
Squirrel: Efficient Synchronized Multi-Signatures from Lattices

Nils Fleischhacker1? , Mark Simkin2?? , and Zhenfei Zhang2? ? ?

1 Ruhr University Bochum
2 Ethereum Foundation

Abstract. The focus of this work are multi-signatures schemes in the synchronized setting. A multi-
signature scheme allows multiple signatures for the same message but from independent signers to be
compressed into one short aggregated signature, which allows verifying all of the signatures simultane-
ously. In the synchronized setting, the signing algorithm takes the current time step as an additional
input. It is assumed that no signer signs more than one message per time step and we aim to aggregate
signatures for the same message and same time step. This setting is particularly useful in the context
of blockchains, where validators are naturally synchronized by the blocks they sign.

We present Squirrel, a concretely efficient lattice-based multi-signature scheme in the synchronized
setting that works for a bounded number of 2τ time steps and allows for aggregating up to ρ signatures
at each step, where both τ and ρ are public parameters upon which the efficiency of our scheme depends.
Squirrel allows for non-interactive aggregation of independent signatures and is proven secure in the
random oracle model in the presence of rogue-key attacks assuming the hardness of the short integer
solution problem in a polynomial ring.

We provide a careful analysis of all parameters and show that Squirrel can be instantiated with good
concrete efficiency. For τ = 24 and ρ = 4096, a signer could sign a new message every 10 seconds for 5
years non-stop. Assuming the signer has a cache of 112 MB, signing takes 68 ms and verification of an
aggregated signature takes 36 ms. The size of the public key is 1 KB, the size of an individual signature
is 52 KB, and the size of an aggregated signature is 771 KB.

1 Introduction

A multi-signature scheme [IN83, MOR01] allows for compressing multiple signatures for the same
message, generated under independent keys, into one short aggregated signature. Given the corre-
sponding public keys, the message, and the aggregated signature, anyone can verify the validity of
all signatures simultaneously.

Such signature schemes are particularly useful in the context of cryptocurrencies, where a set
of validators maintain a public append-only ledger. The ledger should only contain valid data and
minimizing the amount of data stored on the ledger is crucial for the overall efficiency of the
cryptocurrency. In regular time intervals, new candidate data blocks appear that may or may not
be added to the ledger. If a validator deems a data block eligible for addition to the ledger, they will
vouch for it by signing it. If enough validators have signed a specific data block, then it is added
to the ledger along with all the signatures vouching for it. In this setting multi-signatures allow for
storing less data on the ledger by replacing all individual signatures with the aggregated signature.

It has been shown that multi-signatures can be constructed from a variety of assumptions, such
as the RSA assumption [IN83, OO93], discrete logarithm assumptions [BDD+00, MOR01, BN06,
BCJ08, NRS21], and pairings-based assumptions [BGLS02, Bol03, LOS+06, BDN18, DGNW20].

? mail@nilsfleischhacker.de. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

?? mark.simkin@ethereum.org
? ? ? zhenfei.zhang@ethereum.org

https://orcid.org/0000-0002-2770-5444
https://orcid.org/0000-0002-7325-5261
https://orcid.org/0000-0001-5131-5377

Unfortunately, all of the above assumptions are susceptible to quantum attacks [Sho94] and there
has been little work in multi-signatures schemes that plausibly remain secure in the presence of a
quantum adversary.

A number of recent works [ES16, FH19, MJ19, PD20, KD20, FH20, DOTT21, BTT22] proposed
multi-signatures schemes whose security relies on the hardness of lattice assumptions which are
currently considered hard even against quantum adversaries. However, none of these are quite
suitable for practical depoyment in the envisioned use-case.

All of the proposed schemes require interaction between the independent signers to aggregate
the signatures. In applications such as the one sketched above the signers may be online at different
times and are potentially not even aware of who the others signers are, thus making interactive
aggregation problematic. Ideally, aggregation of signatures should be non-interactive in the sense
that it does not require further interaction between any of the signers and the aggregating entity.

The interactive signing protocols of Fukumitsu and Hasegawa [FH19, FH20], Ma and Jiang
[MJ19], and Peng and Du [PD20] have a runtime that grows exponentially with the number of
participants. This is caused by rejection sampling procedures employed by the underlying lattice
signature schemes (e.g. Dilithium). Each user will reject a candidate signature with some probability
to prevent information leakage. Rejection by any user requires the entire protocol to restart. This
makes the schemes non-applicable with potentially 1000s of signers.

The schemes of El Bansarkhani and Sturm [ES16] as well as Ma and Jiang [MJ19] are only
proven secure in a setting where all signing keys, even the adversarial ones, are generated honestly.
In reality, an adversary could attempt to perform a so-called rogue key attack, where maliciously
formed keys are chosen depending on the honest keys, such that they can forge aggregated signatures
that supposedly correspond to a set of keys consisting of both, honest and malicious keys. From
a security perspective the aggregated signature should remain unforgeable even if malicious keys
are included and aggregation is performed by the adversary. Finally, the scheme of Kansal and
Dutta [KD20] was actually shown to be insecure by Liu et al. [LTT20].

The best option among the previous works in this area is the multi-signatures scheme of Boschini,
Takahashi, and Tibouchi [BTT22], which provides security against rogue-key attacks. However, it
still has the drawback of an interactive aggregation procedure described above.

1.1 Our Contribution

In this work, we focus on multi-signature schemes in the synchronized setting [GR06, AGH10,
HW18, DGNW20]. Here, the signing algorithm is given an additional time step t as input along
with the message and the secret key. It is assumed that no signer produces more than one signature
per time step. Rather than aiming to aggregate any set of signatures we aim to aggregate signatures
by independent signers for the same message and same time step. Going back to our previous
append-only ledger example, we observe that the validators are naturally synchronized and only
aim to aggregate signatures for the same data block which can be associated with a time step t.

We present Squirrel3, a concretely efficient lattice-based multi-signature scheme in the synchro-
nized setting that works for a bounded number of 2τ time steps and allows for aggregating up to ρ
signatures at each step, where both τ and ρ are public parameters upon which the efficiency of our
scheme depends. Squirrel allows for non-interactive aggregation of signatures and is secure against
rogue key attacks in the random oracle model assuming the hardness of the short integer solution
problem in a polynomial ring.

3 Our construction, just like our rodent friends from the Sciuridae family, heavily rely on (binary) trees.

2

Computational Bandwidth
Offline Sign Online Sign Verify sk pk σ σagg

Asymptotic worst Õ(2τ) O(1) O(τ) O(λ) Õ(n) Õ(τn) Õ(τn)
Efficiency average Õ(1)

Concrete
Efficiency

0.4 s 8 MB
25 ms 2.3 ms 36 ms 128 MB 1 KB 52 KB 771 KB
1.6 ms 2 GB

Table 1. The asymptotic worst-case and average-case along with concrete worst-case costs of Squirrel. Here λ denotes
the security parameter and ρ the maximum number of signatures that can be aggregated. The maximum number of
signatures that can be issued under one key pair is 2τ . The column σ specifies the size of an individual signature
while σagg specifies the size of an aggregated signature. Asymptotic worst-case cost is measured in terms of ring

multiplications. The Õ(·) notation hides logarithmic dependencies. Concrete costs are measured for τ = 24 and

ρ = 4096 with λ = 112.

It may seem that having an upper bound on the number of signatures is a severe restriction
that limits the practical usefulness of our results. To see that this is not the case in many settings,
we note that even with a τ as small as 24, a single signing key supports signing a new message
every 10 seconds for 5 years non-stop.

Squirrel is both asymptotically and concretely efficient in most parameters as can be seen
in Table 1. Keys and signature sizes are reasonably small and verification of an aggregated sig-
nature only takes a few tens of milliseconds. The main (theoretical) bottleneck of Squirrel is the
asymptotic worst-case signing cost. Fortunately, our construction possesses several nice features
that alleviate the asymptotic inefficiency in practice. Our construction is an online/offline signa-
ture scheme [EGM90] which means that the majority of the computational cost of the signing
procedure can be preprocessed before the message to be signed is known. The amortized overall
computational cost per signature is exponentially smaller than the worst-case cost, which means
that signing is computationally cheap most of the time and only rarely requires a larger compu-
tational effort. Lastly, we show that the concrete computational worst-case costs of the signing
procedure can be significantly reduced by storing somewhat larger secret keys. As an exemplary
data point, one can see in Table 1 that a 2 GB secret key allows for a total signing time, i.e. offline
plus online signing times, of below 4 ms. We stress that storing such a “large” secret key with mod-
ern hardware does not pose a problem in the absolute majority of use-cases, for instance, where
signers are blockchain validators with adequate resources. Verification of the aggregated signature,
which is 771 KB large, only takes 36 ms.

A naive construction of a lattice-based multi-signature scheme with non-interactive aggrega-
tion is to simply append individual signatures of a plain lattice-based signature scheme. Such a
scheme can, for instance, be instantiated with Dilithium signatures [DKL+18] or Falcon signatures
[PFH+20]. When comparing such a solution to ours, for the parameters from above, the naive
scheme with Dilithium requires roughly 3 KB per signature and 0.2 ms per verification. For 4096
aggregated signatures, the size would be around 12 MB and verification would take around 800 ms.
In comparison, our solution requires 771 KB for the aggregated signature, reducing size by 94%,
and verification is faster by a factor of 20. For Falcon signatures, we observe smaller gains, reducing
71% in size, and accelerating verification by a factor of 4. In terms of verification times, our result
is also on-par with pre-quantum algorithms, since it takes roughly 200 ms to verify 4096 ECDSA
signatures [Lib22] and 2 ms to verify 4096 BLS signatures [Sup22]. When there are more signatures

3

to aggregate, our benchmark shows that our signature size scales sub-logarithmically with regard
to ρ. We provide a detailed discussion of the concrete efficiency of our scheme in Section 6.

1.2 Real-World Impact

Squirrel can be used in the context of major cryptocurrencies, such as Ethereum 2 and DFinity.
In a nutshell, both these systems are keeping track of a continuously growing ordered chain of
data blocks in a distributed manner. To ensure that no malformed blocks are added to the chain,
each block has to include a sufficient number of signatures that vouch for their validity. Both of
the mentioned cryptocurrencies are currently relying on the quantum-insecure BLS multi-signature
scheme [BLS01] to compress the signatures in each block. For more details, we refer the interested
reader to Sections 5.7 and 5.8 in the DFinity whitepaper4 or the annotated Ethereum 2 specifica-
tion5. Constructing plausibly quantum-secure alternatives to BLS signatures with good concrete
efficiency has so far been a tough nut to crack.

To understand why Squirrel can be used in the context of these cryptocurrencies we need to make
two crucial observations. Firstly, the signatures we aim to aggregate are naturally synchronized by
the length of the current chain, meaning that signatures for block i can be associated with a time
step i. Secondly, both cryptocurrency designs enforce that no validator can vouch for more than
one data block at any point in time. These two restrictions on how multi-signatures are being used
here perfectly match the two restrictions our construction has.

1.3 Limitations

Since Squirrel is proven secure under the assumed hardness of the short integer solution problem
in a polynomial ring, it does not directly fall victim to attacks by a quantum adversary. However,
our security proof relies on a variant [BN06] of the forking lemma [PS96], and therefore uses a
rewinding strategy that does not apply to quantum algorithms. Although it is plausible that our
scheme is secure against quantum attackers, we do not currently know how to prove this and leave
such a proof as an open question. In this context, it may be noteworthy, that a proof of security
against quantum attackers in the classical random oracle model would be sufficient, because such a
proof could be lifted to the quantum random oracle model [BDF+11] using the work of Yamakawa
and Zhandry [YZ21].

1.4 Technical Overview

Let us start with a very simple solution. Assume we are already given a one-time multi-signature
scheme, i.e. a scheme, where a signer can sign exactly once under a given public key. To create a
signature scheme that allows for signing 2τ many times, a signer can generate 2τ many independent
one-time signature key pairs and publish a public key, which is the concatenation of all one-time
public keys. To sign at time t, the signer signs using the t-th secret key. Such a scheme would already
constitute a valid multi-signature solution in the synchronized setting for a bounded number of
signatures. The main drawback of this approach is that the public key grows linearly in 2τ , which
is completely unacceptable.

4 https://dfinity.org/whitepaper.pdf
5 https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md#attestation

4

https://dfinity.org/whitepaper.pdf
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md#attestation

As a subsequent iteration of the idea above, one can attempt to publish the root node v of a
Merkle tree that is computed on top of all the public keys. The tree serves as a commitment to the
vector of individual public keys. To sign a message at time t, we would now publish a signature
under the t-th key pair along with the t-th public key and a membership proof, which shows that the
key is indeed the t-th leaf of the tree with the root node v. The problem is that this solution breaks
the aggregation property, since one-time signatures can still be aggregated, but the membership
proofs of the separate Merkle trees cannot.

Luckily for us, the idea of Merkle trees with homomorphic properties has already been studied
by Papamanthou et al. [PSTY13]. In principle, their construction of a “homomorphic Merkle tree”
is sufficient to make the simple idea from above work. Using these trees, one can now aggregate
both the one-time multi-signatures and the membership proofs. To make this solution secure against
rogue-key attacks, we can not just sum up separate signatures, but instead compute a random linear
combination thereof, where the weights are chosen via a random oracle.

The main issue with the work of Papamanthou et al. [PSTY13] is the large asymptotic and
concrete costs associated with their tree construction. When trying to realize our approach with
their work, one obtains signatures sizes in the gigabyte range which would be prohibitively expensive
for practical scenarios. On a very high level the main issue, among others, with their construction
is that their security relies on a lattice-based assumption where the parameters grow linearly in the
number of leaves of their tree. The parameters of the used assumption further deteriorate, when
the random weights are applied to the membership proofs.

A simpler and more efficient set membership data structure from lattices was considered by Lib-
ert et al. [LLNW16]. Whereas Papamanthou et al. compute the labels of internal nodes as weighted
sums of all leaves rooted in that node, the construction of Libert et al. is essentially a standard
Merkle tree instantiated with Ajtai’s hash function [Ajt99] with an additional decomposition step
to map hash values into the domain of the hash function. Their work did not need or consider any
homomorphic properties that their tree might possess.

In this work, we observe that the construction of Libert et al. does indeed have the homomor-
phic properties that we need for our application, but unfortunately does not allow for efficiently
aggregating random linear combinations of authentication paths from different trees. The tree of
Libert et al. works with values over Zq that are required to have small norm, when interpreted
as integers. For our random linear combinations, however, we need to choose weights that come
from a super-polynomially large set. Such a large subset of Z will necessarily have elements with
a superpolynomially large norm, which would result in a blow-up in the asymptotic and concrete
sizes of the aggregated paths in Libert et al.’s construction.

In this paper, we present a new construction of such a Merkle tree with homomorphic properties
that does not have the drawbacks of the previous works and is concretely efficient. Essentially,
we describe an analogue of the tree of Libert et al. instantiated over a polynomial ring, where
superpolynomially large subsets of elements with small norm exist. Additionally the construction
is made more efficient by using a seperate hash function with a wider input for the leaf layer.

