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Abstract. Collapsing is a post-quantum strengthening of collision re-
sistance, needed to lift many classical results to the quantum setting.
Unfortunately, the only existing standard-model proofs of collapsing
hashes require LWE. We construct the first collapsing hashes from the
quantum hardness of any one of the following problems:
– LPN in a variety of low noise or high-hardness regimes, essentially

matching what is known for collision resistance from LPN.
– Finding cycles on exponentially-large expander graphs, such as those

arising from isogenies on elliptic curves.
– The “optimal” hardness of finding collisions in any hash function.
– The polynomial hardness of finding collisions, assuming a certain

plausible regularity condition on the hash.
As an immediate corollary, we obtain the first statistically hiding post-
quantum commitments and post-quantum succinct arguments (of knowl-
edge) under the same assumptions. Our results are obtained by a general
theorem which shows how to construct a collapsing hash H ′ from a post-
quantum collision-resistant hash function H, regardless of whether or not
H itself is collapsing, assuming H satisfies a certain regularity condition
we call “semi-regularity”.

1 Introduction

Collision resistance is one of the most important cryptographic concepts, with
numerous applications throughout cryptography. A collision resistant hash func-
tion H : {0, 1}m → {0, 1}n is one where n < m, thus guaranteeing that collisions
exist in abundance, but where actually finding such collisions is computationally
intractable. Collision resistance provably follows from most number-theoretic
problems used in cryptography, and is one of the main design goals in construc-
tions built from symmetric key tools, such as SHA2 or SHA3.

What happens when quantum computers enter the picture? For any applica-
tion that required collision resistance classically, certainly a minimal condition is
that it remains intractable for quantum algorithms to find a collision. We will
call this notion a “post-quantum” collision resistant hash function (PQ-CRHF).
Post-quantum security rules out constructions based on discrete logarithms or
factoring due to Shor’s algorithm [Sho94]. Surprisingly, however, even PQ-CRHFs
are often insufficient for applications, as first demonstrated by Ambainis, Rosma-
nis, and Unruh [ARU14, Unr16b] with a counterexample. The issue usually stems



from rewinding, which is known to be problematic quantumly [VDG98, Wat06].
Examples include commitments and more generally interactive protocols.

To remedy the situation, Unruh [Unr16b] proposes a strengthening of collision
resistance called collapsing. Very roughly, collapsing means that measuring
the hash of a quantum superposition of messages is quantum computationally
indistinguishable from measuring the message superposition itself, even though
both operations are information-theoretically very different. Since its introduction,
collapsing hashes have become recognized as the preferred notion of post-quantum
security, being the appropriate post-quantum replacement for classical collision
resistance whenever there is rewinding [CCY21, CMSZ21, LMS21], and sometimes
even when rewinding is not present [AMRS20]. Unsurprisingly, collapsing is
also a natural property beyond hash functions, being the right notion of post-
quantum commitments [Unr16b] (whereas PQ computational binding is useless),
identification protocols underlying post-quantum signatures [DFMS19, LZ19],
and general argument systems [LMS21].

Given their importance to post-quantum security, it is crucial to under-
stand how to construct collapsing hash functions. Unfortunately, there are
essentially only two classes of constructions. The first are idealized model
proofs [Unr16b, Unr17], where one proves collapsing relative to, say, a ran-
dom oracle. The second are standard-model proofs [Unr16a, LZ19], where the
only existing paradigm leverages lossy functions or closely related concepts, whose
only known post-quantum instantiations require LWE (or equivalently, SIS by
Regev’s reduction [Reg05]).

On the other hand, the only hash functions which are provably PQ-CRHFs but
not collapsing are contrived and require either complex oracles [Unr16b, AGKZ20]
or un-tested conjectures [Zha19b]1. Zhandry [Zha19b] even shows that such a
separation between the notions could be used to build public key quantum money
and stronger objects, which have been notoriously hard to build. In summary,
neither of the following scenarios would contradict any long-standing conjectures:

– Collapsing is ubiquitous, and every non-relativized PQ-CRHF is collapsing.
– Collapsing is rare, and the only standard-model collapsing hash functions

are those requiring LWE.

On Random Oracle-based Hashes. One may argue that we can simply conjecture
that some hash function is collapsing, and then trivially “build” collapsing hashes
from that function. In particular, random oracles are collapsing [Unr16b] and
symmetric key hash functions such as SHA2 or SHA3 are often modeled as
random oracles.

However, collapsing is an inherently quantum notion, which is potentially much
harder to reason about than typical classically-defined notions such as collision
resistance, pseudorandomness, etc. Indeed, the random oracle heuristic is based
on extensive cryptanalytic studies of the hash functions with respect to classically-
defined tasks. This is true even for works considering quantum attacks [HS21,
1 [Zha19b] gives a proof relative to a novel computational assumption, but it has been
cryptanalyzed [Rob21].
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AMG+16], where the cryptanalysis goal is still classically-defined, such as finding
collisions. Some works have proved the post-quantum indifferentiability of these
functions [Zha19a, CHS19, Cza21]; while these are important for understanding
security, they punt the cryptanalysis effort to the underlying round function,
which again have largely been studied for their classical security.

Aside from idealized model justifications, we are not aware of any cryptanalysis
effort on hash functions like SHA2 or SHA3 with regards to collapsing. Therefore,
it seems plausible that the random oracle heuristic could hold on symmetric hash
functions relative to classically-defined security properties, but fails for collapsing.
For this reason, the current evidence for SHA2 or SHA3 being collapsing appears
much weaker than evidence for their (post-quantum) collision resistance.

Our Results. In this work, we build a collapsing hash function H ′ from any
PQ-CRHF H that satisfies a mild structural condition we call semi-regularity.
Semi-regularity essentially means that no output has too many more pre-images
than the “average” output. Note that H itself may be equivocal, and indeed
the counter-example of [ARU14] is semi-regular. Yet when plugged into our
construction, the resulting H ′ is collapsing. We then show the following:

– Hash functions based on expanders [TZ94, CLG09, FLLT21], or a variety of
LPN settings [BLVW19, YZW+19] satisfy our regularity condition. In these
cases, we thus achieve collapsing hashes under the same assumptions used to
achieve post-quantum collision resistance.

– We do not know how to prove semi-regularity for symmetric hash function
such as SHA2 or SHA3, but it is a natural property and it is reasonable
to conjecture it holds for these functions. In particular, random oracles are
semi-regular. Under this conjecture together with post-quantum collision
resistance for SHA2 or SHA3, we obtain collapsing hashes. This is the first
standard-model collapsing hash function from classically defined assumptions
in Minicrypt; that is, they do not imply public key encryption.

– As an alternative approach, we show that H can be compiled into a collapsing
hash function if it is optimally collision resistant, even if it is not semi-regular.
Optimal collision resistance means that every polynomial-time algorithm
can only find collisions with probability poly/|Range|. Note that the optimal
generic classical and quantum [BHT97] collision-finding algorithms make
T queries and succeed with probability O(T 2)/|Range| and O(T 3)/|Range|,
respectively. Symmetric hashes such as SHA2 or SHA3 are often designed
with the goal of achieving optimal collision resistance, and so we obtain
collapsing hashes under the assumed optimal collision resistance of either of
these functions.

As immediate corollaries of our results, we obtain post-quantum statistically
hiding commitments [Unr16b] and succinct arguments [CMSZ21] under any of
the above assumptions. Our results show that semi-regularity is an important
design consideration for constructing post-quantum hash functions.
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1.1 Why PQ-CRHFs Are Not Enough

For completeness, we give a brief explanation of why rewinding is problematic
with PQ-CRHFs. Consider the following game. An adversary sends a hash y to
the challenger. The challenger then flips a random bit b. The adversary then wins
if it can produce a pre-image x of y such that the first bit of x is b. Clearly, an
adversary could always set y to be the hash of an arbitrary x, in which case the
first bit of x is b with probability 1/2. But can the adversary do better?

Classically, the answer is no, assuming the hash is collision resistant. Suppose
for a given y that the adversary could win with probability 1/2 + ε. Then it must
win with probability at least ε conditioned on b = 0, and also with probability at
least ε conditioned on b = 1. By running the adversary on b = 0, rewinding until
just after the adversary sends y, and running again on b = 1, one obtains (with
probability at least ε2) pre-images x0 and x1 whose first bits are 0,1 respectively.
Since x0 6= x1 and they are both pre-images of y, we have thus found a collision.

