ECDDH

Multi-party Private Set Union (MPSU) protocols

[19] 2007 Wheel 𝑂 (𝑛𝑘)* 𝑂 (𝑛𝑘)* 𝑂 (𝑛) 𝑂 (𝑛𝑘2)* 𝑂 (𝑛𝑘2)* 𝑛 − 1 DCR
[36] 2012 Full mesh 𝑂 (𝑛3𝑘2) 𝑂 (𝑛3𝑘2) 𝑂 (1) 𝑂̃ (𝑛4𝑘2)* 𝑂̃ (𝑛4𝑘2)* ⌊𝑛2 ⌋ -
[7] 2016 Full mesh 𝑂 (𝑛𝑘 log𝑘 + 𝑛2) 𝑂 (log𝑘) 𝑂 (𝑛𝑘 log𝑘 + 𝑛2) ⌊𝑛2 ⌋ -
MPSU small Star 𝑂 (𝑛 |U|) 𝑂 (|U|) 𝑂 (1) 𝑂 (𝑛 |U|) 𝑂 (|U|) 𝑛 − 1 ECDDH
MPSU large Star 𝑂 (𝑛2𝑘 log |U|) 𝑂 (𝑛𝑘 log |U|) 𝑂 (1) 𝑂 (𝑛2𝑘 log |U|) 𝑂 (𝑛𝑘 log |U|) 𝑛 − 1 ECDDH

a result, the protocol is information-theoretically secure, but the
multiplication sub-protocol requires all parties to communicate
with each other. Consequently, the protocol scales poorly with the
number of parties 𝑛, and quadratically with the set size 𝑘 .

Blanton & Aguiar [7] propose multi-party private set and multi-
set operations using general multi-party computation techniques
based on secret sharing. Their protocols involve sorting the ele-
ments, after which there exist efficient algorithms for computing
the set operations. While their MPSI protocol does not reach the
same level of performance as other solutions, their MPSU protocol
outperforms other solutions, running in the order of seconds for
small problem instances. The protocol is dominated by the oblivious
sorting protocol, but if the parties already sort their sets, the round
complexity is 𝑂 (log𝑘). In Table 1 we assume this scenario.

Finally, to our knowledge, the only multi-party private set opera-
tion relying on elliptic curve cryptography is the union-cardinality
protocol by Vos et al. [41]. Their protocol approximates the cardi-
nality of an aggregated Bloom filter by shuffling it and counting
the number of ones. The operation differs from an MPSU protocol.

3 PRELIMINARIES
In this section, we give a short introduction about ElGamal over
elliptic curves and Bloom filters. The notation that we use here and
in the remainder of this paper can be found in Table 2.

3.1 Elliptic curve ElGamal
The ElGamal cryptosystem allows the use of any group G in which
the DDH assumption holds [18]:

Definition 3.1 (Decisional Diffie-Hellman). Given 𝑎𝐺 and 𝑏𝐺 for
some random 𝑎, 𝑏 ∈ Z |G | , 𝑎𝑏𝐺 is computationally indistinguishable
from some 𝑅 ∈R G, which we write as R(G).

We use the additive notation, as is common for elliptic curve
cryptography. For some elliptic curve groups, DDH is assumed to
hold: in this work, we use Curve25519 [6]. This curve has a co-factor
of 8, which means that the prime order subgroup that we actually
use in cryptographic applications is one eighth of the size of the total
group. To prevent issues related to this co-factor, we use a highly-
optimized encoding that realizes a true prime-order group [21, 39],
eliminating the co-factor. Additionally, this technique allows for
faster equality checks [40]. Compressed elements are only 32 bytes
in size, so a single ElGamal ciphertext takes 64 bytes.

Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs

Table 2: Description of symbols in this work.

Symbol Description

Secure logic
𝑛 Number of parties
𝑡 Collusion resistance, for us 𝑡 = 𝑛 − 1
P𝑖 Party 𝑖
𝑥𝑖 Party P𝑖 ’s input bit
pk Public key
sk𝑖 Secret key of party P𝑖
𝑓 𝑥
𝑖

𝑥th evaluation pattern over party P𝑖 ’s bits
Sets

𝑘 Maximum set size, so |𝑋𝑖 | ≤ 𝑘

U Universe of elements
𝑋𝑖 The set of party P𝑖

𝑋𝑖 [𝑗] Bin 𝑗 of party 𝑖’s set representation
Bloom filters

𝑁 Number of elements in a Bloom filter
𝑚 Number of bins in a Bloom filter
ℎ Number of hashes in a Bloom filter
𝜀 Error rate of a membership query

Divide-and-conquer
𝑁 Length of a vector of bits
𝑇 Number of ones in a vector of bits
𝑅 Maximum number of iterations
𝐷 Number of splits per iteration

Security
c≡ Computationally indistinguishable
s≡ Statistically indistinguishable
𝐶 Indices of colluding parties
G Elliptic curve subgroup for which DDH holds
𝐺 Generator of group G
R(G) Freshly random element from G
view𝑖 An actual view of party P𝑖

Security assumptions
DCR Decisional Composite Residuosity
TDP Trapdoor Permutations
DDH Decisional Diffie-Hellman

ECDDH Elliptic-Curve Decisional Diffie-Hellman

3.2 Bloom filters
ABloom filter is an approximate data structure for representing sets.
It consists of𝑚 bins initially set to 0. When inserting an element
into the Bloom filter, the values of several bins selected by ℎ hash
functions are changed to 1. We denote such a hash function by
H𝑖 , where 𝑖 is the seed. The function maps elements uniformly
to {0, . . . ,𝑚 − 1}. In our implementation, we use the xxh3 hash
function [14], which is a fast statistical hash function. We map the
results to the correct range using a modulo operation. Note that the
hash function does not have to be cryptographically secure, as the
security of Bloom filter-based private set operations does not rely

on the security of the hash function. Algorithm 1 describes how to
create the Bloom filter of a set 𝑋 .

Algorithm 1 Creates a Bloom filter for set 𝑋
1: procedure CreateBF(𝑋,𝑚,ℎ)
2: 𝑋 ← [0, . . . , 0] ⊲ Bit vector of length𝑚
3: for 𝑥 ∈ 𝑋 do
4: for 𝑖 = 1, . . . , ℎ do
5: 𝑋 [H𝑖 (𝑥)] ← 1
6: return 𝑋

To check whether a Bloom filter contains a given element, we
check whether the corresponding bins chosen by the hash functions
are indeed all set to 1. This operation is approximate because it
might falsely conclude that an element is contained in the Bloom
filter when the bins were set to 1 by coincidence through the inser-
tion of other elements. Fortunately, this problem is well-studied,
and Goel & Gupta [20] provide an upper bound for the probability
of such a false positive 𝜀 when 𝑁 elements have been inserted in a
Bloom filter:

𝜀 ≤
(
1 − 𝑒−

ℎ (𝑁 +0.5)
𝑚−1

)ℎ
. (2)

In practice, we only tolerate a maximum probability of false
positives 𝜀. So, we want to select the most compact Bloom filter
to satisfy this constraint, which leads to a convex minimization
problem:

min
ℎ≥1

⌈
−ℎ(𝑁 + 0.5)

ln 1 − ℎ
√
𝜀

⌉
+ 1 . (3)

Finally, one can combine multiple Bloom filters to construct a
filter representing the intersection or union using logical operations.
For example, computing an AND operation between the bins of two
respective filters yields a third filter representing their intersection,
where 𝜀 is equal to that of the original Bloom filters [33].

4 PRIVATE ORS & ANDS
In this section, we present a new protocol for privately performing
OR or AND operations among multiple parties. That is, each party
has an input bit, and the leader outputs the result of the logical
operation over all these bits without revealing them or how many
bits were true. The intuition behind our protocol is that the OR
operation can be modeled as a summation by outputting 0 only
when the sum of all inputs is 0. When at least one of the inputs
is 1, the leader retrieves randomness instead, preventing the sum
from revealing how many inputs were 1. By leveraging the fact
that parties can submit any randomness when the input is 1, we
introduce optimizations. In this section, we propose our OR protocol.
An AND protocol follows by DeMorgan’s law:

𝑥1 ∧ · · · ∧ 𝑥𝑛 = 𝑥1 ∨ · · · ∨ 𝑥𝑛 . (4)

4.1 Protocol description
Before executing any of our protocols, the parties P𝑖 for 𝑖 = 1, . . . , 𝑛
execute a short distributed setup operation over public authenti-
cated channels. We assume that the identities of the parties are
known, and a leader has been chosen beforehand. The parties aim
to generate 𝑛 secret ElGamal keys sk𝑖 and a corresponding public

Vos et al.

key pk. Each party chooses their secret key randomly sk𝑖 ∈R Z𝑞 .
Then, they send pk𝑖 ← sk𝑖 𝐺 to the leader P1, where𝐺 is the public
generator element.𝐺 is typically chosen by the same authority that
chooses group G. Eventually, the leader computes and broadcasts
public key pk ← ∑𝑛

𝑖=1 pk𝑖 . This setup operation can also take place
in a distributed fashion, where each party broadcasts pk𝑖 . The result
is a threshold version of ElGamal that requires all parties to decrypt,
denoted by (𝑛, 𝑛)-ElGamal. One can also use a custom (𝑡, 𝑛) setup,
although this would lower the protocol’s collusion resistance to 𝑡 .
We present our private OR operation in Protocol 4.1.

Instead of expressing this protocol as ElGamal operations, we
use raw curve elements to perform multiple optimizations. First, we
alter the encryption operation in step 1 of the protocol; since parties
only have to encrypt the identityO when 𝑥𝑖 = 0, or any randomness
when 𝑥𝑖 = 1, we let parties either create a valid encryption of O or
simply choose two random curve points. To ensure that the protocol
takes a constant run time, the parties perform two fixed-basepoint
multiplications.

