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Abstract. We study the problem of private set union in the two-party
setting, providing several new constructions. We consider the case where
one party is designated to receive output. In the semi-honest setting, we
provide a four-round protocol and two-round protocol, each with two
variants. Our four-round protocol focusing on runtime out-performs the
state-of-the-art in runtime for the majority of the medium bandwidth set-
tings (100Mbps) and the large set size (≥ 220) settings, with a runtime
that is 1.04X-1.25X faster than existing protocols. Our other four-round
variant focusing on communication outperforms the state-of-the-art in
communication by up to a factor of 1.43 when the set size ≥ 218. On the
other hand, our two-round protocol is only slightly more expensive but
has the property that the receiver message can be re-used across multi-
ple executions. All our semi-honest protocols are post-quantum secure if
post-quantum primitives (OKVS and OT) are used.

In the setting where the sender is malicious, we provide the first proto-
cols that avoid using expensive zero-knowledge proofs. Our four-round
protocol costs less than double in both communication and computa-
tion compared to all other semi-honest constructions, showcasing great
efficiency. As in the semi-honest setting, we also give a more expensive
protocol that allows the receiver message to be re-used.

Our work draws on several techniques from the literature on private set
intersection and helps clarify how these techniques generalize (and don’t
generalize) to the problem of private set union.
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1 Introduction

As the field of secure computation transitions to practice, much research has
focused on building custom protocols for particular computations of interest.
These custom protocols improve the cost of communication, computation, and
round complexity of the generic solutions. One particular computation that
has received more attention than any other is private set intersection (PSI)
[33,12,26,24,27,17,25,31,44,11,10,40,23,14,45,43,34,49,42,37]. This is partly be-
cause the computation has such broad application, and partly because it is so
amenable to custom techniques.
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F n̂1,n2
PSU

Parameters: S’s set size upper bound n̂1 and R’s set size n2.

Functionality:

1. Wait for X = {x1, · · · , xn1} from S, abort if n1 > n̂1.
2. Wait for Y = {y1, · · · , yn2} from R.
3. Send X ∪ Y to R.

Fig. 1. Ideal Functionality for Two-party PSU. (Upper bound for sender.)

Much more recently, a focus has developed on the neighboring problem of
private set union (PSU). In the PSU problem, two parties compute the union
of their two sets without revealing the intersecting elements. As a natural next
step from PSI, PSU and its variants already have various applications, such
as cyber risk assessment and management [38,28], joint graph computation [7],
distributed network monitoring [33], private DB full join [36], private ID [20],
SQL queries over multiple sources [4,50] and others.

1.1 Defining PSU

In our work, we assume that only one party, the receiver R, receives output.
While we consider a malicious sender, we assume that the receiver is semi-honest,
for reasons discussed below. Properly defining the functionality for PSU in the
malicious setting is somewhat subtle, and deserves a short discussion. The func-
tionality that we realize is described in Figure 1, and there are several points of
note.

Sender set size. We have parameterized the functionality with an upper bound
of n̂1 on the sender set size. If the sender were to use a smaller input set, the
functionality would allow the computation to proceed. In the extreme case, if the
sender were to submit the empty set, note that the output of the receiver would
be its own input, Y . This is the same outcome that would result if the sender
were somehow able to fully correlate its own input X with Y (without learning
Y ). A stronger functionality, which rejects the sender’s input if it is not exactly
of size n̂1, might be more desirable in many applications. As we will explain
in more detail shortly, we allow this relaxation because it admits a much more
efficient protocol, through the generalization of a technique used by Freedman
et al. [18]. Finding an efficient realization of the functionality that enforces a
fixed input size is an interesting direction for future work. We note, however,
that there may be applications where we prefer not to leak the exact input set
size, or the exact intersection size, and our relaxed ideal functionality could be
an asset in such scenarios.

Receiver set size and malicious receivers. In this work we only consider a semi-
honest receiver. Reflecting this, our functionality assumes that the size of the
receiver’s input set is exactly n2. It is worth noting that when the input domain
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is large (i.e. exponential in the security parameter), malicious security for the
receiver is in fact easier to achieve than semi-honest security. While this is
counter-intuitive, the reason is because the malicious receiver, who is allowed to
change its input, can select a random input set, and with very high probability,
it will recover the full input of the sender, as the intersection will be empty.
It is therefore “secure” to simply send the sender’s input in the clear. In the
semi-honest setting, this would not be secure, as the corrupted receiver must use
its given input, which may intersect with the sender input; a simulator cannot
recover the intersection, and thus cannot correctly simulate the sender’s message.
Following similar reasoning, with large input domains, we could prove that our
protocols are secure, even against a malicious receiver; we do not bother to do so,
because the claim is uninteresting. With small input domains, malicious security
is more meaningful. To achieve it, we would need the receiver to prove that it has
not included too small of an input set in its input encoding. Doing this without
the use of expensive zero knowledge proofs is left as an open problem.

1.2 Our Contribution

We study the problem of two-party private set union in both the semi-honest
and malicious settings. In the semi-honest setting, we realize the stronger func-
tionality, which fixes the input sizes of both parties. In the latter case, we provide
output to a semi-honest receiver and prove security when the sender is an ac-
tive adversary that can deviate arbitrarily from the prescribed protocol. In each
setting, we present two protocols: a four-round and two-round protocols. The
four-round protocols have faster running times due to lower computational costs,
while the two-round protocols provide reusability, allowing the first receiver mes-
sage to be used by multiple senders without repeating the computation. Our
protocols leverage some of the most successful techniques of the PSI literature,
generalizing as needed in order to provide highly efficient results. In particular,
our four-round protocol focusing on runtime out-performs the state-of-the-art in
runtime for the majority of the medium bandwidth settings (100Mbps) and the
large set size (≥ 220) settings, with a runtime that is 1.04X-1.25X faster than
existing protocols. The other variant focusing on communication outperforms
the state-of-the-art in communication by up to a factor of 1.43 when the set size
≥ 218. Finally, as we use ring learning with errors (RLWE) based encryption
scheme, all our semi-honest protocols are post-quantum secure if the underlying
oblivious key-value store (OKVS) and oblivious transfer (OT) schemes are also
post-quantum secure.

In the malicious setting, our four-round protocol achieves security against
malicious senders at almost no additional cost. We are not aware of any im-
plementations of protocols that are secure against malicious senders, but since
our protocols are the first to achieve this notion of malicious security without
relying on expensive zero-knowledge proofs, we can confidently assert that they
are state-of-the-art. Specifically, our four-round protocol costs less than twice
as much in both communication and computation compared to all other semi-
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honest constructions, showing great efficiency. As in the semi-honest setting, our
two-round, malicious secure protocol also has a reusable receiver message.

1.3 Technical Overview

Background. A classic approach to computing PSI, first introduced by Freed-
man et al. [18], and afterward appearing in many follow-up results, proceeds as
follows. The receiver encodes its input set, Y , using a random polynomial P , sub-
ject to the constraint that P (y) = 0 for every y ∈ Y . The receiver then encrypts
the coefficients of this polynomial using a homomorphic encryption scheme and
sends the ciphertexts to the sender. The sender can homomorphically evaluate
the same polynomial on each of its inputs: letting dx = P (x) denote the re-
sulting ciphertext, the sender computes r · dx + x, for random group element
r, and sends the result back to the receiver. If P (x) = 0, the receiver recovers
the correct element x from the intersection, whereas if P (x) 6= 0, the receiver
recovers a random group element that it can safely discard.

Polynomial encodings have been used in many recent PSI protocols, mainly
in the construction of programmable PRFs [35,44,9,8]. Other recent construc-
tions have moved away from using polynomials to encode the receiver input,
using garbled Bloom filters, [15,45,29], or cuckoo hashing [42,46,44]. More re-
cently, Garimella et al. [21] generalized the basic approach described above by
defining the notion of an oblivious key-value store (OKVS). Rather than using
a polynomial to encode the input, the receiver uses a data encoding containing
key/value pairs, where the keys are the items in the input set, and the values are
uniformly picked from the value space. After receiving the encoded key/value
pairs, the sender runs a decoding algorithm for each item x in its input set. This
algorithm returns the matching value used in the key/value pairs if x is in the
receiver’s set. Finally, the parties perform secure comparisons of the values to
determine whether it is an intersected input.

Very recently, Zhang et al. [53] have extended the use of OKVS to the PSU
setting. To do this, the values that they use in the OKVS are ciphertexts: the
receiver selects a single random value w from the plaintext space, and for each in-
put y in its set, it encrypts the value w, and inserts the key/value pair (y,Enc(w))
into the OKVS. The sender decodes using x ∈ X, re-randomizes the ciphertext,
and returns the resulting ciphertexts to the receiver. If x ∈ Y , this ciphertext
will decrypt to w, revealing nothing beyond that x ∈ X ∩Y . On the other hand,
when x /∈ Y , their instantiation of OKVS ensures that the returned ciphertext is
random, and therefore is unlikely to decrypt to w. The semi-honest parties then
engage in an oblivious transfer: the sender uses inputs (x,⊥), and the receiver
obliviously requests x if and only if the plaintext recovered was not w.

Reusability. In the past, several works [30,1] have focused on building efficient
two-party protocols in the non-interactive secure computation (NISC) model,
where only a single round of interaction between the two parties is allowed.
Such a model captures the scenarios where each round of interaction is costly
and/or slow. In particular, the latency of delivering a message is high, or the
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synchronization between two parties is extremely hard. In addition, an achiev-
able property in this model is the reusability of the receiver’s message. This is
particularly useful in settings with multiple senders running the same protocol
with a single receiver that computes and broadcasts its message only once.

Semi-honest protocols. While the OKVS abstraction has helped discover
more efficient protocols (in both PSI and PSU), we observe that it has also
removed one well-known technique from consideration. A simple idea that ap-
pears frequently in both the PSI literature and first proposed in [18], and, more
recently, in the PSU literature [36], is the use of bucketing : rather than executing
the protocol on the full inputs sets, the two parties first agree on a hash function,
and use it to partition their input sets into buckets. They then compute PSU
on each bucket independently, and the receiver takes the union of the results
to recover the final output. When using polynomials, the small bucket size of
O(log n) greatly reduces the degree of each polynomial (from n to log n), which
has a big impact on the computational cost. However, when using other more
successful instantiations of the OKVS, such as 3H-GCT proposed by Garimella
et al. [21], and then employed in PSU by Zhang et al. [53], the value of bucket-
ing is erased. We defer a description of the 3H-GCT instantiation to Section 2.2,
and simply mention here that with this data structure, there is no advantage
for improving concrete computation cost while the need to pad the bucket to its
maximum size only hurts performance.

Zhang et al. [53] currently hold the state-of-the-art for PSU in the semi-
honest setting, and their improvement is over the work of Kolesnikov et al. [36],
which relies on polynomial encodings and bucketing. However, we find that
Kolesnikov et al. missed an important improvement that bucketing offers. As
described previously, we assign a different polynomial to each bucket, bene-
fiting from the reduced degree. However, when sending the encrypted coeffi-
cients to the sender, we use Ring-LWE, which allows for plaintext packing [52].
For simplicity, let m denote both the number of buckets and the packing pa-
rameter, and let ai,0, . . . , ai,k+1 denote the coefficients of the polynomial for
the ith bucket. We pack the plaintexts vertically across the buckets, placing
the jth coefficient from the polynomial of each bucket into the same plain-
text: Pack(a1,j , . . . , am,j). To perform polynomial evaluation over its inputs, the
sender chooses a different value from each of its buckets, x1, . . . , xm, and con-
structs the vector (Pack(x0

1, . . . , x
0
m), . . . ,Pack(xk+1

1 , . . . , xk+1
m )) (with increasing

powers of the input elements in each slot). It then computes the inner product
of this vector with the vector of encrypted coefficients, yielding an evaluation of
the ith polynomial in the ith plaintext slot. The effect is that we save a factor
of the packing parameter in both communication and in the computation times
of both parties.

In our four-round protocol, the receiver proceeds as described above for the
protocol of Zhang et al. That is, after decrypting the ciphertexts, it learns for
each index j whether the jth input of the sender is in the intersection. The two
parties then perform an oblivious transfer for each index, where the receiver
requests the jth input value only if it is not in the intersection. We evaluate
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the performance of this protocol in Section 5. We show that it outperforms the
state-of-the-art by at least 1.04×−1.25× depending on the network bandwidth
and input set size.

