
Adaptively Secure Single Secret Leader Election from DDH

Dario Catalano1, Dario Fiore2, Emanuele Giunta2,3

1 University of Catania, Italy.
catalano@dmi.unict.it

2 IMDEA Software Institute, Madrid, Spain.
{dario.fiore, emanuele.giunta}@imdea.org
3 Universidad Politecnica de Madrid, Spain.

Abstract. Single Secret Leader Election protocols (SSLE, for short) allow a group of users to select
a random leader so that the latter remains secret until she decides to reveal herself. Thanks to this
feature, SSLE can be used to build an election mechanism for proof-of-stake based blockchains. In
particular, a recent work by Azouvi and Cappelletti (ACM AFT 2021) shows that in comparison to
probabilistic leader election methods, SSLE-based proof-of-stake blockchains have significant security
gains, both with respect to grinding attacks and with respect to the private attack. Yet, as of today,
very few concrete constructions of SSLE are known. In particular, all existing protocols are only secure
in a model where the adversary is supposed to corrupt participants before the protocol starts – an
assumption that clashes with the highly dynamic nature of decentralized blockchain protocols.
In this paper we make progress in the study of SSLE by proposing new efficient constructions that
achieve stronger security guarantees than previous work. In particular, we propose the first SSLE
protocol that achieves adaptive security. Our scheme is proven secure in the universal composability
model and achieves efficiency comparable to previous, less secure, realizations in the state of the art.

A short version of this work appears in the proceedings of PODC ‘22, https://doi.org/10.1145/3519270.3538424

mailto:catalano@dmi.unict.it
mailto:dario.fiore@imdea.org,emanuele.giunta@imdea.org

Table of Contents

1 Introduction 3

2 Preliminaries 6
2.1 Notation . 6
2.2 Non Interactive Zero-Knowledge Arguments . 6
2.3 UC framework . 7
2.4 UC-SSLE definition . 8

3 Statically secure SSLE from DDH 9
3.1 Intuition and relations with previous work . 9
3.2 Construction secure against static corruptions . 10

4 Adaptively secure SSLE with Erasures from DDH 12
4.1 Intuition . 12
4.2 Construction secure against active corruptions . 12
4.3 Practical considerations . 13

5 Comparisons 15

A Attacks to the Complaint-based Construction 18
A.1 Game-based security definition . 18
A.2 Attack description . 19

B Proofs 21
B.1 Preliminaries and Notation . 21
B.2 Static Construction . 22
B.3 Adaptive Construction . 29

1 Introduction

Electing a leader is a matter of central importance to realize distributed consensus. Over recent
years, the growing diffusion of blockchain related technologies sparkled renewed interest on this
problem, both from an industrial and an academic perspective. Also, it motivated the need to add
privacy properties to consensus protocols and applications. For instance, in the case of Proof of
Stake blockchains (e.g. [BGM16, BPS16]) it is often desirable to have an election procedure where
the identity of the randomly selected leader remains secret until the latter reveals herself [AMM18,
GHM+17, GOT19, KKKZ19]. This secrecy feature provides an elegant way to strengthen the liveness
of the blockchain against several attacks. For instance, it allows to prevent Denial of Service attacks
against the chosen leader, that could otherwise prevent the latter to publish her block. Most common
realizations of secret leader elections, however, manage to elect a leader in expectation (e.g. [BGM16,
BPS16]). In a nutshell, probabilistic leader elections are protocols where, at any given round, a single
leader is likely elected but it could be the case that more (or zero) leaders are elected. This causes
potential wasted efforts and might lead to forks in the blockchain.

This motivates the study of Single Secret Leader Election (SSLE) procedures which guarantee
that one single leader per round is actually elected [Lab19]. This feature makes SSLE a better
candidate for building proof-of-stake based consensus mechanisms. Indeed, a recent result of Azouvi
and Cappelletti [AC21] shows that (secretly) electing exactly one leader per round leads to significant
security gains (compared to probabilistic leader election schemes), both with respect to grinding
and private attacks.

When it comes to constructing SSLE protocols, a (theoretically) simple way to realize it is
via secure multiparty computation. However, such solutions would typically require all parties to
send/receive messages, which is not scalable in a blockchain scenario where there are many parties
and the adversary can take one or more of them offline. Ideally, beyond being computationally
efficient, an SSLE should require low communication complexity and very little interaction: once a
player registers, she should be able to participate to several election rounds without requiring any
significant further interaction.

The question of realizing SSLE was recently addressed in [BEHG20, CFG21]. In [BEHG20]
Boneh, Eskandarian, Hanzlik and Greco formalized the notion of SSLE as a distributed protocol
that (secretly) elects a leader according to the following rules: one single leader per round is elected
(uniqueness), all parties have the same chances to become leaders (fairness) and nobody should be
able to guess the next leader better than at random (unpredictability). Boneh, Eskandarian, Hanzlik
and Greco also proposed three realizations of SSLE achieving very different efficiency guarantees
and tradeoffs. The first two solutions are asymptotically efficient, but rely on rather expensive build-
ing blocks (indistinguishability obfuscation [BGI+01, GGH+13] and threshold fully-homomorphic
encryption [BGG+18], respectively). The third solution is asymptotically less efficient but it re-
lies on practical building blocks. In a nutshell, their protocol consists in shuffling n Diffie-Hellman
pairs (one for each participant). The construction from [CFG21] proposes a different approach to
the problem: it puts forward a stronger universally composable security definition of SSLE and a
concrete construction realizing this notion. The approach to the construction builds on Public Key
Encryption with Keyword Search (PEKS) [BDOP04, ABC+05], and they show an efficient protocol
based on pairings, which is the first to achieve so-called on chain efficiency: the number of bits
to store on chain, at each round, is at most O(log2 n) (a property that was achieved only by the
iO-based scheme of [BEHG20]).

3

A common limitation of all the existing SSLE constructions, however, is that they can be proved
secure only with respect to static adversaries, i.e., adversaries that are forced to choose who to
corrupt at the beginning of the protocol. This is a severe limitation in the highly dynamic contexts
of blockchain applications, and it leaves unanswered the question of realizing a practical SSLE
protocol secure against more realistic adaptive adversaries.

Our Contribution.

In this paper we propose the first SSLE protocol that achieves (universally composable) security
in the presence of adaptive corruptions. To obtain this result, we revisit the DDH-based SSLE
realization from [BEHG20]. First, we propose a variant of this scheme, see Section 3.2, that achieves
a stronger security guarantee – universal composability against static adversaries – and roughly
halves the communication cost. Second, we give our main result, which is a novel SSLE protocol that
achieves adaptive security with erasures, while remaining both universally composable (according
to the definition from [CFG21]) and efficient. In what follows we give an informal description of our
protocols.

As a warm up, we present the simpler construction achieving static security only. Recall that
Boneh, Eskandarian, Hanzlik and Greco’s protocol consists of maintaining an initially empty list
l of commitments on the blockchain. A new user registers by choosing a random secret xi ∈ Zq,
adding Com(xi, ri) = (gri , gxiri) for some random ri to l, and shuffling (i.e., randomly permuting and
re-randomizing) the updated list. To avoid subtle attacks, see Appendix A.2 for details, the shuffler
should also provide a non-interactive zero-knowledge (NIZK) proof π that the shuffle was performed
correctly. The total (on chain) communication costs per player are thus 2n group elements + |π|.
Elections are carried out by choosing a commitment in l through a random beacon, a primitive that
returns unbiased randomness, and the winner can claim victory by revealing the secret xi of the
chosen commitment.

Our base construction builds on the observation that instead of adding a new pair (gri , gxiri)
to the list, parties can “share between them” the random component gr of the commitment and
simply provide grxi (proving knowledge of the secret xi). This change alone allows us to reduce
the communication complexity of the scheme to n+ 1 group elements (plus the cost of the NIZK).
Moreover, once a party’s commitment is chosen during an election, instead of revealing the secret
xi, she proves knowledge of xi and that the same xi was used to generate her initial commitment.
Since no secret value is ever revealed, this grants us the benefit of making UC security easy to
prove and, indeed, the only explicitly UC-secure component needed by our protocol is a proof
of knowledge at registration time. Moreover, up to minor adaptations, this protocol also achieves
adaptive security albeit only with respect to a game-based definition a-la [BEHG20, CFG21] (i.e.,
appropriately modified to consider adaptive adversaries). Informally, this comes from the fact that
commitments of yet uncorrupted players are actually indistinguishable from random elements from
the adversary’s perspective and corrupting a new party does not reveal any information about not
yet corrupted ones.

This feature is not enough to achieve simulation based security, though. Indeed, at election time
the simulator would have to indicate some random commitment grx linked to some honest user
whenever the functionality FSSLE says that an uncorrupted user won4. This is problematic as, if

4 We recall here that according to the definition from [CFG21], the simulator learns the actual winner only after
FSSLE sends some results message

4

subsequently some party P is corrupted, the simulator needs to provide a secret exponent x that is
consistent with all previous elections won by P (and such an exponent might well not even exist!).

In principle this issue, related to the well known selective decommitment problem [DNRS03],
could be addressed via sophisticated tools such as non-committing encryption, which however (in
the standard model) would render our solution impractical (beyond requiring more interaction).
Instead, we develop a simpler solution, that consists in replacing the commitments discussed above
with ones that allow for randomizable openings, so to make the keys updatable. Periodically, users
securely refresh their commitments/keys so to make them unlinkable to their own previous com-
mitments/keys. A bit more concretely, we let user’s commitments be of the form (gr1, g

r
2, h) where

the first couple is shared among all commitments in l and h = grx1 g
rδ
2 (the index δ being publicly

linked to P at registration time).
A first attempt to perform key update consists in letting each party P choose a random ω,

post a key update u = grω1 , so that her commitment becomes h · u = g
r(x+ω)
1 grδ2 , store the new

key (x + ω, δ), and erase the old one. Notice that the erasing step is important here to enable the
unlinkability desiderata mentioned above against adversaries that may adaptively corrupt this user
at a later point in time.

Unfortunately, however, this simple solution does not work because of shuffling. Recall that our
protocol dictates that the h’s are randomly shuffled at each new election, meaning that once the
element u is provided, parties won’t know to which commitment in the list l they should apply it
to.

We fix this by maintaining two different lists of commitments, consisting of n entries each. The
first list contains the elements h discussed above and is shuffled frequently whereas the second list
l′ = {kδ}δ∈[n] is never shuffled. In each round, party P , owning key (x, δ) is linked to a commitment
h if grx1 grδ2 = hkδ. The key difference is that now updates u can be applied to the component kδ of
the commitment that is publicly associated to P even though the h component remains unlinked.
This simple trick allows parties to securely update their key and, by erasing outdated ones, to prove
security against adaptive adversaries.

In conclusion, the communication costs for each shuffle are 2n + 2 group elements (+ the size
|π| of the proof of correct shuffle) plus the costs associated to each user to update her key (which
in our case is a single group element per user). In Section 4.3 we provide some optimizations to
reduce the amortized communication to 2n+Θ(

√
n log n) group elements per shuffle, matching the

DDH-based Boneh et al. solution which achieves only static, game-based security.

Related work

The problem of single secret leader election (SSLE) was first considered in an RFP by Protocol
Labs [Lab19], which also informally describes a solution based on functional encryption [BSW11].
Boneh et al. [BEHG20] formalized the notion of SSLE and proposed three constructions that we
briefly discussed earlier. In a more recent work, Catalano, Fiore and Giunta [CFG21] proposed a
UC-secure definition of SSLE and showed an efficient construction that achieves on-chain efficiency.

A concurrent work by Larsen, Obremski and Simkin [LOS22] investigates how to distribute
the shuffling procedure to multiple parties and discusses a possible application of their protocol
to SSLE. Despite addressing a similar problem, the results of [LOS22] and ours are incomparable:
[LOS22] focuses on the shuffling primitive and proposes to distribute it with the goal of reducing
the computational complexity of each shuffler; in their protocol each shuffler operates only on a
portion of the list, yet corruptions of shufflers can be done adaptively. Security is guaranteed as

5

long as a fraction of the shufflers remains honest. Our work instead is focused on studying and
realising the SSLE primitive in the UC framework against adaptive adversaries; in our shuffling-
based protocol each shuffler shuffles a full list. Security however holds regardless of how many users
have been corrupted during the execution. Another concurrent paper [FTTP+22] proposes Single
Leader Sortition, a variant of SSLE where users shall not be elected more than once in a given time
slot. Their solution is based on TFHE and achieves security in semi-synchronous networks, whereas
all other works, including this one, rely on synchronous communication with known bounded delay.
However security is proven only against static corruptions.

If we drop the requirement of electing a single leader, other works have considered the problem of
keeping the leader secret in proof-of-stake based protocols, e.g., [BGM16, BPS16, GOT19, KKKZ19].
Another approach to probabilistic secret leader election is that of Algorand [GHM+17] and Fan-
tomette [AMM18] based on verifiable random functions (VRFs). The VRF is used to identify a few
potential leaders that must manifest and then proceed to choose a winner among them by using
some tie-breaker method (e.g., smallest VRF output). The drawback of this approach is that the
final leader does not know she is the leader until all the potential leaders publish their values. In
addition, the users that do not receive the winner’s output might incorrectly believe that a different
leader was elected, which can lead to a fork in the chain. Such uncertain situations cannot occur
when a single leader is elected, as in SSLE. This is why SSLE can lead to more secure solutions as
recently confirmed by Azouvi and Cappelletti [AC21] who show that single leader election achieves
higher security gains than probabilistic election methods, both when considering the private attack
(the worst attack on longest-chain protocols [DKT+20]) and grinding attacks.

2 Preliminaries

2.1 Notation

λ ∈ N denotes the security parameter and a function ε : N → N is called negligible if it vanishes
faster than λ−c for any constant c. [n] = {0, . . . , n− 1} is the set of natural number smaller than n.
Sn is the substitution group, i.e. the set of all bijections η : [n]→ [n].

G is a group of prime order q = 2O(λ) whose operation are expressed multiplicatively, g a
canonical generator, and Fq the finite field of order q. Bold font (g,h, z, . . . ,) is reserved for vectors
of either group or field elements. Given g ∈ Gn and x ∈ Fnq we denote the multi-exponentiation as
gx = gx11 · . . . · gxnn . We assume the DDH problem to be hard in G, i.e. for any PPT algorithm A∣∣∣Pr [A(g, gx, gy, gxy)→ 1]− Pr [A(g, gx, gy, gr)→ 1]

∣∣∣ ≤ ε(λ)
with ε negligible, and x, y, r are uniformly sampled over Fq. In our protocols, N denotes the total
number of users and n the number of registered users (over the various executions). For a given
finite set X, x←$ X means that x is sampled uniformly from X with fresh random coins. Similarly,
when a random variable y is uniformly distributed over X we write y ∼ U(X).

2.2 Non Interactive Zero-Knowledge Arguments

A non-interactive zero-knowledge (NIZK) argument for a given relation R is a tuple of PPT algo-
rithms (NIZK.G,NIZK.P,NIZK.V) such that: NIZK.G initialise the common reference string crs; for
any (x,w) ∈ R the prover produces a proof π ←$ NIZK.P(crs, x, w); for any statement x and proof

6

π, the verifier NIZK.V(crs, x, π) outputs either 1, meaning that the proof is accepted, or 0 in case it
is rejected.

A NIZK is correct if for (x,w) ∈ R, crs ←$ NIZK.G(1λ) and π ←$ NIZK.P(crs, x, w) the
verifier accepts, i.e. NIZK.V(crs, x, π) returns 1. In our construction we also require NIZKs to be
weakly simulation extractable [Sah99] and zero-knowledge [FLS90]. Informally, weak simulation
extractability assumes the existence of an extractor able to derive a witness w from proofs created
by an adversary that are different from previously generated, possibly simulated, ones. A standard
approach then to make proofs unique is to add prover’s and session’s ID to the statement – which for
instance in the Fiat-Shamir transform translates into salting the hash function with this information.