We present an appropriate one-time multi-signature scheme that works well in combination with
our tree as outlined above. We stress that even though our construction is simple on a conceptual
level, realizing the idea and making it concretely efficient is far from it.

Paper Outline. We define some notation and review some existing definitions that will be used
throughout the paper in Section 2. We formally define our notion of a homomorphic vector commit-

5

ment and show how to instantiate it with a construction that resembles a Merkle tree in Section 3.
We define the notion of a one-time multi-signature scheme that we need and instantiate it in Sec-
tion 4. Our multi-signature scheme is presented in Section 5. Finally, we discuss all relevant concrete
parameters and provide extensive benchmarks of our construction in Section 6.

2 Preliminaries

This section introduces notation, some basic definitions and lemmas that we will use throughout
this work. We denote by λ ∈ N the security parameter and by poly(λ) any function that is bounded
by a polynomial in λ. A function f in λ is negligible, if for every c ∈ N, there exists some N ∈ N,
such that for all λ > N it holds that f(λ) < 1/λc. We denote by negl(λ) any negligible function. An
algorithm is PPT if it is modeled by a probabilistic Turing machine with a running time bounded
by poly(λ).

Let X be a set. We write x← X to denote the process of sampling an element of X uniformly
at random. Let n ∈ N, we denote by [n] the set {0, . . . , n}. Let T be a full binary tree of depth d.
We denote the root node of T by the empty string ε, and for any node v, v‖0 and v‖1 denotes the
left and right child of v respectively. In particular, {0, 1}d is the set of leaves of T . A labeled full
binary tree with labels in X is represented by a labeling function label : {0, 1}≤d → X.

Let v be a vector. We write vᵀ to denote its transpose and vi to denote the i-th entry in the
vector for i ∈ [|v| − 1]. Further, v<i denotes the i-length prefix of v. Similarly for a bit-string s,
si denotes the i-th bit of s and s<i denotes the prefix consisting of the first i bits of s. Note that
vectors and bit-strings are zero-indexed. From time to time we will slightly abuse this notation
and use a bit-string s as an index. In this case the index is to be understood as the canonical
interpretation of s as an integer in little-endian encoding.

Without loss of generality, we work on a power-of-two cyclotomic polynomial ring. Let Φ2n =
xn+1 the cyclotomic polynomial with n a power of 2. We work in a polynomial ring R = Z[x]/〈xn+
1〉 and represent elements of R as n-dimensional vectors Zn with (c0, . . . , cn−1)ᵀ ∈ Zn representing
the ring element

∑n−1
i=0 x

i · ci. Let q be some prime such that q ≡ 1 mod 2n. Rq refers to the subset
of R represented by vectors in Znq . Let x = c ∈ R be a ring element. We denote ‖x‖ = ‖c‖∞ =
maxi∈[n−1]|ci| and ‖x‖1 = ‖c‖1 =

∑
i∈[n−1]|xi|. For an element a ∈ Rq we denote by ‖a‖ or ‖a‖1

the respective norm over R.
We denote by Bβ the ball Bβ = {a ∈ Rq | ‖a‖ ≤ β} and by Tα = {a = (a0 + a1 · x + · · · +

an−1x
n−1) ∈ R | ‖a‖ = 1 ∧

∑n−1
i=0 |ai| = α} the set of polynomials with ternary coefficients, i.e.

coefficients from {−1, 0, 1}, with exactly α non-zero coefficients. The following simple lemma allows
us to bound the norm of the product of two polynomials.

Lemma 1 ([Mic07]). Let a, b ∈ R be two polynomials. Then ‖b · a‖ ≤ ‖a‖1 · ‖b‖.

The computationally hard problem upon which the security of our constructions relies is the
short integer solution problem defined over rings as follows.

Definition 1 (Ring Short Integer Solution Problem). For a ring R and parameters µ, q, β ∈
N, the SISR,q,µ,β problem is hard if for all PPT algorithms A it holds that

Pr[a← Rµq ; s← A(a) : s ∈ Bµβ \ {0} ∧ aᵀs = 0] ≤ negl(λ)

We will be using a minor variation of the general forking lemma as introduced by Bellare and
Neven [BN06] that explicitly deals with oracle algorithms.

6

Lemma 2 (General Forking Lemma). Fix an integer p ≥ 1 and a set H of size h ≥ 2. Let A
be a randomized oracle algorithm with randomness space R that on input x, h0, . . . , hp−1 and given
access to an oracle O returns a triple, the first element of which is a bit, the second element of
which is an integer in the range 0, . . . , p − 1 and the third element of which we refer to as a side
output. Let IG be a randomized algorithm that we call the input generator. The accepting probability
of A, denoted ε, is defined as

ε := Pr

 (x, y)← IG;

h0, . . . , hp−1 ← H;

(b, i, σ)← AO(y,·)(x, h0, . . . , hp−1)

: b = 1


The forking algorithm FA associated with A is the randomized oracle algorithm that takes input x,
is given access to an oracle O and proceeds as follows:

F
O(y,·)
A (x)

r ← R

h0, . . . , hp−1 ← H

(b, i, σ)← AO(y,·)(x, h0, . . . , hp−1; r)

if b = 0

return (0,⊥,⊥)

h′i, . . . , h
′
p−1 ← H

(b′, i′, σ′)← AO(y,·)(x, h1, . . . , hi−1, h
′
i, . . . , h

′
p−1; r)

if b′ = 1 and i = i′ and h′i 6= hi

return (1, σ, σ′)

else

return (0,⊥,⊥)

Then

ε ≤ p

h
+

√
p · Pr[(x, y)← IG; (b, σ, σ′)← F

O(y,·)
A (x) : b = 1].

3 Homomorphic Vector Commitment

In this section, we formally define the notion of a homomorphic vector commitment that we will
need in our main construction. This primitive, on an intuitive level, allows for committing to a
long vector by publishing a short commitment value. Individual positions of the vector can then
be opened individually with short openings. The commitment scheme should be homomorphic,
meaning that a linear combination of individual commitments different vectors be opened to the
linear combination of the entries of the individual vectors.

Definition 2. Let R be a ring and let q = q(λ) ∈ N. A homomorphic vector commitment scheme
(HVC) for domain R`domq is defined by four PPT algorithms (Setup,Com,Open,Vrfy).

pp← Setup(1λ, τ) The setup algorithm takes as input the security parameter and the binary loga-
rithm of the length of the committed vectors and outputs public parameters.

c← Com(pp,m) The commitment algorithm gets as input the public parameters and a vector m ∈
(R`domq)2τ and outputs a commitment c ∈ R`comq .

7

d← Open(pp, c,m, t) The opening algorithm gets as input the public parameters, a commitment,
the committed vector, and an index and outputs a decommitment d ∈ R`decq .

m/⊥ ← wVrfy(pp, c, t, d) The weak verification algorithm takes as input public parameters, a com-
mitment, an index, and a decommitment and outputs either m ∈ R`domq or an error symbol.

m/⊥ ← sVrfy(pp, c, t, d) The strong verification algorithm takes as input public parameters, a com-
mitment, an index, and a decommitment and outputs either m ∈ R`domq or an error symbol.

Let ρ ∈ N and W ⊆ R. A vector commitment is (ρ,W)-homomorphically correct, if for all security
parameters λ ∈ N, vector lengths 2τ = poly(λ), ` ∈ [ρ], vectors m0, . . . ,m`−1 ∈ (R`domq)2τ , ring

elements w0, . . . , w`−1 ∈W , and indices t ∈ [2τ − 1] it holds that

Pr

pp← Setup(1λ, τ);

ci ← Com(pp,mi);

di ← Open(pp, ci,mi, t)

: sVrfy
(
pp,

`−1∑
i=0

wi · ci, t,
`−1∑
i=0

wi · di
)

=
`−1∑
i=0

wi ·mi
t

 = 1

Remark 1. Note that the homomorphic correctness definition above implies regular correctness of
unaggregated commitments with ` = 1 and 1 ∈W .

Definition 3 (Position-Binding). An HVC is position binding if for all security parameters λ
and all PPT algorithms A it holds that

Pr


pp← Setup(1λ, τ);

(c, t, d0, d1)←A(pp);

m0 ← wVrfy(pp, c, t, d0);

m1 ← wVrfy(pp, c, t, d1)

:
m0 6= m1

∧ ⊥ 6∈ {m0,m1}

 ≤ negl(λ).

We require that a limited homomorphism holds, even for malicious commitments. For any two, even
malicious, commitments and their two respective openings that strongly verify, their difference will
still weakly verify.

Definition 4. Let HVC be a vector commitment scheme (HVC) for domain R`domq with commit-
ment length `com and decommitment length `dec. HVC is robustly homomorphic if for all security
parameters λ ∈ N, vector lengths 2τ = poly(λ), public parameters pp ← Setup(1λ, τ), indices
t ∈ [2τ −1], (possibly malformed) commitments c0, c1 ∈ R`comq , and (possibly malformed) decommit-

ments d0,d1 ∈ R`decq such that

sVrfy(pp, c0, t,d0) = m0 and sVrfy(pp, c1, t,d1) = m1

with m0,m1 6= ⊥ it holds that

wVrfy(pp, c0 − c1, t,d0 − d1) = m0 −m1.

Strong vs Weak Verification. A noticable and potentially unusual feature of the above definitions
is that it uses two seperate verification algorithms. We note that weak and strong verification can
be identical, but the definition above is more general and in fact necessary to allow for our lattice
based instantiation. To see why, consider the following. Ideally, in a definition featuring only a single
verification algorithm, a robust homomorphism would guarantee that for any two valid commitment,

8

decommitment pairs (c0,d0), (c1,d1) opening to m0 and m1 respectively, (c0− c1,d0−d1) is also
valid and opens to m0 − m1. However, this is inherently difficult to achieve with lattices. In
any SIS based construction, the verification must involve checking a bound on the norm of the
commitment/decommitment. (The same applies with LWE based constructions and the size of the
error.) If the norms of (c0,d0) and (c1,d1) are already close to but still smaller than the enforced
norm-bound, the norm of (c0 − c1,d0 − d1) will often exceed the bound. This would make the
individual pairs valid but their difference invalid, breaking the robust homomorphism. The issue
can be sidestepped by using two separate bounds. A smaller bound that is used for correctness and
a greater bound that is only used in the security definition. To still allow for a clean abstraction,
we encapsulate this in strong and weak verification procedures.

3.1 Homomorphic Vector Commitment for Rq

Having formally defined the primitive we want, we now show how to construct it. We first focus on
constructing a vector commitment with domain Rq. In Section 3.2 we will show how to leverage

this into a more general construction for domain Rξq.
Our construction is essentially a ring version of a tree construction already presented by Libert

et al. [LLNW16] that follows the blueprint initially presented by Papamanthou et al. [PSTY13].
We instantiate the homomorphic vector commitments by constructing a Merkle tree with a “suffi-
ciently” homomorphic hash functions at the internal nodes. The hash function will have different
input and output domains and for that reason we will need to apply a decomposition function on
the hash outputs at the internal nodes before they can be used as inputs in the computation of the
parent nodes’ values.

The construction differs from the work of Libert et al. because we require somewhat different
properties, in particular the ability to compute random linear combinations of decommitments
without blowing up the size. This is achieved by working over an appropriate polynomial ring
that allows for a superpolynomially large set of low norm weights. We also take care to adapt the
decomposition function to optimizes the concrete efficiency of our final construction.

We now define a decomposition function that allows us to map a ring element with possibly large
norm to a vector of low norm ring elements and we show that this function has nice homomorphic
properties.

Definition 5 (Binary decomposition of Rq elements). For any a =
∑n−1

i=0 ai ·xi ∈ Rq, denote
by (ai,0, . . . , ai,dlog qe−1)ᵀ ∈ {0, 1}dlog qe the binary decomposition of ai, i.e.,

ai :=

dlog qe−1∑
j=0

ai,j · 2j .

We define the following decomposition of a into binary polynomials:

binq : Rq → Rdlog qe
q , binq(a) =

(
n−1∑
i=0

ai,0 · xi, . . . ,
n−1∑
i=0

ai,dlog qe−1 · xi
)
.

Definition 6 (Projection onto Rq elements). For any b ∈ Rdlog qe
q we define the function

projq : Rdlog qe
q → Rq, proj(b) =

dlog qe−1∑
j=0

2j · bj .

9

For the sake of readability we will omit q and simply write bin and proj whenever the modulus is
clear from context.

The following two simple lemmas effectively states that the projection function is the inverse of
the decomposition function and that the projection function is linear.

Lemma 3. For all a =
∑n−1

i=0 ai · xi ∈ Rq, it holds that proj(bin(a)) = a.

Proof.

proj(bin(a)) =proj

(
n−1∑
i=0

ai,0 · xi, . . . ,
n−1∑
i=0

ai,dlog qe−1 · xi
)

=

dlog qe−1∑
j=0

2j ·
n−1∑
i=0

ai,j · xi

=
n−1∑
i=0

xi ·
dlog qe−1∑
j=0

2j · ai,j

=

n−1∑
i=0

xi · ai = a ut

Lemma 4. The projection function proj is linear, i.e., for any b0, b1 ∈ Rdlog qe
q and any w0, w1 ∈

Rq, proj(w0 · b0 + w1 · b1) = w0 · proj(b0) + w1 · proj(b1).

Proof.

proj(w0 · b0 + w1 · b1) =

dlog qe−1∑
j=0

2j · (w0 · b0j + w1 · b1j) (Definition 6)

=w0 ·
(dlog qe−1∑
j=0

2j · b0j
)

+ w1 ·
(dlog qe−1∑
j=0

2j · b1j
)

=w0 · proj(b0) + w1 · proj(b1) (Definition 6)

ut

We extend the definitions of bin and proj to vectors of ring elements in the natural sense.

That is, let a ∈ Rξq and b ∈ Rξ·dlog qe
q with bi := (bi·dlog qe, . . . , b(i+1)·dlog qe−1)ᵀ, then bin(a) :=

(bin(a0), . . . , bin(aξ)) and proj(b) := (proj(b0), . . . , proj(bξ−1)). It is easy to verify that Lemma 3 and
Lemma 4 also apply to this extension.

Equipped with the decomposition and projection functions, we are now ready to define how the
labels of the nodes in our tree construction will be computed.

