
Yet Another Algebraic Cryptanalysis of Small Scale Variants of AES

Marek Bielik1 a, Martin Jureček1 b, Olha Jurečková1 c and Róbert Lórencz1 d

1Department of Information Security, Faculty of Information Technology, Czech Technical University in Prague
mail@marek.onl, {martin.jurecek, jurecolh, robert.lorencz}@fit.cvut.cz

Keywords: Small Scale Variants of AES, Algebraic Cryptanalysis, Gröbner Bases.

Abstract: This work presents new advances in algebraic cryptanalysis of small scale derivatives of AES. We model the
cipher as a system of polynomial equations over GF(2), which involves only the variables of the initial key,
and we subsequently attempt to solve this system using Gröbner bases. We show, for example, that one of
the attacks can recover the secret key for one round of AES-128 under one minute on a contemporary CPU.
This attack requires only two known plaintexts and their corresponding ciphertexts. We also compare the
performance of Gröbner bases to a SAT solver, and provide an insight into the propagation of diffusion within
the cipher.

1 INTRODUCTION

History often gives us valuable lessons of how things
might end up. For example, one of the very first cryp-
tographers, Gaius Julius Caesar, was attacked by his
peers and stabbed to death. Alan Mathison Turing,
a successful cryptanalyst of the Enigma cipher, died
of cyanide poisoning caused by his own hand. The
study of cryptology is up to us now.

We begin our work by a brief introduction to alge-
braic cryptanalysis (AC). The principle of AC consists
in transferring the problem of breaking the cryptosys-
tem to the problem of solving a system of multivariate
polynomial equations over a finite field. The process
of AC is divided into the following two steps. In the
first step, we use the cipher’s structure and supple-
mental information to create a system of equations
that describe the behavior of the cipher. Several pa-
pers (Cid et al., 2005), (Simmons, 2009) present vari-
ous approaches for constructing polynomial equations
with auxiliary variables for AES. The paper (Buly-
gin and Brickenstein, 2010a) presents a method for
obtaining equations in key variables only, which is
based on Gröbner bases. In Section 3.2.4, we present
another approach for obtaining polynomial equations
that contain only the variables of the initial key, which
is based on gradual substitution.

a https://orcid.org/0000–0002–9426–8467
b https://orcid.org/0000–0002–6546–8953
c https://orcid.org/0000–0002–8858–4826
d https://orcid.org/0000–0001–5444–8511

The second step of AC involves solving the poly-
nomial system to derive the secret key. While the
method for deriving the system of equations depends
on the cipher, the method for solving the system may
be independent of the cipher. In our work, we lever-
age the fact that the derived equation systems contain
only the variables of the initial key, and we present
some reduction techniques for reducing the computa-
tional complexity of solving the polynomial systems.

Several previous studies have dealt with alge-
braic cryptanalysis of small scale variants of AES.
In (Courtois and Pieprzyk, 2002), the authors de-
scribed AES as a system of overdefined sparse
quadratic equations over GF(2), and proposed an XSL
attack for the family of XSL-ciphers to which AES
belongs to. The XSL algorithm was later analyzed
concerning AES in (Cid and Leurent, 2005). The
work (Bulygin and Brickenstein, 2010a) also pre-
sented methods for solving polynomial systems de-
rived from AES using Gröbner bases. The interpre-
tation of AES as a system of equations over GF(28)
is presented in (Murphy and Robshaw, 2002). The
work (Nover, 2005) reviewed different techniques for
solving systems of multivariate quadratic equations
over arbitrary fields, such as relinearization and XL
algorithm, that were used on equations derived from
AES.

The next section contains a brief discussion of
Gröbner bases, where we show how these can be used
to solve systems of multivariate non-linear polyno-
mial equations. In the third section, we derive multi-
variate non-linear polynomial systems over GF(2) for

small scale variants of AES. We will eliminate all
auxiliary variables by a gradual substitution so that
the polynomial systems will contain only the vari-
ables describing the secret key. The elimination will
make the polynomial systems fully dependent on the
provided pairs of plaintext and ciphertext, which will
allow us to apply the reductions for faster solving.

The fourth section discusses the results of our ex-
periments. We demonstrate the current capabilities of
Gröbner bases in solving the polynomial systems de-
scribed in the third section, and we compare their per-
formance to a SAT solver. We show how the perfor-
mance of Gröbner bases and the SAT solver can be in-
creased using several pairs of plaintexts and their cor-
responding ciphertexts. We also discuss the progress
of diffusion within the reduced versions of AES. In
summary, our main contributions are: (1) the deriva-
tion of the equations described in Section 3.2.4; (2)
the processing of equations (see Section 4.1) to speed
up the computing of Gröbner bases.

2 ALGEBRAIC BACKGROUND

Gröbner bases were introduced by Bruno Buchberger
(Buchberger, 2006), who named the concept in honor
of his advisor Wolfgang Gröbner (1899–1980). Buch-
berger also developed the fundamental algorithm for
the computation of a Gröbner basis known as Buch-
berger’s algorithm.

Gröbner bases are nowadays discussed in multiple
books including (Becker, 1993) and (Cox, 2015). We
will follow these books along the way as we gradually
unveil the elegance of Gröbner bases in solving sys-
tems of polynomial equations. Further information
can be also found in (Adams, 1994) and (Hibi, 2013).

The set of all polynomials in x1, . . . ,xn with coeffi-
cients in a field F will be denoted F[x1, . . . ,xn]. When
the particular variables are of no relevance, we will
denote the set by F[x] for short. We will also employ
the standard letters x,y and z instead of x1,x2 and x3
when we discuss illustrative polynomials. Univariate
polynomials will be denoted by f (x) ∈ F[x]. We will
denote by M (x1, . . . ,xn), M (x) or simply M , the set
of all monomials in the variables x1, . . . ,xn.

Definition 2.1. Let h = ∑cαxα ∈ F[x] \ {0} be a
nonzero polynomial, F a subset of F[x] \ {0} and
let ⪰ be a monomial order on M (x). The multi-
degree of h is multideg(h) = max(α ∈ Nn

0 | cα ̸=
0). The maximum is taken with respect to ⪰. The
leading coefficient of h is LC(h) = cmultideg(h) ∈ F.
LC(F) = {LC(f) | f ∈ F}. The leading monomial
of h is LM(h) = xmultideg(h). The leading term of h is

LT(h) = LC(h) · LM(h).

Definition 2.2. Let { f1, . . . , fs} ⊂ F[x] be a set of
polynomials. Then we set

⟨ f1, . . . , fs⟩=

{
s

∑
i=1

hi fi

∣∣∣∣ h1, . . . ,hs ∈ F[x]

}
to be an ideal I of F[x], where the set { f1, . . . , fs} is a
basis of I. We also call ⟨ f1, . . . , fs⟩ the ideal gener-
ated by { f1, . . . , fs}.

Definition 2.3. Let I ⊆ F[x] be an ideal different from
{0}. We denote by LT(I) = {LT(f) | f ∈ I} the set
of leading terms of nonzero elements of I. The ideal
of leading terms of I, generated by LT(I), will be
denoted by ⟨LT(I)⟩.

Definition 2.4. Fix a monomial order on M (x). A fi-
nite basis G ⊆ I of a nonzero ideal I ⊆ F[x] is a
Gröbner basis if

⟨LT(G)⟩= ⟨LT(I)⟩.

The definition above says that a set {g1, . . . ,gm}⊆
I is a Gröbner basis if and only if the leading term of
any element of I is divisible by some of the LT(gi).

Definition 2.5. Let G ⊆ I be a Gröbner basis of I. We
call G a reduced Gröbner basis if for all g ∈ G:

(i) LC(g) = 1.
(ii) No monomial of g is in ⟨LT(G \ {g})⟩.

Most computer algebra systems actually compute
reduced Gröbner bases by default. Any ideal has its
reduced Gröbner basis and this basis is unique.

When the second condition of Definition 2.5 holds
for a polynomial g ∈ G, we say that g is fully reduced
for G. We can obtain the reduced Gröbner basis as
follows. Given g ∈ G, let g′ = gG\{g} and let G′ =
(G\{g})∪{g′}. Observe that g′ is fully reduced for
G′. If we keep applying this process to all elements of
G until all of them are fully reduced, we end up with
the reduced Gröbner basis.