We made a small modification to reduce this to two rounds and provide
re-usability. When encoding its input, the receiver ensures that the roots of the
polynomials lay at each of its input values. The sender evaluates the polynomials
as before to arrive at packed ciphertexts of the form of (Q1(x1), . . . , Qm(xm)).
It additionally computes the ciphertexts of (x1 ·Q1(x1), . . . , xm ·Qm(xm)). For
xj ∈ X ∩ Y , the jth value in both plaintexts is 0, and nothing is learned about
that input by the receiver. When xj /∈ X ∩Y , the ratio of the jth values in each
plaintext reveals xj . A similar approach for PSU, without packing or bucketing,
was first described by Frikken [19]. In terms of performance, the time required
to perform additional plaintext/ciphertext multiplications slightly outweighs the
cost of the oblivious transfer, with the total runtime of two-round protocols being
1.22 times higher than that of four-round protocols. As for communication cost,
additionally sending O(n) ciphertexts in the two-round protocol incurs a higher
cost compared to conducting O(n) oblivious transfers (given a pre-processed
silent random OT), which results in a 1.5x blowup of total communication cost.

Security against Malicious Senders. In order to realize an efficient protocol
that is secure against a malicious sender, S, we wish to avoid the usage of ex-
pensive tools such as zero-knowledge proofs. Therefore, we generalize and apply
a simple and efficient technique introduced by Freedman, Nissim, and Pinkas
[18] for constructing PSI protocols against malicious senders, and we refer to the
generalized technique as the FNP paradigm. The main idea is to de-randomize
the computation of the sender, allowing the receiver to verify the correctness
of the received messages. For reasons we describe later, we do not know how
to leverage this technique on packed values, so we return instead to using the
OKVS abstraction. (The original FNP construction used polynomial encodings.)

Roughly speaking, using a homomorphic encryption scheme, for each input
y ∈ Y , the receiver, R, generates an encoding using key/value pairs (y,Enc(0)).
For each x ∈ X, the sender decodes to recover dx, samples a random value r, and
homomorphically computes (e, h)← (Enc(r1 · dx + r), H2(r2, x)), where r1||r2 =
H1(r), and H1, H2 are hash functions modelled as random oracles. Notice that if
x ∈ Y , e decrypts to r. This allows R to re-evaluate S’s computation, verifying
that e, h are correctly computed with r and some y ∈ Y (the intersected input).

To summarize the high-level intuition of their protocol, we first note that their
protocol satisfies a “locality” property: the responses of S can be decomposed
into multiple messages, where each message corresponds solely to one of S’s
inputs. Then, to compute each message corresponding to an input x, S de-
randomizes the computation with some “local” randomness r. To enable R to
verify the message is computed correctly, S allows R to recover r if x is in the
intersection. This can be done in one go as in [18], or, looking ahead to our
second protocol, through some membership test, followed by oblivious transfer,
performed in separate rounds. Finally, R can reevaluate the sender’s step in the
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protocol using x and r. Note that this implicitly requires that it is “secure” for
R to know x, which is the case for intersection elements in PSI.

Given the intuition above, the FNP paradigm can be extended to functions
where the output of the receiver is the partial input of the sender, including PSU.
Additionally, however, to leverage the FNP paradigm, the protocol must satisfy
the “locality” property; for example, it does not seem to fit well with techniques
like packing, as we used in our semi-honest protocols. For each of its input values
x, S will decode to recover a ciphertext dx, such that dx encrypts 0 if x ∈ Y ,
and dx is a random ciphertext otherwise. (This property is realized through the
use of the key-value store.) S computes and sends: dx, (dx · x), (dx · r), where, as
above, H(x||r) determines the randomness used in the construction of the three
ciphertexts (i.e. re-randomization). When Dec(dx) = 0, nothing is revealed to R,
and in all other cases, R can extract both x and r to verify the correctness of the
computation. This forms the foundation of our 2-round protocol. Additionally,
we present a four-round protocol that relies on oblivious transfer and assess the
performance of both protocols in Section 5. Notably, our evaluation reveals that
the communication cost of our four-round malicious protocol is merely 1.25 times
that of the state-of-the-art semi-honest protocol. Furthermore, our computation
cost remains under twice that of the state-of-the-art semi-honest protocol.

Here, we want to point out a limitation of the FNP paradigm, which led
us to accept the relaxation described previously. Notice that R can only verify
the messages corresponding to its output set, as it is insecure to disclose the
randomness used for inputs that are not part of R’s output. For example, in
PSI, R can verify messages corresponding to the intersected inputs. In PSU,
R can verify messages corresponding to elements in the union that are outside
the intersection. Thus, our PSU protocols allow a malicious S to “inflate” the
intersection size by sending encryptions of 0; this is captured in the functionality
by allowing the input set of the sender to be smaller than intended. In PSI, the
equivalent attack is also admissible: S can send encodings of random values in
order to reduce the intersection size. However, when dealing with large input
domains, this attack on PSI is equivalent to using random inputs (and thus isn’t
an attack at all). For PSU, the impact is the one described previously.

On the positive side, the FNP paradigm is extremely simple to implement and
does not require any additional heavy machinery such as zero-knowledge proofs.
Specifically, it enables the enhancement of semi-honest security of the sender
“for free”. Note that the security of the receiver can be handled separately.
Specifically, in some settings (for instance, when the receiver’s input set is much
smaller than the sender’s input or in a reusable setting where the receiver’s work
is captured by a one-time effort), the overhead of attaching a zero-knowledge
proof to the receiver’s message will be amortized away by the overall amount of
work in the protocol.

It is worth comparing this to a relaxation that frequently appears in the PSI
literature [49,44]: many efficient PSI functionalities allow the receiver to increase
their input set size up to some bound, usually referred to as the “slackness”
bound, possibly inflating the intersection size beyond what the honest behavior
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allows.3 In PSU, this relaxation allows the sender to correlate its input with the
receiver’s, but without any direct leakage. In PSI it allows the receiver to learn
more about the sender’s input than was intended, but without this correlation
attack.

1.4 Open Questions

There are several directions that warrant further study, and their discussion
helps further explain our results.

FNP with packing. As described above, we do not know how to leverage
ciphertext packing, which provides considerable performance improvement, to-
gether with the FNP paradigm. The problem stems from the fact that the same
encryption randomness is used for the entire plaintext: if xi and xj are packed
together into the plaintext, we cannot reveal the randomness used for xi /∈ Y
while hiding the randomness used for xj ∈ Y . Exploring modifications to the
construction, and possibly to the encryption scheme, are interesting directions.

Batched OKVS. Zhang et al. were the first to achieve linear complexity, and
they did this through the use of the OKVS abstraction. Although we found that
abandoning the abstraction in favor of bucketing provided better performance,
ideally, we would still have preferred to unify our presentation by continuing to
use the OKVS abstraction. Additionally, such an approach might have helped us
improve our construction in the future if new realizations of the OKVS primitive
are discovered. Because our semi-honest protocols still use polynomial encodings
of the input, it is tempting to view the process as batch encoding and decoding
of the OKVS. Unfortunately, formalizing this becomes a bit messy. When batch
decoding a set of keys, Sk, you would still recover only a single value in V (in our
case, a ciphertext). Since the encoder likely did not batch the same set of inputs
during encoding – in fact, very likely, only a subset of Sk was even inserted into
the structure – we cannot describe the returned value as either a match or a non-
match. The encrypted plaintext contains membership information for each of the
values in Sk, as you would expect, but this ties the OKVS primitive to using
ciphertext values with packed plaintext. The abstraction becomes sufficiently
different, and, perhaps, too constrained, so we decided to abandon it. That said,
the value of batch encoding and decoding is real, and some reasonable abstraction
might provide new insights, just as the OKVS abstraction has done.

Extending FNP. We hinted above that the FNP paradigm can be extended
to a broader class of computations. Intuitively, we can generalize this as follows.
Let FY denote some arbitrary predicate that depends on R’s input set Y , and
let X denote S’s input set. If the output of computation is {x | x ∈ X ∧
FY (x) = 1}, then we can construct a reusable protocol while leveraging the
FNP paradigm to get sender security at almost no cost. The receiver encrypts the

3 This does not stem from the FNP paradigm, but rather the use of OKVS: depending
on the instantiation, a malicious server can sometimes encode more input elements
without detection.
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Table 1. Asymptotic costs of existing semi-honest secure PSU protocols. n is the size
of the input sets, κ and λ are the computational and statistical security parameters,
and ` is a ciphertext packing parameter. “pub” denotes the public-key operation and
“sym” denotes the symmetric-key operation.

Communication Computation

Frikken [19] O(κn) O(n2) pub

Davidson and Cid [13] O(κλn) O(λn) pub

Kolesnikov et al. [36] O(κn logn) O(n logn log log n) sym

Garimella et al. [20] O(κn logn) O(n logn) sym

Jia et al. [32] O(κn logn) O(n logn) sym

Zhang et al. [53] O(κn) O(n) pub

Ours O(κn) O(n logn log `) pub

predicate FY (·) using an FHE scheme, and sends the ciphertext to the sender.
The sender homomorphically evaluates the predicate on each of its inputs to
recover ciphertext dx, which is an encryption of 0 if the output does not satisfy
the predicate, and an encryption of 1 if it does. It then proceeds as in our own
construction, re-randomizing using H(x||r), and sends dx, (dx ·x), (dx · r). While
the fully generic protocol is not likely to be efficient, we believe that there are
more interesting applications for this paradigm, with more efficient predicate
encodings, waiting to be discovered.

Laconic PSU. Recently, there have been several results on laconic PSI [2,3].
This is a two-round, reusable PSI protocol in which the receiver message is
sublinear in its set size. Such protocols are especially appealing in the setting
where a receiver has a large input and must repeatedly compute on that set
with multiple senders. We fall short of achieving this, providing reusability but
only with an O(n) size receiver message. It is worth noting that if we sacrifice
the two-round property, we could achieve succinct communication by asking the
receiver to hold onto its encoding, and having the sender query the OKVS struc-
ture (or polynomial encoding) obliviously. However, achieving sublinear receiver
communication in two rounds remains a very interesting question.

1.5 Related Work

We compare the asymptotic communication and computation cost of our semi-
honest protocols with the previous solution in Table 1 and review previous so-
lutions.

In the semi-honest model, Frikken [19] presents a PSU protocol that relies
on polynomial representation and additively homomorphic encryption (AHE).
In particular, the receiver computes a polynomial Q(·) such that for every y in
its input set, Q(y) = 0. Then, it sends the encrypted coefficients of Q(·) to the
sender. For each input x, the sender homomorphically computes the ciphertext
of Q(x) and x · Q(x) and returns them to the receiver. Thus, the receiver can
recover all x that are not in the intersection, as Q(x) 6= 0. Their protocol requires
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communicating O(n) ciphertexts and O(n2) computation.4 We describe their
solution a bit more formally, and refer to it as the “naive solution,” in Section 3.2.

Davidson and Cid [13] propose a PSU protocol that is based on Bloom filters
and AHE. Roughly speaking, the receiver encodes its set Y using k hash functions
into a bloom filter of λn bits. It inverts the filter by flipping each bit, encrypts
the inverted filter using the AHE scheme, and sends it to the sender. For each
input x, the sender retrieves the k ciphertexts corresponding to x from the
encrypted, inverted filter. Then, it homomorphically computes the sum; let c
denote the encrypted sum. The sender homomorphically computes and sends
back the ciphertexts c and x · c. Note that if x ∈ Y , c = 0, therefore, the receiver
can only recover x /∈ Y from these responses. The protocol requires sending
O(λn) ciphertexts and computing O(λn) public key operations, in which λ is
the security parameter.

Kolesnikov et al. [36] propose a PSU protocol that relies on polynomials,
OPRFs (oblivious pseudorandom functions), and OT (oblivious transfer). The
parties first invoke OPRF on their inputs, and use the OPRF’s outputs for
polynomial interpolation/evaluation. Through comparing its own OPRF out-
puts with the evaluation result sent by the sender, the receiver learns a bit that
indicates whether an input corresponding to its OPRF output lies in the in-
tersection. It then invokes OT to receive the non-intersected input. Overall, it
avoids the expensive public key operations required in the previous works. Also,
to reduce the cost of interpolation and evaluation, they use bucketing techniques
to partition the input set into multiple subsets, and run the PSU protocol on
each pair of subsets. This reduces the communication complexity to O(n log n)
and the computational cost to O(n log n log log n).