Definition 7 (Labelled full binary tree). Let m = (m0, . . . ,m2τ−1)ᵀ ∈ R2τ
q and h0,h1 ∈

Rdlog qe
q be fixed. We define the labeling function label : {0, 1}≤τ → Rdlog qe

q of for a labeled full
binary tree of depth τ as

label(h0,h1,m, v) :=


bin(mv) if |v| = τ

bin

(
hᵀ

0 · label(h0,h1,m, v‖0)

+hᵀ
1 · label(h0,h1,m, v‖1)

)
if |v| < τ

10

Setup(1λ, τ)

h0 ←Rdlog qe
q

h1 ←Rdlog qe
q

return (h0,h1)

Com(pp,m)

c := label(h0,h1,m, ε)

return c

Open(pp, c,m, t)

t̃ := binN(t)

for j ∈ [τ − 2]

pj+1 := label(h0,h1,m, t̃<j‖t̃j)
sj+1 := label(h0,h1,m, t̃<j‖(t̃j ⊕ 1))

return (p1, . . . ,pτ , s1, . . . , sτ)

wVrfy(pp, c, t,d)

return Vrfy(pp, c, t,d, 2ρα)

sVrfy(pp, c, t,d)

return Vrfy(pp, c, t,d, ρα)

Vrfy(pp, c, t,d, β′)

parse d as (p1, . . . ,pτ , s1, . . . , sτ)

t̃ := binN(t)

p0 := c

for j ∈ [τ − 1]

if
∥∥pj+1

∥∥ > β′ or ‖sj+1‖ > β′

return ⊥
if proj(pj) 6= hᵀ

t̃j
· pj+1 + hᵀ

t̃j⊕1
· sj+1

return ⊥
return proj(pτ)

Fig. 1. The construction of a homomorphic vector commitment for Rq based on a labeled binary tree.

Our construction proceeds by effectively computing a Merkle tree on top of a given input vector,
where the labels of the nodes are computed as specified in Definition 7. The root node of that tree
will constitute the vector commitment. To open a specific position in the vector, we will output
all the node labels and adjacent node labels along the path from that position in the vector to the
root of the computed tree.

Theorem 5. Let Rq = Zq[x]/〈xn + 1〉 be a polynomial ring parameterized by n = poly(λ) and q =
poly(λ). Let α be the smallest integer, such that

(
n
α

)
·2α ≥ 2λ. If the SISR,q,2dlog qe,2ρα problem is hard,

then the construction from Figure 1 is a (ρ, Tα)-homomorphically correct, robustly homomorphic,
and position binding vector commitment scheme (HVC) for Rq.

Proof. The theorem follows from Lemma 6, Lemma 8, and Lemma 9 proven below. ut

Lemma 6. The construction from Figure 1 is a (ρ, Tα)-homomorphically correct vector commit-
ment scheme (HVC) for Rq.

Proof. Let m0, . . . ,m`−1 ∈ R2τ
q , pi0 = Com(pp,mi), t ∈ [2τ − 1], (pi1, . . . ,p

i
τ , s

i
1, . . . , s

i
τ)ᵀ =

Open(pp,pi0,m
i, t), and w0, . . . , w`−1 ∈ Tα as specified in Definition 2. We will first prove a claim

about the individual honestly computed commitments and decommitments.

Claim 7. For all j ∈ [τ − 1] it holds that proj(pij) = hᵀ
t̃j
· pij+1 + hᵀ

1−t̃j
· sij+1.

Proof. We observe that for all j ∈ [τ − 1] it holds that

proj(pij)

11

=proj
(
label(h0,h1,m

i, t̃<j)
)

(Def. of Com and Open)

=proj

(
bin

(
hᵀ

0 · label(h0,h1,m
i, t̃<j‖0)

+hᵀ
1 · label(h0,h1,m

i, t̃<j‖1)

))
(Definition 7)

=hᵀ
0 · label(h0,h1,m

i, t̃<j‖0) + hᵀ
1 · label(h0,h1,m

i, t̃<j‖1) (Lemma 3)

=hᵀ
t̃j
· label(h0,h1,m

i, t̃<j‖t̃j) + hᵀ
t̃j⊕1
· label(h0,h1,m

i, t̃<j‖(t̃j ⊕ 1))

=hᵀ
t̃j
· pij+1 + hᵀ

t̃j⊕1
· sij+1 (Def. of Open)

as claimed. ut

We are now ready to prove Lemma 6. We first note that for all j ∈ [τ] it holds that

∥∥∥`−1∑
i=0

wi · pij
∥∥∥ ≤ ` ·max

i∈[`−1]

{∥∥wi · pij∥∥} Lemma 1

≤ ` · α ≤ ρα

∥∥∥`−1∑
i=0

wi · sij
∥∥∥ ≤ ` ·max

i∈[`−1]

{∥∥wi · sij∥∥} Lemma 1

≤ ` · α ≤ ρα.

Further, for all j ∈ [τ − 1] it holds that

proj
(`−1∑
i=0

wi · pij
)

=
`−1∑
i=0

wi · proj(pij) (Lemma 4)

=

`−1∑
i=0

wi · (hᵀ
t̃j
· pij+1 + hᵀ

1−t̃j
· sij+1) (Claim 7)

=

`−1∑
i=0

hᵀ
t̃j
· wi · pij+1 + hᵀ

1−t̃j
· wi · sij+1

=hᵀ
t̃j
·
(`−1∑
i=0

wi · pij+1

)
+ hᵀ

1−t̃j
·
(`−1∑
i=0

wi · sij+1

)
Therefore, all checks in the strong verification algorithm will go through and it will output

proj
(`−1∑
i=0

wi · piτ
)

=
`−1∑
i=0

wi · proj(piτ) (Lemma 4)

=
`−1∑
i=0

wi · proj(bin(mi
t)) (Def. of Open)

=

`−1∑
i=0

wi ·mi
t (Lemma 3)

as required by Definition 2. ut

Lemma 8. The construction from Figure 1 is a robustly homomorphic vector commitment scheme.

12

Proof. Let c0, c1 ∈ R`comq , and d0,d1 ∈ R`decq , and t ∈ [2τ − 1] be arbitrary, such that

sVrfy(pp, c0, t,d0) = m0 and sVrfy(pp, c1, t,d1) = m1 (1)

with m0,m1 6= ⊥. Let di parse as (pi1, . . . ,p
i
τ , s

i
1, . . . , s

i
τ)ᵀ for i ∈ {0, 1}. We first note that if

wVrfy(pp, c0 − c1, t,d0 − d1) 6= ⊥, then

wVrfy(pp, c0 − c1, t,d0 − d1)

=proj(p0
τ − p1

τ) (Def of Vrfy)

=proj(p0
τ)− proj(p1

τ) (Lemma 4)

=sVrfy(pp, c0, t,d0)− sVrfy(pp, c1, t,d1) (Def. of sVrfy)

=m0 −m1. (Equation 1)

It thus remains to show that wVrfy(pp, c0 − c1, t,d0 − d1) 6= ⊥. For this, let further pi0 = ci. By
definition of the strong verification algorithm, and since m0,m1 6= ⊥ it holds that for i ∈ {0, 1}
and j ∈ [τ − 1] ∥∥pij+1

∥∥ ≤ ρα ∥∥sij+1

∥∥ ≤ ρα (2)

proj(pij) = hᵀ
t̃j
· pij+1 + hᵀ

1−t̃j
· sij+1. (3)

From Equation 2 it follows that for all j ∈ [τ − 1]∥∥p0
j − p1

j

∥∥ ≤∥∥p0
j

∥∥+
∥∥p1

j

∥∥ ≤ 2ρα∥∥s0
j − s1

j

∥∥ ≤∥∥s0
j

∥∥+
∥∥s1

j

∥∥ ≤ 2ρα.

From Equation 3 and the linearity of proj it follows that for all j ∈ [τ − 1]

proj(p0
j − p1

j)

=proj(p0
j)− proj(p1

j) (Lemma 4)

=(hᵀ
t̃j
· p0

j+1 + hᵀ
1−t̃j
· s0

j+1)− (hᵀ
t̃j
· p1

j+1 + hᵀ
1−t̃j
· s1

j+1) (Equation 3)

=hᵀ
t̃j
· (p0

j+1 − p1
j+1) + hᵀ

1−t̃j
· (s0

j+1 − s1
j+1).

Therefore, all checks in the weak verification algorithm go through and wVrfy(pp, c0−c1, t,d0−d1) 6=
⊥. ut

Lemma 9. If the SISR,q,2dlog qe,4ρα problem is hard then the construction from Figure 1 is position
binding.

Proof. We will prove this lemma by leveraging that any pair of valid decommitments will lead to
a collision somewhere in the generalized hash tree, which can be turned into a solution for the SIS
instance. Let A be an arbitrary PPT adversary against the position binding property of the con-
struction. We construct a PPT algorithm that solves the SISR,q,2dlog qe,4ρα problem as follows. Upon
input a = (a0, . . . , a2dlog qe−1)ᵀ, B sets h0 := (a0, . . . , adlog qe−1)ᵀ and h1 := (adlog qe, . . . , a2dlog qe−1)ᵀ

and runs (c, t,d0,d1) ← A((h0,h1)). For i ∈ {0, 1} let mi := wVrfy((h0,h1), c, t,di). If m0 = m1

or ⊥ ∈ {m0,m1}, B aborts. Otherwise, parse di as (pi1, . . . ,p
i
τ , s

i
1, . . . , s

i
τ), set pi0 := c.

13

Let j∗ ∈ [τ] be the largest index, such that proj(p0
j∗) = proj(p1

j∗). Note that such an index

always exists, since p0
0 = c = p1

0 and that j∗ < τ , since proj(p0
j∗) = m0 6= m1 = proj(p1

j∗). If t̃j∗ = 0,

B outputs z := (p0
j∗+1, s

0
j∗+1)ᵀ − (p1

j∗+1, s
1
j∗+1)ᵀ, if t̃j∗ = 1, B outputs z := (s0

j∗+1,p
0
j∗+1)ᵀ −

(s1
j∗+1,p

1
j∗+1)ᵀ.

We now analyze the success probability of B. It holds that proj(p0
j∗) = proj(p1

j∗) and by the
definition of the weak verification algorithm that

hᵀ
t̃j∗
· p0

j∗+1 + hᵀ
t̃j∗⊕1

· s0
j∗+1 = hᵀ

t̃j∗
· p1

j∗+1 + hᵀ
t̃j∗⊕1

· s1
j∗+1

⇐⇒ hᵀ
t̃j∗
· (p0

j∗+1 − p1
j∗+1) + hᵀ

t̃j∗⊕1
· (s0

j∗+1 − s1
j∗+1) = 0

⇐⇒ aᵀ · z = 0

It further holds by the definition of the weak verification algorithm that∥∥p0
j∗+1

∥∥ ≤ 2ρα,
∥∥s0

j∗+1

∥∥ ≤ 2ρα,
∥∥p1

j∗+1

∥∥ ≤ 2ρα,
∥∥s1

j∗+1

∥∥ ≤ 2ρα.

Therefore, the norm of z can be bounded as

‖z‖ ≤ max{
∥∥p0

j∗+1

∥∥,∥∥s0
j∗+1

∥∥}+ max{
∥∥p1

j∗+1

∥∥, ∥∥s1
j∗+1

∥∥} ≤ 4ρα.

It remains to show that z 6= 0. Since j∗ is the largest index such that

proj(p0
j∗) = proj(p1

j∗)

it holds that
proj(p0

j∗+1) 6= proj(p1
j∗+1)

and thereby that
p0
j∗+1 6= p1

j∗+1.

Therefore z 6= 0. Thus, whenever A is successful, B is successful with probability 1 and we can
conclude that

negl(λ) ≥Pr[a← R2dlog qe
q ; s← B(a) : z ∈ B2dlog qe

4ρα \ {0} ∧ aᵀs = 0]

= Pr


pp← Setup(1λ, τ);

(c, t, d1, d2)←A(pp);

m1 ← wVrfy(pp, c, t, d1);

m2 ← wVrfy(pp, c, t, d2)

:
m1 6= m2

∧ ⊥ 6∈ {m1,m2}


ut

3.2 Homomorphic Vector Commitment for Rξ
q

In the previous section we constructed an HVC for domain Rq̄ for some q̄ = poly(λ). For our
application however, this is however not ideal for two reasons. In our main construction of a syn-
chronized multi-signature scheme, the committed values are public keys of a one-time signature
scheme. These are not individual ring elements, but pairs of Rq elements for some q = poly(λ)
leading to a domain mismatch. The simplest solution of choosing q̄ = q and always decommitting
to pairs of leaves works but turns out to be inefficient. We therefore want the freedom to choose

14

Setup(1λ, τ)

pp← Setup(1λ, τ)

h← R`·dlog qe
q

return (pp′,h)

Com(pp,m)

m̄ := (hᵀ · binq(m0), . . . ,hᵀ · binq(mτ−1))ᵀ

return Com(pp, m̄)

Open(pp, c,m, t)

m̄ := (hᵀ · binq(m0), . . . ,hᵀ · binq(mτ−1))ᵀ

return (Open(pp, c, m̄, t), bin(mt))

wVrfy(pp, c, t, (d̄, b))

if ‖b‖ > 2ρα

return ⊥

if wVrfy(pp, c, t, d̄) 6= hᵀ · b
return ⊥

return projq(b)

sVrfy(pp, c, t, (d̄, b))

if ‖b‖ > ρα

return ⊥

if sVrfy(pp, c, t, d̄) 6= hᵀ · b
return ⊥

return projq(b)

Fig. 2. The construction of a homomorphic vector commitment for Rξq based on a homomorphic vector commitment
for Rq̄.

q̄ 6= q. For this purpose we describe a domain extension in the following, that allows us to leverage
the HVC for domain Rq̄ into an HVC for domain Rξq.

Given a vector commitment with domain X it is very simple to construct a vector commitment
for an arbitrary domain Y , simply by applying a collision resistant hash function H : Y → X to
the committed elements. In our case we need to take care to choose the hash function in such a
way to maintain the homomorphism. This is easily done by again applying Ajtai’s hash function
combined with binary decomposition.

Theorem 10. Let Rq = Zq[x]/〈xn+1〉 and Rq̄ = Zq̄[x]/〈xn+1〉 be polynomial rings parameterized
by n = poly(λ) and q = poly(λ), q̄ = poly(λ) respectively and let ξ ∈ N. If HVC is a (ρ, Tα)-
homomorphically correct, robustly homomorphic, and position binding vector commitment scheme
(HVC) for Rq̄ and if the SISR,q̄,ξdlog qe,4ρα problem is hard, then the construction from Figure 2 is
a (ρ, Tα)-homomorphically correct, robustly homomorphic, and position binding vector commitment

scheme (HVC) for Rξq.

Proof. The theorem follows from Lemma 11, Lemma 12, and Lemma 13 proven below. ut

Lemma 11. If HVC is a (ρ, Tα)-homomorphically correct vector commitment scheme (HVC) for
Rq̄, then the construction from Figure 2 is a (ρ, Tα)-homomorphically correct vector commitment

scheme (HVC) for Rξq.

