
Refuting the Dream XOR Lemma via

Ideal Obfuscation and Resettable MPC

Saikrishna Badrinarayanan ∗ Yuval Ishai † Dakshita Khurana ‡ Amit Sahai §

Daniel Wichs ¶

Abstract

We provide counterexamples to the “dream” version of Yao’s XOR Lemma. In particular,
we put forward explicit candidates for hard predicates, such that the advantage of predicting
the XOR of many independent copies does not decrease beyond some fixed negligible function,
even as the number of copies gets arbitrarily large.

We provide two such constructions:

• Our first construction is in the ideal obfuscation model (alternatively, assuming virtual
black-box obfuscation for a concrete class of circuits). It develops a general framework
that may be of broader interest, and allows us to embed an instance of a resettably-secure
multiparty computation protocol into a one-way function. Along the way, we design the
first resettably-secure multiparty computation protocol for general functionalities in the
plain model with super-polynomial simulation, under standard assumptions.

• The second construction relies on public-coin differing-inputs obfuscation (PCdiO) along
with a certain form of hash-function security called extended second-preimage resistance
(ESPR). It starts with a previously known counterexample to the dream direct-product
hardness amplification based on ESPR, and uses PCdiO to upgrade it into a counterex-
ample for the XOR lemma.

Prior to our work, even completely heuristic counterexamples of this type were not known.

∗Snap. Email: bsaikrishna7393@gmail.com. Part of the work done while at UCLA.
†Technion. Email: yuval.ishai@gmail.com. Partially supported by ERC Project NTSC (742754), BSF grant

2018393, and ISF grant 2774/20.
‡University of Illinois, Urbana-Champaign. Email: dakshkhurana@gmail.com. Supported in part from a Visa

Research Faculty Award, DARPA SIEVE, NSF QIS and an award from C3AI.
§UCLA and Center for Encrypted Functionalities. Email: amitsahai@gmail.com. Supported in part from a Simons

Investigator Award, DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant 2018393, a
Xerox Faculty Research Award, a Google Faculty Research Award, and an Okawa Foundation Research Grant.
This material is based upon work supported by the Defense Advanced Research Projects Agency through Award
HR00112020024.
¶Northeastern University and NTT Research. Email: danwichs@gmail.com. Daniel Wichs is partially supported

by NSF grants CNS-1750795, CNS- 2055510 and the Alfred P. Sloan Research Fellowship.

1

Contents

1 Introduction 3
1.1 Overview of Results . 4
1.2 First Counterexample . 6
1.3 Second Counterexample . 8
1.4 Counterexamples for the Goldreich-Levin Predicate 9
1.5 Related Work . 9

2 Detailed Technical Overview of the First Counterexample 10
2.1 XOR lemma counterexample . 10
2.2 Resettable MPC . 12

3 Preliminaries 12
3.1 Virtual Black Box Obfuscation . 13
3.2 Statistically Sender Private OT . 13
3.3 Resettable MPC . 14

4 Resettable MPC 14
4.1 Construction: Semi-Malicious Security . 14
4.2 Construction: Malicious Security . 15

5 Counterexample via VBB Obfuscation and Resettable MPC 16
5.1 Construction . 16
5.2 Security . 17
5.3 Parallel Repetition Attack . 27

6 Counterexample via Differing-Inputs Obfuscation 28
6.1 Counterexample to Direct-Product Amplification . 28
6.2 Counterexample to Dream XOR Lemma . 30

A Resettable MPC: Definition 38
A.1 Security Against Semi-Malicious Adversaries . 40

B Resettable MPC: Proof 40
B.1 Resettable Semi-Malicious MPC: Proof . 40
B.2 Resettable Malicious Secure MPC: Proof . 43

B.2.1 Construction . 43
B.2.2 Security Proof . 45

2

1 Introduction

Consider the following standard information-theoretic technique for hardness amplification. Sup-
pose we have a joint distribution (X,B) such that the bit B is “weakly unpredictable” given X, in
the sense that B has positive entropy conditioned on X. Then, for t independent samples (xi, bi)
from (X,B), the XOR of all bi can only be predicted from (x1, . . . , xt) with 2−Ω(t) advantage over
a random guess. The question we address in this work is whether the same holds also in the
computational setting.

The computational variant of the above XOR lemma is a central tool in complexity theory that
first appeared in presentations of Yao’s work [Yao82]. It postulates that if a predicate P of an
input x ∈ {0, 1}λ is weakly unpredictable by algorithms of a certain complexity, with respect to
some input distribution X = X(λ), then P (x1, . . . , xt) =

⊕t
i=1 P (xi) for large enough t is strongly

unpredictable by algorithms within a related complexity bound. Yao stated this in the context of
one-way functions, where the predicate P can be any “hard-core” bit of a one-way function f : in
other words, P is an easy-to-compute Boolean function of the input to f that is hard to predict
given the output of f . Here the distribution X is the output distribution of f on a uniformly
random input.

Since it was first introduced, different versions of this lemma were proved in the literature,
starting with Levin’s proof [Lev85], an alternate proof by Impagliazzo [Imp95], and a third one
by Goldreich et al. [GNW11]. Unfortunately, all existing proofs of the XOR lemma are stuck at
the following barrier: for any fixed negligible function µ(·), no matter how large the polynomial
t(·) is, we cannot prove that for large enough λ, the adversary’s advantage drops to µ(λ). More
concretely, we have no evidence that any polynomial t(λ) number of repetitions bring the adversary’s
advantage down even to λ− log λ, if the original hardness of f was assumed to hold only against all
polynomial-sized adversaries.

It is unclear why this barrier exists, and whether it is just an artifact of known proof techniques.
Intuitively, it appears that the adversary’s advantage should reduce arbitrarily if we perform suf-
ficiently many repetitions. This was previously conjectured and termed the “dream version” of
Yao’s XOR lemma. It was formalized in [GNW11], and used by [BGI08] to obtain (a stronger
flavor of) weak public-key cryptography from strong one-way functions. The dream XOR lemma,
if true, would fundamentally change our understanding of how intractability works. It would help
arbitrarily bring down errors in security arguments with sufficiently many repetitions; leading to
exciting new constructions of primitives like non-interactive non-malleable commitments follow-
ing [BL18], or easily obtain multi-instance security [BRT12] with good parameters from standard
hardness assumptions.

Previous Explanations. Over the years, there have been some explanations for why the dream
XOR lemma eludes a proof. Black-box reduction based proofs of the dream XOR lemma are
likely to fail for the following folklore reason. In order to prove that XOR parallel repetition
brings the adversary’s advantage down to some small probability µ(λ), we would need an efficient
reduction that uses an adversary breaking security of the parallel repetition with advantage µ(λ),
to break the security of a single instance with significantly larger advantage. But such a reduction
cannot obtain any useful information from an attacker unless it succeeds at least once, and this
could require poly(1/µ(λ)) attempts. Therefore, this reduction could be efficient for every inverse
polynomial µ(·), but would become inefficient as soon as µ(·) is a fixed negligible function. This has
been attributed to Rudich [GNW11], who also proved that the dream XOR lemma does not hold in

3

a relativized world, by introducing an oracle that inverts every tuple of instances with probability
µ(λ).

Shaltiel and Viola [SV10] initiated a line of work on the impossibility of better black-box hard-
ness amplification results, including the XOR lemma. A recent work by Shaltiel [Sha20], improving
on [GSV18], rules out dream XOR lemmas with proofs by so-called “class reductions,” which can
exploit the efficiency of their oracle. Despite this progress, it is not clear that ruling out (even re-
laxed forms of) black-box reductions gives a strong evidence against the dream XOR lemma. There
are quite a few examples for the surprising power of non-black-box techniques, both in cryptography
and in complexity theory.

Another partial explanation was offered by Dodis et al. [DJMW12], who gave a counterexample
to the “dream version” of the “direct-product lemma”. In particular, they showed how to construct
a weak one-way function that no polynomial-time adversary can invert with probability better than
(e.g.,) 1

2 , but any arbitrary polynomial number of independent copies can be simultaneously inverted
in polynomial time with advantage greater than λ− log λ. Their construction relies on an ad-hoc
assumption on an un-keyed hash function, which was justified in the random-oracle model with
auxiliary input. Since the direct-product lemma implies the XOR lemma without much loss in
parameters, a dream version of the former would have implied the latter. Therefore, their work
closes off one potential avenue toward proving the dream XOR lemma. Had their weak one-way
function also been injective, then their counter-example to the dream direct-product lemma would
have also immediately yielded a counter-example to the XOR lemma by taking the hard-core bits
of the function. However, their weak one-way function was not injective, in which case the ability
to find some pre-images and break one-wayness, does not imply the ability to find the correct
hard-core bits and break the XOR lemma.

In this work, we ask the following question, which was explicitly left as an open problem in
[DJMW12]:

Can we build an explicit counterexample to the dream version of the XOR lemma: a one-way
function with a (weakly) hardcore bit, for which predicting the XOR of many hardcore bits does

not reduce an adversary’s advantage beyond a specific negligible function?

We note that, using a trusted setup that generates a trapdoor permutation (and can therefore
invert it), one could heuristically obfuscate Rudich’s oracle to obtain an explicit counterexample
in the structured reference string model; however, beyond the need for trusted setup, this would
induce a strong correlation between different instances. Such a correlation is inherently at odds
with the idea of the dream XOR lemma, which conjectures hardness of completely independent and
uncorrelated instances.

Are There Simple Heuristic Counterexamples? To our knowledge, prior to our work, there
were no candidate counterexamples to the dream XOR lemma under any assumption. In other
words, there was not even a heuristic construction of an explicit predicate that can be plausibly
conjectured to violate the dream XOR lemma. The difficulty of coming up with such heuristic
counterexamples is arguably why the conjecture was put forward in the first place.

1.1 Overview of Results

We give two kinds of explicit counterexamples to the dream XOR lemma.

4

Our first counterexample develops a general framework that allows us to embed an instance
of multiparty computation with resettable security into a non-interactive cryptosystem, such as a
one-way function. It relies on ideal obfuscation, or alternatively, virtual-black-box (VBB) obfusca-
tion for some specific class of circuits, along with other standard hardness assumptions. Using this
framework, the counterexample to the dream XOR lemma is extremely simple. We believe this
framework may be of broader interest and may potentially be useful in designing counterexamples
to other conjectures in cryptography. Along the way, we also develop the first resettably-secure mul-
tiparty computation protocol for general functionalities in the plain model with super-polynomial
simulation, under standard assumptions. This protocol requires three rounds and assumes the
existence of two-round sub-exponentially secure statistically sender-private OT. This result is of
independent interest and achieves general feasibility for resettably-secure multiparty computation
in the plain model; we evade prior impossibility results [GM11] by aiming for super-polynomial
simulation.

Our second counterexample is a tailor-made construction whose sole purpose is to defy the dream
XOR lemma. However, it avoids the need for ideal or VBB obfuscation. Instead, we can rely on
a concrete obfuscation security property called public-coins differing inputs obfuscation (PCdiO)
[BGI+01, ABG+13, BCP14, IPS15], along with a hash function security property called extended
second-preimage resistance (ESPR) [DJMW12] and injective one-way functions. The construction
uses PCdiO to “upgrade” the counterexample of [DJMW12] for the dream direct-product lemma
based on ESPR, into a counterexample for the dream XOR lemma. PcdiO is a clean assumption
which, as of today, all existing iO constructions can be conjectured to satisfy. While diO (without
the public coin restriction) is known to be implausible [GGHW14], all known implausibility results
crucially rely on “contrived” auxiliary information. All such negative results therefore do not
generalize to PcdiO (we refer the reader to [IPS15] for further discussion of PcdiO). Indeed, given
recent progress on constructing iO (e.g. [JLS21]), it is plausible that the PcdiO, that we rely on,
may be reduced to well-studied assumptions.

We stress that even with ideal obfuscation, Rudich’s oracle does not directly give rise to such
counterexamples because it is not efficient. We believe that our techniques for obfuscation-based
counterexamples will find other applications.

Are the Counterexamples Explicit? Both of our counterexamples can be made fully explicit
by making the same kind of leap of faith one makes when instantiating standard idealized models
in cryptography (such as the random oracle model [BR93] or the generic group model [Sho97]). For
the first counterexample, one can use any existing iO construction (such as the one from [JLS21])
as a heuristic substitute for special-purpose obfuscation. A similar heuristic has been suggested in
prior works (see, e.g., [GGHW14, GHRW14]). For the second, use iO construction as the PC-diO
and use SHA-3 as the ESPR. Either way, one gets fully explicit constructions of one-way functions
and hard-core bits for which the XOR lemma provably does not amplify hardness. Assuming
that the function is actually one-way to begin with relies on a strong but explicit assumption.
Nevertheless, if one wanted to prove that the dream XOR lemma holds, one would now have to
show an attack against the one-wayness of these explicit one-way function candidates. This is
very different from the previous oracle-based separations or (generalized) black-box impossibility
results, which could be potentially circumvented by finding a novel non-black-box proof technique.
We refer the reader to the end of Section 1.2 for additional discussions about the special-purpose
obfuscation assumption.

5

1.2 First Counterexample

A New Paradigm. We suggest a new paradigm for obtaining counterexamples to parallel repeti-
tion. We use this paradigm to obtain an explicit counterexample to the dream version of the XOR
lemma.

Our paradigm can be thought of as implementing Rudich’s oracle in a distributed manner
between completely independent instances of a one-way function. Such distributed protocols are
often cryptographically achievable via secure multi-party computation (MPC). Specifically, one
could treat each instance of a one-way function as a participant in an MPC protocol, and implement
an ideal functionality that with probability µ(λ), outputs the inverse of all the instances of the one-
way function. Clearly, this would allow the XOR of the hardcore bits of individual instances of
the one-way function to be predicted with an advantage of at least µ(λ). Indeed, a similar idea
was employed by [DJMW12] in the context of a counterexample for the direct-product hardness
amplification of signature schemes, by having the attacker leverage interaction with the signing
oracle to run the protocol.

But in our case there is a crucial type mismatch: we would like to build one-way functions, an
inherently non-interactive primitive, by relying on secure MPC, which is an inherently interactive
protocol. We resolve this mismatch by relying on obfuscation to non-interactively implement the
next message function of each party in a secure MPC protocol1. Specifically, the output of our
one-way function consists of an obfuscation of the next-message function for the appropriate MPC.

When sufficiently many one-way functions are combined, an adversary can execute an MPC
protocol between them by appropriately querying their next message functions, as a result, inverting
all one-way functions simultaneously with probability µ(λ).

But obfuscating the next message function in this manner exposes individual one-way functions
(i.e., “participants” in the MPC protocol) to a new threat model. An adversary can query an
obfuscated program repeatedly and in an arbitrary order, amounting to what are called “resetting”
attacks [CGGM00]. This requires us to confront the need for MPC protocols that are secure against
such strong resetting attacks.2

Resettable MPC. The question of whether secure MPC can be achieved in a setting where
participants can be simultaneously reset has previously been studied by [GS09, GM11] and for
the specific setting of zero knowledge in [CGGM00, BGGL01, BP13, COPV13, COP+14, BP15,
CPS16]. In particular, the work of [GS09] considered resetting attacks on only one party and
obtained positive results. In the general setting where more than one party can be reset, [GM11]
provided negative results for certain functionalities thereby ruling out a general purpose protocol
for all functionalities. In addition, they obtained positive results for a limited class of entropic
functionalities.

We observe that this negative result can be side-stepped by allowing our MPC simulator to run
in super-polynomial time. Technically, we build on the recent concurrent secure MPC protocols

1This approach has previously been studied in multiple other contexts [GGHR14, DHRW16, AJN+16]. However,
in all those cases, the inputs to the MPC are fixed apriori and (implicitly) hardwired into the obfuscated programs.
Looking ahead, in our protocol, the inputs cannot be fixed apriori and we resort to using resettable MPC to overcome
this crucial issue. Note that this issue is also the reason why we do not know how to use iO to implement our
obfuscated next-message function, whereas the earlier works mentioned above were able to use only iO.

2A similar issue also came up in [DJMW12] when the MPC was embedded in a signing oracle, which is interactive
but stateless. It was resolved similarly by relying on some form of resettable MPC.

6

with super-polynomial simulation in [BGJ+17], which are themselves based on the notion of super-
polynomial strong simulation [KS17]. MPC security with super-polynomial simulation [Pas03,
PS04] turns out to be sufficient for many scenarios, including for building our counterexamples.

As a contribution of independent interest, we obtain the first resettable MPC protocol for
general functionalities, admitting super-polynomial simulation. Our protocol requires only three
rounds of interaction, and assumes the existence of two-round sub-exponentially receiver-private
and statistically sender-private OT, which can in turn be based on a variety of standard assumptions
including the (sub-exponential) hardness of DDH, LWE, QRA, or DCRA [NP01, AIR01, HK12,
BGI+17, BD18, DGI+19]. We state this result in the form of the following informal theorem.

