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Abstract The choice of the elliptic curve for a given pairing based proto-
col is primordial. For many cryptosystems based on pairings such as group
signatures and their variants (EPID, anonymous attestation, etc) or accumu-
lators, operations in the first pairing group G of points of the elliptic curve
is more predominant. At 128-bit security level two curves BW13 − P310 and
BW19 − P286 with odd embedding degrees 13 and 19 suitable for super op-
timal pairing have been recommended for such pairing based protocols . But
a prime embedding degree (k = 13; 19) eliminates some important optimi-
sation for the pairing computation. However The Miller loop length of the
superoptimal pairing is the half of that of the optimal ate pairing but involve
more exponentiations that affect its efficiency. In this work, we successfully
develop methods and construct algorithms to efficiently evaluate and avoid
heavy exponentiations that affect the efficiency of the superoptimal pairing.
This leads to the definition of new bilinear and non degenerate pairing on
BW13−P310 and BW19−P286 called x-superoptimal pairing wchich is about
27.3% and 49% faster than the optimal ate pairing previousely computed on
BW13 − P310 and BW19 − P286 respectively.
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1 Introduction

Elliptic Curve Based Pairings are used in many cryptographic protocols
namely aggregate and verifiably encrypted signatures [1], identity-based en-
cryption [2] and Short signature from Weil pairing [3]. Nowadays they are also
used for faster public keys compression for isogeny-based cryptosystems (key
exchange) [4] and to construct verifiable delay functions from supersingular
isogenies [5].

A pairing is a non-degenerate bilinear map e from the cartesian product of
two abelian additive groupsG1 andG2 to an abelian multiplicative groupGT.
Let E be an elliptic curve defined over Fp, where p is a large prime number
and let r be the largest prime number such that r divides #E(Fp). Let k be
the smallest positive integer such that r divides pk

− 1. The integer k is called
the embedding degree of E (with respect to r). For elliptic curve pairings the
groups G1 and G2 consist of points on elliptic curve E, the group GT is em-
bedded in a finite extension field Fpk . These groups are usually of prime order
r. Parameters r, p, k are chosen in order to ensure that security holds in each
group while maintaining the best efficiency of the pairing. By security, we
here mean the hardness of the Discrete Logarithm Problem (DLP) on G1, G2
andGT.An efficient computation of a pairing is based on the Miller algorithm
wchich involves addition of points and evaluation of functions and which
the loop length depends on the parameter r. Vercauteren [6] introduced the
concept of an optimal pairing with Miller iterations log2(r)

ϕ(k) then, e(., .) is called

an optimal pairing if it can be computed in log2(r)
ϕ(k) + ε(k) basic Miller iterations,

with ε(k) ≤ log2(k) such as optimal Ate pairing and β-Weil pairing. Pairings
with Miller loop length less than log2(r)

ϕ(k) are called superoptimal pairings. For
example the superoptimal pairing defined by Yanfeng et al. in [7]. The advan-
tage of this pairing is that the Miller loop length of the superoptimal pairing is
half of that of the optimal Ate pairing thought the Miller loop involves addi-
tional exponentiations that may affect the efficiency. In this work, we provide
the first application of the superoptimal pairing proposed by Yanfeng et al. on
BW13−P310 and BW19−P286 curves. Clarisse et al. in [8] show that at 128-bit
level of security the curves BW13−P310 and BW19−P286 are suitable for faster
scalar multiplication in the first pairing group G1. These curves are relevant
for cryptographic protocols which extensively use scalar multiplication in the
first pairing group such as Enhanced Privacy ID (EPID) scheme introduced
by Brickell and Li in [9] and ring signature scheme with pairings [10]. The
idea is that in such protocols the main operations are done in G1. Hence it
is more benefit to select a curve where the operations on G1 is less costly for
instance the curves BW13 − P310 and BW19 − P286. The efficiency of the ring
signature scheme depends on the efficiency of the pairing computation. The



Title Suppressed Due to Excessive Length 3

pairings is computed to verify if the signature is correct or not. Tate, Weil, Ate,
optimal Ate pairings have long been studied in the literature on curves with
embedding degrees of the form k = 2i3 j where i, j ∈N.On such curves, elliptic
curve arithmetic is efficient for 6/k, 4/k and 3/k . Also, there are factors of the
Miller function which belongs to a proper subfields of Fpk that can be neu-
tralized during the final exponentiation ( i.e during the raising of the Miller

loop output to the power ( pk
−1
r ), and hence are not computed. In our case,

there is not a proper subfields of Fp13 or Fp19 on which some operations can be
carried on. Thus it is urgent to look for a way to lower the cost of the pairings
on the curves with prime odd embedding degree. Morever, there are more
exponentiations in the superoptimal pairing than other pairings. Our work
consists also in developing methods and techniques to reduce the exponen-
tiations and construct algorithms for efficient evaluation of the superoptimal
pairing. The bilinearity of the new x-superoptimal pairing has been verified
by a Magma script available at [11].