Garimella et al. [20] propose a PSU protocol that relies on an oblivious
switching network to implement a permuted characteristic functionality. In this
functionality, the sender receives the permutation used to permute its set and
the receiver gets a vector of bits indicating which permuted input is in the
intersection. Similar to the constructions above, they then invoke OT, allowing
the receiver to recover all non-intersected inputs from the sender. The reliance on
the oblivious switching network incurs anO(n log n) cost for both communication
and computation.

Jia et al. [32] proposed a protocol based on secure shuffling, multi-point
OPRF, and OT. At a high level, the two parties invoke a secure shuffling protocol
to permute and secret share the receiver’s input set, e.g., an input y is shared to
s⊕y and s. Next, they call a multi-point OPRF to evaluate over receiver’s shares
while returning the PRF key to the sender. The sender then computes the xor
between every pair of its own inputs and its shares of the receiver’s inputs. Note
that if a sender’s input x equals a receiver’s input y, evaluating the xor on x and
y’s share s⊕ y gives s, which is exactly the share held by the receiver. Then, it

4 The author claims that bucketing technique can reduce the computation cost to
O(n log logn), but does not give any details on how to modify the protocol, and
does not discuss the subtle issue that in PSU, as opposed to PSI, one has to avoid
revealing which buckets contain intersecting items.
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evaluates the PRF over the xor results and sends the PRF outputs back to the
receiver. Similarly to [36], the receiver compares the PRF output with its own
OPRF results to learn whether the corresponding input is in the intersection.
In the end, the two parties invoke OT to allow the receiver to learn all non-
intersected inputs. To improve efficiency, they leverage the cuckoo hash table,
which brings the communication and computation costs down to O(n log n).

Zhang et al. [53] give the most concretely efficient protocols. Their protocols
are based on the OKVS abstraction, and the one with better computation ef-
ficiency relies on re-randomizable PKE. The receivers encode the pairs of keys
and values into an OKVS, where the keys are its inputs and the values are fresh
ciphertexts of an arbitrary value w picked by the receiver. Then, the sender de-
codes each of its OKVS inputs and sends back the (re-randomized) value, which
decrypts to w if it is in the intersection. The receiver relies on OT to retrieve
all non-intersected inputs from the sender. Their approach gives the best con-
crete communication and computation costs. Asymptotically, they only require
communicating O(n) ciphertexts and computing O(n) public key operations.

We also briefly review previous protocols realizing (two-party) PSU in the
malicious model. Frikken [19] also modifies its semi-honest PSU protocol to
achieve malicious security using zero-knowledge proofs, which incurs O(n2) com-
munication cost to prove the correct polynomial interpolation and evaluation.
Hazay and Nissim [26] construct a PSU protocol using zero-knowledge proofs
to ensure R correctly constructs the polynomial. They rely on a perfectly hid-
ing commitment scheme and an OPRF evaluation to ensure that S correctly
evaluates the protocol. Their protocol requires communicating O(n log n) group
elements and performs O(n log n) modular exponentiation. Blanton and Aguiar
[5] use generic MPC and incur O(n log n) communication and computation costs.
Seo et al. [51] focus on multiparty set union and require O(s3 ·n2) communication
cost and O(s4 · n2) computation cost, where s is the number of parties. They
rely on verifiable secret sharing and zero-knowledge proofs to obtain malicious
security.

2 Preliminaries

2.1 Notations and Security Definition

Let κ denote the computational security parameter. Let S (resp. R) denote the
sender (resp. receiver) and let X = {x1, · · · , xn1

} (resp. Y = {y1, · · · , yn1
})

denote the sender’s (resp. receiver’s) input set. Also, let [m] denote the set
{1, 2, · · · ,m}. Finally, we use the abbreviation PPT to denote probabilistic
polynomial-time and refer to a function µ as being negligible in κ if its inverse
grows faster than any polynomial in κ. Given two distribution D1 and D2, we

denote D1
c≡ D2 to indicate that they are computationally indistinguishable.

We follow [22,39] for the security definitions for secure two-party computa-
tions. We further employ (re-randomizable) additively homomorphic encryption
schemes. As these are quite standard, we defer them to appendix A.
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2.2 Oblivious Key-Value Stores

We use the notion of oblivious key-value stores (OKVS) [42,21]. The definition
goes as follows:

Definition 1. A Key-value store is parameterized by a set K of keys, a set V of
values, and a set of functions H as well as two algorithms:

1. EncodeH({(k1, v1), . . . , (kn, vn)}) takes as input key-value pairs {(k1, v1), . . . , (kn, vn)} ⊆
K × V, and outputs an object D or an error indicator ⊥ with statistically
small probability.

2. DecodeH(D, k) takes an object D and a key k as inputs, and outputs a value
v ∈ V.

In the rest of this paper, we omit the underlying parameter H for simplicity. An
OKVS needs to satisfy the following two properties:

Correctness. For any A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥6= D ← Encode(A) =⇒ Decode(D, k) = v

Obliviousness. For all distinct (k0
1, . . . , k

0
n) and all distinct (k1

1, . . . , k
1
n), if

Encode does not output ⊥ for (k0
1, . . . , k

0
n) or (k1

1, . . . , k
1
n), then

Encode((k0
1, v

0
1), . . . , (k0

n, v
0
n))

c≡ Encode((k1
1, v

1
1), . . . , (k1

n, v
1
n))

where vbi is uniformly sampled from V for all i ∈ [n] and b = {0, 1}.
Furthermore, the following randomness property, which is formally captured

in [53], is handy when arguing the correctness of our PSU protocols.5

(Optional) Randomness. For any A ⊆ K × V with distinct keys and any k∗

that is not among the keys appearing in A, the output of Decode(Encode(A), k∗)
is statistically close to uniform over V.

Finally, by (n,m, 2−λ)-OKVS scheme, we mean the scheme encodes n el-
ements into m slots, and the encode algorithm fails with no more than 2−λ

probability. In our work, we use the following two constructions of OKVS.

Polynomial. A simple example of OKVS is a polynomial P satisfying P (ki) = vi
for all i ∈ [n]. The (encrypted) coefficients of the polynomial are the OKVS data
structure where m = n. It is straightforward to see the correctness property holds
while the obliviousness property follows from the CPA security of the encryption
scheme. The encode (resp. decode) algorithm is simply polynomial interpolation
(resp. evaluation).

3-Hash garbled cuckoo table. 3-Hash Garbled Cuckoo Table (3H-GCT), first
introduced in [21], is a more sophisticated scheme to instantiate OKVS. We give a
high-level description of its data structure and encode/decode algorithms below,
but refer to the original paper for full details.

5 In fact, this property is a bit stronger than what we need, thus some instantiation
of OKVS that do not has this property still suffice for correctness. We elaborate on
this point after presenting our protocols, when the OKVS we instantiate is clear.
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Recall that K (resp. V) corresponds to the key space (resp. value space) of the
OKVS. Specifically, let V be a finite group or a finite field. Let m = m′ + d+ λ
where d ∈ O(log n) and λ is the statistical security parameter. Let the data
structure D = L||R ∈ Vm, where L ∈ Vm′

and R ∈ Vd+λ.
The encode algorithm is parameterized with the functions h1, h2, h3 : K →

[m′] and a function r : K → {0, 1}d+λ. Given h1, h2, h3 and a k ∈ K, let
l(k) be the bit vector of length m′ where all bits are zero except at positions
h1(k), h2(k), h3(k). Then, the data structure D encoding {(ki, vi)}i∈[n] should
satisfy 〈l(ki)||r(ki), L||R〉 = vi for i ∈ [n] , where 〈·, ·〉 denotes the inner product
between two vectors. Note that finding a satisfying D is equivalent to solving
the system of n linear equations. In particular, the encode algorithm outputs a
random solution for this system of linear equations. On the other hand, decoding
a key k can be done by simply retrieving the slots in D that correspond to the
non-zero bits in l(ki)||r(ki) and summing them up.

The OKVS is correct whenever the encode algorithm succeeds. It may fail
when there is no solution, i.e., there exist “too many” linearly dependent rows
in the linear equations. To empirically bound this failure probability, [21] ex-
plores several architectures to amplify the probabilistic guarantee of encoding
success. We again refer to their paper for full details. Here we simply state their
parameters. In Section 5.4 in [21], they construct a (n,m, 2−λ)-OKVS scheme
with m ≈ 1.3n and λ > 40.

Roughly speaking, obliviousness follows from the fact that the encode algo-
rithm returns a random solution to the linear equations, and values {vi}i∈[n] are
uniformly distributed. In Theorem 7 in [53], they formally prove that 3H-GCT
satisfies both the obliviousness and the randomness property.

A more recent implementation of OKVS is proposed in [48]. Compared to 3H-
GCT, it slightly reduces the communication cost, and thus would lead to slightly
improved performance. In this paper, we use the OKVS abstraction to describe
our protocol and, for simplicity, we use 3H-GCT to evaluate our performance.

3 Semi-Honest PSU Protocols

In this section, we introduce two semi-honest protocols that realize the PSU
functionality (Figure 2). In Section 3.1, we provide a two-round reusable protocol
relying on RLWE PKE, whereas in Section 3.2 we provide a variant protocol in
an OT-hybrid model that is more efficient, in terms of both communication
and computation, at the cost of adding two rounds of interaction. Finally, we
implement both protocols and defer the experimental results to Section 5.

3.1 Semi-Honest Reusable PSU

We now present our two-round, reusable PSU protocol, secure against a semi-
honest adversary. Informally, we refer to a two-round PSU protocol as reusable if
the receiver’s message can be reused across multiple executions of the protocol,
potentially with different senders. This property is especially appealing when
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Fn1,n2
PSU

Parameters: S’s set size n1 and R’s set size n2. The universe U of all
elements.

Input: S’s input set X = {x1, · · · , xn1} ⊆ U and R’s input set Y =
{y1, · · · , yn2} ⊆ U .

PSU:

– Send X ∪ Y to R.

Fig. 2. Ideal Functionality of PSU.

the receiver holds a very large input set, and interacts with many senders, each
possibly holding smaller inputs.

A naive solution. We describe again a simpler solution, introduced by Friekken
[19]. Recall that R’s input set is Y = {y1, · · · , yn2}. R first computes the poly-
nomial Q(x) =

∏n2

i=1(x − yi) =
∑n2

i=0 ai · xi. Next, it encrypts the polynomial
coefficients a0, · · · , an2

, resulting in c0, · · · , cn2
and sends the ciphertexts to S.

For each xj in S’s set X, S homomorphically evaluates the polynomial, com-
puting d =

∑n2

i=0 ci · xij , and sets d′ = d · xj . Then, it re-randomizes d and d′

to e and e′ and sends the re-randomized ciphertexts back to R. Note that if
xj ∈ Y , e and e′ are re-randomized ciphertexts encrypting 0s, which are sta-
tistically indistinguishable from fresh ciphertexts encrypting 0s. Therefore, R
could not learn anything for xj from e and e′. To recover the extra inputs that S
brings to the union, R decrypts e and e′ to obtain the plaintexts, v = Q(xj) and
v′ = xj ·Q(xj). Note that if xj ∈ Y , both of them are equal to zero as Q(xj) = 0.
Again, R learns nothing from these intersection points from the decryption. On
the other hand, if xj /∈ Y , R recovers xj = v′/v and adds it to the output set.
It is trivial to see that this solution gives the correct result.

For simplicity, throughout our paper, we assume n1, n2 ∈ O(n) when analyz-
ing the complexity of our protocols. The naive solution requires S to evaluate
the polynomial n1 times with an O(n) field operations for each evaluation6.
Therefore, to achieve a much more efficient construction (both asymptotically
and concretely), we use the bucketing technique with packing (both introduced
below) on top of the naive construction.

Bucketing. We borrow the bucketing technique first used by Freedman et al.
[18] used for the PSI problem. Roughly speaking, using a simple hash table,
both parties partition their input sets into m ∈ O(n/ log n) buckets, where each
bucket contains no more than some k ∈ O(log n) inputs, except with negligible
probability. To prevent additional leakage from the number of inputs in each
bucket, both parties should pad it to maximum size k. However, a subtlety is
observed by Kolesnikov et al. [36]. To ensure that we do not indicate to the

6 In Kolesnikov et al. [36], the more efficient claim is made as FFT is applicable there.
In our case, the coefficients are encrypted so we need to use the straight-forward
algorithm with cost linear to the degree of the polynomial.
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receiver whether an intersection occurs in any particular bucket, the sender’s
dummy items must look like intersection items. This is handled by ensuring the
receiver includes at least 1 dummy item in each interpolation, so that it will
intersect with all dummy items of the sender in the corresponding bucket. As a
result, the maximum number of inputs in a receiver’s bucket is actually k + 1.
Then, the naive solution above is run m times, one for each bucket. Kolesnikov
et al. also observe that the receiver can do this by using 0 coefficients, rather
than interpolating over dummy inputs. In more detail, R interpolates a total of
m polynomials of degree (at most) k+1, one for each bucket, and all using k+2
coefficients. Then S evaluates a degree k+1 polynomial for each of its inputs. To
hide its own bucket sizes, the sender evaluates each polynomial k times, regard-
less of the bucket load. Thus bucketing reduces the total computational costs of
both S and R to O(n log n) field operations, while the total communication cost
remains O(n).