Theorem 1.1. (Informal) Assuming the existence of sub-exponentially receiver-private and statis-
tically sender-private two-round OT, there exists a three-round resettably-secure MPC protocol for
general functionalities, admitting a super-polynomial simulator.

We stress that our resettable MPC protocol does not assume any form of obfuscation.

Our Counterexample to the Dream XOR Lemma. Armed with resettable MPC, we show
that one-way functions with hard-core predicates to which the Dream XOR lemma provably does
not apply can be obtained in the ideal obfuscation model, as follows: on input x = (x1||x2) ∈ {0, 1}λ,
the one-way function f simply outputs an injective one-way function g applied to x1, the first λ/2
bits of x, and uses the remaining λ/2 bits to obfuscate the next-message function of a participant
in an MPC protocol. The ideal functionality for this MPC protocol obtains inputs (i.e., the x1

values) from several participants, and with probability exactly µ(λ), outputs all these x1 values in
the clear. The hardcore bit of f on input x = (x1||x2) is defined as the hardcore bit of g on input
x1.

We rely on security of the obfuscation scheme, the resettable MPC protocol and the one-way
function g to argue that it is hard to recover x1 (or predict the hard-core bit) of a single instance
of this one-way function with probability significantly larger than µ(λ) · poly(λ) + negl(λ). On the
other hand, no matter how many times we repeat in parallel, the ability to execute a co-ordinated
MPC program between all instances of the one-way function gives rise to an adversarial strategy
that efficiently recovers all x1 values, and therefore hardcore bits from all parallel instances, with

probability at least µ(λ). For µ(λ) = 2−
√
λ, we prove the following informal theorem.

Theorem 1.2. (Informal). Assuming resettably-secure MPC with super-polynomial simulation for

general functionalities, for target negligible function µ(λ) = 2−
√
λ, there exists an explicit counterex-

ample to the dream XOR lemma in the ideal obfuscation model. Furthermore, such a counterexample
exists in the plain model under a plausible special-purpose obfuscation assumption.

We choose to set µ(λ) = 2−
√
λ primarily for the sake of simplicity in exposition, but our tech-

nique also generalizes to rule out arbitrary negligible µ(λ). While ideal obfuscation does not exist
in the plain model [Had00, BGI+01], the theorem applies relative to any world in which ideal
obfuscation exists. This can refer to any oracle (in the complexity-theoretic sense) that enables
ideal obfuscation, or given the ability to obfuscate functions using ideal trusted hardware. This
counterexample is meaningful even when given ideal obfuscation, because all algorithms are given
free access to the obfuscated function, and moreover the model does not introduce any shared
randomness; as a result, instances of our one-way function remain truly independent.

7

Replacing Ideal Obfuscation with a Concrete Obfuscation Conjecture. In fact we go one
step further and we postulate that a very specific functionality can be obfuscated, in a virtual black-
box [BGI+01] (VBB) manner, without auxiliary input. As a result, assuming VBB or special-purpose
obfuscation without auxiliary input for a specific class of circuits, we obtain counterexamples to
the XOR lemma in the plain model.

How meaningful or plausible is this concrete assumption? While there are known impossibility
results for VBB obfuscation of several functionalities, including PRFs in the presence of auxiliary
input, the only known meaningful negative results on VBB without auxiliary input are the highly
contrived “self-eating” programs developed by Barak et al. [BGI+01]. Despite it being plausible
to embed the circuit family of [BGI+01] into some specific instantiations of resettable MPC and
signatures, it appears extremely unlikely that every instantation of resettable MPC and signatures
will have a [BGI+01]-style counterexample embedded into it. All we need for our counterexample
is the existence of one VBB-obfuscatable family, which is compatible with all known evidence
regarding VBB obfuscation. We stress again that our VBB assumption does not require security
with respect to any auxiliary information. Indeed, such special-purpose obfuscation assumptions
were used by Garg et al. [GGHW14] to prove negative results for differing-inputs obfuscation,
and to this date, there are no known refutations of these types of conjectured assumptions for
non-contrived circuits without auxiliary input.

Finally, we note that the recent work of [JLS21] has shown how to construct indistinguishability
obfuscation (iO) from standard assumptions. In addition, several other constructions of iO from
new assumptions that look plausible and are quite simple to state have appeared [Agr19, JLMS19,
AJL+19, AP20, GJLS21, GP21, BDGM20a, BDGM20b, WW21, DQV+21]. While we do not know
how to use indistinguishability obfuscation to achieve our result, this recent progress suggests that
perhaps achieving VBB obfuscation for circuit families such as ours may also be possible from
standard assumptions. Our work offers further motivation for this important line of study.

1.3 Second Counterexample

Our second counterexample begins with the work of [DJMW12], which constructs a counterexample
to a dream version of direct-product hardness amplification. In particular, they construct a hard
relation R such that, given a uniformly random instance x̃, no polynomial time adversary can find
a witness w such that (x̃, w) ∈ R except with negligible probability. However, given t independent
copies x̃1, . . . , x̃t, the adversarial advantage of finding all t witnesses wi such that (x̃i, wi) ∈ R does
not decrease much as t gets large. Concretely, there is a polynomial time adversary that can find all

t witnesses with probability (say) 2−
√
λ, no matter how large t is. This counterexample is based on a

non-standard hash function security property called extended second-preimage resistance (ESPR),
which is weaker than collision resistance, but is assumed to hold for a fixed (un-keyed) hash function
against non-uniform attackers. The work of [DJMW12] justifies this assumption by showing that
ESPR security holds in the random-oracle model with auxiliary input [Unr07, DGK17], which
models security properties for un-keyed hash functions with respect to non-uniform attackers.

As an initial idea to get a counterexample for the dream XOR lemma, one may hope to simply
take a hard-core predicate for the relationR. The main issue is that the witness w for x̃ is not unique,
and so even if we are able to find some witness for x̃, it does not mean we can compute the correct
hard-core predicate. We resolve this by relying on an injective one way function f̂ and a public-
coins differing-inputs obfuscation (PCdiO) [ABG+13, BCP14, IPS15]. PCdiO is a strengthening
of indistinguishability obfuscation (iO). All current constructions of iO can be conjectured to also

8

satisfy PCdiO security, although no proofs of security for achieving PCdiO are as-yet known.
For the counterexample, we define a one-way function f that gets as input x = (x̂, x̃, r) and

outputs y = (ŷ = f̂(x̂), x̃, C̃) where C̃ is an obfuscated circuit that takes as input a witness w,
and if (x̃, w) ∈ R it outputs x̂, else ⊥; we use r as the randomness for the obfuscation. We show
that the function f is one-way and moreover, given the output y, it is hard to find x̂. Intuitively,
this follows because it is hard to find a valid witness w for x̃ that will make the obfuscated circuit
output anything useful, and therefore the obfuscated circuit is indistinguishable from one that does
not contain x̂ and always outputs ⊥; on the other hand the one-wayness of f̂ says that it is hard
to compute x̂ from ŷ. We define a predicate P (x) to be Goldreich-Levin hardcore bit of x̂, and
the above shows that P (x) is a hard-core predicate of f(x). On the other hand, it is easy to see
that the dream XOR lemma does not hold for f, P . Given many values yi = f(xi) for i = 1, . . . , t,

we can find all the witnesses w1, . . . , wt for x̃1, . . . , x̃t with probability 2−
√
λ. We then input these

witnesses wi to the respective obfuscated programs contained in yi to recover x̂i, which allows us
to recover all the hardcore-predicates P (xi) and therefore also

⊕
P (xi).

We obtain the following informal theorem.

Theorem 1.3. (Informal). Assuming the existence of public-coins differing-inputs obfuscation
(PCdiO), extended second-preimage resistant (ESPR) hash functions, and injective one-way func-
tions there exists an explicit counterexample to the dream XOR lemma.

We observe that we do not actually even need PCdiO for the above counterexample, and (public-
coins) extractable witness encryption suffices; instead of obfuscating the circuit that takes as input
a witness w, and if (x̃, w) ∈ R it outputs x̂, we use witness encryption to encrypt the message x̂
with respect to the statement x̃ for the relation R.

1.4 Counterexamples for the Goldreich-Levin Predicate

We note that, in both our counterexamples, only the choice of the one-way function is “artificial”,
but the hardcore predicate is just the Goldreich-Levin (GL) predicate, albeit only applied to one
of the components of the input, rather than the entire input as a whole. One may ask whether it is
possible to get a counterexample where the hardcore predicate is GL applied to the entire input, or
whether there is hope that the dream XOR lemma would hold in this case. Although we do not know
how to get a counterexample for the GL predicate applied to the pre-image of a one-way function,
we can get a counterexample if we generalize to one-way puzzles and consider the GL predicate
applied to the solution of such a puzzle. In a one-way puzzle, there is a randomized algorithm that
generates random hard puzzles together with a solution that can be verified in polynomial time.
Security says that no polynomial time attacker can solve a random hard puzzle with better than
negligible probability. In this case, we can take the one-way functions from our counterexamples
and define a hard puzzle consisting of the one-way function output, while the solution is just the
small component of the one-way function’s input that we apply GL to. In both examples, we can
efficiently verify the solution. To summarize, the above shows that the dream XOR lemma fails,
even when restricted to the specific GL predicate, at least when applied to general one-way puzzles.

1.5 Related Work

We note that there is much work in cryptography on designing counter-examples to statements
that “should intuitively hold” but don’t. Even when it becomes clear that a proof for such state-

9

ments is lacking, a counter-example provides some tangible understanding of how things can go
wrong. Some such works that provide interesting counterexamples include: parallel repetition of
multi-player games [For89, Fei91, HY19] and cryptographic protocols [BIN97, PW07], hardness
amplification [DJMW12], circular security of encryption schemes [Rot13, KRW15, AP16, KW16,
GKW17b, WZ17, GKW17a], selective opening attack security of encryption and commitments
[BHY09, HR14, HRW16], leakage amplification via parallel repetition [LW10, JP11, DJMW12],
hardness of prediction via obfuscation [BFM14]. Such counter-examples can point us to refined
versions of the statement that may potentially still hold. Furthermore, exactly because such
counter-examples “defy intuition”, they often capture interesting ideas and techniques that turn
out to be of greater value down the line. For example, the techniques developed in the context
of circular security counter-examples [GKW17b] lead to positive results on obfuscation from LWE
[WZ17, GKW17a].

2 Detailed Technical Overview of the First Counterexample

As discussed in the introduction, we obtain our counterexample by implementing a variant of
Rudich’s oracle in a completely decentralized manner, without introducing any correlations between
instances of our counterexample. In this section, we outline our construction and give an overview
of our proof technique.

A central cryptographic primitive that enables decentralized computation is secure multi-party
computation (MPC). MPC enables several mutually distrusting participants to jointly compute
a function f of their private inputs while only revealing the output y of f applied to their joint
inputs, and revealing no information to each player beyond their own input and the output y.

2.1 XOR lemma counterexample

We design a one-way function G as our counterexample to the XOR lemma. G on input uniform
randomness x = (α||β), outputs f(α) for an injective one-way function f , and uses randomness β
to build a “proxy” that participates in an MPC protocol. This proxy is simply the next-message
function of a participant in the appropriate MPC protocol. We define a hardcore predicate for G
on input x = (α||β) as the output of a hardcore predicate for f(α).

The MPC protocol will allow multiple such proxies to jointly emulate a randomized ideal func-
tionality that obtains the value α as input (from each participating proxy), and with probability
µ(λ) for some fixed negligible function µ(·), outputs all the α values it obtained as input from all
proxies, and otherwise outputs ⊥. If we are able to implement such an MPC protocol, it is clear
that no matter how many times we repeat, an adversary would be able to run the MPC protocol
between all instances of the one-way function and obtain the α values, and therefore the hardcore
predicates of all instances, simultaneously, with probability at least µ(λ).

But in order for this to be a valid counterexample, we also need to ensure that the hard-core
predicate for a single instance of this one-way function is secure: that is, it cannot be predicted with
probability close to 1. In fact, we prove that the hard-core bit cannot be predicted with advantage
better than negl(λ). For this, we must ensure that even given a next-message function that has
the value α hardwired in it, it is not possible to extract α except with probability negl(λ). As a
first step, we obfuscate the next-message function instead of releasing it in the clear. Assuming
that the next-message circuit can be obfuscated with virtual black-box security, this restricts all

10

information that can be learned from the obfuscated program to information that can be obtained
via input-output access alone. Note, however, that we are not done yet, since this still allows an
adversary, who has access to the obfuscated circuit, to query the next-message function multiple
times on the same partial transcript, and potentially out of order. We use signatures to fix the
latter issue and ensure that the adversary cannot make any meaningful queries on round (i+ 1) of
an MPC execution without querying on round i, for any i ≥ 1. Unfortunately, this still leaves the
obfuscated next-message circuit vulnerable to a “resetting” attack: where an adversary can query
such a circuit to obtain multiple executions with the same partial transcript. Therefore, we need
to harden our MPC protocol to obtain security against resetting attacks.

Finally, we point out one remaining (subtle) issue. Note that our counterexample is based on
VBB-obfuscating the next-message function of a participant in an MPC protocol. In our setting,
the adversary – given a single instance of our one-way function – can query this obfuscated program
by generating his own next-message functions for imaginary MPC participants. Importantly, the
adversary gets to choose the identity of these participants. But giving the adversary the freedom
to choose the identity of a participant enables it to invoke the same participant (with the same
input and randomness), many times using multiple identities in the same protocol. This could,
for instance, allow the adversary to make multiple copies of the honest one-way function, and
instantiate n parties, all having the same input and random tape, and potentially use this to
manipulate the randomness of ideal functionality. More generally, when running an MPC protocol
it is assumed that all players have different identities, and the adversary does not have the freedom
to manipulate the identities of honest parties (or make multiple copies of any given honest identity).

In our setting, since every party is an obfuscated program, we must ensure that messages
generated by each program are properly authenticated under distinct verification keys. We therefore
add an explicit check to our VBB obfuscated program: the program will check that all verification
keys are different and all messages in the input transcript are correctly signed. Ensuring that all
verification keys are different guarantees that even in the ideal world, every participant of the MPC
protocol has a different identity. Once distinct identities are carefully enforced in this way, the
underlying MPC protocol (via underlying tools such as non-malleable commitments) ensures that
the secret inputs of players to the MPC protocol are all independent of each other. Assuming the
existence of resettable MPC, we describe our formal construction in Section 5.

Next, we turn to building MPC secure against resetting attacks. As discussed in the introduc-
tion, such resettably-secure MPC protocols are only known for ideal functionalities that satisfy a
specific property [GM11]3. Since our ideal functionality does not satisfy this property, we develop
an appropriate resettable MPC protocol for use in our setting. We relax security to allow super-
polynomial simulation, because that suffices for our applications. In what follows, we provide an
overview of this protocol.

3We point out that [GM11] give resettably secure protocols with polynomial simulation, but only for (very limited)
functionalities that satisfy a special property. Informally, they require that there exist compression and decompression
algorithms such that with overwhelming probability, for all possible inputs, the compression algorithm generates a
small suggestion string s which helps the decompression algorithm correctly predict the output of the adversary in
any given session (given the adversary’s input-output pairs in prior sessions and its current input, without knowledge
of the honest party’s input). We refer the reader to [GM11] for details and a formal description of this property.

11

2.2 Resettable MPC

Our construction of MPC with superpolynomial simulation (SPS), secure against resetting attacks,
proceeds in two steps.

• Resettably-Secure SPS MPC against Semi-malicious adversaries. As a first step, we
build resettably secure MPC against semi-malicious adversaries. A semi-malicious adversary
always produces messages in the support of honestly generated messages, and writes the input
and randomness used to generate these messages on a special witness tape. We compile a
semi-malicious MPC protocol that is not necessarily secure against resetting attacks into one
that is resettably secure against semi-malicious adversaries. Our compiler simply appends a
round to the beginning of the protocol; in this round, each party Pi must commit to its input
and to a uniformly sampled PRF key Ki. Next, all participants execute the semi-malicious
resettably-insecure MPC protocol, except in every round, each party Pi uses randomness that
is generated by evaluating the PRF with key Ki on the transcript so far.

The effect of this is that all protocol messages sent by Pi become a deterministic function
of the values committed in the first round and the transcript so far. In fact, any protocol
transcript generated by any combination of honest and semi-malicious adversarial participants
is a deterministic function of the first round.

Therefore, any adversary that resets to a previous point in the protocol after round 1 and
behaves semi-maliciously, must send exactly the same messages each time. On the other
hand, any adversary that resets to the middle of round 1 sees an entirely new execution of
the semi-malicious protocol. As a result, we are able to prove that the resulting resettably-
secure semi-malicious MPC protocol admits a polynomial time simulator. Next, we compile
to obtain an MPC protocol resettably-secure against fully malicious adversaries.