Definition 2.6. Let I = ⟨ f1, . . . , fm⟩ ⊆ F[x1, . . . ,xn] be
an ideal. The l-th elimination ideal Il is the ideal of
F[xl+1, . . . ,xn] given by Il = I ∩F[xl+1, . . . ,xn].

Theorem 2.7 (The Elimination Theorem). Let G ⊆
I ⊆ F[x1, . . . ,xn] be a Gröbner basis of I so that
x1 ⪰lex x2 ⪰lex · · · ⪰lex xn, where ⪰lex is the lexico-
graphic monomial order. Then, for every 0 ≤ l < n,
the set Gl = G∩F[xl+1, . . . ,xn] is a Gröbner basis of
the l-th elimination ideal Il .

2

Proof. We know that Gl ⊆ Il by construction, so we
only need to show that ⟨LT(Il)⟩= ⟨LT(Gl)⟩ for a fixed
l between 0 and n. The inclusion ⟨LT(Il)⟩ ⊇ ⟨LT(Gl)⟩
is evident and to prove ⟨LT(Il)⟩ ⊆ ⟨LT(Gl)⟩, we need
to show that LT(g) | LT(f) for an arbitrary f ∈ Il and
some g ∈ Gl .

We know that f is also in I, so LT(g) | LT(f) for
some g ∈ G since G is a Gröbner basis of I. Since
f ∈ Il , LT(g) must consist only of xl+1, . . . ,xn. Now
comes the crucial observation: since x1 ⪰lex · · · ⪰lex
xn, any monomial involving any x1, . . . ,xl is greater
than all monomials in F[xl+1, . . . ,xn]. We see that g ∈
Gl , which proves the theorem.

Let us present the power of the Elimination Theo-
rem on the following example.
Example 2.8. Consider a system of equations f1 =
f2 = f3 = 0 where the polynomials in R[x,y,z] are as
follows:

f1 =−16x2 −4xy2 +4xz,

f2 = 4x2z+2xy2z+ z,

f3 = xy2 +2y2z+1.

If we compute the reduced Gröbner basis with z ⪰lex
y ⪰lex x, we get the following polynomials:

g1 = x+
1
4

y2 − 1
4

z, g3 = y2z− 1
9

z2,

g2 = y4 − z2 −4, g4 = z3 +
81
20

z.

We see that the last polynomial involves only the vari-
able z and that its only solution in R is z = 0. We can
now substitute this solution into g3 and g2 and obtain
two solutions, namely y =±

√
2. We can proceed fur-

ther and get x =− 1
2 . We see that the reduced Gröbner

basis allowed us to solve the system.

Definition 2.9. Let Fq[x1, . . . ,xn] be a polynomial ring
over the finite field Fq with order q = pm where p
is a prime number and m ∈ N>0. The field equa-
tions of Fq are the polynomials xq

i − xi for every
xi ∈ {x1, . . . ,xn}.

Theorem 2.10 (Finiteness Theorem). Let f1, . . . , fm ∈
F[x1, . . . ,xn] be polynomials. If we have ⟨ f1, . . . , fm⟩∩
F[xi] ̸= 0 for all xi, then V (⟨ f1, . . . , fm⟩)⊆ Fn is finite.

Proof. See (Cox, 2015, p. 252).

Considering the Finiteness Theorem above,
adding the field equations into our polynomial sys-
tem ensures that the system will have finitely many
solutions.
Theorem 2.11 (Hilbert’s Weak Nullstellensatz). Let
f1, . . . , fm ∈ F[x] be polynomials. Then the following
are equivalent:

(i) There exists an extension field E of F and a ∈ En

such that for all fi we have fi(a) = 0.
(ii) 1 /∈ ⟨ f1, . . . , fm⟩.

Proof. See (Becker, 1993, p. 281).

Note that 1 ∈ I ⊆ F[x], where I is an ideal, means
I = F[x] since 1h = h for all h ∈ F[x]. Also note that
whenever we have a finite field F and its extension E,
all elements from F satisfy all of the field equations
of F and no element in E \ F satisfies any of these
equations. Therefore, if we add the field equations
into a polynomial system that consists of polynomi-
als in F[x], we restrict our solutions to the field F.
Let us demonstrate this fact in combination with the
Hilbert’s Weak Nullstellensatz on the following two
examples.

Example 2.12. Consider a system of equations where
f1 = f2 = f3 = 0 are polynomials in GF(2) with

f1 = x+ y+ z, f2 = xy+ xz+ yz, f3 = xyz+1.

If we compute the reduced Gröbner basis with z ⪰lex
y ⪰lex x, we get the following polynomials:

g1 = x+ y+ z, g2 = y2 + yz+ z2, g3 = z3 +1.

We see that the only solution to the last polynomial is
z = 1. When we substitute this solution into g2, we
get g′2 = y2 + y+ 1, which has no solution in GF(2),
and therefore the initial polynomial system has no so-
lution in GF(2) either. Since g′2 is irreducible over
GF(2) we get the extension field GF(2)[α]/⟨α2 +
α+ 1⟩ = GF(22) with the elements 0,1,α,α+ 1. If
z = 1, the polynomial g2 has two solutions in GF(22),
namely y = α and y = α+1, since (α+1)2 = α. The
polynomial g1 has then also two solutions in GF(22),
namely x = α and x = α+ 1. All of these solutions
also satisfy our initial system f1, f2, f3. We could also
obtain further solutions if we set z = α.

Example 2.13. Considering the previous example, if
we add the field equations of F into the system, we
get the following reduced Gröbner basis:

g1 = 1.

According to the Hilbert’s Weak Nullstellensatz, we
can already see that the initial polynomial system
f1, f2, f3 has no solutions in GF(2).

One of the fastest and practically implementable
algorithms for computing Gröbner bases, i.e., F4, was
introduced in (Faugère, 1999). The algorithm is im-
plemented in the computer algebra system Magma
(Bosma et al., 1997), which we employ in our experi-
ments.

3

3 EQUATION SYSTEMS FOR
SMALL SCALE AES

This section describes the derivation of multivariate
non-linear polynomial systems over GF(2) for small
scale variants of AES.

3.1 Small Scale AES

Before we discuss the scaled-down derivatives of
AES, let us try to estimate how long it would take
to attack the full AES-128 by brute force. The actual
time complexity of guessing a key with 128 bits can
be illustrated by a brief thought experiment.

Suppose we are in possession of a computer clus-
ter with ten billion nodes, each of which runs at
3.3 GHz. Also suppose that one use of AES-128 takes
only one clock cycle on each node. Say that one year
has around 3 · 107 seconds. Our cluster will then go
through 3 · 107 · 3.3 · 109 · 1010 ≈ 1027 ≈ 290 keys in
one year. This means that in the worst case, the total
time required to guess the correct key will be around
238 years, which is about 250 billion; while the age of
the universe is currently estimated to be around 13.8
billion years.

Now suppose that the average consumption of
each node is only 1 W and that 1 kWh of energy costs
only 0.01e (the average price of 1 kWh for European
household consumers was around 0.2e in 2020).
This means that the energy cost required for our attack
is around 1010 ·0.001 ·0.01 ·24 ·365 ·238 ≈ 1020 e.

A quick estimate like this immediately leads to
the conclusion that the feasibility of the classic brute-
force approach is beyond reality. This striking infea-
sibility of attacking the full AES-128 motivated re-
searchers to come up with scaled down versions of
the cipher in order to provide manageable insight into
its internals. Carlos Cid et al. introduced such ver-
sions in (Cid et al., 2005) and (Cid et al., 2006). The
reductions emerge naturally and the new cipher can
be described by the following parameters:

(i) the number of rounds n, 1 ≤ n ≤ 10;

(ii) the number of rows r of the state, r = 1,2,4;

(iii) the number of columns c of the state, c= 1,2,4;

(iv) the number of bits e of the elements of the state,
e = 4,8.

We will denote the scaled-down version of AES by
SR(n,r,c,e). This notation is consistent with (Cid
et al., 2005) and (Cid et al., 2006). The standard
AES-128 can be then defined by SR(10,4,4,8) with
one subtle difference described in the following para-
graph.