In our protocol we extensively use NIZKs to prove statements related to knowledge of the discrete
logarithm for given group elements, and the correctness of shuffling. Concretely, we will considers
NIZKs for the relations listed below. At a very high level, RDH asks that a given tuple of element
(g, h, u, v) is Diffe-Hellman, i.e. that there exists an x such that h = gx and v = ux. Rped associates
a Pedersen commitment [Ped92] h and a given value δ to the randomness α that opens h to δ. Next,
Rsh asks if given two vectors in Gn, the second one is obtained by randomizing and shuffling the
first. This relation is generalized by REsh that further checks that certain given elements k were
exponentiated with the same randomness of the shuffled ones.

RDH = {((g, h, u, v), x) : h = gx, v = ux}
Rped = {((g, h, δ), α) : g ∈ G2, h ∈ G, h = g(α,δ)}

Rsh = {((g,h, g̃, h̃), (r, η)) : r ∈ Fq, η ∈ Sn, g̃ = gr, h̃j = hrη(j)}

REsh = {((g,h,k, g̃, h̃, k̃), (r, η)) : r ∈ Fq, η ∈ Sn, g̃ = gr, h̃i = hrη(i), k̃i = kri }.

2.3 UC framework

The celebrated UC framework [Can01] allows to define and prove strong security properties of a
protocol which will be preserved under parallel or nested composition. Central in this model is the
notion of ideal functionality F which captures the intended behaviour of a given protocol Π. Π is
said to UC-realise F if there exists a simulator S such that Π is indistinguishable from F ◦ S. The
role of S is to emulate messages that would be sent by honest parties in Π while interacting with
F on behalf of malicious ones.

Notably the adversary or environment Z in the indistinguishability experiment manages honest
users’ inputs and privately receives their output while S has no access to them. Moreover, in the
active setting, Z can adaptively corrupt any number of parties, learning their internal state which
may have to be simulated by S, and influence their behaviour.

A protocol Π can run an ideal functionality H as a subroutine, in which case it is called H-
hybrid. Security of Π can then be argued in the H-hybrid model instead of replacing H with a
protocol that UC-realises it. Our construction will implicitly be in the FAuBr-hybrid model, where
FAuBr is an authenticated broadcast communication channel.

Functionalities. In Fig. 1 we present two functionalities extensively used in our protocols: FRzk
for UC zero-knowledge and Fct for a random beacon for publicly-verifiable coin tossing. The first
is defined and realized in [CF01], even though our definition make all users receive the output
messages. Fct instead was first introduced and realized in [CD20] assuming an honest majority
under standard assumptions. In practical application it may be realised by taking the hash of

7

an unpredictable value parties have agreed on. We remark that our use of the random oracle is
justified assuming a global RO functionality in the GUC model [CJS14, CDG+18]. Finally, about our
communication model, we assume an authenticated broadcast channel with known bounded delay
[KMTZ13], which implies that messages sent in broadcast are eventually delivered (not necessarily
in the right order). Although this introduce some degree of synchronicity, this is in line with previous
work [BEHG20, CFG21].

The Zero-Knowledge Functionality FRzk :
Upon receiving (prove, sid, x, w) from Pi, with sid being used by Pi for the first
time: if (x,w) ∈ R, broadcast (proof, sid, i, x).

The Coin Tossing Functionality Fnct :
Upon receiving (toss, sid) from all the honest parties, sample x←$ [n] and broadcast
(tossed, sid, x)

Fig. 1. Functionalities FRzk and Fct.

Secure Erasures. A significant downside of the UC framework is that security if often hard or impos-
sible to achieve, due to the limited power granted to S, and even more so when Z performs adaptive
corruptions. For instance, due to the selective decommitment problem introduced in [DNRS03] sev-
eral impossibility results are known about realising non-interactive UC-encryption schemes secure
against adaptive corruptions in the standard model, [Hof11]. Even though non-committing encryp-
tion [CFGN96] bypasses this impossibility adding more rounds, all currently known schemes induce
significant efficiency overheads.

In order to achieve both efficient constructions and a high security level we will assume parties
can safely erase information used in the protocol. This model was previously used in [Lin09] to show
that MPC based on garbled circuits can achieve adaptive security, and more recently in Proof of
Stack Blockchain constructions (e.g.[DGKR18]). The interested reader is referred to [Lin09] for a
more detailed discussion about the practicality of secure erasures.

2.4 UC-SSLE definition

In this section we revise the definition of UC-SSLE through the SSLE functionality introduced in
[CFG21] and extend it to also capture adaptive corruptions. We assume implicitly in the following
definition that FSSLE is executed among a set of N users P1, . . . , PN . At a high level the first
command (register) allows a user Pj to be eligible in future election by adding a “ticket” (j, n) in R.
Notice that there is no a priori bound on the number of times a user can register. Next, the command
(elect, eid) samples a random ticket (j, δ) in R and secretly communicates the result to each party
P , only revealing if P won by sending (outcome, eid, 0) or lost by sending (outcome, eid, 1). Note
that by registering multiple times this mechanism allows to modify the probability in which users
are elected, instead of selecting a uniformly random one. Finally the command (reveal, eid), sent by
a user Pj who actually won election eid, makes the functionality broadcast a message (result, eid, j)
that certifies his victory. Conversely, any attempt of non-winning users to claim victory through
FSSLE results in the functionality broadcasting (rejected, eid, j).

8

The SSLE functionality FSSLE:
Initialise E,R← ∅, n← 0 and call Z the environment. Upon receiving:

– (register) from Pi: add R← R∪{(i, n)}, broadcast (registered, i) and set n← n+1.

– (elect, eid) from all honest parties: if R 6= ∅ and eid was not requested before sample
(j, δ)←$ R and send (outcome, eid, 1) to Pj and (outcome, eid, 0) to Pi for (i, ·) ∈ R,
i 6= j. Store E ← E ∪ {(eid, j)}.

– (reveal, eid) from Pi: if (eid, i) ∈ E broadcast (result, eid, i). Otherwise broadcast
(rejected, eid, i).

– (fake_rejected, eid, j) from Z: If Pj is corrupted broadcast (rejected, eid, j).

– (corrupt, j) from Z: Set Ej = {eid : (eid, j) ∈ E} and reply with (corrupted, j, Ej)

Fig. 2. Description of the SSLE functionality as in [CFG21] with active corruptions.

Finally fake_rejected and corrupt are reserved to the adversary Z. As pointed out in [CFG21],
the first one is necessary for technical reasons: it captures the possibility that a winning malicious
user Pj claims victory incorrectly by sending, for instance, some random message. Indeed, note that
in such a case, the simulator would have no way to make FSSLE reject this incorrect claim and
broadcast (rejected, eid, j) without this command. The second one is used when adversary corrupts
a user Pj to let the former know the IDs of the elections won by Pj in the past. This models the
fact that (a corrupted) Pj knows the set of elections in which she won.

3 Statically secure SSLE from DDH

3.1 Intuition and relations with previous work

We start by quickly revising the shuffle-based solutions from [BEHG20]. At a high level users
maintain a list of n commitments (recall that n denotes the number of registered users) cs,` =
(gs,`, hs,`) ∈ G2. When a party registers she first commits to some x ∼ U(Fq) by querying the RO
on a random point k ∼ U({0, 1}λ), setting H(k) = x||y and publishing y as a commitment to x.
Next he appends to the list an ElGamal commitment cs,n = (gr, grx) and perform a shuffle, which
is carried out by sampling a permutation η : [n] → [n] and setting cs+1,` = cr`s,η(`) for r` ←

$ Fq. In
order to elect the next leader, an index γ ∈ [n] is chosen by the random beacon and the winner
is whoever can provide x, k such that cs,γ = (u, ux) and H(k) = x||y for some commitment y
associated to them. Notice that when a user reveals that she won, her commitment is removed from
the list and so she may have to register again. On top of that, to ensure no replication attack occurs,
users need to check that the elements y provided at registration time are all different and that each
new commitment c provided by another user is not in the form (u, ux) for some secret key x they
previously used. Finally, according to how the correctness of the shuffle is verified we distinguish
two possible variants of the protocol sketched above:

– Proof based version: The shuffler provides a NIZK proof that the shuffle was performed correctly

– Complaint based version: No proof is provided. Each user checks that for each secret key x they
have, the new list includes one and only one commitment of the form c = (u, ux). If that is not
the case they reveal x and abort.

9

Surprisingly, we show in Appendix A.2 that the complaint based variant can satisfy game-based
security (as defined in [BEHG20]) only if when a complaint occurs the protocol is aborted and
concluded, meaning that no more elections can be performed afterwards (even if a new setup is
executed). If this condition is not satisfied, we prove that the protocol is actually insecure, see
appendix A.2 for details.

As a consequence, the only viable option to achieve UC security is to build on the proof based
variant. Towards this goal, a difficulty arises from the fact that, because of shuffling, S has no way to
identify commitments belonging to malicious parties and this seems necessary to simulate the right
index γ when FSSLE signals that a corrupted Pj won an election. A way to address this is to employ
a UC-NIZK to argue correctness of the shuffle. This would allow S to extract the permutation used,
but it would also induce a significant overhead. We follow a different and much simpler path: instead
of the commitment y (generated through the random oracle), each party provides H = gx together
with a (compact and easy to realize) UC-NIZK that she knows the secret x used in the commitment.
In this way S, knowing all the secret keys, can link each commitment to its issuer.

Finally, we notice that another advantage of our protocol, with respect to the original one, is
that it reduces by half the overall communication costs. Indeed, rather than keeping (gr` , gr`x`)`∈[n]
in the list we simply store (gr, grx1 , . . . , grxn).

3.2 Construction secure against static corruptions

Here we describe the construction UC-secure against static corruptions, detailed in Figure 3. To
clarify notation we denote with R a list that links user’s ID to the commitment they provide at
registration time, with K a keyring, i.e. a set of secret keys belonging to Pi, with n the number
of registrations performed so far and with s the amount of shuffles executed. Next we describe the
protocol in Fig. 3 breaking it down to the following phases:

– Registration Phase: In lines 1-4, Pi creates a new secret key x, two commitments to it H = gx

and hs,n = gxs – where the second one is later appended to the maintained list of commitments –
and a UC-NIZK of discrete logarithmic equality. Finally Pi performs a shuffle (see below). Parties
accept the registration if the UC-NIZK is correct, lines 9-11, modelled by a proof message from
FRDH
zk .

– Shuffle phase: In lines 5-8, Pi samples randomness r ∈ Fq and η : [n] → [n] a permutation
and shuffle the previously given vector gs, hs,1, . . . , hs,n by setting hs+1,` ← hrs,η(`) and adding
a NIZK to ensure correctness. Other parties accept the shuffle, lines 12-13 only if the proof is
valid.

– Election phase: To elect a leader, lines 14-16, users query the random beacon Fnct which returns
γ ∈ [n]. Each user then checks if any of her stored keys x is such that hs,γ = gxs , in which case
she is the winner.

– Reveal phase: If Pi won election eid, meaning that he knows an x such that hs,n = gxs , in line
17-22 she claims victory by recovering the commitment H to x provided at registration time
and by proving that H in base g and hs,n in base gs have the same discrete logarithm. Other
parties in lines 23-25 accept the claim only if the proof is correct and H was associated to Pi.

As a final note, we remark that both our protocols (i.e. the one presented in this section and
the adaptively secure one given in the next section) manage to achieve the full UC-security notion
defined in [CFG21] without needing to resort to their parametrized variant. In appendix B.2 we
prove the following theorem.

10

Party Pi realising FSSLE:

Initially set R,K ← ∅, n, s← 0, g0 ← g. On input

1 : (register): Get x←$ Fq, H ← gx and store the key K ← K ∪ {x}
2 : Set hs,n ← gxs the new commitment to append in the list

3 : Prove knowledge of x sending (prove, n, (g, gs), (H,hs,n), x) to FRDH
zk

4 : Update n← n+ 1

// Shuffle:
5 : Sample r ←$ Fq and a permutation η ←$ Sn

6 : Compute gs+1 ← grs and for all ` ∈ [n] set hs+1,` ← hrs,η(`)

7 : Prove shuffle correctness π ← NIZK.Psh(gs,hs, gs+1,hs+1, (r, η))

8 : Broadcast the shuffled list (shuffle, n, gs+1,hs+1, π)

9 : (proof, n, j, (g,H)) from FRDH
zk with (· , · , H) /∈ R:

10 : Associate H to user Pj by adding R← R ∪ {(j, n,H)}
11 : Set n← |R| and return (registered, j)

12 : (shuffle, sid, gs+1,hs+1, π) from Pj :
13 : If the proof π is accepted, update s← s+ 1

14 : (elect, eid): Send (toss, eid) to Fnct and wait for (tossed, eid, γ)

15 : If gxs = hs,γ for some key x ∈ K: Return (outcome, eid, 1)

16 : Else return (outcome, eid, 0)

17 : (reveal, eid):
18 : If Pi won election eid, i.e. if gxs = hs,γ for an x ∈ K:
19 : Find (i, δ,H) ∈ R such that H = gx

20 : Prove a DL equality relation π ← NIZK.PDH((g, gs), (H,hs,γ), x)

21 : Broadcast (claim, eid, δ, π) and execute a shuffle as in lines 5-8
22 : Else broadcast an error message (claim, eid,⊥)

23 : (claim, eid, δ, π) from Pj :
24 : If (j, δ,H) ∈ R and π is accepted: Return (result, eid, j)

25 : Else: Return (rejected, eid, j)

Fig. 3. UC-SSLE from DDH, secure against static corruption.

11

Theorem 1. If the Decisional Diffie-Hellman Problem is hard in G, Protocol 3 UC-realises FSSLE

in the (Fct,F
R
zk)-hybrid model against unbounded static corruptions.

4 Adaptively secure SSLE with Erasures from DDH

4.1 Intuition

In order to obtain a protocol that UC-realises FSSLE against adaptive corruptions, we will now
discuss how to modify Protocol 3. The major issue there arises when Z corrupts a user Pi after
several elections took place as this implies that the simulator S has to produce an exponent x such
that hs,` = gxs for each step s and some ` ∈ [n] consistently with the outcome of previous elections.
The trouble is that this exponent may well not exists since each time an honest user wins FSSLE does
not immediately reveal its identity, forcing S to point through Fnct a random commitment “linked”
to some honest user.

While more sophisticated primitives, like non-committing encryption, could be adapted to ad-
dress the issue, we take a different path by assuming parties can perform secure data erasures. We
design a key update phase occurring after each shuffle5 that untangle the honest users’ secret keys
from commitments sent in previous steps. To make this idea work, we need an equivocal commit-
ment in order to correctly simulate at least the last election, and the simplest choice is Pedersen
with base gs ∈ G2. Thus, at registration time we make Pi send hs,n = g

(α,n)
s , store the key (α, n) and

let the index n becomes publicly associated to Pi, which will be the only party capable of opening
a given commitment to n.

It remains to discuss how to perform key updates. Ideally, Pj could update a secret key (α, δ) by
sampling ω ←$ Fq and sending u = g

(ω,0)
s . Such an u would then be combined to Pj ’s commitment

hs,` = g
(α,δ)
s as follows

hs,` · u = g(α,δ)
s · g(ω,0)

s = g(α+ω,δ)
s .

Hence Pj could store (α+ ω, δ) as the new key and erase the old one.
This simple solution does not work as, because of shuffling, there is no way to link Pj to her

corresponding hs,`. This means that parties (other than Pj) have no way to determine which element
in the list has to be multiplied by the u sent by Pj . We fix this by keeping two different lists
of n elements each: (hs,`)`∈[n] whose entries are shuffled and (ks,δ)δ∈[n] whose entries are never
shuffled. At any step each party Pj , for each key (α, δ) she knows, is linked to a commitment hs,`
if g(α,δ)

s = hs,` · ks,δ. In this way updates can be applied to ks,δ, which is publicly associated to Pj ,
even though the second component hs,` is not.