Private OR protocol
(1) Each party P𝑖 for 𝑖 = 1, . . . , 𝑛 computes ⟨𝛼𝑖 , 𝛽𝑖 ⟩,

where 𝑦𝑖 , 𝑦′𝑖 ∈R Z𝑞 :

⟨𝛼𝑖 , 𝛽𝑖 ⟩ ←
{
⟨𝑦𝑖𝐺, 𝑦𝑖 pk⟩ if 𝑥𝑖 = 0
⟨𝑦𝑖𝐺, 𝑦′𝑖 pk⟩ if 𝑥𝑖 = 1

,

and each assistant P𝑖 for 𝑖 = 2, . . . , 𝑛 sends com-
pressed ⟨𝛼𝑖 , 𝛽𝑖 ⟩ to the leader P1.

(2) The leader P1 computes ⟨𝛼, 𝛽⟩, where 𝑟1 ∈R Z𝑞 :

⟨𝛼, 𝛽⟩ ←
〈
𝑟1

𝑛∑︁
𝑖=1

𝛼𝑖 , 𝑟1
𝑛∑︁
𝑖=1

𝛽𝑖

〉
,

and sends compressed ⟨𝛼, 𝛽⟩ to the assistants.

(3) Each assistant P𝑖 for 𝑖 = 2, . . . , 𝑛 replies with com-
pressed ⟨𝛼𝑖 , 𝛽𝑖 ⟩, where 𝑟𝑖 ∈R Z𝑞 :

⟨𝛼𝑖 , 𝛽𝑖 ⟩ ← ⟨𝑟𝑖 𝛼, 𝑟𝑖 𝛽⟩ .

(4) The leader P1 computes ⟨𝛼, 𝛽⟩:

⟨𝛼, 𝛽⟩ ←
〈

𝑛∑︁
𝑖=2

𝛼𝑖 ,

𝑛∑︁
𝑖=2

𝛽𝑖

〉
,

and sends compressed 𝛼 to the assistants.

(5) Each party P𝑖 for 𝑖 = 1, . . . , 𝑛 computes 𝜎𝑖 :
𝜎𝑖 ← sk𝑖 𝛼,

and each assistant P𝑖 for 𝑖 = 2, . . . , 𝑛 sends com-
pressed 𝜎𝑖 to the leader P1.

(6) The leader P1 returns the result 𝑧:

𝑧 ←
𝑛∑︁
𝑖=1

𝜎𝑖
?
≠ 𝛽 .

Protocol 4.1: Our multi-party private OR protocol.

A second optimization that is particularly relevant for our com-
posed private logic comes by letting the leader randomize the sum-
mation in step 2 rather than step 3 like the assistants. In doing so,
the aggregated ciphertext does not reveal its constituent cipher-
texts without having to perform a rerandomization operation by
adding a fresh encryption of O. Finally, instead of performing a full
ElGamal decryption, the leader sums all 𝜎𝑖 and checks if it equals
𝛽 , saving a point subtraction in the process. We also optimize point
compression when performing multiple OR operations in parallel.
We elaborate on this in Section 4.5, where we summarize the cost
in elliptic curve operations.

Note that it is technically possible in the semi-honest model
to let parties generate random encryptions for which they do not
know the plaintext value, and replace steps 1 to 3 of the protocol.
Since the parties are semi-honest, they would follow this protocol
faithfully. However, it is not possible to distinguish between those
randomly-generated encryptions and encryptions for which the
plaintext is known. So, such a protocol does not translate to the
malicious model using zero-knowledge proofs. We pose that our
current protocol does not suffer from such caveats.

4.2 Composed logic
In the previous protocol, each partyP𝑖 contributes one bit 𝑥𝑖 and the
leader outputs 𝑥1 ∨ · · · ∨ 𝑥𝑛 . The parties can also perform multiple
parallel operations, where each party submits 𝑘 bits, and the leader
outputs the 𝑘 results of the OR operations. An interesting case arises
when the leader wants to compute an OR operation over bits of its
choosing, which is a generalization of the former functionality. In
this section, we propose Protocol 4.2 for this purpose. We show
that this protocol is also privacy-preserving, and that the assistants
do not learn the pattern of bits selected by the leader.

Private composed OR protocol
(1) Each party P𝑖 for 𝑖 = 1, . . . , 𝑛 computes ⟨𝛼 𝑗

𝑖
, 𝛽

𝑗
𝑖
⟩,

where 𝑦 𝑗
𝑖
, 𝑦
′𝑗
𝑖
∈R Z𝑞 and 𝑗 = 1, . . . ,𝑚:

⟨𝛼 𝑗
𝑖
, 𝛽

𝑗
𝑖
⟩ ←

{
⟨𝑦 𝑗
𝑖
𝐺, 𝑦

𝑗
𝑖
pk⟩ if 𝑥 𝑗

𝑖
= 0

⟨𝑦 𝑗
𝑖
𝐺, 𝑦

′𝑗
𝑖
pk⟩ if 𝑥 𝑗

𝑖
= 1

,

and each assistant P𝑖 for 𝑖 = 2, . . . , 𝑛 sends com-
pressed ⟨𝛼 𝑗

𝑖
, 𝛽

𝑗
𝑖
⟩ to the leader P1.

(2) The leader P1 computes ⟨𝛼 𝑗 , 𝛽 𝑗 ⟩, where 𝑟𝑡1 ∈R Z𝑞
and 𝑡 = 1, . . . , 𝑘 :

⟨𝛼𝑡 , 𝛽𝑡 ⟩ ←
〈
𝑟𝑡1

𝑛∑︁
𝑖=1

∑︁
𝑗 ∈𝑓 𝑡

𝑖

𝛼
𝑗
𝑖
, 𝑟𝑡1

𝑛∑︁
𝑖=1

∑︁
𝑗 ∈𝑓 𝑡

𝑖

𝛽
𝑗
𝑖

〉
,

and sends compressed ⟨𝛼𝑡 , 𝛽𝑡 ⟩ to the assistants.
The parties continue the remaining steps in the same way
as they did in Protocol 4.1, albeit as 𝑘 parallel runs over
⟨𝛼𝑡 , 𝛽𝑡 ⟩ for 𝑡 = 1, . . . , 𝑘 . The leader outputs results 𝑧𝑡 .

Protocol 4.2: Our composed OR protocol, where the
leader chooses the bits to perform the logic over.

Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs

More formally, we let the leader select an evaluation pattern
𝑓 𝑡
𝑖
that is a subset of {1, . . . , 𝑘}, representing the index of the bits

of party P𝑖 that should be incorporated in the 𝑡th logic operation.
For example, ∀𝑖 𝑓 1

𝑖
= {1, . . . , 𝑘} would denote that the first logic

operation incorporates all parties’ bits, so the leader would learn
the OR over all submitted bits. If 𝑓 𝑡1 = ∅, this 𝑡th evaluation does
not incorporate any of the leader P1’s bits. The equivalent private
composed AND protocol achieved through DeMorgan’s law forms
the basis for the Bloom filter-based MPSI protocol in Section 6.

4.3 Correctness
Protocol 4.2must output𝑥1∨· · ·∨𝑥𝑛 with overwhelming probability,
which also implies the correctness of Protocol 4.1. In other words,
the output is only 0 when all inputs were 0, otherwise it is 1:

Theorem 4.1. With overwhelming probability, 𝑧𝑡 = 0 if and only
if ∀𝑛

𝑖=1∀𝑗 ∈𝑓 𝑡𝑖 𝑥𝑖
𝑗
= 0.

Proof. We first prove the sufficient condition, so 𝑧𝑡 = 0 when
∀𝑛
𝑖=1∀𝑗 ∈𝑓 𝑡𝑖 𝑥𝑖

𝑗
= 0. Following the protocol’s last step, it must hold:

𝛽
𝑡
=

𝑛∑︁
𝑖=1

𝜎𝑡 =

𝑛∑︁
𝑖=1

sk𝑖 𝛼𝑡 = sk 𝛼𝑡 , (5)

where sk =
∑𝑛
𝑖=1, the underlying key of the threshold cryptosystem.

After substituting steps 3 and 4, we get:
𝑛∑︁
𝑖=2

𝑟𝑡𝑖 𝛽
𝑡 = sk

𝑛∑︁
𝑖=2

𝑟𝑡𝑖 𝛼
𝑡 . (6)

Now, we show that 𝛽𝑡 = sk 𝛼𝑡 by substituting steps 1 and 2 and
using the fact that pk = sk𝐺 :

𝑟𝑡1

𝑛∑︁
𝑖=1

∑︁
𝑗 ∈𝑓 𝑡

𝑖

𝑦
𝑗
𝑖
pk = sk 𝑟𝑡1

𝑛∑︁
𝑖=1

∑︁
𝑗 ∈𝑓 𝑡

𝑖

𝑦
𝑗
𝑖
𝐺 , (7)

𝑟𝑡1

𝑛∑︁
𝑖=1

∑︁
𝑗 ∈𝑓 𝑡

𝑖

𝑦
𝑗
𝑖
pk = 𝑟𝑡1

𝑛∑︁
𝑖=1

∑︁
𝑗 ∈𝑓 𝑡

𝑖

𝑦
𝑗
𝑖
pk . (8)

Next, we prove the necessary condition, so 𝑧𝑡 = 1 when
∃𝑛
𝑖=1∃ 𝑗 ∈ 𝑓 𝑡

𝑖
𝑥
𝑗
𝑖
= 1 with overwhelming probability. Since some

𝑥
𝑗
𝑖
= 1, the corresponding 𝑦

𝑗
𝑖
in the LHS of Equation 8 will be

replaced by some 𝑦′𝑗
𝑖
∈R Z𝑞 . As a result the equality only holds

with a uniformly random probability of 1
𝑞 , which is negligible. □

4.4 Privacy
We now provide a simulation-based proof to formally show that our
protocols are indeed private in the semi-honest model, following
the requirements for a deterministic functionality as described
in [30]. Notice that when 𝑓 𝑡

𝑖
= {𝑡} for 𝑡 = 1, . . . , 𝑘 and 𝑖 = 1, . . . , 𝑛,

Protocol 4.2 reduces down to 𝑘 parallel executions of Protocol 4.1.
In other words, proving security of the first implies security of the
latter. For this reason we only provide such a proof for Protocol 4.2.
We pose that our protocol is secure against 𝑛 − 1 colluding parties,
so two cases arise:

(1) The leader is honest and up to 𝑛− 1 assistants are colluding.
(2) The leader is colluding with up to 𝑛 − 2 assistants.