The last round of AES differs from the previous
ones inasmuch as the MixColumns operation is omit-
ted in it. This omission is due to the design of the in-
verse of AES. The new SR(n,r,c,e) cipher keeps the
MixColumns operation in the last round. This oper-
ation is a linear transformation, so the overall com-
plexity of the cryptanalysis of both ciphers remains
the same, since a solution of a system of polynomial
equations for one cipher would provide a solution for
the other cipher. This omission is the only difference
between AES-128 and SR(10,4,4,8).

Let us now go through the scaled-down ver-
sions of the actual encryption operations used in
SR(n,r,c,e). The cipher operates over the field
GF(2e), defined by the quotient ring F2[x]/⟨ f (x)⟩
where f (x) = x4 + x + 1 when e = 4 and f (x) =
x8+x4+x3+x+1 when e = 8. Note that the polyno-
mial f (x) is irreducible over F2[x] in both cases and
when e = 8, it is identical to the polynomial used in
the original AES-128.

The SubBytes operation is also identical to the
one used in AES-128 when e = 8. When e = 4, the
operation is a composition of the following two trans-
formations:

(i) Take the multiplicative inverse in GF(24), the
element 016 is mapped to itself.

(ii) Apply the following affine transformation over
GF(24):b′0

b′1
b′2
b′3

=

1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1


b0

b1
b2
b3

+

0
1
1
0

 .

(3.1)

The ShiftRows operation cyclically rotates the
row i of the state by i positions, 0 ≤ i < r−1. Notice
that we index the rows from zero so that the first row
is always left intact. When r = 4, we use the matrix

R4 =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 (3.2)

to rotate a single row. When r = 2, the matrix be-
comes

R2 =

(
0 1
1 0

)
.

When c = 4, we can use the following expression to
model the whole ShiftRows operationr′0

r′1
r′2
r′3

=


I 0 0 0
0 R4 0 0
0 0 R2

4 0
0 0 0 R3

4


r0

r1
r2
r3

 . (3.3)

4

We substitute R2 instead of R4 when r = 2. When
c = 2, the expression simply becomes(

r′0
r′1

)
=

(
I 0
0 R

)(
r0
r1

)
(3.4)

where R is either R4 or R2 and I is the identity matrix
of corresponding size. When r = 1 or c = 1, the oper-
ation has no effect since either R2 becomes (1) or the
matrix from the expression above becomes I.

The MixColumns operation in AES multiplies
each column of the state by the polynomial

a(x) = 0316x3 +0116x2 +0116x+0216 ∈ GF(28)[x].

Multiplication by a fixed polynomial modulo another
fixed polynomial can be regarded as a linear trans-
formation so that the MixColumns operation can be
seen as a linear transformation as well. If we asso-
ciate the coefficients 0316, 0216 and 0116 of the poly-
nomial a(x) ∈ GF(28)[x] with the polynomials x+ 1,
x and 1, respectively, we can model the MixColumns
operation by the following expression

s′0,c
s′1,c
s′2,c
s′3,c

=

 x x+1 1 1
1 x x+1 1
1 1 x x+1

x+1 1 1 x


s0,c

s1,c
s2,c
s3,c


(3.5)

for 0 ≤ c < 4, which indexes the columns. When
r = 2, the operation can be described by the following
linear transformation(

s′0, j
s′1, j

)
=

(
x+1 x

x x+1

)(
s0, j
s1, j

)
(3.6)

for 0 ≤ j < 2, which indexes the columns, similarly
to expression (3.5). When r = 1, the matrix defining
the MixColumns operation simply becomes (1), so the
operation has no effect.

When c = 4, the new cipher uses the same key
schedule as in AES-128. For c = 2 and c = 1,
the structure is naturally reduced and depicted in
Figure 1, left and right respectively. Similarly to
AES-128, the AddRoundKey operation takes in c
words of length r. Each word contains the elements of
GF(2e). These elements are added to the state—each
word is added to a column of the state. The RotWord
and SubWord operations take in r-tuples containing
the elements of GF(2e). The round constant array also
contains r-tuples, in which the only non-zero element
is the first one, namely x j−1 ∈ GF(2e) being the pow-
ers of x∈GF(2e) where j is the round number. Notice
that the initial key has rce bits. Also recall that this
initial key is added to the plaintext before starting the
encryption and generating the subsequent sub-keys,
just as in AES-128.

Figure 1: A schematic depiction of the scaled-down key
schedule (Cid et al., 2005).

3.2 Equations Systems

Let us now model AES and its scaled-down variants
as a system of multivariate polynomial equations over
GF(2). We will focus our attention mainly to SR(n, 2,
2, 4) and derive a system of equations for this cipher.
A solution to this system will provide us with the en-
cryption key. Other scaled-down derivatives can be
modeled in the same way, including AES itself. Note
that we will use one ciphertext with its corresponding
plaintext for our model. Our method therefore comes
under the known-plaintext type of cryptanalysis.

3.2.1 Non-linear Equations

Let us start by considering the inversion part of the
S-box. We know that bc = 1, where b ∈ GF(2e) is
the input and c ∈ GF(2e) is the output of the S-box.
This equation holds unless b = 0, in which case we
have b = c = 0 and we will say that a 0-inversion has
taken place. The probability of a 0-inversion occur-
ring is quite low, namely 1

16 when e = 4 and 1
256 when

e = 8, so the probability of no 0-inversion occurring
is 1− 1

16 = 15
16 and 1− 1

256 = 255
256 . Notice, however,

that these probabilities hold for a single application
of the S-box. In SR(n,2,2,4), there are four applica-
tions of the S-box during the encryption in one round,
so the probability of no 0-inversions occurring during
the encryption is (15

16)
4n. There are also two appli-

cations of the S-box during the key schedule in one
round, so the probability of no 0-inversions occurring
during the key schedule is (15

16)
2n. We presume statis-

tical independence of the 0-inversions.
The actual occurrence of a 0-inversion either dur-

ing the encryption or key schedule is deterministically
given by the choice of the plaintext and initial key. If
we happen to hit a 0-inversion during the generation
of the ciphertext, we can simply disregard the current
combination of the plaintext and key, and pick another
combination. The issue, as we will see later on, is that
one of the equations that model the S-box would have
to change, and from the cryptanalyst point of view,
we would not know which one since we do not know
the key. For this reason, we will assume that no 0-
inversions have occurred for the given plaintext/key
combination when we start generating the equations.

We may regard both b = ∑
3
i=0 bixi and c =

∑
3
i=0 cixi as polynomials in GF(2)[x]. The product bc

5

modulo the polynomial m(x) = x4 + x+ 1 is r(x) =
r3x3 + r2x2 + r1x+ r0 where
r0 = b0c0 ⊕b3c1 ⊕b2c2 ⊕b1c3,

r1 = b1c0 ⊕b0c1 ⊕b3c2 ⊕b2c3 ⊕b3c1 ⊕b2c2 ⊕b1c3,

r2 = b2c0 ⊕b1c1 ⊕b0c2 ⊕b3c3 ⊕b3c2 ⊕b2c3,

r3 = b3c0 ⊕b2c1 ⊕b1c2 ⊕b0c3 ⊕b3c3.
(3.7)

It is important to note that the coefficients bi and ci
are the elements of GF(2). We have bc = r = 1. This
gives us four multivariate quadratic equations over
GF(2): r0 = 1 and ri = 0 where i = 1,2,3. These
equations are bilinear in the variables bi and ci. For
e = 8, we would have got eight multivariate quadratic
equations in the variables bi and ci instead of four.

If there was a 0-inversion, either during the en-
cryption or key schedule, the first equation would
change to r0 = 0. However as already mentioned,
we do not consider this case, since we can detect 0-
inversions before we start generating the equations
and disregard the plaintext/key combinations that pro-
duce them.

Along with these equations, it is possible to obtain
further quadratic equations from the relation bc = 1.
Notice that we also have bc2 = c and b2c = b. Let us
focus on the first relation and compute the resulting
equations. The equations for b2c = b can be produced
in the same fashion. Since we work over GF(2), we
can write bc2 + c = 0. We have already computed the
product bc, so we could just multiply it by c and get
the result. This computation would require unneces-
sary steps as it would lead to many intermediate cu-
bic terms which we would have to cross out before
obtaining the final coefficients. We can instead com-
pute the square of c and pre-multiply it by b. We are
working over a commutative structure, so the order
in which we perform the multiplication is of no rel-
evance. In order to work out the square of c, we can
use (3.7) and substitute c for b. We get the polynomial
d = c2 where d(x) = d3x3 +d2x2 +d1x+d0 with

d0 = c0 ⊕ c2, d1 = c2, d2 = c1 ⊕ c3, d3 = c3.