• Resettably-Secure SPS MPC against Malicious Adversaries. Our compiler is identi-
cal to the one in [BGJ+17], which builds three round concurrent MPC with superpolynomial
simulation. Here, in addition, we prove resettable security. The only difference is that while
the compiler in [BGJ+17] uses as subroutine an underlying stand-alone secure MPC against
semi-malicious adversaries; we instead use a resettably secure MPC against semi-malicious
adversaries (as described above). As ingredients, beyond the resettable semi-malicious pro-
tocol, this compiler relies on two round non-malleable commitments and two round zero
knowledge arguments with super-polynomial strong simulation [KS17]. We note that all of
these ingredients are secure (or can be easily modified to be secure) under resetting attacks.
Furthermore, following [BGJ+17], we show that the resulting protocol admits a straight-line
superpolynomial time simulator. Resettable security of the resulting protocol against mali-
cious adversaries follows by a careful analysis of this simulator and makes use of the resettable
security of all ingredients. We formalize these ideas in section 4.

3 Preliminaries

Throughout the paper, let λ denote the security parameter.

12

3.1 Virtual Black Box Obfuscation

We recall the definition of Virtual Black-Box (VBB) obfuscation from Barak et al.[BGI+01]. In
this definition, we don’t allow any auxiliary inputs (therefore making our assumptions weaker).

Definition 3.1 (Virtual Black-Box Obfuscation). For any polynomial t(·), circuit class C ={
Cλ
}
λ∈N, a uniform PPT oracle machine Obf is a “Virtual Black-Box” Obfuscator for C if the

following conditions are satisfied:

• Functionality: For every λ ∈ N and every input x:

Pr[(Obf(C))(x) 6= C(x)] ≤ negl(|C|),

where the probability is over the coins of C ← Cλ.

• Polynomial Slowdown: There exists a polynomial p(·) such that for every λ ∈ N and every
C ∈ Cλ, |Obf(C)| ≤ p(|C|).

• Virtual Black-Box: For every PPT adversary A there exists a PPT simulator Obf.Sim, and
a negligible function µ such that for every ` ∈ N and every C ∈ C`:∣∣∣Pr [A (Obf(C)) = 1]− Pr

[
Obf.SimC

(
1|C|
)

= 1
]∣∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of Obf.Sim and Obf.

3.2 Statistically Sender Private OT

We rely on a 1-out-of-2 Oblivious Transfer protocol where one party, the sender, has input composed
of two strings (M0,M1) and the input of the second party, the receiver, is a bit c. The receiver
should learn Mc and no information about M1−c while the sender should gain no information about
c. We give a definition for the setting where the sender is protected information theoretically while
the receiver is protected only computationally.

Definition 3.2 (Statistically Sender Private OT.). The receiver runs the algorithm OT1 which
takes 1λ and a choice bit c ∈ {0, 1} as input and outputs (ot1, state). The receiver then sends ot1
to the sender, who obtains ot2 by evaluating OT2(1λ, ot1,M0,M1), where M0 and M1 (such that
M0,M1 ∈ {0, 1}λ) are its inputs. The sender then sends ot2 to the chooser who obtains Mc by
evaluating OT3(1λ, ot2, state).

- Perfect correctness. For every choice bit c ∈ {0, 1} of the chooser and input messages
M0 and M1 in {0, 1}λ of the sender we require that, if (ot1, state) ← OT1(1λ, c), ot2 ←
OT2(1λ, ot1,M0,M1), then OT3(1λ, ot2, state) = Mc with probability 1.

- Receiver’s security. We require that for every polynomial-size adversary A, |Pr[A(OT1(1λ, 0)) =
1]− Pr[A(OT1(1λ, 1)) = 1]| is negligible in λ.

- Statistical sender’s security. We define an unbounded4 time extractor OTExt such that
OTExt on any input ot1 outputs 0 if there exists some random coins such that OT1(1λ, 0)
outputs ot1, and 1 otherwise.

4Note that by fixing the parameters of the scheme, we can bound the running time of the extractor by some
sub-exponential function but we avoid that to keep notation simple and avoid unnecessary parameters.

13

Then for any value of ot1, and any K0,K1, L0, L1 with KOTExt(ot1) = LOTExt(ot1), we have

that OT2(1λ, ot1,K0,K1) and OT2(1λ, ot1, L0, L1) are statistically indistinguishable.

We will, in fact require the receiver’s security property described above to hold against all
subexponential-sized circuits. Specifically, we will require that there exist a constant c > 0 such
that for every circuit A of size 2λ

c
, |Pr[A(OT1(1λ, 0)) = 1] − Pr[A(OT1(1λ, 1)) = 1]| is negligible

in λ.

3.3 Resettable MPC

In Appendix A, we define the notion of Multiparty Computation (MPC) that is resettably secure
similar to the definition in Goyal and Maji [GM11]. The difference in that, in our setting, we
consider a simulator that can run in super-polynomial time [Pas03, BS05].
Remark. We note that security holds only when the identities of all the parties in the MPC
protocol are distinct.

4 Resettable MPC

In this section, we construct a three round resettably secure MPC protocol based on sub-exponentially
secure DDH or LWE. Formally, we show the following theorem:

Theorem 4.1. Assuming sub-exponentially secure 2 round statistically sender private and sub-
exponentially receiver private OT according to Definition 3.2, there exists a three round resettable
secure MPC protocol with super-polynomial simulation, for any functionality satisfying Definition
A.1.

Our construction proceeds in two stages. First, assuming 2 round OT, we construct an MPC
protocol πRSM that is resettably secure against adversary that is malicious in the first round and
semi-malicious in subsequent rounds. Next, assuming 2 round OT, we show how to compile a sub-
exponentially secure version of this protocol πRSM into a protocol that is resettably secure against
malicious adversaries (under super-polynomial simulation).

4.1 Construction: Semi-Malicious Security

In this section, we describe a compiler that transforms any k-round semi-malicious MPC protocol
that may or may not be resettable secure, into one that is semi-malicious secure under resetting
attacks. Formally, we show the following:

Theorem 4.2. For any k > 0, assuming the existence of a k-round MPC protocol secure against
semi-malicious adversaries against all but one corruptions, there exists a (k+1)-round MPC protocol
that is resettably secure against adversaries that behave maliciously in the first round and semi-
malicious in the remaining rounds, and corrupt upto all but one parties.

Instantiating this protocol with the 2 round MPC protocol of Garg and Srinivasan [GS18] or
Benhamouda and Lin [BL18], which can be instantiated assuming 2 round OT (which in turn can
be obtained from DDH or LWE), we have the following corollary:

Corollary 4.3. Assuming the hardness of DDH or LWE, there exists a three round MPC protocol
for any functionality f that is resettably secure against adversaries that can behave maliciously in
the first round and semi-maliciously in the remaining rounds, and corrupt up to all but one parties.

14

Notation and Primitives Used: Let π be an n party MPC protocol over a broadcast chan-
nel that is secure against (non-resetting) semi-malicious adversaries. Let π.NextMsgj denote the
algorithm used by any party to compute its message in round j and let p(λ) denote the length
of the randomness used by the algorithm. Let π.OUT denote the algorithm to compute the final
output. Let the number of rounds be `. Let τ(λ) denote the maximum length of the transcript
of an execution of π when each party uses inputs of length λ. Let S = (S1, . . . ,S`) denote the
straight line simulator for the above protocol π - that is, Si is the simulator’s algorithm to com-
pute the ith round messages. Let PRF : {0, 1}λ×{0, 1}τ(λ) → {0, 1}p(λ) be a pseudorandom function.

Protocol:
Let f be any functionality. Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn respectively who
wish to evaluate f on their joint inputs. Let (ki, r

Com
i) denote the randomness of each party Pi

where |ki| = λ and |rComi | = λ2. The protocol πRSM proceeds as follows:

1. Round 1:
Each party Pi does the following:

• Sample a key ki ← {0, 1}λ for the function PRF.

• Compute and send msg1,i ← Commit(ki||xi).

2. Rounds 2 . . . `:
Let the round number be j. Let Transj−1 denote the protocol transcript after round (j − 1).
Each party Pi does the following:

• Compute and send msgj,i ← π.NextMsgj(xi,Transj−1; rj,i) where the randomness rj,i =
PRF(ki,Transj−1).

3. Output Computation:
Each party Pi does the following:

• Let Trans` denote the transcript of the underlying protocol π at the end of its execution.

• Compute and output yi ← π.OUT(xi,Trans`).

We defer the security proof to Appendix B.1.

4.2 Construction: Malicious Security

We now show how to compile the semi-malicious secure MPC protocol πRSM from the previous
section into a protocol that is resettably secure against malicious adversaries with super-polynomial
simulation. Formally, we show the following:

Theorem 4.4. Assuming :

• Sub-exponentially secure DDH/LWE, and,

• a 3 round MPC protocol for any functionality f that is resettably secure against adversaries
that can behave maliciously in the first round and semi-maliciously in the remaining two
rounds and corrupt up to all but one parties,

15

there exists a 3 round MPC protocol for any functionality f that is resettably secure under super-
polynomial simulation against malicious adversaries that can corrupt up to all but one parties,
according to Definition A.1.

Instantiating the underlying three round MPC protocol in the above theorem with the protocol
πRSM from the previous section, we achieve Theorem 4.1.

Our construction is identical to the one in [BGJ+17], which builds three round concurrent MPC
with superpolynomial simulation. Here, we prove resettable security of the same construction. As
ingredients, beyond the underlying resettable semi-malicious protocol, this compiler relies on two
round non-malleable commitments and two round zero knowledge arguments with super-polynomial
strong simulation [KS17]. We note that both these ingredients are secure under resetting attacks.
We provide the complete protocol and proof in Appendix B.2.

5 Counterexample via VBB Obfuscation and Resettable MPC

We start this section by defining hard-core predicates. Next, we state the dream version of Yao’s
XOR lemma, and then we describe our counterexample.

Definition 5.1. (ε(λ)-Hard Core Predicate.) Let λ denote a security parameter and m = m(λ), n =
n(λ) be polynomials in λ. An ε(λ)-hard core predicate of a one-way function f : {0, 1}m(λ) →
{0, 1}n(λ) is a predicate P : {0, 1}m(λ) → {0, 1} such that for every polynomial-time non-uniform A
and every λ,

Pr
x←{0,1}λ

[A(1λ, f(x)) = P (x)] ≤ 1

2
+ ε(λ)

Lemma 5.2 (Hard Core Predicate for a One-Way Function). [GL89] If f is a one-way function,
then h(x, r) = 〈x, r〉(modulo 2) is an ε(λ)-hard core predicate, according to Definition 5.1, for the
one-way function f ′ defined by f ′(x, r) = (f(x), r), for some ε(λ) = negl(λ).

Conjecture 5.3 (Dream version of Yao’s XOR Lemma). [BGI08] Fix µ(λ) = 2−
√
λ. Let f de-

note a one-way function and P denote an ε(λ)-hard core predicate according to Definition 5.1.
Then for any t = poly(λ), P (t)(x1, . . . , xt) =

⊕
i∈[t] P (xi) is an ε′(λ)-hard core predicate for

f ′(x1||x2|| . . . ||xt) , f(x1)||f(x2)|| . . . ||f(xt), such that ε′(λ) ≤ ε(λ)t(λ) + µ(λ).

We note that this conjecture is a special case of (and is therefore implied by) the dream conjec-
ture first formulated in [GNW11]. Also, we fixed µ(λ) to be an arbitrary negligible function in λ,

specifically, we set it to 2−
√
λ for ease of exposition. However, we note that our refutation of this

conjecture can be generalized to refute arbitrary negligible functions µ(·) by setting the parameters
of our one-way function accordingly. That is, our proof can be generalized to show that for every
negligible function ν(·), there exists a one-way function that refutes Conjecture 5.3 with µ(·) = ν(·).
We will now construct a one-way function for which Conjecture 5.3 does not hold.

5.1 Construction

We define a one-way function G : {0, 1}2λ → {0, 1}p′(λ), where p′(·) is a polynomial in λ, the exact
value of which will be determined later.

16

Notation and Primitives Used.

• Let g : {0, 1}λ → {0, 1}p(λ) be any injective one way function and h denote the Golreich-
Levin [GL89] hardcore bit for this one way function.

• Let πRes denote any resettably secure MPC protocol with superpolynomial simulation. Let
(πRes.NextMsg1, π

Res.NextMsg2, . . . , π
Res.NextMsgn) denote the algorithms used by each party

to compute the messages in each of the rounds and πRes.OUT denote the algorithm used by
each party to compute its final output. Also, let Transi denote all messages sent in an execution
of πRes up to round i. Let Res.Sim denote the straight-line (super-polynomial) simulator
for this protocol. Let (Res.Sim.NextMsg1, . . . ,Res.Sim.NextMsgn) denote the algorithms used
by the simulator to compute the messages in each of the rounds and Res.Sim.Out denote
the algorithm used to compute the final output on behalf of the honest parties. Let `(λ)
denote the length of the randomness required by each party on inputs of length λ. Let
s(λ) denote the maximum size of the circuit representation of (πRes.NextMsg1, π

Res.NextMsg2,
. . . , πRes.NextMsgn, π

Res.OUT) in this protocol.

• Let (Obf,Eval) be a VBB obfuscation scheme and Obf.Sim denote its simulator. Let r(λ)
denote the length of the randomness used to obfuscate programs of size s(λ), and s′(λ)
denote the size of the obfuscated program.

• Let (Gen,Sign,Verify) be a sub-exponentially unforgeable signature scheme.

• Let PRG : {0, 1}λ → {0, 1}
√
λ+λ+r(λ)+`(λ) be a pseudorandom generator.

Construction. The one-way function G, on input x = (a, b), where |a| = |b| = λ, is:

• Compute y = g(a).

• Compute (α, β, γ, δ)← PRG(b) where α is of length
√
λ, β is of length λ, γ is of length `(λ)

and δ is of length r(λ). Set rRes = γ.

• Generate (sk, vk)← Gen(1λ;β).

• Compute Ĉ = Obf(1λ,C) using randomness δ where program C is described in Figure 1.

• Output (Ĉ). We set p′(λ) = |Ĉ|.

Hardcore Predicate Recall that the Goldreich-Levin hardcore predicate [GL89] for the one-way
function g is h. We now define the hardcore predicate H for G as: H(x) = h(a), where x = (a, b)
such that |a| = |b|.

5.2 Security

We conjecture the following about the existence of special-purpose obfuscation.

Conjecture 5.4 (Special-purpose obfuscation). There exists a secure signature scheme and a
resettable MPC protocol according to Definition A.1 for which, for the class of circuits C =
{Cλ}λ∈N where for λ ∈ N, Cλ is depicted in Figure 1, where a ∈ {0, 1}λ, y ∈ {0, 1}p(λ), α ∈
{0, 1}

√
λ, (SK,VK) ∈ Supp(Gen(1λ)), rRes ∈ {0, 1}`(λ), there exists a virtual black-box obfuscator

according to Definition 3.1.

17

Hardwired values: (a, y, α, sk, vk, rRes)

1. Output y. Additionally, do the following.

2. If input = (“Reveal Identity for MPC”): output vk.

3. If input = (“MPC”, “Begin”, “Party” j,
−→
vk):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

• Output σ = Sign(sk, (
−→
vk||j))

4. If input = (“MPC”, “Round” 1, “Party” j,
−→
vk, σ):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σ, (
−→
vk||j)) 6= 1.

• Begin resettable MPC protocol πRes amongst λ2 parties P1, . . . ,Pλ2 playing the role of
Pj with identity vk. Use input α, randomness rRes to evaluate functionality f (Figure 2).
Let ` be the number of rounds of πRes.

• Compute msg1 = πRes.NextMsg1(1
λ, α; rRes), σ1 = Sign(sk, (

−→
vk||msg1||1||j)).

• Output (msg1, σ1).

5. If input = (“MPC”, “Round” i, “Party” j,
−→
vk,−−→msgi−1, σi−1,Transi−2):

• Let Transi−2 denote the transcript till round (i − 2) and −−→msgi−1 denote the set of
messages sent by all parties in round (i− 1) of protocol π.

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j)) 6= 1.

• If round number i ≤ `, do:

– Continue πRes. Compute msgi = πRes.NextMsgi(Transi−2,
−−→msgi−1, α; rRes).

– Set Transi−1 = (Transi−2||−−→msgi−1), σi = Sign(sk, (
−→
vk||Transi−1||msgi|| i||j)).

– Output (msgi, σi).

• If round number i = (`+ 1), do:

– Compute z = πRes.OUT(Trans`−1,
−−→msg`, α; rRes).

– If z = 0, output a. Else, output ⊥.

Figure 1: Description of program C

Theorem 5.5. Assuming Conjecture 5.4 and resettably secure MPC with super-polynomial simula-
tion against malicious adversaries according to Definition A.1, Conjecture 5.3 is false. In particular,
assuming Conjecture 5.4, and either sub-exponential DDH or LWE, Conjecture 5.3 is false.