Quantumly, however, the above breaks down. Measuring x0 on the first
execution potentially destroys the quantum state of the adversary, meaning the
adversary is no longer guaranteed to produce x1. Ambainis et al.’s counter-example
gives a hash function (relative to an oracle) where the probability to produce x1
indeed becomes negligible. This creates problems for computationally binding
commitments, where Ambainis et al.’s construction yields commitments that are
equivocal, despite being binding in the usual sense. Likewise, this equivocation is
problematic for many proof systems that demonstrate soundness by extracting
two colliding transcripts from an adversary through rewinding.

Unruh’s notion of collapsing hashes resolves this problem. Basically, the
adversary’s first message y results in the output of the hash being measured.
Collapsing implies that this is indistinguishable from measuring the input. Mea-
suring the input corresponds exactly to extracting x0. While such extraction
could potentially alter the quantum state, it cannot alter it in any detectable way.
In particular this means the second run to recover x1 must still succeed. This
completes the reduction from collision resistance. Note that collision resistance is
implied by collapsing as explained by Unruh, and hence collapsing implies the
adversary can only win with probability 1/2 + negl, as desired.

1.2 Techniques

We call a function ≤`-to-1 if no image has more than ` pre-images. We start with
the following observation (Section 3):

Theorem 1 (Informal). For poly `, any ≤`-to-1 PQ-CRHF is also collapsing.

To see why this might be true, consider some ≤`-to-1 function H. Let

|φ〉 =
∑
x

αx|x〉

be a superposition of inputs. Now consider measuring the output of H applied
to |φ〉 in superposition. If the measurement results in outcome y, then the state
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|φ〉 collapses to the partially-measured state

|φy〉 ∝
∑

x:H(x)=y

αx|x〉 .

Since H is ≤`-to-1, the support of |φy〉 contains at most ` different x.
Non-collapsing means that there is some operation M which distinguishes

|φy〉 from the result of measuring |φy〉, the latter yielding a distribution over
singletons |x〉 such that H(x) = y. Suppose that M actually simply accepted |φy〉
and rejected all orthogonal states. In this case, if we measure |φy〉—thus obtaining
one pre-image x—and then apply M , there is a non-negligible chance we get back
to |φy〉. This is because |φy〉 must have a significant overlap with |x〉, as |φy〉 is
the sum of only ` of the |x〉 vectors. But then if we were to measure again, we will
get some x′ that is also a pre-image. Moreover, |φy〉 is itself not a singleton, since
otherwise measuring it would have no effect and the distinguishing M would
be impossible. Therefore there is a non-negligible chance that x 6= x′. We thus
obtain a collision.

We show that the above actually holds, no matter what |φy〉 is, and no matter
what M does, thus proving Theorem 1.

Generalization. Unfortunately, Theorem 1 appears somewhat limited. One may
hope that symmetric hash functions such as SHA2 or SHA3, when restricted
to a domain that is only slightly larger than the range, might be ≤`-to-1 for a
polynomial `. After all, if we model them as random oracles, it is straightforward to
show this. However, for other hash functions based on post-quantum assumptions,
such as LPN [BLVW19, YZW+19] or expanders [CLG09], we cannot reasonably
apply the random oracle heuristic due to significant structure. There are two
potential problems:

1. The image might be a sparse subset of the co-domain. In this case, even if
the hash function only compressed by a single bit, it may be exponentially-
many-to-1 and Theorem 1 will not apply. It is not hard to modify Unruh’s
counterexample [Unr16b] to give such a non-collapsing hash (relative to an
oracle). We will give an example of where this is relevant below.

2. Looking ahead, we will see that LPN- and expander-based hash functions
will eventually achieve some level of regularity, but this is only guaranteed
once the input size is somewhat larger than the output. In such a case, the
function is inherently exponentially-many-to-1.

We therefore propose a generalization of Theorem 1 which overcomes these two
specific issues above. First, observe that any ≤`-to-1 hash on its own is not very
useful, as it offers only minimal compression. However, by domain extension
techniques, we can compile it into a hash function with arbitrary compression.

Imagine using Merkle-Damgård (MD) for domain extension, compiling a
“small” hash H into a “big” hash H ′. MD is already guaranteed to preserve
collapsing [Unr16b]. Imagine at each iteration, we only incorporate a single bit
of the input at a time. Since the input to each iteration of H is just an output of
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H concatenated with a single bit, the number of possible inputs to H is never
more than twice the number of possible outputs. In other words, H is 2-to-1
on average, over the set of possible inputs it will be evaluated on. If H were
“sufficiently random looking”, we would therefore expect that most outputs to
H would only have relatively few pre-images, so that H could be ≤`-to-1 for a
polynomial `.

We formalize this intuition: assuming H is “sufficiently regular”, we show
that we can make H “sufficiently random looking” by pre-pending it with a
(almost) `-wise independent permutation for a polynomially-large `. Here, “suf-
ficiently regular” essentially means that the most common output of H is only
polynomially-more likely than the average output. This is formalized by a notion
we call semi-regularity (Definition 4), which says roughly that the most common
output is only a polynomial factor more likely than the “average” output. The
result is the following:

Theorem 2. If H is a semi-regular PQ-CRHF, then it can be compiled into a
collapsing hash function H ′.

Applications. We show that several candidate post-quantum hash functions
satisfy the necessary semi-regularity conditions, thus allowing us to construct
novel collapsing hash functions:

– Section 5: Hash functions based on LPN [BLVW19, YZW+19] for a variety
of low noise or high-hardness settings, matching the LPN assumptions under
which plain post-quantum collision resistance exists.

– Section 6: Hash functions based on walks on exponentially-large expander
graphs, as proposed by Charles, Goren, and Lauter [CLG09], abstracting
earlier ideas of [TZ94]. A particular instantiation suggested by [CLG09] allows
for obtaining a collapsing hash function from the hardness of certain problems
on isogenies over elliptic curves. Another candidate was recently proposed by
Fuchs et al. [FLLT21] based on Markov Triples.

Remark 1. The output of an expander-based hash is the label of the final node in
the walk. In general, the set of labels may be sparse, in which case we would run
into Problem 1. An example of such an expander is that of Fuchs et al., where
the range is Z3

p, but the size of the graph is only O(p2). Likewise, the Charles et
al. expander from isogenies has labels in Z2

p but the graph size is only O(p). For
this reason, in the case of expander hashes, we need the full power of Theorem 2.

Remark 2. We emphasize that we do not prove the constructions of [BLVW19,
YZW+19, CLG09, FLLT21] are collapsing. Instead, we only prove semi-regularity,
which allows us to compile (through a Merkle-Damgård-like construction) into
a collapsing hash. We leave as an interesting open question whether the base
constructions could be proven collapsing.

Remark 3. Other instantiations of [CLG09] have been proposed, such as the
use of LPS graphs [CLG09], the original proposal of [TZ94], and Morgenstern
graphs [PLQ12]. Some weaknesses have been shown in these graphs [PLQ08],
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though there are still versions that remain secure. See [PLQ08] for discussion.
For any version that is post-quantum collision resistant, our result immediately
lifts it to a hash that is collapsing.

Symmetric Key Hash Functions. We do not know how to prove that symmetric
hash functions such as SHA2 or SHA3 are semi-regular, and leave this as an
interesting open question. However, we observe that random oracles are readily
shown to be semi-regular. Thus, either of two things happen:

– The hash function is not semi-regular, therefore violating the random oracle
heuristic for a classically defined statistical property. This case could be
considered as demonstrating a significant weakness of the hash function.

– The hash function is semi-regular, in which we can compile it into a collapsing
hash function based on the assumed (post-quantum) collision resistance of
the function, which is a widely studied security property.

Thus we establish semi-regularity as an important design principle in the design
of symmetric-key based hash functions.

We also provide additional evidence that SHA2 or SHA3 can be compiled
into a collapsing hash. Concretely, SHA2 and SHA3 are widely believed to have
optimal collision resistance, meaning that any polynomial-time algorithm only
has a polynomial advantage over the trivial algorithm of guessing two random
inputs and hoping they collide. The assumed optimal collision resistance is the
basis for the current parameter settings of these functions. If SHA2 or SHA3 did
not have optimal collision resistance, it would show that the parameter settings
are too aggressive, and this would be considered a serious weakness.

In Section 7, we show that any optimally (post-quantum) collision resistant
hash function that compresses by only a few bits is in fact collapsing, even if it
is not semi-regular. Thus under the highly likely optimal collision resistance of
SHA2 or SHA3, we obtain a collapsing hash function.