We can now obtain the final result t = bd + c where
t(x) = t3x3 + t2x2 + t1x+ t0 with

t0 = b0c0 ⊕b0c2 ⊕b3c2 ⊕b2c1 ⊕b2c3 ⊕b1c3 ⊕ c1,

t1 = b1c0 ⊕b1c2 ⊕b0c2 ⊕b3c1 ⊕b3c3 ⊕b3c2 ⊕b2c1

⊕b1c3 ⊕ c1,

t2 = b2c0 ⊕b2c2 ⊕b1c2 ⊕b0c1 ⊕b0c3 ⊕b3c1 ⊕b2c3

⊕ c2,

t3 = b3c0 ⊕b3c2 ⊕b2c2 ⊕b1c1 ⊕b1c3 ⊕b0c3 ⊕b3c3

⊕ c3.

We know that t = 0, so we have four equations ti = 0
for 0≤ i< 4. Notice that these equations are quadratic

as well. We can obtain reciprocal equations from
b2c = b. All of these eight equations are biaffine in
the bi and ci variables.

It is possible to obtain even more quadratic equa-
tions by considering the relations bc4 = c3 and b4c =
b3. As in the previous case, let us focus on the first re-
lation. We can square d to obtain c4 and multiply d by
c to obtain c3. The result will then be u= bc4+c3 = 0
where u(x) = u3x3 +u2x2 +u1x+u0 with

u0 = b3c3 ⊕b3c1 ⊕b2c3 ⊕b2c2 ⊕b1c3 ⊕b0c3 ⊕b0c2

⊕b0c1 ⊕b0c0 ⊕ c3c1 ⊕ c2c1 ⊕ c2c0 ⊕ c0,

u1 = b3c2 ⊕b3c1 ⊕b2c2 ⊕b1c2 ⊕b1c1 ⊕b1c0 ⊕b0c3

⊕b0c1 ⊕ c3c2 ⊕ c2c0 ⊕ c1c0 ⊕ c3,

u2 = b3c2 ⊕b2c2 ⊕b2c1 ⊕b2c0 ⊕b1c3 ⊕b1c1 ⊕b0c3

⊕b0c2 ⊕ c3c2 ⊕ c3c1 ⊕ c3c0 ⊕ c2c1 ⊕ c2c0

⊕ c1c0 ⊕ c2,

u3 = b3c2 ⊕b3c1 ⊕b3c0 ⊕b2c3 ⊕b2c1 ⊕b1c3 ⊕b1c2

⊕b0c3 ⊕ c3c2 ⊕ c3c2 ⊕ c3c1 ⊕ c3 ⊕ c2 ⊕ c1.

We have another four equations ui = 0 for 0 ≤ i < 4.
Observe that these equations are still quadratic. We
can obtain reciprocal equations from b4c = b3.

So far, we have derived 20 multivariate quadratic
equations from the relation bc= 1. A natural question
arises whether we have identified all quadratic equa-
tions in the bi and ci variables. Notice, for example,
that we have skipped the relation bc3 = c2. The reason
is that it would produce equations with cubic terms.
Relations involving higher powers than c4 would also
lead to equations with higher than quadratic terms.
In fact, the 20 equations we have derived are all the
quadratic equations over GF(2). A further discussion
can be found in (Cid et al., 2006, p. 77). As also ad-
vised in (Cid et al., 2006, p. 77), we will focus on the
first 12 bilinear and biaffine quadratic equations we
have obtained and we will omit the remaining eight
ones. For e = 8, we would have got 40 multivariate
quadratic equations in the variables bi and ci instead
of 20.

3.2.2 Linear Equations

The equations we have derived for the inversion part
of the S-box account for the only non-linear equations
in the whole system that models the SR(n, 2, 2, 4) ci-
pher. In fact, the inversion in the AES S-box repre-
sents the only non-linear operation in the whole ci-
pher. Let us now derive the linear equations for the
remaining transformations in AES.

The affine transformation of the S-box can be ex-
pressed directly by (3.1), where the input is the poly-
nomial c(x) from the previous subsection. This gives
us four linear equations in the variables ci. These

6

equations together with the non-linear equations from
the previous subsection fully describe a single S-box.
Let Ls denote the matrix from (3.1). In order to de-
scribe the whole SubBytes operation, we can extend
the matrix Ls to the whole state array of SR(n, 2, 2,
4), so we have the matrix

L =

Ls 0 0 0
0 Ls 0 0
0 0 Ls 0
0 0 0 Ls

 .

We can also extend the S-box constant vector
(0,1,1,0)T = 616 to the vector 6 = (616,616,616,616)
so that we cover the whole state array. We will use
b to denote the input vector of the SubBytes opera-
tion, and b−1 to denote its output—the vector of the
inverted elements in GF(24). Note that each compo-
nent in these vectors is made of the four coefficients
of the polynomials b(x) and c(x), respectively; so we
have 12 non-linear equations for each component.

s0 s2

s1 s3

Figure 2: The state array of the SR(n, 2, 2, e) cipher.

The actual state array is depicted in Figure 2. We
will represent it as the vector (s0,s1,s2,s3)

T . The
ShiftRows operation can be then described by the
matrix

R =

I4 0 0 0
0 0 0 I4
0 0 I4 0
0 I4 0 0


where I4 is the identity matrix of size four. Before
we describe the MixColumns operation, let us rewrite
(3.7) into matrix form:r0

r1
r2
r3

=

b0 b3 b2 b1
b1 b0 ⊕b3 b3 ⊕b2 b2 ⊕b1
b2 b1 b0 ⊕b3 b3 ⊕b2
b3 b2 b1 b0 ⊕b3


c0

c1
c2
c3

 .

If we substitute the binary values of the coefficients
of the polynomials x+ 1 and x into the matrix in the
expression above, we get the matrices

Mx+1 =

1 0 0 1
1 1 0 1
0 1 1 0
0 0 1 1

 and

Mx =

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 .

(3.8)

These matrices represent the multiplication by the
polynomials x+1 and x modulo the polynomial x4 +
x+ 1. The MixColumns operation, defined by (3.6),
can then be expressed by the matrix

M =

Mx+1 Mx 0 0
Mx Mx+1 0 0
0 0 Mx+1 Mx
0 0 Mx Mx+1

 .

We can now describe one round of SR(n, 2, 2, 4) by
the expression

bi = MR(Lb−1
i−1 +6)+ki for 0 < i ≤ n

where ki is a vector containing 16 binary variables of
the round key described in the following subsection
and i is the round number. The vector b−1

i−1 contains
four components—the outputs from the S-boxes—
each of which has four binary variables. It is straight-
forward to check that R6 = M6 = 6. We can then
write

bi = MRLb−1
i−1 +ki +6 for 0 < i ≤ n.

The relation above gives 16 linear equations, which
represent one round of SR(n, 2, 2, 4). In addition, we
have 12 non-linear equations for each component in
b−1

i−1, so in total, we have 16+ 4 · 12 = 64 equations
describing one round of encryption in the SR(n, 2, 2,
4) cipher. When i = n, we have

ct = MRLb−1
n−1 +kn +6

where ct is the known ciphertext, which is a vector of
16 binary values. We obtain b0 by adding the initial
unknown key k0 to the known plaintext pt, so we have

b0 = pt +k0.

This addition gives us further 16 initial equations
where pt is a vector of 16 binary values and k0 is a
vector of 16 binary variables. Our goal is to actually
compute the values of k0 since this is the user’s key.
All other variables are auxiliary.