4.2 Construction secure against active corruptions

We detail a protocol that applies all these ideas in Figure 4. As before, below we provide a step-by-
step explanation of each phase:

– Registration phase: In lines 1-3 Pi creates a Pedersen commitment of n, which is the smallest
index not yet used, by sampling α ←$ Fq and setting hs,n = g

(α,n)
s . Next it stores the new key

(α, n) in a keyring K, proves knowledge of α through FRped

zk and performs a shuffle, see below.

5 In Section 4.3 we show how to perform it less frequently

12

Once other users receive the proof, formally modelled as a proof command from FRped

zk , in lines
8-9 they record in R that n is associated to Pi and increase n. Notice Pi will be the only user
linked to n.

– Shuffle phase: In lines 4-7 Pi samples a field element r ∈ Fq and a permutation η : [n] → [n].
With them it exponentiates all elements to the power of r and shuffles only entries of the list
(hs,`)`∈[n]. The resulting list is sent along with a proof of correctness π.

– Update phase: Upon receiving a correct shuffle from another user, lines 10-16, Pj updates its
keys stored in K. For each of them, namely (α, δ), it samples ω ∈ Fq and create us+1,δ = g

(ω,0)
s a

commitment to 0 together with a proof. Once other users receive the update, 17-18, if the proof
is correct they multiply ks,δ by the new commitment. Notice that in this way ks,δ is always a
Pedersen commitment to zero.

– Election phase: All users query the random beacon Fnct, lines 19-22, which returns γ ∈ [n]. Each
user then checks if she can open hs,γ ·ks,δ to δ with some key (α, δ) in her keyring, in which case
she is the winner.

– Reveal phase: When Pi won an election and wish to reveal it, lines 23-26, it proves through a
NIZK that he is able to open hs,γ · ks,δ to δ, for some δ publicly linked to him. Parties who
receive the claim, lines 27-29, accept it only if δ is associated to Pi and the proof is correct.

In appendix B.3 we prove the following result.

Theorem 2. If the Decisional Diffie-Hellman Problem is hard in G, Protocol 4 UC-realises FSSLE

in the (Fct,F
R
zk)-hybrid model against unbounded active corruptions.

4.3 Practical considerations

We now provide a series of optimisations and trade-off that were not included in Protocol 4 to keep
the exposition simple. First we show how to reduce the frequency of updates, which represents the
most expensive step in our solution both in terms of communication and in the number of parties
who should actively take part. Next we also present a way to reduce the update cost by providing
smaller NIZKs

– Update only before an election: since the goal of the update phase is to erase secret information
linked to previous elections, there is no point in updating the key if several shuffles are taking
place due to new registrations. Hence it suffices to update keys just after those shuffles that
occur right before an election.

– Update every ν elections: The Pedersen commitment used h = g(α,δ) needs to have randomness
α ∈ Fq to allow the simulator to equivocates results in the last election in case of corruption.
A natural generalisation is to maintain a larger base g ∈ Gν+1 and to commit using ν random
field elements α1, . . . , αν ∈ Fq setting h = g(α1,...,αν ,δ). In this way a simulator can equivocate
the result of the previous ν elections, effectively reducing the need to perform a key update once
every ν.

– Smaller NIZK : A downside of the previous point is that users need to prove knowledge of a secret
key α1, . . . , αν ∈ Fνq such that h = g(α1,...,αν ,δ) at registration time and that u = g(ω1,...,ων ,0)

during an update. Using directly generalised Schnorr proofs [Mau15] would lead to arguments of
size O(ν). A more efficient choice is to use Bulletproof’s inner product argument [BBB+18] made

13

Party Pi realising FSSLE:

Initialize R,K ← ∅ and n, s← 0. Trough Fct sample a random g0 ∈ G2. On input

1 : (register): Sample a new key α←$ Fq and store it in the keyring K ← K ∪ {(α, n)}
2 : Set x← (α, n), ks,n ← 1 and compute the commitment hs,n ← gx

s ,

3 : Send (prove, n, (gs, hs,n, n), α) to F
Rped

zk and set n← n+ 1

// Shuffle:
4 : Sample r ←$ Fq and a permutation η ←$ Sn

5 : Shuffle by setting gs+1 ← grs , hs+1,j ← hrs,η(j), ks+1,j ← krs,j

6 : Prove correctness π ← NIZK.PEsh(gs,hs,ks,gs+1,hs+1,ks+1, (r, η))

7 : Erase (r, η) and broadcast the shuffled list (shuffle, n,gs+1,hs+1,ks+1, π)

8 : (proof, j, (gs, hs,n, n)) from F
Rped

zk :

9 : Link n to Pj storing R← R ∪ {(j, n)}. Update n← |R| and return (registered, j)

10 : (shuffle, sid,gs+1,hs+1,ks+1, π) from Pj with accepting π:
11 : For all previously stored keys (α, δ) ∈ K:
12 : Sample ω ←$ Fq and compute the update element w← (ω, 0), us+1,δ ← gw

s+1

13 : Prove knowledge of ω setting π ← NIZK.Pped((gs+1, us+1,δ, 0), ω)

14 : Update the old key α← α+ ω and erase the new term ω

15 : Broadcast the update element (update, sid, us+1,δ, π)

16 : Update s← s+ 1

17 : (update, sid, us,δ, π) from Pj :
18 : If π is accepted and (j, δ) ∈ R: Update ks,δ ← ks,δ · us,δ

19 : (elect, eid): Send (toss, eid) to Fnct and wait for (tossed, eid, γ)

20 : If some key (α, δ) ∈ K opens the commitment hs,γ · ks,δ, i.e. if g(α,δ)
s = hs,γ · ks,δ:

21 : Return (outcome, eid, 1)

22 : Else: Return (outcome, eid, 0)

23 : (reveal, eid): If Pi won election eid, i.e. if for some (α, δ) ∈ K, g(α,δ)
s = hs,γ · ks,δ:

24 : Prove knowledge of α by setting π ← NIZK.Pped((gs, hs,γ · ks,δ, δ), α)
25 : Broadcast (claim, eid, δ, π) and execute a shuffle, lines 4-7
26 : Else: Broadcast (claim, eid,⊥)

27 : (claim, eid, δ, π) from Pj :
28 : If π is accepted and (j, δ) ∈ R: Accept Pj as the leader returning (result, eid, j)

29 : Else: Return (rejected, eid, j)

Fig. 4. UC-SSLE from DDH with erasures secure against active corruptions.

14

non-interactive through the Fiat-Shamir transform. This requires only Θ(log ν) group elements
per proof. Note that the non-interactive version of Bulletproof was recently proved to be an
argument of knowledge in [AFK21, Wik21].

5 Comparisons

In this section we compare our two constructions in terms of communication complexity with the
shuffle based one in [BEHG20] and the one based on functional encryption [CFG21]. More specifically
in Figure 5 we report the cumulative cost of performing up to 200 elections among N = 214 users6

interleaving between each two a fixed amount of registrations, as done in [CFG21].
In light of Section 4.3 we set ν = Θ(

√
N logN) to equate the amortised cost coming from

the update phase and the longer base g ∈ Gν+1 maintained at each shuffle. To instantiate the
NIZK proof of correct shuffling we applied [BG12] with proof size O(

√
N). While more succinct

arguments (e.g. [CHM+20, MBKM19]) providing proofs of constant size are known, translating the
shuffle relation into the NP-complete problem solved by these argument systems would significantly
affect the prover’s time.

With this choice of parameters we observe that the cost of a single shuffle in Protocol 3 amounts
to 567KB for 214 users, almost half of the 1.10MB required in [BEHG20]. Our second construction,
Protocol 4, instead achieves comparable efficiency with the previous construction requiring only
13.1KB more per shuffle, yet guaranteeing a significantly higher level of security. Regarding [CFG21]
instead their solution does not rely on shuffles and provides efficient registrations at the cost of a
setup phase high in communication that has to be performed every ∼ 200 rounds. For this reason
our construction, as [BEHG20], performs better when less registrations are performed per round.

0 40 80 120 160 200
0

1

2

3

4

5

Number of Elections

C
om

m
un

ic
at
io
n
(G

B
)

Our work, Static Security
Our work, Adaptive Security

N -Shuffle [BEHG20]
[CFG21]

0 40 80 120 160 200

Number of Elections

0 40 80 120 160 200

Number of Elections

Fig. 5. Cumulative communication complexity in our statically secure construction, Figure 3, adaptively secure,
Figure 4, the shuffle based [BEHG20] with one ballot of size N and in [CFG21]. Protocol starts with N = 214 users
and between every two elections 6 (left graph), 12 (middle graph) or 18 (right graph) registrations occur. Note that
after ∼ 200 elections [CFG21] requires a new setup.

6 This number of users was originally suggested in [Lab19]

15

Acknowledgements

This work has received funding in part from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program under project PICOCRYPT (grant
agreement No. 101001283), by the Spanish Government under projects SCUM (ref. RTI2018-102043-
B-I00), RED2018-102321-T, and SECURING (ref. PID2019-110873RJ-I00), by the Madrid Regional
Government under project BLOQUES (ref. S2018/TCS-4339), by a research grant from Nomadic
Labs and the Tezos Foundation, by the Programma ricerca di ateneo UNICT 35 2020-22 linea 2
and by research gifts from Protocol Labs.

References

ABC+05. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-
Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency prop-
erties, relation to anonymous IBE, and extensions. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 205–222. Springer, Heidelberg, August 2005.

AC21. Sarah Azouvi and Daniele Cappelletti. Private attacks in longest chain proof-of-stake protocols with single
secret leader elections. In Proceedings of the 3rd ACM Conference on Advances in Financial Technologies,
pages 170–182, 2021.

AFK21. Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation of multi-round interactive
proofs. Cryptology ePrint Archive, Report 2021/1377, 2021. https://eprint.iacr.org/2021/1377.

AMM18. Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Betting on blockchain consensus with fantomette.
CoRR, abs/1805.06786, 2018.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bul-
letproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

BDOP04. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027
of LNCS, pages 506–522. Springer, Heidelberg, May 2004.

BEHG20. Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader election. In
Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pages 12–24, 2020.

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuffle. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280.
Springer, Heidelberg, April 2012.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R. Rasmussen, and
Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryption. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 565–596.
Springer, Heidelberg, August 2018.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 1–18. Springer, Heidelberg, August 2001.

BGM16. Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work. In Jeremy Clark,
Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors, FC
2016 Workshops, volume 9604 of LNCS, pages 142–157. Springer, Heidelberg, February 2016.

BPS16. Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. Cryptology
ePrint Archive, Report 2016/919, 2016. https://eprint.iacr.org/2016/919.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval
Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March 2011.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

CD20. Ignacio Cascudo and Bernardo David. ALBATROSS: Publicly AttestabLe BATched Randomness based
On Secret Sharing. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume
12493 of LNCS, pages 311–341. Springer, Heidelberg, December 2020.

16

https://eprint.iacr.org/2021/1377
https://eprint.iacr.org/2016/919

CDG+18. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven. The won-
derful world of global random oracles. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 280–312. Springer, Heidelberg, April / May 2018.

CF01. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg, August 2001.

CFG21. Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and universally composable single secret
leader election from pairings. Cryptology ePrint Archive, Report 2021/344, 2021. https://eprint.iacr.
org/2021/344.

CFGN96. Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation.
In 28th ACM STOC, pages 639–648. ACM Press, May 1996.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P. Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May
2020.

CJS14. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global random oracle.
In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 597–608. ACM Press,
November 2014.

DGKR18. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May
2018.

DKT+20. Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao Wang, and
Ofer Zeitouni. Everything is a race and nakamoto always wins. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 859–878. ACM Press, November 2020.

DNRS03. Cynthia Dwork, Moni Naor, Omer Reingold, and Larry Stockmeyer. Magic functions: In memoriam:
Bernard m. dwork 1923–1998. Journal of the ACM (JACM), 50(6):852–921, 2003.

FLS90. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on a
single random string (extended abstract). In 31st FOCS, pages 308–317. IEEE Computer Society Press,
October 1990.

FTTP+22. Luciano Freitas, Andrei Tonkikh, Sara Tucci-Piergiovanni, Renaud Sirdey, Oana Stan, Nicolas Quero,
Adda-Akram Bendoukha, and Petr Kuznetsov. Homomorphic sortition–secret leader election for
blockchain. arXiv preprint arXiv:2206.11519, 2022.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49.
IEEE Computer Society Press, October 2013.

GHM+17. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 51–68, New York, NY, USA, 2017. Association for Computing Machinery.

GOT19. Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. Proof-of-stake protocols for privacy-aware
blockchains. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476
of LNCS, pages 690–719. Springer, Heidelberg, May 2019.

Hof11. Dennis Hofheinz. Possibility and impossibility results for selective decommitments. Journal of Cryptology,
24(3):470–516, July 2011.

KKKZ19. Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. Ouroboros crypsinous: Privacy-
preserving proof-of-stake. In 2019 IEEE Symposium on Security and Privacy, pages 157–174. IEEE
Computer Society Press, May 2019.

KMTZ13. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable synchronous
computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477–498. Springer, Heidel-
berg, March 2013.

Lab19. Protocol Labs. Secret single-leader election (SSLE). https://web.archive.org/web/20191228170149/
https://github.com/protocol/research-RFPs/blob/master/RFPs/rfp-6-SSLE.md, 2019.

Lin09. Andrew Y. Lindell. Adaptively secure two-party computation with erasures. In Marc Fischlin, editor,
CT-RSA 2009, volume 5473 of LNCS, pages 117–132. Springer, Heidelberg, April 2009.

LOS22. Kasper Green Larsen, Maciej Obremski, and Mark Simkin. Distributed shuffling in adversarial environ-
ments. Cryptology ePrint Archive, Report 2022/560, 2022. https://eprint.iacr.org/2022/560.

Mau15. Ueli Maurer. Zero-knowledge proofs of knowledge for group homomorphisms. Designs, Codes and Cryp-
tography, 77(2):663–676, 2015.

17

https://eprint.iacr.org/2021/344
https://eprint.iacr.org/2021/344
https://web.archive.org/web/20191228170149/https://github.com/protocol/research-RFPs/blob/master/RFPs/rfp-6-SSLE.md
https://web.archive.org/web/20191228170149/https://github.com/protocol/research-RFPs/blob/master/RFPs/rfp-6-SSLE.md
https://eprint.iacr.org/2022/560

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge SNARKs
from linear-size universal and updatable structured reference strings. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press,
November 2019.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg, August
1992.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999.

Wik21. Douglas Wikström. Special soundness in the random oracle model. Cryptology ePrint Archive, Report
2021/1265, 2021. https://eprint.iacr.org/2021/1265.

A Attacks to the Complaint-based Construction

A.1 Game-based security definition

Before proving that the complaint-based protocol in [BEHG20] is insecure if resumed or restarted
after an abort, we revise the game based security notion required to provide our attack. First we
recall their definition of SSLE scheme.

Definition 1. A Secret Single Leader Election scheme is a tuple of protocols (SSLE.Setup, SSLE.Reg,
SSLE.Elect, SSLE.Claim, SSLE.Vrf) executed among N users, such that

– SSLE.Setup returns public parameters pp to every player and spi to Pi.

– SSLE.Regpp(i) registers player Pi for future elections

– SSLE.Electpp returns publicly a challenge c.

– SSLE.Claimpp(c, spi, i)→ π/ ⊥ returns publicly a proof to claim victory.

– SSLE.Vrfpp(c, π, i)→ 0/1 verifies the correctness of a claim.