Further optimization via packing. To further improve concrete efficiency,
we can use the SIMD (Single-Instruction Multiple-Data), first proposed in [52],
to compute multiple values in parallel. In particular, we can encode and pack a
batch of inputs or polynomial coefficients into a single ring element and use an
RLWE encryption scheme to encrypt it into a single ciphertext. Specifically, for
i = [k] ∪ {0}, R packs the ith coefficient of all m buckets into a ring element,
and encrypts it to a single ciphertext Cj . Also, for j = 1, · · · , k, S packs its
jth inputs from all m buckets into a ring element. Using coordinate-wise multi-
plication between plaintext and ciphertext (denoted as

⊙
), S can compute the

multiplication between each pair of polynomial coefficients and S’s input in a
batch. This greatly improves concrete computational efficiency. Our semi-honest
protocol incorporates the two optimizations mentioned above, and is shown in
Figure 3.

Theorem 1. The protocol ΠPSU (Figure 3) securely realizes the ideal functional-
ity Fn1,n2

PSU (Figure 2), under the presence of a semi-honest adversary corrupting
either S or R.

Proof. As FPSU is deterministic and we are in the semi-honest setting, it suffices
to separately show (a) correctness: the protocol output is correct, and (b) privacy:
each party’s view in the protocol can be simulated using its own input and
output.

It is straightforward to see that the correctness holds when the buckets do
not overflow during hashing. In particular, in Step 4 of the protocol, R recovers
(0, 0) for each input x of S within the intersection, i.e., (x ∈ Y ), as a result of the
polynomial evaluation yielding 0. On the other hand, every element xi,j /∈ Y can
be recovered by R and added to the output. Finally, by following the choices of
parameters m and k according to [46,36], the probability of overflow is bounded
by 2−40.

To see that the privacy holds, we first show how SimS(X) simulates the
view for the corrupt S, which consists of pk, h, and R’s encrypted coefficients
C0, ..., Ck+1 sent in Step 2:
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ΠPSU Semi-honest PSU

Parameters.

– S’s set size n1, R’s set size n2.
– Number of buckets m ∈ O(n/ log(n)), maximum bucket size k ∈
O(logn).

– A prime p. A special dummy item ⊥∈ Zp. A finite ring R.
– A RLWE scheme (Setup,KeyGen,Enc,Dec,ReRand) with plaintext

space R, a reversible function Pack : Zmp → R.

Input. S’s input set X = {x1, · · · , xn1} ⊆ Zp \ {⊥} and R’s input set
Y = {y1, · · · , yn2} ⊆ Zp \ {⊥}.

Protocol.

1. Setup. R computes pp ← Setup(1κ), (pk, sk) ← KeyGen(pp), picks a
random hash function h : Zp → [m].

2. Encryption. R uses h to hash inputs in Y into m buckets. Addition-
ally, it adds a ⊥ to each bucket. Let BRi = {yi,1, · · · , yi,|BR

i |
} denote

the set of inputs in R’s ith bucket. Next, for i ∈ [m], R samples
ai ← Zp and computes

Qi(x) = ai,0 + · · ·+ ai,k+1x
k+1 = ai(x− yi,1) · · · (x− yi,|BR

i |
)

Note that ai,j = 0 if j > |BRi |. For j = [k + 1] ∪ {0}, let Aj =
Pack(a1,j , a2,j , · · · , am,j), R computes Cj ← EncRLWE

pk (Aj). Finally, it
sends pk, h and C0, . . . , Ck+1 to S.

3. Evaluate the encrypted polynomial. S uses h to hash inputs in X
into m buckets. It pads each bucket to size k using ⊥ and randomly
permutes all inputs within each bucket. Let BSi = {xi,1, · · · , xi,k}
denote the set of inputs in S’s ith bucket. For j ∈ [k], i ∈ [k+1]∪{0},

let Xi
j = Pack(xi1,j , . . . , x

i
m,j). S computes: Dj = (

k+1∑
i=0

Ci
⊙
Xi
j) and

D′j = Xj
⊙
Dj . Note that

Dj ∈ EncRLWE
pk (Pack(Q1(x1,j), · · · , Qm(xm,j)))

D′j ∈ EncRLWE
pk (Pack(Q1(x1,j) · x1,j , · · · , Qm(xm,j) · xm,j))

Finally, S re-randomizes the ciphertexts Dj , D
′
j to Ej , E

′
j and sends

back all (Ej , E
′
j).

4. Obtaining output. For each pair of Ej , E
′
j , R decrypts and unpacks

to recover {(Qi(xi,j), Qi(xi,j) · xi,j)}i∈[m]. Note that if xi,j is in the
intersection or xi,j =⊥, R recovers the tuple (0, 0) as Qi(xi,j) = 0.
Otherwise, R can compute xi,j and put it in X̂.

Output. R outputs X̂ ∪ Y .

Fig. 3. Semi-honest PSU Protocol
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1. Run pp ← Setup(1κ), (pk, sk) ← KeyGen(pp) and randomly pick a hash
function h.

2. Compute C̃0 ← EncRLWE
pk (0), · · · , C̃k+1 ← EncRLWE

pk (0).

Clearly, pk, h follows the same distribution, and any PPT adversary that can
distinguish C0, · · · , Ck+1 and C̃0, · · · , C̃k+1 given pk can break the IND-CPA
security of the underlying encryption scheme.

Next, we show how SimR(Y,X ∪ Y ) simulates the view for the corrupt R,
which consists of S’s replies {Ej , E′j}j∈[k] in Step 3:

1. Simulates R’s random tape to run pp ← Setup(1κ), (pk, sk) ← KeyGen(pp),
and randomly pick a hash function h.

2. Compute X̃ = X ∪ Y \ Y . Hash X̃ into the m buckets and pad each bucket
to size k with ⊥ and randomly permute all items within each bucket. Also,
hash inputs in Y into the m buckets and add a ⊥ to each bucket. Let B̃Si =
{xi,1, · · · , xi,k} (resp. BRi = {yi,1, · · · , yi,|BR

i |}) denote the set of items in

S’s (resp. R’s) ith bucket.
3. For i ∈ [m], sample ai ← Zp and compute

Qi(x) = ai,0 + · · ·+ ai,k+1x
k+1 = ai(x− yi,1) · · · (x− yi,|BR

i |)

For j = [k + 1] ∪ {0}, let Aj = Pack(a1,j , a2,j , · · · , am,j) and compute Cj ←
EncRLWE

pk (Aj).

4. For j ∈ [k], and i ∈ [k+1]∪{0}, let X̃i
j = Pack(xi1,j , . . . , x

i
m,j), compute D̃j =

(
k+1∑
i=0

Ci
⊙
X̃i
j) and D̃′j = X̃j

⊙
D̃j . Re-randomize the ciphertexts D̃j , D̃

′
j to

Ẽj , Ẽ
′
j .

First note that the key pair (pk, sk) follows the same distribution in both
views. Next, due to the statistically re-randomization indistinguishable property
and CPA security, Ej , E

′
j in the real view and Ẽj , Ẽ

′
j in the simulated view

are computationally indistinguishable. Moreover, in the real view, decrypting
and unpacking all Ej , E

′
j for j ∈ [k] results in tuples corresponding to inputs in

X̂ = X \Y , as well as n1−|X̂| tuples of (0,0) corresponding to intersected inputs
or padding inputs ⊥. On the other hand, in the simulated view, decrypting and
unpacking all Ẽj , Ẽ

′
j for j ∈ [k] results in tuples corresponding to inputs in X̃,

which equals to X̂, and the same number of (0, 0) tuples as in the real view.
Therefore, the decryption of ciphertexts gives identical outputs. This concludes
our proof.

Reusable Security. We do not formally model re-usable security, but we make
the following observations. When the receiver is corrupt, SimR does not use the
private randomness of the receiver when constructing Ẽj , Ẽ

′
j in Step 3. Therefore,

when reusing R’s message across executions, if there exists a distinguisher Dmany

that can distinguish the real-world executions from the simulated executions,
then there exists a distinguisher D that can do so in a single execution, in
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contradiction of Theorem 1. This follows because D can simply run SimR itself
to generate the missing portion of Dmany’s view.

When the sender is corrupt, reusability holds trivially for semi-honest proto-
cols that have full correctness. Intuitively, this is because there is nothing learned
by the sender after each additional execution, if the protocol always completes
correctly.7 Therefore, it suffices for SimS to simulate the message of the receiver
just one time. In subsequent protocol executions, SimS simply extracts the sender
input and submits it to the trusted party.

3.2 Semi-Honest Efficient PSU with OT

In this subsection, we show a simple trick to trade the reusability and round
complexity for better communication and computational cost when we are in
the OT-hybrid model. Recall that in the previous protocol, R recovers the set
{(Qi(xi,j), Qi(xi,j) · xi,j)}i∈[m] from each pair of Ej , E

′
j sent by S. Instead, we

first let R recover only {Qi(xi,j)}i∈[m] from Ej , and then have R to recover xi,j
through OT, if and only if Qi(xi,j) 6= 0. This reduces the number of ciphertexts
needed to be computed, thus reducing the communication and computational
costs. Formally, our protocol is shown in Figure 4, with the differences high-
lighted.

Theorem 2. In the FOT-hybrid model, the protocol ΠFOT
PSU (Figure 4) securely

realizes the ideal functionality Fn1,n2

PSU (Figure 2), under the presence of a semi-
honest adversary corrupting either S or R.

The proof is quite similar to the security proof for Π reuse
PSU . Therefore, we only

give a sketch here and defer the proof to the full version. To start with, it is
easy to verify that the correctness holds. Next, to claim privacy against S, note
that the view of S consists of pk and encrypted coefficients C0, . . . , Ck+1 sent by
R, which is exactly the same as in Π reuse

PSU . Finally, compared to Π reuse
PSU , the view

for R now contains {Ej}j∈[m] instead of {(Ej , E′j)}j∈[m], so we can modify the

simulator to only generate {Ẽj}j∈[m], and argue computational indistinguisha-
bility as before. Additionally, the simulator simulates all OT executions to return
every x ∈ X̃ to R, which is identical to the real view.

4 PSU with Malicious Senders

In this section, we present two PSU protocols that securely realize our PSU
functionality (Figure 1) against a malicious sender in the random oracle model.
In Section 1.1, we define and discuss the proper PSU functionality in this setting.
In Section 4.1, we provide a two-round reusable protocol relying on an additive

7 In contrast, if the protocol occasionally fails, one would have to argue that the failure
event does not reveal something about the randomness used in the receiver’s message.
It is possible to construct a contrived protocol that is secure after a small number
of failures, but eventually leaks all of the randomness of the receiver’s message.
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ΠFOT
PSU Semi-honest PSU with OT

Parameters.

– S’s set size n1, R’s set size n2.
– Number of buckets m ∈ O(n/ log(n)), maximum bucket size k ∈
O(logn).

– A prime p. A special dummy item ⊥∈ Zp. A finite ring R.
– A RLWE scheme (Setup,KeyGen,Enc,Dec,ReRand) with plaintext

space R, a reversible function Pack : Zmp → R.
– Ideal functionality FOT (Figure 7).

Input. S’s input set X = {x1, · · · , xn1} ⊆ Zp \ {⊥} and R’s input set
Y = {y1, · · · , yn2} ⊆ Zp \ {⊥}.

Protocol.

1. Setup. R computes pp ← Setup(1κ), (pk, sk) ← KeyGen(pp), picks a
random hash function h : Zp → [m].

2. Encryption. R uses h to hash inputs in Y into m buckets. Addition-
ally, it adds a ⊥ to each bucket. Let BRi = {yi,1, · · · , yi,|BR

i |
} denote

the set of inputs in R’s ith bucket. Next, for i ∈ [m], R samples
ai ← Zp and computes

Qi(x) = ai,0 + · · ·+ ai,k+1x
k+1 = ai(x− yi,1) · · · (x− yi,|BR

i |
)

Note that ai,j = 0 if j > |BRi |. For j = [k + 1] ∪ {0}, let Aj =
Pack(a1,j , a2,j , · · · , am,j), R computes Cj ← EncRLWE

pk (Aj). Finally, it
sends pk, h and C0, . . . , Ck+1 to S.