18

Input: For each i ∈ [λ2], party Pi has input αi of length
√
λ. Output: If (α1⊕ . . .⊕αλ2) = 0

√
λ,

output 0. Otherwise, output ⊥.

Figure 2: Description of Functionality f

This also implies that the above result holds in the ideal obfuscation model. Here we model
obfuscation as an ideal functionality with two interfaces. An “Obfuscate” interface takes as input a
program P and outputs a handle P̃ . The handle can simply be a counter which is incremented on
each invocation. The ideal functionality keeps a list of such tuples (P̃ , P). An “Evaluate” interface
takes as input a handle P̃ and an input x, and finds the corresponding tuple (P̃ , P) in the list; if
such a tuple exists it outputs P (x) else ⊥. We rely on the fact that Conjecture 5.4 holds relative
to this oracle and that our counter-example uses the obfuscator in a black-box manner. This gives
us the following corollary.

Corollary 5.6. Assuming sub-exponential DDH or LWE, Conjecture 5.3 is false in the ideal ob-
fuscation model.

The rest of this section is devoted to the proof of this theorem. First, we prove that H defined
above is indeed a hardcore predicate for function G. We observe that for our construction of G and
H, this also automatically proves that G is a one way function. This is for the following reason:
suppose for contradiction that G is not a one way function. Then, there exists a PPT adversary
that, given a value G(x = (a, b)) = (Ĉ), can compute an inverse x′ = (a′, b′) with non-negligible
probability. However, observe that since g is an injective one way function, a′ = a. Further, since
H(x = (a, b)) = h(a), A can compute H(x′) = H(x). Thus, given just G(x), A can compute H(x)
with non-negligible probability which contradicts the fact that H is a hardcore predicate for function
G. Therefore, it suffices to formally show that for every PPT adversary A,

Pr[A(G(x)) = H(x)] =
1

2
+ negl(λ)

where the probability is over the randomness of x and A. We do this via the following series of
computationally indistinguishable hybrids Hyb0, . . . ,Hyb6.

Hyb0 −Real Experiment: Sample x = (a, b) ← {0, 1}2k. Compute G exactly as in the function
description above to obtain (Ĉ) = G(x), and output A(Ĉ)⊕ h(a).

Hyb1 −Uniform Randomness: Sample (α, β, γ, δ) ← {0, 1}
√
λ+λ+`(λ)+r(λ) uniformly as opposed

to (α, β, γ, δ) = PRG(b) as in Hyb0. Then compute (Ĉ) the same way as Hyb0. Output A(Ĉ)⊕h(a).

Hyb2−Simulate Obfuscation: This is the same as Hyb1, in particular (α, β, γ, δ)← {0, 1}
√
λ+λ+`(λ)+r(λ).

However, unlike Hyb1, output Obf.SimC(1|C|)⊕ h(a).

Hyb3 − Reject transcripts that were not previously signed: The output of this hybrid is
Obf.SimC1(1|C1|)⊕h(a) where the stateful functionality C1 is described in Figure 3. We note that C1

is the same as C, except that it stores the list of signatures it sends out and outputs “Special Abort”
if it obtains as input a valid signature outside this list. The differences from C are highlighted in red.

19

Hardwired values: (a, y, α, sk, vk, rRes)
Initialize list L = ∅.

1. Output y. Additionally, do the following.

2. If input = (“Reveal Identity for MPC”): output vk.

3. If input = (“MPC”, “Begin”, “Party” j,
−→
vk):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

• Output σ = Sign(sk, (
−→
vk||j)). Add (σ, (

−→
vk||j)) to L.

4. If input = (“MPC”, “Round” 1, “Party” j,
−→
vk, σ):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σ, (
−→
vk||j)) 6= 1.

• Output “Special Abort” if (σ, (
−→
vk||j)) /∈ L.

• Begin protocol πRes amongst λ2 parties P1, . . . ,Pλ2 playing the role of Pj with identity
vk. Use input α, randomness rRes to evaluate functionality f defined in Figure 2.

• Compute msg1 = πRes.NextMsg1(1
λ, α; rRes), σ1 = Sign(sk, (

−→
vk||msg1||1||j)). Add

(σ1, (
−→
vk||msg1||1||j)) to L.

• Output (msg1, σ1).

5. If input = (“MPC”, “Round” i, “Party” j,
−→
vk,−−→msgi−1, σi−1,Transi−2):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j)) 6= 1.

• Output “Special Abort” if (σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j))) /∈ L.

• If round number i ≤ `, do:

– Continue protocol πRes. Compute msgi = πRes.NextMsgi (Transi−2,
−−→msgi−1, α; rRes).

Set Transi−1 = (Transi−2||−−→msgi−1).

– Compute σi = Sign(sk, (
−→
vk||Transi−1||msgi|| i||j)).

– Add (σi, (
−→
vk||Transi−1 ||msgi|| i||j)) to L.

– Output (msgi, σi).

• If round number i = (`+ 1), do:

– Compute z = πRes.OUT(Trans`−1,
−−→msg`, α; rRes).

– If z = 0, output a. Else, output ⊥.

Figure 3: Description of program C1

20

Hyb4 − Simulate MPC: The output of this hybrid is Obf.SimC2(1|C2|) ⊕ h(a) where the stateful
functionality C2 is described in Figure 4. We note that C2 is the same as C1, except that it executes
the (superpolynomial) simulator Res.Sim for the resettable MPC protocol πRes, where Res.Sim inter-
acts with the ideal functionality from Figure 2. We note that this hybrid runs in superpolynomial
time because the running time of C2 is superpolynomial.

Hyb5 − Remove Input: The output of this hybrid is Obf.SimC3(1|C3|) ⊕ h(a), where C3 (Figure
5) is the same as C2, except that the program C3 no longer uses the pre-image a (it only has the
output y = g(a) hardwired, but not a). That is, Step 4 outputs ⊥ instead of outputting a if if z = 0.

Hyb6 −Honest MPC: The output of this hybrid is Obf.SimC4(1|C4|)⊕ h(a) for C4 from Figure 6.
We note that C4 is the same as C3, except that it runs the resettable MPC protocol πRes inside
the program C3 using the honest parties’ code (whereas C3 runs the simulator Res.Sim(·) for reset-
table MPC). We also note that this hybrid runs in polynomial time unlike the previous two hybrids.

We first show that that the advantage of the adversary in every pair of consecutive hybrids is
negligible.

Lemma 5.7. Assuming the security of the pseudorandom generator PRG,∣∣∣Pr[Hyb0 = 1]− Pr[Hyb1 = 1]
∣∣∣ = negl(λ)

Proof. We show that if there exists a polynomial p(·) such that
∣∣∣Pr[Hyb0 = 1]−Pr[Hyb1 = 1]

∣∣∣ ≥ 1
p(λ) ,

then there exists a PPT adversary APRG that with oracle access to A, contradicts security of the
pseudorandom generator.
APRG gets a string η from an external challenger, which is either the output of the pseudorandom

generator PRG on a random seed, or is sampled uniformly at random. APRG samples a← {0, 1}k,
sets (α, β, γ, δ) = η and generates the remaining messages for its interaction with A exactly as
in Hyb0. Now, if η were generated as the output of PRG, the interaction between APRG and A
corresponds exactly to Hyb0 and if η were uniformly random, the interaction between APRG and A
corresponds exactly to Hyb1. APRG outputs s⊕h(a), where s is the output of A in the experiment.
This leads to a contradiction, completing the proof of the lemma.

Lemma 5.8. Assuming (Obf,Eval) satisfies Conjecture 5.4,∣∣∣Pr[Hyb1 = 1]− Pr[Hyb2 = 1]
∣∣∣ = negl(λ)

Proof. Suppose the lemma is false. Then there exists non-negligible µ(·) such that:∣∣∣Pr[Hyb1 = 1]− Pr[Hyb2 = 1]
∣∣∣ ≥ µ(λ)

which implies that over the randomness of sampling (a, α, β, γ, δ) uniformly and sampling the circuit
Ca := C1 according to Figure 1,∣∣∣Pr[A(Obf(Ca))⊕ h(a) = 1]− Pr[Obf.Sim(1|Ca|)⊕ h(a) = 1]

∣∣∣ ≥ µ(λ)

21

Hardwired values: (a, y, α, sk, vk, rRes)
Initialize list L = ∅.

1. Output y. Additionally, do the following.

2. If input = (“Reveal Identity for MPC”): output vk.

3. If input = (“MPC”, “Begin”, “Party” j,
−→
vk):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

• Output σ = Sign(sk, (
−→
vk||j)). Add (σ, (

−→
vk||j)) to L.

4. If input = (“MPC”, “Round” 1, “Party” j,
−→
vk, σ):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σ, (
−→
vk||j)) 6= 1.

• Output “Special Abort” if (σ, (
−→
vk||j)) /∈ L.

• Begin protocol πRes amongst λ2 parties P1, . . . ,Pλ2 playing the role of simulator Res.Sim
on behalf of honest party Pj with identity vk. Res.Sim uses randomness rRes.

• Compute msg1 = Res.Sim.NextMsg1(1
λ, α; rRes), σ1 = Sign(sk, (

−→
vk|| msg1|| 1||j)). Add

(σ1, (
−→
vk||msg1||1||j)) to L.

• Output (msg1, σ1).

5. If input = (“MPC”, “Round” i, “Party” j,
−→
vk,−−→msgi−1, σi−1,Transi−2):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j)) 6= 1.

• Output “Special Abort” if (σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j))) /∈ L.

• If round number i ≤ `, do:

– Continue πRes. Compute msgi = Res.Sim.NextMsgi (Transi−2,
−−→msgi−1; rRes). a

– Compute σi = Sign(sk, (
−→
vk||Transi−1||msgi|| i||j)). Add (σi, (

−→
vk||Transi−1 ||msgi||

i||j)) to L.
– Output (msgi, σi).

• If round number i = (`+ 1), do:

– Compute z = Res.Sim.Out(Trans`,
−−→msg`; r

Res).
– If z = 0, output a. Else, output ⊥.

aRecall that Res.Sim is a straight line simulator and involves no rewinding. It extracts the adversary’s input
internally by a brute-force break.

Figure 4: Description of program C2

22

Hardwired values: (y, α, sk, vk, rRes)
Initialize list L = ∅.

1. Output y. Additionally, do the following.

2. If input = (“Reveal Identity for MPC”): output vk.

3. If input = (“MPC”, “Begin”, “Party” j,
−→
vk):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

• Output σ = Sign(sk, (
−→
vk||j)). Add (σ, (

−→
vk||j)) to L.

4. If input = (“MPC”, “Round” 1, “Party” j,
−→
vk, σ):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σ, (
−→
vk||j)) 6= 1.

• Output “Special Abort” if (σ, (
−→
vk||j)) /∈ L.

• Begin protocol πRes amongst λ2 parties P1, . . . ,Pλ2 playing the role of simulator Res.Sim
on behalf of honest party Pj with identity vk. Res.Sim uses randomness rRes.

• Compute msg1 = Res.Sim.NextMsg1(1
λ, α; rRes), σ1 = Sign(sk, (

−→
vk|| msg1|| 1||j)). Add

(σ1, (
−→
vk||msg1||1||j)) to L.

• Output (msg1, σ1).

5. If input = (“MPC”, “Round” i, “Party” j,
−→
vk,−−→msgi−1, σi−1,Transi−2):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j)) 6= 1.

• Output “Special Abort” if (σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j))) /∈ L.

• If round number i ≤ `, do:

– Continue πRes. Compute msgi = Res.Sim.NextMsgi (Transi−2,
−−→msgi−1; rRes).

– Compute σi = Sign(sk, (
−→
vk||Transi−1||msgi|| i||j)). Add (σi, (

−→
vk||Transi−1 ||msgi||

i||j)) to L.
– Output (msgi, σi).

• If round number i = (`+ 1), output ⊥.

Figure 5: Description of program C3

By a Markov argument, there exists a fixing of a∗ ∈ {0, 1}k, Ca∗ (and h(a∗)) such that∣∣∣Pr[A(Obf(Ca∗))⊕ h(a∗) = 1]− Pr[Obf.Sim(1|Ca∗ |)⊕ h(a∗) = 1]
∣∣∣ ≥ µ(λ)

23

Hardwired values: (y, α, sk, vk, rRes)
Initialize list L = ∅.

1. Output y. Additionally, do the following.

2. If input = (“Reveal Identity for MPC”): output vk.

3. If input = (“MPC”, “Begin”, “Party” j,
−→
vk):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

• Output σ = Sign(sk, (
−→
vk||j)). Add (σ, (

−→
vk||j)) to L.

4. If input = (“MPC”, “Round” 1, “Party” j,
−→
vk, σ):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σ, (
−→
vk||j)) 6= 1.

• Output “Special Abort” if (σ, (
−→
vk||j)) /∈ L.

• Begin protocol πRes amongst λ2 parties P1, . . . ,Pλ2 playing the role of honest party Pj
with identity vk using input α, randomness rRes to evaluate functionality f .

• Compute msg1 = πRes.NextMsg1(1
λ, α; rRes), σ1 = Sign(sk, (

−→
vk|| msg1|| 1||j)). Add

(σ1, (
−→
vk||msg1||1||j)) to L.

• Output (msg1, σ1).

5. If input = (“MPC”, “Round” i, “Party” j,
−→
vk,−−→msgi−1, σi−1,Transi−2):

• Output ⊥ if any of the following happen:

– vkj 6= vk,

– {vkk}k∈[λ2] are not distinct,

– Verify(vk, σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j)) 6= 1.

• Output “Special Abort” if (σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j))) /∈ L.

• If round number i ≤ `, do:

– Continue πRes. Compute msgi = πRes.NextMsgi (Transi−2,
−−→msgi−1, α; rRes).

– Compute σi = Sign(sk, (
−→
vk||Transi−1||msgi|| i||j)). Add (σi, (

−→
vk||Transi−1 ||msgi||

i||j)) to L.
– Output (msgi, σi).

• If round number i = (`+ 1), output ⊥.

Figure 6: Description of program C4

We assume w.l.o.g.5 that h(a∗) = 0, then∣∣∣Pr[A(Obf(Ca∗)) = 1]− Pr[Obf.Sim(1|Ca∗ |) = 1]
∣∣∣ ≥ µ(λ)

5Suppose h(a∗) = 1 for all a∗ for which the equation holds, then∣∣∣Pr[A(Obf(Ca∗)) = 0]− Pr[Obf.Sim(1|Ca∗ |) = 0]
∣∣∣ ≥ µ(λ)

24

which contradicts Definition 3.1.

Lemma 5.9. Assuming existential unforgeability of the signature scheme,∣∣∣Pr[Hyb2 = 1]− Pr[Hyb3 = 1]
∣∣∣ = negl(λ)

Proof. The two hybrids are identical, unless Obf.Sim queries the oracle on:

1. Any input (“MPC”, “Round” 1, “Party” j,
−→
vk, σ) such that

• vkj = vk,

• {vkk}k∈[λ2] are all distinct,

• Verify(vk, σ, (
−→
vk||j)) = 1, and

• (σ, (
−→
vk||j)) /∈ L.

(OR)

2. Any input (“MPC”, “Round” i, “Party” j,
−→
vk,−−→msgi−1, σi−1,Transi−2) such that

• vkj = vk,

• {vkk}k∈[λ2] are all distinct,

• Verify(vk, σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j)) = 1, and

• (σi−1, (
−→
vk||Transi−2||msgi−1||i− 1||j))) /∈ L.

But such a query contradicts existential unforgeability (under chosen message attack) of the signa-
ture scheme, and can therefore only be generated with probability negl(λ) (over the randomness of
sampling vk). This completes the proof of the lemma.

Lemma 5.10. Assuming πRes is an MPC protocol that is resettably secure against a malicious ad-

versary that can corrupt up to all but one parties, admitting superpolynomial simulation,
∣∣∣Pr[Hyb3 =

1]− Pr[Hyb4 = 1]
∣∣∣ = negl(λ)

Proof. We show that if there exists a polynomial p(·) such that
∣∣∣Pr[Hyb3 = 1] − Pr[Hyb4 = 1]

∣∣∣ 6=
negl(λ), then there exists a reduction ARes that contradicts security of the resettably secure MPC
protocol πRes. ARes does the following to respond to Obf.Sim’s queries to the program that is has
black-box access to.

• Compute parameters (a, α, y,SK, vk) as done in Hyb3. Initialize list L = ∅.

which implies that ∣∣∣(1− Pr[A(Obf(Ca∗)) = 1])− (1− Pr[Obf.Sim(1|Ca∗ |) = 1])
∣∣∣ ≥ µ(λ)

which implies ∣∣∣Pr[A(Obf(Ca∗)) = 1])− Pr[Obf.Sim(1|Ca∗ |) = 1])
∣∣∣ ≥ µ(λ)

which contradicts Definition 3.1.