Multiple parts of our proof rely on the following lemma:

Lemma 4.2. Consider group G for which the decisional Diffie-
Hellman (DDH) assumption is assumed to hold. Given element𝐺 ′ ∈ G,
unknown randomness 𝑟 ∈R Z𝑞 , and 𝑝 = 𝑠𝐺 ′ for the unknown 𝑠 ∈ Z𝑞 ,
it holds that:

⟨𝑟𝐺 ′, 𝑟𝑠𝐺 ′⟩ c≡ ⟨R(G),R(G)⟩ .

Proof. The first term is statistically indistinguishable from ran-
domness, since 𝑟 ∈R Z𝑞 , so 𝑟𝐺 ′

s≡ R(G). The second term 𝑟𝑠𝐺 ′

is computationally indistinguishable by the DDH assumption in
Definition 3.1 by taking 𝑎 ← 𝑟 , 𝑏 ← 𝑠 , 𝐺 ← 𝐺 ′ (so 𝑏𝐺 ← 𝑝). So,
𝑟𝑠𝐺 ′

c≡ R(G). □

We first prove that a simulator exists for the first case, which
generates a view for up to 𝑛 − 1 colluding assistants that is indistin-
guishable from their own, given these parties’ inputs.

Theorem 4.3. For a set of colluding parties 𝐶 ⊆ {2, . . . , 𝑛} there
exists a simulator S1 so that:

S1 ()
c≡
⋃
𝑐∈𝐶

view𝑐 (𝑥𝑐) . (9)

Proof. We construct simulator S1. The simulator takes no in-
puts because in this case, we can generate an indistinguishable view
without explicitly incorporating them. Since the colluding parties
are all assistants, the simulator also does not consider any output of
the protocol. The view generated by the simulator is a complete set
of simulated messages from the honest parties, because the chan-
nels are public: {𝛼𝑡 , 𝛽𝑡 , 𝛼𝑡 } and {𝛼 𝑗

𝑖
, 𝛽

𝑗
𝑖
, 𝛼𝑡𝑖 , 𝛽

𝑡

𝑖 , 𝜎
𝑡
𝑖
} for all honest P𝑖 ,

in other words 𝑖 ∈ 𝐶 .
Simulator S1 generates the view by sampling random elements

from the curve group for all the aforementioned messages except
for 𝛼𝑡 and 𝛽

𝑡 , which it computes by executing step 4.We show that
such a view is indeed indistinguishable from the actual views.

For step 1 of the protocol, we must show that it holds that
⟨𝛼 𝑗

𝑖
, 𝛽

𝑗
𝑖
⟩ c≡ ⟨R(G),R(G)⟩, or more specifically:

⟨𝑦 𝑗
𝑖
𝐺, 𝑦

′𝑗
𝑖
pk⟩ s≡ ⟨R(G),R(G)⟩ , (10)

⟨𝑦 𝑗
𝑖
𝐺,𝑦

𝑗
𝑖
pk⟩ c≡ ⟨R(G),R(G)⟩ . (11)

Equation 10 holds because 𝑦 𝑗
𝑖
and 𝑦′𝑗

𝑖
are sampled randomly, cover-

ing the case where 𝑥 𝑗
𝑖
= 1. Next, Equation 11 holds by Lemma 4.2

where 𝑠 ← sk, 𝐺 ′ ← 𝐺 , and 𝑟 ← 𝑦
𝑗
𝑖
, covering the case 𝑥 𝑗

𝑖
= 0.

For step 2 of the protocol wemust show ⟨𝛼𝑡 , 𝛽𝑡 ⟩ c≡ ⟨R(G),R(G)⟩.
To simplify notation, we say that:

𝑣
′𝑗
𝑖

=

{
𝑦
𝑗
𝑖

if 𝑥 𝑗
𝑖
= 0

𝑦
′𝑗
𝑖

if 𝑥 𝑗
𝑖
= 1

. (12)

Then, our former statement holds by Lemma 4.2, where:

𝑟 ← 𝑟𝑡1, 𝐺 ′ ←
𝑛∑︁
𝑖=1

∑︁
𝑗 ∈𝑓 𝑡

𝑖

𝛼
𝑗
𝑖
, 𝑠 ← sk

𝑛∑︁
𝑖=1

∑︁
𝑗 ∈𝑓 𝑡

𝑖

𝑣
𝑗
𝑖

𝑦
𝑗
𝑖

,

and 𝑠 is unknown because it is a factor of the unknown key sk.
For step 3 of the protocol wemust show ⟨𝛼𝑡𝑖 , 𝛽

𝑡

𝑖 ⟩
c≡ ⟨R(G),R(G)⟩.

Again, this holds by Lemma 4.2, where 𝑟 ← 𝑟𝑖 , 𝐺 ′ ← 𝑟1𝐺 ′, and
𝑠 ← 𝑟1𝑠 . Here we reuse the values from our previous argument.

Vos et al.

For step 4 of the protocol, the simulator executes the step as
usual for 𝛼𝑡 . For corrupted parties 𝑐 ∈ 𝐶 , the simulator samples
⟨𝛼𝑡𝑐 , 𝛽

𝑡

𝑐 ⟩ ← ⟨R(G),R(G)⟩, which is statistically indistinguishable
from the actual view.

For step 5 of the protocol we must show that 𝜎𝑖
c≡ R(G). This

holds because sk𝑖 is unknown to the corrupted parties and is sam-
pled uniformly from G. □

We also prove that a simulator exists that generates a view for a
colluding leader and up to 𝑛−2 colluding assistants in Theorem C.1
in Appendix C, which is indistinguishable from their own, given
these parties’ inputs and the protocol’s output. Moreover, apart from
being private on paper, we show that our implemented protocol
indeed runs in constant-time in the next subsection.

4.5 Efficiency
When presenting the protocol, we hinted that we can optimize the
point compression step when performing multiple OR operations in
parallel. The reason is that the compression operation is batchable,
if we allow the compressed point to be doubled. Note that for steps
1 to 4 of this protocol, this has no impact on the encrypted value,
but for steps 5 and 6 there will be a factor 2 discrepancy between 𝜎

and 𝛽 . Fortunately, one can compensate for this in the secret keys.
In short, after generating the public key pk, each party divides their
secret key by 4 offsetting the factor induced by batch-compressions,
so the actual key becomes sk ← 1

4 sk𝑖 .
We summarize the computational cost of our protocol in Table 3

as the number of elliptic curve operations performed, and compare
it against the naive approach of computing (𝑟1+· · ·+𝑟𝑛) (𝑥1+· · ·+𝑥𝑛)
using additively homomorphic encryption. Communication-wise,
the leader must send four compressed points to each assistant,
while each assistants sends five compressed points to the leader.
Given our choice of Curve25519, this means that for one private
logic operation, the leader sends 128(𝑛 − 1) bytes and an assistant
sends 160 bytes. Asymptotically, both the computational and com-
municational complexities are 𝑂 (𝑛) for the leader and 𝑂 (1) for
an assistant, although the number of point multiplications stays
constant, regardless of 𝑛. As described in Section 2.1, one can also
perform this arithmetic circuit using secret sharing. However, the
total communication cost would scale quadratically with 𝑛 since it
requires all parties to communicate. We analytically compare the
communication cost of this approach with our protocol in Figure 1,
where shares are 5 bytes in size and the parties compute the mul-
tiplication using pre-distributed Beaver triplets. For 𝑛 ≥ 10, the
communication overhead of this approach would exceed that of
our protocol.

Table 3: EC operations for our private OR protocol on one bit.

Addition Fixed mult. Variable mult.

Naive Leader 5𝑛 − 1 4 3
Assistant 1 2 3

Ours Leader 5𝑛 − 7 2 3
Assistant - 2 3

5 10 15 20 25 30
Number of parties

5 kB

10 kB

15 kB

20 kB

25 kB

Co
m

m
un

ica
tio

n
co

st Secret sharing
Our work

Figure 1: Communication in one private OR computation

0 200 400 600 800 1000
Number of ones

800

820

840

860

880

Ru
n

tim
e

[m
s]

Figure 2: The run time of 1024 private ORs is constant w.r.t. the
number of 1s. The shaded area is the 99% confidence interval.

While we described our private OR protocol to function on single-
bit inputs, the parties can perform this operation on many bits in
parallel. We explicitly use this technique to perform efficient MPSI
and MPSU protocols. We provide an open-source implementation
of such parallel ORs and ANDs. In our implementation, we do not
simulate communication delays, but we do route the messages
through Unix streams. Figure 2 shows the run time of our private
OR protocol on 1024 bits in parallel for an increasing number of
inputs that are 1. The figure underlines that the run time of our
protocol indeed does not depend on the input. In the remainder
of this work we perform all our experiments on a Unix machine
with 30 virtual Intel® Xeon® Cascade Lake CPUs at 3100 MHz. We
assign each party one execution thread to run on. The machine also
has 120 GB of memory allocated to it, but in our experiments we
only use a fraction of this. All our implementations are written in
Rust.

5 PRIVATE SET OPERATIONS FOR SMALL
UNIVERSES

One approach for computing a set intersection is to check for each
element in the universe that it is present in all the sets. For the
union, one checks if an element occurs in at least one of the sets.
This is the idea behind the protocols of Bay et al. [4], which use the
bitset representation. A bitset represents a set as a vector of bits
corresponding to each element in the universe. When an element

Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs

is in the set, the corresponding bit is set to 1; otherwise, it is 0.
Computing the intersection then constitutes an element-wise AND
operation, and the union constitutes an OR operation. In this section,
we instantiate such bitset-based protocols using our private AND
and OR protocols, as presented in Protocol 5.1.

MPSI protocol for small universes
(1) All parties P𝑖 for 𝑖 = 1, . . . , 𝑛 compute the bitset 𝑋𝑖

of their set 𝑋𝑖 :

𝑋𝑖 [𝑗] =
{
1 if 𝑗 ∈ U
0 otherwise

(2) All parties P𝑖 for 𝑖 = 1, . . . , 𝑛 take part in a private
AND protocol on 𝑋𝑖 , so the leader P1 retrieves 𝑍 .