1.3 Collapsing from Group Actions?

A group action is a relaxation of a standard cryptographic group, roughly allowing
exponentiation but not multiplication. The advantage of such a restricted struc-
ture is that it prevents Shor’s algorithm [Sho94], and therefore maintains plausible
post-quantum security. This was observed concurrently by Couveignes [Cou06]
and Rostovtsev and Stolbunov [RS06], both works also proposing an instantiation
of plausible post-quantum group actions using isogenies over elliptic curves.

The restricted structure of group actions preserves plausible post-quantum
security, but it also restricts applications. In particular, the usual way of obtaining
collision resistance from discrete logarithms, namely

(x, y) 7→ gxhy ,
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no longer can be computed without the ability to multiply elements. One could
consider another natural construction, namely:

(x, b) 7→
{
gx if b = 0
hx if b = 1

,

where b is a single bit. This is a 2-to-1 function where finding collisions is
intractable by the hardness of discrete logarithms on the group action. For
group actions based on isogenies, the discrete logarithm problem is exactly the
problem of computing isogenies. However, with currently known group actions
from isogenies, the bit-length of gx is roughly twice the bit-length of x, meaning
the images are sparse and the function is not compressing despite being 2-to-1.
Such functions are not useful for hashing. It remains a major open question
whether collision resistant compressing hashing can be based on the discrete
log problem for group actions of this form, and in particular if such collision
resistance can be based on the hardness of computing isogenies.

Call a group action compact if gx has the same bit length as x. For compact
group actions, the above hash function would be compressing, and collision
resistance would follow from the hardness of computing discrete logarithms.
Then applying Theorem 1, we immediately conclude that compact group actions
also yield collapsing hash functions.. We leave finding a plausible post-quantum
compact group action as an intriguing open question.

Remark 4. The isogeny-based hash of [CLG09] relies on a different problem,
namely finding a non-trivial cycle on the isogeny graph. The hardness of finding
cycles is a stronger assumption that the hardness of computing isogenies.

1.4 Collapsing from Arbitrary Collision Resistance?

While it seems most natural hash functions are semi-regular (at least in some
parameter settings), it is not hard to construct contrived hash functions that are
not semi-regular. Therefore, our restriction to semi-regular functions potentially
limits the applicability of our approach. An interesting conjecture is the following:

Conjecture 1. From any PQ-CRHF, one can build a collapsing hash function.

Removing the semi-regularity restriction seems challenging. Consider a con-
struction of H ′ from H where the output of H ′ is just the concatenation of t
outputs of H on different inputs. More generally, perhaps the output of H ′ is
an injective function applied to t outputs of H. This structure would allow for
immediately translating an H ′ collision into an H collision. It seems difficult to
devise an H ′ that is not of this form while still proving the collision resistance of
H ′ (let alone collapsing) just on the collision resistance of H.

For an H ′ of this form, if H has n-bit outputs, H ′ has tn-bit outputs, and
therefore H ′ must have at least (tn+ 1)-bit inputs in order to be compressing.
Suppose H was not semi-regular, and had some outputs that represented an
f -fraction of the domain, where f is much larger than the fraction for “average”
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outputs, which we will denote g. Then H ′ will have (information-theoretically)
outputs that represent an approximately f t-fraction of the domain, where the
average output would be approximately gt. Thus H ′ is not semi-regular, and in
fact has even worse regularity if t > 1.

Therefore, it seems challenging, if not impossible, to generically remove semi-
regularity from a collision resistant hash function. One may hope to prove H ′ is
collapsing despite not being semi-regular. But there would be little hope of using
our techniques alone to prove collapsing, since the calls to H could be on inputs
mapping to the highly-likely outputs, in which case H is super-poly-to-1.

On the other hand, our situation can be seen as roughly analogous to the
case of constructing pseudorandom generators (PRGs) from one-way functions
(OWFs). Specifically, Goldreich, Krawczyk, and Luby [GKL88] initially show
that PRGs can be constructed from any regular one-way function. This was then
improved to PRGs from arbitrary one-way functions by Håstad et al. [HILL99].
Likewise, our hope is that future ideas will allow for proving Conjecture 1.

1.5 Concurrent and Independent Work

In a current and independent work, Cao and Xue [CX22] also study collapsing
hash functions. Their core result is identical to Theorem 1, namely that collision
resistance when the number of pre-images is polynomially bounded implies
collapsing. Somewhat analogous to Theorem 2, they also identify a relaxation
they call almost-regularity, and show that almost-regular PQ-CRHFs can be used
to build collapsing hashes. Almost-regularity is a somewhat stronger requirement
than semi-regularity, resulting in fewer applications. [CX22] show that the SIS
hash function is almost-regular, thus giving a collapsing hash function from
SIS, arriving at the same feasibility result as [Unr16a] though through entirely
different means. Our work gives several applications not covered in [CX22],
namely collapsing hashes from LPN, expanders, and optimal collision resistance.
The former two applications rely on our more general Theorem 2.

2 Preliminaries

Quantum Computation. We give a very brief overview of quantum computation.
A pure state is a unit column vector, usually denoted in ket notation as |ψ〉, in a
complex Hilbert space H. The conjugate transpose of |ψ〉, a row vector, is denoted
in bra notation as 〈ψ|. We usually think of H as a product of n 2-dimensional
spaces, which are called qubits. For each qubit, we will fix some preferred basis
{|0〉, |1〉}, which we call the computational basis. An n qubit space is therefore
associated with the set of n-bit strings, and we say that |ψ〉 is a superposition
over n-bit strings.

A mixed state is a probability distribution over pure states. If state |ψi〉
occurs with probability pi, the mixed state is characterized by a density matrix,
given by

∑
i pi|ψi〉〈ψi|. Mixed states are usually denoted as ρ.
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A quantum algorithm contains two types of operations: unitary transfor-
mations and projective measurements. A unitary is a linear operator U such
that UU† = I, where U† is the Hermitian transpose. The action of U on |ψ〉
is given by U |ψ〉. A projective measurement is specified by a set of projec-
tions P = (P1, . . . , Pt) such that

∑
i Pi = I. When applying measurement P to

state |ψ〉, the result is to output i with probability pi and the quantum system
“collapses” to the state |ψi〉, where:

|ψi〉 := Pi|ψ〉√
〈ψ|Pi|ψ〉

, pi := 〈ψ|Pi|ψ〉 .

When the measurement is applied to a mixed state ρ, the result is to output i
with probability pi and the system collapses to ρi, where

ρi := 1
pi
PiρPi , pi := Tr(Piρ) .

For a qubit, measurement in the computational basis is the measurement
(|0〉〈0|, |1〉〈1|). For a projective measurement P acting on pure state |ψ〉 or mixed
state ρ, we will write (i, ρ′)← P(|ψ〉) or (i, ρ′)← P(ρ) to denote the output i of
applying the measurement P to ρ, together with the resulting state ρ′. Sometimes
we will ignore the actual result of measurement i, focusing just on the resulting
state, in which case we write ρ′ ← P(|ψ〉) or ρ′ ← P(ρ). Other times, we will
ignore the resulting state and just focus on the measurement outcome, in which
case we write i← P(|ψ〉) or i← P(ρ).

Consider a joint system H = H0⊗H1, and applying two measurements P0,P1
to the sub-systems H0,H1. We write the resulting measurement as P0 ⊗ P1.

Efficient quantum algorithms are given by a polynomial number of unitaries
from some constant-sized universal set and a polynomial number of computational
basis measurements. We say such algorithms are quantum polynomial time (QPT).

Throughout this work, we will make use of the following fact:

Fact 1. Any efficient quantum computation over a space H can be turned into
an efficient computation that is also a projective measurement P over a space
H⊗H′ for some H′.

Hash Functions. A hash function will be specified by a family of distributions
H = (Hλ)λ over classically efficiently computable functions h : Xλ → Yλ between
some domain Xλ and co-domain Yλ. We require non-trivial compression, namely
that |Xλ| ≥ 2× |Yλ|. We will consider two security properties. The first is plain
collision resistance but again quantum attackers:

Definition 1 (PQ-CRHF). H is a post-quantum collision resistant hash func-
tion if, for every QPT algorithm A, there exists a negligible function negl such
that

Pr
[
x0 6=x1, and
h(x0)=h(x1) : h←Hλ

(x0,x1)←A(h)

]
< negl(λ) .