3.2.3 Key Schedule

The generation of round keys for SR(n,r,c,e) is thor-
oughly described in Appendix A of (Cid et al., 2005).
Let us now describe the equations for SR(n, 2, 2, 4).
Let ki = (ki,0,ki,1,ki,2,ki,3,)

T ∈ GF(24)4 be the round
key of round i. The round key can be then defined by(

ki,2q
ki,2q+1

)
=

(
Lk−1

i−1,3
Lk−1

i−1,2

)
+

(
616
616

)
+

(
xi−1

0

)
+

q

∑
t=0

(
ki−1,2t

ki−1,2t+1

) (3.9)

7

for 0 ≤ q < 2 where xi−1 is an element of GF(24).
This expression gives 16 linear equations for each ki.
Note that k0 is not provided by the user—it is a vec-
tor of 16 binary variables that we, as the cryptanalyst,
are trying to compute. We also get 2 · 12 = 24 non-
linear equations since the computation of each ki re-
quires two applications of the S-box. One round of
the key schedule in SR(n, 2, 2, 4) is then described by
40 equations.

3.2.4 Equations Without Auxiliary Variables

In this section, we propose the derivation of equa-
tions that contain only the variables of the initial
key. In order to obtain such a system, we can elim-
inate the auxiliary variables by a gradual substitu-
tion of the variables of the initial key since we know
that the cipher starts by adding the initial key to
the known plaintext. It is straightforward to per-
form this substitution for the linear equations. For
the non-linear equations, which model the S-box,
we can leverage Gröbner bases. Consider the four
polynomials r0, . . . ,r3 from (3.7) as polynomials in
F[c0, . . . ,c3,b0, . . . ,b3]. We see that it is not straight-
forward to express the output bits ci in terms of the
input bits bi by ordinary manipulation techniques. If
we impose the graded reverse lexicographic block or-
der ⪰grlex,grlex on F[c0, . . . ,c3,b0, . . . ,b3] with ⪰grlex
on both F[c0, . . . ,c3] and F[b0, . . . ,b3], and compute
the reduced Gröbner basis, we get the following poly-
nomial system:

f1 = c0⊕b2b1b0 ⊕b3b2b1 ⊕b2b0 ⊕b2b1 ⊕b0 ⊕b1

⊕b2 ⊕b3,

f2 = c1⊕b3b1b0 ⊕b1b0 ⊕b2b0 ⊕b2b1 ⊕b3b1 ⊕b3,

f3 = c2⊕b3b2b0 ⊕b1b0 ⊕b2b0 ⊕b3b0 ⊕b2 ⊕b3,

f4 = c3⊕b3b2b1 ⊕b3b0 ⊕b3b1 ⊕b3b2 ⊕b1 ⊕b2

⊕b3,

f5 = b3b2b1b0 ⊕b2b1b0 ⊕b3b1b0 ⊕b3b2b0 ⊕b3b2b1

⊕b1b0 ⊕b2b0 ⊕b2b1 ⊕b3b0 ⊕b3b1

⊕b3b2 ⊕b0 ⊕b1 ⊕b2 ⊕b3 ⊕1.

We see that the last polynomial f5 involves only the
variables bi. Notice that this polynomial is not satis-
fied only if all bi = 0, and it holds whenever we have
at least one bi = 1. Recall that we do not consider 0-
inversions. This polynomial is therefore always sat-
isfied, and we can omit it from the system. We also
see that in the remaining polynomials, the output vari-
ables c0, . . . ,c3 are expressed solely by the input vari-
ables bi. This allows us to perform the gradual substi-
tution of the unknown variables of the initial key k0
throughout the whole polynomial system. Notice that
we obtain |k0| = 16 polynomials after we finish the

substitution. We note that the size of the polynomials
is close to 2|k0|−1 at full diffusion of the cipher. The
diffusion grows rapidly with each round. For exam-
ple, as our experiments will reveal, the cipher SR(n,
2, 2, 4) reaches its full diffusion at round n = 3. This
way of generating the polynomials is therefore suit-
able only for low values of n. A different method for
obtaining polynomials without auxiliary variables is
described in (Bulygin and Brickenstein, 2010b).

4 RESULTS OF EXPERIMENTS

The experiments were carried out on GNU/Linux
5.4 running on two Intel® Xeon® Gold 6136 pro-
cessors with 768 GB DDR4 memory evenly split up
into 12 modules. The baseboard was Supermicro
X11DPi-NT. The initial polynomial systems con-
taining auxiliary variables were generated by utilizing
Martin Albrecht’s implementation of the small scale
variants of AES in SageMath 9.1 (The Sage Devel-
opers, 2020), which also uses Python 3.7.3 and Poly-
BoRi (Brickenstein and Dreyer, 2009). The systems
were solved in Magma V2.25-5 (Bosma et al., 1997)
and CryptoMiniSat (Soos et al., 2009). The source
code for the experiments can be found at https://gitlab.
com/upbqdn/yaac. The generation and preprocessing
of the polynomial systems was implemented in paral-
lel utilizing all 24 available cores. Magma, however,
was able to solve one system on one core only, so in
order to keep the comparison even, we explicitly re-
stricted CryptoMiniSat to one core as well.

As stated in Definition 2.2, we may regard a sys-
tem of polynomials as a basis of an ideal I. We can
then compute the reduced Gröbner basis of I under
the lexicographic order, and by applying the Elimina-
tion Theorem, we can quickly obtain the solution. We
have demonstrated the use of this theorem in exam-
ples 2.8 and 2.12, and as we have discussed in the pre-
vious section, the solution represents the secret key.

Table 1 shows the results of initial experiments
with systems of equations containing auxiliary vari-
ables. We generated the systems in SageMath for var-
ious versions of SR(n,r,c,e), and we subsequently at-
tempted to solve these systems by the F4 algorithm
implemented in Magma and by CryptoMiniSat.

Since we work over GF(2), the polynomials can
be seen as logical formulas in algebraic normal form
(ANF). SageMath supports a conversion from ANF
to CNF (conjunctive normal form). Formulas in CNF
can be passed to CryptoMiniSat and the initial key
can be then quickly recovered from the solution. We
have included the SAT solver so that we can compare
it to the performance of the F4 algorithm and we can

8

https://gitlab.com/upbqdn/yaac
https://gitlab.com/upbqdn/yaac

Table 1: Initial experiments with systems containing auxil-
iary variables.

Cipher Key
bits Vars Polys F4 SAT

Time Mem. Time

SR(1, 2, 2, 4) 16 72 120 1 s 33 MB 2 s
SR(2, 2, 2, 4) 16 128 224 19 s 848 MB 12 s
SR(3, 2, 2, 4) 16 184 328 4 h 76 GB 17 s
SR(4, 2, 2, 4) 16 240 432 — — 27 s

SR(10, 2, 2, 4) 16 576 1056 — — 50 s
SR(1, 4, 2, 4) 32 144 240 48 s 981 MB 9 s
SR(2, 4, 2, 4) 32 256 448 — — 1.5 m
SR(3, 4, 2, 4) 32 368 656 — — 63 h
SR(1, 2, 4, 4) 32 136 216 3 s 67 MB 11 s
SR(2, 2, 4, 4) 32 240 400 — — 33 s
SR(3, 2, 4, 4) 32 344 584 — — 15.5 m
SR(4, 2, 4, 4) 32 448 768 — — 34 h
SR(1, 4, 4, 4) 64 272 432 — — 2.5 m
SR(1, 2, 2, 8) 32 144 240 1 m 2.2 GB 22 s
SR(2, 2, 2, 8) 32 256 448 — — 11.5 m
SR(1, 4, 2, 8) 64 288 480 — — 41.5 m
SR(1, 2, 4, 8) 64 272 432 — — 4 m
SR(1, 4, 4, 8) 128 544 864 — — —

see in the table that the solver performs significantly
better. The SAT solver also takes a negligible amount
of memory, so this value is not stated in the table.

The average number of monomials per polyno-
mial is between 6 and 8 when e = 4 and between 18
and 20 when e = 8. Both the average and highest de-
gree of the monomials are equal to two, so all poly-
nomials are quadratic or linear, as the case may be.
In our experiments, we do not consider ciphers with
r < 2 or c < 2 as these have the matrices for the op-
erations MixColumns and ShiftRows reduced to (1).
Recall that the dimensions of the state array r and c
are restricted to the values 1, 2 and 4; the exponent e
can be either 4 or 8; and for the number of rounds n,
we have 1 ≤ n ≤ 10.

The column named Vars contains the number of
variables in the whole polynomial system and the col-
umn named Polys contains the number of polynomi-
als in the system. We measured the runtime and mem-
ory consumption only during the solving of the poly-
nomials since the preparation of the system takes only
a fraction of the resources relative to solving it.