3. Evaluate the encrypted polynomial. S uses h to hash inputs in X
into m buckets. It pads each bucket to size k using ⊥ and randomly
permutes all inputs within each bucket. Let BSi = {xi,1, · · · , xi,k}
denote the set of inputs in S’s ith bucket. For j ∈ [k], i ∈ [k+1]∪{0},
let Xi

j = Pack(xi1,j , . . . , x
i
m,j).

S computes: Dj = (
k+1∑
i=0

Ci
⊙
Xi
j). Note that

Dj ∈ EncRLWE
pk (Pack(Q1(x1,j), · · · , Qm(xm,j)))

Finally, S re-randomizes the ciphertexts Dj to Ej and sends back all
Ej .

4. Obtaining output. For each Ej , R decrypts and unpacks to recover
{Qi(xi,j)}i∈[m]. Note that if xi,j is in the intersection or xi,j =⊥,
Qi(xi,j) = 0. Let bi,j = 0 if Qi(xi,j) = 0 and bi,j = 1 otherwise.
Let X̂ = ∅. For each pair of i ∈ [m], j ∈ [k], S and R call the OT
functionality FOT. Specifically, S serves as the sender with inputs
(⊥, xi,j) and R serves as the receiver with input bi,j . Therefore, for
all i, j such that bi,j = 1, R receives xi,j and puts it in X̂.

Output. R outputs X̂ ∪ Y .

Fig. 4. Semi-honest PSU with OT Protocol



20 D. Gordon et al.

homomorphic encryption scheme, and in Section 4.2 we provide a more efficient
protocol, in terms of both communication and computation, at the cost of adding
two rounds of interaction. This protocol is in an OT-hybrid model, using a re-
randomizable public key encryption scheme. We note that the two protocols are
incomparable and achieve different properties and efficiency measures.

4.1 Reusable PSU

In this subsection, we show how to realize a two-round reusable PSU protocol
using the FNP paradigm. Compared to our semi-honest protocol, in which we use
a polynomial and simple hash table to encode R’s input set, here we generalize
our protocol by using the abstraction of OKVS to encode R’s input set. Also, we
rely on an Additive-homomorphic encryption scheme, but due to the requirement
of the locality property to use the FNP paradigm, we cannot use packing as we
did in the semi-honest setting.

In more detail, R first encodes its input set Y to an OKVS data structure
D, such that for every y ∈ Y , Decode(D, y) returns a fresh encryption of 0.
After receiving D, for each input x, S homomorphically computes a tuple of
(rerandomized) ciphertexts: (d, d · x, d · r) where d = Decode(D,x). Recall that
h(x||r) determines the randomness used by S to derandomize the computation of
this tuple/message. When Decode(D,x) 6= 0, i.e., x /∈ Y , R can recover x and r
from the decryption of the tuple, and reevaluate S’s derivation of it. Eventually,
R verifies the correctness of all tuples/messages corresponding to the elements
in X \ Y . Our protocol is given in Figure 5.

Theorem 3. The protocol Π∗reusePSU (Figure 5) securely realizes the ideal func-

tionality F n̂1,n2

PSU (Figure 1) with abort, against any malicious sender and any
semi-honest receiver with abort in the random oracle model.

We give a high-level intuition of the proof below and defer the full proof to
Appendix B.

Malicious sender. To simulate the OKVS for the malicious sender, we argue
that the simulator can just encode an arbitrary set of inputs (as keys of the
OKVS) with values chosen uniformly from the ciphertext space. By the obliv-
iousness property of the OKVS, this is computationally indistinguishable from
an OKVS encoding real inputs of R with uniformly chosen ciphertexts. Next, we
can further replace the uniformly chosen ciphertexts with ciphertexts encrypting
0s, and argue that the change is computationally indistinguishable, due to single
message multiple ciphertexts indistinguishability of the underlying PKE scheme.

Finally, to show that the output distribution in the above hybrid world is
statistically indistinguishable from that of the real world, we rely on the following
arguments: Due to the randomness property of the OKVS, any of S’s inputs that
are not encoded by R decode to a random value/ciphertext, and the probability
that a random ciphertext decrypts to 0 is negligible. Therefore, R can retrieve
all S’s non-intersected inputs except for negligible probability, assuming that
S does not cheat. In the case where S cheats by sending incorrectly formed
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Π∗reusePSU

Parameters.

– S’s set size upper bound n̂1, R’s set size n2.
– Statistical security parameter λ.
– Number of slots m ∈ O(n).
– A finite group G and finite field F.
– A AH-PKE scheme (Setup,KeyGen,Enc,Dec,ReRand) with plaintext

space F, ciphertext space G, and randomness space ∇.
– An (n,m, 2−λ)-OKVS scheme (Encode,Decode) with key space F and

value space G.
– A hash function h : F2 → ∇3, modeled as a random oracle.

Input. S’s input set X = {x1, · · · , xn1} and R’s input set Y =
{y1, · · · , yn2} where each entry in X,Y is a field element of F.

Protocol.

1. KeyGen. R computes pp← Setup(1κ), (pk, sk)← KeyGen(pp).
2. Encrypt and encode. R generates n2 fresh ciphertexts (c1, . . . , cn2)

of 0, that is, for i ∈ [n2], ci ← Encpk(0). It then generates D ←
Encode({(yi, ci)}i∈[n2]) and sends pk, D to S.

3. Decode and re-randomize. For each element xi ∈ X, S com-
putes di = Decode(D,xi). Next, it samples ri ← F and com-
putes vi||v′i||v′′i = h(xi||ri). Then, for each i ∈ [n1], it computes
ei = ReRandpk(di, vi), e

′
i = ReRandpk(di·xi, v′i), and e′′i = ReRandpk(di·

ri, v
′′
i ), with · denoting the multiplication between a ciphertext and a

plaintext. Finally, it sends {(ei, e′i, e′′i )}i∈[n1] to R.
4. Decrypt and obtain output. R receives {(ei, e′i, e′′i )}i∈[n1] and

aborts if n1 > n̂1. Otherwise, for each (ei, e
′
i, e
′′
i ) received, R com-

putes the decryption: ui = Decsk(ei), u
′
i = Decsk(e

′
i), u

′′
i = Decsk(e

′′
i ).

Let X̂ = ∅. For each tuple of ui, u
′
i, u
′′
i such that ui 6= 0, it calculates

x = u′i/ui and r = u′′i /ui. It then reevaluates S’s previous step to
verify that {(ei, e′i, e′′i )} was correctly computed. If so, it sets X̂∪{x}.

Output. R outputs X̂ ∪ Y .

Fig. 5. Malicious sender reusable PSU
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ciphertext tuples, R in the real world discards those recovered (non-intersected)
inputs that correspond to incorrectly formed ciphertext tuples. In the (simulated)
hybrid world, the simulator can extract each of S’s inputs along with the local
randomness used to re-randomize ciphertexts through h, which is modeled as a
random oracle. It can then use these inputs and the corresponding randomness
to verify that each tuple of ciphertexts is computed correctly, discarding those
inputs that are not. Although the discarded inputs may include those intersected
inputs, this will not affect the output, as it will not be returned to R by the
ideal PSU functionality. The formal proof is in Appendix B.

Semi-honest receiver. The simulator for the semi-honest receiver is similar to
the simulator we give in the semi-honest setting. Specifically, the simulator, given
R’s input set Y and the output set X∪Y , computes X̃ = X∪Y \Y . Then, it fol-
lows R’s steps to generate the OKVS using R’s input set Y . Next, it follows S’s
steps to decode and generate the re-randomized ciphertext tuples using inputs
in X̃, i.e., the set of S’s inputs that are not in the intersection. Also, the sim-
ulator adds “dummy” ciphertext tuples, generated by encrypting 0s, and sends
all ciphertext tuples to R. In the end, R recovers all inputs in X̃, except with
negligible probability, due to the randomness property of OKVS. Moreover, the
remaining “dummy” ciphertext tuples are (statistically) indistinguishable from
those ciphertext tuples generated through proper decoding and re-randomizing
in the real world, due to the (statistically) re-randomization indistinguishable
property of the underlying PKE.

Reusable security. For a corrupt semi-honest receiver, the argument is iden-
tical to the one made in Section 3.1: because SimR did not use the private
randomness of R when constructing the sender messages in Step 3, any distin-
guisher that can break security after multiple executions could do so after a
single execution by continuing the simulation itself.

When the sender is malicious, we claim reusability by first noting that the
FNP paradigm enforces honest behavior. In particular, suppose there exists some
D that can distinguish the real world from the ideal world after ` executions
by some adversary A. We can show that there exists a sequence of inputs,
X1, . . . , X`, such that D can distinguish the real world from the ideal world
when a semi-honest adversary corrupts S. Concretely, these inputs are the sub-
sets of A’s inputs that are verified under the FNP validation. As we argued in
Section 3.1, since the protocol is correct (with all but negligible probability),
it follows that nothing is learned about the randomness used by the receiver in
generating its single message, and a one-time simulation of that message suffices.

4.2 Efficient PSU with OT

In this subsection, we show how to construct a PSU protocol in the OT-hybrid
model using the FNP paradigm. Our protocol sacrifices the reusability and round
complexity, but generally achieves better concrete communication and compu-
tational costs compared to our previous reusable PSU protocol. We quickly go
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over our new protocol by highlighting the differences with the previous one. Our
complete protocol is given in Figure 6.

1. To start with, R encodes its input and sends OKVS D to S, except that it
uses fresh encryptions of a single, randomly selected plaintext w, instead of
fresh encryptions of 0.

2. For each of the inputs of S’s, instead of computing the tuple of ciphertexts
(e, e′, e′′), S only computes and returns the first ciphertext e.

3. R decrypt e, and knows that it corresponds to a non-intersected input if
Dec(e) 6= w.

4. S and R call FOT for each input of S. R to retrieves all x, r corresponds
to e such that Dec(e) 6= w (and recovers ⊥ elsewhere). If R verifies that e
is correctly computed by reevaluating S’s previous step, R puts x into the
output set.

It is straightforward to see that this protocol still utilizes the FNP paradigm.
In particular,R now relies on OT to recover the randomness used to derandomize
S’s computation of e. Moreover, (semi-honest) R only recovers the randomness
corresponding to those of S’s inputs that are not in the intersection.

In the new protocol, notice that we do not require any additive homomorphic
operation on the ciphertexts, since S no longer needs to compute x · e and r · e.
Additionally, the plaintext space of the encryption scheme no longer needs to
include 0. Together, this allows us to replace the stronger AH-PKE schemes
in the previous protocol with weaker ReRand-PKE schemes, which allows for
more concretely efficient communication. For the computational cost, the cost for
additive homomorphic operation is the dominant cost in our previous protocol.
By avoiding it here, the concrete computational cost is also greatly improved.

Theorem 4. In the FOT-hybrid model, the protocol Π∗FOT
PSU (Figure 6) securely

realizes the ideal functionality F n̂1,n2

PSU (Figure 1) with abort, against any mali-
cious sender and any semi-honest receiver with abort in the random oracle model.

The majority of the proof is the same as the proof of Theorem 3. In particular,
as the protocol now relies on OT to transmit the input x and its correspond-
ing randomness r, the simulator needs to adjust accordingly, but the general
argument remains the same. We defer the full proof to Appendix B.

5 Implementations and Experiments

5.1 Implementation Details

We implemented all our protocols using 64-bit input items. Our implemen-
tations can be found at: https://github.com/merpsu1/merpsu_semihonest8

and https://github.com/merpsu1/merpsu_malicious.

8 We are currently awaiting the approval process to release them. Once granted, we
will promptly publish them here.

https://github.com/merpsu1/merpsu_semihonest
https://github.com/merpsu1/merpsu_malicious
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Π∗FOT
PSU

Parameters.

– S’s set size upper bound n̂1, R’s set size n2.
– Statistical security parameter λ.
– Number of slots m ∈ O(n).
– Ideal functionality FOT (Figure 7).
– Two finite groups G1 and G2.
– A ReRand-PKE scheme (Setup,KeyGen,Enc,Dec,ReRand) with plain-

text space G1, ciphertext space G2, and randomness space ∇.
– An (n,m, 2−λ)-OKVS scheme (Encode,Decode) with key space G1

and value space G2.
– A hash function h : G2

1 → ∇, modeled as a random oracle.