Among the three security notion introduced in [BEHG20], that are uniqueness, fairness and
unpredictability, our attack will only address the latter which roughly states that before an hon-
est winner reveal her victory, the adversary cannot guess her identity significantly better than at
random. More in detail they introduce a security game as follows

Definition 2. An SSLE scheme satisfies unpredictability (against unbounded corruptions) if for
every PPTA there exists a negligible function ε such that

Adv (A) := Pr
[
ExpAUnpr(1

λ, N) = 1
∣∣∣HW]− 1

n− τ
≤ ε(λ)

where HW is the event “∃i ∈ [N] \M : SSLE.Vrf(cs, πi,s, i) = 1” requiring the existence of at least
one honest winner in the challenge phase.

Note that according to the following definition the advantage of A doesn’t range in [0, 1] as
usual, but rather is bounded by

− 1

n− τ
≤ Adv(A) ≤ n− τ − 1

n− τ
.

18

https://eprint.iacr.org/2021/1265

The Unpredictability Experiment ExpAUnpr(1
λ, N):

1 : When M ← A(1λ, N), simulate Pi for i ∈ [N] \M interacting with A
2 : Execute SSLE.Setup→ pp, spi for i ∈ [N] \M . Set s← 0, R← ∅.

3 : When register, i← A: Run SSLE.Regpp(i) and add R← R ∪ {i}

4 : When elect← A: Execute SSLE.Electpp → cs

5 : πi,s ← SSLE.Claimpp(cs, spi, i), A ← πi,s ∀i ∈ R \M
6 : πi,s ← A ∀i ∈ R ∩M ; s← s+ 1

7 : When chall← A: Call n = |R| and τ = |R ∩M |;
8 : Execute SSLE.Electpp → cs

9 : Compute πi,s ← SSLE.Claimpp(c, spi, i) ∀i ∈ R \M
10 : Wait of the adversary to return j ← A
11 : Return 0 if any protocol fails or if SSLE.Vrfpp(cs, πj,s, j) 6= 1, 1 otherwise

Fig. 6. Unpredictability experiment as defined in [BEHG20]

A.2 Attack description

In this Section we illustrate a practical attack that could be mounted against the complaint-based
construction in [BEHG20], briefly described in Section 3.1, if the protocol is not halted and never
resumed or restarted again after a correct complain has been raised. Since the original protocol does
not describe how to continue after a user performs a complain, we will study two natural ways of
extending their construction:

– Π1: Commitments associated to parties who complained are removed from the list.

– Π2: All commitments in the list are removed, effectively restarting a new instance of the protocol.

We will now show both solutions fail to satisfy the unpredictability notion as defined in [BEHG20,
CFG21]. Intuitively this happens because when a dishonest party performing a shuffle is caught
cheating, he learns nothing whereas when he is not caught some information may be leaked. Com-
bining this with a significant probability of not being caught and the possibility to amplify its
chances of success through repetitions (something disallowed if, after cheating the first time, the
protocol halts and never restart again) leads to successfully breaking unpredictability with close to
1 probability.

Proposition 1. There exists a PPT algorithm A playing the Unpredictability game against Π1 that
performs at most 2λ registrations of honest users, λ registrations of malicious ones, and wins with
advantage

Adv (A) =
1

2

(
1− 1

2λ

)
.

Proof. We provide a detailed description of A in Figure 7. Informally it repeats for at most λ times
a cycle of three registrations, where the last one is of a malicious user who does not correctly shuffle,
but instead produces a list obtained mixing previous ones.

In order to prove the proposition we let for each cycle b′ ∈ {0, 1} be such that P1 knowns the
secret key of c1b′ and let x0, x1 be the secret key owned respectively by P0 and P1. Then we have

19

Algorithm A:

Initially corrupt P2 and set cnt← 0. Let l be the list of commitments
1 : While cnt < λ:
2 : Ask to register P0 and parse l = (c00)

3 : Ask to register P1 and parse l = (c10, c
1
1)

4 : Ask to register P2:
5 : Sample a string y ←$ {0, 1}λ, a commitment c∗ ←$ G2 and a bit b←$ {0, 1}
6 : Send y and the new list l = (c00, c

1
b , c
∗)

7 : If no party complains:
8 : break
9 : cnt← cnt + 1

10 : If cnt = λ: Ask to register P0, P1 and P2

11 : Request a challenge election and wait for γ ∈ [3] from the random beacon
12 : If γ /∈ {0, 1} abort; Else return γ.

Fig. 7. Description of A breaking unpredictability of Π1

that
c00 = (u, ux0), c1b′ = (v, vx1), c11−b′ = (w,wx0)

for some u, v, w ∈ G. To proceed we study how honest parties react after the registration and shuffle
of P2 according to two possible cases:

– b 6= b′: The first two commitments in the list are (u, ux0) and (w,wx0) meaning that P1 will
complain and reveal its key. P0 will do the same since after the shuffle there are two commitment
both using the same key x0. Hence after this shuffle l = ∅.

– b = b′: The first two commitments in the list are (u, ux0) and (v, vx1) meaning that both P0 and
P1 won’t raise any complain. Notice that in this case the first commitment is linked to P0 and
the second one to P1.

Next we observe that b 6= b′ occurs with probability 1/2 since b ∼ U({0, 1}) and in each repetition the
coin b is independent from previous choices. Hence calling bad the event in which parties complain
after each of the λ cycles, Pr [bad] = 2−λ. Finally if bad occurs and γ ∈ {0, 1}, that is if there
is an honest winner in the challenge election, then Pγ wins with probability 1/2, according to the
permutation chosen by P1 during its registration. Conversely if no user complained in any previous
cycle, as pointed out before the first commitment is liked to P0 and the second one to P1, hence A
guesses correctly. We conclude that, calling HW the event γ ∈ {0, 1}

Adv (A) = Pr [Awins|HW]− 1

n− τ
= Pr [Awins|HW]− 1

2

= Pr [Awins|HW, ¬bad] Pr [¬bad] + Pr [Awins|HW, bad] Pr [bad]− 1

2

= 1− 1

2λ
+

1

2λ+1
− 1

2
=

1

2

(
1− 1

2λ

)
,

20

where n = 3 denotes the number of parties registered when the challenge election is requested and
τ = 1 the number of corrupted parties among them. The thesis follows.

Regarding the second version of the protocol Π2 in which after a complain the state is cleared
and the protocol is restarted, the exact same adversary breaks the unpredictability property

Proposition 2. There exists a PPT algorithm A playing the Unpredictability game against Π2 that
performs at most 2λ registrations of honest users, λ registrations of malicious ones, and wins with
advantage

Adv (A) =
1

2

(
1− 1

2λ

)
.

Proof. The algorithm A breaking security is identical to the one presented in the previous proposi-
tion, Figure 7. The argument is analogous to that in the proof of Proposition 1.

B Proofs

B.1 Preliminaries and Notation

Before presenting proofs for all theorems stated so far, we introduce the following auxiliary notation
and results. First of all we generalise the notion of composition between two permutation, recalling
that the substitution group is defined as Sn = {σ : [n] → [n] : σ bijection}. We naturally embed
ι : Sn → Sm with n < m by mapping

ι(σ) : [m]→ [m] : ι(σ)(x) =

{
σ(x) If x ∈ [n]

x If x ∈ [m] \ [n]

i.e. by extending σ to be the identity over [m]\ [n]. With abuse of notation we can assume Sn ⊆ Sm,
which allow us to compose bijections of different permutation groups.

Next we revise the notion of statistical distance between two random variables distributed over
the same (finite and discrete) measure space

Definition 3. Given a finite set S and two random variables x, y ∼ S we define their statistical
distance as

∆(x, y) =
1

2

∑
a∈S
|Pr [x = a]− Pr [y = a]|

If A is an event and x ∼ S a random variable we denote with x|A the conditional random
variable such that for all a ∈ A, Pr

[
x|A = a

]
= Pr [x = a|A]. The main result we will use later on

in the proof of security is the following, which allows to bound the joint statistical distance of two
vectors (x1, y1), (x2, y2) using upper bounds on the distance of x1, x2 and of y1, y2 conditioned on
x1 = x, x2 = x for almost all x.

Proposition 3. Given four random variables x1, x2 ∼ X, y1, y2 ∼ Y and called X+ = {a ∈ X :
Pr [xi = a] > 0, i ∈ [2]}, if there exists A ⊆ X such that

P (x1 ∈ A) ≤ ε1, ∆(x1, x2) ≤ ε2, ∆(y1|x1=x, y2|x2=x) ≤ ε3 ∀x ∈ X+ \A,

for positive real numbers ε1, ε2, ε3 ∈ R+, then ∆((x1, y1), (x2, y2)) ≤ ε1 + ε2 + ε3.

21

B.2 Static Construction

Proof (of Theorem 1). The main challenge to face when providing a simulator S for this protocol
interacting with FSSLE and an environment Z is to correctly simulate the election phase. In particular
whenever a corrupted party wins, S will receive from FSSLE the winner’s index – which will be the
same returned by honest parties when eventually a reveal request is sent – therefore S has to return
through Fnct the right index γ ∈ [n]. Conversely when an honest party Pi wins S knows only that
the winner is honest. Indeed FSSLE will reveal its identity only after Z has sent (reveal, eid) to FSSLE

as Pi. Interestingly with significant probability the index γ returned by S will be wrong.
In the first case we use FRDL

zk to extract at registration time secret keys belonging to corrupted
users in order to correctly identify the right element hs,` at election time. More specifically, as S
knows the secret key of each commitment, he can extract the permutation used in each shuffle and
maintain two functions, ϕ : [n] → [N] and ξ : [n] → [n] so that, informally, at any time the i-th
commitment in the list belongs to Pϕ(i) and was the ξ(i)-th commitment to be added in the list.
In the second case instead we can solve the issue by simulating proofs contained in the claim. This
can be addressed through standard techniques, for instance replacing the claim’s NIZK with an OR
proof involving a trapdoor for a previously generated CRS. A detailed description of the simulator
is presented in Figure 8.

Next we outline a sequence of hybrid functionalities to show that S ◦ FSSLE is indistinguishable
from the real protocol:

H0: The real protocol
H1: As the real protocol but every NIZK from honest users is produced running the simulator
H2: As H1 but initially set ξ : [n] → [n] and ϕ : [n] → [N]. After a registration for Pj store xs,n

the exponent such that hs,n = g
xs,n
s and set ϕ(n) = j, ξ(n) = n. After a shuffle performed by a

corrupted shuffler find η ∈ Sn such that hs+1,` = g
xs,η(`)
s+1 , or, if the shuffler is honest, let η be the

permutation used. Update ϕ← ϕ ◦ η, ξ ← ξ ◦ η and xs+1,` ← xs,η(`)

H3: As H2 but initially set E ← ∅. After any election in which Fnct returned (tossed, eid, γ), set
j = ϕ(γ) and store E ← E ∪ {(eid, j)}.

H4: As H3 but when a corrupted user Pj sends (claim, eid, δ, π), honest users returns (result, eid, j)
if (j, δ, ·) ∈ R, π is accepted and in addition if (eid, j) ∈ E. Else they return (rejected, eid, j).

H5: As H4 but each honest user Pj upon receiving (reveal, eid) checks if (eid, j) ∈ E. If this is the
case broadcasts (claim, eid, ξ(γ), π) with simulated π where (tossed, eid, γ) was returned by Fnct.
Else, it broadcasts (claim, eid,⊥).

H6: As H5 but every time a honest user Pi perform a shuffle, for all ` ∈ [n] such that ϕ(`) /∈ M
sample xs+1,` ←$ Fq. Next for all ` ∈ [n] set hs+1,` ← g

xs+1,`

s+1 .

H7: As H6 but for each election sample (j, · , ·)←$ R and add (eid, j) to E. Next sample γ ←$ ϕ−1(j)
and return (tossed, eid, γ).

H8: As H7 but for each election sample (j, · , ·)←$ R, add (eid, j) to E and broadcast (tossed, eid, γ)
with

γ ←$

{
ϕ−1(j) If j ∈M
ϕ−1([N] \M) If j /∈M

.

Moreover when an honest Pj reveals sample δ ←$ ξ(ϕ−1(j)) and broadcast (claim, eid, δ, π) with
simulated π.

22

Simulator S:

Initially wait for Z to sendM ⊆ [N] the set of corrupted parties. Initialize R← ∅, n, s← 0, g0 ← g
and ϕ : [n]→ [N]. On input

// Honest user registration

1 : (registered, j) from FSSLE: Sample xs,n ←$ Fq, H ←$ G and set hs,n ← g
xs,n
s .

2 : Broadcast (proof, n, (g, gs), (H,hs,n))

// Shuffle:
3 : Sample r ←$ Fq and η ←$ Sn

4 : Compute gs+1 ← grs , set ϕ(n) = j and update ϕ← ϕ ◦ η, ξ ← ξ ◦ η
5 : For all ` ∈ [n]: Compute hs+1,` ← hrs,η(`)

6 : Store the registration in R, adding R← R ∪ {(j, n,H)}
7 : Simulate π and broadcast (shuffle, sid, gs+1,hs+1, π)

// Corrupted user registration

8 : (prove, n, (g, gs), (H,hs,n), x) from Pj :
9 : If H = gx, hs,n = gxs and (· , · , H) /∈ R:

10 : Store xs,n ← x, set ϕ(n) = j, ξ(n) = n and R← R ∪ {(j, n,H)}
11 : Broadcast (proof, n, (g, gs), (H,hs,n))

12 : (shuffle, sid, gs+1,hs+1, π) from Pj :

13 : If π is accepted: Find η ∈ Sn such that hs+1,` = g
xs,η(`)
s+1

14 : Update ϕ← ϕ ◦ η and ξ ← ξ ◦ η.

// Election phase

15 : A request from FSSLE to send (outcome, eid):
16 : If any corrupted Pj will receive (outcome, eid, 1): Sample γ ←$ ϕ−1(j)

17 : Else: Sample γ ←$ ϕ−1([N] \M)

18 : Broadcast (tossed, eid, γ) and let FSSLE send its messages

// Honest user’s correct claim
19 : (result, eid, j) from FSSLE:
20 : Sample δ ← ξ(ϕ−1(j)), simulate π and broadcast (claim, eid, δ, π)

// Honest user’s incorrect claim
21 : (rejected, eid, j) from FSSLE:
22 : Broadcast (claim, eid,⊥)

// Corrupted user claim

23 : (claim, eid, δ, π) from Pj :
24 : If (j, δ,H) ∈ R for some H and π is accepted, send (reveal, eid) to FSSLE as Pj

Fig. 8. Description of simulator S executed with an environment Z interacting with S ◦ FSSLE

23

H9: As H8 but each time an honest user performs a shuffle, it sample r ←$ Fq, η ←$ Sn and set
gs+1 ← grs and hs+1,` ← hrs,η(`).

H10: The simulated protocol FSSLE ◦ S.

Next we argue that any pair of subsequent functionalities is indistinguishable against a PPT
adversary. Trivial cases are H0 ≡ H1 from perfect HVZK, and H1 ≡ H2 ≡ H3 since beside computing
ξ and E their behaviour is unaltered.

Claim 1. In H2 for all s up to negligible probability hs,` = g
xs,`
s and there exists a unique ηs+1 =

η ∈ Sn such that hs+1,` = g
xs,η(`)
s+1 .

We prove the statement by induction. The base case s = 0 is trivial. Assuming the claim for s, if the
next shuffler is honest (or by weak simulation soundness if it is corrupted) there exists a permutation
η ∈ Sn and r ∈ Fq such that gs+1 = grs and hs+1,` = hrs,η(`) which is equal to g

rxs,η(`)
s = g

xs,η(`)
s+1 .