(3) The leader P1 returns the result 𝑍 :
𝑍 = { 𝑗 ∈ U | 𝑍 [𝑗] = 1}

Protocol 5.1: A bitset-based MPSI protocol. An MPSU
protocol would use a private OR protocol instead.

This MPSI protocol inherits its security properties from the pri-
vate AND protocol since the private data is only accessed during
the execution of that sub-protocol. The same holds for the MPSU
protocol. The efficiency of these protocols is also decided by the
private logic protocols as they dominate the computation required.
Since the parties perform one private logic operations for each
element in the universe, the computational complexity is 𝑂 (𝑛 |U|)
for the leader and 𝑂 (|U|) for an assistant.

We experimentally compare the run time of this MPSI protocol
with the implementation by Bay et al. [4] using the same setup
as before. Note, however, that the original work uses a 1024 bit
modulus to instantiate the Paillier cryptosystem, which corresponds
to a legacy security strength of 80 bits. To ensure a fair comparison
and cryptographic security, we instead choose a 3072 bit modulus
as per NIST’s standard [3], corresponding to 128 bits of security.
The results of this experiment are in Figure 3.

For 𝑛 = 2 and |U| = 256, this protocol outperforms the imple-
mentation by Bay et al. by almost two orders of magnitude. While,
the implementation by Bay et al. seems to be hardly affected by the
number of parties in Figure 3, this is an artifact of the logarithmic
axis. The absolute increase in run time when the number of par-
ties grows is comparable to ours: for |U| = 256, Bay et al. takes
9.47, 9.62, 9.73 seconds for 𝑛 = 2, 5, 10, while this protocol takes
0.12, 0.20, 0.34 seconds.

Finally, notice that Protocol 5.1 can actually be further optimized
by instantiating it with a composed AND protocol, in exchange for
leaking the leader’s set size. The initial steps of this protocol would
still scale with |U|, but the remaining steps would scale with 𝑘 .

6 PRIVATE SET INTERSECTIONS FOR LARGE
UNIVERSES

In practice, the size of a party’s set is often significantly smaller
than the size of the universe, meaning 𝑘 ≪ |U|. In this section, we

64 256 1024 4096
Universe size

100

101

102

103

104

105

Ru
n

tim
e

[m
s]

2

2

2

2

5

5

5

5

10

10

10

102
2

2

2

5
5

5

5

10
10

10

10
Our work
Bay et al.

Figure 3: Run time comparison between our MPSI protocol
and Bay et al. The numbers over the bars indicate the number
of parties 𝑛 and the error bars the 99% confidence interval.

instantiate an MPSI protocol with our private logic that scales only
with 𝑘 rather than |U| in exchange for a false positive rate 𝜀.

The difference between this protocol and the MPSI protocol
for small universes is that parties represent their set as a Bloom
filter rather than a bitset. As we discuss in Section 6.3, this causes
the protocol to scale independently of the size of the universe.
We aggregate the Bloom filters similarly to bitsets, but using our
private composed AND protocol. We adapt this idea from Bay et
al. [5], although the same idea has been applied more often in MPSI
protocols, such as by Miyaji & Nishida [31] and Debnath et al. [16],
but these suffer from security flaws as described in Section 2.1.

We present the updated Protocol 6.1, where 𝑋1 [𝑡] represents the
𝑡 th element of the leader’s set. Here, the parties engage in a private
composed logic protocol to ensure that no information is leaked
from the resulting Bloom filter. In other words, the leader computes
an AND operation between the bins corresponding to each of its
elements, essentially performing at most 𝑘 private membership
checks. The privacy of the leader’s elements in turn relies on the
assistants not learning the evaluation pattern 𝑓 𝑥

𝑖
. We provide more

details on the security properties of the protocol in Section 6.2.

MPSI protocol for large universes
(1) All parties P𝑖 for 𝑖 = 1, . . . , 𝑛 compute the Bloom

filter 𝑋𝑖 of their set 𝑋𝑖 :
𝑋𝑖 = CreateBF(𝑋,𝑚,ℎ)

(2) All parties P𝑖 for 𝑖 = 1, . . . , 𝑛 take part in a pri-
vate composed AND protocol on 𝑋𝑖 with 𝑓 𝑡

𝑖
=

{H𝑗 (𝑋1 [𝑡]) | 𝑡 = 1, . . . , 𝑘, 𝑗 = 1, . . . , ℎ}, so that
the leader P1 retrieves 𝑍 .

(3) The leader P1 returns the result 𝑍 :
𝑍 =

{
𝑋1 [𝑡] | 𝑍 [𝑡] = 1 for 𝑡 = 1, . . . , 𝑘

}
Protocol 6.1: A Bloom filter-based MPSI protocol.

Vos et al.

6.1 Correctness
There are three properties that must hold with overwhelming prob-
ability for the protocol to be correct:

• When all parties have an element 𝑋1 [𝑡] = 𝑥 in their set it
must hold that 𝑍 [𝑡] = 1.

• When the leader has an element 𝑋1 [𝑡] = 𝑥 but at least one
other party does not have 𝑥 in their set 𝑍 [𝑡] = 0 must hold.

• When an element 𝑥 ∉ 𝑋1 it must hold that 𝑥 ∉ 𝑍 .
For the first case, notice that 𝑋𝑖 [𝑗] = 1 for all parties 𝑖 = 1, . . . , 𝑛

and 𝑗 = H1 (𝑥), . . . ,Hℎ (𝑥) after the parties create their Bloom
filters. Since 𝑋1 [𝑡] = 𝑥 , it holds that:

𝑍 [𝑡] =
∧
𝑗

𝑋1 [𝑗] ∧ · · · ∧ 𝑋𝑛 [𝑗] = 1 . (13)

In the second case, there is a probability 𝜀 that all bins corre-
sponding to the element 𝑥 are set to 1. However, as explained in
Section 3.2, we can choose parameters so that 𝜀 is negligible. Then,
with overwhelming probability, there is at least one party 𝑖 ′ and
Bloom filter bin 𝑗 ′ for which it holds that 𝑋𝑖′ [𝑗 ′] = 0. Now:

𝑍 [𝑡] = · · · ∧ 𝑋𝑖′ [𝑗 ′] ∧ · · · = 0 . (14)
In the last case, for each 𝑡 = 1, . . . , 𝑘 it also holds with over-

whelming probability that at least for one bin 𝑋1 [𝑗 ′] = 0 with
𝑗 ′ ∈ {H1 (𝑥), . . . ,Hℎ (𝑥)}. As a result:

𝑍 [𝑡] = · · · ∧ 𝑋1 [𝑗 ′] ∧ · · · = 0 . (15)

6.2 Privacy
Since the leader chooses the evaluation pattern to reflect the oper-
ation of checking whether an element is contained in the Bloom
filter, the protocol’s entire security again relies on the private logic
primitive. Note that if we had not used the composed AND protocol
and therefore exposed the entire resulting Bloom filter, the protocol
would leak information that is inherent to the way Bloom filters
combine under intersections. This problem was also hinted at in
previous works [10, 17]. This leakage arises because it does not
necessarily hold that:

CreateBF(𝑋1 ∩ · · · ∩ 𝑋𝑛,𝑚,ℎ) =
CreateBF(𝑋1) AND . . . AND CreateBF(𝑋𝑛) ,

(16)

which occurs when 1s in the input Bloom filters not belonging to
the actual intersection align by accident.

6.3 Efficiency
We rewrite Equation 2 to isolate𝑚:

𝜀 ≤
(
1 − 𝑒−

ℎ (𝑁 +0.5)
𝑚−1

)ℎ
(17)

𝑚 ≥ −ℎ(𝑁 + 0.5)
ln 1 − ℎ

√
𝜀
+ 1 (18)

𝑚 ≥
(
−ℎ

ln 1 − ℎ
√
𝜀

)
𝑁 −

(
0.5ℎ

ln 1 − ℎ
√
𝜀

)
+ 1 (19)

As such, for a constant ℎ and 𝜀, it holds that the minimal number
of bins𝑚 scales linearly with 𝑁 . In short,𝑚 = 𝑂 (𝑁). In practice
we choose ℎ depending on 𝜀 and 𝑁 to choose the smallest𝑚 in that
situation. In the protocol, the private AND operations dominate the
run time. Each party takes part in ℎ of such operations over𝑚 bits,

64 256 1024 4096 16384
Set size

100

101

102

103

104

105

106

Ru
n

tim
e

[m
s]

2

2

2

2

2

5

5

5

5

5

15

15

15

15

15

2
2

2

2

2

5
5

5

5

5

15
15

15

15

15Our work
Kolesnikov et al.

Figure 4: Run time comparison of theMPSI protocol for large
universes 𝜀 = 0.1% and Kolesnikov et al. [28]. The numbers
over the bars indicate the number of parties 𝑛 and the error
bars the 99% confidence interval. Our work is faster for 𝑛 > 2.

so the computational complexity for the leader is 𝑂 (𝑛𝑚ℎ), and for
an assistant is𝑂 (𝑚). Since𝑚 = 𝑂 (𝑁) and 𝑁 = 𝑘 , we write the final
complexities as 𝑂 (𝑛𝑘ℎ) for the leader and 𝑂 (𝑘) for an assistant.

6.4 Results
Since we expect to see the same advantage over the work by Bay et
al. [5] as we saw for bitsets, we only compare our protocol against
the work by Kolesnikov et al. [28]. The experimental setting in the
original implementation differs from ours: each party has access
to 𝑛 − 1 threads, but in our setting, each party is allocated a single
thread. Since [28] was executed on a powerful machine with two 36-
core CPUs, this makes the run time scale linearly with the number
of parties 𝑛. In the same way, for a sufficiently large number of
threads, our protocol runs independently of set size 𝑘 , but we do
not consider this a realistic setup. For these reasons, we use an
alternative implementation in our experiments that spawns a single
thread for each party. As a second benefit, this implementation is
also written in Rust, which we argue constitutes a fair comparison.
In both protocols, parties communicate via Unix streams.