Our contribution. The contributions of this paper are as follows:

– We provided the methods to reduce the inner exponents of the super-
optimal pairing. Thus we have proposed a new bilinear non degenerate
pairing on BW13 − P310 and BW19 − P286 called x-superoptimal pairing.

– In the absence of twist we use the idea of Guillevic et al. [12] which consists
of separating numerators and denominators during the evaluation of the
Miller’s function so as to avoid many inversions. In addition we show how
to eliminate some undesirable factors in the x-superoptimal pairing evalu-
ation. For the faster evaluation we employed the multifunction technique
to save multiplications and squarings.

Our theoretical results show that the x-superoptimal pairing can be com-
puted efficiently than optimal Ate pairing on BW13−P310 and BW19−P286.
The improvement is about 27.3% and 49% faster than the optimal ate pairing
previousely computed on BW13 − P310 and BW19 − P286 respectively for
the Miller loop. The correctness of the formulas for curves with embedding
degrees 13 and 19 are ensured by a Magma script.

Roadmap. This paper is organized as follows. The Section 2 describes the
ring signature scheme to illustrate required operations as far as operations
in the first pairing group are concerned and the pairing evaluation as well.
We also define in this sectionthe optimal pairing as well as superoptimal
pairing on elliptic curves. Section 3 provides a variant of the superoptimal
pairing on BW13−P310 and BW19−P286 with embedding degrees k = 13 and
k = 19 respectively called x-superoptimal and describes efficient algorithms
for its evaluation. Section 4 estimates the theoretical cost of the x-superoptimal
pairing on BW13− P310 and BW19− P286 and compares our results with the
optimal ate pairing on the same curves. Section 5 compares our results with
those done on previous works. Finally, Section 6 concludes the work.
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2 Preliminaries.

In this section, we describe the ring signature schemes and define the optimal
pairing as well as superoptimal pairing on elliptic curves.

2.1 Ring Signature Schemes

One of the important issue solved by the ring signature schemes is the problem
stated as follows: A member of the government officials wants to leak a secret
to the public, however he wants to remain anonymous. On the other hand, he
wants the public to be convinced that the secret is actually leaked from one
of the many officers and is thus reliable. Given a security parameter k ∈ Z+,
run the parameter generator on input k to generate a prime r, three groups
G1,G2,GT of order r, two generators P and Q in G1 and G2 respectively,
and an admissible pairing e : G1 × G2 −→ GT. Let H : {0, 1}∗ −→ Zr be a
cryptographic hash function. The security analysis will view H as a random
oracle. The system parameters is Params = {r,G1,G2,GT, e,P,Q,H}. The ring
signature proposed by Kyung-Ah Shim [13] consists of three polynomial time
algorithms: key generation, ring signature and ring verification. They are
deployed as follows:

– Key generation: For a user Pi, pick a random xi ∈ Zr and compute PKi =
xiP ∈ G1. The user’s public/secret key pair is (PKi; SKi) = (xiP, xi).

– Ring signature: LetU = {PK1, · · · ,PKn} be the group of users’ public keys.
Given a private key pair xs of Ps, and a message M ∈ {0, 1}∗

1. Choose Ui ∈ G1, for i = 1, · · · ,n and i , s.
2. Compute hi = H(Ui,M,U) for i = 1, · · · ,n and i , s.
3. Choose a random number a ∈ Zr and compute

Us = aP −
∑n

i,s[hiPKi + Ui] ∈ G1, hs = H(Us,M,U) ∈ Zr, V = (a +
hsxs)Q ∈ G2.

4. Output the message σ = (U1, · · · ,Un,V) on M forU.
– Ring verification: Given a signature r of M for a ringU = {PK1, · · · ,PKn},

1. Compute hi = H(Ui,M,U) for i = 1, · · · ,n.
2. Verify whether e(P,V) = e(

∑n
i=1[hiPKi + Ui],Q) holds or not. If it holds,

accept the signature, otherwise, reject it.

For n users, the ring signer needs n + 1 scalar multiplications and the
verifier needs n scalar multiplications in G1 while there are also two pairings
to compute for the verification step. The ring signature satisfies the following
basic properties

– Correctness: A correct ring-signature must be accepted by any verifier
with overwhelming probability;

– Anonymity: Any verifier should not have probability greater 1/n to guess
the identity of the real signer, (1/(n − 1) for insiders);
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– Unforgeability or inviolable: Any attacker must not have non-negligible
probability of success in forging a valid ring signature for some message
M on behalf of a ring that does not contain himself.

Ring signature with additional blindness requirement, finds its relevance
in e-voting, e-cash and cryptocurrency.

2.2 Optimal Pairing

Let E be an elliptic curve defined over Fp, where p is a large prime number
and let r be the largest prime number such that r divides #E(Fp). Let k be the
smallest positive integer such that r divides pk

− 1. The integer k is called the
embedding degree of E (with respect to r). The following theorem gives the
results about the construction of an optimal pairing.