The second definition is collapsing, due to Unruh [Unr16b]. Consider a superposi-
tion |ψ〉 over Xλ. Consider two measurements:
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– MX = (|x〉〈x|)x∈Xλ , which is just the computational basis measurement of
|ψ〉.

– Mh
Y = (

∑
x:h(x)=y |x〉〈x|)y∈Yλ . This is the measurement corresponding to

the following process:
• First map |ψ〉 =

∑
x αx|x〉 to |ψ1〉 =

∑
x αx|x〉|h(x)〉, a superposition

over Xλ × Yλ.
• Measure the Yλ registers to obtain y. The |ψ1〉 collapses to a state
proportional to

∑
x:h(x)=y αx|x〉|y〉.

• Discard the Yλ registers.

The collapsing definition essentially says that, for any superposition of inputs the
adversary can produce, if eitherMX orMh

Y is applied to the state, it is compu-
tationally infeasible to tell which. This holds even if the adversary maintained an
arbitrary internal state that could be entangled with the superposition of inputs.

Definition 2 (Collapsing Hash [Unr16b]). H is a collapsing hash function
if, for every QPT algorithm A = (A0,A1), there exists a negligible function negl
such that

|Pr[1← A1 ◦ (I⊗MX ) ◦ A0(h)]− Pr[1← A1 ◦ (I⊗Mh
Y) ◦ A0(h)]| < negl(λ) ,

where both probabilities are over the choice of h← Hλ. We call the quantity on
the left above the advantage of A. Note that A0 outputs both a (quantum) internal
state and a superposition over Xλ. The internal state is passed unaffected to A1,
as is the result of applyingMX orMh

Y to the superposition over Xλ.

Definition 3 (t-wise independence). A family Π of injections from X to Y
(|Y| ≥ |X |) is a t-wise δ-dependent injection if, for any distinct x1, . . . , xt ∈ X ,
the distribution (π(x1), . . . , π(xt)) for π ← Π is δ-close to t uniformly random
distinct elements of Y.

Distributions and Rényi Entropy. For a distribution D over a finite set I, and
α > 1, define the Rényi Entropy as

Hα(D) := − 1
α− 1 log

(∑
i∈I

Pr[i← D]α
)

H∞(D) := − log max
i∈I

Pr[i← D]

The choice of base in the logarithm is irrelevant for our purposes, as long as the
same base is used for all α. For our purposes, it will be convenient to map Rényi
entropy to the norm of the probability vector. Write

‖D‖α :=
(∑
i∈I

Pr[i← D]α
)1/α

= 2−(1− 1
α )Hα(D)

‖D‖∞ := max
i∈I

Pr[i← D] = 2−H∞(D)
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For β > α ≥ 1, we have the following inequalities, where the left and right
inequalities are identical just phrased in terms of entropies vs vector norms:

Hα(D) ≥ Hβ(D) (‖D‖α)
α
α−1 ≤ (‖D‖β)

β
β−1 (1)(

1− 1
α

)
Hα(D) ≤

(
1− 1

β

)
Hβ(D) ‖D‖α ≥ ‖D‖β (2)

Hα(D) ≤ log |I| ‖D‖α ≥ |I|−1 (3)

Let ∆α(D) := Hα(D) − H∞(D) to be the Entropy Gap of D. When α is not
specified, we will mean α = 2.

For a finite set X , we abuse notation and use X to denote the uniform
distribution over X . For a function h : X → Y and a distribution D on X , we let
h(D) be the distribution obtained by sampling x← D and then outputting h(x).
We also define Hα(h) := Hα(h(X )), ‖h‖α := ‖h(X )‖α, and ∆α(h) := ∆α(h(X )).

3 From Non-Collapsing to Equivocation

Here, we prove that a failure to be collapsing leads to equivocation. We consider
the following setup:

– A secret set S of size `, which is a subset of some set U .
– Another set V.
– A state ρ that is a superposition over pairs (v, s) ∈ V × S.
– A binary-outcome projective measurement P = (P, I−P).

Our goal is to, starting in the state ρ, obtain two distinct values i, j ∈ S. The only
operations we can perform are the measurement P and the measurement in the
computational basis for U . Without any further promises, this goal is impossible.
By applying U to ρ, one obtains a single element of S. If P, say, commutes with
U , then no sequence of operations will ever change the state, and we will never
obtain a second element.

Therefore, we are given the promise that P is sufficiently non-commuting
with U . Concretely, we are promised that:

|Pr[1← P(ρ)]− Pr[1← (P ◦ (I⊗ U))(ρ)]| ≥ ε

for some non-negligible quantity ε. In other words, P distinguishes between ρ
and the result of measuring ρ in the computational basis for U .

The Algorithm. Since we are now only allowed to use U and P, there is nothing
that can be done except alternate them. Concretely, we apply U , P, and then U
again. We will show that, with non-negligible probability, the two applications of
U output distinct elements of S.

Lemma 1. For `, S, ρ,P,U ,V as defined above,

Pr
[
i,j∈S
i 6=j :

(i,ρ′)←(I⊗U)(ρ)
ρ′′←P(ρ′)

j←(I⊗U)(ρ′′)

]
≥ 2
`− 1

∣∣∣ Pr[1←P(ρ)]
−Pr[1←(P◦(I⊗U))(ρ)]

∣∣∣2 .

12



Before proving Lemma 1, we observe that it is tight. Let q be the quantity on
the left, and r the quantity inside | · | on the right. Consider the case where V is
empty, ρ is the pure state |ψ〉 := `−1/2∑

i∈S |i〉, and P is the projection onto |ψ〉.
In this case, Applying P to |ψ〉 outputs 0 with certainty. Meanwhile, measuring
|ψ〉 gives a random |i〉, and applying P to any |i〉 will give 0 with probability 1/`.
Therefore, r = 1− 1/`, and the right-hand side becomes 2(`− 1)/`2.

On the other hand, for computing q, there are two cases: (1) if applying P to
|i〉 outputs 0, or (2) it outputs 1. If it outputs 0 (which occurs with probability
1/`), then the state is back to |ψ〉, and measuring again will give an j 6= i with
probability 1− 1/`. If it outputs 0 (which occurs with probability 1− 1/`), then
the state becomes |i〉 − `−1/2|ψ〉. In this case, a simple calculation shows that
measurement will give j 6= i with probability 1/`. Taken together, the overall
probability q of obtaining a j 6= i is exactly 2(` − 1)/`2, exactly matching the
right-hand side.

We now give the proof of Lemma 1.

Proof. We focus on the case of pure states, the mixed state setting then following
from convexity. Therefore we assume ρ = |ψ〉〈ψ| for some pure state |ψ〉 =∑
v,i αv,i|v, i〉.
We first analyze q. The probability of obtaining i in the first measurement is

pi = Tr [(I⊗ |i〉〈i|)ρ], in which case ρ′ becomes ρi := 1
pi

(I⊗ |i〉〈i|)ρ(I⊗ |i〉〈i|).
Now we apply P , and disregard the output of the measurement. The resulting

mixed state is ρ′i := PρiP + (I − P)ρi(I − P). Now we apply (I ⊗ U) again.
The probability of obtaining j is Tr [(I⊗ |j〉〈j|)ρ′i]. Summing over all i ∈ S and
j ∈ S \ {i}, we have that the probability of obtaining distinct i, j ∈ S is q where

q = Tr

 ∑
i,j∈S,i 6=j

(I⊗ |j〉〈j|)P(I⊗ |i〉〈i|)ρ(I⊗ |i〉〈i|)P
+(I⊗ |j〉〈j|)(I−P)(I⊗ |i〉〈i|)ρ(I⊗ |i〉〈i|)(I−P)


= 2Tr

 ∑
i,j∈S,i 6=j

(I⊗ |j〉〈j|)P(I⊗ |i〉〈i|)ρ(I⊗ |i〉〈i|)P



= 2Tr

 ∑
i,j∈S,i 6=j
v,v′∈V

αv,iα
†
v′,i(I⊗ |j〉〈j|)P(|v〉〈v′| ⊗ |i〉〈i|)P



= 2

 ∑
i,j∈S,i 6=j
v,v′∈V

αv,iα
†
v′,i(〈v

′|〈i|)P(I⊗ |j〉〈j|)P(|v〉|i〉)



= 2

 ∑
i,j∈S,i 6=j
v,v′,v′′∈V

αv,iα
†
v′,i〈v

′, i|P|v′′, j〉 〈v′′, j|P|v, i〉

 .
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Then if we define w as the vector indexed by tuples (i, j, v′′), i 6= j such that
w(i,j,v′′) :=

∑
v αv,i〈v′′, j|P|v, i〉, we have that q = 2|w|2.