Proof. Let m0, . . . ,m`−1 ∈
(
Rξq
)2τ

, ci = Com(pp,mi), t ∈ [2τ − 1], (d̄
i
, bi)ᵀ = Open(pp, ci,mi, t),

and w0, . . . , w`−1 ∈ Tα as specified in Definition 2.
By the (ρ, Tα)-homomorphic correctness of HVC and the definition of bi, it holds that

sVrfy(pp,
`−1∑
i=0

wi · ci, t,
`−1∑
i=0

wi · d̄i) =

`−1∑
i=0

wi · (hᵀ · bin(mi
t)) = hᵀ ·

`−1∑
i=0

wi · bi

15

Further, since all bi are binary and wi ∈ Tα, it holds that∥∥∥∥∥
`−1∑
i=0

wi · bit

∥∥∥∥∥ Lemma 1

≤ ` · α ≤ ρα.

Therefore, all checks in the strong verification algorithm go through and it outputs

proj(
`−1∑
i=0

wi · bi) =
`−1∑
i=0

wi · proj(bi)

=

`−1∑
i=0

wi · proj(bin(mi
t))

=

`−1∑
i=0

wi ·mi
t

as required. ut

Lemma 12. If HVC is robustly homomorphic, then the construction from Figure 2 is a robustly
homomorphic vector commitment scheme (HVC).

Proof. Let c0, c1 ∈ R`comq , (d̄
0
, b0), (d̄

1
, b1) ∈ R`decq , and t ∈ [2τ − 1] be arbitrary, such that

sVrfy(pp, c0, t, (d̄
0
, b0)) = m0 and sVrfy(pp, c1, t, (d̄

1
, b1)) = m1 (4)

with m0,m1 6= ⊥. We first note that if wVrfy(pp, c0 − c1, t, (d̄
0 − d̄

1
, b0 − b1)) 6= ⊥, then

wVrfy(pp, c0 − c1, t, (d̄
0 − d̄

1
, b0 − b1))

=proj(b0 − b1) (Def of wVrfy)

=proj(b0)− proj(b1) (Lemma 4)

=sVrfy(pp, c0, t, (d̄
0
, b0))− sVrfy(pp, c1, t, (d̄

1
, b1)) (Def. of sVrfy)

=m0 −m1. (Equation 4)

It thus remains to show that wVrfy(pp, c0 − c1, t, (d̄
0 − d̄

1
, b0 − b1)) 6= ⊥.

We first note that the norm check goes through, since
∥∥b0 − b0

∥∥ ≤ ∥∥b0
∥∥ +

∥∥b1
∥∥ ≤ 2ρα, where

the last inequality follows from the definition of the strong verification algorithm and the fact that
m0,m1 6= ⊥. From the same observation it also follows that

sVrfy(pp, c0, t, d̄
0
) = hᵀ · b0 and sVrfy(pp, c1, t, d̄

1
) = hᵀ · b1.

Therefore, since HVC is robustly homomorphic it follows that

wVrfy(pp, c0 − c1, t, d̄
0 − d̄

1
) = hᵀ · b0 − hᵀ · b1 = hᵀ · (b0 − b1).

Since all checks go through, it follows that wVrfy(pp, c0 − c1, t, (d̄
0 − d̄

1
, b0 − b1)) 6= ⊥. ut

Lemma 13. If HVC is position binding and if the SISR,q,ξdlog qe,4ρα problem is hard then the con-
struction from Figure 2 is position binding.

16

Proof. Let A be an arbitrary PPT adversary against the position binding property of the con-
struction. By applying the definition of the weak verification algorithm and finally splitting the
probability depending on m̄0 = m̄1 we obtain

Pr


pp← Setup(1λ, τ);

(c, t, (d̄0, b0), (d̄1, b1))← A(pp);
m0 ← wVrfy(pp, c, t, (d̄0, b0));
m1 ← wVrfy(pp, c, t, (d̄1, b1))

:
m0 6= m1

∧ ⊥ 6∈ {m0,m1}



= Pr


pp← Setup(1λ, τ);

(c, t, (d̄0, b0), (d̄1, b1))← A(pp);

m̄0 ← wVrfy(pp, c, t, d̄0);

m̄1 ← wVrfy(pp, c, t, d̄1)

:
‖b0‖ ≤ 2ρα ∧ ‖b1‖ ≤ 2ρα
∧m̄0 = hᵀ · b0 ∧ m̄1 = hᵀ · b1

∧proj(b0) 6= proj(b1)



= Pr


pp← Setup(1λ, τ);

(c, t, (d̄0, b0), (d̄1, b1))← A(pp);

m̄0 ← wVrfy(pp, c, t, d̄0);

m̄1 ← wVrfy(pp, c, t, d̄1)

:
‖b0‖ ≤ 2ρα ∧ ‖b1‖ ≤ 2ρα
∧m̄0 = hᵀ · b0 ∧ m̄1 = hᵀ · b1

∧proj(b0) 6= proj(b1) ∧ m̄0 6= m̄1

 (5)

+ Pr


pp← Setup(1λ, τ);

(c, t, (d̄0, b0), (d̄1, b1))← A(pp);

m̄0 ← wVrfy(pp, c, t, d̄0);

m̄1 ← wVrfy(pp, c, t, d̄1)

:
‖b0‖ ≤ 2ρα ∧ ‖b1‖ ≤ 2ρα
∧m̄0 = hᵀ · b0 ∧ m̄1 = hᵀ · b1

∧proj(b0) 6= proj(b1) ∧ m̄0 = m̄1

 . (6)

It remains to bound the two probabilities seperately. To bound Equation 5 we construct an adversary

B against the position binding of HVC as follows. Upon input pp, B samples h← Rξdlog qe
q̄ , invokes

(c, t, (d̄0, b0), (d̄1, b1)) ← A((pp,h)) and outputs (c, t, d̄0, d̄1). Since HVC is position binding, it
holds that

negl(λ) ≥Pr


pp← Setup(1λ, τ);

(c, t, d̄0, d̄1)← B(pp);

m̄0 ← wVrfy(pp, c, t, d̄0);

m̄1 ← wVrfy(pp, c, t, d̄1)

:
m̄0 6= m̄1

∧⊥ 6∈ {m̄0, m̄1}



≥Pr


pp← Setup(1λ, τ);

(c, t, (d̄0, b0), (d̄1, b1))← A(pp);

m̄0 ← wVrfy(pp, c, t, d̄0);

m̄1 ← wVrfy(pp, c, t, d̄1)

:
m̄0 6= m̄1

∧⊥ 6∈ {m̄0, m̄1}



≥Pr


pp← Setup(1λ, τ);

(c, t, (d̄0, b0), (d̄1, b1))← A(pp);

m̄0 ← wVrfy(pp, c, t, d̄0);

m̄1 ← wVrfy(pp, c, t, d̄1)

:
‖b0‖ ≤ 2ρα ∧ ‖b1‖ ≤ 2ρα
∧m̄0 = hᵀ · b0 ∧ m̄1 = hᵀ · b1

∧proj(b0) 6= proj(b1) ∧ m̄0 6= m̄1


To bound Equation 6, we construct a PPT algorithm that solves the SISR,q̄,ξdlog qe,4ρα problem as

follows. Upon input h ∈ Rξdlog qe
q̄ , C runs p ← Setup(1λ, τ) and invokes (c, t, (d̄0, b0), (d̄1, b1)) ←

A((pp),h). Finally it outputs b0 − b1. Since SISR,q̄,ξdlog qe,4ρα is hard, it holds that

negl(λ) ≥Pr[h← Rξdlog qe
q̄ ; s← C(h) : s ∈ Bξdlog qe

4ρα \ {0} ∧ hᵀs = 0]

17

≥Pr

[
h← Rξdlog qe

q̄ ;
(b0 − b1)← C(h)

:
‖b0‖ ≤ 2ρα ∧ ‖b1‖ ≤ 2ρα
∧hᵀb0 = hᵀb1 ∧ b0 6= b1

]

= Pr

[
pp← Setup(1λ, τ);

(c, t, (d̄0, b0), (d̄1, b1))← A(pp);
:
‖b0‖ ≤ 2ρα ∧ ‖b1‖ ≤ 2ρα
∧hᵀ · b0 = hᵀ · b1 ∧ b0 6= b1

]

≥Pr


pp← Setup(1λ, τ);

(c, t, (d̄0, b0), (d̄1, b1))← A(pp);

m̄0 ← wVrfy(pp, c, t, d̄0);

m̄1 ← wVrfy(pp, c, t, d̄1)

:
‖b0‖ ≤ 2ρα ∧ ‖b1‖ ≤ 2ρα
∧m̄0 = hᵀ · b0 ∧ m̄1 = hᵀ · b1

∧proj(b0) 6= proj(b1) ∧ m̄0 = m̄1


Since both probabilities are thus bounded by negligible functions, the lemma follows. ut

4 Key-Homomorphic One-Time Signatures

In this section, we define and instantiate the notion of a key-homomorphic one-time signature
scheme that we will need in our final construction. Intuitively, a one-time signature is unforgeable
as long as at most one signature for some message is published under a given public key. We call
such a scheme homomorphic, if the a linear combination of separate signatures for the same message
verifies under the linear combination of the corresponding public keys, while still being unforgeable.
We present a construction of this primitive, which is similar to previous one-time signature schemes
by Boneh and Kim [BK20] and Lyubashevsky and Micciancio [LM08].

Definition 8 (One-Time Signature). Let R be a ring. A key-homomorphic one-time signature
scheme (KOTS) over R with public key length `opk and signature length `sig is defined by four PPT
algorithms KOTS = (Setup,KGen, Sign,Vrfy).

pp← Setup(1λ) The setup algorithm takes as input the security parameter and outputs public pa-
rameters.

(osk, opk)← KGen(pp) The key generation algorithm takes as input the public parameters and out-

puts a key pair with opk ∈ R`opkq .
σ ← Sign(pp, osk,m) The signing algorithm takes as input the public parameters, a one-time signing

key, and a message and outputs a signature σ ∈ R`sigq .
b← wVrfy(pp, opk,m, σ) The weak verification algorithm takes as input the public parameters, a

verification key, a message, and a candidate signature and outputs a bit indicating accep-
tance/rejection.

b← sVrfy(pp, opk,m, σ) The strong verification algorithm takes as input the public parameters,
a verification key, a message, and a candidate signature and outputs a bit indicating accep-
tance/rejection.

A one-time signature is (ρ,W)-homomorphically correct, if for all security parameters λ ∈ N,
` ∈ [ρ], messages m ∈ {0, 1}∗, and ring elements w1, . . . , w` ∈W it holds that

Pr

 pp← Setup(1λ);

(oski, opki)← KGen(pp);

σi ← Sign(pp, oski,m)

: sVrfy(pp,
∑̀
i=1

wi · opki,m,
∑̀
i=1

wi · σi) = 1

 = 1

Remark 2. Note that again the homomorphic correctness definition above implies regular correct-
ness of unaggregated signatures with ` = 1 and W = {1}.

18

As with the vector commitments from the previous section, we want our signature scheme to be
robustly homomorphic in the sense that the difference of two maliciously generated signatures under
malicious public keys will verify, if the individual signatures verify.

Definition 9. Let KOTS be a (ρ,W)-homomorphically correct one-time signature scheme over R
with public key length `opk and signature length `sig. KOTS is robustly homomorphic if for all λ ∈ N,

pp← Setup(1λ), m ∈ {0, 1}∗, opk0, opk1 ∈ R`opkq , and σ0, σ1 ∈ R`sigq such that

sVrfy(pp, opk0,m, σ0) = 1 and sVrfy(pp, opk1,m, σ1) = 1

it holds that

wVrfy(pp, opk0 − opk1,m, (σ0 − σ1)) = 1.

We define a multi-user version of (one-time) existential unforgeability, this will allow for a tighter
proof of the synchronized multi-signature scheme. The definition is further strengthened by allowing
the adversary to produce forgeries not just under one of the given public keys, but also under mildly
rerandomized public key.

Definition 10 (Multi-User Existential Unforgeability under Rerandomized Keys). A
(ρ,W)-homomorphically correct KOTS is W ′-existentially unforgeable under rerandomized keys
(EUF-RK), if for all security parameters λ, any T = poly(λ)(λ) ∈ N and all stateful PPT al-
gorithms A it holds that

Pr


pp← Setup(1λ);

∀i ∈ [T − 1]. (oski, opki)← KGen(pp);

(i∗,m∗, σ∗, w∗)← AS̃ign(·,·)(pp, opk0, . . . , opkT−1);

:
wVrfy(pp, w∗ · opki∗ ,m∗, σ∗) = 1

∧m∗ 6∈ Qi ∧ |Qi| ≤ 1 ∧ w∗ ∈W ′

 ≤ negl(λ),

where the oracle S̃ign(·, ·) is defined as S̃ign(i,m) := Sign(oski,m) and Qi denotes the set of messages
for which a signing query with index i has been made.

Our construction presented here closely follows a construction that appeared previously in the
work of Boneh and Kim [BK20].

Theorem 14. Let Rq = Zq[x]/〈xn + 1〉 be a polynomial ring parameterized by n = poly(λ) and
q = poly(λ). Let α be the smallest integer, such that

(
n
α

)
· 2α ≥ 2λ. Let W ′ = {w0 − w1 | w0, w1 ∈

Tα ∧w0 6= w1}. If the SISR,q,γ,(4ρ+4)αβs problem is hard and H : {0, 1}∗ → Tβs is collision resistant,
then the construction from Figure 3 is a (ρ,W)-homomorphically correct KOTS that is multi-user
existentially unforgeable under rerandomized keys.

Proof. The theorem follows from Lemma 15, Lemma 16, and Lemma 17.

The following three lemmas state that our construction satisfies the desired homomorphic prop-
erties and that it is unforgeable.

Lemma 15. Let βs, α, ρ ∈ N and let H : {0, 1}∗ → Tβs} be a hash function. Let βσ = 2ραβs. The
construction from Figure 3 is a (ρ, Tα)-homomorphically correct one time signature scheme.

19

Setup(1λ)

a←Rγq
return a

KGen(pp)

s0 ← Bγ1
s1 ← Bγβs
v0 := aᵀ · s0

v1 := aᵀ · s1

return ((s0, s1)(v0, v1))

Sign(pp, osk,m)

parse osk as (s0, s1)

σ := s0 ·H(m) + s1

return σ

wVrfy(pp, opk,m, σ)

return Vrfy(pp, opk,m, σ, 2βσ)

sVrfy(pp, opk,m, σ)

return Vrfy(pp, opk,m, σ, βσ)

Vrfy(pp, opk,m, σ, β′)

parse opk as (v0, v1)

if ‖σ‖ > β′

return 0

if aᵀ · σ 6= v0 ·H(m) + v1

return 0

return 1

Fig. 3. Description of the key-homomorphic one-time signature scheme. H is a collision-resistant hash function
mapping bit-strings to Tβs .