25

• When Obf.Sim queries ARes with an input of the form (“Reveal Identity for MPC”), ARes

responds with vk.

• When Obf.Sim queries ARes with an input of the form (“MPC”, “Begin”, “Party” j,
−→
vk), ARes

responds exactly as done by C1 in Hyb3: that is, output ⊥ if vkj 6= vk, (or) {vkk}k∈[λ2] are

not distinct. Send σ = Sign(sk, (
−→
vk||j)) to Obf.Sim and add (σ, (

−→
vk||j)) to L.

• When Obf.Sim queries ARes with an input of the form (“MPC”, “Round” 1, “Party” j,
−→
vk, σ),

ARes first computes the abort and “Special Abort” steps as done by C1 in Hyb3. Then, ARes ini-
tiates an execution of protocol πRes amongst λ2 parties P1, . . . ,Pλ2 for functionality f defined
in Figure 2 interacting with a challenger Chall. ARes plays the role of an adversary corrupting
all parties except party Pj . It also sends the identity vk of party Pj to Chall and receives

party Pj ’s round 1 message msg1. Then, ARes computes σ1 = Sign(sk, (
−→
vk||msg1||1||j)), adds

(σ1, (
−→
vk||msg1||1||j)) to L and sends (msg1, σ1) to Obf.Sim.

• When Obf.Sim queriesARes with an input of the form (“MPC”, “Round” i, “Party” j,
−→
vk,−−→msgi−1,

σi−1,Transi−2), ARes computes abort and “Special Abort” steps as done by C1 in Hyb3. ARes

continues an execution of protocol πRes with challenger Chall. ARes sends round number i and
−−→msgi−1 \msgji−1 to Chall - that is, the set of messages of all corrupt parties in round (i− 1).
Chall responds back with Pj ’s round i message msgi if i ≤ ` and the output z if i = (` + 1).
Then, if ı ≤ `, ARes computes σi, adds it to L as in Hyb3 and sends (msgi, σi) to Obf.Sim. If
i = (`+ 1): if z = 0, ARes sends a to Obf.Sim. Else, it sends ⊥ to Obf.Sim.

Observe that when the challenger honestly generates the messages of protocol πRes on behalf of
party Pj , the program that ARes provides Obf.Sim blackbox access to is exactly C1 in Hyb3 and
when the challenger generates the messages of protocol πRes on behalf of party Pj by running the
simulator Res.Sim of the MPC protocol πRes, the program that ARes provides Obf.Sim blackbox
access to is exactly C2 from Hyb4. This completes the proof of the lemma.

Lemma 5.11.
∣∣∣Pr[Hyb4 = 1]− Pr[Hyb5 = 1]

∣∣∣ = negl(λ).

Proof. The two hybrids only differ when Obf.Sim makes a query with round set to ` + 1, that
results in Res.Sim.Out(Trans`,

−−→msg`; r
Res) being equal to 0. Note that the ideal functionality of the

MPC protocol outputs 0 only if α1⊕ . . . αλ2 = 0
√
λ. The probability (over random choice of honest

party input αj), that α1 ⊕ . . . αλ2 = 0
√
λ in any single instance of the MPC protocol is at most

2−
√
λ. Since the resettable MPC simulator can invoke this functionality at most poly(λ) times,

the probability that the adversary makes a query where Res.Sim.Out(Trans`,
−−→msg`; r

Res) = 0, and
therefore obtains an output that is not ⊥, is negl(λ).

Lemma 5.12. Assuming πRes is an MPC protocol that is resettably secure against a malicious ad-

versary that can corrupt up to all but one parties, admitting superpolynomial simulation,
∣∣∣Pr[Hyb5 =

1]− Pr[Hyb6 = 1]
∣∣∣ = negl(λ).

Proof. This is identical to the proof of Lemma 5.10.

Next, we prove the following lemma.

26

Lemma 5.13. Assuming one-wayness of the function g, Pr[Hyb6 = 0] ≤ 1
2 + negl(λ) where the

probability is over the randomness of x and the adversary.

Proof. Recall that the output of Hyb6 is s⊕ h(a), where s denotes the output of the adversary in
Hyb6. Thus it suffices to prove that Pr[s = h(a)] ≤ 1

2 + negl(λ). Note that in Hyb6, the program
that Obf.Sim gets black-box access to is completely independent of the input a (and only has the
output g(a) hardwired). Therefore, if the lemma is not true, we can demonstrate a reduction Ag
that predicts the hardcore bit of g with noticeable probability, which is a contradiction.
Ag obtains a string g(a) externally from the challenger for a randomly chosen a, and sets

y = g(a). Using y, Ag samples remaining variables and answers oracle queries of Obf.Sim exactly
as in Hyb6. The output of Ag is identical to that of Obf.Sim.

If the lemma is not true, then Pr[Ag(g(a)) = h(a)] ≥ 1
2 +µ(λ) for some non-negligible µ(·), which

contradicts the fact that h is a Goldreich-Levin [GL89] hardcore bit of the (polynomially-secure)
one-way function g. This leads to a contradiction, as desired.

It follows from lemmas 5.7 through 5.13 that Pr[Hyb6 = 0] ≤ 1
2 + negl(λ) and∣∣∣Pr[Hyb0 = 1]− Pr[Hyb6 = 1]

∣∣∣ = negl(λ)

where the latter is equivalent to∣∣∣Pr[Hyb0 = 0]− Pr[Hyb6 = 0]
∣∣∣ = negl(λ)

Therefore, we conclude that Pr[Hyb0 = 0] ≤ 1
2 + negl(λ) which implies that

Pr
Hyb0

[A(Ĉ) = h(a)] ≤ 1

2
+ negl(λ)

and since h(a) = H(x) in Hyb0, we have

Pr
Hyb0

[A(Ĉ) = H(x)] ≤ 1

2
+ negl(λ)

as desired. This completes the proof.

5.3 Parallel Repetition Attack

We now describe the counterexample to the dream XOR lemma by setting t = λ2. That is, we will
construct a PPT adversary A that, given λ2 samples of the outputs of the one way function G, can
compute the XOR of their respective hardcore bits with respect to predicate H with probability

greater than or equal to 2−
√
λ thus disproving Conjecture 5.3. Formally, we construct an adversary

A such that : Pr[A(G(x1), . . . ,G(xλ2)) = H(x1) ⊕ . . . ⊕ H(xλ2)] ≥ 2−
√
λ where the probability is

over the random choices of the values (x1, . . . , xλ2) and the randomness of the adversary.

27

Adversary’s Strategy: Adversary A, given {G(xi) = (yi, Ĉi)}i∈[λ2], does:

1. Run an execution of the resettable MPC protocol πRes amongst (λ2) parties for functionality
f (Figure 2) using obfuscated programs Ĉ1, . . . , Ĉλ2 . The protocol messages are forwarded
appropriately to all the obfuscations.

2. Abort if any obfuscated program outputs ⊥. Else, let ai be the value output by Ĉi at the end
of the protocol. For each i ∈ [λ2], compute h(ai).

3. Output h(a1)⊕ . . .⊕ h(aλ2).

Analysis: For each input xi = (ai, bi), recall that αi is the first
√
λ bits of PRG(bi). For randomly

chosen inputs x1, . . . , xλ2 , Pr[(α1⊕ . . .⊕αλ2) = 0
√
λ] ≥ 2−

√
λ. Therefore, by the correctness of the

obfuscation scheme, the resettable MPC protocol πRes and the signature scheme, it is easy to see
that for randomly chosen inputs x1, . . . , xλ2 , for every j ∈ [λ2], the adversary learns the pre-image

ai with probability ≥ 2−
√
λ. Thus, Pr[A(G(x1), . . . ,G(xλ2)) = H(x1) ⊕ . . . ⊕ H(xλ2)] ≥ 2−

√
λ and

this completes the proof.

6 Counterexample via Differing-Inputs Obfuscation

In this section we give an alternate counterexample to the dream XOR lemma. In particular,
we show how to use public-coin differing-inputs obfuscation (PCdiO) [BGI+01, ABG+13, BCP14,
IPS15] (along with an injective one-way functions) to convert any counterexample to the dream
version of direct-product hardness amplification into a counterexample for the dream XOR lemma.
By combining this with the counterexample to dream direct-product hardness amplification of
[DJMW12], which relies on a specialized hash function security property called “extended second-
preimage resistance” (ESPR), we get a counterexample to the dream XOR lemma based on PCdiO,
ESPR hashing, and injective one-way functions.

6.1 Counterexample to Direct-Product Amplification

We begin by recalling the result of [DJMW12], which relies on an ESPR hashing to get a coun-
terexample to dream direct-product hardness amplification.

The direct-product (AKA parallel-repetition) lemma says that if inverting f(x) on a random
input x is weakly-hard (i.e., no polynomial time attacker succeeds with probability greater than
1/2) then simultaneously inverting t independent copies f(x1), . . . , f(xt) for a sufficiently large
t = poly(λ) is strongly-hard (i.e., no polynomial time attacker succeeds with better than negligible
probability). The dream version of the direct-product lemma would strengthen the conclusion to
requiring that no polynomial time attacker can succeed with probability better than 2−t, or at least

some particular negligible function such as µ(λ) = 2−
√
λ as t gets sufficiently large.

The result of [DJMW12] gives a counterexample to the dream direct-product lemma. As a
first step, they give a counterexample for a hard relation R where, given a random x it should be
hard to find a value w such that R(x,w) = 1. They construct a relation that is weekly secure,
meaning that no poly-time attacker can succeed with probability better than 1/2. However, there
is a poly-time attacker that can break t instances simultaneously (i.e., given random x1, . . . , xt find

28

w1, . . . , wt such that R(xi, wi) = 1) with probability µ(λ) = 2−
√
λ, no matter how large t is. They

then generically upgrade their counterexample for hard relations to one for one-way functions. It
turns out that their counterexample for hard relations suffices for us. We give a broad overview of
this counterexample based on ESPR hashing.

ESPR Hashing. Consider a fixed (un-keyed) hash function h : {0, 1}n × {0, 1}n → {0, 1}n.
Such a hash function is extended second preimage resistant (ESPR) if the following problem is
hard. The adversary is given a random challenge x ← {0, 1}n. The adversary can choose any
Merkle path of length ` ≤ n that begins at x, meaning that we think of x as a leaf in a Merkle
tree of height ` and the adversary specifies the position of x in the tree and provides the ` values
corresponding to the siblings along the path from the leaf x to the root.6 The path chosen by the
adversary defines the value associated with the root of the tree y and the adversary’s goal is to find
some second preimage of y that differs from the one defined by the path. We restrict attention to
hash functions h that are weakly regular, meaning that every output y has at least two preimages
(xL, xR) 6= (x′L, x

′
R) such that h(xL, xR) = h(x′L, x

′
R).

Note that ESPR security is implied by collision-resistance, since an attack on EPSR requires
finding a collision for y. However, we want ESPR security to hold for an un-keyed hash function,
and collision resistance can only hold for keyed hash functions (with security against non-uniform
attackers). The reason that we can hope for ESPR to hold for un-keyed hash functions is that
the adversary is given a random leaf x as a challenge and hence cannot hard-code a collision for
every such x. The work of [DJMW12] justified the ESPR property by showing that it holds in
the random-oracle model with auxiliary input [Unr07, DGK17], which is a reasonable heuristic
for modeling security properties satisfied by fixed (un-keyed) hash functions against non-uniform
attackers. We refer the reader to [DJMW12] for the formal definition of ESPR.

Direct-Product Counterexample via ESPR. Consider the relation R(x,w) that outputs 1 if
w wins the ESPR game for challenge x. In other words w consists of a Merkle path that begins at
x and a second-preiamge for the root associated with that Merkle path. It is easy to see that the
direct-product does not amplify hardness of the relation R beyond 2−2n. In particular, assume that
an adversary is given t random values x1, . . . , xt. Then the adversary can construct a Merkle tree of
depth log t whose leaves are x1, . . . , xt. This Merkle tree has some root y. The adversary can find a
second-preimage of y by brute-force “guessing” with probability 2−2n. If it succeeds then for every
xi it can come up with a witness wi such that R(xi, wi) = 1 by using the Merkle path that starts
at xi to construct wi. In other words, the adversary succeeds in breaking all t independent copies
of the one-way relation in one shot by guessing a single hash preimage. This yields the following
theorem.

Theorem 6.1 ([DJMW12]). Assuming the existence of an ESPR-secure hash function, there exists

a polynomial-time computable relation R ⊆ {{0, 1}n × {0, 1}p(n)}n∈N for some polynomial p such
that the following two properties hold.

• Hardness: For all PPT A, there is a negligible ν such that

Pr[R(x,A(x)) = 1 : x← {0, 1}n] ≤ ν(n).
6The adversary only needs to specify values along a single path. The adversary never needs to construct a complete

tree (which may be of exponential size 2`) and the specified values may not even be consistent with any complete
tree.

29

• Non-Amplification: There exists a PPT adversary A∗ such that for all polynomial t = t(n)
the following holds:

Pr

∧
i∈[t]

R(xi, wi) = 1 :
x1, . . . , xt ← {0, 1}n,

(w1, . . . , wt)← A∗(x1, . . . , xt)

 ≥ 2−2n.

Note that by scaling down n to n =
√
λ/2 for security parameter λ, we get a counterexample as

claimed above, where security does not amplify beyond 2−
√
λ no matter how many copies we take.

6.2 Counterexample to Dream XOR Lemma

We use the relation R from Theorem 6.1 to get a counterexample for the XOR lemma. A starting
idea is to use a hard-core predicate of w as the predicate of the XOR lemma. One issue is that we
only have a hard relation rather than a one-way relation and therefore we cannot even efficiently
sample x with a valid witness w. Another issue is that there are many valid witnesses w for every
x, and so the predicate is not even uniquely defined by x. We fix both of these issues. We will start
with an injective one-way function f̂ and define our counterexample one-way function f as follows.
The input x for f consists of an input x̂ for f̂ and an instance x̃ of the relation R where x̃ is of
length n =

√
λ/2. The output y = f(x) will contain x̃, ŷ = f̂(x̂) along with an obfuscated circuit

that takes as input a witness w and if R(x̃, w) = 1 it outputs x̂ (the randomness for obfuscation is
also made a part of the input x for f). We show that the function f is one-way and that, given
the output y it is hard to find x̂. Intuitively, this follows because it is hard to find a valid witness
w for x̃ that will make the obfuscated circuit output anything useful, and therefore the obfuscated
circuit is indistinguishable from one that does not contain x̂; on the other hand the one-wayness
of f̂ says that it is hard to compute x̂ from ŷ. We define a predicate P (x) to be Goldreich-Levin
hardcore bit of x̂, and the above shows that P (x) is a hard-core predicate of f(x). On the other
hand, it is easy to see that the dream XOR lemma does not hold for f, P . Given many values
yi = f(xi) for i = 1, . . . , t, we can run the adversary A∗ from Theorem 6.1 to find all the witnesses

w1, . . . , wt for x̃1, . . . , x̃t with probability 2−2n = 2−
√
λ. We then input these witnesses wi to the

respective obfuscated programs contained in yi to recover x̂i, which allows us to recover all the
hardcore-predicates P (xi) and therefore also

⊕
P (xi).

While we do not know how to prove security via indistinguishability obfuscation (iO), we can do
so via public-coin differing-inputs obfuscation (PCdiO) [ABG+13, BCP14, IPS15]. We first define
PCdiO and then give a formal description and analysis of our counterexample.

Differing-Inputs Obfuscation. Differing-inputs obfuscation (diO) [BGI+01, ABG+13, BCP14]
is a strengthening of indistinguishability obfuscation (iO) [BGI+01]. For iO we require that for any
two circuits C0, C1 that are functionally equivalent the obfuscations of C0, C1 are computationally
indistinguishable. For diO we consider a distribution over a tuple (C0, C1, aux) consisting of two
circuits and some auxiliary information. Such a distribution is legal if given aux it is computationally
hard to find a an inputs x such that C0(x) 6= C1(x). The security of diO requires that for any legal
distribution of (C0, C1, aux), the obfuscation of C0 is indistinguishable from that of C1 even given
aux. Unfortunately, the work of [GGHW14] suggests that such a general form of diO is unlikely to be
achievable, by construing a contrived distribution that is plausibly legal but is unobfuscatable. The
work of [IPS15] refined the notion of diO to public-coin diO (PCdiO) by setting aux to include all of

30

the random coins used to sample the tuple (C0, C1). This appears to preclude the counterexamples
of [GGHW14] and is believed to be achievable in its full generality. In fact, all of the explicit
candidate iO constructions can be conjectured to satisfy this stronger property. We recall the
formal definition of PCdiO below.

Definition 6.2 (PCdiO [IPS15]). A PPT algorithm Obf is public-coin differing-inputs obfuscation
for circuits (PCdiO) if the following holds:

• Correctness: For all circuits C, all inputs x, and all values of λ ∈ N we have

Pr[C̃(x) = C(x) : C̃ ← Obf(1λ, C)] = 1.