Theorem 1 (Theorem 1 [6]) Let λ = mr with r - m and write λ =
∑n

i=0 cipi then

aop : G2 ×G1 −→ G3, (Q,P) 7−→

 n∏
i=0

f pi

ci,Q
(P) ·

n∏
i=0

l[si+1]Q,[cipi]Q(P)

v[si]Q(P)


pk
−1
r

with si =
∑n

j=i c jp j, defines a bilinear pairing. Furthermore,
if mkpk−1 � ((pk

− 1)/r) ·
∑n

i=1 icipi−1 mod r, then the pairing is non-degenerate.

Since r/(qk
−1), then the k−th cyclotomic polynomial in p verifies φk(p) = 0

mod r, and there exists ci’s such that c0r =
∑Φ(k)−1

i=1 cipi Such small ci’s can be ob-
tained in general by finding short vectors in the following ϕ(k)−dimensional
lattice (spanned by the rows)

L =


r 0 0 ... 0
−p 1 0 ... 0
−p2 0 1 ... 0
... ... ... ... ...

−pϕ(k)−1 0 0 ... 1

 .
The volume of L is easily seen to be r, so by Minkowski’s theorem [14],

there exists a short vector (c0, ..., cϕ(k)−1) with |ci| ≤ r1/ϕ(k). The LLL algorithm
applied to the rows of L gives such ci’s.

2.3 Superoptimal pairing on E/Fp : y2 = x3 + b

Let E be an elliptic curve defined over Fp with the form E : y2 = x3 + b
where p ≡ 1 mod 3. Then there exists an automorphism of E defined by
φ : (x, y) 7→ (ξx, y) where ξ is the primitive cube root of unity in F?p . Yanfeng
et al. [7] used φ to construct variants of the ate pairing, twisted ate pairing
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and Weil pairing on pairing-friendly elliptic curves with general embedding
degree k.

Let λ and µ be eigenvalues of φ corresponding to G1 and G2 respectively.
Let ψ = πp ◦ φ, then eigenvalues of ψ are λ and ω = pµ corresponding to G1
andG2 respectively. Assume that gcd(3, k) = 1, then ω is a primitive 3k-th root
of unity in Fr and r/(ω3k

− 1).

Theorem 2 (Theorem 1 [7]) Let cr =
∑n

i=0 aiωi = h(ω), an+1 = 0 and r2 - (ω3k
−1),

then there exists a bilinear pairing

asup : G2 ×G1 → µr

(Q,P) 7→


n∏

j=0

2∏
i=0

 fω
j

a j,Q(φ2i(P)) ·
l[h( j)]Q,[a j+1ω j+1]Q(φ2i(P))

v[h( j)+a j+1ω j+1]Q(φ2i(P))

λ
i

pk
−1
r

. (1)

Where h( j) =
∑ j

i=0 aiωi. Let h′(ω) =
∑n

j=1 ja jω j−1. Moreover, a[a0,··· ,an](., .) is non-
degenerate if and only if r - [3kh(ω) − (ω3k

− 1)ωh′(ω)].

Since r divides (ω3k
− 1), then the 3k-th cyclotomic polynomial in ω yields

Φ3k(ω) = 0 mod r and therefore there exists a′i s such that a0r =
∑Φ(3k)−1

i=1 aiωi.
The a′i s is obtained by finding short vectors in the followingϕ(3k)-dimensionnal
lattice

M =


r 0 0 ... 0
−ω 1 0 ... 0
−ω2 0 1 ... 0
... ... ... ... ...

−ωϕ(3k)−1 0 0 ... 1

 .
By the theorem of Minkowski |ai| ≤ r

1
ϕ(3k) . The superoptimal pairings can be

computed by log2(r)/ϕ(3k) Miller iterations. Since log2(r)/ϕ(3k) = log2(r)/(2ϕ(k))
this Miller loop length is the half of that of optimal pairings. But it is important
to notice that the formula in Theorem 2 involves lot of exponentiations (i.e.
w j, λ j) and various products compared to the formula of the optimal pairing
in Theorem 1.

3 Application on the Curve BW13 − P310 and BW19 − P286

Under this section, superoptimal pairing are defined on BW13 − P310 and
BW19 − P286 curves as well as its variant called x-superoptimal pairing on
the same curves.

3.1 BW13 − P310 and BW19 − P286 curves

The curve BW13 is an elliptic curve with embedding degree k = 13 and
parametrized by the polynomials p(x) = ( 1

3 ) ∗ (x + 1)2(x26
− x13 + 1) − x27,
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r(x) = Φ78(x) and t(x) = −x14 + x + 1. For the seed x = −2059 recommended
by [15], the corresponding elliptic curve is given as y2 = x3

− 17 and the bit
length of the prime p is 310.

In other hand, the parameters of the curve BW19 are the embedding degree
k = 19 and the polynomials p(x) = 1

3 (x + 1)2(x38
− x19 + 1) − x39, r(x) = Φ114(x),

and t(x) = −x20 + x + 1. p(x) plugging in x = −145 yields a p of 286 bits and the
elliptic curve BW19 is defined by the equation y2 = x3 + 31.