Proof. Let λ ∈ N, ` ∈ [ρ], m ∈ {0, 1}∗, and w1, . . . , w` ∈ Tα as in Definition 8. Let pp← Setup(1λ)
and for i ∈ [`], let (oski, opki)← KGen(pp) and σi = Sign(pp, oski,m). We need to show that both
checks in the verification algorithm go through for β′ = βσ. We first observe that the norm check
goes through: ∥∥∥∥∥

`−1∑
i=0

wi · σi
∥∥∥∥∥ =

∥∥∥∥∥
`−1∑
i=0

wi · (si0 ·H(m) + si1)

∥∥∥∥∥ (Def of Sign)

≤
`−1∑
i=0

∥∥wi · (si0 ·H(m) + si1)
∥∥ (Triangle Inequality)

≤
`−1∑
i=0

α · (
∥∥si0 ·H(m)

∥∥+
∥∥si1∥∥) (Lemma 1)

≤
`−1∑
i=0

α · (βs + βs) (Lemma 1)

=2`αβs ≤ 2ραβs = βσ.

It remains to verify that the second check goes through:

aᵀ ·
`−1∑
i=0

wi · σi =aᵀ ·
`−1∑
i=0

wi · (si0 ·H(m) + si1) (Def of Sign)

=

`−1∑
i=0

wi · (aᵀ · si0 ·H(m) + aᵀ · si1) (Distributivity)

=
`−1∑
i=0

wi · (vi0 ·H(m) + vi1) (Def of KGen)

20

=
(`−1∑
i=0

wi · vi0
)
·H(m) +

(∑̀
i=1

wi · vi1
)

The lemma statement thus follows. ut

Lemma 16. Let βs ∈ N and let H : {0, 1}∗ → Tβs be a hash function. Then the construction from
Figure 3 is a robustly homomorphic.

Proof. Let λ ∈ N, p ← Setup(1λ), m ∈ {0, 1}∗, opk0, opk1 ∈ Rq, and σ0, σ1 ∈ Rγq as specified in
Definition 9. To conclude that the scheme is robustly homomorphic we need to verify that both
checks in the verification algorithm go through for β′ = 2βσ.

Since both σ0 and σ1 strongly verify, it holds that∥∥(σ0 − σ1)
∥∥ ≤ ∥∥σ0

∥∥+
∥∥σ1

∥∥ ≤ 2βσ,

thus the norm check goes through. It remains to verify that the second check also goes through.

aᵀ · (σ0 − σ1) =aᵀ · σ0 − aᵀ · σ1

=(v0
0 ·H(m) + v0

1)− (v1
0 ·H(m) + v1

1) (Def of sVrfy)

=(v0
0 − v1

0) ·H(m) + (v0
1 − v1

1).

Therefore, the lemma statement follows. ut

Lemma 17. Let n, γ, q, βs, α, δ be positive integers with q prime and n a power of 2, such that
q > 16αβs, 2(3λ+δ)/nγ · q1/γ ≤ 3/2, and 22λ ≤ |Tβs | ≤ 22λ+δ. Let H : {0, 1}∗ → Tβs be a hash
function. Let βσ = 2ραβs. If the SISR,q,γ,(4ρ+4)αβs problem is hard and H is collision resistant, then
the construction from Figure 3 is existentially unforgeable under rerandomized keys.

Proof. Let A be an arbitrary adversary against the multi-user existentially unforgeability under
rerandomized keys with success probability ε = ε(λ). We construct an algorithm B that solves
(R, q, γ, (4ρ + 8)αβs)-SIS as follows. Given a ∈ Rγq , B chooses secret keys (si0, s

i
1) ∈ Bγ1 × B

γ
βs

uniformly at random for i ∈ [T − 1] and invokes A on public keys vi0, v
i
1, with vib := aᵀ · sib.

Whenever A sends a signing query i,m, B will respond by sending the honestly computed signature
σ := si0 ·H(m) + si1. Eventually A will then output a supposed forgery (i∗,m∗, σ∗, w∗) and B will
compute the signature on the same message as σ′ := w∗ · si∗0 · H(m∗) + w∗ · si∗1 . It then outputs
σ∗ − σ′.

To analyze the success probability of B, suppose that A outputs a valid forgery. We first note
that, if σ∗ 6= σ′, it holds that σ∗ − σ′ 6= 0 and further, since both signatures verify, that

aᵀ · (σ∗ − σ′) =aᵀ · σ∗ − aᵀ · σ′

=(w∗ · vi∗0 ·H(m) + w∗ · vi∗1)− (w∗ · vi∗0 ·H(m) + w∗ · vi∗1) = 0.

Since σ∗ weakly verifies, it must hold that ‖σ∗‖ ≤ 2βσ. Further, σ′ is an honestly computed
signature for a secret key rerandomized with w∗ ∈ W ′. Therefore, there exist w0, w1 ∈ Tα, such
that w∗ = w0 − w1 and it holds that∥∥σ′∥∥ =

∥∥∥w∗ · si∗0 ·H(m∗) + w∗ · si∗1
∥∥∥ (Def. of Sign)

21

=
∥∥∥(w0 − w1) · si∗0 ·H(m∗) + (w0 − w1) · si∗1

∥∥∥) (w∗ ∈W ′)

=
∥∥∥w0 · (si

∗
0 ·H(m∗) + si

∗
1)− w1 · (si

∗
0 ·H(m∗) + si

∗
1

∥∥∥) (Distributivity)

≤
∥∥∥w0 · (si

∗
0 ·H(m∗) + si

∗
1)
∥∥∥+

∥∥∥w1 · (si
∗

0 ·H(m∗) + si
∗

1)
∥∥∥ (Triangle Inequality)

≤2α ·
(∥∥∥si∗0 ·H(m∗)

∥∥∥+
∥∥∥si∗1 ∥∥∥) (Lemma 1)

=4αβs (Lemma 1)

It thus holds that ‖σ∗ − σ′‖ ≤ ‖σ∗‖ + ‖σ′‖ ≤ 2 · βσ + 4αβs = 4ραβs + 4αβs = (4ρ + 4)αβs. Thus
σ∗ − σ′ is always a valid solution to the SIS-instance. Thus, it remains to bound the probability,
that σ∗ = σ′.

For this, we observe by Lemma 18 that the secret key for whichA chooses to forge is information-
theoretically hidden from A among at least 2 possible secret keys. Once A outputs a valid forgery
(i∗,m∗, σ∗, w∗), the signing key used for the forgery becomes uniquely determined by Lemma 19
as long as H(m∗) 6= H(m), which is guaranteed with overwhelming probability by the collision
resistance of H. It follows that σ∗ 6= σ′ with probability at least 1/2 − negl(λ). Therefore, the
success probability of our reduction B is (1/2− negl(λ))ε and since the SIS problem is hard, ε must
be negligible in λ. ut

Lemma 18. Let n, γ, q, βs, δ be positive integers such that 2(3λ+δ)/nγ ·q1/γ ≤ 3/2 and 22λ ≤ |Tβs | ≤
22λ+δ, let R = Z[x]/(xn + 1). Then for any a ∈ Rγq and uniformly chosen (s0, s1) ∈ Bγ1 × B

γ
βs

it

holds with probability at least 1 − 2−λ that for every c ∈ Tβs there exists (s′0, s
′
1) ∈ Bγ1 × B

γ
βs

such
that (s′0, s

′
1) 6= (s0, s1), (aᵀ · s′0,aᵀ · s′1) = (aᵀ · s0,a

ᵀ · s1) and s′0 · c+ s′1 = s0 · c+ s1.

Proof. Our proof closely follows the proof from [LM08, Lemma 4.9]. We define a function fa,c that
maps any secret key (s0, s1) to a pair of the public key and signature of message c defined as
((aᵀ · s0,a

ᵀ · s1), s0 · c+ s1). We will show that the domain of this function is at least 23λ+δ times
larger than the range. The number of possible secret keys is 3nγ ·(2βs+1)nγ . The number of possible
signatures is at most (4βs + 1)nγ . For fixed values a, c, s0 · c + s1, we observe that once aᵀ · s0 is
fixed, the second component aᵀ · s1 = aᵀ · ((s0 · c + s1) − s0 · c) is uniquely determined. Thus for
a fixed signature, there are at most qn many possible public keys and therefore the range of fa,c is
at most (4βs + 1)nγ · qn. We observe that

3nγ · (2βs + 1)nγ

(4βs + 1)nγ · qn
≥ 3nγ · (2βs + 1)nγ

(4βs + 2)nγ · qn
=

3nγ

2nγ · qn

Using the inequality from the lemma statement, one can see that

2(3λ+δ)/nγ · q1/γ ≤ 3

2
=⇒ 23λ+δ · qn ≤

(3

2

)nγ
=⇒ 23λ+δ ≤ 3nγ

2nγ · qn

Using Lemma 4.1 from [LM08], the probability, over a uniformly chosen secret key, that there
exists (s′0, s

′
1) ∈ Bγ1 × B

γ
βs

such that (s′0, s
′
1) 6= (s0, s1), (aᵀ · s′0,aᵀ · s′1) = (aᵀ · s0,a

ᵀ · s1) and

s′0 ·c+s′1 = s0 ·c+s1 is at least 1−2−3λ−δ. By union bounding over all possible hash values c ∈ Tβs
and observing that Tβs ≤ 22λ+δ the lemma statement follows. ut

22

Lemma 19. Let n, γ, q, βs, α be positive integers with q prime and n a power of two such that
q > 16αβs and let R = Z[x]/(xn + 1). Let a ∈ Rγq , c0, c1 ∈ Tβs, w0, w1 ∈ Tα, and σ0, σ1 ∈ R be
arbitrary ring elements such that c0 6= c1 and w0 6= w1. Then there exists at most a single pair of
vectors (s0, s1) ∈ Bγ1 × B

γ
βs

, such that

s0 · c0 + s1 = σ0 and (w0 − w1) · (s0 · c1 + s1) = σ1.

Proof. Let (s0, s1) ∈ Bγ1 × B
γ
βs

and (s′0, s
′
1) ∈ Bγ1 × B

γ
βs

be two secret keys, such that

s0 · c0 + s1 = s′0 · c0 + s′1 =⇒ (s0 − s′0) · c0 + (s1 − s′1) = 0 (7)

and
(w0 − w1) · (s0 · c1 + s1) = (w0 − w1) · (s′0 · c1 + s′1)

=⇒ (w0 − w1)((s0 − s′0) · c1 + (s1 − s′1)) = 0
(8)

Equation 7 implies that
(w0 − w1)((s0 − s′0) · c0 + (s1 − s′1)) = 0.

Combined with Equation 8, we get that in Rq

(w0 − w1)(s0 − s′0)(c0 − c1) = 0 (9)

Since w0, w1 ∈ Tα, s0, s
′
0 ∈ B

γ
1 , and c0, c1 ∈ Tβs , it holds by Lemma 1 that∥∥(w0 − w1)(s0 − s′0)(c0 − c1)

∥∥ ≤ ‖w0 − w1‖1 · ‖c0 − c1‖1 ·
∥∥(s0 − s′0)

∥∥ ≤ 8αβs ≤
q − 1

2
.

Therefore Equation 9 also holds in R. Since w0 6= w1, c0 6= c1, and R is an integral domain, it
follows that s0 = s′0. By Equation 7, it must therefore hold that (s0, s1) = (s′0, s

′
1). ut

5 Synchronized Multi-Signatures

In this section, we present the main construction of this work. Roughly speaking, our construction
will produce a public key, which is a vector commitment to a vector of independent one-time
signature public keys. To sign a message at time t, the signer will publish an opening to the key
in vector position t and then sign the corresponding message with that key. The (non-interactive)
aggregation of multiple independent signatures for the same message, will heavily rely on the
homomorphic properties of the used vector commitment and one-time signature scheme. Let us
now first formally define what a synchronized multi-signature scheme is.

Definition 11 (Synchronized Multi-Signatures). A synchronized ρ-wise multi-signature
scheme for a bounded number of time periods is defined by five PPT algorithms (Setup,KGen,Sign
,Aggregate,Vrfy).

pp← Setup(1λ, 1τ) The setup algorithm takes as input the security parameter and the maximum
number of time periods and outputs public parameters pp.

(sk, pk)← KGen(pp) The key generation algorithm takes as input the public parameters and outputs
a key-pair.

σ ← Sign(pp, sk, t,m) The signing algorithm takes as input the public parameters, a secret key, a
time period t ∈ [τ − 1], and a message and outputs a signature.

23

σagg ← Aggregate(pp,P, t,m,S) The deterministic aggregation algorithm takes as input the public
parameters, a list of public keys, a time period t ∈ [τ − 1], a message, and a list of signatures,
where |P| = |S| ≤ ρ and outputs an aggregated signature or an error ⊥.

b← Vrfy(pp,P, t,m, σagg) The deterministic verifification algorithm takes as input the public pa-
rameters, a list of public keys, a time period t ∈ [τ − 1], a message, and an aggregated signature
and outputs a bit indicating acceptance/rejection.

A synchronized ρ-wise multi-signature scheme is correct, if for all λ, τ ∈ N, ` ∈ [ρ] \ {0},
t ∈ [τ − 1], and m ∈ {0, 1}∗ it holds that

Pr


pp← Setup(1λ, 1τ),

(ski, pki)← KGen(pp),P := (pk0, . . . , pk`−1)

σi ← Sign(pp, ski, t,m),S := (σ0, . . . , σ`−1)

σagg ← Aggregate(pp,P, t,m,S)

: Vrfy(pp,P, t,m, σagg) = 1

 = 1

Our notion of unforgeability allows for including signatures under adversarially chosen keys into
the aggregate signature.

Definition 12 (Unforgeability). A synchronized ρ-wise multi-signature scheme is unforgeable if
for all λ, τ ∈ N, and all PPT algorithms A it holds that

Pr

 pp←Setup(1λ, 1τ),

(sk∗, pk∗)←KGen(pp)

(P, t,m, σagg)←ASign(pp,sk∗,·,·)(pp, pk∗)

:

Vrfy(pp,P, t,m, σagg) = 1

∧pk∗ ∈ P ∧ @ σ . (t,m, σ) ∈ Q
∧∀t′. |Qt′ | ≤ 1

 ≤ negl(λ)

for some negligible function negl(λ), where Q denotes the set of signing queries made by A and Qt′
denotes the set of signing queries made for timeslot t′.

The following lemma will be useful for proving the security of our construction in Theorem 21,
specifically it will be useful during the security reduction to the underlying one-time signature
scheme. Intuitively, the lemma shows that two valid aggregate signatures that are created using
vectors of random weights that differ in one position, allow for extracting a valid one-time signature
and key.

Lemma 20. Let pp ← Setup(1λ, 1τ) and (sk∗, pk∗ = c∗) ← KGen(pp) be fixed. Let ` ∈ [ρ] \ {0},
t ∈ [τ − 1], m ∈ {0, 1}∗, P = (pk0, . . . , pk`−1) with pkj = pk∗, σ0

agg = (σ′0, d0), σ1
agg = (σ′1, d1), and

let H0, H1 be two random oracles, such that

(w0, . . . , w`−1) := H0(t,m,P)

(w0, . . . , wj−1, w
′
j , wj+1, . . . , w`−1) := H1(t,m,P)

with wj 6= w′j and

VrfyH0(pp,P, t,m, σ0
agg) = 1 and VrfyH1(pp,P, t,m, σ1

agg) = 1.