• Security: We say that a PPT sampler Sam is legal if for (C0, C1) ← Sam(1λ) we have
|C0| = |C1| and for all PPT A there is a negligible ν such that

Pr[C0(x) 6= C1(x) : (C0, C1)← Sam(1λ; r), x← A(1λ, r)] = ν(λ).

The PCdiO scheme is secure if for every legal sampler Sam we have

(r,Obf(1λ, C0)) ≈c (r,Obf(1λ, C1))

where (C0, C1)← Sam(1λ; r).

Counterexample. Let R be the relation from Theorem 6.1, let f̂ be an injective one-way func-
tion, and let Obf be a PCdiO scheme. We assume that Obf(1λ, C; r) uses randomness r of length
|r| = λ/3; this is without loss of generality, since we can always use a pseuorandom genera-
tor to derive as many pseudorandom bits as needed from r. Let n = b(

√
λ − 1)/2c and let

` = (λ− λ/3− n)/2 = Ω(λ).
We define a function f(x) that takes as input x ∈ {0, 1}λ and parses x = (x̂, r̂, x̃, r) ∈ {0, 1}` ×

{0, 1}` × {0, 1}n × {0, 1}λ/3. It outputs y = (ŷ, r̂, x̃, C̃) where ŷ = f̂(x̂), and C̃ = Obf(1λ, Cx̂,x̃; r) is
computed by using r as the randomness for the obfuscation procedure that obfuscates the circuit
Cx̂,x̃ defined as:

Cx̂,x̃(w) : If R(x̃, w) = 1 then output x̂ else output ⊥. (1)

For x = (x̂, r̂, x̃, r), we also define the predicate P (x) = 〈x̂, r̂〉. This is the Goldreich-Levin
hard-core bit of x̂.

Theorem 6.3. Assuming the security of PCdiO, ESPR hasing, and injective one-way functions,
the construction of f, P above satisfies the following properties.

• Hardness: The function f is a one-way function and P is a hard-core predicate for it. In
particular for all PPT A there is a negligible ν such that

Pr[A(f(x)) = P (x) : x← {0, 1}λ] ≤ 1/2 + ν(λ).

• XOR Non-Amplification: There exists a PPT adversary B∗ such that for all polynomial t =
t(λ):

Pr

B∗(f(x1), . . . , f(xt)) =
⊕
i∈[t]

P (xi)

 ≥ 1

2
+ 2−

√
λ.

31

Proof. For the first part of the theorem, we only need to show that given f(x) it is hard to compute
x̂. Namely, for all PPT A there is a negligible ν such that

Pr[A(f(x)) = x̂ : x = (x̂, r̂, x̃, r)← {0, 1}λ] ≤ ν(λ). (2)

The fact that P is a hard-core predicate for f then follows by the Goldreich-Levin theorem [GL89].
Arguing by contradiction, assume (2) does not hold and there is some A whose success probability
is non-negligible. Recall that A gets as input f(x) = (ŷ, r̂, x̃, C̃). As a first step, we replace
C̃ = Obf(1λ, Cx̂,x̃; r) by C̃ ′ = Obf(1λ, C ′; r) where C ′ is a circuit that always outputs ⊥, padded to
be of the same size as Cx̂,x̃. We rely on PCdiO security to argue that this change is indistinguishable.

Define Sam(1λ) to sample a uniform x̂, x̃← {0, 1}`×{0, 1}n and outputs the two circuits (Cx̂,x̃, C
′).

This is a legal sampler since, given x̂, x̃, finding an input w on which Cx̂,x̃(w) 6= C ′(w) is equivalent
to finding w on which R(x̃, w) = 1 which is hard by Theorem 6.1. Therefore PCdiO security
implies that C̃ is indistinguishable from C̃ ′ even given x̂, x̃. Therefore Pr[A((ŷ, r̂, x̃, C̃ ′)) = x̂] is
non-negligible. But this means that we can construct an adversary B that breaks the one-wayness
of f̂ with non-neglgible success probability by defining B(ŷ) to sample C̃ ′ ← Obf(1λ, C ′), r̂ ←
{0, 1}`, x̃← {0, 1}n and output A(ŷ, r̂, x̃, C̃ ′). This yields a contradiction, proving the claim.

For the second part of the theorem, let A∗ be the adversary on the direct-product of R from
Theorem 6.1. Define B∗(y1, . . . , yt) to parse yi = (ŷi, r̂i, x̃i, C̃i), run (w1, . . . , wt)← A∗(x̃1, . . . , x̃t).
If for some i ∈ [t] we have R(x̃i, wi) = 0 then output a random bit. Else set x̂i = C̃i(wi), pi = 〈x̂i, r̂i〉
and output

⊕
i∈[t] pi. We see that:

Pr[B∗ wins] = Pr[A∗ wins] +
1

2
(1− Pr[Pr[A∗ wins]])

=
1

2
+

1

2
Pr[A∗ wins]

≥ 1

2
+ 2−(2n+1)

≥ 1

2
+ 2−

√
λ.

Remarks. Note that the form of the counterexample above is somewhat stronger than the one
from Section 5.3 since we do not need to fix t ahead of time. In other words, we have one fixed

construction whose security does not amplify beyond 2−
√
λ no matter how many copies t are taken,

whereas previously the order of quantifiers was reversed and for every t we got a construction whose

security does not amplify beyond 2−
√
λ.

Also, we note that instead of PCdiO we could have relied on the weaker notion of “public-coin
extractable witness encryption”, which is the natural public-coin analogue of extractable witness
encryption [GKP+13]. Instead of obfuscating the circuit Cx̂,x̃ from equation (1) we would give a
witness encryption of the message x̂ using the statement x̃. The proof of security would otherwise
be identical.

Lastly, note that we could have replaced
√
λ with λε for any ε > 0 to get a counterexample

where XOR of many predicates does not amplify security beyond 2−λ
ε
. Furthermore, if we assumed

sub-exponential (resp. exponential) security of the injective one-way way functions and ESPR hash
functions (as well as the PRG that expands small randomness r for the obfuscation, but this can be

32

constructed from the correspondingly secure injective one-way function) then we could even push
this to get a counter-example where XOR of many predicates does not amplify security beyond
2−(log λ)O(1)

(resp. 2− log λ log log λ).

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive, 2013.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In EUROCRYPT, 2019.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In EUROCRYPT, 2001.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In EUROCRYPT, 2012.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indis-
tinguishability obfuscation without multilinear maps: New paradigms via low degree
weak pseudorandomness and security amplification. In CRYPTO, 2019.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Univer-
sal constructions and robust combiners for indistinguishability obfuscation and witness
encryption. In CRYPTO, 2016.

[AP16] Navid Alamati and Chris Peikert. Three’s compromised too: Circular insecurity for
any cycle length from (ring-)lwe. In CRYPTO, 2016.

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps:
Attacks and fixes for noisy linear FE. In EUROCRYPT, 2020.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference, vol-
ume 8349 of Lecture Notes in Computer Science, pages 52–73. Springer, Heidelberg,
February 2014.

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from
LWE. In TCC 2018, 2018.

[BDGM20a] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate io
from homomorphic encryption schemes. In EUROCRYPT, 2020.

[BDGM20b] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for io: Circular-secure LWE suffices. IACR Cryptol. ePrint
Arch., 2020.

33

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfus-
cation and uces: The case of computationally unpredictable sources. In CRYPTO,
2014.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-sound
zero-knowledge and its applications. FOCS, 2001.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO,
2001.

[BGI08] Eli Biham, Yaron J. Goren, and Yuval Ishai. Basing weak public-key cryptography
on strong one-way functions. In TCC, 2008.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wa-
dia. Two-message witness indistinguishability and secure computation in the plain
model from new assumptions. In ASIACRYPT, 2017.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and
Amit Sahai. Round optimal concurrent MPC via strong simulation. In TCC, 2017.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results
for encryption and commitment secure under selective opening. In EUROCRYPT,
2009.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the
error in computationally sound protocols? In FOCS, 1997.

[BL18] Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable com-
mitments. In TCC, 2018.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and
applications to resettable cryptography. In STOC, 2013.

[BP15] Nir Bitansky and Omer Paneth. On non-black-box simulation and the impossibility
of approximate obfuscation. SIAM J. Comput., 2015.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS, 1993.

[BRT12] Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro. Multi-instance security and
its application to password-based cryptography. In CRYPTO, 2012.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the net -
concurrent composition via super-polynomial simulation. In FOCS, 2005.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In STOC, 2000.

[COP+14] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, Muthuramakrishnan Venkitasubra-
maniam, and Ivan Visconti. 4-round resettably-sound zero knowledge. In TCC, 2014.

34

[COPV13] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, and Ivan Visconti. Simultaneous
resettability from one-way functions. In FOCS, 2013.

[CPS16] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation from one-way
functions and applications to resettable security. SIAM J. Comput., 2016.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III,
volume 11694 of Lecture Notes in Computer Science, pages 3–32. Springer, Heidelberg,
August 2019.

[DGK17] Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete:
Random oracles with auxiliary input, revisited. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part II,
volume 10211 of Lecture Notes in Computer Science, pages 473–495. Springer, Hei-
delberg, April / May 2017.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In CRYPTO, 2016.

[DJMW12] Yevgeniy Dodis, Abhishek Jain, Tal Moran, and Daniel Wichs. Counterexamples
to hardness amplification beyond negligible. In Ronald Cramer, editor, TCC 2012:
9th Theory of Cryptography Conference, volume 7194 of Lecture Notes in Computer
Science, pages 476–493. Springer, Heidelberg, March 2012.

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel
Wichs. Succinct LWE sampling, random polynomials, and obfuscation. In Kobbi
Nissim and Brent Waters, editors, Theory of Cryptography - 19th International Con-
ference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part II,
volume 13043 of Lecture Notes in Computer Science, pages 256–287. Springer, 2021.

[Fei91] Uriel Feige. On the success probability of the two provers in one-round proof systems.
In Structure in Complexity Theory Conference. IEEE Computer Society, 1991.

[For89] Lance Fortnow. The complexity of perfect zero-knowledge. Advances in Computing
Research, 1989.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In TCC, 2014.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of
differing-inputs obfuscation and extractable witness encryption with auxiliary input.
In CRYPTO, 2014.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In FOCS, 2014.

[GJLS21] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfus-
cation from simple-to-state hard problems: New assumptions, new techniques, and
simplification. In EUROCRYPT, 2021.

35

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume
8043 of Lecture Notes in Computer Science, pages 536–553. Springer, Heidelberg,
August 2013.

[GKW17a] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In FOCS,
2017.

[GKW17b] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating semantic and circular
security for symmetric-key bit encryption from the learning with errors assumption.
In EUROCRYPT, 2017.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In STOC, 1989.

[GM11] Vipul Goyal and Hemanta K. Maji. Stateless cryptographic protocols. In FOCS, 2011.

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-Lemma. Springer
Berlin Heidelberg, 2011.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
In STOC, 2021.

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In Antoine Joux,
editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes
in Computer Science, pages 54–71. Springer, Heidelberg, April 2009.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In EUROCRYPT, 2018.

[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive
procedures with advice, and lower bounds on hardness amplification proofs. In FOCS,
2018.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In ASIACRYPT, 2000.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. J. Cryptol., 2012.

[HR14] Dennis Hofheinz and Andy Rupp. Standard versus selective opening security: Sepa-
ration and equivalence results. In TCC, 2014.

[HRW16] Dennis Hofheinz, Vanishree Rao, and Daniel Wichs. Standard security does not imply
indistinguishability under selective opening. In TCC, 2016.

[HY19] Justin Holmgren and Lisa Yang. The parallel repetition of non-signaling games: coun-
terexamples and dichotomy. In Moses Charikar and Edith Cohen, editors, 51st Annual
ACM Symposium on Theory of Computing, pages 185–192. ACM Press, June 2019.

36

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS,
1995.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation
and its applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes in
Computer Science, pages 668–697. Springer, Heidelberg, March 2015.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials over R to build io. In EUROCRYPT, 2019.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In STOC, 2021.

[JP11] Abhishek Jain and Krzysztof Pietrzak. Parallel repetition for leakage resilience am-
plification revisited. In TCC, 2011.

[KRW15] Venkata Koppula, Kim Ramchen, and Brent Waters. Separations in circular security
for arbitrary length key cycles. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015: 12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture
Notes in Computer Science, pages 378–400. Springer, Heidelberg, March 2015.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or two
rounds. In FOCS, 2017.

[KW16] Venkata Koppula and Brent Waters. Circular security separations for arbitrary length
cycles from LWE. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer
Science, pages 681–700. Springer, Heidelberg, August 2016.

[Lev85] Leonid A. Levin. One-way functions and pseudorandom generators. In STOC, 1985.

[LW10] Allison B. Lewko and Brent Waters. On the insecurity of parallel repetition for leakage
resilience. In 51st Annual Symposium on Foundations of Computer Science, pages
521–530. IEEE Computer Society Press, October 2010.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, 2001.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In EUROCRYPT, 2003.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal
composability without trusted setup. In László Babai, editor, STOC, 2004.

[PW07] Krzysztof Pietrzak and Douglas Wikström. Parallel repetition of computationally
sound protocols revisited. In TCC, 2007.

[Rot13] Ron Rothblum. On the circular security of bit-encryption. In Amit Sahai, editor,
TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of Lecture Notes
in Computer Science, pages 579–598. Springer, Heidelberg, March 2013.

37

[Sha20] Ronen Shaltiel. Is it possible to improve yao’s XOR lemma using reductions that
exploit the efficiency of their oracle? In APPROX/RANDOM, 2020.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, 1997.

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority.
SIAM J. Comput., 2010.

[Unr07] Dominique Unruh. Random oracles and auxiliary input. In CRYPTO, 2007.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
In EUROCRYPT, 2021.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs un-
der LWE. In Chris Umans, editor, 58th Annual Symposium on Foundations of Com-
puter Science, pages 600–611. IEEE Computer Society Press, October 2017.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In FOCS, 1982.

A Resettable MPC: Definition

Consider n parties P1, . . . , Pn. An n-party functionality f is a (possibly randomized) mapping of
n inputs to n outputs. A secure multi-party computation protocol π with security parameter λ for
computing a functionality f is a protocol running in time poly(λ) with the goal of computing the
output f(x1, . . . , xn).

The security of a protocol π (with respect to a functionality f) is defined by comparing the
real-world execution of the protocol with an ideal-world evaluation of f by a trusted party. More
concretely, it is required that for every adversary A, which attacks the real execution of the protocol,
there exist an adversary Sim, also referred to as a simulator, which can achieve the same effect in
the ideal-world. We denote the set of all inputs by ~x = (x1, . . . , xn). The adversary controls a set of
parties and at any point during the execution of the protocol it can reset any of the honest parties.
We shall consider computational security against parties which have been statically corrupted by the
adversary. All honest parties have their random tape independently chosen but when an adversary
resets a party, it reuses the same random tape (and the same input).

The real execution. In the real execution of the n-party protocol π for computing f in the
presence of an adversary A, the honest parties follow the instructions of π. The adversary A, on
input λ, outputs the identities of the honest parties, the indices I and identities in 2λ of corrupted
parties, the inputs of the corrupted parties, and an auxiliary input z. A sends all messages in place
of corrupted parties and may follow an arbitrary polynomial-time strategy. The adversary can reset
any honest party at any point of time during the execution of the protocol (and potentially even
bring them out of sync). Recall that when an adversary resets a party, the reset party reuses the
same random tape (and the same input).
The interaction of A with protocol π defines a random variable REALπ,A(z),I(λ, ~x) whose value
is determined by the coin tosses of the adversary and the honest players. This random variable

38

contains the output of the adversary (which may be an arbitrary function of its view) as well as
the outputs of the uncorrupted parties at the end of the protocol. We let REALπ,A(z),I denote the
distribution ensemble {REALπ,A(z),I(λ, ~x)}λ∈N,〈~x,z〉∈{0,1}∗ .

The ideal execution – security with abort. In the ideal world, there is a mutually trusted
party which can aggregate the inputs provided to it by the various parties, perform the computation
f(·) on their behalf and provide them their respective outputs. An ideal execution for a function f
in the presence of an ideal-world adversary (simulator) Sim proceeds as follows:

• Send inputs to the trusted party: Honest parties send their inputs to the trusted party;
but corrupted parties may decide to send modified inputs to the trusted party, as instructed
by Sim. Let x′i denote the value sent by Pi.

• Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.

• Adversary instructs trusted party to abort or continue: This is formalized by having
the adversary send either a continue or abort message to the trusted party. In the latter case,
the trusted party sends to each uncorrupted party Pi its output value yi. In the former case,
the trusted party sends the special symbol ⊥ to each uncorrupted party.