Guillevic in [16] made a thorough security analysis and estimated that
the cost of the DLP in the finite field Fp13 and Fp19 are 140 bits and 160 bits
respectively. Hence, these curves have a security of at least 128 bits. These
curves are called BW13−P310 and BW19−P286 as it was generated using the
Brezing-Weng strategy [17].

3.2 Superoptimal pairing on BW13 − P310 and BW19 − P286 curves

The endomorphisms of elliptic curve are very important to lower the cost of
the pairing. Specially when the points mapped to the endomorphism are not
costly.

Lemma 1 Let the endomorphism φ : (x, y) 7−→ (ξx, y) with ξ a primitive third root
of unity, such that φ(P) = λP in G1 for λ ∈ Z/rZ then, λ =

t− f−2
2 f mod r where,

D f 2 = t2
− 4p with D = −3.

Proof Since φ3 = idE, λ3 = 1 in Z/rZ then λ2 + λ + 1 = 0 mod r for λ , 1. We
can take

λ =

√
−3 − 1

2
. (2)

Since r/(p − t + 1) and −3 f 2 = t2
− 4p then −3 f 2

≡ t2
− 4(t − 1) mod r i.e.

−3 f 2
≡ (t − 2)2 mod r i.e.

√
−3 ≡ ( t−2

f ) mod r. By substituting this value in

Equation 2 we obtain λ =
t−2− f

2 f mod r.

In the case of BW13− P310, the eigenvalue λ = −x13 (see [16] curve 3) and
the second eigenvalue is µ = λ2 = x26. By using the function LLL in MAGMA
V2.26 − 8 calculator, we obtain a short vector of lattice M of the Theorem 2 as

[x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

The construction of a′i s yields a0 = x, a14 = 1 and ai = 0 otherwise so, h(ω) =

x + ω14.
Similarly, for BW19−P286 curve the eigenvalues are λ = −x19 and µ = x38.

The short vector of the lattice M yields

[x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

were, a0 = x, a20 = 1 and ai = 0 otherwise then, h(ω) = x + ω20.
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Corollary 1 The superoptimal pairing on the curves BW13−P310 and BW19−P286
with h(ω) = x + ω14 and h(ω) = x + ω20 respectively gives

asup(Q,P) =
(

f|x|,Q(P) · f λ
|x|,Q(φ2(P)) · f µ

|x|,Q(φ(P))
)− pk

−1
r . (3)

Proof For the curve BW13−P310 with h(ω) = x +ω14, a0 = x, a14 = 1 and ai = 0
otherwise. Since, f1,Q ≡ 1,

n∏
j=0

2∏
i=0

[
fω

j

a j,Q(φ2i(P))
]λi

=

2∏
i=0

[
fω

0

x,Q(φ2i(P)) · fω
14

1,Q (φ2i(P))
]λi

=

2∏
i=0

[
fx,Q(φ2i(P))

]λi

.

For every i and 1 ≤ j ≤ 12,

l[h( j)]Q,[a j+1ω j+1]Q(φ2i(P))

v[h( j)+a j+1ω j+1]Q(φ2i(P))
=

l[x]Q,[0]Q(φ2i(P))
v[x]Q(φ2i(P))

=
v[x]Q(φ2i(P))
v[x]Q(φ2i(P))

= 1.

For every i and j = 13 since, h(ω) = 0 mod r then [x + ω14]Q = O and
[ω14]Q = −[x]Q,

l[h( j)]Q,[a j+1ω j+1]Q(φ2i(P))

v[h( j)+a j+1ω j+1]Q(φ2i(P))
=

l[x]Q,[ω14]Q(φ2i(P))

v[x+ω14]Q(φ2i(P))
=

l[x]Q,−[x]Q(φ2i(P))
v[x+ω14]Q(φ2i(P))

≡ v[x]Q(φ2i(P)),

this is because v[x+ω14]Q(φ2i(P)) will be sent to 1 during the final exponentiation.
For every i and j = 14,

l[h( j)]Q,[a j+1ω j+1]Q(φ2i(P))

v[h( j)+a j+1ω j+1]Q(φ2i(P))
=

l[x+ω14]Q,[0]Q(φ2i(P))

v[x+ω14]Q(φ2i(P))
=

v[x+ω14]Q(φ2i(P))

v[x+ω14]Q(φ2i(P))
= 1

Thus,

asup(Q,P) =


n∏

j=0

2∏
i=0

 fω
j

a j,Q(φ2i(P)) ·
l[h( j)]Q,[a j+1ω j+1]Q(φ2i(P))

v[h( j)+a j+1ω j+1]Q(φ2i(P))

λ
i

pk
−1
r

(4)

=

 2∏
i=0

[
fx,Q(φ2i(P)) · v[x]Q(φ2i(P))

]λi


pk
−1
r

(5)

Since x < 0, x = −|x| and fx,Q = f−1
|x|,Q · f−1,[|x|]Q = f−1

|x|,Q · v
−1
[x]Q. Therefore Equation

5 yields :

asup(Q,P) =

 2∏
i=0

[
f−1
|x|,Q(φ2i(P))

]λi


pk
−1
r

.