Next we analyze the right hand side, r, of Lemma 1. We have

r = Tr [Pρ]− Tr
[

P
∑
i∈S

(I⊗ |i〉〈i|)ρ(I⊗ |i〉〈i|)
]

=

 ∑
i,j∈S
v,v′∈V

αv,iα
†
v′,j〈v

′|〈i|P|v〉|j〉 −
∑
i∈S

v,v′∈V

αv,iα
†
v′,i〈v

′|〈i|P|v〉|i〉



=

 ∑
i,j∈S,i 6=j
v,v′∈V

αv,iα
†
v′,j〈v

′|〈i|P|v〉|j〉

 .

Then if we define x as the vector x(i,j,v′′) := αv′′,j , we have that r = x ·w.
Note that

|x|2 =
∑

i,j∈S,i 6=j
v′′∈V

|αv′′,j |2 =
∑

j∈S,v′′∈V
(`− 1)|αv′′,j |2 = `− 1 .

Therefore, by the Cauchy-Schwartz inequality, we have that |w|2|x|2 ≥ |w · x|2.
The lemma follows. ut

3.1 Application: Hashing with small compression.

We now use Lemma 1 to show that any hash function which is ≤`-to-1 for a
polynomial ` is collapsing.

Theorem 1. Let H be a post-quantum collision-resistant hash function with
domain X , and ` a polynomial. Suppose that, with overwhelming probability over
the choice of h← H, that h is ≤`-to-1. Then H is collapsing.

Proof. Assume toward contradiction that H is not collapsing. Let A = (A0,A1)
be the adversary for the collapsing game, with non-negligible advantage ε. We
will think of A1 as being a projective measurement on the joint system V × Xλ,
where V is the adversary’s internal state.

Observe thatMX is equivalent to the composition ofMY followed byMX ,
since the domain element uniquely determines the range element. Therefore, we
can think of both sides of the collapsing experiment as applyingMY , and then
the only difference is whether an additionalMX is applied. We will therefore
always think of the output of A0 as havingMY applied.

For a fixed h and result y fromMY , supposeA1 has a distinguishing advantage
εh. Then we can apply Lemma 1 to extract two pre-images of y (and hence a
collision) with probability at least 2ε2h/(`− 1). By averaging over all h and y and
invoking convexity, we see that the overall probability of finding a collision is at
least 2ε2/(`− 1), which is non-negligible. ut
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By combining with the fact that standard domain extension works for col-
lapsing hash functions, we have the following corollary:

Corollary 1. Assuming the existence of ≤`-to-1 PQ-CRHFs for a polynomial `,
there exist collapsing hash functions for arbitrary domains.

4 The Main Theorem

We now generalize the ≤`-to-1 case to a somewhat more general class of hash
functions. The main challenge, of course, is that general hash functions may not
be ≤`-to-1 for any polynomial `. This can be a problem even if the domain is
only slightly larger than the co-domain. Here, we show how to somewhat relax
the conditions on the hash function.

Definition 4. Let H = (Hλ)λ be a family of hash functions with domain Xλ
and co-domain Yλ. We say that H is semi-regular if there exists a polynomial r
and negligible negl such that

Pr
h←Hλ

[∆2(h) > log r(λ)] < negl(λ) .

Equivalently, ‖h‖∞ ≤ r(λ)× ‖h‖2
2, except with negligible probability.

For a function h, we will call ‖h‖∞/‖h‖2
2 the regularity of h. A semi-regular

hash function is therefore one where the regularity is a polynomial except with
negligible probability.

Main Theorem. We now give our main theorem.

Theorem 2. If there exists a semi-regular PQ-CRHF, then there exists a col-
lapsing hash function.

The remainder of this section is devoted to proving Theorem 2. We start by
considering the following hash function:

Construction 1. Let H be a family of post-quantum collision resistant hash
functions with domain Xλ and co-domain Yλ. For parameters ` ∈ Z, δ ∈ [0, 1], let
F be a `-wise δ-dependent injection with domain Yλ × {0, 1} and co-domain Xλ.
Then for any polynomial m = m(λ), we construct the following function family
H′ with domain {0, 1}m and co-domain Yλ, where h′ ← H′ is sampled as follows:
sample h← H and for i = 1, . . . ,m× t, sample fi ← F , where t is a parameter
to be specified later. Also fix an arbitrary y0 ∈ Yλ. Then output h′ : {0, 1}m → Yλ
defined as:

– For i = 1, . . . , u = (m− 1)× t+ 1:
• Let zi = yi−1||xj if i = t(j − 1) + 1, otherwise let zi = yi−1||0.
• Let yi = h(fi(zi))

– Output yu
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Fig. 1: The first few iterations of Construction 1 for t = 3.

The operation of h′ is also given in Figure 1.

Remark 5. Note that Construction 1 is only defined for a bounded domain, since
it needs independent fi for each application of h. However, we can set m to
be large enough so that 2m � Yλ, obtaining a compressing collapsing function.
Then we can plug the result into a plain Merkle-Damgård or other domain
extender, which are known to preserve collapsing [Unr16a]. The result is an
arbitrary-domain hash function that is collapsing.

Remark 6. Observe that some iterations of Construction 1 incorporate bits of
the input into the zi, while others just incorporate 0’s. This is mostly an artifact
of our proof of collapsing, and it is unclear if it is strictly needed. Looking ahead,
in each iteration that incorporates an input bit, the number of possible zi values
potentially doubles, while in other iterations, we show that the number of possible
zi values decreases with noticeable probability. By inserting sufficiently many
0 iterations, we can make sure the number of possible zi values never gets too
large, which we can then use to apply Lemma 1.

For the remainder of the proof, we omit λ subscripts and write X = Xλ and
Y = Yλ to keep notation simple. Let Yi be the set of possible values for zi as x
ranges over all possible inputs, and Ni = |Yi|. Let Mi be the number of possible
values for yi. Observe that Ni = 2Mi for i = t(j − 1) + 1 and Ni = Mi otherwise.
Define the following quantities:

r = ‖h‖∞/‖h‖2
2 (4)

` = max(2re, 3 log |Y|) (5)

δ = |Y|−2
(
|Y|
`

)−1
(6)

t = 200` (7)

Lemma 2. Except with negligible probability over the choice of h, fi, the following
hold:

– Ni ≤ ‖h‖−2
2 for all i

– For all i, the function hi(y) = h(fi(y)), when restricted to Yi−1, is < `-to-1.

Before proving Lemma 2, we first demonstrate that it allows for proving Con-
struction 1 is collapsing. Note that only the second bullet is needed to prove
collapsing; the first bullet is facilitates our proof of Lemma 2 by induction.
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Construction 1 is just Merkle-Damgård, composed of u functions hi(y) =
h(fi(y)), where each hi has domain Yi−1 and the input to the hash has a number
of zeros inserted between the various input bits. Each of the hi are collision
resistant since the fi are injective. By Lemma 2, each of the hi are also < `-to-1
when restricting to the set of possible inputs. Hence by Theorem 1, each of the
hi are collapsing on their restricted domains. Unruh [Unr16a] shows that Merkle-
Damgård is collapsing if the component hi are collapsing, hence Construction 1
is collapsing. The exact same proof works here, the only difference is that the hi
are only collapsing on the outputs of hi−1, but are potentially not collapsing on
the entire domain Yλ × {0, 1}. Nevertheless the same proof works here: imagine
yu is measured. Now measure zu, then zu−1, then zu−2, etc, until we measure
z1. The application of each measurement is undetectable by the collapsingness
of the hi on their restricted domains. By the time we have measured all of the
zi’s, we have measured the entire input. Hence measuring yu (the output of h′)
is indistinguishable from measuring the input x.

For completeness, we work out the proof here. We need to show that measuring
the final output yu vs measuring the input x is computationally indistinguishable.
We will do this through a hybrid argument. Let A = (A0,A1) be a a collapsing
adversary for H′0, where the probability of distinguishing the measurementMh′

Y
fromMX is a non-negligible ε.

Consider evaluating h′ on a quantum superposition, writing the output yu to
a new register Yu. During iteration j, a number of intermediate values will be
stored in a register, including zj which will be stored in a register Zj . After the
final output yu of h′ is produced and written to a register Yu, all the intermediate
registers including the Zj will be uncomputed.