• Resets: The adversary can reset the ideal world at any point of time. When the adversary
decides to reset the ideal world, it requests the trusted party to reset all honest parties and
the trusted party sends a reset signal to all honest parties. At this point, the ideal world
returns to the first stage where honest parties feed their inputs to the ideal functionality. The
honest party inputs do not change between resets.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.

Sim’s interaction with the trusted party defines a random variable IDEALf⊥,A(z),I(λ, ~x) that denotes
the distribution ensemble {IDEALf⊥,Sim(z),I(λ, ~x)}λ∈N,〈~x,z〉∈{0,1}∗ where the subscript “⊥” indicates
that the adversary can abort computation of f . Having defined the real and the ideal worlds, we
now proceed to define our notion of security.

Definition A.1. [Resettable MPC with Straight-Line, Black-Box Superpolynomial Simulation] Let
λ be the security parameter. Let f be an n-party randomized functionality, and π be an n-party
protocol for n ∈ N.

We say that π computes f with resettable straight-line, black-box superpolynomial simulation in
the presence of malicious adversaries if for every PPT adversary A there exists a super-polynomial
time simulator Sim that interacts with the adversary via straight-line black-box queries, such that
for any I ⊂ [n]:

|Pr[REALπ,A(z),I(λ, ~x) = 1]− Pr[IDEALf⊥,Sim(z),I(λ, ~x) = 1]| = negl(λ)

where ~x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.
The simulator Sim is allowed to reset the functionality in the ideal world several times and

the number of times the ideal functionality is reset by the simulator could possibly be more than
the number of resets performed by the adversary in the real world, though this number must be a
polynomial in the security parameter.

39

A.1 Security Against Semi-Malicious Adversaries

We take this definition verbatim from [AJL+12]. A semi-malicious adversary is modeled as an
interactive Turing machine (ITM) which, in addition to the standard tapes, has a special witness
tape. In each round of the protocol, whenever the adversary produces a new protocol message msg
on behalf of some party Pk, it must also write to its special witness tape some pair (x, r) of input x
and randomness r that explains its behavior. More specifically, all of the protocol messages sent by
the adversary on behalf of Pk up to that point, including the new message m, must exactly match
the honest protocol specification for Pk when executed with input x and randomness r. Also, we
assume that the attacker is rushing and hence may choose the message m and the witness (x, r) in
each round adaptively, after seeing the protocol messages of the honest parties in that round (and
all prior rounds). The adversary may also choose to abort the execution on behalf of Pk in any
step of the interaction.

B Resettable MPC: Proof

B.1 Resettable Semi-Malicious MPC: Proof

In this section, we formally prove Theorem 4.2.

Simulator Description:
Consider a semi-malicious adversary A that corrupts t parties where t < n. The strategy of the

simulator Sim against the adversary A is described below:

1. Round 1:
For each honest party Pi, Sim does the following:

• Compute and send msg1,i ← Commit(0|k|+|x|).

2. Rounds 2 . . . `:
Let the round number be j. For each honest party Pi, including on each reset execution, Sim
does the following:

• Let Transj−1 denote the transcript of the underlying protocol π at the end of round
(j − 1), excluding the messages sent in round 1.

• Compute and send msgj,i ← Sj−1(Transj−1, x
∗, r∗j−1) where x∗, r∗j−1 denote the vector of

malicious party inputs, and the randomness of the malicious parties up to round (j− 1)
in the underlying protocol π. If j = 2, we set (x∗j−1, r

∗
j−1 = ⊥).

• Note that each time honest party Pi is reset to the beginning of a particular round j,
if the adversary sent the same message as some previous execution, Sj uses the same
randomness as in that execution and hence the message msgj,i doesn’t change.

Remarks: Here, note that our simulator is a PPT algorithm. Only in the next subsection when
we consider malicious adversaries, we build simulators that run in super-polynomial time.

40

Hybrids: We now show that the simulation strategy described above is successful against all
resetting semi-malicious PPT adversaries. That is, the view of the adversary along with the output
of the honest parties is computationally indistinguishable in the real and ideal worlds. We will
show this via a series of computationally indistinguishable hybrids where the first hybrid Hyb1

corresponds to the real world and the last hybrid Hyb3 corresponds to the ideal world.
Before describing this sequence, we note that even under t < n corruptions, since the adversary

is guaranteed to be semi-malicious, all the protocol messages sent by a semi-malicious adversary
will be a deterministic function of their first round message. Therefore, any semi-malicious
adversary, upon resetting honest parties to the middle of the jth round for j ≥ 2, sends a message
that is a deterministic function of the first round message, and therefore repeatedly sends the exact
same message.

1. Hyb1: This hybrid outputs the view of the adversary when interacting with honest parties.

2. Hyb2: In this hybrid, the challenger computers msg1,i ← Commit(0|k|+|x|) for every honest
party Pi.

3. Hyb3: In this hybrid, for every honest party Pi, the first round message is computed identically
to Hyb2, but the simulator computes the messages for every other round of π using uniform
randomness instead of the PRF output. That is, for j ≥ 2, it computes and sends msgj,i ←
π.NextMsgj(xi,Transj−1; rj,i) where the randomness rj,i is picked uniformly at random. When
the adversary resets and sends a new round 1 message, then the simulator does the following:

• If the adversary sends a message that is the same as one sent in a previous execution,
use randomness that is identical to the one used in that specific execution.

• If the adversary sends a message that is different from one sent in a previous execution for
the same transcript prefix, this adversary is not explainable, and therefore no guarantees
are required against such an adversary: it is safe to answer arbitrarily.

4. Hyb4: In this hybrid, for every honest party Pi, for every round j with j ∈ [`], including
on each reset to the beginning of round 2, SimHyb computes the message of the underlying
protocol π using the simulator S for the semi-malicious MPC protocol. If the adversary sends
the same message in round 1 as a previous execution, then SimHyb continues this execution
identically to the previous execution. This experiment corresponds to the ideal world.

Indistinguishability of Hybrids: We now show that every pair of successive hybrids is com-
putationally indistinguishable.

Claim B.1. Assuming Commit is a computationally hiding commitment, Hyb1 is computationally
indistinguishable from Hyb2.

Proof. The only difference between the two hybrids is that in Hyb1, honest parties to commit to their
actual inputs and to a PRF key in round 1, whereas in Hyb2, the challenger sends a commitment
to 0 in round 1. Any adversary that distinguishes these two hybrids breaks the hiding property of
the commitment scheme.

Claim B.2. Assuming that PRF is a secure pseudorandom function family, Hyb2 is computationally
indistinguishable from Hyb3.

41

Proof. The only difference between the two hybrids is that in Hyb2, for each honest party Pi,
for every round j with j ∈ [`], including on each reset, SimHyb computes the randomness for the
underlying protocol π as the output of the PRF on the transcript so far, while in Hyb3, a uniformly
random string is picked whenever the adversary resets and sends a different message.

That is, in Hyb2, for any round j, the message sent by honest party Pi is msgj,i ← π.NextMsgj(xi,
Transj−1; rj,i) where the randomness rj,i = PRF(ki,Transj−1) and Transj−1 is the transcript of the
protocol πRSM up to round j. On the other hand, in Hyb2, rj,i is a uniformly random string picked
afresh on each reset (whenever the adversary sends a message that was not sent during a previous
reset). Observe that we do not use the PRF key ki anywhere in the protocol except to compute
this randomness. Therefore, any adversary A that can distinguish between these two hybrids
implies an adversary APRF that breaks the security of the pseudorandom function PRF, which is a
contradiction.

Claim B.3. Assuming semi-malicious security of the protocol π against adversaries that can corrupt
up to all but one parties, Hyb3 is computationally indistinguishable from Hyb4.

Proof. The difference between the two hybrids is that in Hyb3, on behalf of the honest parties,
SimHyb computes the messages of protocol π using the honest parties’ actual inputs (and fresh
randomness on each reset), whereas in Hyb3, they are computed by running the simulator S for the
underlying semi-malicious secure protocol π.

Let s denote the number of sessions opened by A. We consider a sequence of hybrid experiments
Hyb2,0, . . . ,Hyb2,s, with Hyb2,1 , Hyb2, and Hyb2,s , Hyb3. For every i ∈ [s], Hyb2,i is defined as
follows:

• For each session i′ ∈ [s] that starts at round 2 with prefix transcript τi′ , do the following.

– If i′ ≤ i, execute the simulator Sj for semi-malicious MPC to compute messages on
behalf of honest parties.7

– If i′ > i, use honest party strategy to compute messages on behalf of honest parties.

If there exists i ∈ [`] and an adversary A that can distinguish between Hybi−1 and Hybi, we will
use A to design an algorithm Aπ that can break the semi-malicious security of protocol π.

• Aπ interacts with a challenger C to break the security of protocol π.

• Aπ corrupts the same parties as A in its interaction with C.

• Aπ samples the first round messages for all honest parties as commitments to 0.

• For all sessions (1, . . . i− 1), Aπ follows the strategy in Hyb3.

• For all sessions (i+ 1, . . . , s), Aπ follows the strategy in Hyb4.

• For the ith session, for rounds (2, . . . , `), Aπ obtains the messages for all honest parties, that
are either sampled by C honestly according to π, or sampled using simulator S for the ith

session, and forwards them to A on behalf of honest parties.

7Note that the adversary is semi-malicious after round 2.

42

Now, observe that when the challenger C computes the messages on behalf of the honest parties
using the honest parties’ actual inputs, the interaction between Aπ and A corresponds to Hyb2,i−1.
Similarly, when C computes the messages on behalf of the honest parties by running the simulator
S, the interaction between Aπ and A corresponds to Hyb2,i. Therefore, if there exists a distinguisher
D that distinguishes between the two hybrids with non-negligible probability, Aπ can use the same
distinguisher to break the semi-malicious security of protocol π, which is a contradiction.

B.2 Resettable Malicious Secure MPC: Proof

Several parts of this section are copied verbatim from [BGJ+17].
Let f be any functionality. Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn respectively

who wish to compute f on their joint inputs by running a resettably secure MPC protocol. Let
πSM be any three round protocol for the above task that is secure against adversaries that can be
completely malicious in the first round, but promise to be semi-malicious in the next two rounds,
and can corrupt upto (n−1) parties. In this section, we show how to generically transform πSM into
a three round protocol π that is resettably secure against malicious adversaries that can corrupt
upto (n−1) parties, using super-polynomial simulation. Formally, we prove the following theorem:

B.2.1 Construction

We first list some notation and the primitives used before describing the construction.

Notation.

• λ denotes the security parameter.

• SPSS.ZK = (ZK1,ZK2,ZK3) is a two message zero knowledge argument with super polynomial
strong simulation (SPSS-ZK). The zero knowledge property holds against all adversaries
running in time TZK. Let SimZK denote the simulator that produces simulated ZK proofs
and let TSim

ZK denote its running time. [KS17] give a construction of an SPSS.ZK scheme
satisfying these properties that can be based on sub-exponential DDH.

• NMCom = (NMComR
1 ,NMComS

2) is a two message concurrent non-malleable commitment
scheme with respect to commitment in the simultaneous message model. Here, NMComR

1

denote the first message of the receiver while NMComS
2 denotes the second message from

the sender. It is secure against all adversaries running in time TSec
Com, but can be broken by

adversaries running in time TBrk
Com. Let Ext.Com denote a brute force algorithm running in

time TBrk
Com that can break the commitment scheme. [KS17] give a construction of an NMCom

scheme satisfying these properties that can be based on sub-exponential DDH.

The NMCom we use is tagged. In the authenticated channels setting, the tag of each user
performing a non-malleable commitment can just be its identity. In the general setting, in
the first round, each party can choose a strong digital signature verification key VK and
signing key, and then sign all its messages using this signature scheme for every message sent
in the protocol. This VK is then used as the tag for all non-malleable commitments. This
ensures that every adversarial party must choose a tag that is different than any tags chosen
by honest parties, otherwise the adversary will not be able to sign any of its messages by
the existential unforgeability property of the signature scheme. This is precisely the property

43

that is assumed when applying NMCom. For ease of notation, we suppress writing the tags
explicitly in our protocols below.

• πRSM is a sub-exponentially secure 3 round MPC protocol that is resettably secure against
adversaries running in time TSM that can behave maliciously in the first round and semi-
maliciously in the next two rounds. Let (πRSM.NextMsg1, π

RSM.NextMsg2, π
RSM.NextMsg3)

denote the algorithms used by any party to compute the messages in each of the three rounds
and πRSM.OUT denotes the algorithm to compute the final output. Further, let’s assume that
πRSM runs over a broadcast channel. Let S = (S1,S2,S3) denote the straight line simulator
for this protocol - that is, Si is the simulator’s algorithm to compute the ith round messages.
Also, we make the following assumptions about the protocol structure, that is satisfied by
the instantiations:

1. S1 and S2 run without any input other than the protocol transcript so far - in particular,
they don’t need the input, randomness and output of the malicious parties. For S1,
this must necessarily be true since the first round of πRSM is secure against malicious
adversaries. We make the assumption only on S2.

2. The algorithm πRSM.NextMsg3 doesn’t require any new input or randomness that was
not already used in the algorithms πRSM.NextMsg1, π

RSM.NextMsg2. Looking ahead,
this is used in our security proof when we want to invoke the simulator of this protocol
πRSM, we need to be sure that we have fed the correct input and randomness to the
simulator. This is true for all instantiantions we consider, where the semi-malicious
simulator requires only the secret keys of corrupted parties (that are fixed in the second
round) apart from the protocol transcript.

• In order to realize our protocol, we require that poly(λ) < TSim
ZK < TSec

Com < TBrk
Com < TZK,TSM.

• We assume broadcast channels. Further, let’s assume that every party has an associated
identity id. For any session sid, each party generates its non-malleable commitment using the
tag (id||sid).

NP Languages. In our construction, we use proofs for the following NP languages.

NP language L is characterized by the following relation R.
Statement : st = (c1, c2,msg1,msg2, τ)
Witness : w = (inp, r, rc)
R(st,w) = 1 if and only if :

• c2 = NMComS
2 (inp, r, c1; rc) AND

• msg1 = πRSM.NextMsg1(inp; r) AND

• msg2 = πRSM.NextMsg2(inp, τ ; r)

That is, (c1, c2) form a non-malleable commitment of (inp, r) such that msg2 is the second round
message using input inp, randomness r when running πRSM, where the protocol transcript so far is τ .

44

NP language L1 is characterized by the following relation R1.
Statement : st = (c1, c2,msg3, τ)
Witness : w = (inp, r, rc)
R(st,w) = 1 if and only if :

• c2 = NMComS
2 (inp, r, c1; rc) AND

• msg3 = πRSM.NextMsg3(inp, τ ; r)

(c1, c2) form a non-malleable commitment of (inp, r) such that msg3 is the third round message
using input inp, randomness r when running πRSM, where the protocol transcript so far is τ .

Construction. The protocol is described in Figure 7.

B.2.2 Security Proof

In this section, we formally prove security of the above construction.

Consider an adversary A who corrupts t < n parties. For each party Pi, let’s say that the size of
input and randomness used in protocol πRSM is p(λ) for some polynomial p. That is, |(xi, ri)| = p(λ).
The strategy of the simulator Sim against a malicious adversary A is described in Figure 8.

In the simulation, we crucially use the two assumptions about the protocol structure. The
first one is easy to notice since the simulator Sim has to run the semi-malicious to produce the
first and second messages before it has extracted the adversary’s input and randomness. For the
second assumption, observe that to run the simulator algorithm S3, Sim has to feed it the entire in-
put and randomness of the adversary and so these have to be fixed to by the end of the second round.

We now show that the simulation strategy is successful against all malicious PPT adversaries.
That is, the view of the adversary along with the output of the honest parties is computationally
indistinguishable in the real and ideal worlds. We will show this via a series of computationally
indistinguishable hybrids where the first hybrid Hyb1 corresponds to the real world and the last
hybrid Hyb6 corresponds to the ideal world.

1. Hyb1: In this hybrid, consider a simulator SimHyb that plays the role of the honest parties
including on each reset execution. SimHyb runs in polynomial time.

2. Hyb2: In this hybrid, the simulator SimHyb also runs the “Query to Ideal Functionality” phase
and the “Special Abort” phase in step3 and 5 in Figure 8 including on each reset execution.
SimHyb runs in time TBrk

Com.

3. Hyb3: This hybrid is identical to the previous hybrid except that in Rounds 2 and 3, SimHyb

now computes simulated SPSSZK arguments as done in Figure 8 including on each reset
execution. Once again, SimHyb runs in time TBrk

Com.

4. Hyb4: This hybrid is identical to the previous hybrid except that SimHyb now computes all

the (cj2,i) as non-malleable commitments of 0p(λ) as done in Round 2 in Figure 8 including on

each reset execution. Once again, SimHyb runs in time TBrk
Com.

45

Inputs: Each party Pi has input xi and uses randomness ri to compute the message in each round
of the protocol πRSM. We now describe the messages sent by party Pi. We will use superscripts
to denote the intended recipient of the message if it is not meant to be used by all parties.