Also, λ2 = µ, then,

asup(Q,P) =
(

f|x|,Q(P) · f λ
|x|,Q(φ2(P)) · f µ

|x|,Q(φ(P))
)− pk

−1
r .

For the curve BW19 − P286 with h(ω) = x + ω20, in the similar manner as
on the curve BW13 − P310 we have the Equation 3.
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3.3 Lower the Cost of the Inner Exponent

Raising Fpk -elements to the power λ and µ are extremely costly. Here our
purpose is to look for a technique to lower this cost.

The Lemma 2 eliminates the exponentiation by µwhereas Lemma 3 trans-
forms the exponentiation to xλ into p − x.

Lemma 2 For any f ∈ F∗
pk and 1 + λ + µ = 0 mod r,

f µ
pk
−1
r = f (−1−λ) pk

−1
r .

Proof Since r/(1+λ+µ) then, there exists α such that 1+λ+µ = αr and for f ∈

F∗
pk , f 1+λ+µ = f αr when raise it to the power pk

−1
r we then have f (1+λ+µ) pk

−1
r = 1.

So, f µ·
pk
−1
r = f (−1−λ)· p

k
−1
r .

Since one p-Frobenius is 12 multiplications in Fp. Raise to the power p − x
is most cheaper than raise to the power xλ = −x14.

Lemma 3 For any f ∈ F∗
pk and λ = −x13 (for the curve BW13−P310 ) or λ = −x19

(for the curve BW19 − P286 ),

f (xλ) pk
−1
r = f (p−x) pk

−1
r .

Proof In the case of BW13 − P310, |E(Fp)| = p + 1 − t = p + 1 − (−x14 + x + 1) =
p − x(−x13 + 1) = p − xλ − x. Since r/(p − xλ − x) then, there exists β such that

p − xλ − x = βr and for f ∈ F∗
pk , f p−xλ−x = f βr when raising it to the power pk

−1
r

we then have that f (p−xλ−x) pk
−1
r = 1. So, f (xλ) pk

−1
r = f (p−x) pk

−1
r .

Whereas, in the case of BW19−P286, |E(Fp)| = p+1−t = p+1−(−x20+x+1) =
p − x(−x19 + 1) = p − xλ − x. Then the same result follows as in the first case.

We then define a new superoptimal pairing on BW13 − P310 and BW19 −
P286. Note that a fixed non-degenerate power of a pairing is still a pairing.

Theorem 3 If the gcd(x, r) = 1, we derive a new pairing called x-superoptimal
pairing defined as

ax
sup(Q,P) =

((
f|x|,Q(P) · f−1

|x|,Q(φ2(P))
)−x
·

(
f−1
|x|,Q(φ2(P)) · f|x|,Q(φ(P))

)p
) pk

−1
r

(6)

For P ∈ G1 and Q ∈ G2. It is a non-degenerate bilinear pairing on BW13−P310 and
BW19 − P286.

Proof Let A = f|x|,Q(P), B = f|x|,Q(φ2(P)) and C = f|x|,Q(φ(P)) then,

asup(Q,P) =
(
A · Bλ · Cµ

)− pk
−1
r and from Lemma 2, asup(Q,P) =

(
A · Bλ · C−1−λ

)− pk
−1
r

=(
A · C−1

· (B · C−1)λ
)− pk

−1
r by raising to the power x and using Lemma 3, we then

obtain ax
sup(Q,P) =

(
(A · C−1)x

· (B · C−1)p−x
)− pk

−1
r

=
(
(A · B−1)−x

· (B−1
· C)p

) pk
−1
r .



10 Emmanuel Fouotsa et al.

Since the inversion operation in Fpk is too costly, it is desirable to separate
numerators and denominators so as to compute only one inversion at the end
when computing the Miller’s function fx,Q(P). See Algorithm 4.

4 Cost Evaluation of the Superoptimal Pairing

Under this section, basic and special operations for the x-superoptimal pairing
on BW13 − P310 and BW19 − P286 curves are computed.

4.1 Elliptic Curve Doubling and Elliptic Curve Addition

In Jacobian coordinates the quadruple (X,Y,Z,Z2) represents the affine point
(X/Z2; Y/Z3).This saves inversions and multiplications. The formulas for com-
puting the point addition and the corresponding line function in Jacobian
coordinates are obtained in [12] see Algorithm 1. Also, Algorithm 2 gives
the formulas for computing the point doubling and the corresponding line
function, whereas Algorithm 3 provides the vertical line.

Algorithm 1: ADDING LINE [12] Given S,Q ∈ G2, compute S+Q and
the evaluation of the line (SQ) at P ∈ G1

1 (X,Y,Z,Z2)← S
2 (xP, yP)← P
3 (xQ, yQ)← Q
4 t1 ← xQ · Z2 − X
5 t2 ← yQ · Z · Z2 − Y
6 t3 ← t2

1
7 t4 ← t1 · t3
8 t5 ← X · t3

9 X← t2
2 − (t4 + 2t5)

10 Y← t2 · (t5 − X) − Y · t4
11 Z← Z · t1
12 λd ← Z
13 t6 ← λd · (yP − yQ)
14 λn ← t6 − t2 · (xP − xQ)
15 return λn, λd, S = (X,Y,Z,Z2)

4.2 The Miller Function

The vertical line passing through S at P is defined in affine coordinates as

VS(P) = xP − xS and VS(P) =
Z2
· xP − X
Z2 in projective coordinates.