Recall that the key size for SR(n,r,c,e) is given by
the product rce. Notice that we were not able to com-
pute the solution for even one round of SR(n,4,4,8),
the key size of which is 128 bits. On the other hand,
the SAT solver could quickly compute the solution for
all ten rounds of SR(n,2,2,4). We limited the time of
each computation to 100 hours. Missing values in the
tables denote computations that exceeded this time.

Table 2 contains the results of experiments with
systems that contain only the variables of the initial
secret key. We eliminated the auxiliary variables by
a gradual substitution of the variables of the initial
key through the system, starting by adding the known

plaintext bits and ending by adding the known cipher-
text bits. The time required for this substitution is
stated in the column named PT. This system always
contains k polynomials in k variables where k is the
number of the key bits. Since k is the number of vari-
ables and we work over GF(2), k is also the maximal
limit of the total degree of the polynomials.

Table 2: Experiments with systems with no auxiliary vari-
ables.

Cipher
Key
bits

PT a AMP b F4 SAT

Time Mem. Time

SR(1, 2, 2, 4) 16 1 s 20 1 s 33 MB 1 s
SR(2, 2, 2, 4) 16 1 s 2475 2.5 m 4.8 GB 1 m
SR(3, 2, 2, 4) 16 8 s 32784 8.5 m 18.5 GB 13 m
SR(10, 2, 2, 4) 16 2.5 m 32814 9 m 19.5 GB 14 m
SR(1, 4, 2, 4) 32 1 s 37 55 s 1.2 GB 1 s
SR(1, 2, 4, 4) 32 1 s 23 13 s 671 MB 1 s
SR(1, 4, 4, 4) 64 4 s 40 — — 2 m
SR(1, 2, 2, 8) 32 8 s 314 — — 1.5 m
SR(1, 4, 2, 8) 64 18 s 567 — — 33 m
SR(1, 2, 4, 8) 64 14 s 348 — — 1.5 h
a Preprocessing Time — the time required to obtain the

system
b Average number of Monomials per Polynomial

All further experiments will be carried out with
systems of polynomials involving only the variables
of the initial key. In systems with auxiliary vari-
ables, the structure of the polynomial systems derived
from different plaintexts remains unchanged. Only
the initial and final polynomials that add the bits of
the plaintext and ciphertext differ by this bitwise addi-
tion. Since we have eliminated the auxiliary variables
by a gradual substitution of the initial key bits starting
from the initial plaintext addition, each of the k poly-
nomials now depends on the choice of plaintext and
its corresponding ciphertext. Since the structure of
each polynomial system is now different, the time and
memory required for obtaining the solution started to
differ as well, especially the time required by the SAT
solver. For this reason, all the following tables contain
average results of five different runs for each experi-
ment. We can still see that the results for the SAT
solver differ across tables for the same experiment, so
even more than five runs would be required for further
investigation. Nevertheless, we restricted ourselves to
such number due to limited time resources.

The column named AMP contains the average
number of monomials per polynomial in the whole
system. We can see that this number grows fast as n
increases. The maximal limit of the number of mono-
mials in one polynomial is 2k − 1. When n = 1 and
e = 4, the average degree of monomials is 2 and the

9

highest degree is 3. When n = 2, the average and
highest degrees are 5 and 9, respectively. Note that
the average degree has its maximum at k

2 . We were
not able to generate systems with n > 2 and r,c > 2
for e = 4. For n = 1 and e = 8, the average degree
is 4 and the maximal degree is 7. We were not able
to generate systems with e = 8 and n > 1 (recall that
we do not consider the cases when r < 2 or c < 2).
We can see in the table that the overall performance
is worse compared to the previous table and that the
SAT solver still outperforms the F4 algorithm. More-
over, we were able to solve less systems than in the
previous experiments.

In the table above, we can see that the the AMP
value and the solving time and memory are almost
the same for SR(3, 2, 2, 4) and SR(10, 2, 2, 4).
This means that the full diffusion for SR(n,2,2,4) is
reached in the third round of the cipher and the sub-
sequent rounds do not provide any further security
as regards the algebraic cryptanalysis, except for a
longer time required for the generation of the poly-
nomial system. This observation is in line with the
statements made in (Aumasson, 2019).

Table 3 provides a deeper insight into the distri-
bution of monomials in SR(3, 2, 2, 4). At full dif-
fusion, the expected degree of monomials should be
equal to 1

2

(k
d

)
where k is the number of variables and

d is the degree. Since we have SR(3, 2, 2, 4), we get
k = 2 · 2 · 4 = 16. Recall that we also have k poly-
nomials in the whole system. In Table 3, the expected
value is stated in the last row. We see that all the poly-
nomials follow this value very closely, meaning that
it is not possible to get much closer to the expected
value in the subsequent rounds. For this reason, we
do not consider the rounds following after the third
one. The table also shows that the average mono-
mial degree is 8 for each polynomial, which is half
of the maximal degree, and that no polynomial signif-
icantly differs from the expected values for monomial
degrees. The second last row shows the average value
for all of the polynomials—the average of the whole
column above.

The last column contains the number of all mono-
mials in the polynomial. At full diffusion, this num-
ber should be equal to ∑

16
d=0

1
2

(k
d

)
= 216

2 = 32768 so
that every polynomial contains half of all of the pos-
sible monomials. We see that the number of mono-
mials is close to the expected value for each of the
polynomials as well. We may also be interested in the
frequency of the variables in the polynomial system.
Considering the full diffusion again, each variable
should be contained in half of the monomials in ev-
ery polynomial, so the expected value is 216

4 = 16384.
In the actual system described in Table 3, the most

frequent variable had 16446 occurrences and the least
frequent variable had 16393 occurrences, these are
aggregated values.

4.1 Overdefined Polynomial Systems

Let us now combine the polynomial systems and see
if we can obtain any better results than those in Ta-
ble 2.

Definition 4.2. Let { f1, . . . , fs}⊂F[x1, . . . ,xn] be a set
of polynomials and Fn an affine space. The affine
variety V (f1, . . . , fs) defined by { f1, . . . , fs} is the set

V (f1, . . . , fs) =
{

a ∈ Fn
∣∣∣ fi(a) = 0 for all 1 ≤ i ≤ s

}
of all roots of all the polynomials in { f1, . . . , fs}.

Definition 4.3. Let V ⊆ Fn be an affine variety. We
define

I(V) =
{

f ∈ F[x1, . . . ,xn]
∣∣∣ f (a) = 0 for all a ∈V

}
.

Proposition 4.4. If V ⊆ Fn is an affine variety, then
I(V)⊆ F[x1, . . . ,xn] is an ideal. We call I(V) the ideal
of V .

Proof. We have 0 ∈ I(V) since the zero polynomial
vanishes on all points in Fn. Now let f ,g ∈ I(V),h ∈
F[x1, . . . ,xn] and a ∈V . We get f (a)+g(a) = 0+0 =
0 and h(a) f (a) = h(a) ·0 = 0, so I(V) is an ideal.

Let k be the initial key of AES or its small scale
variant. By Proposition 4.4, we know that I(k) is
an ideal. Now let { f1, . . . , fk} and {g1, . . . ,gk} be
two polynomial systems generated from two differ-
ent pairs of plaintext and its corresponding cipher-
text under the same key k. Since each fi(k) = 0 and
g j(k) = 0, we have I = ⟨ f1, . . . , fk,g1, . . . ,gk⟩ ⊆ I(k).
In general, in order to obtain the ideal I, we may com-
bine any number of polynomial systems. We can now
compute the Gröbner basis for I and we still get the
initial key k. The ideal I represents an overdefined
system for which it could be easier to obtain the so-
lution. We will call one pair of plaintext and its cor-
responding ciphertext a PC pair. In our further ex-
periments, we assume that all PC pairs use the same
key.

Table 4 summarizes the results for two combined
systems, as described in the previous paragraph. We
can see that the results are significantly better com-
pared to Table 2 and that the F4 algorithm often out-
performs the SAT solver. We can also see that we
are able to solve more polynomial systems and even
the system for SR(1, 4, 4, 8) is solved in a few sec-
onds. Recall that we were unable to obtain this solu-
tion for systems with auxiliary variables. This practi-
cally means that one round of AES-128 provides no

10

Table 3: Distribution of monomials of a given degree in SR(3, 2, 2, 4).

