
Meet-in-the-Filter and Dynamic Counting with
Applications to Speck⋆

Alex Biryukov 1, Luan Cardoso dos Santos 1, Je Sen Teh 1,2,
Aleksei Udovenko 1, and Vesselin Velichkov 3

1 University of Luxembourg {name.surname}@uni.lu
2 University Sains Malaysia jesen teh@usm.my
3 University of Edinburgh vvelichk@ed.ac.uk

Abstract. We propose a new cryptanalytic tool for differential crypt-
analysis, called meet-in-the-filter (MiF). It is suitable for ciphers with a
slow or incomplete diffusion layer such as the ones based on Addition-
Rotation-XOR (ARX). The main idea of the MiF technique is to stop the
difference propagation earlier in the cipher, allowing to use differentials
with higher probability. This comes at the expense of a deeper analysis
phase in the bottom rounds possible due to the slow diffusion of the
target cipher. The MiF technique uses a meet-in-the-middle matching
to construct differential trails connecting the differential’s output and
the ciphertext difference. The proposed trails are used in the key recov-
ery procedure, reducing time complexity and allowing flexible time-data
trade-offs. In addition, we show how to combine MiF with a dynamic
counting technique for key recovery.

We illustrate MiF in practice by reporting improved attacks on the ARX-
based family of block ciphers Speck. We improve the time complexities
of the best known attacks up to 15 rounds of Speck32 and 20 rounds
of Speck64/128. Notably, our new attack on 11 rounds of Speck32 has
practical analysis and data complexities of 224.66 and 226.70 respectively,
and was experimentally verified, recovering the master key in a matter of
seconds. It significantly improves the previous deep learning-based attack
by Gohr from CRYPTO 2019, which has time complexity 238. As an
important milestone, our conventional cryptanalysis method sets a new
high benchmark to beat for cryptanalysis relying on machine learning.

Keywords: Symmetric-key · Differential cryptanalysis · ARX · Speck

1 Introduction

Differential cryptanalysis (DC) is one of the most powerful techniques for analyz-
ing symmetric-key cryptographic algorithms. It has been proposed by Biham and

⋆ The work was supported by the Luxembourg National Research Fund’s
(FNR) and the German Research Foundation’s (DFG) joint project APLICA
(C19/IS/13641232) and FNR’s project SP2 (PRIDE15/10621687/SPsquared).

Shamir in 1991 [BS91] and since then has been used to successfully attack nu-
merous symmetric-key primitives, including ciphers, hash functions, and MACs.
Nowadays, resistance to DC is one of the basic properties that a symmetric-key
algorithm must satisfy and new cryptographic designs often come with proofs of
such resistance.

In DC, the attacker traces the propagation of differences (most commonly,
XOR-differences) between plaintexts through multiple rounds of the analyzed
primitive. By analyzing differences rather than plaintexts, the attacker effectively
cancels out the action of the unknown round keys (also typically mixed in by
an XOR). In this way, a sequence of differences over multiple rounds can be
computed, which is called a differential trail. The latter typically holds with
certain probability p > 2−n for an n-bit state and acts as a distinguisher of the
analyzed cipher from a random permutation.

A typical DC attack starts with the derivation of a distinguisher on r rounds
with probability p. It is then used to attack r+u rounds of the cipher, where u is
some number of rounds added after the distinguisher. In the attack, the attacker
guesses (at least partially) the last u round keys in order to invert the last u
rounds and to compute the output difference after r rounds. If this difference
matches the output difference of the distinguisher, then, with some probability,
the guess for the last round keys must have been correct. Extra l rounds are often
also added at the top of the distinguisher resulting in an attack on l+r+u rounds.
DC is a statistical attack, meaning that the described process has to be repeated
for many (at least p−1) chosen plaintexts with a given input difference in order
to successfully recover the last round keys with a sufficient success probability.
Over the years there have been multiple extensions to the basic DC attack.
The contribution of this work is twofold:

Meet-in-the-Filter Tool

First, we propose a new addition to the DC toolkit, which we call meet-in-
the-filter (MiF). This technique is especially suitable for ciphers with a slow or
incomplete diffusion layer such as the ones based on Addition-Rotation-XOR
(ARX). The main idea of the MiF technique is to stop the difference propagation
earlier in the cipher resulting in a distinguisher on a fewer number of rounds
(smaller value of r) with a relatively high probability p. This comes at the expense
of a deeper analysis phase in the bottom rounds, i.e., a relatively high value of
u. More specifically, in the MiF technique, we split u = s+ t into a precomputed
cluster of differences for s rounds, then perform a Matsui-like search from the
ciphertext difference, running backwards for t rounds up to the meeting point
with the difference cluster. The filter discards a pair as wrong if the meeting point
(the meet-in-the-filter) does not produce a valid (s+t)-round trail. For the reverse
search, we use the fact that a differential (α,β → γ) has the same probability
through modular addition and modular subtraction (see Lemma 3). As a result,
MiF produces a set of trails that are used in the key-recovery procedure.