The function fx,Q(P) is evaluated using Algorithm 4.
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Algorithm 2: DOUBLING LINE [12] Given S ∈ G2, compute [2]S and
the evaluation of the tangent at S mapped at P ∈ G1

1 (X,Y,Z,Z2)← S (xP, yP)← P; t1 ← Y2 t2 ← 4X · t1 if a = −3u2for a small u ∈ Fp then
2 t3 ← 3(X − uZ2) · (X + uZ2)

3 else
4 t3 ← 3X2 + a · Z2

2

5 X← t2
3 − 2t2

6 Y← t3 · (t2 − X) − 8t2
1

7 Z← Z · 2Y
8 λd ← Z.Z2
9 t4 ← λd · yP − 2t2

10 λn ← t4 − t3 · (Z2 · xP − X)
11 return λn, λd,S = (X,Y,Z,Z2)

Algorithm 3: VERTICAL LINE [12] Compute the line through S and
−S evaluated at P.
1 (X,Y,Z,Z2)← S
2 (xP, yP)← P
3 µn = Z2 · xP − X
4 µd = Z2
5 return µn, µd

Algorithm 4: MillerLoop [12]: To compute fx,Q(P)

Input: |x| = 2n +
∑n−1

i=0 si2i, where si ∈ {0,−1, 1}, P ∈ E(Fp) and
Q ∈ E(Fpk )

Output: numerator and denominator of fx,Q(P) and [x]Q
1 (mn,md)← (1, 1); S← Q
2 for i from n − 1 down to 0 do
3 (λn, λd)← lS,S(P), S← [2]S . DOUBLING LINE
4 (µn, µd)← vS(P), . VERTICAL LINE
5 (mn,md)← (m2

nλnµd,m2
dλdµn) . UPDATE 1

6 if si = ±1 then
7 (λn, λd)← lS,[si]Q(P), S← S + [si]Q . ADDING LINE
8 (µn, µd)← vS(P), . VERTICAL LINE
9 (mn,md)← (mnλnµd,mdλdµn) . UPDATE 2

10 if x < 0 then
11 (mn,md)← (md,mn)

12 return mn
md
.

Remark 1 Since, P = (x, y), φ(P) = (ξx, y) and φ2(P) = (ξ2x, y) the functions
f|x|,Q(P), f|x|,Q(φ(P)) and f|x|,Q(φ2(P)) are different only on the x−coordinate of P.
From Algorithm 1, 2 and 3 since, λd and µd do not depend on the point P but
only on the point Q then, they are identical for all Miller’s functions f|x|,Q(P),
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f|x|,Q(φ(P)) and f|x|,Q(φ2(P)). Moreover, (
µd

λd
)′s are factors of each Miller’s func-

tions, therefore (
µd

λd
)′s cancel their self in the products f|x|,Q(P) · f−1

|x|,Q(φ2(P)) and

f−1
|x|,Q(φ2(P)) · f|x|,Q(φ(P)). So, λd and µd can be removed from the evaluation of

Algorithm 4 in the steps: UPDATE 1 and UPDATE 2.

Algorithm 5: Miller Loop for x−superoptimal pairing

Input: |x| = 2n +
∑n−1

i=0 si2i, where si ∈ {0,−1, 1}, P ∈ E(Fp) and Q ∈ E(Fpk )
Output: numerator and denominator of fx,Q(P) and [x]Q

1 (mn,md)← (1, 1); S← Q
2 for i from n − 1 down to 0 do
3 (λn, λd)← lS,S(P), S← [2]S . DOUBLE LINE
4 (µn, µd)← vS(P), . VERTICAL LINE
5 (mn,md)← (m2

nλn,m2
dµn) . UPDATE 1

6 if si = ±1 then
7 (λn, λd)← lS,[si]Q(P), S← S + [si]Q . ADDITION LINE
8 (µn, µd)← vS(P), . VERTICAL LINE
9 (mn,md)← (mnλn,mdµn) . UPDATE 2

10 if x < 0 then
11 (mn,md)← (md,mn)

12 return mn
md
.

4.3 Algorithms for Faster Evaluation of the x-superoptimal Pairing.

Algorithms 6 and 7 provide the line functions of every Miller’s function
used in the x-superoptimal pairing that is, f|x|,Q(P), f|x|,Q(φ(P)) and f|x|,Q(φ2(P)).
Whereas Algorithm 8gives the vertical line function.