Then, for opk∗ ← HVC.wVrfy(ppHVC, c
∗ · (wj − w′j), t, d0 − d1) it holds that

opk∗ 6= ⊥ and KOTS.wVrfy(ppKOTS, opk
∗,m, σ′0 − σ′1) = 1.

24

Setup(1λ, τ)

ppKOTS ← KOTS.Setup(1λ)

ppHVC ← HVC.Setup(1λ, τ)

return pp := (ppKOTS, ppHVC, τ)

KGen(pp)

parse pp as (ppKOTS, ppHVC, τ)

foreach i ∈ [2τ − 1]

(oski, opki)← KOTS.KGen(ppKOTS)

OSS = (osk0, . . . , osk2τ−1)

OPK = (opk0, . . . , opk2τ−1)

c← HVC.Com(ppHVC,OPK)

return (sk, pk) := ((OSS,OPK), c)

Aggregate(pp,P, t,m,S)

parse S as ((σ′0, d0), . . . , (σ′`−1, d`−1))

(w0, . . . , w`−1) := H(t,m,P)

σ′ :=

`−1∑
i=0

wi · σ′i

d :=

`−1∑
i=0

wi · di

return σagg := (σ′, d)

Sign(pp, sk, t,m)

parse pp as (ppKOTS, ppHVC, τ)

parse sk as ((osk0, . . . , osk2τ−1),OPK)

σ′ ← KOTS.Sign(ppKOTS, oskt,m)

d← HVC.Open(ppHVC, c,OPK, t)

return σ := (σ′, d)

Vrfy(pp,P, t,m, σagg)

parse pp as (ppKOTS, ppHVC, τ)

parse P as (c0, . . . , c`−1)

parse σagg as (σ′, d)

if ` > ρ or t ≥ 2τ

return 0

(w0, . . . , w`−1) := H(t,m,P)

c :=

`−1∑
i=0

wi · ci

opk← HVC.sVrfy(ppHVC, c, t, d)

if opk = ⊥
return 0

else

return KOTS.sVrfy(ppKOTS, opk,m, σ
′)

Fig. 4. The synchronized multi-signature scheme Squirrel based on homomorphic vector commitments and key-
homomorphic one-time signatures.

Proof. Since
VrfyH0(pp,P, t,m, σ0

agg) = 1 and VrfyH1(pp,P, t,m, σ1
agg) = 1,

it must hold by definition of the verification algorithm that

HVC.sVrfy(ppHVC,
∑

i∈[`−1]

wi · ci, t, d0) = opk0

and
HVC.sVrfy(ppHVC, w

′
j · cj +

∑
i∈[`−1]\{j}

wi · ci, t, d1) = opk1

for opk0, opk1 6= ⊥. Thus by Definition 4 it holds that

opk∗ =HVC.wVrfy(ppHVC, c
∗ · (wj − w′j), t, d0 − d1)

=HVC.wVrfy(ppHVC,
(∑
i∈[`−1]

wi · ci
)
−
(
w′j · cj +

∑
i∈[`−1]\{j}

wi · ci
)
, t, d0 − d1)

=(opk0 − opk1).

25

Further, by definition of the verification algorithm it must also hold that

KOTS.sVrfy(ppKOTS, opk0,m, σ
′
0) = 1 and KOTS.sVrfy(ppKOTS, opk1,m, σ

′
1) = 1

Thus, by definition Definition 9 it holds that

KOTS.wVrfy(ppKOTS, opk
∗,m, σ′0 − σ′1)

=KOTS.wVrfy(ppKOTS, opk0 − opk1,m, σ
′
0 − σ′1) = 1 ut

The following theorem now states the security of our construction presented in Figure 4 under
the Ring-SIS assumption. The proof of the theorem is relatively long and technical. It essentially
works by applying the forking lemma to extract two different aggregated signatures on which
Lemma 20 can then be applied. The result of that can then be leveraged to attack either the position
binding of the homomorphic vector commitment or the unforgeability of the key-homomorphic one-
time signature. We stress again that, due to the use of the forking lemma, this proof does not apply
to quantum adversaries.

Theorem 21. Let Rq = Zq[x]/〈xn + 1〉 be a polynomial ring parameterized by n = poly(λ) and
q = poly(λ). Let W ⊆ Rq be a set and let W ′ := {w0 − w1|w0, w1 ∈ W}. Let KOTS be a (ρ,W ′)-

homomorphically correct one-time signature scheme with public keys in Rξq and let HVC be a (ρ,W)-

homomorphically correct vector commitment for domain Rξq. If KOTS is robustly homomorphic and
multi-user existentially unforgeable under rerandomized keys and HVC is robustly homomorphic and
position-binding, then Squirrel, shown in Figure 4, is a correct and unforgeable synchronized ρ-wise
multi-signature.

Proof. It is easy to verify, that the homomorphic correctness of the vector commitment and the
one-time signature scheme imply that the scheme is correct.

To prove unforgeability, let A be an arbitrary PPT algorithm that makes at most p = poly(λ)
queries to the random oracle and for which it holds that

Pr

 pp←Setup(1λ, ρ, τ);

(sk∗, pk∗)←KGen(pp);

(P∗, t∗,m∗, σ∗agg)←ASign(pp,sk∗,·,·)(pp, pk∗)

:

Vrfy(pp,P∗, t∗,m∗, σ∗agg) = 1

∧pk∗ ∈ P ∧ @ σ . (t∗,m∗, σ) ∈ Q
∧∀t′. |Qt′ | ≤ 1

 = ε(λ) (10)

We assume without loss of generality that A always queries (P∗, t∗,m∗) to the random oracle.

Claim 22. Let IG and B be as defined in Figure 5. Then it holds that

Pr

 ((pp, pk∗), (pp, sk∗))← IG(1λ);

h0, . . . , hp−1 ←W ;

(b, i, ω)← BSign(pp,)(x, h0, . . . , hp−1)

: b = 1

 = ε(λ).

Proof. The input generation algorithm IG performs exactly the same setup expected by A and then
B simply executes A, perfectly simulating the random oracle by lazy sampling. The only interest-
ing part of the simulation is the fact that B reorders the used randomness if a query includes the
challenge public key pk∗. This is necessary to later make use of Lemma 2 without modification,
but does not impact the simulation at all: the random values h0 through hp·ρ−1 are all distributed

26

IG(1λ)

pp← Setup(1λ, ρ, τ)

(sk∗, c∗)← KGen(pp)

return ((pp, pk∗), (pp, sk∗))

H(t,m,P)

if ((t,m,P),w) ∈ L
return w

parse P as (c0, . . . , c`−1)

w := (hiρ, . . . , hiρ+`−1)

for j ∈ [`− 1]

if cj = pk∗

w :=

(
w0, . . . , wj−1, w`−1,

wj+1, . . . , w`−2, wj

)
i := i+ 1

L := L ∪ ((t,m,P),w)

return w

BSign(pp,sk∗,·,·)(pp, c∗, h0, . . . , hp·ρ−1)

i := 0

L := ∅

(P∗, t∗,m∗, σ∗agg)← ASign(pp,sk∗,·,·),H(·,·,·)(pp, pk∗)

if VrfyH(·,·,·)(pp,P∗, t∗,m∗, σ∗agg) = 0

return (0, 0,⊥)

if pk∗ 6∈ P∗ or ∃ σ. (t,m, σ) ∈ Q
return (0, 0,⊥)

for t′ ∈ [2τ − 1]

if |Qt′ | > 1

return (0, 0,⊥)

for j ∈ [i− 1]

((tj ,mj ,Pj),wj) = Lj
if (tj ,mj ,Pj) = (t∗,m∗,P∗)

return

(
1, jρ+ |P∗| − 1,

(P∗, t∗,m∗,
σ∗agg,wj

))
return (0, 0,⊥)

Fig. 5. The setup for the forking lemma based on attacker A.

independently and the swapping takes place independently of their values. Therefore the distribu-
tion of the random oracle answers is identical with or without swapping. After executing A, the
algorithm B checks whether A would have been successful according to Definition 12 and outputs
b = 1 iff A was successful. Therefore, the claim follows. ut

By combining Claim 22 with Lemma 2 we can conclude that

ε ≤ p

|Tα|
+

√√√√p · Pr

[
((pp, pk∗), (pp, sk∗))← IG(1λ);

(b, ω0, ω1)← F
Sign(pp,sk∗,·,·)
B (pp, pk∗)

: b = 1

]
. (11)

It remains to bound the probability

Pr

[
((pp, pk∗), (pp, sk∗))← IG(1λ);

(b, ω0, ω1)← F
Sign(pp,sk∗,·,·)
B (pp, pk∗)

: b = 1

]
For any output (1, (P0, t0,m0, (σ0, d0),w0), (P1, t1,m1, (σ1, d1),w1)) of the forking algorithm

it holds by definition of B and FB that (P0, t0,m0) = (P1, t1,m1) because these are inputs to the
random oracle before the fork occurs. To improve readability we thus introduce a modified forking
algorithm F̃B defined in Figure 6. Obviously, it holds that

Pr

[
((pp, pk∗), (pp, sk∗))← IG(1λ);

(b, ω0, ω1)← F
Sign(pp,sk∗,·,·)
B (pp, pk∗)

: b = 1

]

= Pr

[
((pp, pk∗), (pp, sk∗))←IG(1λ);

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)←F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

: b = 1

]
(12)

27

F̃
Sign(pp,sk∗)
B (pp, pk∗)

(b, (P0, t0,m0, σ0
agg,w

0), (P1, t1,m1, σ1
agg,w

1))← F
Sign(pp,sk∗,·,·)
B (pp, pk∗)

return (b,P0, t0,m0, σ0
agg,w

0, σ1
agg,w

1)

Fig. 6. The modified forking algorithm.

Let (b,P, t,m, (σ0, d0),w0, (σ1, d1),w1) ← F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗) be an execution of the modified

forking algorithm with

pk∗ = c∗ and sk∗ = ((osk∗0, . . . , osk
∗
2τ−1), (opk∗0, . . . , opk

∗
2τ−1)).

Let j denote the index, such that Pj = pk∗. We then define

w̃ := (w0
j − w1

j) and õpk := HVC.wVrfy(ppHVC, w̃ · c∗, t, (d0 − d1)).

The probability from Equation 12 can then be split as

Pr

[
((pp, pk∗), (pp, sk∗))←IG(1λ);

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)←F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

: b = 1

]

= Pr

[
((pp, pk∗), (pp, sk∗))←IG(1λ);

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)←F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

:
õpk = w̃ · opk∗t
∧b = 1

]

+ Pr

[
((pp, pk∗), (pp, sk∗))←IG(1λ);

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)←F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

:
õpk 6= w̃ · opk∗t
∧b = 1

] (13)

and we can bound the two parts separately.
Consider R0 described in Figure 7 as an adversary against the position binding of HVC. To

analyse the success probability of R0, consider an execution (c, t, d0, d1)← R0(ppHVC, τ). According
to the definitions above, it holds that

HVC.wVrfy(ppHVC, c, t, d0)

=HVC.wVrfy(ppHVC, w
0
j · c∗ − w1

j · c∗, t0, w0
j · Open(ppHVC, c,OPK

∗, t)− w0
j · Open(ppHVC, c,OPK

∗, t))

=HVC.sVrfy(ppHVC, w
0
j · c∗, t0, w0

j · Open(ppHVC, c,OPK
∗, t))

− HVC.sVrfy(ppHVC, w
1
j · c∗, t0, w1

j · Open(ppHVC, c,OPK
∗, t)) (Robust Homomorphism)

=w0
j · opk∗t − w1

j · opk∗t = w̃ · opk∗t (Homomorphic correctness)

and
HVC.wVrfy(ppHVC, c, t, d1) = HVC.wVrfy(ppHVC, w̃ · c∗, t, (d0 − d1)) = õpk

We then have that

Pr


ppHVC ← HVC.Setup(1λ, τ);

(c, t, d0, d1)←R0(pp);

m0 ← HVC.wVrfy(pp, c, t, d0);

m1 ← HVC.wVrfy(pp, c, t, d1)

: m0 6= m1 ∧ ⊥ 6∈ {m0,m1}


28

R0(ppHVC, τ)

ppKOTS ← KOTS.Setup(1λ)

pp := (ppKOTS, ppHVC, τ)

((OSS∗,OPK∗), c∗)← KGen(pp)

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)← F̃
Sign(pp,(OSS∗,OPK∗),·,·)
B (pp, c∗)

if b = 1

parse P as (c0, . . . , c`)

parse σ0
agg as (σ0, d0)

parse σ1
agg as (σ1, d1)

for j ∈ [`− 1]

if cj = c∗

return (w̃ · c∗, t, w̃ · Open(ppHVC, c
∗,OPK∗, t), (d0 − d1))

return ⊥

Fig. 7. A reduction that uses the forking algorithm F̃B to attack the position binding of HVC.

= Pr


((pp, pk∗), (pp, sk∗))← IG(1λ);

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)← F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗);

m0 := w̃ · opk∗t ;m1 := õpk

:
m0 6= m1

∧⊥ 6∈ {m0,m1}

 (14)

= Pr

[
((pp, pk∗), (pp, sk∗))← IG(1λ);

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)← F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

: õpk 6= w̃ · opk∗t ∧ õpk 6= ⊥

]
(15)

≥Pr

[
((pp, pk∗), (pp, sk∗))← IG(1λ);

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)← F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

: õpk 6= w̃ · opk∗t ∧ b = 1

]
(16)

where Equation 14 follows because the inputs R0 provides to the forking algorithm are distributed
identically to those sampled by IG. Equation 15 follows because by the above observation (w0

j −
w1
j) · opk

∗
t cannot be ⊥. Finally Equation 16 follows from Lemma 20 and the fact that the forking

algorithm only outputs b = 1 if both multi-signatures verify.

Since the homomorphic vector commitment is assumed to be position binding, it thus follows
that

negl(λ) ≥ Pr

[
((pp, pk∗), (pp, sk∗))←IG(1λ);

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)←F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

:
õpk 6= w̃ · opk∗t
∧b = 1

]
(17)

Consider now R1 described in Figure 8 as an adversary against the existential unforgeability
under rerandomized keys of KOTS. We analyze the success probability of R1 by observing that

Pr


ppKOTS ← KOTS.Setup(1λ);

∀i ∈ [T − 1]. (oski, opki)← KOTS.KGen(pp);

(i∗,m∗, σ∗, w̃)← RS̃ign(·,·)
1 (ppKOTS, pp,OPK);

:
KOTS.wVrfy(pp, ·̃opki∗ ,m∗, σ∗) = 1

∧m∗ 6∈ Qi∗ ∧ w̃ ∈W ′

 (18)

29

R1(ppKOTS, opk0, . . . opk2τ−1)

ppHVC ← HVC.Setup(1λ)

pp := (ppKOTS, ppHVC, τ)

OPK∗ := (opk0, . . . , opk2τ−1)

c∗ ← HVC.Com(ppHVC,OPK∗)

(b,P, t,m, σ0
agg,w

0, σ1
agg,w

1)← F̃
S̃ign(·,·)
B (pp, c∗)

if b = 1

parse P as (c0, . . . , c`)

parse σ0
agg as (σ0, d0)

parse σ1
agg as (σ1, d1)

for j ∈ [`− 1]

if cj = c∗

return (t,m, (σ0 − σ1), w0
j − w1

j)

return ⊥

Fig. 8. A reduction that uses the forking algorithm F̃B to attack the multi-user existential unforgeability under
rerandomized keys of KOTS.