Poly Number of monomials of the given degree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 all

1 0 6 62 277 939 2177 3965 5820 6500 5769 4001 2201 893 262 55 9 1 32937
2 1 9 55 295 906 2154 3931 5780 6519 5790 3990 2212 902 279 51 4 0 32878
3 1 7 57 277 908 2199 4010 5653 6510 5685 3978 2232 912 277 60 7 0 32773
4 0 7 66 276 940 2159 3997 5759 6514 5737 3979 2260 939 268 59 13 0 32973
5 1 11 69 268 940 2244 4023 5701 6440 5738 4009 2142 892 262 69 6 1 32816
6 1 5 59 286 940 2169 4067 5692 6399 5830 4074 2152 917 269 59 8 1 32928
7 0 8 67 276 904 2236 3990 5634 6407 5764 4034 2164 914 259 58 2 1 32718
8 1 11 61 281 908 2201 4045 5637 6305 5775 3974 2208 919 285 53 7 1 32672
9 1 6 57 277 869 2202 4064 5775 6359 5676 4053 2182 925 302 58 8 1 32815

10 1 9 47 277 937 2185 4012 5718 6359 5713 4027 2191 907 260 56 10 1 32710
11 1 8 68 293 907 2226 3985 5698 6490 5747 4023 2139 903 287 57 6 0 32838
12 0 8 54 293 926 2167 3948 5693 6330 5665 4038 2172 935 294 62 10 0 32595
13 1 7 59 287 918 2230 4067 5804 6505 5700 4035 2208 879 267 58 11 1 33037
14 1 10 46 260 902 2173 3957 5789 6446 5739 4080 2237 885 270 65 10 1 32871
15 1 7 57 275 922 2189 4037 5793 6358 5721 3989 2224 880 294 61 3 0 32811
16 0 10 57 260 905 2174 4057 5741 6533 5824 3942 2180 939 264 76 7 1 32970

Avg. 0.7 8 59 279 917 2193 4010 5730 6436 5742 4014 2194 909 275 60 8 0.6 32834
Exp. 0.5 8 60 280 910 2184 4004 5720 6435 5720 4004 2184 910 280 60 8 0.5 32768

Table 4: Experiments with two combined systems.

Cipher
Key
bits

PT a AMP b F4 SAT

Time Mem. Time

SR(1, 2, 2, 4) 16 1 s 21 1 s 33 MB 1 s
SR(2, 2, 2, 4) 16 2 s 2469 5 s 100 MB 1 m
SR(3, 2, 2, 4) 16 9 s 32798 13 m 19.8 GB 45.5 m
SR(10, 2, 2, 4) 16 3 m 32774 11 m 25.5 GB 31.5 m
SR(1, 4, 2, 4) 32 2 s 37 1 s 33 MB 1 s
SR(2, 4, 2, 4) 32 6 s 33360 — — —
SR(1, 2, 4, 4) 32 2 s 23 1 s 33 MB 1 s
SR(2, 2, 4, 4) 32 3 s 6701 — — —
SR(1, 4, 4, 4) 64 4 s 39 1 s 33 MB 2 s
SR(1, 2, 2, 8) 32 10 s 316 1 s 33 MB 8 s
SR(1, 4, 2, 8) 64 18 s 568 2 s 33 MB 17 s
SR(1, 2, 4, 8) 64 15 s 348 1 s 33 MB 17 s
SR(1, 4, 4, 8) 128 34 s 599 4 s 33 MB 35 s
a Preprocessing Time — the time required to obtain the

system
b Average number of Monomials per Polynomial

security against this attack. We were not able to ob-
tain any solution for SR(n,4,4,e) with n > 1 though.
Observe that we used two PC pairs in this scenario.
We carried out further experiments with more than
two pairs, but we did not obtain any better results. Af-
ter adding more than five systems, the time required
to obtain a solution started increasing.

We note that it would not be possible to combine
the systems if we did not eliminate the auxiliary vari-
ables. The reason is that the auxiliary variables do not
depend on the PC pair—when we use two different
PC pairs, we get the same equations, up to the initial
additions of the plaintext and ciphertext. On the other

hand, when we express the equations only in the vari-
ables of the initial key, we get a different system for
each PC pair.

4.5 Reduced Polynomial Systems

Table 4 shows that the hardest systems to solve were
the ones with high AMP. Let us see if we can reduce
this value.

Definition 4.6. Let f ,g ∈ F[x] be two polynomials.
We define their similarity as σ(f ,g) = |M(f)∩M(g)|,
where M(h) is the set of monomials in h.

Consider again a polynomial system F =
{ f1, . . . , fk} and a set of l polynomial systems G =
{g1, . . . ,gm} where m = kl. We will refer to F as the
primal system and to G as the reduction set. Each
polynomial system is generated from a different PC
pair under the same key k. For each fi we find a
g j so that σ(fi,g j) is maximal and compute hi =
fi+g j ∈ I(k). We get an ideal I = ⟨h1, . . . ,hk⟩ ⊆ I(k).
Similarly to the previous experiments, we can now
compute the Gröbner basis and obtain the solution
k. Since we work over GF(2), if the polynomials fi
and g j are similar enough, the alike monomials can-
cel each other out and the resulting polynomials hi
might be smaller than fi. As a result, this might allow
faster computation.

As already mentioned, we get a different system
for each PC pair. How much different depends on
the degree of diffusion in the cipher. In Table 3,
we have shown that the polynomials for SR(n,2,2,4)
with n ≥ 3 are essentially random. This reflects in Ta-
ble 5, which contains the results of experiments with

11

Table 5: Experiments with reduced polynomial systems.

Cipher Key
bits PT a AMPR b l c F4 SAT

Time Mem. Time

SR(2, 2, 2, 4) 16 5 s 601 1 1 s 33 MB 29 s
SR(2, 2, 2, 4) 16 5 s 519 5 1 s 33 MB 24 s

SR(3, 2, 2, 4) 16 25 s 32592 1 16 m 17.9 GB 37.5 m
SR(3, 2, 2, 4) 16 40 s 32555 5 18 m 23.1 GB 41 m

SR(2, 4, 2, 4) 32 26 s 4938 1 — — —
SR(2, 4, 2, 4) 32 1 m 4563 5 — — —

SR(2, 2, 4, 4) 32 14 s 3410 1 — — 1 h 23 m
SR(2, 2, 4, 4) 32 18 s 1192 5 60 m 34.5 GB 50 m
a Preprocessing Time — the time required to obtain the system
b Average number of Monomials per Polynomial after Reduction
c Number of polynomial systems of the reduction set

the reduced polynomials hi. The times stated in the ta-
ble are always the overall wall times, and each value
in the table is the average for five independent experi-
ments. The value l in the table is the number of poly-
nomial systems of the reduction set, as described in
the paragraph above. We see that for SR(3, 2, 2, 4),
the Average number of Monomials per Polynomial
after the Reduction (AMPR) does not differ from the
AMP value in Table 4. On the other hand, for exam-
ple, for SR(2, 4, 2, 4) and l = 5, AMPR is reduced by
86 %. Unfortunately, we could still not compute the
solution. For SR(2, 2, 4, 4) and l = 5, the reduction
allowed us to solve the system, but for l = 1, it did so
only for the SAT solver. For SR(2, 2, 2, 4), the reduc-
tion shortened the computation time. We note that we
considered only the ciphers that required more than
five seconds to solve in the previous table. We can
also see that the number of polynomial systems for re-
duction l considerably lowered the AMPR value only
for SR(2, 2, 4, 4) and for other ciphers it had no, or
very subtle effect. We have also tried other values of
l, all of which were ≤ 50 due to limited time, with no
significant effect either, even for SR(2, 2, 4, 4). The
column labeled PT now includes the time required for
the reduction.

In order to increase the reduction even further, we
tried generating the plaintexts in the PC pairs for the
polynomial systems in G so that each of them would
differ only by one bit from the plaintext for F . It
emerged that this approach did not bring any signifi-
cant improvement.