Algorithm 6: ADDING LINE Given S,Q ∈ G2, compute S + Q and the
evaluation of the lines (SQ) at P, φ(P) and φ2(P) in G1

1 (X,Y,Z,Z2)← S (xQ, yQ)← Q (xP, yP)← P t1 ← xQ · Z2 − X t2 ← yQ · Z · Z2 − Y t3 ← t2
1

t4 ← t1 · t3 t5 ← X · t3 X← t2
2 − (t4 + 2t5) Y← t2 · (t5 − X) − Y · t4 Z← Z · t1 λd ← Z

t6 ← λd · (yP − yQ) λn ← t6 − t2 · (xP − xQ) λn1 ← t6 − t2 · (xφ(P) − xQ)
λn2 ← t6 − t2 · (xφ2(P) − xQ) return S = (X,Y,Z,Z2), λn, λn1, λn2

Algorithm 9 evaluates f = f|x|,Q(P) · f−1
|x|,Q(φ2(P)) and g = f−1

|x|,Q(φ2(P)) ·
f|x|,Q(φ(P)) at ones using the multifunction technique this saves squarings.

Let M,S and I denote the cost of the multiplication, squaring and inversion
inFp,whereas, Mk, Sk, Ik, Fp, Ex denote the cost of the multiplication, squaring,
inversion, p − th Frobenius operation and the power of x in Fpk respectively.



Title Suppressed Due to Excessive Length 13

Algorithm 7: DOUBLING LINE Given S ∈ G2, compute [2]S and the
evaluation of the tangent S mapped at P, φ(P) and φ2(P) in G1

1 (X,Y,Z,Z2)← S
2 (xP, yP)← P;
3 t1 ← Y2

4 t2 ← 4X · t1

5 if a = −3u2for a small u ∈ Fp then
6 t3 ← 3(X − uZ2) · (X + uZ2)

7 else
8 t3 ← 3X2 + a · Z2

2

9 X← t2
3 − 2t2

10 Y← t3 · (t2 − X) − 8t2
1

11 Z← Z · 2Y
12 λd ← Z.Z2
13 t4 ← λd · yP − 2t2
14 λn ← t4 − t3 · (Z2 · xP − X)
15 λn1 ← t4 − t3 · (Z2 · xφ(P) − X)
16 λn2 ← t4 − t3 · (Z2 · xφ2(P) − X)
17 return S = (X,Y,Z,Z2)λn, λn1, λn2

Algorithm 8: VERTICAL LINE Compute the line through S and −S
evaluated at P, φ(P) and φ2(P) in G1

1 (X,Y,Z,Z2)← S
2 (xP, yP)← P
3 µn = Z2 · xP − X
4 µn1 = Z2 · xφ(P) − X
5 µn2 = Z2 · xφ2(P) − X
6 return µn, µn1, µn2

Algorithm 9: Miller Loop for faster x-superoptimal pairing.

Input: |x| = 2n +
∑n−1

i=0 si2i, where si ∈ {0,−1, 1}, P ∈ E(Fp) and Q ∈ E(Fpk )

Output: [x]Q, numerators and denominators of f = f|x|,Q(P) · f−1
|x|,Q(φ2(P)) and

g = f−1
|x|,Q(φ2(P)) · f|x|,Q(φ(P)).

1 (n f , d f ,ng, dg)← (1, 1, 1, 1); S← Q
2 for i from n − 1 down to 0 do
3 (λn, λn1, λn2)← lS,S(P), S← [2]S . DOUBLE LINE
4 (µn, µn1, µn2)← vS(P), . VERTICAL LINE
5 (n f , d f )← (n2

fλnµn2, d2
fµnλn2)

6 (ng, dg)← (n2
gµn2λn1, d2

gλn2µn1) . UPDATE 1
7 if si = ±1 then
8 (λn, λn1, λn2)← lS,[si]Q(P), S← S + [si]Q . ADDITION LINE
9 (µn, µn1, µn2)← vS(P), . VERTICAL LINE

10 (n f , d f )← (n fλnµn2, d fµnλn2)
11 (ng, dg)← (ngµn2λn1, dgλn2µn1) . UPDATE 2

12 return f =
n f
d f

and g =
ng
dg
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Table 1 Cost estimation of each step of Algorithm 9.

Line Cost operation
Doubling line 7Mk + 6Sk + 4kM
Adding line 11Mk + 3Sk
Vertical line 3kM
Update 1 8Mk + 4Sk
Update 2 8Mk

Table 1 gives the cost estimation of each step of Algorithm 9. The following
formula gives the cost of the Algorithm 9.

C = (log2(x) − 1)
(
CDBLINE + CVerLINE

)
+ (log2(x) − 2)CUPDATE1

+ (HW2−NAF(x) − 1)
(
CADDLINE + CVerLINE + CUPDATE2

)
. (7)

4.4 Evaluation of x-superoptimal Pairing on BW13 − P310

The x-superoptimal pairing on BW13 − P310 is given by

ax
sup(Q,P) =

((
f|x|,Q(P) · f−1

|x|,Q(φ2(P))
)−x
·

(
f−1
|x|,Q(φ2(P)) · f|x|,Q(φ(P))

)p
) pk

−1
r

.