Input. S’s input set X = {x1, · · · , xn1} and R’s input set Y =
{y1, · · · , yn2} where all entries in X (resp., Y ) are distinct group elements
in G1.

Protocol.

1. KeyGen. R computes pp← Setup(1κ), (pk, sk)← KeyGen(pp).

2. Encrypt and encode. R uniformly samples w ← G1 and generates
n2 fresh ciphertexts (c1, . . . , cn2) of w, i.e., for i ∈ [n2], ci ← Encpk(w).
It then generates D ← Encode({(yi, ci)}i∈[n2]) and sends pk, D to S.

3. Decode and re-randomize. For each element xi ∈ X, S computes
di = Decode(D,xi). Next, it samples ri ← G1 and computes vi =
h(xi||ri). Finally, it computes ei = ReRandpk(di, vi) for each i ∈ [n1]
and sends {ei}i∈[n1] to R.

4. Test equality.R receives {ei}i∈[n1] and aborts if n1 > n̂1. Otherwise,
for each ei received, R computes the decryption: ui = Decsk(ei). Let
bi = 0 if ui = w and bi = 1 otherwise.

5. Obtain output. Let X̂ = ∅. For each i ∈ [n1], S and R call the OT
functionality FOT. Specifically, S serves as the sender with inputs
(⊥, xi||ri) and R serves as the receiver with input bi. Therefore, for
all i such that bi = 1, R receives xi||ri and reevaluates S’s previous
step 3 to verify that ei was correctly decoded and re-randomized by
S. If so, it puts xi in X̂.

Output. R outputs X̂ ∪ Y .

Fig. 6. Malicious sender PSU in the OT-hybrid model
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Table 2. Bucketing parameters, those within parentheses specifically chosen to opti-
mize under a network speed of 10Mbps.

n = 214 n = 216 n = 218 n = 220

Protocols m k m k m k m k

Our Protocol SA 4096 29 4096 58 4096 139 4096 396

Our Protocol SB 4096 29 4096 58 24576 (4096) 47 (139) 73728 (16384) 55 (141)

Semi-honest protocols We employ a 192-bit ciphertext modulus to accommodate
noise blowup due to homomorphic operations. This encompasses a (64+12) bits
expansion from multiplication of plaintext ring element (12 bits expansion from
the polynomial ring degree), and an upper bound of 8 bits expansion from sum-
ming terms within buckets. To conduct noise flooding, we sample noise from a
uniform distribution with 148 + 40 bits support. In total, this puts the noise
level to 188 < 192 bits.

Unlike [20,32,53], our semi-honest protocols rely on bucketing techniques,
allowing us to adjust the number of buckets m and the bucket size k to opti-
mize either communication cost or runtime. Therefore, we provide two variants:
Protocol SA prioritizes the communication cost, while Protocol SB focuses on
reducing the runtime. Specifically, the communication cost of these protocols is
dominated by m · k while the computational cost is dominated by m · k2. And
m and k are chosen such that there is a negligible probability that overflow oc-
curs in any of the m buckets. Consequently, Protocol SA opts for a smaller m,
while Protocol SB chooses m in a way to balance the computational cost and
communication cost. The specific values are detailed in Table 2.

Malicious Protocols Our protocols are implemented in JAVA on top of the open-
source project mpc4j by Zhang et al. [53]. Both of our two-round and four-round
protocols use 3H-GCT[21] to instantiate the OKVS scheme. As for the encryption
scheme, our two-round protocol uses Paillier encryption while our four-round
protocols use ECC ElGamal encryption. Their communication cost and runtime
are presented in Table 3 and 4 under tabs Protocol M2, Protocol M4 respectively.

5.2 Experimental Setup

We ran all our experiments in a single AWS c5.24xlarge instance. The machine
has 48 cores with GPU clock speed of 3.6 GHz and 192 GB of RAM. We use
single-threading for all our experiments. To simulate different network settings
(LAN, 1Gbps, 100Mbps, and 10Mbps), we used the Linux tc command. Addi-
tionally, we add 80ms latency to all settings except for the LAN setting.

5.3 Experimental Results

We compare our results against the existing PSU protocols including Kolesnikov
et al.[36], Garimella et al. [20], Jia et al. [32], and Zhang et al. [53]. For Jia



26 D. Gordon et al.

Table 3. The communication cost in MB.

n = 214 n = 216 n = 218 n = 220

Protocols R→ S S → R Total R→ S S → R Total R→ S S → R Total R→ S S → R Total

KRTW19[36] 4.19 29.64 33.8 17.7 122.1 139.8 69.3 562.8 632 300 2306 2606

GMR+21[20] 5.91 7.98 13.9 26.0 34.1 60.1 114 145 259 493 616 1109

JSZ+22[32]-R 4.66 5.64 10.28 20.76 24.75 45.49 92.68 107.9 200.56 405.54 467.27 872.79

ZCL+21[53]-SKE 3.17 3.36 6.52 12.6 13.4 26.0 50.3 53.5 103.8 201 214 415

ZCL+21[53]-PKE 1.17 1.59 2.75 4.63 6.37 11.0 18.5 25.5 44.0 74.0 102 176

ZCL+21[53]-PKE∗ 2.17 2.90 5.05 8.64 11.6 20.2 34.5 46.3 80.8 138 185 323

Our Protocol SA2 2.91 10.88 13.78 5.63 21.75 27.38 13.22 52.13 65.35 37 149 186

Our Protocol SB2 2.91 10.88 13.78 5.63 21.75 27.38 26.63 105.75 132.38 93 (53) 371 (212) 464 (265)

Our Protocol SA4 2.91 6.34 9.25 5.63 12.69 18.31 13.22 30.41 43.63 37 87 124

Our Protocol SB4 2.91 6.34 9.25 5.63 12.69 18.31 26.63 61.69 88.32 93 (53) 217 (123) 310 (176)

Our Protocol M2 36.15 15.7 51.85 NA NA NA NA NA NA NA NA NA

Our Protocol M4 1.77 1.68 3.45 7.07 6.69 13.76 28.29 26.75 55.04 113.16 107 220.16

et al. [32], we used the protocol that shuffles the receiver’s set, which performs
better in the balanced setting. For Zhang et al. [53], we test all three variants
reported in their paper: SKE, PKE, and PKE*, where PKE performs point
compression to reduce communication costs while PKE* does not. Also, their
SKE implementation additionally requires a preprocessing phase to generate
Boolean multiplication triples which we do not test and report the online time
only. As per the authors, this phase results in approximately a 50-fold surge
in the overall end-to-end runtime. Consequently, we opt to exclude their SKE
version when assessing the best-performing protocol.

Using the implementations in open-source project mpc4j by Zhang et al. [53],
we ran all experiments on the same AWS c5.24xlarge instance and recorded the
run-time and communication cost. We ran all experiments with input sizes of
214, 216, 218, 220 except for our 2-round malicious protocol, which is quite ex-
pensive due to the usage of Paillier encryption. See Table 3 for communication
cost and Table 4 for runtime, with the optimal cost (except Zhang et al.’s SKE
version [53]) for each setting marked in blue.

Our SA4 Protocol demonstrates the most efficient communication cost for
input sizes of 218 and 220. Particularly, for the latter, we’ve achieved a 1.43×
improvement compared to the previous state-of-the-art solution. Regarding run-
time, our SB4 protocol outperforms other protocols for an input size of n =
220 except in cases with the slowest bandwidth. Specifically, our protocol is
1.04 − 1.16 times as fast as the best previous approaches. Moreover, when the
network bandwidth is 100Mbps, our SB4 protocol surpasses all existing proto-
cols in terms of runtime, except for the smallest input size (n = 214). In partic-
ular, our protocol is 1.15 − 1.25 times as fast as the best previous approaches.
In summary, our protocols provide the flexibility to tune the balance between
communication and computation costs (excluding network delays). We excel in
larger set sizes scenarios and moderate bandwidth cases. In contrast, the work of
Garimella et al. achieves better computational efficiency for smaller set sizes but
imposes significant communication costs, making it preferable for high through-
put scenarios. On the other hand, Zhang et al.’s PKE variant is communication
efficient but less computationally efficient than Garimella et al.’s work and our
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best variant, and therefore performs better in the lowest throughput setting (10
Mbps).

Finally, our malicious four-round protocol (M4) is less than 2x as expen-
sive in both communication and computation compared to all other semi-honest
constructions.
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FOT

Parameters: Sender S, receiver R.

Input: S inputs two messages m0,m1, R inputs b ∈ {0, 1}.
Output: R receives mb, S receives ⊥.

Fig. 7. Ideal Functionality of 1-out-of-2 OT.

Supplementary Materials:

A Additional Preliminaries

A.1 Building Blocks

Permutation Hashing. We adopt the same approach described in [43] to re-
duce the effective length of the input items when hashing them into buckets. Let
σ be the original length of the items, H a hash function, m = 2t the number of
buckets. For an item x, we represent x as x = xL||xR where |xL| = t bits. Then
the value xR will be pushed into the bin xL ⊕H(xR). The input length of the
items in the buckets now becomes σ − log(m).

Oblivious Transfer. Oblivious transfer (OT) [47] is an important crypto-
graphic primitive that allows a sender to transfer one of the two or more messages
to the receiver, while remains oblivious as to which message is transferred. More
in details, we give the ideal functionality for 1-out-of-2 OT in Figure 7.

A.2 Security Definition

Let f = (f1, f2) be a probabilistic polynomial-time functionality. Let x denote
the input of the first party, and y denote the input of the second party. After
executing the functionality, the first party receives f1(x, y) and the second party
receives f2(x, y). Let viewπi (x, y, κ) be the view of the ith party (i = {1, 2})
during the execution of π on the inputs (x, y) and the security parameter κ. In
particular,let outputπi (x, y, κ) be the output of the ith party during the execution
of π on inputs (x, y) and security parameter κ. Let outputπ(x, y, κ) denote the
output of the two parties.

Definition 2. (Semi-honest security) Let f = (f1, f2) be a functionality. We
say π securely computes f in the presence of static semi-honest adversaries if
there exist probabilistic polynomial-time simulators Sim1 and Sim2 such that

{(Sim1(1κ, x, f1(x, y)), f(x, y))}x,y,κ
c≡ {(viewπ1 (x, y, κ), outputπ(x, y, κ))}x,y,κ

{(Sim2(1κ, y, f2(x, y)), f(x, y))}x,y,κ
c≡ {(viewπ2 (x, y, κ), outputπ(x, y, κ))}x,y,κ

where x, y ∈ {0, 1}∗ and κ ∈ N.
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Informally, the above guarantee that each party’s view can be simulated
using only its own input and output. Hence, an adversary corrupting either
party cannot learn more than what it can learn from the party’s input and
output already.

Now we consider the malicious setting. Let A be a non-uniform probabilistic
polynomial-time machine and let i ∈ {1, 2} be the corrupted party. The ideal
execution of f on inputs (x, y), auxiliary input z to A and the security parameter
κ, denoted by idealf,A(z),i(x, y, κ), is defined as the output pair of the honest
party and the adversary A from the ideal execution, where the latter includes
arbitrary PPT function of the prescribed input of the corrupted party, the aux-
iliary input z and fi(x

′, y′), where x′ (resp. y′) may not equal to x if i = 1 (resp.
y if i = 2). On the other hand, the real execution of π on inputs (x, y), auxiliary
input z to A and security parameter κ, denoted by realπ,A(z),i(x, y, κ) is de-
fined as the output pair of the honest party and the adversary A from the real
execution of π.

Definition 3. (Malicious security) Let f = (f1, f2) be a functionality. We say
that π securely computes f with abort in the presence of static malicious adver-
saries if for every non-uniform PPT adversary A in the real world, there exists
non-uniform PPT adversary S in the ideal world, such that for every i ∈ {1, 2},{

idealf,S(z),i(x, y, κ)
}
x,y,z,κ

c≡
{
realπ,A(z),S (x, y, κ)

}
x,y,z,κ

where x, y ∈ {0, 1}∗, z ∈ {0, 1}∗ and κ ∈ N.

Finally we also consider a hybrid world that allows π to call some trusted
party to compute some ideal functionalities g1, · · · , gp(n). We denote the hybrid

execution as hybrid
g1,··· ,gp(n)

π,A(z),a (x, y, κ).