1. Round 1:
Pi does the following:

• Compute msg1,i ← πRSM.NextMsg1(xi; ri).

• For each j ∈ [n] with j 6= i, compute:

– cj1,i ← NMComR
1 (1λ).

– (verj1,i, zkst
j
1,i)← ZK1(1λ) and (verj2,i, zkst

j
2,i)← ZK1(1λ).

• Send (msg1,i, c
j
1,i, ver

j
1,i, ver

j
2,i) for all j.

2. Round 2:
Let τ1 denote the protocol transcript after round 1. Pi does the following:

• Compute msg2,i ← πRSM.NextMsg2(xi, τ1; ri).

• For each j ∈ [n] with j 6= i, compute:

– cj2,i ← NMComS
2 (xi, ri, c

i
1,j ; r

j
c,i) using the same random string rjc,i.

– provej2,i ← ZK2(veri1,j , st
j
2,i,w

j
2,i) for the statement stj2,i = (ci1,j , c

j
2,i, msg1,i, msg2,i,

τ1) ∈ L using witness wj2,i = (xi, ri, r
j
c,i).

• Send (msg2,i, c
j
2,i, prove

j
2,i) for all j.

3. Round 3:
Let τ2 denote the protocol transcript after round 2. Pi does the following:

• Compute msg3,i ← πRSM.NextMsg3(xi, τ2; ri).

• For each j ∈ [n] with j 6= i, do:

– Abort if ZK3(zkstj1,i, st
i
2,j) 6= 1 where sti2,j = (cj1,i, c

i
2,j ,msg1,j ,msg2,j , τ1).

– provej3,i ← ZK2(veri2,j , st
j
3,i,w

j
3,i) for the statement stj3,i = (ci1,j , c

j
2,i, msg3,i, τ2) ∈ L1

using witness wj3,i = (xi, ri, r
j
c,i).

• Send (msg3,i, prove
j
3,i) for all j.

4. Output Computation:
Let τ3 denote the protocol transcript after round 3. Pi does the following:

• For each j ∈ [n] with j 6= i, do:

– Abort if ZK3(zkstj2,i, st
i
3,j) 6= 1 where sti3,j = (cj1,i, c

i
2,j ,msg3,j , τ2).

• Compute output yi ← πRSM.OUT(xi, τ3; ri).

Figure 7: 3 round MPC Protocol π for functionality f .

5. Hyb5: This hybrid is identical to the previous hybrid except that in Round 3, SimHyb now
computes the messages of the protocol πRSM using the simulator algorithms S = (S1,S2,S3)
including on each reset execution as done by Sim in the ideal world. SimHyb also instructs
the ideal functionality to deliver outputs to the honest parties as done by Sim. This hybrid

46

1. Round 1: For each honest party Pi, Sim does the following including on each reset:

• Compute msg1,i ← S1(1λ, i). For each j ∈ [n] with j 6= i, compute:

– cj1,i ← NMComR
1 (1λ).

– (verj1,i, zkst
j
1,i)← ZK1(1λ) and (verj2,i, zkst

j
2,i)← ZK1(1λ).

• Send (msg1,i, c
j
1,i, ver

j
1,i, ver

j
2,i) for all j ∈ [n].

2. Round 2: Let τ1 denote the protocol transcript after round 1. For each honest party Pi,
Sim does the following including on each reset:

• Compute msg2,i ← S2(τ1, i). For each j ∈ [n] with j 6= i, compute:

– cj2,i ← NMComS
2 (0p(λ), ci1,j ; r

j
c,i) using a random string rjc,i.

– provej2,i ← SimZK(veri1,j , st
j
2,i) for stj2,i = (ci1,j , c

j
2,i,msg1,i,msg2,i, τ1) ∈ L. This step

takes time TSim
ZK .

• Send (msg2,i, c
j
2,i, prove

j
2,i) for all j ∈ [n].

3. Query to Ideal Functionality: Sim does the following:

• For each honest party Pi and for each j ∈ [n] with j 6= i, do:

– Abort if ZK3(zkstj1,i, st
i
2,j) 6= 1 where τ1 is the protocol transcript after round 1

such that sti2,j = (cj1,i, c
i
2,j ,msg1,j ,msg2,j , τ1)

– Compute (xij , r
i
j) = Ext.Com(cj1,i, c

i
2,j). This step takes time TBrk

Com.

• For each malicious party Pj , do:

– Output “Special Abort” if {(xij , rij)} is not equal ∀ honest Pi. Set (xj , rj) =

(x1
j , r

1
j). Output “Special Abort” if msg1,j 6= πRSM.NextMsg1(xj , rj) and msg2,j 6=

πRSM.NextMsg2(xj , rj , τ1).

– Send the set {xj} to the ideal functionality and receive output y.a

– Let R denote the set {xj , rj}.

4. Round 3: Let τ2 denote the protocol transcript after round 2. For each honest party Pi,
Sim does the following including on each reset: Compute and send msg3,i ← S3(y,R, τ2, i)

together with provej3,i for j ∈ [n], j 6= i where provej3,i ← SimZK(veri2,j , st
j
3,i) for the statement

stj3,i = (ci1,j , c
j
2,i,msg3,i, τ2) ∈ L1. This step takes time TSim

ZK .

5. Special Abort Phase: Sim outputs “Special Abort” if, for each malicious party Pj ,
msg3,j 6= πRSM.NextMsg3(xj , rj , τ2).

6. Output Computation: Sim does the following:

• For each honest Pi, for each j ∈ [n] with j 6= i, abort if ZK3(zkstj2,i, st
i
3,j) 6= 1.

• Else, instruct the ideal functionality to deliver output to the honest parties.

aEach time the adversary resets an honest party before round 3, simulator makes a call to the ideal functionality.

Figure 8: Simulation strategy in the 3 round protocol

47

is now same as the ideal world. Once again, SimHyb runs in time TBrk
Com.

We now show that every pair of successive hybrids is computationally indistinguishable.

Lemma B.4. Assuming soundness of the SPSS.ZK argument system, binding of the non-malleable
commitment scheme and correctness of the protocol πRSM, Hyb1 is computationally indistinguishable
from Hyb2.

Proof. The only difference between the two hybrids is that in Hyb2, SimHyb may output “Special
Abort” in some reset execution which doesn’t happen in Hyb1. More specifically, in Hyb2, “Special
Abort” occurs if event E described below is true in some reset execution.

Event E: Is true if : For any malicious party Pj

• All the SPSS.ZK proofs sent by Pj in round 2 and 3 verify correctly.
(AND)

• Either of the following occur:

– The set of values {(xij , rij)} that are committed to using the non-malleable commitment
is not same for every i where Pi is honest. (OR)

– msg1,j 6= πRSM.NextMsg1(xj , rj) (OR)

– msg2,j 6= πRSM.NextMsg2(xj , rj , τ1) where τ1 is the protocol transcript after round 1.
(OR)

– msg3,j 6= πRSM.NextMsg3(xj , rj , τ2) where τ2 is the protocol transcript after round 2.

That is, in simpler terms, the event E occurs if for any malicious party, it gives valid ZK proofs
in round 2 and 3 but its protocol transcript is not consistent with the values it committed to.

Therefore, in order to prove the indistinguishability of the two hybrids, it is enough to prove
the lemma below.

Sub-Claim 1. Pr[Event E is true in Hyb2] = negl(λ).

Proof. We now prove the sub-lemma. Suppose the event E does occur in some reset execution.
From the binding property of the commitment scheme and the correctness of the protocol πRSM,
observe that if any of the above conditions are true, it means there exists i, j such that the statement
sti2,j = (cj1,i, c

i
2,j ,msg1,j ,msg2,j , τ1) /∈ L, where Pi is honest and Pj is malicious. However, the proof

for the statement verified correctly which means that the adversary has produced a valid proof for
a false statement. This violates the soundness property of the SPSSZK argument system which is
a contradiction.

Lemma B.5. Assuming the zero knowledge property of the SPSS.ZK argument system, Hyb2 is
computationally indistinguishable from Hyb3.

Proof. The only difference between the two hybrids is that including every reset execution, in
Hyb2, SimHyb computes the proofs in Rounds 2 and 3 honestly, by running the algorithm ZK2 of
the SPSS.ZK argument system, whereas in Hyb3, a simulated proof is used. If the adversary A can

48

distinguish between the two hybrids, we will use A to design an algorithm AZK that breaks the
zero knowledge property of the argument system.

Suppose the adversary can distinguish between the two hybrids with non-negligible probability
p. Then, by a simple hybrid argument, there exists hybrids Hyb2,k and Hyb2,k+1 that the adversary
can distinguish with non-negligible probability p′ < p such that: the only difference between the
two hybrids is in the proof sent by an honest party Pi to a (malicious) party Pj in one of the rounds
. Let’s say it is the proof in round 2.
AZK performs the role of SimHyb in its interaction with A and performs all the steps exactly

as in Hyb2,k except the proof in Round 2 sent by Pi to Pj . It interacts with a challenger C
of the SPSS.ZK argument system and sends the first round message veri1,j it received from the
adversary. AZK receives from C a proof that is either honestly computed or simulated. AZK sets
this received proof as its message proveji,2 in Round 2 of its interaction with A. In the first case,
this exactly corresponds to Hyb2,k while the latter exactly corresponds to Hyb2,k+1. Therefore, if A
can distinguish between the two hybrids, AZK can use the same distinguishing guess to distinguish
the proofs: i.e, decide whether the proofs received from C were honest or simulated. Now, notice
that AZK runs only in time TBrk

Com (during the input extraction phase), while the SPSS.ZK system
is secure against adversaries running in time TZK. Since TBrk

Com < TZK, this is a contradiction and
hence proves the lemma.
In particular, this also means the following: Pr[Event E is true in Hyb3] = negl(λ).

Lemma B.6. Assuming the non-malleability property of the non-malleable commitment scheme
NMCom, Hyb3 is computationally indistinguishable from Hyb4.

Proof. We will prove this using a series of computationally indistinguishable intermediate hybrids
as follows.

• Hyb3,1: This is same as Hyb3 except that including on each reset execution, the simulator
SimHyb does not run the input extraction phase apart from verifying the SPSS.ZK proofs.
Also, SimHyb does not run the special abort phase. In particular, the Ext.Com algorithm is
not run and there is no “Special Abort”. In this hybrid, SimHyb runs in time TSim

ZK which is
lesser than TBrk

Com.

• Hyb3,2: This hybrid is identical to the previous hybrid except that including on each reset

execution, in Round 2, SimHyb now computes all the messages (cj2,i) as non-malleable com-

mitments of 0p(λ) as done by Sim in the ideal world. In this hybrid too, SimHyb runs in time
TSim
ZK .

• Hyb3,3: This is same as Hyb3 except that including on each reset execution, the simulator
does run the input extraction phase and the special abort phase. It is easy to see that Hyb3,3

is the same as Hyb4. In this hybrid, SimHyb runs in time TBrk
Com which is greater than TSim

ZK .

We now prove the indistinguishability of these intermediate hybrids and this completes the proof
of the lemma.

Sub-Claim 2. Hyb3 is statistically indistinguishable from Hyb3,1.

Proof. The only difference between the two hybrids is that in Hyb3, the simulator might output
“Special Abort” which doesn’t happen in Hyb3,1. As shown in the proof of Lemma B.5, the

49

probability that Event E occurs in Hyb3 is negligible. This means that the probability that the
simulator outputs “Special Abort” in Hyb3 is negligible and this completes the proof.

Sub-Claim 3. Assuming the non-malleability property of the non-malleable commitment scheme
NMCom, Hyb3,1 is computationally indistinguishable from Hyb3,2.

Proof. The only difference between the two hybrids is that in Hyb3,1, for every honest party Pi,

SimHyb computes the commitment messages (cj2,i) as a commitment of (xi, ri), whereas in Hyb3,2,

they are computed as a commitment of (0p(λ)). If the adversary A can distinguish between the two
hybrids, we will use A to design an algorithm ANMC that breaks the security of the non-malleable
commitment scheme NMCom.
ANMC acts as the man-in-the-middle adversary interacting with a challenger C. ANMC also plays

the role of SimHyb in its interaction with the adversary A. It generates all the messages except the

messages cj1,i and cj2,i exactly as done by SimHyb in Hyb3,1. Corresponding to each message cj1,i that
ANMC has to send, it receives one first round message from C (on the right side) corresponding to
the scheme NMCom. ANMC forwards these messages to the adversary A as its first round messages
(cj1,i). Similarly, for each pair of messages (ci1,j) it receives from A as part of the first round
messages of the scheme NMCom, ANMC forwards the messages to C as its first round messages
for the commitment (to the left side respectively). Then, for each cj2,i that ANMC is supposed to
send to A, it receives a second round commitment message from the challenger C. In one case,
all of these are commitments to the respective (xi, ri) values while in the second case, they are all
commitments to (0p(λ)). ANMC forwards these messages as its commitment messages cj2,i to the

adversary A. Once again, it forwards each message ci2,j it receives from A, as its second round
commitment message in its interaction with the challenger C. That is, these are the commitments
on the right side generated by the man-in-the-middle.

Now, we can clearly see that in the first case, when C generates commitments to (xi, ri), A’s
view corresponds to Hyb3,1 while in the latter case, it exactly corresponds to Hyb3,2. However,
from the security of the non-malleable commitment scheme, the joint distribution of the value
committed to by the adversary ANMC (which is the same as A’s commitments) and its view must
be indistinguishable in both cases. Therefore, if A can distinguish between the two hybrids, then
ANMC can break the non-malleability property of the commitment scheme NMCom. However, ANMC

only runs in time TSim
ZK < TSec

Com and hence this is a contradiction, thus proving the sub-lemma.
Also, notice that since the joint distribution of the adversary A’s committed values and his

view is indistinguishable in both hybrids, this implies that Event E still occurs only with negligible
probability in Hyb3,2 as well.

Sub-Claim 4. Hyb3,2 is statistically indistinguishable from Hyb3,3.

Proof. The only difference between the two hybrids is that in Hyb3,3, the simulator might output
“Special Abort” which doesn’t happen in Hyb3,2. As shown in the proof of Sub-Claim 3, the
probability that Event E occurs in Hyb3,2 is negligible. This means that the probability that the
simulator outputs “Special Abort” in Hyb3,3 is negligible and this completes the proof.

Lemma B.7. Assuming the security of the protocol πRSM, Hyb4 is computationally indistinguishable
from Hyb5.

50

Proof. The only difference between the two hybrids is that including on each reset execution, in
Hyb4, SimHyb computes the messages of protocol πRSM correctly using the honest parties’ inputs,
whereas in Hyb5, they are computed by running the simulator S for protocol πRSM. If the adversary
A can distinguish between the two hybrids, we will use A to design an algorithm ASM that can
break the security of protocol πRSM.
ASM interacts with a challenger C to break the security of protocol πRSM. Also, ASM performs

the role of SimHyb in its interaction with the adversary A. Whatever parties A wishes to corrupt,
ASM corrupts the same parties in its interaction with πRSM. Similarly, whatever messages A sends
to ASM as part of the protocol π that correspond to πRSM messages, ASM sends the same messages
to the challenger C. Now, whatever messages C sends, ASM forwards the same to the adversary A
as its messages for the πRSM protocol. ASM does everything else exactly as in Hyb5. Whenever A
wants to reset any party, ASM resets that party in its interaction with C.

Observe that ASM runs in time TBrk
Com. If C sends messages that are computed correctly, this

exactly corresponds to Hyb4 in ASM’s interaction with A. On the other hand, if C sends simulated
messages, this exactly corresponds to Hyb5. Therefore, if A can distinguish between these two
hybrids, ASM can use the same distinguishing guess to break the security of protocol πRSM. However,
πRSM is secure against all adversaries running in time TSM, where TSM > TBrk

Com and hence this is a
contradiction. This completes the proof of the lemma.

51

	Introduction
	Overview of Results
	First Counterexample
	Second Counterexample
	Counterexamples for the Goldreich-Levin Predicate
	Related Work

	Detailed Technical Overview of the First Counterexample
	XOR lemma counterexample
	Resettable MPC

	Preliminaries
	Virtual Black Box Obfuscation
	Statistically Sender Private OT
	Resettable MPC

	Resettable MPC
	Construction: Semi-Malicious Security
	Construction: Malicious Security

	Counterexample via VBB Obfuscation and Resettable MPC
	Construction
	Security
	Parallel Repetition Attack

	Counterexample via Differing-Inputs Obfuscation
	Counterexample to Direct-Product Amplification
	Counterexample to Dream XOR Lemma

	Resettable MPC: Definition
	Security Against Semi-Malicious Adversaries

	Resettable MPC: Proof
	Resettable Semi-Malicious MPC: Proof
	Resettable Malicious Secure MPC: Proof
	Construction
	Security Proof