We provide results of our work and the work by Kolesnikov et
al. [28] in Figure 4, comparing run time for an increasing set size𝑘 as
well as an increasing number of parties𝑛when 𝜀 = 0.1%.While their
protocol is faster for 𝑛 = 2, our protocol is faster for larger values of
𝑛. Such an error rate may be permissible in situations where false
positives are not detrimental. For example when multiple parties
compare sets of potentially malicious IP addresses to highlight a
subset of suspicious addresses to investigate further.

Of course, if one chooses an arbitrarily large 𝜀, our protocol
always outperforms the protocol by Kolesnikov et al., but the re-
sulting set will be almost random. Instead, we study what value 𝜀
should take to match their performance. To do so, we run our MPSI
protocol for increasing 𝑛 on the error rates 𝜀 = 2−1, 2−2, . . . , 2−25
and compare at what point our protocol runs faster. We plot the
results in Figure 5. One can observe that even when we tolerate
a false positive rate 𝜀 = 0.01%, our protocol is faster for 𝑛 ≥ 3,
denoted by the arrow.

Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs

0 5 10 15 20 25 303
Number of parties

2 25

2 21

2 17

2 13

2 9

Fa
lse

 p
os

iti
ve

 ra
te

0.01%

Figure 5: The error rate of our protocol when we choose the
parameters so that the run time is equal to that of Kolesnikov
et al. [28]. The shaded area represents the parameters for
which our protocol is faster, e.g. at 𝜀 ≥ 0.01% for 𝑛 = 3.

7 PRIVATE SET UNIONS FOR LARGE
UNIVERSES

When 𝑘 ≪ |U|, a bitset representation would be filled almost
entirely with 0s, but we are only interested in searching for the 1s.
To prevent wasting computations on this sparse vector, we propose
a divide-and-conquer algorithm that isolates these 1s. The intuition
is as follows: Each party splits their bit vector into 𝐷 partitions
and locally computes the logical OR of the bits in each partition.
After that, the parties take part in our private OR protocol on the
aggregated bits. In this way, they can discard all partitions for which
the result is 0, as none of the original bits in the partition is a 1. As a
concession, this approach allows the assistants to learn information
about the final set union, but they do not learn more than the leader.
The parties repeat this process until a partition only contains one
bit. We provide an example of this process in Figure 6. Instead of
running 27 private OR protocols, the example only requires 15 runs.
For larger universes, the difference will be even greater. We provide
a formal description in Protocol 7.1.

0 1 0 0 0 0 0

1 = 1 ∨ 0 0 = 0 ∨ 0 1 = 0 ∨ 1

0 0 0 0 0 0 0 0 0

1 0 0

0 0 1

0 0 1 0

0 0 0 1 0 0 0 0 0

0 1 0

0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0

Figure 6: Example of the divide-and-conquer approach with
two parties, 𝑁 = 27, 𝑇 = 2 and 𝐷 = 3.

MPSU protocol for large universes
(1) All parties P𝑖 for 𝑖 = 1, . . . , 𝑛 compute the bitset 𝑋𝑖

of their set 𝑋𝑖 :

𝑋𝑖 [𝑗] =
{
1 if 𝑗 ∈ U
0 otherwise

(2) All parties P𝑖 for 𝑖 = 1, . . . , 𝑛 execute
DivideAndConqer(𝑋𝑖 , 𝐷), computing the bit-
wise OR between their bitsets so that the leader
P1 retrieves 𝑍 .

(3) The leader P1 returns the result 𝑍 :
𝑍 = { 𝑗 ∈ U | 𝑍 [𝑗] = 1}

Protocol 7.1: Our multi-party private set union proto-
col, relying on Algorithms 2 and 3 from Appendix D.

7.1 Choosing the number of divisions
Consider a vector with 𝑁 = 16 bits, of which only one is 1. When
the number of ones 𝑇 = 1 and the number of divisions 𝐷 = 2, we
must perform four iterations of the divide-and-conquer approach
to reach partitions containing only one bit. Notice that since 𝑇 = 1,
we always discard all but one division. In the general case, we
require log𝐷 𝑁 iterations of𝐷 runs of the OR protocol, so we require
𝐷 log𝐷 𝑁 private ORs in total. When 𝑇 > 1, we can extend this to a
loose upper bound of 𝑇𝐷 log𝐷 𝑁 . After all, in the worst case, each
1 ends up in a separate partition at each iteration.

While the optimal choice of𝐷 is Euler’s constant 𝑒 (see Appendix
D), this is not practically attainable:

• For ease of implementation, we want 𝐷 to be an integer.
• For a small 𝐷 and large |U|, we require many iterations.
• For a constant number of rounds, 𝐷 cannot be constant.

Instead of choosing 𝐷 = 𝑒 , we select a suitable number of divisions
based on a specified maximum number of iterations 𝑅. Let us define
the function ORs that returns the expected number of private ORs;
then choosing 𝐷 comes down to a minimization problem:

min
𝐷 ≥ 𝑅

√
𝑁

ORs(𝑇, 𝑁, 𝐷) . (20)

The reason that 𝐷 ≥ 𝑅
√
𝑁 is that splitting a vector into 𝐷 parts for

𝑅 iterations allows us to reach exactly 𝑁 = 𝐷𝑅 partitions of size 1
in the final round.

To describe ORs, we analyze the cost of each iteration. The first
iteration requires𝐶0 = 𝐷 OR operations. We can view this as a balls
and bins problem, in which 𝑇 balls are divided among 𝐷 bins. Only
those bins that contained at least one ball continue in the protocol.
Assuming that such a bin has a limitless capacity, we express the
expected number of filled bins by:

spread(balls, bins) = bins
(
1 − exp−ballsbins

)
. (21)

We derive this function from Equation 1 in [41] when ℎ = 1.
Given this equation, we express the expected cost of iteration 𝑖

by 𝐶𝑖 = 𝐷 spread(𝑇,𝐶𝑖−1), since each iteration splits the number

Vos et al.

of filled bins of the previous iteration again into 𝐷 partitions. This
expected cost holds for all but the last iteration, where there may
not be as many bits 𝑁 as the number of partitions we can form.
We compensate for this by computing the expected number of
partitions that remain as:

𝐵 =
𝑁

𝑁 − 𝐷 ⌊log𝐷 𝑁 ⌋ . (22)

Now, the expected number of private OR operations is:

ORs(𝑇, 𝑁, 𝐷) = 𝐵 spread(𝑇,𝐶 ⌊log𝐷 𝑁 ⌋𝐵) +
⌊log𝐷 𝑁 ⌋∑︁

𝑖=0
𝐶𝑖 , (23)

As mentioned before, in the final iteration, we may form more
partitions than there are bits. This is only the case when log𝐷 𝑁

is not a whole number. As such, we reduce the optimal choice for
𝐷 that leads to the least OR operations to searching for 𝐷 =

𝑗
√
𝑁 ,

where:
min

𝑗=2,...,𝑅
ORs(𝑇, 𝑁,

𝑗
√
𝑁) . (24)

Here, 𝑗 is the required number of iterations which is less than or
equal to the pre-defined maximum 𝑅. To determine 𝑗 , we evaluate
all possible values 𝑗 = 2, . . . , 𝑅. For the MPSU protocol, the other
parameters are𝑇 = 𝑛𝑘 and𝑁 = |U|. We note that we are optimizing
for the average case, where 1s are randomly distributed, but ideally
the 1s are bundled together. So, if there is some structure in the
set elements, one can achieve performance gains by increasing the
probability that ones end up together in the same partition.

7.2 Privacy
We argue that assuming our MPSU protocol for small universes is
privacy-preserving, the same holds for this protocol. Consider two
parties P1 and P2 with bitsets:

𝑋1 =
[
𝑥11 , 𝑥

2
1 , . . . , 𝑥

|U |
1

]
, 𝑋2 =

[
𝑥12 , 𝑥

2
2 , . . . , 𝑥

|U |
2

]
.

Then, in our previous MPSU protocol, these parties would learn:[
(𝑥11 ∨ 𝑥

1
2), (𝑥

2
1 ∨ 𝑥

2
2), . . . , (𝑥

|U |
1 ∨ 𝑥 |U |2)

]
. (25)

Let us say that the first two bits end up in one partition, then the
parties learn:

(𝑥11 ∨ 𝑥
2
1) ∨ (𝑥

1
2 ∨ 𝑥

2
2) = (𝑥

1
1 ∨ 𝑥

1
2) ∨ (𝑥

2
1 ∨ 𝑥

2
2) . (26)

So the two parties only learn the logical OR of bits they would
have learned regardless in our previous MPSU protocol. In other
words, the information they learn is a function of the output, rather
than their private inputs. Regarding timing attacks, the divide-and-
conquer approach does not strictly run in constant time. Instead,
the run time is correlated with the size of the output set.

7.3 Efficiency
An upper bound for the number of OR operations, which dominate
the performance of the protocol, is 𝑛𝑘𝐷 log𝐷 |U|. So, when 𝐷 is
constant, both the computational and communication complexities
are𝑂 (𝑛2𝑘 log |U|) for the leader, and𝑂 (𝑛𝑘 log |U|) for an assistant.
The concrete run time scales with the size of the resulting union.

4 5 6 7 8 9 10 11 12 13 14
Number of iterations

10000
20000
30000
40000
50000
60000
70000
80000

Ru
n

tim
e

[m
s]

Figure 7: Run time of our MPSU protocol for large universes
when the number of iteration increases. Here, 𝑛 = 5, 𝑘 = 32
and |U| = 232. The error bars denote the standard deviation.
The decrease in run time tapers off around 𝑅 = 8.

7.4 Results
To the best of our knowledge, there are no public implementations
of other MPSU protocols. Comparing against the MPSU protocol
for small universes is also infeasible, as the run time would exceed
hours for larger universes. Instead, we evaluate the run time of
this protocol for a growing maximum number of iterations 𝑅 in
Figure 7, where the universe has the size of the IPv4 space. Since
the decrease in run time tapers off at 8 iterations, we consider this
the optimal choice in this instance. In our experiment we do not
simulate additional communication delays, however, one might
trade-off this delay with a party’s computational effort. We note
that the actual run time of the protocol does not scale linearly with
set size, as the probability increases for two elements to map to the
same partition, allowing the protocol to discard more partitions.