This permutation is also the only one because by construction all elements hs,` are different. Finally
since we defined xs+1,` = xs,η(`) we have that hs+1,` = g

xs,η(`)
s+1 = g

xs+1,`

s+1 completing the proof.

Claim 2. In H2, for any step s, R = {(ϕ(`), ξ(`), H) : ` ∈ [n], H = gxs,`}.
Again we prove this by induction. The base case is trivially satisfied because initially R = ∅ and
n = 0. Calling ξs and ϕs the functions ξ and ϕ at round s, assume the thesis to hold for s. If a user
Pj registers sending (prove, n, (g, gs), (H,hs,n), x) by construction ξ(n) = n, ϕ(n) = j and (j, n,H)
is added to R with H = gxs,ξ(n) . After the (s + 1)-th shuffle let r ∈ Fq and η ∈ Sn be the witness
used, which exists either by simulation soundness if the shuffler is corrupted or by construction
otherwise. Then ξs+1 = ξs ◦ η and ϕs+1 = ϕs ◦ η implies

R = {(ϕs(`), ξs(`), H) : ` ∈ [n], H = gxs,`}
= {(ϕs(η(`)), ξs(η(`)), H) : ` ∈ [n], H = gxs,η(`)}
= {(ϕs+1(`), ξs+1(`), H) : ` ∈ [n], H = gxs+1,`}

where in the last step we used xs+1,` = xs,η(`) by construction. The claim is therefore proven.

Claim 3. H3 ≡ H4:
The behaviour of H3 and H4 differs only when a corrupted Pj sends a message (claim, eid, δ, π)
that would be accepted in H3 but not in H4 executed with the same random coins. We show this
happens only with negligible probability. Since the message would be accepted in H3 we have that
(j, δ,H) ∈ R an there exists by simulation soundness up to negligible probability an α ∈ Fq such
that H = gα and hs,γ = gαs . Since ξ : [n]→ [n] is a bijection, there exists ` ∈ [n] such that δ = ξ(`).
By Claim 2

(j, ξ(`), ·) ∈ R ∧ (ϕ(`), ξ(`), ·) ∈ R ⇒ j = ϕ(`).

Still by Claim 2 H = gxs,` so α = xs,`. However hs,γ = gαs implies by Claim 1 that α = xs,γ . As all
elements hs,1, . . . , hs,n are different by construction, and in particular xs,1, . . . , xs,n are all different,
xs,γ = xs,` ⇒ γ = `. By the way we defined H3 then (eid, j) = (eid, ϕ(`)) = (eid, ϕ(γ)) ∈ E. Hence
the aforementioned case only occurs with negligible probability.

Claim 4. H4 ≡ H5:
We show that the functionalities behave identically. If an honest Pj return (claim, eid, δ, π) in H4

24

then there exists a key x ∈ K such that

(j, δ,H) ∈ R, hs,γ = gxs , H = gx.

Since ξ is a bijection there exists ` such that ξ(`) = δ and, by Claim 2 (ϕ(`), ξ(`), ·) ∈ R implies
j = ϕ(`) and H = gxs,` . From Claim 1 instead hs,γ = g

xs,γ
s implies x = xs,` = xs,γ ⇒ ` = γ. In

particular (eid, j) = (eid, ϕ(`)) = (eid, ϕ(γ)) = (eid, j) ∈ E.
Conversely if (eid, j) ∈ E then ϕ(γ) = j and by Claim 2, (ϕ(γ), ξ(γ), H) ∈ R implies H = gxs,γ .

By construction Pj stores in K the discrete logarithm of H in base g, xs,γ ∈ K which, by Claim 1
also satisfies hs,γ = gs,γs . This concludes the claim’s proof.

Claim 5. DDH ⇒ H6 ≡ H5.
Given Z a distinguisher which performs at most U shuffles and V registrations, we will prove the
claim through a sequence of intermediate functionalities H∗σ which behave as H6 until the σ-th shuffle
(exclusive) and as H5 from the σ-th shuffle on. For Z it is impossible to distinguish H6 from H∗U
because they behave identically for the first U shuffles and by definition H∗0 = H5. Thus it suffices to
show H∗σ ≡ H∗σ+1. We reduce their indistinguishability to DDHV through the algorithm A described
below.

Description of A: On input (g, w0, . . . , wV , g̃, w̃0, . . . , w̃V) tuple of group elements and M ←$ Z
the subset of corrupted parties M ⊆ [N], initialize the following variables ρ ← 1; s, n ← 0, and
functions ξ : [n]→ [n], ϕ : [n]→ [N]. Next simulate H∗σ with the following modifications

– When Pj registers, if it is a corrupted user (i.e. j /∈M), store xs,n ∈ Fq such that H = gxs,n and
hs,n = g

xs,n
s . Else, if j ∈M sample xs,n ←$ Fq and set H ← w

xs,n
n and hs,n ← w

ρxs,n
n .

– When a shuffle occurs let (r, η) be the witness either extracted from the proof of a corrupted
user or sampled by an honest one. Update for all ` ∈ [n]

ρ← ρ · r, ξ ← ξ ◦ η, ϕ← ϕ ◦ η, xs+1,` ← xs,η(`)

Moreover, if the shuffler is honest, simulate the shuffle according to the cases below
s < σ: For all ` ∈ [n] set

hs+1,` ←

{
hrs,η(`) If ϕ(`) ∈M
w
ρxs+1,n

ξ(`) , xs+1,` ←$ Fq If ϕ(`) /∈M

s = σ: Fix r = 1, compute gs+1 ← g̃ρ and set

hs+1,` ←

{
g
xs+1,n

s+1 If ϕ(`) ∈M
w̃
ρxs+1,n

ξ(`) If ϕ(`) /∈M

s > σ: Simulate the shuffle as in H∗σ

Finally when b←$ Z, return b and halt.

25

Proof of Claim. First we observe that by induction one can prove that for all7 s < σ and ` ∈ [n]
the group element hs,` and gs are of the form

gs = gρ, hs,` =

{
g
xs,`
s if ϕ(`) ∈M
w
ρxs,`
ξ(`) if ϕ(`) /∈M

.

Next we show that A perfectly simulates all those phases that are identical in H∗σ and H∗σ+1.

– Registration phase: For honest users, we have that the discrete logarithm of H in base g and of
hs,n in base gs are equal since by construction gs = gρ and calling θn ∈ Fq such that gθn = wn

then H = gθnxs,n and hs,n = g
θnxs,n
s

– Shuffle phase, s < σ: group elements linked to malicious users are correctly shuffled, while for
honest users since xs+1,n is sampled randomly, hs+1,n ∼ U(G) and independently from previous
messages as specified in H6

– Shuffle phase, s > σ: as in H∗σ or H∗σ+1 by construction.

Finally, regarding the shuffle at round σ with an honest shuffler, we differentiate according to
the kind of tuple A receives in input. In DDH1

V there exists an r ∈ Fq such that g̃ = gr and w̃i = wri .
This implies that

ϕ(`) ∈M ⇒ hs+1,` = g̃ρxs+1,` = grρxs,η(`) = g
rxs,η(`)
s = hrs,η(`)

ϕ(`) /∈M ⇒ hs+1,` = w̃
ρxs+1,`

ξs+1(`)
= w

rρxs+1,`

ξs+1(`)
= w

rρxs,η(`)
ξs(η(`))

= hrs,η(`)

where in the second case we let ξs be the value of ξ at round s. Hence A perfectly simulates
H∗σ. Conversely in DDH0

V we have that group elements linked to malicious users are still correctly
computed by calling r ∈ Fq the discrete logarithm of g̃ in base g. For elements linked to honest
users instead, since w̃` are uniformly random and independent from w` and previous messages,
hs+1,` ∼ U(G). Thus A perfectly simulates H∗σ+1.

We can therefore conclude that Adv (A) = Adv (Z) and, as the former is negligible by the DDH
assumption, so is the latter.

Claim 6. H6 ≡ H7: Calling for each election (j0, γ0) and (j1, γ1) the elements sampled respectively
in H6 and H7 during each election, we will prove they have the same distribution. Studying γb alone
we have by construction that γ0 ∼ U([n]). Regarding γ1, we begin studying the probability that
j1 = j∗. Let Rj = {δ : (j, δ, ·) ∈ R} be the entries in R that makes H7 returns j when chosen at
election time. Then Pr [j1 = j∗] = |Rj∗ | · |R|−1. We now prove that Rj = ξ(ϕ−1(j)). Indeed

δ ∈ ξ(ϕ−1(j)) ⇒ j = ϕ(ξ−1(δ)) ⇒
⇒ (j, δ, ·) = (ϕ(ξ−1(δ)), ξ(ξ−1(δ)), ·) ∈ R ⇒ δ ∈ Rj .

Conversely if δ ∈ Rj then (j, δ, ·) ∈ R but by Claim 2, (ϕ(ξ−1(δ)), ξ(ξ−1(δ)), ·) ∈ R. Thus j =
ϕ(ξ−1(δ)) implying δ ∈ ξ(ϕ−1(j)).

7 not only after an honest shuffle

26

We are now ready to prove γ1 ∼ U([n]). For all γ∗ ∈ [n]

Pr [γ1 = γ∗] =
N∑

j∗=1

Pr [γ1 = γ∗|j1 = j∗] · Pr [j1 = j∗]

= Pr [γ1 = γ∗|j1 = ϕ(γ∗)] · Pr [j1 = ϕ(γ∗)]

=
1

|ϕ−1(ϕ(γ∗))|
·
|Rϕ(γ∗)|
|R|

=
1

|ϕ−1(ϕ(γ∗))|
· |ξ(ϕ

−1(ϕ(γ∗)))|
n

=
1

|ϕ−1(ϕ(γ∗))|
· |ϕ
−1(ϕ(γ∗))|

n
=

1

n

where the second equality follows as γ1 ∈ ϕ−1(j1) and γ1 = γ∗ implies j1 = ϕ(γ∗). The second to
last instead follows as ξ is a bijection.

Next, conditioning on γb = γ∗ for b ∈ {0, 1}, we have j0 = ϕ(γ∗) by construction while γ1 ∈
ϕ−1(j1) implies γ∗ ∈ ϕ−1(j1) that is j1 = ϕ(γ∗). By Proposition 3 we conclude ∆((γ0, j0), (γ1, j1)) =
0 as claimed.

Claim 7. H7 ≡ H8:
Calling (γ0, δ0) and (γ1, δ1) the values of γ and δ at an election after the s+1-th shuffle respectively
in H7 and H8. Since these are the only variables sampled differently in the two games, we show the
two games are identical by showing (γ0, δ0) and (γ1, δ1) follows the same distribution, conditioned
on the view of the adversary.

For simplicity we first give a proof assuming the (s + 1)-shuffler was honest. After this shuffle
the view of Z includes

gs, gs+1, (hs,`)
n
`=1 , (hs+1,`)

n
`=1 .

The first two group elements uniquely identify a group element r ∈ Fq such that gs+1 = grs (although
this may be hard to compute our analysis here is only information theoretic). By construction this
further determines two sets A,A′ ⊆ [n] of size |ϕ−1s (M)| (which does not depends on the permutation
chosen by the honest shuffler) and a function f : A→ A′ such that

hs+1,` = hrs,f(`) ∀` ∈ A.

Informally A is the set of indices in the (s+1)-th list associated to malicious users and f is the map
associating these commitments to the related ones in the s-th list. More in detail it can be easily
shown that A = ϕ−1s+1(M) and A′ = ϕ−1s (M). Next we define three sets of permutations:

K = {µ ∈ Sn : µ|A = f}
Kj
a = {µ ∈ K : µ(a) ∈ ϕ−1s (j)}

Ka,b = {µ ∈ K : µ(a) = b}.

It is easy to observe that, calling m = |[n] \ ϕ−1s (M)|, |K| = m!, if j /∈M and b /∈ ϕ−1s (M)

|Kj
a| =

{
0 If a ∈ A
|ϕ−1s+1(j)|(m− 1)! If a /∈ A

|Ka,b| =

{
0 If a ∈ A
(m− 1)! If a /∈ A.

Next we prove that conditioning on the view until the (s+ 1)-th election, then η, the permutation
chosen by the last shuffler (assumed to be honest) is uniform over K. To this aim observe that

27

group elements exchanged in rounds before the s-th are independent by construction from η. Thus
we only need to study

Pr
[
η = η∗

∣∣(gs, gs+1, hs,`, hs+1,`)
n
`=1 = (g∗s , g

∗
s+1, h

∗
s,`, h

∗
s+1,`)

n
`=1

]
= Pr

[
η = η∗

∣∣∣r = r∗,
(
hs+1,` = hrs,f(`)

)
`∈A

, (hs,` = h∗s,`)`/∈A′ , (hs+1,` = h∗s+1,`)`/∈A

]
= Pr

[
η = η∗

∣∣η|A = f
]
= Pr [η = η∗|η ∈ K] .

Where the first step follows by the initial observation that r∗ is uniquely determined given g∗s , g∗s+1

and because η, gs are independent. Similarly the second equation follows as f is uniquely determined
given hs,` and hs+1,`, and by construction η does not depends on hs+1,` for ` /∈ A since these group
elements are uniformly sampled with fresh randomness at shuffle time (when the shuffler is honest),
as prescribed since H6.
To conclude, as η ∼ U(Sn), Pr [η ∈ K] = |K| · |Sn|−1 = m!/n! which in turns implies

Pr [η = η∗|η ∈ K] =

{
0 If η∗ /∈ K
Pr [η = η∗] · n!m! If η∗ ∈ K

=

{
0 If η∗ /∈ K
1
m! If η∗ ∈ K.

This concludes the proof that η ∼ U(K) conditioned on the view. Next we study γ0, γ1 conditioning
again on the view. Let for simplicity View be the vector of all messages exchanged in the protocol
and j the index sampled during the examined election, such that (eid, j) ∈ E.

Pr [γ0 = γ∗|View = View∗] =
N∑

j∗=1

Pr [γ0 = γ∗|View = View∗, j = j∗] · Pr [j = j∗]

If j∗ ∈ M , by construction both in H7 and H8, (γ0, δ0) and (γ1, δ1) are identically distributed.
conversely we condition on j∗ /∈ M . Then the probability that γ = γ∗ with γ∗ ∈ ϕ−1s+1(M) is zero,
since γ ∈ ϕ−1s+1(j

∗) and j∗ /∈M . If γ∗ ∈ [n] \ ϕ−1s+1(M) then

Pr [γ0 = γ∗|View = View∗, j = j∗]

=
∑
η∗∈K

Pr [γ0 = γ∗|View = View∗, j = j∗, η = η∗] · Pr [η = η∗|View = View∗, j = j∗]

=
∑

η∗∈Kj∗
γ∗

Pr [γ0 = γ∗|View = View∗, j = j∗, η = η∗] · 1

m!

=
∑

η∗∈Kj∗
γ∗

1

|ϕ−1s+1(j
∗)|
· 1

m!

=
|Kj∗

γ∗ |
|ϕ−1s+1(j

∗)| ·m!
=
|ϕ−1s+1(j

∗)| · (m− 1)!

|ϕ−1s+1(j
∗)| ·m!

=
1

m
.

Which implies γ0 ∼ U([n] \ ϕ−1s+1(M)). Regarding γ1 instead, when j∗ /∈ M , by construction γ1 ∼
U([n]\ϕ−1s+1(M)). Next, we study the variables δ0, δ1 conditioning on γ0 = γ∗ = γ1. Again, assuming
γ∗ ∈ ϕ−1s+1(M) this implies that the winning user is malicious (j∗ ∈ M) and in particular that by
construction the two variables are identically distributed. Conversely we assume γ∗ /∈ ϕ−1s+1(M). In

28

this case recall that δ0 = ϕ−1s+1(γ0). This is not fully determined given γ0 = γ∗ because the last
permutation is not a uniquely determined given γ0 = γ∗ and the view. For all δ∗ ∈ [n], calling
β∗ = ξ−1s (δ∗) and j∗ = ϕs+1(γ

∗), observe that

δ0 = ξs+1(γ
∗) ⇒ δ0 ∈ ξs+1(ϕ

−1(j∗)).