Since the F4 algorithm and the SAT solver run in
a single thread, and we had a parallel architecture at
our disposal, we tried brute-forcing some variables
in the reduced polynomial systems with l = 5. This

means that we determined the values of the guessed
variables, we substituted these values into the system,
and then we attempted to solve the system. Observe
that substituting concrete values of some variables
not only eliminates the variables, but also shortens
the polynomials—for example, a zero occurring in a
monomial makes it vanish. On the other hand, substi-
tuting a one can lead to two equal monomials which
cancel each other out. We used a brute-force approach
for guessing the variables so we got 2v different sys-
tems to solve where v is the number of guessed vari-
ables. Instead of guessing random variables, we tried
to guess the most frequent ones in order to shorten
the polynomials even further. The reason can be seen
in figure 3. This figure contains the frequencies of
the variables for five instances of SR(2, 2, 4, 4) and
SR(2, 4, 2, 4). The variables are ordered in a descend-
ing order, so their labels correspond to their relative
positions in the plot according to their frequency—
the zeroth variable is the most frequent one. We can
see that some of the frequencies differ significantly.
Recall that, on the other hand, the frequencies of the
variables of SR(3, 2, 2, 4) are evenly distributed as
we already showed. We have tried guessing the eight
most frequent variables, so we had 28 = 256 parallel
threads, one thread for each guess. The results are
presented in Table 6.

The table shows that we were able to obtain the
solution for SR(2, 4, 2, 4) and that the solving time is
reduced significantly for the other two ciphers. Note
that the F4 algorithm outperforms the SAT solver.
Also, observe that the preprocessing time for SR(3,
2, 2, 4) has significantly increased. This is caused by
counting the frequencies since each of the 16 poly-
nomials has around 214 monomials. We have also

12

0 5 10 15 20 25 30

variable

0

5000

10000

15000

20000

fr
eq

ue
nc

y

(a) SR(2, 2, 4, 4)

0 5 10 15 20 25 30

variable

10000

20000

30000

40000

50000

60000

fr
eq

ue
nc

y

(b) SR(2, 4, 2, 4)

Figure 3: Frequencies of the key variables for five instances
of SR(2, 2, 4, 4) and SR(2, 4, 2, 4). The variables are or-
dered according to their frequency.

Table 6: Experiments with reduced polynomial systems and
guessed variables.

Cipher Key
bits PT a F4 SAT

Time Mem. Time

SR(3, 2, 2, 4) 16 8 m 6 s 33 MB 35 s
SR(2, 4, 2, 4) 32 2.5 m 43 s 620 MB 9 m
SR(2, 2, 4, 4) 32 31 s 14 s 72 MB 5.5 m
a Preprocessing Time — the time required to obtain the

system

tried guessing eight of the least frequent variables and
we were not able to obtain the solutions for SR(2, 4,
2, 4) and SR(2, 2, 4, 4) even though we solved the
system for SR(2, 2, 4, 4) in the previous table. This
was due to memory limitations as each of the paral-
lel processes allocated dozens of gigabytes—we see
in Table 5 that the F4 algorithm allocated on average

34.5 GB when solving SR(2, 2, 4, 4) with no guessed
variables. We note that each of the threads finished
its computation in a different time. The threads that
provided no solution usually ended earlier. This could
be leveraged in further analysis since this observation
also provides information about the correct key. We
have also tried guessing different numbers of vari-
ables. Guessing more than eight variables produced
even longer solving times. This was caused by cre-
ating too many threads. On the other hand, we were
often unable to obtain the solutions for SR(2, 4, 2, 4)
when we guessed less than six variables.

5 CONCLUSIONS

In our experiments, we demonstrated the capabili-
ties of solving systems of polynomial equations by
means of Gröbner bases and a SAT solver. Initially,
we generated systems that contain the auxiliary vari-
ables, and we saw that the SAT solver significantly
outperformed Gröbner bases. We subsequently elim-
inated the auxiliary variables by a gradual substitu-
tion so that the systems contained only the variables
of the initial secret key. We saw that the results were
even worse compared to the systems with the auxil-
iary variables. However, when we combined at least
two systems with no auxiliary variables, we got much
better results, especially for Gröbner bases. Note, for
example, that we were able to obtain the secret key
for one round of AES-128. We also solved one round
of all the other ciphers with the state array reduced.

We showed that a 16-bit version of AES reaches
its full diffusion after its third round. We also showed
that the polynomial system in the third round has
the same properties as the system in the tenth round.
From an algebraic cryptanalysis point of view, this
might suggest that the original AES has enough spare
rounds as well.

We tried reducing the polynomial systems with-
out auxiliary variables by adding similar polynomi-
als so that equal monomials would cancel each other
out, and we also tried guessing the most frequent vari-
ables. The combination of these two approaches al-
lowed us to obtain the solutions for some of the sys-
tems that we could not solve otherwise.

ACKNOWLEDGEMENTS

This work was supported by the OP VVV MEYS
funded project CZ.02.1.01/0.0/0.0/16 019/0000765
”Research Center for Informatics” and by the
Grant Agency of the CTU in Prague, grant No.

13

SGS21/142/OHK3/2T/18 funded by the MEYS of the
Czech Republic.

REFERENCES

Adams, W. (1994). An introduction to Gröbner bases.
American Mathematical Society, Providence, R.I.

Aumasson, J.-P. (2019). Too much crypto. IACR Cryptol.
ePrint Arch., 2019:1492.

Becker, T. (1993). Gröbner bases : a computational ap-
proach to commutative algebra. Springer-Verlag, New
York.

Bosma, W., Cannon, J., and Playoust, C. (1997). The
Magma algebra system. I. The user language. J. Sym-
bolic Comput., 24(3-4):235–265. Computational al-
gebra and NUMBER theory (London, 1993).

Brickenstein, M. and Dreyer, A. (2009). Polybori: A frame-
work for gröbner-basis computations with boolean
polynomials. Journal of Symbolic Computation,
44(9):1326 – 1345. Effective Methods in Algebraic
Geometry.

Buchberger, B. (2006). Bruno buchberger’s phd thesis
1965: An algorithm for finding the basis elements of
the residue class ring of a zero dimensional polyno-
mial ideal. Journal of symbolic computation, 41(3-
4):475–511.

Bulygin, S. and Brickenstein, M. (2010a). Obtaining and
solving systems of equations in key variables only for
the small variants of aes. Mathematics in Computer
Science, 3(2):185–200.

Bulygin, S. and Brickenstein, M. (2010b). Obtaining and
solving systems of equations in key variables only for
the small variants of aes. Mathematics in Computer
Science, 3(2):185–200.

Cid, C. and Leurent, G. (2005). An analysis of the xsl algo-
rithm. In International Conference on the Theory and
Application of Cryptology and Information Security,
pages 333–352. Springer.

Cid, C., Murphy, S., and Robshaw, M. (2006). Algebraic
aspects of the advanced encryption standard. Springer
Science & Business Media.

Cid, C., Murphy, S., and Robshaw, M. J. (2005). Small scale
variants of the aes. In International Workshop on Fast
Software Encryption, pages 145–162. Springer.

Courtois, N. T. and Pieprzyk, J. (2002). Cryptanalysis of
block ciphers with overdefined systems of equations.
In International conference on the theory and appli-
cation of cryptology and information security, pages
267–287. Springer.

Cox, D. (2015). Ideals, varieties, and algorithms : an in-
troduction to computational algebraic geometry and
commutative algebra. Springer, Cham.

Faugère, J.-C. (1999). A new efficient algorithm for com-
puting Gröbner bases (F4). Journal of Pure and Ap-
plied Algebra, 139(1-3):61–88.

Hibi, T. (2013). Gröbner bases : statistics and software
systems. Springer, Tokyo New York.

Murphy, S. and Robshaw, M. J. (2002). Essential alge-
braic structure within the aes. In Annual International
Cryptology Conference, pages 1–16. Springer.

Nover, H. (2005). Algebraic cryptanalysis of aes: an
overview. University of Wisconsin, USA, pages 1–16.

Simmons, S. (2009). Algebraic cryptanalysis of simplified
aes*. Cryptologia, 33(4):305–314.

Soos, M., Nohl, K., and Castelluccia, C. (2009). Extend-
ing sat solvers to cryptographic problems. In Interna-
tional Conference on Theory and Applications of Sat-
isfiability Testing, pages 244–257. Springer.

The Sage Developers (2020). SageMath, the Sage Mathe-
matics Software System (Version 9.1).

14