In Hybrid i, register Yu is measured to give yu, and also registers Zj for
j = i, . . . , u are all measured before uncomputation, giving zj . Let pi be the
probability A outputs 1 in Hybrid i.

Hybrid u+ 1 means none of the Zj registers are measured, whereas in Hybrid
1, all of the Zj are measured, which is equivalent to measuring the input registers.
Thus |p1 − pu+1| = ε, by our assumption that A is a collapsing adversary. For
each i, we obtain a collapsing adversary B(i) = (B(i)

0 ,B(i)
1 ) for hi with advantage

εi = |pi − pi+1|. B(i)
0 (hi) works as follows:

– It first chooses fj for j 6= i, and constructs h′ as above. Then it simulates
A0(h′).

– A0 produces ρstate,X , where state is a register containing the adversary’s
state that gets forwarded to the next stage, and X is a register containing a
superposition of inputs to h′.
B(i)

0 evaluates h′ on register X, and measures the registers Zi+1, . . . , Zu.
During the uncomputation step, it uncomputes Yu and all the registers
containing all the intermediate values, except for the register Zi.

– B(i)
0 then outputs the joint system ρstate′,Zi , where state′ = (state, X).

B(i)
1 , upon receiving ρstate′,Zi , uncomputes the Zi registers, obtaining the system

ρstate′ = ρstate,X , which it feeds into A1. It outputs whatever A1 outputs.
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Since B(i)
0 measures register Zi+1 to obtain zi+1 which includes yi = hi(zi), if

the challenger for B(i) measures the output of hi, the measurement is redundant
and has no effect on the state. Therefore, B(i) perfectly simulates Hybrid i+ 1.
On the other hand, if the challenger measures the input, this is exactly the same
as measuring Zi to obtain zi. Hence B(i) perfectly simulates Hybrid i in this case.
Therefore, B(i) has advantage exactly εi = |pi − pi+1|.

We then turn each B(i) into a collision-finder for h, which we call C(i), following
Theorem 1. Conditioned on Lemma 2 holding, the functions hi are <`-to-1,
meaning C(i) finds a collision with probability at least 2ε2i /(`− 1). Notice that∑
i εi ≥ ε. Therefore, we can obtain an overall collision-finder C, which runs

C(i) for a random choice of i. By Cauchy-Schwartz, the probability C obtains a
collision is at least

2
u(`− 1)

∑
i

ε2i ≥
2ε2

u2(`− 1) ,

which is non-negligible. This contradicts the assumed collision resistance of h.

We now turn to proving Lemma 2.

Proof. We prove by induction on i. Clearly N0 = 2 and h1 is at most 2-to-1.
We now fix h and f1, . . . , fi−1, which determines Yi−1 and Ni−1. We inductively
assume Ni−1 ≤ ‖h‖−2

2 . We first prove, with overwhelming probability over the
choice of fi, that hi is ≤ `-to-1 when restricted to Yi−1.

Toward that end, for any y ∈ Y, let py be the probability a random input to
h maps to y. For any set of ` inputs x1, . . . , x`, the probability they all map to
the same output of h is:

Pr[hi(x1) = · · · = hi(x`)] ≤ Pr
wj←X

wj1 6=wj2∀j1 6=j2

[h(w1) = · · · = h(w`)] + δ

≤ Pr
wj←X

[h(w1) = · · · = h(w`)] + δ

=
∑
y∈Y

p`y + δ = ‖h‖`` + δ

Let V be the event that hi is not <`-to-1. Union-bounding over all sets of `
inputs in Yi−1, we have that

Pr[V ] ≤
(
Ni−1

`

)
(‖h‖`` + δ)

≤
N `
i−1‖h‖``
`! + δ

(
Ni−1

`

)
≤
N `
i−1‖h‖`−1

∞
`! + |Y|−2 Equations (1) and (6)

≤ (Ni−1‖h‖∞)`‖h‖−1
∞

`! + |Y|−2

≤ (Ni−1r‖h‖2
2)`|Y|

`! + |Y|−2 Equation (4)

18



≤ r`|Y|
`! + |Y|−2 Inductive assumption

≤
(re
`

)`
|Y|+ |Y|−2 Stirling’s Approximation

≤ 2−`|Y|+ |Y|−2 = 2× |Y|−2 Equation (5)

|Y| must be superpolynomial by the assumed collision resistance of h, and so the
above quantity is negligible. Now it remains to prove the desired size bounds.
First recall that Nt(j−1)+1 ≤ 2Nt(j−1) and Ni ≤ Ni−1 for all i not of the form
t(j − 1) + 1. The following suffices to prove the size bound in Lemma 2:

Claim. Nt(j−1) ≤ ‖h‖−2
2 /2 for all j.

This claim implies that Nt(j−1)+1 ≤ ‖h‖−2
2 , and therefore all Nt(j−1)+k ≤ ‖h‖−2

2
for all k = 2, . . . , t, thus proving Lemma 2. We now prove the claim by induction.
Clearly for j = 1 we have that Nt(j−1) = N0 = 1, which is ≤ ‖h‖−2

2 /2 since ‖h‖2
2,

the collision probability of two random inputs to h, must be negligible. This
establishes the base case.

We now inductively assume that Nt(j−1)+1 ≤ ‖h‖−2
2 . Our goal is to prove

that Nt(j−1)+t ≤ ‖h‖−2
2 /2. Note that if any i in the interval t(j − 1) + 2, . . . , tj

satisfy Ni ≤ ‖h‖−2
2 /2, then we are done since all subsequent i in the interval

have Ni ≤ Ni−1. From now on, we will therefore assume towards contradiction
that Ni > ‖h‖−2

2 /2 for all i in the interval.
Let Ci be the number of distinct pairs of colliding inputs to hi. We observe

the following:

Claim. If hi is <`-to-1, then Mi < Ni−1 − 2
`Ci.

The claim is proved as follows: by linearity, it suffices to consider the case where
hi has a single output, meaning Mi = 1 and Ni < `. In this case, we have that

Ni−1 −
2
`
Ci = Ni−1 −

2
`

(
Ni−1

2

)
= Ni−1 −

Ni−1

`
(Ni−1 − 1)

> Ni−1 − (Ni−1 − 1) = 1 = Mi .

Therefore, to bound Ni = Mi for i = t(j − 1) + 2, . . . , tj, we need to bound
Ci. To do so, let P2 be the probability that two random distinct inputs to h map
to the same image. Then

P2 =
∑
y

py

(
py|X | − 1
|X | − 1

)
= |X |‖h‖

2
2 − 1

|X | − 1 ≥ ‖h‖2
2 − |X |−1 .

For a set L ⊆ Yi−1, let EL be the indicator function for the event that all L map
to the same value under hi. Then Ci =

∑
L⊆Yi−1:|L|=2 EL. We now calculate the

mean of Ci:

E[Ci] =
∑

L⊆Yi−1:|L|=2
E[EL] ≥

∑
L⊆Yi−1:|L|=2

(P2 − δ) ≥
(
Ni−1

2

)
P2 − 1
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≥
(
Ni−1

2

)
(‖h‖2

2 − |X |−1)− 1 =
N2
i−1 −Ni−1

2 (‖h‖2
2 − |X |−1)− 1

≥
N2
i−1
2 (‖h‖2

2 − |X |−1)− 2 .

Recall that ‖h‖2
2 ≥ |Y|−1 ≥ 2|X |−1 and that Ni−1‖h‖2

2 ∈ (1/2, 1] by assumption.
Therefore, E[Ci] ≥ Ni−1/8− 2.

From above we know that Pr[V ] ≤ 2|Y|−2. Now we have, for i = t(j − 1) +
2, . . . , tj and assuming each such Ni−1 > ‖h‖−2

2 ,

E[Ni] = E[Ni|¬V ](1− Pr[V ]) + E[Ni|V ] Pr[V ]
≤ E[Ni−1 − (2/`)Ci|¬V ](1− Pr[V ]) +Ni−1 Pr[V ]
≤ (Ni−1 − (2/`) E[Ci|¬V ])(1− Pr[V ]) +Ni−1 Pr[V ]
≤ Ni−1 − (2/`)(E[Ci]− E[Ci|V ] Pr[V ]) +Ni−1 Pr[V ]
≤ Ni−1 − (2/`)(Ni−1/8− 2) + (2/`E[Ci|V ] +Ni−1) Pr[V ]
≤ Ni−1 − (2/`)(Ni−1/8− 2) +N2

i−1 Pr[V ]
≤ Ni−1 − (2/`)(Ni−1/8− 2) + 2
≤ Ni−1 −Ni−1/5`

Since Ni is between 1 and Ni−1, we must have that

Pr[Ni < Ni−1(1− 1/10`)] ≥ 1/10` .