Thus the probability of δ0 = δ∗ is zero if δ∗ /∈ ξs+1(ϕ
−1(j∗)). Conversely if δ∗ lies in this set

Pr [δ0 = δ∗|View = View∗, γ0 = γ∗]

=
∑
η∈K

Pr [δ0 = δ∗|View = View∗, γ0 = γ∗, η = η∗] · Pr [η = η∗|View = View∗, γ0 = γ∗]

=
∑
η∈Kj∗

γ∗

Pr [δ0 = δ∗|View = View∗, γ0 = γ∗, η = η∗] · 1

|ϕ−1s+1(j
∗)| · (m− 1)!

=
∑

η∈Kγ∗,β∗
Pr [δ0 = δ∗|View = View∗, γ0 = γ∗, η = η∗] · 1

|ϕ−1s+1(j
∗)| · (m− 1)!

=
∑

η∈Kγ∗,β∗

1

|ϕ−1s+1(j
∗)| · (m− 1)!

=
|Kγ∗,β∗ |

|ϕ−1s+1(j
∗)| · (m− 1)!

=
(m− 1)!

|ϕ−1s+1(j
∗)| · (m− 1)!

=
1

|ϕ−1s+1(j
∗)|

=
1

|ξs+1(ϕ
−1
s+1(j

∗))|

which implies, under the above the conditions, that δ∗ ∼ U(ξs+1(ϕ
−1
s+1(j

∗)). By construction instead
δ1
∑
U(ξs+1(ϕ

−1
s+1(j

∗)). This concludes the proof assuming that the last shuffle before the given
election was honest.

To prove the claim in the general setting, calling σ the last shuffle performed by an honest
user, by construction in all previous elections no uncorrupted user wins nor registers (or else they
would shuffle the list upon revealing or registering). Calling ησ+1, . . . , ηs+1 the permutation cho-
sen by the corrupted shufflers, the previous argument can be repeated composing K,Kj

a,Ka,b with
ησ+1 ◦ . . . ◦ ηs+1. This concludes the proof.

Claim 8. DDH ⇒ H8 ≡ H9:
Analogous to the proof of Claim 5.

Claim 9. H9 ≡ H10:
Follows by inspection.

B.3 Adaptive Construction

Notation: Throughout the proof we denote Rj = {δ : (j, δ) ∈ R}, where R is the set that keeps
track of registrations in Protocol 4. We further say an index δ is linked to a user Pj if (j, δ) ∈ R. In
particular δ will be linked to an honest user if there exists an uncorrupted Pj such that (δ, j) ∈ R.

29

Proof (of Theorem 2). As in the static case, the main challenge in the construction of a simulator,
which we meticulously describe in Fig. 9, is to correctly reproduce the election phase. To this aim we
exploit the UC ZK-proof provided at registration time to let S extract (α, δ) such that h = g(α,δ).
In this way it is possible to link commitments in the list at any given round to those malicious users
who generated them, allowing S to correctly emulate elections in which a corrupted user wins.

Conversely, commitments linked to users not yet corrupted are independently randomized each
time an honest user performs a shuffle. In this way if FSSLE communicates at election time that the
winner is honest, S can choose a random commitment in the list linked to uncorrupted users. Finally,
corruptions and victory claims are carried out by simulating secret keys, done by equivocating the
Pedersen commitment.

Next we define a sequence of hybrid functionalities to prove that the real protocol is indistin-
guishable from FSSLE ◦ S for any PPT environment Z.

H0: The real protocol

H1: As the previous one, but all NIZK proof are simulated

H2: As H1 but when any user send at registration time (prove, sid, n,gs, hs,n, n, α) to F
Rped

zk correctly,
store zs,n ← (α, n). Moreover, set initially ξ : [n]→ [n] the identity function. During any shuffle,
if the shuffler is honest let η be the permutation chosen, otherwise find η ∈ Sn such that
hs+1,` = g

zs,η(`)
s+1 . Set

ξ ← ξ ◦ η, zs+1,` ← zs,η(`).

H3: As H2 but when the environment corrupts Pj , set K∗s,j ← ∅. For all δ ∈ Rj , calling γ = ξ−1(δ),

find α ∈ Fq such that g(α,δ)
s = hs,γ ·ks,δ and add K∗s,j ← K∗s,j∪{(α, δ)}. Return (corrupted, j,K∗s,j)

to the environment.

H4: As H3 but initially set E ← ∅. During the election eid, if the random beacon Fnct return
(tossed, eid, γ), set δ ← ξ(γ) and find j such that (j, δ) ∈ R. Add E ← E ∪ {(eid, j)}.

H5: As H4 but when a corrupted user Pj sends (claim, eid, δ, π), honest users return (result, eid, j) if
(j, δ) ∈ R, π is accepted and (in addition) if (eid, j) ∈ E. Else they return (rejected, eid, j).

H6: As H5 but each honest user Pj , upon receiving (reveal, eid), checks if (eid, j) ∈ E. If this is the
case it broadcasts (claim, eid, δ, π) where π is simulated and δ = ξ(γ) with γ being the index
returned by Fnct for the election eid. Else, broadcast (claim, eid,⊥).

H7: As H6 but every time an honest user Pi performs a shuffle, for all ` ∈ [n] linked to honest users
(i.e. such that calling δ = ξ(`) there is an honest user Pj s.t. (j, δ) ∈ R) find α ∈ Fq such that
hs,η(`) · ks,δ = g

(α,δ)
s and set

zs+1,` ←$ F2
q , hs+1,` ← g

zs+1,`
s+1 ,

vs+1,δ ← (α, δ)− zs+1,`, ks+1,δ ← g
vs+1,δ

s+1 .

Furthermore, in the update phase honest users samples us+1,δ ←$ G.

H8: As H7 but for each election sample (j, ·) ←$ R and add (eid, j) to E. Next, sample δ ←$ Rj ,
call γ ← ξ−1(δ) and return (tossed, eid, γ).

30

Simulator S:

1 : Initialize M ← ∅ the set of corrupted parties, s← 0 round counter, R← ∅ registered user set,
n← 0 size of R, ξ : [n]→ [n] composition of all permutations used for shuffling

2 : Sample y←$ F2
q Pedersen commitment trapdoor and set g0 ← gy

3 : When parties initially query Fct, return g0. Next, upon receiving:

// Honest User Registration

4 : (registered, j) from FSSLE with j /∈M :

5 : Sample zs,n ←$ F2
q, set vs,n ← 0, hs,n ← g

zs,n
s and broadcast (proof, n,gs, hs,n, n) as F

Rped

zk

6 : Execute the shuffle with η ∈ Sn and r ∈ Fq; Update ξ ← ξ ◦ η, zs+1,` ← zs,η(`), vs+1,δ ← vs,δ

// Corrupted User Registration

7 : (prove, sid, n,gs, hs,n, α) from corrupted Pj :

8 : If g(α,n)
s = hs,n, store zs,n ← (α, n), vs,n ← 0 and broadcast (proof, sid, n,gs, hs,n) as F

Rped

zk

9 : Update R← R ∪ {(j, δ)}, n← |R| and send (register) to FSSLE as Pj

// Corrupted User Shuffle

10 : (shuffle, sid,gs+1,hs+1,ks+1, π) from corrupted Pj with accepting π:

11 : Find η ∈ Sn : hs+1,` = g
zs,η(`)
s+1 for all ` ∈ [n]; Update ξ ← ξ ◦ η, zs+1,` ← zs,η(`), vs+1,δ ← vs,δ

12 : For δ ∈ [n] linked to honest users: ω ←$ Fq, vs+1,δ ← vs,δ + (ω, 0), us+1,δ ← g
(ω,0)
s+1

13 : π ← NIZK.Pped(gs+1, us+1,δ, 0, ω) and broadcast (update, sid, us+1,δ, π)

// Corrupted User Update

14 : (update, sid, us+1,δ, π) from corrupted Pj :
15 : If π is accepted and (j, δ) ∈ R, set ks+1,δ ← ks,δ · us+1,δ.

// Election
16 : A request from FSSLE to send (outcome, eid):
17 : If a corrupted Pj would receive (outcome, eid, 1): set δ ←$ Rj and γ ← ξ−1(δ)

18 : Else: sample (j, δ)←$ R such that j /∈M and set γ ← ξ−1(δ)

19 : Broadcast (tossed, eid, γ) as Fnct and let FSSLE send the requested messages

// Honest User Claim
20 : (result, eid, j) from FSSLE with Pj honest:
21 : Sample δ ←$ Rj and find α : y>(α, δ) = y>(zs,γ + vs,δ)

22 : Compute π ← NIZK.Pped(gs, hs,γ · ks,δ, δ, α) and broadcast (claim, eid, δ, π) as Pj
23 : Call γ′ ← ξ−1(δ), δ′ ← ξ(γ). Swap ξ(γ)← δ and ξ(γ′)← δ′

24 : Execute a shuffle as in line 6

25 : (rejected, eid, j) from FSSLE with Pj honest: Broadcast (claim, eid,⊥) as Pj

// Corrupted User Claim

26 : (claim, eid, δ, π) from corrupted Pj :
27 : If π is accepted and (j, δ) ∈ R: send (reveal, eid) as Pj to FSSLE

28 : Else: send (fake_rejected, eid, j) to FSSLE

// Corruption

29 : (corrupt, j) from Z: Execute the corruption procedure, Fig. 10

Fig. 9. Description of simulator S executed with an environment Z interacting with S ◦ FSSLE

31

Simulator S, Corruption Procedure:

1 : Add j to the set of corrupted users, M ←M ∪ {j}
2 : Send (corrupt, j) to FSSLE and wait for (corrupted, j, Ej)

3 : If election eid was unclaimed with eid ∈ Ej and (tossed, eid, γ) sent by Fnct :
4 : δ ←$ Rj , call γ′ ← ξ−1(δ), δ′ ← ξ(γ) and swap ξ(γ)← δ, ξ(γ′)← δ′

5 : Initialize Kj ← ∅ the set of simulated keys belonging to Pj
6 : For δ ∈ Rj , calling γ ← ξ−1(δ):
7 : Find α : y>(α, δ) = y>(zs,γ + vs,δ) and add Kj ← Kj ∪ {(α, δ)}
8 : Send (corrupted, j,Kj) to the environment Z

Fig. 10. Corruption procedure, used in simulator S, Fig. 9.

H9: As H8 but when an honest party Pj with (eid, j) ∈ E receives (reveal, eid) or is corrupted before
receiving the reveal command:
Sample δ ←$ Rj , call γ′ ← ξ−1(δ) and δ′ ← ξ(γ) and swap ξ(γ)← δ, ξ(γ′)← δ′.

H10: As H9 but when an honest user performs a shuffle, as in the real protocol it samples r ←$ Fq,
η ←$ Sn and set

gs+1 ← grs, hs+1,` ← hrs,η(`), ks+1,δ ← krs,δ, zs+1,` ← zs,η(`), vs+1,δ ← vs,δ

Analogously, in update phases, for each δ linked to honest users sample ω ←$ Fq and set

us+1,δ ← g
(ω,0)
s+1 , vs+1,δ ← vs+1,δ + (ω, 0).

H11: The simulated protocol FSSLE ◦ S.

We immediately deal with trivial cases pointing out that H0 ≡ H1 by perfect zero-knowledge
of the argument used while H1 ≡ H2 and H3 ≡ H4 are equivalent because they don’t affect the
behaviour of the functionality. Next, given a PPT environment Z, which performs at most U(λ)
elections and V (λ) registrations, we proceed to prove the following Lemmas.

Claim 1. If the DLP is hard in G, up to negligible probability at any step s in H0 the commitments
hs,1, . . . , hs,n are all distinct.
Given a PPT environment Z we build A breaking the DLP in G.

Description A: Initially it receives (g, v) ∈ G2. Samples θ ←$ Fq and sets g0 ← (gθ, vθ) the ini-
tial value returned by Fct. When a party sends at registration time (prove, sid, n,gs, hs,n, α) with
hs,n = g

(α,n)
s , store zs,n ← (α, n). After a shuffle, extract from the NIZK proof a witness (rs, ηs)

and set zs+1,` ← zs+1,ηs(`).
If at any point hs,i = hs,j let zs,i − zs,j = (ζ1, ζ2) and return x← −ζ1ζ−12 .

Proof of Claim. By weak simulation extractability we have that after any shuffle, if the proof is
accepted then (rs, ηs) is a valid witness, meaning that hs+1,` = hrss,ηs(`). Hence, it is easy to prove by
induction that until A does not halt hs,` = g

ρszs,`
0 with ρs = r1 · . . . · rs. If at some point hs,i = hs,j

32

then

g
ρs(zs,i−zs,j)
0 = 1 ⇒ g

zs,i−zs,j
0 = 1 ⇒ gθζ1 · vθζ2 = 1 ⇒ v = g−ζ1ζ

−1
2

where ζ2 is non zero because, as it can be shown by induction, zs,i = (· , ξ(i)), zs,j = (· , ξ(j)) and
i 6= j ⇒ ξ(i) 6= ξ(j) (because ξ is a bijection) and in particular ζ2 = ξ(i)− ξ(j) 6= 0. We conclude
that A breaks DL if a collision in the commitments occur.

Claim 2. In H2 for all s up to negligible probability, there exists a unique ηs ∈ Sn such that
hs+1,` = g

zs,ηs(`)
s+1 .

We prove the statement, vacuously true for s = 0, by induction. Assuming it true for all rounds
before the (s + 1)-th, we have that hs,` = g

zs,`
s . Calling (r̃s, η̃s) the witness extracted by the proof

of correct shuffling then

gs+1 = gr̃ss ⇒ hs+1,` = hr̃ss,η̃(`) = g
r̃szs,η̃(`)
s = g

zs,η̃(`)
s+1

Assume now that ∃η̂ ∈ Sn such that hs+1,` = g
zs,η̂(`)
s+1,` with η̂ 6= η̃. Then η̃−1 6= η̂−1 implying that

there exists a point k in which they differ, i.e. i = η̃−1(k) 6= η̂−1 = j. In other words η̃(i) = k = η̂(j)
and in particular

hs+1,i = g
zs,η̃(i)
s+1 = g

zs,k
s+1 = g

zs,η̂(j)
s+1 = hs+1,j

which, for i 6= j, by Claim 1 happens only with negligible probability.

Claim 3. Let Ks,j be the keyring of an uncorrupted user Pj at round s in H2. Then for all (α, δ) ∈
Ks,j, calling γ = ξ−1(δ), hs,γ · ks,δ = g

(α,δ)
s .

As before we prove the statement by induction. If (α, δ) ∈ Ks,j , let σ be the round in which Pj

performs the δ-th registration, then hσ,δ = g
(α,δ)
s and kσ,δ = 1. Assuming the thesis for s ≥ σ we

show it holds for s+ 1. By the inductive hypothesis, calling ξ−1s (δ) = γ′ we have that

(α, δ) ∈ Ks,j ⇒ g(α,δ)
s = hs,γ′ · ks,δ.

After the next shuffle, let (ηs+1, rs+1) be the next permutation and randomness used, then, calling
γ = ηs+1(γ

′)

gs+1 = grs+1
s , hs+1,γ = h

rs+1

s,γ′ , ks+1,δ = k
rs+1

s,δ

Therefore α opens the Pedersen commitment hs+1,γ · ks+1,δ to δ since

g
(α,δ)
s+1 = grs+1(α,δ)

s = h
rs+1

s,γ′ · k
rs+1

s,δ = hs+1,γ · ks+1,δ.