Definition 4. (Malicious security in the hybrid model) Let f = (f1, f2) be a
functionality. We say π securely computes f with abort in the g1, · · · , gp(n)-hybrid
model, in the presence of static malicious adversaries if for every non-uniform
PPT adversary A in the real world, there exists a non-uniform PPT adversary
S in the ideal world, such that for every i ∈ {1, 2},{

idealf,S(z),i(x, y, κ)
}
x,y,z,κ

c≡
{
hybrid

g1,··· ,gp(n)

π,A(z),S (x, y, κ)
}
x,y,z,κ

where x, y ∈ {0, 1}∗, z ∈ {0, 1}∗ and κ ∈ N.

A.3 Re-Randomizable Public Key Encryption Schemes

A Re-randomizable public key encryption scheme is a tuple of five PPT algo-
rithms:

– Setup(1κ): The setup algorithm takes the security parameter 1κ and outputs
the public parameters pp, which includes the description of the message and
ciphertext spaces M, C.
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– KeyGen(pp): The key generation algorithm takes pp and output a pair of
public and private key (pk, sk).

– Encpk(m): The encryption algorithm encrypts a message m ∈M with pk to
a ciphertext c ∈ C.

– Decsk(c): The decryption algorithm decrypts a ciphertext c ∈ C with sk to a
message m ∈M or a failure symbol ⊥.

– ReRandpk(c): The re-randomization algorithm re-randomize a ciphertext c ∈
C with pk to another ciphertext c′ ∈ C. We also use the notation ReRandpk(c, r)
to de-randomize this alogrithm, in which r is the randomness used to re-
randomize.

Correctness. A PKE scheme is re-randomization correct if for any pp ←
Setup(1κ), any (pk, sk) ← KeyGen(pp), and any m ∈ M , any c ← Encpk(m)
and c′ ← ReRandpk(c), we have Decsk(c) = Decsk(c

′) = m.

Re-randomization Indistinguishability. A PKE scheme is re-randomization
indistinguishable if for any pp← Setup(1κ), any (pk, sk)← KeyGen(pp), and any
m ∈M , the distribution of c← Encpk(m) and c′ ← ReRandpk(c) are identical.

Statistically re-randomization Indistinguishability. A PKE scheme is
statistically re-randomization indistinguishable if for any pp ← Setup(1κ), any
(pk, sk) ← KeyGen(pp), and any m ∈ M , the distribution of c′1 and c′2, where
c1 ← Encpk(m), c′1 ← ReRandpk(c) and c2 ← Encpk(m), c′2 ← ReRandpk(c), are
statistically indistinguishable.

Similar to [53], we define an extra property for some re-randomizable PKE
schemes, which comes in handy when we prove the security for some of our
protocols:

(Optional) Single-message multi-ciphertext pseudorandomness. Roughly
speaking, we require that a vector of n ciphertexts encrypting the same plain-
text be indistinguishable from n random values in the ciphertext space. More
formally, a PKE scheme is single-message multi-ciphertext pseudorandom if for
any PPT A = (A1,A2):

AdvA(1κ) = Pr

b = b′ :

pp← Setup(1κ);
(pk, sk)← KeyGen(pp);
(m, state)← A1(pp, pk);
b← {0, 1};
for i ∈ [n], c∗i,0 ← Encpk(m), c∗i,1 ← C
b′ ← A2(pp, state, {c∗i,b}i∈[n])

−
1

2

is negligible in κ.
In particular, it suffices to show that a PKE satisfies the above definition for

n = 1, i.e., single-ciphertext pseudorandomness, and the case with generic n can
be shown via a standard hybrid argument.

An instantiation that we used in our paper is the ElGamal [16] encryption
scheme. It is straightforward to show that it satisfies both correctness and re-
randomization indistinguishability. Additionally, it also satisfies single-message
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multi-ciphertext pseudorandomness, which can be proved by reducing to the
hardness of DDH problem.

A.4 Additively Homomorphic Public Key Encryption Schemes

On top of re-randomizable PKE schemes, we define additively homomorphic
PKE schemes by requiring them to satisfy the following additively homomorphic
properties:

– There is a homomorphic addition operation �, such that for any m,m′, any
c← Encpk(m), c′ ← Encpk(m

′), we have Dec(c� c′) = m+m′.

In this paper, we usually just use + instead of � when the context is clear. This
additively homomorphic property also allows us to compute k · c, where k is a
scalar and c is a ciphertext. In particular, we have Decsk(k · c) = k · Decsk(c).

An instantiation that we use is the Paillier [41] encryption scheme. It satisfies
correctness and re-randomization indistinguishability, and the additive homo-
morphic property. Additionally, it also satisfies single-message multi-ciphertext
pseudorandomness, which can be proved by a reduction to the hardness of deci-
sional composite residuosity.

The other instantiation we use is BGV Encryption Scheme [6]. It satis-
fies correctness and statistical re-randomization indistinguishability (using noise
flooding), and the additive homomorphic property. Plus, it also satisfies single-
message multi-ciphertext pseudorandomness, due to the hardness of RLWE.

B Proofs of security in the malicious setting

B.1 Proof of Theorem 3

Claim. Our protocol is secure against any malicious sender.

Proof. Let A be a non-uniform probabilistic polynomial-time machine. The ex-
ecution of Π∗reusePSU on inputs (X,Y ), auxiliary input z to A and computational
security parameter κ, denoted by hybridΠ,A(z) (X,Y, κ), is defined as the view
of the adversary A and the output of honest R from the hybrid execution. On
the other hand, the ideal execution of F n̂1,n2

PSU on inputs (X,Y ), auxiliary input z
to A and security parameter κ, denoted by idealF,SimS(z)(X,Y, κ), is defined as
the view of the adversary A and the output of honest R from the ideal execution.

Note that OKVS successfully encodes the input set except for 2−λ probability.
Therefore in our analysis, we simply neglect the failure event. To show that
our protocol is secure against malicious S, we show that for any adversary A
corrupting S, there exists a simulator SimS (Figure 8) such that{

hybridΠ,A(z) (X,Y, κ)
}
X,Y,z,κ

c≡
{
idealF,SimS(z)(X,Y, κ)

}
X,Y,z,κ

where each entry in X (resp., Y ) is a distinct field element in F, z ∈ {0, 1}∗ and

κ ∈ N. Let rt and V (resp., r̃t and Ṽ ) denote the random tape and the random
oracle’s response in the hybrid world (resp., ideal world). We have
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{
hybridΠ,A(z) (X,Y, κ)

}
X,Y,z,κ

=
{
X, rt, pk, D, V, X̂ ∪ Y

}
X,Y,z,κ{

idealF,SimS(z)(X,Y, κ)
}
X,Y,z,κ

=
{
X, r̃t, p̃k, D̃, Ṽ , X̃ ∪ Y

}
X,Y,z,κ

To argue the above probability ensembles are computationally indistinguish-
able, we fix any X,Y, z, κ and consider the following sequence of hybrid joint
distributions:

Hyb0: Same as idealF,SimS(z)(X,Y, κ).

Hyb1: Same as Hyb0, except that the simulator is given the honest R’s input

Y = {y1, . . . , yn2}. In Step 3 of SimS , it computes D̃′ ← Encode({(yi, c̃i)}i∈[n2])

instead and sends D̃′ to A, where c̃i is uniformly sampled from the ciphertext
space, just as in Hyb0.

Hyb2: Same as Hyb1, except that the simulator followsR’s step to generate n2

fresh ciphertexts c1, . . . , cn2 of 0. Then, it computes D ← Encode({(yi, ci)}i∈[n2])
and sends D to A.

Hyb3: Same as Hyb2, except that the simulator uses the secret key s̃k to
decrypt the ciphertext tuples and extract the inputs (rather than through the
random oracle), which is the same to how R recovers the inputs in the hybrid
world. Note that Hyb3 is identical to hybridΠ,A(z)(X,Y, κ) (the simulator essen-
tially acts according to honest R’s protocol), except that rt, pk, V are replaced

by r̃t, p̃k, Ṽ . Nevertheless, they are only semantically different, and that their dis-
tributions are exactly the same. Also, in both hybrids, abort is triggered when
more than n̂1 ciphertexts are returned by A.

We start by arguing that Hyb0 and Hyb1 are computationally indistinguish-
able. In particular, we show that if there exists some PPT distinguisher D that
distinguishes Hyb0 and Hyb1 with non-negligible probability, there exists an ad-
versary Aobl that breaks the obliviousness property of OKVS:

1. The challenger C computes pp← Setup(1κ), (p̃k, s̃k)← KeyGen(pp) and sends

p̃k to Aobl.
9 Aobl sends Y0 = {ỹi}i∈n2

and Y1 = Y to the challenger C,
where ỹi are random input values, as generated by the simulator in Hyb0.
C uniformly picks b ← {0, 1}, parses Yb as {ybi }i∈n2 and uniformly samples
{cbi}i∈n2 from the ciphertext space. Finally, C computes and returns Db ←
Encode({(ybi , cbi )}i∈n2

).

2. Aobl employsA onX and a uniformly picked r̃t. It then sends p̃k andDb toA.
Similarly to Step 4 of SimS , it emulates the random oracle, receiving cipher-
text tuples and extracting A’s “effective” input set X̃. Finally, it computes

honest R’s output X̃ ∪ Y and sends the joint view (X, r̃t, p̃k, Db, Ṽ , X̃ ∪ Y )
to D. Note that when b = 0, the joint view follows the joint distribution in
Hyb0. Otherwise, it follows the joint distribution in Hyb1.

3. Aobl usesD’s outcome to decide whetherDb is built from Y0 or Y1. It responds
to C accordingly and wins with non-negligible probability.

9 For this reduction, we do not distinguish whether C or Aobl choose the key pairs as
s̃k is not used in either Hyb0 or Hyb1.



More Efficient (Reusable) Private Set Union 37

Next, we show that hybrids Hyb1 and Hyb2 are computationally indistin-
guishable. Similar to the reduction above, we show that if there exists some PPT
distinguisher D that distinguishes Hyb1 and Hyb2 with non-negligible probabil-
ity, there exists a PPT adversary Apseu that breaks the single-message multi-
ciphertexts pseudorandomness property of the underlying PKE scheme:

1. The challenger C computes pp← Setup(1κ), (p̃k, s̃k)← KeyGen(pp) and sends

p̃k to Apseu. Apseu sends 0 to C. C uniformly picks b← {0, 1}. If b = 0, C uni-
formly samples {c0i }i∈[n2] from the ciphertext space. Otherwise, C generates
n2 fresh ciphertexts of 0, i.e., {c1i }i∈[n2] where c1i ← Encp̃k(0). Then, C sends

{cbi}i∈[n2] to Apseu.

2. Apseu employs A on input X and a uniformly picked r̃t. Next, it computes

Db ← Encode({(yi, cbi )}i∈n2) and sends p̃k and Db to A. Similarly to Step
4 of SimS , it emulates the random oracle, receiving ciphertext tuples and
extracting A’s “effective” input set X̃. Finally, it computes the honest R’s

output X̃ ∪ Y and sends the joint view (X, r̃t, p̃k, Db, Ṽ , X̃ ∪ Y ) to D. Note
that when b = 0, the joint view follows the joint distribution as in Hyb1.
Otherwise, it follows the joint distribution as in Hyb2.

3. Apseu uses D’s outcome to decide whether the view is according to Hyb1

or Hyb2, and uses the outcome to answer C and wins the above game with
non-negligible probability.

Moreover, we show that Hyb2 and Hyb3 are statistically indistinguishable.