Call an i “good” Ni < Ni−1(1− 1/10`). Let T be the number of good i. Suppose
there are ≥ T good i in the interval t(j − 1) + 2, . . . , tj. Then Ntj < (1 −
1/10`)10`Nt(j−1)+1 ≤ (e−1 − o(1))‖h‖−2

2 ≤ ‖h‖−2
2 /2. Since we assumed this was

not the case, it must be that T < 10`. But E[T ] ≥ t/10` = 20`, so by Hoeffding’s
inequality,

Pr[T < 10`] ≤ Pr[T − E[T ] < −10`] < e−2(10`)2/t = e−` .

Thus, except with negligible probability, Ntj must in fact be ≤ ‖h‖−2
2 /2. This

completes the proof of Lemma 2 and hence Theorem 2. ut

5 Collapsing Hashes from LPN

In this section, we construct collapsing hash functions from the hardness of
learning parities with noise (LPN) in certain extreme parameter regimes.

5.1 LPN-Based Hashing
For positive integers n,m > n and error rate ε ∈ [0, 0.5], define LPNn×mε to be the
following distribution: choose a random s← Zn2 and random A← Zn×m2 . Choose
a random e ∈ Bmε , Bε is the Bernoulli distribution: output 1 with probability ε
and 0 otherwise. The output of LPNn×mε is then (A, sT ·A+eT mod 2). The LPN
assumption states that it is computationally infeasible to distinguish LPNn×mε

from the uniform distribution Z(n+1)×m
2 . Specifically:
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Assumption 1. For parameters ε = ε(n),m = m(n), T = T (n), The (ε,m, T )-
LPN assumption is that, for any adversary A running in time at most T , there
exists a negligible negl(n) such that
|Pr[1← A(LPNn×mε )]− Pr[1← A(Z(n+1)×m

2 )]| < negl(n).

Brakerski et al.[BLVW19] and Yu et al. [YZW+19] show how to construct a
hash function from the LPN problem as follows:

Construction 2. Let Smw ⊆ {0, 1}m be the set of length-m vectors, where the
domain is divided into w blocks of size m/w, and each block contains exactly
a single 1. Let LPNHashn×mw be the hash function family defined as follows:
h : Smw → {0, 1}n is specified by a random matrix A ∈ Zn×m2 . Then h(x) =
A · x mod 2.

Remark 7. Brakerski et al. allow for a slightly more general domain where the
inputs can have w 1’s in any position. For our analysis of semi-regularity, however,
it will be convenient to use the domain Smw as defined.

Theorem 3 ([BLVW19]). Under the (O(log2 n/n), poly, poly)-LPN assump-
tion, LPNHashn×mw is a PQ-CRHF for m = poly(n) and w = O(n/ logn).

Theorem 4 ([YZW+19]). The following are true:

– Under the (O(1), 2O(n0.5), 2O(n0.5+ε))-LPN assumption, LPNHashn×mw is a
PQ-CRHF for n = O(log2 λ), m = λ, and w = O(log1+2ε λ).

– Under the (O(1), 2O(n/ logn), poly)-LPN assumption, LPNHashn×mw is a PQ-
CRHF for m = poly(n) and w = O(n/ logn).

– Under the (O(n−0.5), 2O(n0.5/ logn), poly)-LPN assumption, LPNHashn×mw is
a PQ-CRHF for m = poly(n) and w = O(n/ logn).

5.2 Semi-Regularity of LPN-Based Hashing

We now prove that LPNHash is semi-regular, for appropriate parameter choices.

Theorem 5. For any m,n,w, let α :=
√
n(w/m) ln 2. If α ≤ 1/2 and αw ≤ 2−n,

then LPNHashn×mw is semi-regular.

Before proving Theorem 5, we observe an immediate corollary:

Corollary 2. If LPN is hard in any of the parameter regimes in Theorems 3
or 4, then collapsing hash functions exist:

Proof. By Theorem 2, it suffices to show that the settings of parameters in
Theorems 3 and 4 satisfy the conditions of Theorem 5. For the settings where
m = poly(n) and w = O(n/ logn), we just need to set m = nc and w = dn logn
where cd ≥ 2. Then α = o(1) and

αw =
(

dn2 ln 2
n1+c logn

)dn/2 logn

≤
(

1
nc−1

)dn/2 logn
≤ 2−n .
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For the setting where n = O(log2 λ),m = λ = 2n0.5
, w = O(log1+2ε λ)) =

O(n0.5+ε), we have α = poly(n)2−O(n0.5) ≤ 2−O(n0.5−ε/2) = o(1) and αw ≤
2−O(n1+ε/2) < 2−n. ut

We now prove Theorem 5.

Proof. Our goal is to show that ‖h(Smw )‖∞ = poly/2n, which implies H∞(h) ≥
n−O(logn). Since H2(h) ≤ n, this would establish semi-regularity.

We will write A = (v1, . . . , vm) for vectors vi ∈ Zn2 . Let Di be the distribution
vj1 + vm/w+j2 + · · · v(m/w)(i−1)+ji , where each ji is uniform in [m/w]. Then
h(Smw ) = Dw.

Lemma 3. Fix v1, . . . , v(m/w)i. Suppose ‖Di‖∞ = f/2n. Then except with prob-
ability 2−n over the choice of v(m/w)i+1, . . . , v(m/w)(i+1), ‖Di+1‖∞ ≤ (1 + g)/2n,
where g = f

√
n(w/m) ln 2

Proof. For each x in {0, 1}n, define p(i)
x := Pr[x← Di]. Then

p(i+1)
x = w

m

w/m∑
j=1

p
(i)
x⊕v(m/w)i+j

.

The v(m/w)i+j are just independent random vectors, so we can think of p(i+1)
x as

a random variable which is the mean of w/m random samples of p(i)
x′ for random

x′. Each of the p(i)
x′ are non-negative random variables with mean 2−n (since they

must sum to 1) and maximum f × 2−n. By Hoeffding’s inequality,

Pr[p(i+1)
x > (1 + g)/2n] = Pr[p(i+1)

x − 2−n > g/2n] < e
−2(m/w) g

2

f2 .

Union-bounding over all 2n different x, we have that

Pr[‖Di+1‖∞ > (1 + g)/2n] < 2n × e−2(m/w) g
2

f2 .

By setting g = f
√
n(w/m) ln 2, the right-hand side becomes 2−n, as desired. ut

Notice that ‖D0‖∞ = 1. Let α =
√
n(w/m) ln 2. Union-bounding over all

i = 1, . . . , w, we therefore have that

‖Di+1‖∞ ≤ α‖Di‖∞ + 2−n .

for all i. Then

‖Dw‖∞ ≤ αw‖D0‖∞ +
(
w−1∑
i=0

αi

)
× 2−n ≤ αw + 1

1− α × 2−n .

If we set α so that αw ≤ 2−n and α ≤ 1/2, we have that ‖Dw‖∞ ≤ 3× 2−n,
showing that LPNHash is semi-regular. ut
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6 Collapsing Hashes from Expanders

Charles, Goren, and Lauter [CLG09], abstracting earlier ideas of Tillich and
Zémor [TZ94], propose an elegant way to construct collision resistant hash
functions from exponentially-large expander graphs, whose collision-resistance
follows from the assumed difficulty of finding cycles in the graphs. A number of
graphs have been proposed for use in hash functions, such as:

– Charles et al. [CLG09] propose using isogeny graph on certain elliptic curves.
– Fuchs et al. [FLLT21] propose using the graph of Markov Triples.

We show that expander-based hashes satisfy our regularity condition, and hence we
can obtain collapsing hash functions under the same computational assumptions
on expanders as for collision resistance.

6.1 Expander Graphs

Let G = (V,E) be an undirected graph. G is d-regular if every v ∈ V has exactly
d neighbors. Throughout, we will always assume our graphs are regular. Let
A = A(G) denote the adjacency matrix of G: the |V | × |V | matrix such that Ai,j
if (i, j) ∈ E and 0 otherwise. Since A is symmetric, it has |V | real eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. For a d-regular graph, λ1 = d.

There are several equivalent definitions of expander graphs; the following
linear-algebraic definition captures the only property we will need.
Definition 5. A connected d-regular graph G is a (|V |, d, δ)-expander graph if
λ2 ≤ δd.