To conclude the proof we need to show that this relation holds even after an update. Let ω be the
exponent Pj uses to generate us+1,δ = g

(ω,0)
s+1 . After the update α′ = α+ω with (α′, δ) ∈ Ks+1,j and

k′s+1,δ = ks+1,δ · us+1,δ implies that

g
(α′,δ)
s+1 = g

(α,δ)
s+1 · g

(ω,0)
s+1 = hs+1,γ · ks+1,δ · us+1,δ = hs+1,γ · k′s+1,δ.

Claim 4. H2 ≡ H3.
These functionalities only differ each time an honest Pj is corrupted. Let Ks,j be the set of keys

33

stored by Pj at round s and K∗s,j the set of keys returned by H3 when Pj is corrupted at round s.
We will conclude by proving Ks,j = K∗s,j .

If (α, δ) ∈ Ks,j , calling γ = ξ−1(δ), by the previous claim hs,γ ·ks,δ = g
(α,δ)
s implying (α, δ) ∈ K∗s,j .

Vice versa if (α, δ) ∈ K∗s,j , calling γ = ξ−1(δ), by construction hs,γ · ks,δ = g
(α,δ)
s and (j, δ) ∈ R.

The second fact means that in some step Pj performed the δ-th registration, thus there exists a
(β, δ) ∈ Ks,j and, by the previous claim, hs,γ · ks,δ = g

(β,δ)
s . Letting r1, . . . , rs be the exponents used

in the shuffle rounds, and ρs = r1 · . . . · rs their product

g(α,δ)
s = hs,γ · ks,δ = g(β,δ)

s ⇒ 1 = g(α−β,0)
s = g

ρs(α−β,0)
0

Up to negligible probability the first component of g0 is non zero and ρs 6= 0, so we can conclude
α = β and in particular (α, δ) ∈ Ks,j . The Claim is thus proven.

Claim 5. DLP ⇒ H5 ≡ H4:
The only difference is that in H5, when a dishonest user broadcasts a claim message, honest ones
further check that (eid, j) ∈ E. Hence an adversary can distinguish the two world if he manages to
generate (claim, eid, δ, π) such that (j, δ) ∈ R, π is accepted by the NIZK verifier but (eid, j) /∈ E.
Calling bad this event, we show that whenever bad occurs, the environment can be used to break
the DLP over G. Formally we perform this reduction through an algorithm B.

Description of B. Initially it receives (g, v) instance of the DLP. Sample θ ←$ Fq and set g0 ←
(gθ, vθ) the initial vector returned by Fct. Next, it simulates H4 with the following changes:

– At corruption time it returns the set of keys belonging to Pj in Kj instead of equivocating them
– When an adversary performs a shuffle, extract (rs, ηs) from the NIZK proof, otherwise let (rs, ηs)

be the field element and permutation used by the honest shuffler.
– When an adversary perform a correct key update (update, sid, us,δ, π) extract ω from π such

that us,δ = g
(ω,0)
s and set vs+1,δ ← vs,δ + (ω, 0)

– When a corrupted user Pj sends (claim, eid, δ, π) such that bad occurs: Extract α from π and set
(α, δ) − zs,γ − vs,δ = (ζ1, ζ2) where γ is the index returned by Fnct for the election eid. Return
x← −ζ1ζ−12 .

When Z halts, return ⊥.

Proof of Claim. First we remark that B perfectly simulates H4 and H5, which until bad occurs
are identical. The only point to clarify here is that during player corruption B does not simulate
the keys through equivocation but instead it returns the real ones - which however up to negligible
probability produces the same view as shown in Claim 4. Next we notice that by induction one can
show ks,δ = g

vs,δ
s , which follows since in the protocol ks+1,δ = ks,δ · us,δ.

If bad occurs at election eid, let (tossed, eid, γ) be the message returned by Fnct, δ′ = ξ(γ) and
j′ ∈ [N] such that (j′, δ′) ∈ R. By construction then (eid, j′) ∈ E. By the way we defined bad,
(eid, j) /∈ E, so j 6= j′. This in turns implies δ 6= δ′, where δ is the index sent in (claim, eid, δ, π)
such that (j, δ) ∈ R, or by contradiction (j′, δ), (j, δ) ∈ R ⇒ j′ = j.

Calling σ the round in which Pj′ performed the δ′-th registration, let zσ,δ′ = (β, , δ′) be the
exponent used to generate hσ,δ′ . By previous claims

δ′ = ξ−1(γ) ⇒ zs,γ = zσ,δ′ = (β, δ′).

34

However, by the simulation extractability of the proof in the final claim message sent by Pj we also
have that

g(α,δ)
s = hs,γ · ks,δ = g(β,δ′)

s · gvs,δ
s .

Again by simulation extractability it can be shown by induction that vδ = (ω, 0) for some ω in Fq,
which implies ζ1 = α− β − ω, ζ2 = δ − δ′ 6= 0. From the previous equation g

(ζ1,ζ2)
s = 1 implying

g
(ζ1,ζ2)
0 = 1 ⇒ gθζ1vθζ2 = 1 ⇒ v = g−ζ1ζ

−1
2 .

This concludes the reduction.

Claim 6. H6 ≡ H5.
We will prove that the two world are identical. To this aim it is enough to show that (eid, j) ∈ E
with Pj currently honest, if and only if there exists (α, δ) ∈ Ks,j such that hs,γ · ks,δ = g

(α,δ)
s , where

(tossed, eid, γ) is the message returned by Fnct. This will prove the Claim as it shows that Pj will
correctly claim victory in H5 if and only if it does it in H− 6

If (eid, j) ∈ E, then Fnct returned (tossed, eid, γ) with ξ(γ) = δ and (j, δ) ∈ R which means that
at round σ ≤ s, Pj performed the δ-th registration. Hence (α′, δ) ∈ Kσ,j and it can be proved by
induction that (α, δ) ∈ Ks,j for some α ∈ Fq. By Claim 5 then g

(α,δ)
s = hs,γ · ks,δ.

Conversely assume there exists (α, δ) ∈ Ks,j such that hs,γ ·ks,δ = g
(α,δ)
s . By Claim 3, (α, δ) ∈ Ks,j

implies that, calling γ′ = ξ−1(δ), g(α,δ)
s = ks,δ · hs,γ′ . Therefore

hs,γ = g(α,δ) · k−1s,δ = hs,γ′ ⇒ γ = γ′

where the implication follows by the fact that all the elements hs,1, . . . , hs,n are distinct. In conclu-
sion (j, ξ(γ)) = (j, ξ(γ′)) = (j, δ) ∈ R which implies by construction (eid, j) ∈ E.

Claim 7. DDH ⇒ H7 ≡ H6.
Given a distinguisher Z which perform at most U elections and V registrations we prove the state-
ment through a sequence of hybrid games. We let H∗σ,d be as H6 but if an honest shuffle happens
at round s < σ, it is performed as in H7 whereas if it occurs at round s = σ, it is performed as
in H7 only for those ` linked to honest users8 such that ξ(`) < d. Notice that for Z, H∗0,0 ≡ H6,
H∗σ,V ≡ H∗σ+1,0 and H∗U,V ≡ H7, so we only need to prove H∗σ,d ≡ H∗σ,d+1 by reducing it through an
algorithm C to DDH.

Description of C. On input (g, w, g̃, w̃) sample a trapdoor for the Pedersen commitment y←$ F2
q ,

set g← gy, g̃ = g̃y, ρ← 1 and simulate H∗σ,d with the following changes.

– Fct initially returns g0 = g

– When a user Pj registers set vs,n ← 0. If Pj is corrupted extract zs,n ∈ F2
q such that hs,n = g

zs,n
s .

If Pj is honest and n 6= d sample zs,n ←$ F2
q and set hs,n ← g

zs,n
s . Otherwise if n = d set

hs,n ← wρ, ϑs ← 1 and µs ← 0.

8 See the notation remark at the beginning of this Section.

35

– After any correct shuffle let (rs+1, ηs+1) be the witness either used by an honest user or extracted
from the NIZK proof of a corrupted one. If σ = s set rs = 1. Update

ρ← ρ · rs+1 ξ ← ξ ◦ ηs+1

zs+1,` ← zs,ηs+1(`) vs+1,δ ← vs,δ ϑs+1 ← ϑs.

Moreover, if the shuffler is honest, simulate it according to the following cases:
• s < σ: For all ` ∈ [n] with ξ(`) 6= d behave as in H7 by finding α ∈ Fq such that y>(α, δ) =
y>(zs,η(`) + vs,δ). For ξ(`) = d set

ϑs+1 ←$ Fq, hs+1,d ← wρϑs+1 , ks+1,` ← h−1s+1,` · g
(µs,d)
s+1

• s = σ: If the index d is linked to a malicious user, i.e. if (j, d) ∈ R with j ∈M , execute this
shuffle as specified in H∗σ,d. Otherwise set gs+1 ← g̃ρ and for all ` ∈ [n] linked to honest users
with δ = ξ(`) < d compute hs+1,`, ks+1,δ as in H7 with the same procedure described before.
Still in this case, for ` such that ξ(`) = d set

hs+1,` ← w̃ρϑs+1 , ks+1,` ← w̃−ρϑs+1 · g(µs,δ)
s+1

For other values of ` instead set, calling δ = ξ(`)

hs+1,` ← g
zs+1,`

s+1 , ks+1,δ ← g
vs+1,δ

s+1 .

• s > σ: perform a correct shuffle as in the real protocol.
– After a shuffle has been performed simulate the update by extracting ws,δ ∈ F2

q such that
us,δ = g

ws,δ
s from the proof of corrupted users and setting vs,δ ← vs,δ + ws,δ. Instead for all

(j, δ) ∈ R with Pj not corrupted and δ 6= d

vs,δ ←$ F2
q , us,δ ← k−1s,δ · g

vs,δ
s .

For δ = d instead, calling γ = ξ−1(δ)

µs ←$ Fq, us,δ ← h−1s,γ · k−1s,δ · g
(µs,δ)
s .

– When Z send (corrupt, j), for all δ ∈ Rj with δ 6= d find α ∈ Fq such that, calling γ = ξ−1(δ)

y>(α, δ) = y>(zs,γ + vs,δ)

otherwise, for δ = d set α = µs. Add (α, δ) to Ks,j and send (corrupted, j,Ks,j)

Finally, when b←$ Z and halts, return b and halt.

Proof of Claim. First of all we observe that one can show by induction the following properties
for all s and `, calling δ = ξ(`):

s < σ ⇒ gs = gρ

s ≥ σ ⇒ gs = g̃ρ

δ 6= d ⇒ hs,` = g
zs,`
s , ks,δ = g

vs,δ
s

s < σ, δ = d ⇒ hs,` = wρϑs , ks,δ = w−ρϑsg(µs,δ)
s

s ≥ σ, δ = d ⇒ hs,` = w̃ρϑs , ks,δ = w̃−ρϑsg(µs,δ)
s .

36

Given them we proceed to show that regardless of the tuple C receives, it correctly reproduces the
phases H∗σ and H∗σ−1 agree on. Registrations are correctly simulated since with both functionalities
honest parties reply with hs,n = g

(α,n)
s for a uniform α meaning that hs,n ∼ U(G) independently

from previous messages. This matches the behaviour of C where hs,n = g
zs,n
s or hs,n = wρ. Updates

are also correctly distributed since in both functionalities us,δ ∼ U(G) independently from previous
messages. In the view generated by C, gvs,δ

s is uniform and independent, which implies that so is
us,δ = k−1s,δ · g

vs,δ
s for δ 6= d. The same holds for δ = d since µs ∼ U(Fq).

Next we show that corruption is handled correctly. For every δ ∈ Rj if δ 6= d and s < σ then

hs,` · ks,δ = g
zs,`+vs,δ
s = gρy

>(zs,`+vs,δ) = gρy
>(α,δ) = g(α,δ)

s .

The case s ≥ σ is analogous as we have

hs,` · ks,δ = g
zs,`+vs,δ
s = g̃ρy

>(zs,`+vs,δ) = g̃ρy
>(α,δ) = g(α,δ)

s .

Conversely, if δ = d then hs,` · ks,δ = g
(µs,δ)
s which implies that the exponent both functionalities

return is µs, according to the definition of H3.
Next we prove that C simulates correctly all the shuffle rounds for s 6= σ. When s < σ and

the shuffler is not corrupted we have that, with the same argument used above, the exponent α is
the same H7 would pick. Moreover for ` such that ξ(`) = d we have hs+1,` ∼ U(G) independently
from previous messages as ϑs+1 is sampled with fresh randomness over Fq, and µs is the exponent
required for the auxiliary term ks+1,` since hs,η(`) · ks,δ = g(µs,δ) (see the definition of H7). The case
s > σ is trivial.

Regarding the shuffle at round s = σ instead we can prove that all the elements hs+1,`, ks+1,δ

are correctly computed for ξ(`) 6= d. Indeed calling r ∈ Fq the exponent such that g̃ = gr we have
g̃ = gr and in particular

gs+1 = g̃ρ = grρ = grs.

For all ` ∈ [n] linked to honest users and with ξ(`) < d, α is the same exponent H7 would compute
(as argued previously). For other values of ` with ξ(`) 6= d

hs+1,` = g
zs+1,`

s+1 = g
rzs,ηs+1(`)

s = hrs,ηs+1(`)

ks+1,δ = g
vs+1,δ

s+1 = g
rvs,δ
s+1 = krs,δ.

Finally we will show that C in DDH1 simulates H∗σ,d while in DDH0 emulates H∗σ,d+1. As a
preliminary step we observe that if Z corrupts Pj with (j, d) ∈ R before the σ-th shuffle then the
views in H∗σ,d and H∗σ,d+1 are identical and C correctly simulates both. Thus we will assume from
now on that C does not corrupt Pj .

When C is executed in DDH1, calling again r ∈ Fq the exponent such that g̃ = gr, then w̃ = wr.
Therefore if the σ-th shuffler is honest, calling ` = ξ−1(d)

hs+1,` = w̃ρϑs+1 = wrρϑs = hrs,`′

for some `′ ∈ [n] where ξs(`′) = δ = ξs+1(`) which implies `′ = ηs+1(`) and in particular hs+1,` =
hrs,η(`) as prescribed in H∗σ,d. Moreover

ks+1,δ = w̃−ρϑs+1 · g(µs+1,δ)
s+1 = w−rρϑs · gr(µs,δ)s = krs,δ.

37

When C is executed in DDH0 instead we have that w̃ is uniformly and independently random,
and in particular so is hs+1,` = w̃ρϑs+1 . Finally µs is the exponent required to compute ks+1,δ as
specified in H7. Indeed, according to the equation presented at the beginning, hs,η(`) ·ks,δ = g

(µs,µsδ)
s ,

which proves that ks+1,` is computed as it would in H∗σ,d+1. We conclude that C breaks DDH with
the same advantage Z has in distinguishing H∗σ,d from H∗σ,d+1, proving the Claim.

Claim 8. H7 ≡ H8:
After any election let (γ0, δ0, j0) and (γ1, δ1, j1) be random variables such that, respectively in H7

and H8, Fnct returns (tossed, eid, γb) and (eid, jb) is added in E for b ∈ {0, 1}. We will prove thee two
vectors follow the same distribution when conditioned to the protocol’s view. First of all we observe
that the set R defines a function f : [n] → [N] such that f(δ) = j if and only if (j, δ) ∈ R. This
is true since for all δ ∈ [n] there is a party Pj who performed the δ-th registration and this user is
unique. A consequence of this definition is that

f−1(j) = {δ : f(δ) = j} = {δ : (j, δ) ∈ R} = Rj .