≥Pr


((pp, pk∗), (pp, sk∗))← IG(1λ);b,P, t,m,σ0

agg,w
0,

σ1
agg,w

1

← F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

:
KOTS.wVrfy(pp, w̃ · opkt,m, σ0 − σ1) = 1

∧(@σ′. (m, t, σ′) ∈ Q)

 (19)

≥Pr


((pp, pk∗), (pp, sk∗))← IG(1λ);b,P, t,m,σ0

agg,w
0,

σ1
agg,w

1

← F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

:

õpk = w̃ · opkt
∧KOTS.wVrfy(pp, õpk,m, σ0 − σ1) = 1

∧(@σ′. (m, t, σ′) ∈ Q)

 (20)

≥Pr


((pp, pk∗), (pp, sk∗))← IG(1λ);b,P, t,m,σ0

agg,w
0,

σ1
agg,w

1

← F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

:
õpk = w̃ · opkt∗

∧b = 1

 . (21)

Here Equation 19 follows by observing that the inputs R1 provides to the forking algorithm are
distributed identically to those sampled by IG and R1 is successful whenever the difference of the
two signatures verifies. Finally, Equation 21 follows from Lemma 20 and the fact that the forking
algorithm only outputs b = 1 if both multi-signatures verify.

30

Since KOTS is assumed to be multi-user existentially unforgeable under rerandomized keys, it
thus follows that

negl(λ) ≥ Pr


((pp, pk∗), (pp, sk∗))← IG(1λ);b,P, t,m,σ0

agg,w
0,

σ1
agg,w

1

← F̃
Sign(pp,sk∗,·,·)
B (pp, pk∗)

:
õpk = w̃ · opkt∗

∧b = 1

 (22)

Combining Equations 17 and 22 with Equation 11 we can conclude that

ε ≤ p

|Tα|
+
√
p · negl(λ)

which implies that ε is negligible and concludes the proof. ut

6 Parameters and performances

Let us first set up our stage with Ethereum blockchain as a running example. It is reported that there
are over 300,000 nodes in total [MEJ20], and an Ethereum block is agreed by around 2500 active
validators within 10 seconds [Eth22]. We therefore target ρ = 4096 signature aggregations which is
more than enough to aggregate all the votes from those validators. To illustrate the scalability of
our scheme, we also present data for ρ = 1024 and 8192, respectively.

Our synchronized multi-signature scheme “Squirrel” uses a time parameter τ , which also defines
the height for our labeled binary tree. We give parameters for τ ∈ {21, 24, 26}, that roughly translate
to 0.66, 5 and 21 years of life time for public keys, if we assume each block takes 10 seconds to
generate.

6.1 Parameters and space complexity

ρ 1024 4096 8192

n 512

qHVC 12289 61441 249857

qKOTS 6694913 28930049 57673729

α 20

βs 44

βagg 2048 4096 8192

γ 41 44 46
Table 2. Parameter sets

We propose three parameter sets each targeting 112 bits security as in Table 2. For the rest
of the section, we will use ρ = 4096 as an example. We set qKOTS = 28930049 and qHVC = 61441

respectively; both are NTT friendly for our choice of n = 512. This implies that our bin(·) maps
an RqHVC element into 16 elements; and maps an RqKOTS element into 25 elements. Note that bin(·)
does not map a random elements in RqHVC uniformly to binary polynomials space; neither does our
scheme require such a uniformity. It takes ndlog qHVCe = 8192 bits, or 1 kilobyte to represent an
element in RqHVC . A Squirrel signature consists of three components:

31

– an HVC decommitment of 2τ path nodes and adjacent nodes, where each node consists of
dlog qHVCe many RqHVC elements with bounded norm βagg;

– a KOTS public key and its sibling public key, which are hashed into the committed leaves. This
consists of 4dlog qKOTSe many RqHVC elements with bounded norm βagg;

– a KOTS signature, that consists of γ many RqKOTS elements with bounded norm βσ.

For a fresh signature (prior to aggregation), the polynomials in each node are all binary, derived
from a decomposition of a single RqHVC element. It is therefore sufficient to represent the node with
1 kilobytes of data. In addition, since the signature has not been aggregated, one will be able to
derive the nodes along the path with the adjacent leaf and τ adjacent nodes. This reduces the
required number of nodes to τ , excluding the root (a.k.a. the public key). In total, we require τ
kilobytes storage for a path when the signature is not aggregated.

During aggregation, we multiply the binary polynomials from different users but at a same
position from the tree with randomizers, and sum up the products. This gives us a total number
of 2τdlog qHVCe polynomials, where each polynomial has an infinity norm bound αρ. In practice,
it is possible to derive a better bound βagg = 4096 if we assume that the polynomials in the
decommitments are all binary. We defer this discuss to Section 6.3. An aggregated path requires a
maximum 2τdlog qHVCen(log βagg + 1) bits, or 26τ KB of data.

For the KOTS, prior to aggregation, each public key consists of 2 RqKOTS elements, of a combined
size of 3.1 KB. During aggregation, each public key is decomposed into dlog qKOTSe many RqHVC
elements. The aggregated polynomials also have a same norm bound of βagg. That is, an aggregated
KOTS public key requires a maximum 2dlog qKOTSen(log βagg + 1) bits, or 40.6 KB of data.

A non-aggregated KOTS signature requires γ ring elements with a norm bound of 2βs, or
nγ(dlog(2βs)e + 1) = 22 KB. We defer to Section 6.3 for how βs is chosen. An aggregated KOTS
signature requires γ ring elements with a norm bound βσ = 2ραβs, which is nγ(dlog(βσ)e+ 1) = 66
KB.

Putting everything together, our scheme’s public key is the root of the tree that uses 1 kilobytes.
An un-aggregated signature requires τ + 28 kilobyte, consists of the path to the root, which is τ
nodes; two KOTS public keys of 6.2 kilobytes, and a KOTS signature that requires 22 KB. An
aggregated signature requires 26τ + 147 kilobytes, consists of the HVC decommitment, which is 2τ
number of nodes; two aggregated KOTS public keys of 81.2 KB, and a KOTS signature of 66 KB.

We summarize the characteristics of our scheme in Table 3.

ρ: #sig τ : tree height Life cycle PK size Sig size Max AggSig size Improvementa

21 8 months 45 KB 572 KB 14%
1024 24 5 years 0.9 KB 48 KB 635 KB 5%

26 21 years 50 KB 677 KB

21 8 months 49 KB 693 KB 74%
4096 24 5 years 1 KB 52 KB 771 KB 71%

26 21 years 54 KB 823 KB 69%

21 8 months 53 KB 762 KB 85%
8192 24 5 years 1.1 KB 57 KB 850 KB 84%

26 21 years 59 KB 908 KB 83%
a Improvement over ρ signatures of Falcon-512 with signature size of 666 bytes.

Table 3. Space complexity of Squirrel.

32

6.2 Computational complexity and benchmarks

We implement our scheme and release the source code to the open domain6. We report benchmark
result for the case of ρ ∈ {1024, 4096} and τ = 21; and give estimations for performance of τ = 24
and 26. We run the benchmark over an AMD 5900x CPU with 12 cores, and with parallelization
option turned on.

ρ = 1024 ρ = 4096

RqHVC NTT 4.1 µs 6.9 µs

RqHVC NTT mul. 197 ns 260 ns

RqKOTS NTT 5.8 µs 5.43 µs

RqKOTS NTT mul. 508 ns 413 ns

ter-bin mul. 1.5 µs

HVC hash 69 µs 107 µs

KOTS hash 111 µs 143 µs

gen randomizer 1.8 µs

path randomization 274 µs 283 µs

1024 paths aggregation 680 ms 834 ms

1024 paths batch verifiction 20 ms 30 ms
Table 4. Microbenchmarks

Microbenchmarks We report the computation cost in Table 4. The main units of computations
are

– A generic RqHVC multiplication consists of converting both input polynomials into their NTT
form (O(n log n)), and conducting a coordinate-wise multiplication (O(n)), and convert the
result back to integer polynomials. Denote this cost by c1.

– A generic RqKOTS multiplication consists of converting both input polynomials into their NTT
form (O(n log n)), and conducting a coordinate-wise multiplication (O(n)), and convert the
result back to integer polynomials. Denote this cost by c2.

– Multiply a binary polynomial with a fixed weight ternary polynomial. Denote this cost by c3.

As examples, our hash function takes 2dlog qHVCe number of generic ring multiplications; randomizing
a node takes dlog qHVCe ternary ring multiplications. Concretely, our implementation reports that

– Hashing two child nodes into a parent node takes 107 microsecond;
– Hashing a KOTS public key into a leaf node takes 143 microsecond.

This is a lot better than 2 log q number of multiplications due to a) parallelization, and b) the fact
that hash parameters are already in the NTT form already; and that we only need to perform a
single inverse NTT at the end.

Full Picture Similar to hash based signature schemes [BDH11, BHK+19], the key generation
stage is the most expensive one in our case. It involves generating 2τ KOTS keys, each costs 2γ
generic ring multiplications; and the whole tree, at a cost of 2τ node hashes and 2τ leaf hashes.
Overall cost is 2τ (2dlog qHVCe+ 2dlog qKOTSe)c1 + 2τ+1γc2 = 2τ+1((dlog qHVCe+ dlog qKOTSe)c1 + γc2).

6 https://github.com/zhenfeizhang/squirrel

33

https://github.com/zhenfeizhang/squirrel

ρ τ

Offline signing Offline signing with cache

amortized worst-case
h = 12 h = 16 h = 20

213 nodes 217 nodes 221 nodes

4dlog qHVCec1 2τ+1dlog qHVCec1 2τ−h+3dlog qHVCec1

1024

storage 7 MB 112 MB 1.8 GB
21 43 sec 42 ms 2.6 ms 164 µs
24 41 µs 6 min 336 ms 21 ms 1.3 ms
26 23 min 1.3 sec 83 ms 5.2 ms

4096

storage 8 MB 128 MB 2 GB
21 52 sec 50 ms 3.1 ms 195 µs
24 48 µs 7 min 0.4 sec 25 ms 1.6 ms
26 28 min 1.6 sec 99 ms 6.2 ms

Table 5. Estimated cost with cache

ρ τ
Key Generation Online signing Aggregation∗ Verification∗

2τ+1((dlog qHVCe+ dlog qKOTSe)c1 + γc2) γc2 ρc2 + ρ(2τ + 2)dlog qHVCec3 2dlog qHVCeτc1 + (2γ + ρ)c2

21 4 min 1.2 sec 19.5 ms

1024 24† 32 min 2.1 ms 1.4 sec 22 ms

26† 2 hour 1.5 sec 24 ms

21 4.5 min 1.4 sec 31 ms

4096 24† 36 min 2.3 ms 1.6 sec 36 ms

26† 2.4 hour 1.8 sec 38 ms
∗: Aggregate and batch verify 1024 signatures. †: Estimations based on extrapolating τ = 21 data.

Table 6. Benchmark results and estimations

Squirrel is an online/offline signature scheme. A speed sensitive signer may store the whole tree
and avoid the entire offline phase. The online signing time becomes simply generating the OTS
signature, which takes γ generic ring multiplications at a cost of γc2. The signer will need to store
the whole tree which consists of 2τ nodes and 2τ leaves, which translates into 5.1 gigabytes, 41
gigabytes and 164 gigabytes of data for each of the parameter settings respectively.

A space sensitive signer may store the last used path (and its adjacent nodes); and update it to
its current path on-the-fly. Observe that any node will not be computed more than twice: the first
time is during tree generation, and the second time is when it is firstly required in a path (and its
adjacent nodes). Once a node is no longer required by a path nor the adjacent nodes, it will never
be required again. Therefore, the amortized cost for each signatures will be 2 hashes (total number
of nodes divided by total number of leaves). Since our hash function uses 2dlog qHVCe = 32 generic
ring multiplications, the amortized cost is 64 ring multiplications to update the path, and γ = 44
generic ring multiplications for KOTS signing.

In practice, the real bottleneck is the worst-case scenario, in which the signer will need to
generate the signature for leaf with index 2τ−1 (i.e., the first leaf of the second sub-tree) within a
block interval. Concretely, the signer will need to generate 2τ − 2 nodes, or equivalently, conduct
(2τ+1 − 4)dlog qHVCe ≈ 2τ+1dlog qHVCe generic ring multiplications. There are a few straightforward
method to alleviate the situation. First, as an online/offline scheme, the signer always knows exactly
when it will use leaf 2τ−1. Therefore, it will be able to pre-compute this path offline. Secondly, if the
signer is allowed some cache, it can store the top h levels of the tree, or 2h+1 − 2 nodes, excluding
the root. Accordingly, at the worst-case, the signer will need to online compute two sub-trees whose
roots are the nodes at h-th level. That is 2(2τ−h+1−1) ≈ 2τ−h+2 nodes, or 2τ−h+3dlog qHVCe generic
ring multiplications in total. It also implies that the worst-case complexity will be reduced by half

34

for every additional level of nodes we cache. Table 6 gives a rough estimation of cache versus signing
time.

To aggregate ρ signatures, the aggregator will need to multiply each path with some randomizers.
There are ρ(2τ + 2) number of nodes, leaves and KOTS public key nodes, combined; each requires
dlog qHVCe ternary ring multiplications. The aggregator will also need to randomize-then-aggregate
KOTS signatures, which also incurs ρ generic ring multiplications. The total cost will be ρc2 +
ρ(2τ + 2)dlog qHVCec3.

To verify an (aggregated) signature, the verifier will need to check that the path is valid with
regard to the root of the tree. This takes 2dlog qHVCeτ number of multiplications to check the path;
and ρ number of multiplications to aggregate the public keys. In addition, the KOTS verification
also uses 2γ ring multiplications.

6.3 Security estimation

Combinatorials First we need the randomizers to be sampled from a large space as per Lemma 2,
i.e.,

(
n
α

)
2α ≥ 2λ. Setting α = 20, i.e., the randomizer are sampled from the set of ternary polynomials

with 20 non-zero entries, we have
(
n
α

)
· 2α > 2λ.