8 CONCLUSION
In this work, we instantiate existing MPSI and MPSU protocols
with elliptic curve-based private logic protocols to perform fast
set operations on any size of universe. Our novel private logic pro-
tocols may also be of independent interest. Most previous MPSI
and MPSU protocols either use significantly slower integer-based
homomorphic encryption or oblivious transfers that require inter-
actions between all parties. Our protocols, however, enjoy the low
computational cost of elliptic curve operations and function in the
star topology. Moreover, we propose a novel MPSU protocol for
large universes that uses a divide-and-conquer approach to signifi-
cantly reduce computation at the cost of more interactions. Still, it
remains an open question to design an exact elliptic curve-based
MPSI or MPSU that does not depend on the size of the universe.

We open-source a proof-of-concept implementation of all proto-
cols and compare it against the state of the art. We also demonstrate
that the protocols’ run times are constant and we underline their se-
curity using a simulation-based proof. The protocols are fast enough
to be used in practice; the MPSI protocol for small universes is two
orders of magnitude faster than the protocol by Bay et al. [4], and
for a false positive rate of 𝜀 ≤ 0.01% the MPSI protocol for large
universes consistently outperforms the protocol by Kolesnikov et
al. [28] when three or more parties are involved.

Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs

ACKNOWLEDGMENTS
We would like to thank the creators of the curve25519-dalek,
subtle and swanky Rust libraries.

REFERENCES
[1] Aydin Abadi, Sotirios Terzis, and Changyu Dong. 2020. Feather: Lightweight

Multi-party Updatable Delegated Private Set Intersection. IACR Cryptol. ePrint
Arch. (2020), 407. https://eprint.iacr.org/2020/407

[2] Samiran Bag, Muhammad Ajmal Azad, and Feng Hao. 2019. PriVeto: a fully
private two-round veto protocol. IET Inf. Secur. 13, 4 (2019), 311–320. https:
//doi.org/10.1049/iet-ifs.2018.5115

[3] Elaine Barker. 2020. Recommendation for Key Management: Part 1 – General.
Technical Report SP 800-57 Part 1 Rev. 5. NIST.

[4] Asli Bay, Zeki Erkin, Mina Alishahi, and Jelle Vos. 2021. Multi-Party Private Set
Intersection Protocols for Practical Applications. In Proceedings of the 18th Inter-
national Conference on Security and Cryptography, SECRYPT 2021, July 6-8, 2021,
Sabrina De Capitani di Vimercati and Pierangela Samarati (Eds.). SCITEPRESS,
515–522. https://doi.org/10.5220/0010547605150522

[5] Aslí Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona Samardjiska, and Jelle
Vos. 2022. Practical Multi-Party Private Set Intersection Protocols. IEEE Trans.
Inf. Forensics Secur. 17 (2022), 1–15. https://doi.org/10.1109/TIFS.2021.3118879

[6] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In
Public Key Cryptography - PKC 2006, 9th International Conference on Theory
and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 3958), Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin (Eds.). Springer, 207–228. https://doi.
org/10.1007/11745853_14

[7] Marina Blanton and Everaldo Aguiar. 2016. Private and oblivious set and multiset
operations. Int. J. Inf. Sec. 15, 5 (2016), 493–518. https://doi.org/10.1007/s10207-
015-0301-1

[8] Colin Boyd, Kristian Gjøsteen, Clémentine Gritti, and Thomas Haines. 2019.
A Blind Coupon Mechanism Enabling Veto Voting over Unreliable Networks.
In Progress in Cryptology - INDOCRYPT 2019 - 20th International Conference on
Cryptology in India, Hyderabad, India, December 15-18, 2019, Proceedings (Lecture
Notes in Computer Science, Vol. 11898), Feng Hao, Sushmita Ruj, and Sourav Sen
Gupta (Eds.). Springer, 250–270. https://doi.org/10.1007/978-3-030-35423-7_13

[9] Felix Brandt. 2005. Efficient Cryptographic Protocol Design Based on Distributed
El Gamal Encryption. In Information Security and Cryptology - ICISC 2005, 8th
International Conference, Seoul, Korea, December 1-2, 2005, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 3935), Dongho Won and Seungjoo Kim
(Eds.). Springer, 32–47. https://doi.org/10.1007/11734727_5

[10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropoulos.
2010. SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events
and Statistics. In 19th USENIX Security Symposium, Washington, DC, USA, August
11-13, 2010, Proceedings. USENIX Association, 223–240. http://www.usenix.org/
events/sec10/tech/full_papers/Burkhart.pdf

[11] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana Ob-
battu, Sruthi Sekar, and Akash Shah. 2021. Efficient Linear Multiparty PSI and
Extensions to Circuit/Quorum PSI. Cryptology ePrint Archive, Report 2021/172.
https://ia.cr/2021/172.

[12] David Chaum. 1988. The Dining Cryptographers Problem: Unconditional Sender
and Recipient Untraceability. J. Cryptol. 1, 1 (1988), 65–75. https://doi.org/10.
1007/BF00206326

[13] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. 2012. Multi-Party Privacy-
Preserving Set Intersection with Quasi-Linear Complexity. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 95-A, 8 (2012), 1366–1378. https://doi.org/10.
1587/transfun.E95.A.1366

[14] Yann Collet. 2021. xxHash. https://cyan4973.github.io/xxHash/
[15] Sumit Kumar Debnath, Tanmay Choudhury, Nibedita Kundu, and Kunal Dey.

2021. Post-quantum secure multi-party private set-intersection in star network
topology. J. Inf. Secur. Appl. 58 (2021), 102731. https://doi.org/10.1016/j.jisa.2020.
102731

[16] Sumit Kumar Debnath, Pantelimon Stanica, Nibedita Kundu, and Tanmay Choud-
hury. 2021. Secure and efficient multiparty private set intersection cardinality.
Adv. Math. Commun. 15, 2 (2021), 365–386. https://doi.org/10.3934/amc.2020071

[17] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection
meets big data: an efficient and scalable protocol. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November
4-8, 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM,
789–800. https://doi.org/10.1145/2508859.2516701

[18] Taher ElGamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In Advances in Cryptology, Proceedings of CRYPTO ’84,
Santa Barbara, California, USA, August 19-22, 1984, Proceedings (Lecture Notes
in Computer Science, Vol. 196), G. R. Blakley and David Chaum (Eds.). Springer,
10–18. https://doi.org/10.1007/3-540-39568-7_2

[19] Keith B. Frikken. 2007. Privacy-Preserving Set Union. In Applied Cryptography
and Network Security, 5th International Conference, ACNS 2007, Zhuhai, China,
June 5-8, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4521), Jonathan
Katz and Moti Yung (Eds.). Springer, 237–252. https://doi.org/10.1007/978-3-
540-72738-5_16

[20] Ashish Goel and Pankaj Gupta. 2010. Small subset queries and bloom filters using
ternary associativememories, with applications. In SIGMETRICS 2010, Proceedings
of the 2010 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, New York, New York, USA, 14-18 June 2010, Vishal
Misra, Paul Barford, and Mark S. Squillante (Eds.). ACM, 143–154. https://doi.
org/10.1145/1811039.1811056

[21] Mike Hamburg. 2015. Decaf: Eliminating Cofactors Through Point Compression.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 9215), Rosario Gennaro and Matthew Robshaw (Eds.).
Springer, 705–723. https://doi.org/10.1007/978-3-662-47989-6_34

[22] Feng Hao and Piotr Zielinski. 2006. A 2-Round Anonymous Veto Protocol. In
Security Protocols, 14th International Workshop, Cambridge, UK, March 27-29,
2006, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 5087), Bruce
Christianson, Bruno Crispo, James A. Malcolm, and Michael Roe (Eds.). Springer,
202–211. https://doi.org/10.1007/978-3-642-04904-0_28

[23] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. 2017. Scalable
Multi-party Private Set-Intersection. In Public-Key Cryptography - PKC 2017 - 20th
IACR International Conference on Practice and Theory in Public-Key Cryptography,
Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 10174), Serge Fehr (Ed.). Springer, 175–203. https:
//doi.org/10.1007/978-3-662-54365-8_8

[24] Roi Inbar, Eran Omri, and Benny Pinkas. 2018. Efficient Scalable Multiparty
Private Set-Intersection via Garbled Bloom Filters. In Security and Cryptography
for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7,
2018, Proceedings (Lecture Notes in Computer Science, Vol. 11035), Dario Catalano
and Roberto De Prisco (Eds.). Springer, 235–252. https://doi.org/10.1007/978-3-
319-98113-0_13

[25] Florian Kerschbaum. 2012. Outsourced private set intersection using homomor-
phic encryption. In 7th ACM Symposium on Information, Compuer and Commu-
nications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012, Heung Youl Youm
and Yoojae Won (Eds.). ACM, 85–86. https://doi.org/10.1145/2414456.2414506

[26] Aggelos Kiayias and Moti Yung. 2003. Non-interactive Zero-Sharing with Appli-
cations to Private Distributed Decision Making. In Financial Cryptography, 7th
International Conference, FC 2003, Guadeloupe, French West Indies, January 27-30,
2003, Revised Papers (Lecture Notes in Computer Science, Vol. 2742), Rebecca N.
Wright (Ed.). Springer, 303–320. https://doi.org/10.1007/978-3-540-45126-6_22

[27] Lea Kissner and Dawn Xiaodong Song. 2005. Privacy-Preserving Set Operations.
In Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings (Lec-
ture Notes in Computer Science, Vol. 3621), Victor Shoup (Ed.). Springer, 241–257.
https://doi.org/10.1007/11535218_15

[28] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
2017. Practical Multi-party Private Set Intersection from Symmetric-Key Tech-
niques. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu
(Eds.). ACM, 1257–1272. https://doi.org/10.1145/3133956.3134065

[29] Ronghua Li and Chuankun Wu. 2007. An Unconditionally Secure Protocol for
Multi-Party Set Intersection. In Applied Cryptography and Network Security, 5th
International Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007, Proceedings
(Lecture Notes in Computer Science, Vol. 4521), Jonathan Katz and Moti Yung (Eds.).
Springer, 226–236. https://doi.org/10.1007/978-3-540-72738-5_15

[30] Yehuda Lindell. 2017. How to Simulate It - A Tutorial on the Simulation Proof
Technique. In Tutorials on the Foundations of Cryptography, Yehuda Lindell (Ed.).
Springer International Publishing, 277–346. https://doi.org/10.1007/978-3-319-
57048-8_6

[31] Atsuko Miyaji and Shohei Nishida. 2015. A Scalable Multiparty Private Set Inter-
section. In Network and System Security - 9th International Conference, NSS 2015,
New York, NY, USA, November 3-5, 2015, Proceedings (Lecture Notes in Computer
Science, Vol. 9408), Meikang Qiu, Shouhuai Xu, Moti Yung, and Haibo Zhang
(Eds.). Springer, 376–385. https://doi.org/10.1007/978-3-319-25645-0_26

[32] Ofri Nevo, Ni Trieu, and Avishay Yanai. 2021. Simple, Fast Malicious Multiparty
Private Set Intersection. Cryptology ePrint Archive, Report 2021/1221. https:
//ia.cr/2021/1221.