Notice that X, r̃t, p̃k, and D are identically distributed in the two hybrids.
Thus, A’s response (random oracle queries and ciphertext tuples) follows the
same distribution in both hybrids. As a result, it suffices to analyze a fixed
A’s response. First notice that the simulator’s responses to the random oracle
queries are identically distributed in the two hybrids. It remains to argue that the
honest R’s output X̃ ∪Y in Hyb2 is equal to X̂ ∪Y in Hyb3, except for negligible
probability. Recall that in Hyb3, the simulator follows R’s step to extract the
sender’s inputs. Specifically, for each tuple (e, e′, e′′) sent by A, R decrypts them
to (ui, u

′
i, u
′′
i ). If ui 6= 0, it recovers x = u′i/ui and r = u′′i /ui. At the end, it

verifies that (e, e′, e′′) are correctly computed with x and r, i.e., it emulates S’s
step to see whether it generated (e, e′, e′′). If so, x is included in X̂. On the other

hand, in Hyb2, the simulator recovers X̃ by parsing each query made to the
random oracle into x̃ and r̃, and emulating S’s steps to generate the ciphertext
tuple. Similarly, it only includes x̃ in X̃ if the generated tuple matches one of
the tuples in A’s response. For analysis purpose, we further partition X̃ in Hyb2

to X̃1 and X̃2 where the former contains all values x such that the first entry of
its corresponding tuple decrypts to a non-zero value. Notice that as long as we
show that both X̃1 = X̂ and X̃2 ⊆ Y except with negligible probability, we have
X̃ ∪ Y = (X̃1 + X̃2) ∪ Y = X̃1 ∪ Y = X̂ ∪ Y except with negligible probability
and our proof for the indistinguishability between Hyb2 and Hyb3 is done.
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First, we argue that X̃1 = X̂ except with negligible probability. For sim-
plicity, we assume that the PKE scheme has perfect decryption correctness10.
We start by showing that X̃1 ⊆ X̂ except with negligible probability. For each
x ∈ X̃1, there is a string r (queried together with x to the random oracle), and a
ciphertext tuple in A’s response that can be generated with x and r following S’s
step. In Hyb3, this tuple correctly decrypts to (ui, u

′
i, u
′′
i ) where the same x and

r can be recovered from u′i/ui and u′′i /ui, (recall that ui 6= 0 by the definition

of X̃1). Furthermore, as guaranteed by the definition of X̃, the ciphertext tuple
can be correctly generated from x and r following S’s step. Therefore, x is also
included in X̂.

Next, we show that X̂ ⊆ X̃1 except with negligible probability. For each
x ∈ X̂, there is a string r and a ciphertext tuple in A’s response such that the
ciphertext tuple can be generated with x and r following S’s step. As A has a
negligible probability of guessing the outcome of the random oracle, there must
be a query of x||r to the random oracle with overwhelming probability. In Hyb2,
the simulator parses this query into x||r and generates the matching ciphertext

tuple following S’s step. Therefore, x is also included in X̃1.
Second, we argue X̃2 ⊆ Y , i.e. all inputs in X̃2 are in the intersection, except

with negligible probability. For each x ∈ X̃2, the first entry of its corresponding
(correctly formed) tuple is a ciphertext re-randomized from Decode(D,x), which

is an encryption of 0 by how we defined X̃2. Due to the randomness property
of OKVS, for any input x /∈ Y , Decode(D,x) is an encryption of 0 only with

negligible probability. Therefore, X̃2 ⊆ Y except with negligible probability. This
concludes the proof of indistinguishability between Hyb2 and Hyb3.

Claim. Our protocol is secure against any semi-honest receiver.

Proof. As F n̂1,n2

PSU is deterministic and we want to show security against a semi-
honest R, it suffices to separately show (a) correctness: the protocol’s output is
correct except for negligible probability, and (b) privacy: R’s view in the protocol
can be simulated using its own input and output.

To see our protocol is correct, first notice that Encode only fails with 2−λ

probability and we simply neglect the failure event. Then, in Step 4 of the
protocol, for each (e, e′, e′′) corresponding to a x ∈ X, if x /∈ Y , there is only
a negligible probability that e decrypts to 0. This is due to the randomness
property of the OKVS, which requires e to be statistically indistinguishable
from a random element in the ciphertext space. As a result, R can recover x and
r from the tuple except for negligible probability. Therefore, X̂ = X \ Y except
for negligible probability so X̂ ∪ Y = X ∪ Y .

To see our protocol is private, we define the following simulator SimR(Y,X ∪
Y ) to generate the view for the semi-honest R:

1. The simulator internally runs the adversary A on input Y and a uniformly
picked rt.

10 In fact, it suffices that the PKE scheme decrypts correctly except for negligible
probability. The adversary cannot take advantage of this as the randomness used in
a correctly re-randomized ciphertext tuple comes from the random oracle.
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Simulator SimS

1. Initialize. The simulator internally runs the adversary A. It starts
with writing X on A’s input tape and a uniformly picked rt on A’s
random tape.

2. KeyGen. The simulator computes pp ← Setup(1κ), (p̃k, s̃k) ←
KeyGen(pp).

3. Encode. The simulator randomly generates key-value pairs
{(ỹi, c̃i)}i∈[n2]. Specifically, {ỹ1, . . . , ỹn2} are uniformly picked distinct
field elements from F and each c̃i is uniformly picked from the cipher-
text space. It then computes D̃ ← Encode({(ỹi, c̃i)}i∈[n2]) and sends

p̃k, D̃ to A.
4. Extract input. The simulator emulates the random oracle to receive

and reply the queries from A. Specifically, the simulator maintains a
dictionary of all past queries and the values it returns. For a new
query x̃||r̃, the simulator uniformly picks a value from the random-
ness space ∇3 to reply and writes down the query value pair in the
dictionary. For a repeated query, the simulator looks it up in the dic-
tionary and replies with the same value. Next, the simulator receives
{(ẽi, ẽ′i, ẽ′′i)}i∈[n1] from A. If n1 > n̂1, it signals the ideal function-
ality to abort (can be triggered by sending an arbitrary input set
with size n1) and terminates the simulation. For each x̃||r̃ stored in
the dictionary, it emulates A’s steps to decode and build the cipher-
text tuple, followed by re-randomizing the ciphertext tuple using the
value corresponding to x̃||r̃ in the dictionary. If the resulting tuple is

included in {(ẽi, ẽ′i, ẽ′′i)}i∈[n1], the simulator puts x̃ in X̃.

5. Generate output. The simulator submits X̃ to the ideal function-
ality.

Fig. 8. Simulator for corrupted S.
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2. The simulator receives pk and an OKVS D from A. Next, it computes
X̄ = X ∪ Y \ Y , i.e., the set of extra elements that S adds to the union.
For all x ∈ X̄, the simulator follows Step 3 of the protocol to decode and
re-randomize them to {(ei, e′i, e′′i )}i∈[|X̄|]. In particular, to re-randomize the
ciphertext tuples, the simulator emulates the random oracle by maintain-
ing a dictionary of all x̃||r̃ and their corresponding random values it picks
to re-randomize. Also, it generates additional tuples {(ei, e′i, e′′i )}|X̄|+1≤i≤n1

,
where each tuple is generated from ei ← Encpk(0), e′i ← Encpk(0), e′′i ←
Encpk(0). Finally, it sends {ei, e′i, e′′i }i∈[|X̄|] ∪ {ei, e′i, e′′i }|X̄|+1≤i≤n1

in a ran-
dom order to A.

3. The simulator replies A’s queries to the random oracle according to the
dictionary.

Clearly, Y and rt are identical to those in a real execution. We start by arguing
that the ciphertext tuples {(ei, e′i, e′′i )}i∈[|X̄|] are indistinguishable from those in

a real execution. Specifically, for each ciphertext tuple corresponds to a x ∈ X̄,
the simulator generates it by following the exact protocol of S in the real execu-
tion. Next, we argue that the remaining ciphertext tuples (corresponding to the
intersected inputs) are also identically distributed to those in a real execution. In
both hybrids, these ciphertext tuples are encryptions of 0, and since the random-
ness used to re-randomized the ciphertexts is hidden from A, each ciphertext is
(statistically) indistinguishable from another re-randomized cihpertext of 0 due
to the (statistical) re-randomization indistinguishability property. Finally, it is
straightforward to see that the simulator perfectly emulates the random oracle
so the responses to the random oracle queries are perfectly distinguishable from
those in the real execution. This concludes our proof.

B.2 Proof of Theorem 4

Since the proof is largely similar to the proof of Theorem 3 above, we mainly
highlight the differences here.

Claim. Our protocol is secure against any malicious sender.

Proof. To show that our protocol is secure against malicious S, we show that
for any adversary A corrupting S and interacting with the functionality FOT,
there exists a simulator SimS such that{

hybridFOT

Π,A(z) (X,Y, κ)
}
X,Y,z,κ

c≡
{
idealF,SimS(z)(X,Y, κ)

}
X,Y,z,κ

First, notice that the adversary’s view contains exactly the same entries as
in the previous proof. Therefore, we basically use the same hybrids as before
to argue the indistinguishability among them. The only difference occurs when
we argue Hyb2 and Hyb3 are indistinguishable, as both the simulator and the
honest R recover input in slightly different ways as before. Specifically, in Hyb2,
the simulator still extracts potential inputs and their corresponding randomness
in the form of x̃||r̃ from the random oracle queries. Next, it verifies that decoding
the OKVS D with x̃ and re-randomizing the resulting ciphertext with h(x̃||r̃)
yields a ciphertext in the response from A. Additionally, the simulator, emulated
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as FOT, receives a pair of OT messages corresponding to x̃. It verifies that the
second message is x̃||r̃. If both verifications pass, the simulator includes x̃ in X̃.
In Hyb3, R decrypts each ei sent from S to recover a value u. If u 6= w, i.e., it
indicates the underlying input is not in the intersection, R will try to retrieve
the corresponding x||r through FOT. To verify, it use x and r to verify that e
is correctly generated from decoding D at x and re-randomizing the ciphertext
with h(x||r). If the verification passes, it places x in X̂.

Similar to the previous proof, we partition X̃ in Hyb2 to X̃1 and X̃2 where the
former contains all values x such that the corresponding ciphertext e decrypts
to a non-w value. As before, it suffices to show that both X̃1 = X̂ and X̃2 ⊆ Y
except with negligible probability. First, we argue that X̃1 = X̂ except with
negligible probability. For simplicity, we assume that the PKE scheme has perfect
decryption correctness as before. We start by showing that X̃1 ⊆ X̂ except with
negligible probability. For each x ∈ X̃1, there is a string r (queried together
with x to the random oracle), a corresponding ciphertext e in A’s response that
can be correctly generated with x̃ and r̃ following S’s step, and a corresponding
OT message x||r. In Hyb3, e correctly decrypts to some non-w value and the
corresponding x and r can be recovered from the corresponding OT message.
Furthermore, as guaranteed by the definition of X̃, the ciphertext e can be
correctly generated from x and r following S’s step. Therefore, x is also included
in X̂. Similar to before, X̂ ⊆ X̃1 except with negligible probability as A has
a negligible probability of guessing the outcome of the random oracle. Second,
to argue X̃2 ⊆ Y , i.e. all inputs in X̃2 are in the intersection, except with
negligible probability, we similarly rely on the randomness property of OKVS.
In particular, each correctly formed ciphertext is a ciphertext re-randomized
from Decode(D,x), which is an encryption of w by the definition of X̃2. Due
to the randomness property of OKVS, for any input x /∈ Y , Decode(D,x) is
an encryption of w only with negligible probability. This concludes the proof of
indistinguishability between Hyb2 and Hyb3.

Claim. Our protocol is secure against any semi-honest receiver.

Proof. Similar to the previous proof, it suffices to separately show (a) correctness:
the protocol’s output is correct except for negligible probability, and (b) privacy:
R’s view in the protocol can be simulated using its own input and output.

We start by showing correctness. In Step 4 of the protocol, for each ei corre-
sponding to xi, if xi /∈ Y , there is only a negligible probability that ei decrypts
to w. This is due to the randomness property of the OKVS, which requires e
to be statistically indistinguishable from a random element in the ciphertext
space. As a result, R requests xi||ri through OT functionality except for neg-
ligible probability. Therefore, X̂ = X \ Y except for negligible probability and
X̂ ∪ Y = X ∪ Y .

To see that the privacy holds, we define the simulator SimR(Y,X∪Y ) similar
to the one we used in the previous proof. One difference is that for each input,
the simulator now sends a single ciphertext, as opposed to a ciphertext tuple.
The other difference is that the simulator emulates as FOT and thus needs to
send one of the OT messages to the semi-honest R.
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We similarly argue that these single ciphertexts are indistinguishable be-
tween the ideal and hybrid worlds. First, {(ei)}i∈[|X̄|] are indistinguishable from
those in the hybrid world. Specifically, for each ciphertext that corresponds to
a x ∈ X̄, the simulator generates it by following the exact protocol of S in the
hybrid world. Next, we argue that the remaining ciphertexts (corresponding to
the intersected inputs) are also identically distributed to those in the hybrid
world. In both hybrids, these ciphertext tuples are encryptions of w. Since the
randomness used to re-randomize the ciphertexts are hidden from A in hybrid
worlds (they are not recovered from the OT), each ciphertext is (statistically)
indistinguishable from a fresh re-randomized ciphertext of w in the ideal world
due to the (statistically) re-randomization indistinguishability property. Finally,
it is straightforward to see that the simulator perfectly emulates the OT by
simply sending the correct message. This concludes our proof.
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