From the seed x = −211
− 27

− 25
− 24, we compute f = f|x|,Q(P) · f−1

|x|,Q(φ2(P))
and g = f−1

|x|,Q(φ2(P)) · f|x|,Q(φ(P)) by executing 10 double line, 10 update1, 3
addition line, 3 update2 and 13 vertical line steps. From [15], M13 = S13 = 66M
and I13 = 350M + I. Hence,

C = 10[(7M13 + 6S13 + 4 × 13M) + (3 × 13M)] + 9[8M13 + 4S13]
+ 3[(11M13 + 3S13) + (3 × 13M) + 8M13]

= 21091M.

The last step consists to compute (n f · d−1
f )−x

· (ng · d−1
g )p at cost of 3 multi-

plications, 2 inversions, 1 p-Frobenius and 1 exponentiation by −x in Fp13 . For
the cost of 3M13 + 2I13 + 1Fp + 1Ex = 1834M + 2I. The total cost of the Miller
loop is then 22925M + 2I. The cost of the final exponentiation is given by Yu
Dai et al. in [15].

4.5 Evaluation of x-superoptimal Pairing on BW19 − P286

The x-superoptimal pairing on BW19 − P286 is also given by Equation 4.4.
In absence of concrete studies of operation count on Fp19 in the literature.
We used the idea of Guillevic et al. [12] who estimate that, as k = 19 is
prime, Mk = Sk = klog23M ' 107M. With a Karatsuba-like implementation and
Fp = (k − 1)M = 18M.
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The binary representation of the loop parameter x is {−1, 0, 0,−1, 0, 0, 0,−1}.
we compute f = f|x|,Q(P) · f−1

|x|,Q(φ2(P)) and g = f−1
|x|,Q(φ2(P)) · f|x|,Q(φ(P)) by

executing 6 double line, 5 update1, 2 addition line, 2 update2 and 8 vertical
line steps. Hence, C = 20386M.

The last step of the Miller loop costs 3M19 +2I19 +1Fp +1E−x = 1302M+2I19.
The total cost of the Miller loop is then 21688M + 2I19.

4.6 Evaluation of Superoptimal Pairing on BW13 − P310 and BW19 − P286

The superoptimal pairing on BW13 − P310 and BW19 − P286 is defined as

asup(Q,P) =
(

f−1
|x|,Q(P) · f−λ

|x|,Q(φ2(P)) · f−µ
|x|,Q(φ(P))

) pk
−1
r .

On BW13 − P310, using Algorithm 4 the cost evaluation of each of the three
Miller’s functions f = f|x|,Q(P), g = f λ

|x|,Q(φ2(P)) and h = f µ
|x|,Q(φ(P)) is

C = 10[(5M13 + 6S13 + 13M) + (13M)] + 9[4M13 + 2S13]
+ 3[(10M13 + 3S13) + (13M) + 4M13]

= 14489M.

The last step consists to evaluate (d f · n−1
f ) · (dg · n−1

g · (dh · n−1
h )λ)λ for a cost of

5M13 + 3I13 + 26E−x = 25404M + 3I.Where λ = −x13. Therefore the Miller Loop
cost 3 × 14489 + (25404M + 3I) = 68871M + 3I.

Similarly, on BW19−P286 C = 14176M and the last step cost 37129M+3I19.
For a total of 79657M + 3I19.

5 Comparison

Table 2 compares the theoretical costs of the optimal Ate pairing, the superop-
timal pairing and the proposed superoptimal pairing. According to this table
optimal pairing is at least twice faster that superoptimal pairing on BW-13
and BW-19 curves. However, the variant of the superoptimal pairing called
x-superoptimal pairing is about 15.3% and 39.8% faster than the optimal ate
pairing on BW13 − P310 and BW19 − P286 respectively. The overall improve-
ment (Miller loop and final exponentiation) is about 7% over the other pairing.

6 Conclusion

We found a new pairing faster than optimal ate pairing on BW13 − P310 and
BW19 − P286 called x-superoptimal pairing which is a power of the super-
optimal pairing. Those curves are relevant for cryptographic protocols which
extensively use scalar multiplication in the first pairing group such as ring
signature scheme. The x-superoptimal pairing is about 15.3% and 39.8% faster
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Table 2 Comparison. The cost of the final exponentiation and the Miller loop for the optimal Ate
pairing are found in [15] for the curve BW13−P310. Whereas for the curve BW19−P286 we refer
to [8] for these costs.

Curve Pairing Miller loop Final exponentiation Total cost
optimal Ate [15] 27074M + 2I 55132M + 3I

BW13 − P310 superoptimal 68871M + 3I 28058M + I 96929M + 4I
x-superoptimal 22925M + 2I 50925M + 3I
Optimal Ate [8] 35991M + 2I19 196815M + 15I19

BW19 − P286 superoptimal 79657M + 3I19 160824M + 13I19 240481M + 16I19
x-superoptimal 21688M + 2I19 182512M + 15I19

than the optimal ate pairing on BW13−P310 and BW19−P286 respectively. The
bilinearity of the new x-superoptimal pairing has been verified by a Magma
script available at [11].
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