[33] Odysseas Papapetrou, Wolf Siberski, and Wolfgang Nejdl. 2010. Cardinality
estimation and dynamic length adaptation for Bloom filters. Distributed Parallel
Databases 28, 2-3 (2010), 119–156. https://doi.org/10.1007/s10619-010-7067-2

[34] Ou Ruan, Zihao Wang, Jing Mi, and Mingwu Zhang. 2019. New Approach to Set
Representation and Practical Private Set-Intersection Protocols. IEEE Access 7
(2019), 64897–64906. https://doi.org/10.1109/ACCESS.2019.2917057

[35] Yingpeng Sang and Hong Shen. 2009. Efficient and secure protocols for privacy-
preserving set operations. ACM Trans. Inf. Syst. Secur. 13, 1 (2009), 9:1–9:35.

https://eprint.iacr.org/2020/407
https://doi.org/10.1049/iet-ifs.2018.5115
https://doi.org/10.1049/iet-ifs.2018.5115
https://doi.org/10.5220/0010547605150522
https://doi.org/10.1109/TIFS.2021.3118879
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/s10207-015-0301-1
https://doi.org/10.1007/s10207-015-0301-1
https://doi.org/10.1007/978-3-030-35423-7_13
https://doi.org/10.1007/11734727_5
http://www.usenix.org/events/sec10/tech/full_papers/Burkhart.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Burkhart.pdf
https://ia.cr/2021/172
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/BF00206326
https://doi.org/10.1587/transfun.E95.A.1366
https://doi.org/10.1587/transfun.E95.A.1366
https://cyan4973.github.io/xxHash/
https://doi.org/10.1016/j.jisa.2020.102731
https://doi.org/10.1016/j.jisa.2020.102731
https://doi.org/10.3934/amc.2020071
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-540-72738-5_16
https://doi.org/10.1007/978-3-540-72738-5_16
https://doi.org/10.1145/1811039.1811056
https://doi.org/10.1145/1811039.1811056
https://doi.org/10.1007/978-3-662-47989-6_34
https://doi.org/10.1007/978-3-642-04904-0_28
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1007/978-3-319-98113-0_13
https://doi.org/10.1145/2414456.2414506
https://doi.org/10.1007/978-3-540-45126-6_22
https://doi.org/10.1007/11535218_15
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1007/978-3-540-72738-5_15
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-25645-0_26
https://ia.cr/2021/1221
https://ia.cr/2021/1221
https://doi.org/10.1007/s10619-010-7067-2
https://doi.org/10.1109/ACCESS.2019.2917057

Vos et al.

https://doi.org/10.1145/1609956.1609965
[36] Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. 2012. Constant-Round

Multi-party Private Set Union Using Reversed Laurent Series. In Public Key
Cryptography - PKC 2012 - 15th International Conference on Practice and Theory
in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings
(Lecture Notes in Computer Science, Vol. 7293), Marc Fischlin, Johannes Buchmann,
and Mark Manulis (Eds.). Springer, 398–412. https://doi.org/10.1007/978-3-642-
30057-8_24

[37] Katsunari Shishido and Atsuko Miyaji. 2018. Efficient and Quasi-accurate Multi-
party Private Set Union. In 2018 IEEE International Conference on Smart Comput-
ing, SMARTCOMP 2018, Taormina, Sicily, Italy, June 18-20, 2018. IEEE Computer
Society, 309–314. https://doi.org/10.1109/SMARTCOMP.2018.00021

[38] Anselme Tueno, Florian Kerschbaum, Stefan Katzenbeisser, Yordan Boev, and
Mubashir Qureshi. 2020. Secure Computation of the kth-Ranked Element in a
Star Network. In Financial Cryptography and Data Security - 24th International
Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020 Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 12059), Joseph Bonneau and Nadia
Heninger (Eds.). Springer, 386–403. https://doi.org/10.1007/978-3-030-51280-
4_21

[39] Henry de Valence, Isis Lovecruft, and Tony Arcieri. 2021. The Ristretto Group.
https://ristretto.group/why_ristretto.html

[40] Henry de Valence, Isis Lovecruft, and Tony Arcieri. 2021. Testing Equality.
https://ristretto.group/formulas/equality.html

[41] Jelle Vos, Zekeriya Erkin, and Christian Doerr. 2021. Compare Before You Buy:
Privacy-Preserving Selection of Threat Intelligence Providers. Cryptology ePrint
Archive, Report 2021/1260. https://ia.cr/2021/1260.

A COMPLEXITIES OF MPSI PROTOCOLS
In this section we provide our reasoning for the altered complexities
in Table 1.We use the notation fromTable 2. In the final complexities
we substitute𝑚 with 𝑂 (𝑘), as explained in Section 6.

A.1 Kissner & Song [27]
The authors already provide a computational and communication
complexity but we are interested in the complexity per party rather
than the total complexity.

(1) Each party sends their encrypted polynomial to 𝑡 other
parties, which takes 𝑂 (𝑡𝑘) bits.

(2) Each party sends another encrypted polynomial to one
other party, which takes 𝑂 (𝑘) bits.

(3) The leader sends the final encrypted polynomial to all other
parties, which takes 𝑂 (𝑛𝑘) bits.

(4) Each party participates in a group decryption (for each
coefficient) by sending the their decrypted shares to 𝑡 other
parties, which takes 𝑂 (𝑡𝑘) bits.

The final communication complexity is 𝑂 (𝑛𝑘) for the leader and
𝑂 (𝑡𝑘) for an assistant.

(1) Each party generates an encrypted polynomial, which takes
𝑂 (𝑘).

(2) Each party homomorphically multiplies 𝑡 + 1 polynomials,
which takes 𝑂 (𝑡𝑘2).

(3) Each assistant adds two encrypted polynomials together,
which takes 𝑂 (𝑘).

(4) Each party participates in a group decryption (for each
coefficient), which takes 𝑂 (𝑡𝑘).

This leads to a computational complexity of 𝑂 (𝑡𝑘2) for both the
leader and an assistant.

A.2 Hazay et al. [23]
(1) Each assistant encodes their set as encrypted polynomial

coefficients, which takes 𝑂 (𝑘).

(2) The leader evaluates the 𝑛 − 1 encrypted polynomials with
its 𝑘 elements, which takes 𝑂 (𝑛𝑘2).

(3) The leader sums up the 𝑛−1 ciphertexts per element, which
takes 𝑂 (𝑛𝑘).

(4) Several assistants help in the decrypt-to-zero of 𝑘 cipher-
texts, which takes 𝑂 (𝑘).

(5) The leader combines the resulting shares to compute the
final intersection, which takes 𝑂 (𝑘).

So the computational complexity for the leader is 𝑂 (𝑛𝑘2) and for
an assistant is 𝑂 (𝑘). At the cost of bandwidth the authors also
propose a computation optimization which takes the leader only
𝑂 (𝑛𝑘 log2 𝑘).

A.3 Inbar et al. [24]
(1) Each party performs an OT interaction with each other

party to share an XOR-secret share, receiving a constant
number of bits for each bin in the Bloom Filter, which takes
𝑂 (𝑛𝑚) bits.

(2) Each assistant sends its share of the final aggregated Gar-
bled Bloom Filter to the leader, which takes 𝑂 (𝑚) bits.

This results in a communication complexity of𝑂 (𝑛𝑚) for assistants
and the leader alike. The original paper reports a complexity of
𝑂 (𝑛ℎ𝑘), where we pose 𝑂 (ℎ𝑘) might have been a substitution for
𝑂 (𝑚).

(1) Each party builds a Bloom Filter and a t-shared Garbled
Bloom Filter, which takes 𝑂 (𝑛𝑚).

(2) Each party performs an OT interaction with each other
party for every bin in the Bloom Filter, which takes approx-
imately 𝑂 (𝑛𝑚).

(3) Each party XORs their received secret shares from the OT
interaction, which takes 𝑂 (𝑛𝑚).

(4) The leader XORs their received secret shares, which takes
𝑂 (𝑛𝑚).

This results in a computational complexity that is also 𝑂 (𝑛𝑚) for
every party.

A.4 Bay et al. [4]
(1) Each assistant sends an encrypted bitset, which takes𝑂 (|U|)

bits.
(2) The leader sends all assistants at most 𝑘 aggregated bits,

which takes 𝑂 (𝑘) bits.
(3) Each assistant partially decrypts at most 𝑘 aggregated bits,

which takes 𝑂 (𝑘) bits.
This results in a communication complexity of𝑂 (𝑛𝑘) for the leader
and 𝑂 (|U|) for an assistant.

(1) Each assistant generates an encrypted bitset, which takes
𝑂 (|U|).

(2) The leader aggregates the results using homomorphic addi-
tion for the bins corresponding to its set elements, which
takes 𝑂 (𝑛𝑘ℎ).