In H7 by construction γ0 ∼ U([n]) chosen virtually by Fnct, δ0 = ξ(γ0) and with the above notation
j0 = f(δ0) = f ◦ ξ(γ0). Conversely in H8, (j1, ·) ∼ U(R), δ1 ∼ U(Rj1) and γ1 = ξ−1(δ1). Notice
that since ξ−1 is a bijection γ1 ∼ U([n]) if and only if δ1 ∼ U([n]). In order to show the latter, for
any x ∈ [n]

Pr [δ1 = x] =
∑
y∈[N]

Pr [δ1 = x|j1 = y] Pr [j1 = y]

= Pr [δ1 = x|j1 = f(x)] Pr [j1 = f(x)]

=
1

|f−1(x)|
· |f
−1(x)|
N

=
1

N

where the second equality holds since if j1 = y 6= f(x) then by construction δ1 ∈ f−1(y) but x /∈
f−1(y) which implies Pr [δ1 = x|j1 = y] = 0. Therefore δ1 ∼ U([n]) and in particular γ1 ∼ U([n]).

To finally show that ∆((γ0, δ0, j0), (γ1, δ1, j1)) = 0 observe that both γ0, γ1 are uniformly dis-
tributed in their domain. Moreover, upon conditioning on γ0 = z and γ1 = z, we have δ0 = ξ(z) and
j0 = f ◦ξ(z) in H7 whereas in H8, z = ξ−1(δ1) ⇒ δ1 = ξ(z) and ξ(x) = δ1 ∈ f−1(j1) ⇒ j1 = f ◦ξ(z).
By Proposition 3 the two distributions are therefore equivalent.

Claim 9. DDH3 ⇒ H9 ≡ H8:
Let H?θ be an hybrid functionality such that H?θ performs a swap, as specified in H9, for the first θ
elections with an honest winner. Since, when executed with Z, H?0 = H8 and H?U = H9, with U being
an upper bound on the number of elections Z performs, it is enough to show H?θ ≡ H?θ+1. Given a
distinguisher Z, we describe D that breaks DDH3 whose advantage is a significant fraction of Z’s
distinguishing advantage.

Description of D: On input (g, w0, w1, g̃, w̃0, w̃1), sample/setup the following

y←$ F2
q , δ0 ←$ [V], δ1 ←$ [V], b←$ {0, 1},

ρ← 1, cnt← 0, state← wait,

38

where cnt counts the past elections with an honest winner, state ∈ {wait, done} specifies if we
injected the DDH3 challenge yet and δ0, δ1 are guesses on the two honest party’s indices that may
be swapped after the (ϑ + 1)-th election with an honest winner. Call g ← gy, g̃ ← g̃y and define
IC, injection condition, the proposition

(· , δ0) ∈ R ∧ (· , δ1) ∈ R ∧ cnt = θ.

Next simulate H?θ with the following changes:

– Initially let Fct return g0 = g.
– When a party Pj performs a registration set vs,n = 0. If Pj is corrupted extract zs,n ∈ F2

q such
that hs,n = g

zs,n
s , otherwise sample zs,n ←$ F2

q and set hs,n ← g
zs,n
s

– When a shuffle is performed by a corrupted user extract from the provided proof a witness
rs+1, ηs+1. Otherwise, if the shuffle is performed by an honest user, sample rs+1 ←$ Fq and
ηs+1 ←$ Sn. Update

ρ← ρ · rs+1, ξ ← ξ ◦ ηs+1, zs+1,` ← zs,ηs+1(`), vs+1,δ ← vs,δ

and, only if the shuffler is honest, simulate it according to the following cases:
• (state = wait) ∧ ¬IC. For all ` ∈ [n] linked to honest parties, sample zs+1,` ←$ F2

q and set
hs+1,` ← g

zs+1,`

s+1 . Next call δ = ξ(`) and compute

α ∈ Fq : y>(α, δ) = y>(zs,ηs+1(`) + vs,δ), vs+1,δ ← (α, δ)− zs+1,`.

Finally set the auxiliary element for the key update as

ks+1,δ ←

{
g
vs+1,δ

s+1 If δ /∈ {δ0, δ1}
wρβ · g

vs+1,δ

s+1 If δ = δβ, β ∈ {0, 1}

• (state = wait) ∧ IC. Set state = done, rs+1 = 1 and gs+1 ← g̃ρ. Next, for all ` ∈ [n], if ` is
linked to an honest party set with the above notation

zs+1,` ←$ F2
q , vs+1,δ ← (α, δ)− zs+1,`, hs+1,` ← g

zs+1,`

s+1

ks+1,δ ←

{
g
vs+1,δ

s+1 If δ /∈ {δ0, δ1}
w̃ρβ · g

vs+1,δ

s+1 If δ = δβ, β ∈ {0, 1}

where α ∈ Fq is computed as in the previous case. Else, if ` is linked to a corrupted player,
set

hs+1,` ← g
zs+1,`

s+1 , ks+1,δ ← g
vs+1,δ

s+1 .

• If state = done, simulate the shuffle phase as prescribed in H?θ, i.e. as in H8.
– After any shuffle, simulate the update by extracting ws,δ ∈ F2 such that us,` = g

ws,δ
s for the

proof of any corrupted party and setting vs,δ ← vs,δ +ws,δ. Conversely, for all δ ∈ [n] linked to
an honest player, i.e. such that (j, δ) ∈ R with j /∈M , sample vs+1,δ ←$ F2

q and set

us,δ =

{
k−1s,δ · w

ρ
β · g

vs,δ
s If (state = wait) ∧ δ = δβ

k−1s,δ · g
vs,δ
s Otherwise

39

– When users request the election eid, sample (j, ·) ←$ R and increment cnt ← cnt + 1 if Pj is
honest. Next, if cnt 6= θ perform the election as in H?θ by adding (eid, j) in E. Else, for β ∈ {0, 1}
set γβ = ξ(δβ) and jβ ∈ [N] such that (jβ, δβ) ∈ R. Then store (eid, j0) in E and make Fnct
return (tossed, eid, γb). When the honest winner claims victory, update ξ so that

ξ(γ0) = δb, ξ(γ1) = δ1−b

i.e. perform a swap only if b = 1.

In conclusion, if at any time Pj is corrupted when cnt < θ with (j, δ0) ∈ R or (j, δ1) ∈ R or if
during the (θ+1)-th honest election (· , δ0) /∈ R or (· , δ1) /∈ R, return a random bit and halt. When
b′ ←$ Z, return b == b′.

Proof of Claim. First of all we study the behaviour of D when it is executed in DDH1
3, i.e. when

there exists an r ∈ Fq such that g̃ = gr, w̃0 = wr0 and w̃1 = wr1, proving it agrees with H?θ+b. We
do this conditioning on ¬halt, where halt is the event “D forcefully halts during the execution and
returns a random bit”. This involves the following phases

– Registration phase: As observed in previous reductions, when an honest user register in H?θ it
sends hs,n = g

(α,n)
s with α ∼ U(Fq), see the definition of H2. Hence hs,n ∼ U(G) independently

from previous messages. Analogously, D sets hs,n = g
zs,n
s with zs,n ∼ U(F2

q) implying that
hs,n ∼ U(G).

– Update phase: In H?θ honest users set us,δ ∼ U(G) with fresh randomness, see the definition
of H7. Similarly, D samples with fresh randomness vs,δ ∼ U(F2

q) meaning that g
vs,δ
s ∼ U(G).

As a consequence both k−1s,δ · g
vs,δ
s and k−1s,δ · w

ρ
β · g

vs,δ
s are uniformly distributed over G and

independently from previous messages.

– Election phase: When cnt 6= θ or the selected j lies in M (the set of corrupted parties), then
the election is carried out correctly as for cnt < θ and j /∈ M it involves a swap as in H∗θ or
H∗θ+1 while for cnt > θ and j /∈M no swap is performed, again as in H∗θ or H∗θ+1. Finally, when
cnt = θ and an honest winner is going to be selected, since we are conditioning on ¬halt we have
that (j0, δ0) ∈ R and (j1, δ1) ∈ R with j0, j1 /∈ M (note j0 and j1 need not to be different). By
construction δ0 ∼ U([V]) implies, under the condition ¬halt that

δ0, δ1 ∼ U({δ ∈ [n] : (j, δ) ∈ R, j /∈M}).

As done in Claim 8, is easy to observe that (j0, δ0) then has the same distribution of a uniformly
chose j∗ ←$ [N] \M and δ∗ such that (j∗, δ∗) ∈ R. Finally, according to the value of b after the
election D sets

b = 0 ⇒ ξ(γ0)← γ0 = ξ(γ1)← γ1

b = 1 ⇒ ξ(γ0)← γ1 = ξ(γ1)← γ0

i.e. it correctly simulates this election as in H?θ+b.

– Shuffle phase: We begin observing that by induction one can prove that as long as state =
wait ∧ ¬IC then gs = gρ, hs,` = g

zs,`
s and

δ /∈ {δ0, δ1} ⇒ ks,δ = g
vs,δ
s , δ = δβ ⇒ ks,δ = wρβ · g

vs,δ
s+1 (1)

40

If state = wait and ¬IC, to prove correctness we just need to show that the elements hs+1,`, ks+1,δ

with ξ(`) = δ ∈ {δ0, δ1} computed by D are correctly distributed. First we notice that up to
negligible probability the first component of g0 is non-zero, and that conditioning to this event
there exists a ν ∈ Fq such that wρsβ = g

(ν,0)
s . On the other hand, calling `′ = η(`), by construction

g
zs,`′+vs,δ
s = g

(α,δ)
s . Hence we have that for δ = δβ , β ∈ {0, 1}

hs,`′ · ks,δ = g
zs,`′
s · g(ν,0)

s · gvs,`′
s = g(α+ν,δ)

s .

Since D sets vs+1,δ = (α, δ)− zs+1,` we have that

hs+1,` · ks+1,δ = w
ρs+1

β · g(α,δ)
s+1 = w

rs+1ρs
β · g(α,δ)

s+1 =

= grs+1(ν,0)
s · g(α,δ)

s+1 = g
(ν,0)
s+1 · g

(α,δ)
s+1 = g

(α+ν,δ)
s+1 .

For δ /∈ {δ0, δ1} the proof is analogous to the one in Claim 7. In the subsequent case, if state =
wait and IC, using equation 1 we have that gs+1 = g̃ρ = grρ = grs. Consequently, for all ` ∈ [n],
if ` is linked to a dishonest party

hs+1,` = g
zs,η(`)
s+1 = g

rzs,η(`)
s = hrs,η(`).

and similarly ks+1,δ = krs,δ. If ` is linked to an honest party with ξ(`) = δ /∈ {δ0, δ1} then hs+1,`

and ks+1,δ are correctly computed by construction. Finally when δ = δβ , hs+1,` is still correctly
computed and

ks+1,δ = w̃ρβ · g
vs,δ
s+1 = wrρβ · g

rvs,δ
s

hence correctness follows as in the previous point. Finally when state = done shuffles are done
correctly by construction.

– Corruption: Corruption happens as in H?θ or H
?
θ+1 equivocating the Pedersen commitment. Notice

this cannot be done if cnt < θ and Pj with (j, δ0) ∈ R or (j, δ1) ∈ R is corrupted, because in
that case the exponent of wβ is not known. However in this case D aborts returning a random
bit.

Summing up we showed that when the input is a DDH1
3 tuple, D simulates, under the condition

¬halt, H?θ if b = 0 or H?θ+1 if b = 1. Finally we argue that either ¬halt happens with significant
probability or Z’s advantage is negligible. To this aim let bad be the event “when the (θ + 1)-th
honest winner claims victory or it is corrupted, there is at most one δ ∈ [n] linked to honest players”.
Clearly if bad happens the eventual swap performed after the claim/corruption leaves ξ unchanged,
meaning that it is information-theoretically hard for Z to distinguish the two functionality, i.e.
Adv (Z|bad) = 0.

Conversely, if ¬bad, when the (θ+1)-th honest winner is revealed/corrupted, there exist δ∗0 , δ∗1 ∈
[n] linked to honest users such that δ∗0 is associated to the winner. Since the simulation performed
by C hides information-theoretically δ0, δ1 we have that δβ and bad (which is a function of the
protocol’s view) are independent and in particular Pr

[
δβ = δ∗β|¬bad

]
= V −2. Finally notice that

(δβ = δ∗β) ∧ ¬bad ⇐⇒ ¬halt. This allows us to compute

Adv (Z) = Adv (Z|bad) Pr [bad] + Adv (Z|¬bad) Pr [¬bad]
= Adv (Z|¬bad) Pr [¬bad]

= Pr
[
ZH?θ+b → b

∣∣∣¬bad]Pr [¬bad]− 1

2
· Pr [¬bad] .

41

Moreover Pr [¬halt] = Pr
[
(δβ = δ∗β), ¬bad

]
= V −2 Pr [¬bad] which implies (denoting D1 the algo-

rithm D executed with DDH1
3)

Pr
[
D1 → 1

]
= Pr

[
D1 → 1|halt

]
Pr [halt] + Pr

[
D1 → 1|¬halt

]
Pr [¬halt]

=
Pr [halt]

2
+ Pr

[
ZH?θ+b → b

∣∣∣ (δβ = δ∗β), ¬bad
]
· Pr [¬bad]

V 2

=
1

2
− Pr [¬bad]

2V 2
+ Pr

[
ZH?θ+b → b

∣∣∣¬bad] · Pr [¬bad]
V 2

=
1

2
+

1

V 2

(
Pr
[
ZH?θ+b → b

∣∣∣¬bad] · Pr [¬bad]− Pr [¬bad]
2

)
=

1

2
+

1

V 2
· Adv (Z)

where in the second and third equations we used the fact that Pr [¬halt] = Pr
[
δβ = δ∗β|¬bad

]
·

Pr [¬bad] = V −2 Pr [¬bad]. Next we study the behaviour of D when it is executed in DDH0
3, where

w̃0 and w̃1 are random elements. Assuming that the injection occurs at round σ, i.e. in the σ-th
shuffle, calling γ0 = ξ−1σ (δ0) and γ1 = ξ−1σ (δ1) we have that after the shuffle (with permutation
ηs+1 = η) the elements hσ+1,η−1(`0), kσ+1,δ0 , hσ+1,η−1(`1) and kσ+1,δ1 are uniformly random. Since
no other element contains information on η−1(γ0) and η−1(γ1), even knowing the output of η in
all other points, something that an adversary with unbounded computational power can do, it is
impossible to distinguish between this execution and another one in which η̃σ+1 = η ◦ (γ1, γ0) where
(γ1, γ0) is the transposition that switch this two elements.
In particular, if ¬halt occurs, i.e. if the parties linked to δ0, δ1 are registered and not corrupted until
the (θ + 1)-th election, the adversary cannot detect if a swap is applied between these two indices.
As a consequence Z has no information on b and Pr [b′ = b] = 1/2, hence

Pr
[
D0 → 1

]
= Pr

[
D0 → 1|halt

]
Pr [halt] + Pr

[
D0 → 1|¬halt

]
Pr [¬halt]

=
Pr [halt]

2
+

Pr [¬halt]
2

=
1

2
.

We can finally conclude that Adv (D) = V −2 · Adv (Z) which proves the claim.

Claim 10. DDH ⇒ H9 ≡ H10:
Follows with a reduction to DDH analogous to the one presented in the proof of Claim 7.

Claim 11. H10 ≡ H11:
Follows by inspection.

42

	Introduction
	Preliminaries
	Notation
	Non Interactive Zero-Knowledge Arguments
	UC framework
	UC-SSLE definition

	Statically secure SSLE from DDH
	Intuition and relations with previous work
	Construction secure against static corruptions

	Adaptively secure SSLE with Erasures from DDH
	Intuition
	Construction secure against active corruptions
	Practical considerations

	Comparisons
	Attacks to the Complaint-based Construction
	Game-based security definition
	Attack description

	Proofs
	Preliminaries and Notation
	Static Construction
	Adaptive Construction