Walks on Expanders. Let G be a d-regular graph, and let v0 ∈ V be a node.
A walk on G starting from v0 is simply a sequence (v0, v1, v2, . . . ) such that
(vi−1, vi) ∈ E for all i > 0. A random walk is one where vi+1 is chosen uniformly
from the set of neighbors of vi. A non-backtracking walk is one where vi−1 6= vi+1
for all i > 0, and a random non-backtracking walk is a walk where vi+1 is chosen
uniformly from the neighbors of vi other than vi−1.

For a d regular graph, the nodes vi for a random walk and random non-
backtracking walk will converge to the uniform distribution over V as i → ∞.
We will use the notion of mixing time to characterize how fast this occurs.
Definition 6. The mixing time of a random walk starting at v0 is defined as

τ(G) = min
t

{∣∣∣∣Pr[vt = u]− 1
|V |

∣∣∣∣ ≤ 1
2|V |∀u ∈ V

}
,

where Pr[vt = u] is the probability that vt = u in the walk. The mixing time for a
random non-backtracking walk is defined as τ̃(G), and is defined analogously.

For both backtracking and non-backtracking walks, the mixing time is at
most O(log(|V |)/(1− δ)). The backtracking case has long been known, and the
non-backtracking case follows from the fact that non-backtracking walks mix at
least as fast, as shown by [ABLS07].
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6.2 Hash Functions Based on Expanders

Let G = (Gλ)λ where each Gλ is a family of d-regular connected graphs where
each G = (V,E) ∈ Gλ is exponentially large and implicitly represented. That is,
V ⊆ {0, 1}n(λ), and each G is represented by a polynomial-size string Desc(G).
There is an efficient procedure which computes the neighbors of any v ∈ V , given
Desc(G). We assume that Desc(G) includes a distinguished node v0, and that it
is possible to efficiently sample Desc(G) for a random G← Gλ.

Definition 7. The Cycle Finding problem is hard in G if, for any QPT A,
A(Desc(G)), G← Gλ outputs a simple cycle in G with negligible probability.

Based on cycle finding hardness, [CLG09] constructs the following hash:

Construction 3 ([CLG09]). Let ExHashG be the distribution over functions
hDesc(G) : [d− 1]t → {0, 1}n(λ) for a random G← Gλ defined as follows: interpret
each element x of [d− 1]n as a length-n non-backtracking walk in G starting from
v0. That is, on the ith step, if the walk is currently at node vi and was previously
at vi−1, then xi selects amongst the d− 1 neighbors of vi other than vi−1. That
neighbor will be vi+1. Let vt be the end of the walk. Then hDesc(G)(x) = vt.

Theorem 6 ([CLG09]). ExHashG is a PQ-CRHF if cycle finding is hard in G.

Proof. We give the proof for completeness. Any collision in hDesc(G) gives two
non-backtracking walks W0 6= W1 that start at v0 and end at the same node v.
Assume without loss of generality that the nodes immediately before v in W1,W1
are different. Let v1 be the last node before v where the walks coincide. Then by
concatenating the two paths from v1 to v under W0,W1 gives a simple cycle. ut

[CLG09] propose using expander graphs as a minimal criteria for selecting G
where the cycle finding problem is hard. A uniformly random input to ExHashG
corresponds to a random non-backtracking walk on G. Since the mixing time of an
expander is logarithmic in |V |, it is polynomial for implicitly represented graphs.
Once the walk mixes, no node in the graph is more likely than 2/|V |, implying
‖h‖∞ ≤ 2/|V |. Meanwhile, ‖h‖2

2 ≥ 1/|V |. Therefore, for a polynomial-length
input, ExHashG is semi-regular with r ≤ 2. Therefore, we have the following:
Corollary 3. Suppose G is a family of (|Vλ|, d, δ)-expander graph for a constant
δ. Then if cycle finding is hard for G, there exists collapsing hash functions.
When V is an appropriate set of elliptic curves and E are isogenies as proposed
by [CLG09], cycle-finding is a well-known challenging problem. The graph of
Markov triples has been explored by [FLLT21]. Other instantiations have been
proposed [CLG09, TZ94, PLQ12], but they have weaknesses [PLQ08].

7 Toward Collapsing Hashes from General Collision
Resistance

Here, we discuss the possibility of obtaining collapsing hashes from more general
PQ-CRHFs. In particular, we are interested in the case of symmetric hash
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functions such as SHA2 or SHA3. It seems plausible that SHA2 or SHA3 would
be semi-regular: after all, if a hash function had certain images that were far
more likely than others, this would be considered a significant design weakness.
Unfortunately, we do not know how to prove unconditionally that, say, SHA2 or
SHA3 are semi-regular. Instead, we simply conjecture it. The following shows
that this assumption is justified in the random oracle mode:

Lemma 4. Random oracles are semi-regular. In particular, for λ bit outputs, a
compressing random oracle has regularity at most λ.

Proof. By a standard balls-and-bins argument, for a random function F :
{0, 1}m → {0, 1}λ, the most likely output has probability H∞(F ) ≤ O(λ2−λ),
with all but negligible probability. On the other hand, ‖F‖2

2 ≥ 2−λ. Thus F has
regularity at most O(λ). ut

Since SHA2 or SHA3 are often modeled as random oracles, it therefore seems
reasonable to conjecture that they are semi-regular. Note that this is potentially
very different than assuming SHA2 or SHA3 are collapsing, even though random
oracles are collapsing. Indeed, the analysis of SHA2 and SHA3 has usually focused
on classical security properties. Semi-regularity is a simple classical property,
whereas collapsing is a more complicated inherently quantum property. Under
the assumed quantum collision resistance and assumed regularity of either SHA2
or SHA3, we therefore obtain a standard-model collapsing hash function from
classically-defined properties, which are much better understood.

7.1 Collapsing from Optimal Collision Resistance

Here, we give another, simpler, approach for justifying building collapsing hashes
from SHA2 or SHA3. Namely, we observe that symmetric hash functions are
usually treated as having optimal collision resistance, defined as follows:

Definition 8 (Optimal Collision Resistance). H is a post-quantum opti-
mally collision resistant if, for every QPT algorithm A, there exists a a polynomial
q(λ) such that

Pr
[
x0 6=x1, and
h(x0)=h(x1) : h←Hλ

(x0,x1)←A(h)

]
<
q(λ)
|Yλ|

,

where Yλ is the co-domain of h.

If SHA2 or SHA3 turned out to not be optimally collision resistant, this would
be considered a major weakness of the functions. It is therefore plausible to
conjecture such hardness.

Theorem 7. Suppose H is a hash function with domain Xλ and co-domain Yλ
such that |Xλ|/|Y|λ is polynomial. Equivalently, suppose H compressed by at most
logarithmically many bits. Then if H is post-quantum optimally collision resistant,
it is also collapsing.
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Note that the function H may be optimally collision resistant, but fail to be semi-
regular: for example there may be a single input that is very likely, but infeasible
to find a pre-image of in polynomial time. Such an H is not semi-regular, but
could plausibly be optimally collision resistant. Thus, Theorem 7 offers a distinct
alternative to assuming semi-regularity, trading off a structural assumption for
a stronger hardness assumptions. Depending on the analysis performed, either
approach may be preferred.
Proof. Let A be a collapsing adversary with non-negligible advantage ε. Let |ψ〉
be the superposition of inputs to h produced by A, and y be the measured image
of |ψ〉. We give a simple adversary B for optimal collision resistance. B first runs
A(h) to get |ψ〉, and then applies the measurementMh

Y to get y. Then it simply
measures |ψ〉 to get a pre-image x0 such that h(x0) = y. It finally chooses a
uniformly random input x1 ∈ Xλ and outputs (x0, x1).

By the optimal collision resistance of H, we know that B finds a collision
with probability at most p/|Yλ| for a polynomial p. But the probability B finds
a collision is just the expected fraction of Xλ that are pre-images of y but not
equal to x0. Since Xλ is only polynomially larger than Yλ, we therefore have
that the expected number of pre-images of y is polynomial `. In particular, with
probability at least 1/2, the number of pre-images is at most 2`.

But now we can use Lemma 1 to construct a different collision finding adversary
C. This is basically identical to the proof of Theorem 1: if y has ` pre-images,
then C finds a collision with probability at least 2ε2/(`− 1). Therefore, C finds a
collision with probability at least ε2/2`, which is non-negligible and in particular
violates the optimal security of H. ut
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