Then, we discuss how we arrived to βagg = 4096. We assume that the aggregator may be
malicious, that is, it can cherry pick their signatures so that, for a given node (i.e., an Rq element)
for a given path, all the signatures will have 1s at a same index, Even so, the randomizers are outputs
from the random oracle, where there are α number of ±1s with equal probability. Therefore, for an
aggregated polynomial, each coefficient can be seen as a sum of αρ number of random elements in
{−1, 1}. We need to set a bound βagg such that, the probability that all coefficients for all nodes
are bounded by βagg in absolute value with overwhelming probability, i.e.,

2τdlog qHVCen
(

Pr
[
∀i ∈ [αρ], bi ← {−1, 1} :

∣∣∣ αρ∑
i=1

bi

∣∣∣ ≥ βagg]) ≤ 2−λ

For α = 20 we are able to set βagg = 4096. Additionally, we require that 2βagg < qHVC/2 so that in
Lemma 9 the extracted vector is indeed a short solution to the SIS problem.

The messages are hashed into Tβs . Therefore, we need to set βs = 44 so that |Tβs | > 22λ. Note
that we need (4ρ + 8)αβs < qKOTS/2 so that in Lemma 17 the extracted vector is indeed a short

solution to the SIS problem. Per Lemma 17, we then need to set γ = 44 such that 2(3λ+1)/nγ ·q1/γ
KOTS ≤

3/2.

Lattice attacks For a root Hermite factor c ≤ 1.005, the LWE-estimator [APS15] reported
that BKZ [CN11] will be able to find a short vector for a block size of 286. Such a lattice re-
duction requires 112 bits operations under the realistic model in [ADPS16], which estimates the
SVP cost from [BDGL16]. For a BKZ of block size β, the cost in this model is estimated by
20.292β+16.4+log(#SVP calls). This consists of the number of operations in a single sieving (20.292β), a
constant factor from experiments (216.4) attributed to per operation cost, and the number of SVP
calls. Note that [ADPS16] also proposed a core-sieving-SVP model that ignores all the constant
factors (216.4 per operations, and the number of svp calls). We do not adopt this model.

Our HVC scheme requires that the SISR,q,2dlog qHVCe,4ρα problem is hard as per Theorem 5 and
Lemma 9, for qHVC = 61441, ρ ∈ [4096] and α = 20. An SIS becomes easier when the target solution

35

is longer, therefore it is sufficient to analyze the case ρ = 4096. This instantiation yields a lattice
of dimension (2dlog qHVCe+ 1)n and determinant qnHVC. As per [MR09], a lattice reduction algorithm
will find a short vector of 22

√
n log qHVC log c for some root Hermite factor c that depends on the lattice

reduction algorithm. In the meantime, the vector we are searching for has an infinity norm of βagg,
which means its `2 norm is bounded by tHVC =

√
2n log qHVCβagg. With our choice of parameters, a

lattice reduction algorithm will be able to find this target vector for c < 1.005.
Last, we analysis the hardness of the SISR,qKOTS,γ,(4ρ+8)αβs assumption for our KOTS scheme

as per Lemma 17. This follows a similar analysis as the above SIS analysis. Here, we have a
lattice of dimension (γ + 1)n and determinant qnKOTS. An aggregated signature has an infinity norm
bound of (4ρ + 8)αβs, which implies tHOST =

√
γn(4ρ + 8)αβs in `2 norm. We also require that

tHOST < cdim22
√
n log qKOTS log c so that BKZ cannot solve this instance of SIS problem. With our

parameter sets we have c < 1.004.

References

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange - A
new hope. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016: 25th USENIX Security
Symposium, pages 327–343, Austin, TX, USA, August 10–12, 2016. USENIX Association. 6.3

AGH10. Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized aggregate signatures: new defini-
tions, constructions and applications. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 2010: 17th Conference on Computer and Communications Security, pages 473–484,
Chicago, Illinois, USA, October 4–8, 2010. ACM Press. 1.1

Ajt99. Miklós Ajtai. Generating hard instances of the short basis problem. In Jiŕı Wiedermann, Peter van Emde
Boas, and Mogens Nielsen, editors, ICALP 99: 26th International Colloquium on Automata, Languages
and Programming, volume 1644 of Lecture Notes in Computer Science, pages 1–9, Prague, Czech Republic,
July 11–15, 1999. Springer, Heidelberg, Germany. 1.4

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
Cryptology ePrint Archive, Report 2015/046, 2015. https://eprint.iacr.org/2015/046. 6.3

BCJ08. Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In Peng Ning, Paul F. Syverson, and Somesh
Jha, editors, ACM CCS 2008: 15th Conference on Computer and Communications Security, pages 449–
458, Alexandria, Virginia, USA, October 27–31, 2008. ACM Press. 1

BDD+00. Mike Burmester, Yvo Desmedt, Hiroshi Doi, Masahiro Mambo, Eiji Okamoto, Mitsuru Tada, and Yuko
Yoshifuji. A structured ElGamal-type multisignature scheme. In Hideki Imai and Yuliang Zheng, editors,
PKC 2000: 3rd International Workshop on Theory and Practice in Public Key Cryptography, volume 1751
of Lecture Notes in Computer Science, pages 466–483, Melbourne, Victoria, Australia, January 18–20,
2000. Springer, Heidelberg, Germany. 1

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry.
Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 41–69, Seoul,
South Korea, December 4–8, 2011. Springer, Heidelberg, Germany. 1.3

BDGL16. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor search-
ing with applications to lattice sieving. In Robert Krauthgamer, editor, 27th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 10–24, Arlington, VA, USA, January 10–12, 2016. ACM-SIAM.
6.3

BDH11. Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A practical forward secure signature
scheme based on minimal security assumptions. In Bo-Yin Yang, editor, Post-Quantum Cryptography -
4th International Workshop, PQCrypto 2011, pages 117–129, Tapei, Taiwan, November 29 – December 2
2011. Springer, Heidelberg, Germany. 6.2

BDN18. Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains. In
Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part II,
volume 11273 of Lecture Notes in Computer Science, pages 435–464, Brisbane, Queensland, Australia,
December 2–6, 2018. Springer, Heidelberg, Germany. 1

36

https://eprint.iacr.org/2015/046

BGLS02. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. Cryptology ePrint Archive, Report 2002/175, 2002. https://eprint.iacr.org/

2002/175. 1
BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld, and Peter

Schwabe. The SPHINCS+ signature framework. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Computer and Communications
Security, pages 2129–2146. ACM Press, November 11–15, 2019. 6.2

BK20. Dan Boneh and Sam Kim. One-time and interactive aggregate signatures from lattices. https://crypto.
stanford.edu/~skim13/agg_ots.pdf, 2020. 4, 4

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd,
editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science,
pages 514–532, Gold Coast, Australia, December 9–13, 2001. Springer, Heidelberg, Germany. 1.2

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006:
13th Conference on Computer and Communications Security, pages 390–399, Alexandria, Virginia, USA,
October 30 – November 3, 2006. ACM Press. 1, 1.3, 2

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003: 6th International Workshop on
Theory and Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science,
pages 31–46, Miami, FL, USA, January 6–8, 2003. Springer, Heidelberg, Germany. 1

BTT22. Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. Musig-l: Lattice-based multi-signature with
single-round online phase. In Yevgeniy Dodis and Tom Shrimpton, editors, Advances in Cryptology –
CRYPTO 2022, Lecture Notes in Computer Science, Santa Barbara, CA, USA, August 2022. Springer,
Heidelberg, Germany. 1

CN11. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon Lee and
Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 1–20, Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg, Germany.
6.3

DGNW20. Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. Pixel: Multi-signatures for consen-
sus. In Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020: 29th USENIX Security
Symposium, pages 2093–2110. USENIX Association, August 12–14, 2020. 1, 1.1

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2018(1):238–268, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/839. 1.1

DOTT21. Ivan Damg̊ard, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-of-n and multi-
signatures and trapdoor commitment from lattices. In Juan Garay, editor, PKC 2021: 24th International
Conference on Theory and Practice of Public Key Cryptography, Part I, volume 12710 of Lecture Notes
in Computer Science, pages 99–130, Virtual Event, May 10–13, 2021. Springer, Heidelberg, Germany. 1

EGM90. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital schemes. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
263–275, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany. 1.1

ES16. Rachid El Bansarkhani and Jan Sturm. An efficient lattice-based multisignature scheme with applications
to bitcoins. In Sara Foresti and Giuseppe Persiano, editors, CANS 16: 15th International Conference on
Cryptology and Network Security, volume 10052 of Lecture Notes in Computer Science, pages 140–155,
Milan, Italy, November 14–16, 2016. Springer, Heidelberg, Germany. 1

Eth22. EtherScan. Etherscan.io. https://etherscan.io/nodetracker, 2022. 6
FH19. Masayuki Fukumitsu and Shingo Hasegawa. A tightly-secure lattice-based multisignature. In 6th ASIA

Public-Key Cryptography Workshop, page 3–11, Auckland, New Zealand, 2019. Association for Computing
Machinery. 1

FH20. Masayuki Fukumitsu and Shingo Hasegawa. A lattice-based provably secure multisignature scheme in
quantum random oracle model. In Khoa Nguyen, Wenling Wu, Kwok-Yan Lam, and Huaxiong Wang,
editors, ProvSec 2020: 14th International Conference on Provable Security, volume 12505 of Lecture Notes
in Computer Science, pages 45–64, Singapore, November 29 – December 1, 2020. Springer, Heidelberg,
Germany. 1

GR06. Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Moti Yung, Yevgeniy Dodis,
Aggelos Kiayias, and Tal Malkin, editors, PKC 2006: 9th International Conference on Theory and Practice

37

https://eprint.iacr.org/2002/175
https://eprint.iacr.org/2002/175
https://crypto.stanford.edu/~skim13/agg_ots.pdf
https://crypto.stanford.edu/~skim13/agg_ots.pdf
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://etherscan.io/nodetracker

of Public Key Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 257–273, New York,
NY, USA, April 24–26, 2006. Springer, Heidelberg, Germany. 1.1

HW18. Susan Hohenberger and Brent Waters. Synchronized aggregate signatures from the RSA assumption. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II,
volume 10821 of Lecture Notes in Computer Science, pages 197–229, Tel Aviv, Israel, April 29 – May 3,
2018. Springer, Heidelberg, Germany. 1.1

IN83. Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable for digital multisigna-
tures. NEC Research & Development, (71):1–8, 1983. 1

KD20. Meenakshi Kansal and Ratna Dutta. Round optimal secure multisignature schemes from lattice with
public key aggregation and signature compression. In Abderrahmane Nitaj and Amr M. Youssef, editors,
AFRICACRYPT 20: 12th International Conference on Cryptology in Africa, volume 12174 of Lecture
Notes in Computer Science, pages 281–300, Cairo, Egypt, July 20–22, 2020. Springer, Heidelberg, Ger-
many. 1

Lib22. LibSecP. libsecp256k1: Optimized c library for ecdsa signatures and secret/public key operations on curve
secp256k1. https://github.com/bitcoin-core/secp256k1, 2022. 1.1

LLNW16. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for lattice-based
accumulators: Logarithmic-size ring signatures and group signatures without trapdoors. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666
of Lecture Notes in Computer Science, pages 1–31, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg,
Germany. 1.4, 3.1

LM08. Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based digital signatures. In
Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of Lecture Notes
in Computer Science, pages 37–54, San Francisco, CA, USA, March 19–21, 2008. Springer, Heidelberg,
Germany. 4, 4

LOS+06. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate signa-
tures and multisignatures without random oracles. In Serge Vaudenay, editor, Advances in Cryptology –
EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 465–485, St. Petersburg,
Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany. 1

LTT20. Zi-Yuan Liu, Yi-Fan Tseng, and Raylin Tso. Cryptanalysis of a round optimal lattice-based multisignature
scheme. Cryptology ePrint Archive, Report 2020/1172, 2020. https://eprint.iacr.org/2020/1172. 1

MEJ20. Soo Hoon Maeng, Meryam Essaid, and Hongtaek Ju. Analysis of ethereum network properties and
behavior of influential nodes. In 21st Asia-Pacific Network Operations and Management Symposium,
pages 203–207, Daegu, South Korea, September 2020. IEEE. 6

Mic07. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.
computatinal complexity, 16(4):365–411, December 2007. 1

MJ19. Changshe Ma and Mei Jiang. Practical lattice-based multisignature schemes for blockchains. IEEE
Access, 7:179765–179778, 2019. 1

MOR01. Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: Extended abstract.
In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001: 8th Conference on Computer
and Communications Security, pages 245–254, Philadelphia, PA, USA, November 5–8, 2001. ACM Press.
1

MR09. Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Daniel J. Bernstein, Jonhannes
Buchmann, and Erik Dahmen, editors, Post-quantum Cryptography, chapter 5, pages 147–191. Springer,
Heidelberg, Germany, Berlin, Heidelberg, 2009. 6.3

NRS21. Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr multi-signatures. In
Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part I, volume 12825
of Lecture Notes in Computer Science, pages 189–221, Virtual Event, August 16–20, 2021. Springer,
Heidelberg, Germany. 1

OO93. Kazuo Ohta and Tatsuaki Okamoto. A digital multisignature scheme based on the Fiat-Shamir scheme.
In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances in Cryptology – ASI-
ACRYPT’91, volume 739 of Lecture Notes in Computer Science, pages 139–148, Fujiyoshida, Japan,
November 11–14, 1993. Springer, Heidelberg, Germany. 1

PD20. Chunyan Peng and Xiujuan Du. New lattice-based digital multi-signature scheme. In 6th International
Conference of Pioneering Computer Scientists, Engineers and Educators, volume 1258 of CCIS, pages
129–137, Taiyuan, China, September 2020. Springer, Heidelberg, Germany. 1

PFH+20. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical report,

38

https://github.com/bitcoin-core/secp256k1
https://eprint.iacr.org/2020/1172

National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions. 1.1
PS96. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer, editor,

Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages
387–398, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Germany. 1.3

PSTY13. Charalampos Papamanthou, Elaine Shi, Roberto Tamassia, and Ke Yi. Streaming authenticated data
structures. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EURO-
CRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 353–370, Athens, Greece,
May 26–30, 2013. Springer, Heidelberg, Germany. 1.4, 3.1

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual
Symposium on Foundations of Computer Science, pages 124–134, Santa Fe, NM, USA, November 20–22,
1994. IEEE Computer Society Press. 1

Sup22. Supranational. blst: A bls12-381 signature library focused on performance and security. https://github.
com/supranational/blst, 2022. 1.1

YZ21. Takashi Yamakawa and Mark Zhandry. Classical vs quantum random oracles. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Part II, volume 12697
of Lecture Notes in Computer Science, pages 568–597, Zagreb, Croatia, October 17–21, 2021. Springer,
Heidelberg, Germany. 1.3

39

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://github.com/supranational/blst
https://github.com/supranational/blst

	Squirrel: Efficient Synchronized Multi-Signatures from Lattices