(3) Each assistant partially decrypts at most 𝑘 aggregated bins,
which takes 𝑂 (𝑘).

As a result, the leader performs 𝑂 (𝑛𝑘ℎ) operations, while the assis-
tants perform 𝑂 (|U|) operations.

https://doi.org/10.1145/1609956.1609965
https://doi.org/10.1007/978-3-642-30057-8_24
https://doi.org/10.1007/978-3-642-30057-8_24
https://doi.org/10.1109/SMARTCOMP.2018.00021
https://doi.org/10.1007/978-3-030-51280-4_21
https://doi.org/10.1007/978-3-030-51280-4_21
https://ristretto.group/why_ristretto.html
https://ristretto.group/formulas/equality.html
https://ia.cr/2021/1260

Fast Multi-party Private Set Operations in the Star Topology from Secure ANDs and ORs

A.5 Debnath et al. [16] & Bay et al. [5]
(1) Each assistant sends an encrypted Bloom filter, which takes

𝑂 (𝑚) bits.
(2) The leader sends all assistants at most 𝑘 aggregated bins,

which takes 𝑂 (𝑘) bits.
(3) Each assistant partially decrypts at most 𝑘 aggregated bins,

which takes 𝑂 (𝑘) bits.
This results in a communication complexity of𝑂 (𝑛𝑘) for the leader
and 𝑂 (𝑘) for an assistant.

(1) Each assistant generates an encrypted Bloom filter, which
takes 𝑂 (𝑘 +𝑚).

(2) The leader aggregates the results using homomorphic addi-
tion for the bins corresponding to its set elements, which
takes 𝑂 (𝑛𝑘ℎ).

(3) Each assistant partially decrypts at most 𝑘 aggregated bins,
which takes 𝑂 (𝑘).

As a result, the leader performs 𝑂 (𝑛𝑘ℎ) operations, while the assis-
tants perform 𝑂 (𝑘) operations.

B COMPLEXITIES OF MPSU PROTOCOLS
B.1 Frikken [19]
Following the author’s complexity analysis, the parties each share
𝑂 (𝑛𝑘) tuples with two ciphertexts in step 2b of the protocol, so the
communication complexity for each individual party is 𝑂 (𝑛𝑘) bits.
Each party must be online at least once in steps 1a, 1b, 1c, 2b, 3 and
4, so the protocol requires at least 6 stages.

(1) Each party encodes their set as encrypted polynomial coef-
ficients, which takes 𝑂 (𝑘).

(2) Each party P𝑖 homomorphically multiplies 𝑖 encrypted
polynomials together, which takes at most 𝑂 (𝑛𝑘2).

(3) Each party P𝑖 encrypts 2𝑘 values and homomorphically
multiplies 𝑖−1 encrypted polynomials together, which takes
at most 𝑂 (𝑛𝑘2).

(4) Each party P𝑖 homomorphically multiplies 𝑖 ciphertexts
together, which takes at most 𝑂 (𝑛𝑘).

(5) Each party takes part in a secure shuffle protocol with at
most 𝑛𝑘 tuples, which we assume to be linear with the
number of parties and tuples.

(6) All parties work together to decrypt at most 𝑛𝑘 tuples,
which scales linearly with 𝑛 and 𝑘 .

So, the overall computational complexity is 𝑂 (𝑛𝑘2) for each party.

B.2 Seo et al. [36]
In this work, 𝑝 is the order of the finite field used in secret sharing.
It needs to hold that 𝑝 ≤ |U|, so the computational complexity be-
comes𝑂 (𝑛4𝑘2 +𝑛2𝑘2 log |U|). For brevity, we omit the logarithmic
term: 𝑂̃ (𝑛4𝑘2).

C EXTENDED SECURITY PROOF
Theorem C.1. For a set of colluding parties 𝐶 = {1} ∪𝐶 ′ 𝐶 ′ ⊂

{2, . . . , 𝑛} there exists a simulator S2 so that:

S2 (𝑧)
c≡
⋃
𝑐∈𝐶

view𝑐 (𝑥𝑐) . (27)

Proof. We construct simulator S2, which takes the protocol’s
output 𝑧. The simulator takes no inputs because we can generate
an indistinguishable view without explicitly incorporating them.
The output of the simulator is a complete set of simulated incoming
messages from the remaining honest assistants: {𝛼 𝑗

𝑖
, 𝛽

𝑗
𝑖
, 𝛼𝑡𝑖 , 𝛽

𝑡

𝑖 , 𝜎
𝑡
𝑖
}

for all honest P𝑖 , in other words 𝑖 ∈ 𝐶 .
First, the simulator randomly samples ⟨𝛼 𝑗

𝑖
, 𝛽

𝑗
𝑖
⟩ ← ⟨R(G),R(G)⟩

and ⟨𝛼𝑡𝑖 , 𝛽
𝑡

𝑖 ⟩ ← ⟨R(G),R(G)⟩, which are computationally indistin-
guishable from actual views as argued in Theorem 4.3.

The simulator then generates 𝜎𝑡
𝑖
, which depends on the expected

output 𝑧. If 𝑧 = 1, the simulator randomly samples 𝜎𝑡
𝑖
← R(G).

However, if 𝑧 = 0, the simulated output would be incorrect with
overwhelming probability, as shown at the end of Theorem 4.1.
Instead, the simulator will choose one honest assistant 𝐻 ∈ 𝐶 for
which it generates another 𝜎𝑡

𝐻
. For the other assistants 𝑐 ∈ 𝐶 \ {𝐻 },

the simulator samples 𝜎𝑡𝑐 ← R(G). The simulator computes:

𝜎𝐻 ← 𝛽
𝑡 −

©­­«
∑︁
𝑐∈𝐶

𝜎𝑐 +
∑︁

𝑐∈𝐶\{𝐻 }

𝜎𝑐
ª®®¬ . (28)

It is clear to see that
∑𝑛
𝑖=1 𝜎

𝑡
𝑖
= 𝛽

𝑡 , so the output is 0.
Finally, we show that 𝜎𝑡

𝑖
is indeed indistinguishable from the

actual views. If it was sampled randomly, then it holds that 𝜎𝑡
𝑖

s≡
sk𝑖 𝛼𝑡 , because sk𝑖 is an unknown value sampled randomly from
Z𝑞 . Moreover, since we only choose assistant 𝐻 ∈ 𝐶 when 𝑧 = 0, its
𝜎𝑡
𝐻
is also statistically indistinguishable from an actual view since

the other values in the summation are statistically indistinguishable
and the output is known to be 0. □

D DETAILS OF THE DIVIDE-AND-CONQUER
APPROACH

We provide pseudocode for the underlying algorithms of the divide-
and-conquer approach for multi-party private set unions on bitsets.
Algorithm 2 provides the functionality to split a range up into 𝐷

similarly sized partitions.

Algorithm 2 Selects the indices of 𝐷 partitions
1: procedure Split(min,max, 𝐷)
2: 𝑠 ← max−min

𝐷
3: indices← []
4: 𝑖 ← min
5: while 𝑖 < max do
6: 𝑗 ← 𝑖 + 𝑠
7: Append (⌊𝑖⌉, ⌊ 𝑗⌉) to indices
8: 𝑖 ← 𝑗

9: return indices

Algorithm 3 in turn uses the splitting algorithm to run the actual
recursive MPSU protocol.

Next, we provide a derivation for finding that the optimal parti-
tion number 𝐷 = 𝑒 . For 𝑁 > 1 we have the following minimization
problem:

min
𝐷>1

𝐷 log𝐷 𝑁 . (29)

Vos et al.

Algorithm 3 Divide-and-conquer approach for one party

1: procedure DivideAndConqer(𝑋, 𝐷)
2: result← [0, . . . , 0] ⊲ Bit vector of length |U|
3: 𝐼prev ← [(0, |U|)]
4: while |𝐼prev | > 0 do
5: 𝐼curr ← [Split(𝑖, 𝑗, 𝐷) ∀(𝑖, 𝑗) ∈ 𝐼prev]
6: 𝐼prev ← []
7: ⊲ This for loop can be performed in parallel
8: for (𝑖, 𝑗) ∈ 𝐼curr do
9: 𝑥 ← 𝑋 [𝑖] ∨ · · · ∨ 𝑋 [𝑗]
10: Take part in a private OR protocol with 𝑥

11: Receive result 𝑧 from the leader P1
12: if 𝑗 − 𝑖 = 1 then
13: result[𝑖] = 1
14: else if 𝑧 = 1 then
15: Append (𝑖, 𝑗) to 𝐼prev
16: return result

We find the optimum by differentiating for 𝐷 and determining
when the derivative is 0:

0 = 𝑑

𝑑𝐷
𝐷 log𝐷 𝑁 , (30)

=
𝑑

𝑑𝐷
𝐷
ln𝑁
ln𝐷 , (31)

=
ln𝑁
ln𝐷 −

ln𝑁
ln2 𝑥

. (32)

Since 𝑁 > 1, the only solution is 𝑥 = 𝑒 .

	Abstract
	1 Introduction
	2 Related work
	2.1 Multi-party private logic
	2.2 Multi-party private set intersections
	2.3 Multi-party private set unions

	3 Preliminaries
	3.1 Elliptic curve ElGamal
	3.2 Bloom filters

	4 Private ORs & ANDs
	4.1 Protocol description
	4.2 Composed logic
	4.3 Correctness
	4.4 Privacy
	4.5 Efficiency

	5 Private set operations for small universes
	6 Private set intersections for large universes
	6.1 Correctness
	6.2 Privacy
	6.3 Efficiency
	6.4 Results

	7 Private set unions for large universes
	7.1 Choosing the number of divisions
	7.2 Privacy
	7.3 Efficiency
	7.4 Results

	8 Conclusion
	Acknowledgments
	References
	A Complexities of MPSI protocols
	A.1 Kissner & Song
	A.2 Hazay et al.
	A.3 Inbar et al.
	A.4 Bay et al.
	A.5 Debnath et al. & Bay et al.

	B Complexities of MPSU protocols
	B.1 Frikken
	B.2 Seo et al.

	C Extended security proof
	D Details of the divide-and-conquer approach