To illustrate the practical use of the MiF technique we apply it to the ARX-
based family of block ciphers Speck. After obtaining the set of 4-round trails

2

produced by MiF, an attacker can use a key recovery procedure similar to the one
described by Dinur in [Din14a,Din14b]4 by just applying it twice – once for the
bottom two rounds and once for the penultimate two rounds. Dinur suggested
that although counting techniques could be applied to his procedure, it was not
likely to improve the complexity of the attack. However, since MiF proposes trail
differences for the full four rounds, we can use an advanced key recovery method
with dynamic counting to improve time complexity.

Given a set of 4-round trails for Speck, the dynamic counting procedure
returns a set of candidate subkeys that satisfies at least c trails. Enforcing this
requirement amplifies the filtering of subkey candidates, which reduces the key
recovery time. Further, we describe the recursive implementation of the proce-
dure which reduces the memory overhead of counting. This technique is applied
to recover the four bottom subkeys of Speck, which are sufficient to recover
the full master key by applying Speck’s key schedule in reverse. An important
distinction of our approach to Dinur’s [Din14b] is that the latter analyzes the
bottom four rounds of Speck2n by making 22n key guesses for the bottom two
of the four rounds (since the difference propagation in these rounds is not known)
while in our case, the key-recovery procedure runs on all the four rounds.

With the MiF tool, we improve the time complexities of the best attacks
reported in the literature on up to 15 rounds of Speck32/64 and up to 20
rounds of Speck64/128.

New benchmark for deep learning-based cryptanalysis of Speck32

At CRYPTO 2019 [Goh19], Gohr applied deep learning methods to attack
reduced-round variants of Speck32. These attacks beat the best previously
known ones and this direction sparked a lot of interest in the community [BR20,
BGPT21,BGL+21, BBP22], trying to understand the source of these speedups
and to find further improvements and applications. However, to the best of our
knowledge, these results were not yet beaten by conventional cryptanalysis tech-
niques.

Among attacks on Speck32 obtained with the MiF tool, we present signifi-
cantly improved attacks on 11- and 12- round versions with practical data and
time complexities. Notably, our attack on 11-round version is more than 213 times
faster than the deep learning-based (previously best) attack by Gohr [Goh19].
Experimentally, our attack recovers the right key in under a second on a laptop
with a success probability of 63% (whereas Gohr’s attack has 50% success rate).
We provide experimental verification of the estimated complexities for 11- and
12-round attacks5.

4 We refer to [Din14b], which is the extended version of [Din14a] and which contains
a full description of Dinur’s algorithm.

5 Experimental verification of our 11- and 12-round attacks on Speck32/64 is available
at github.com/1d50f/MiF. Our attack experiments were run on a single core of a
laptop with Intel® Core™ i7-1185G7 CPU clocked at 3.00GHz and 32 GiB RAM.

3

https://github.com/1d50f/MiF

As a result, we set the new high bar for deep learning-based cryptanalysis of
Speck32 to improve. This was one of the inspirations for the MiF tool and its
application to Speck.

Table 1: Notations used throughout this paper

Notation Definition

FE Full (Speck) encryptions (time complexity measure)
n Word size in bits
Speck-2n/(kn) Speck with block size 2n and key size kn

⊕, ∧, ∨, ¬ Bitwise XOR, AND, OR, and NOT
a⋘ b, a⋙ b Cyclic shift of a by b bits to the left and to the right respectively
ADD , + Addition modulo 2n

SUB , − Subtraction modulo 2n

∣S∣ Size of the set S
ai i-th bit in the big-endian word a, where a0 is the LSB

R Total number of rounds
l, r, u Number of top, middle, bottom rounds in an l + r + u attack
u = s + t Split of bottom rounds into s and t rounds
k Number of key recovery rounds/key words

α,β, γ XOR differences for addition or subtraction modulo 2n

∆X XOR difference
∆IN,∆OUT Input and output XOR difference to a differential (trail)

τr = (∆IN
rÐ→∆OUT) A differential (trail) on r rounds

xdp+, xdp− XOR differential probability of addition and subtraction
w, weight Negative log2 of differential probability, i.e. Pr = 2−w

S(s,ws) or S Cluster of trails on s rounds with Pr ≥ 2−ws

T (t,wt) or T Set of filtered trails on t rounds with Pr ≥ 2−wt

p, q Trail (single/differential/cumulative) probabilities
D Number of chosen plaintexts
ntrails Number of trails returned by MiF
c, c′ Target number of right trails in the counting attack its corresponding data multiplier
d Current depth visited by the dynamic key recovery procedure

B(k;n, p) The binomial distribution, B(k;n, p) = (n
k
)pk(1 − p)n−k

The outline of the paper is as follows. Section 2 reviews previous attacks
on Speck, while Section 3 provides basic definitions, theorems, and lemmas
used in the paper, as well as some relevant known results. It also includes a
high-level description of the Speck family of block ciphers. Section 4 presents
the Meet-in-the-Filter (MiF) technique followed by the improved key-recovery
framework based on counting. Attacks on Speck32 and Speck64/128 using the
MiF tool are presented in Section 5, Section 6 and Section 7. The notations used
throughout this paper are given in Table 1.

4

2 Related Work

2.1 Differential Cryptanalysis Techniques

We emphasize that the main designation of MiF is aiding the key recovery phase
of differential cryptanalysis. MiF is closely related to multiple-differential crypt-
analysis, since the concatenation of the main r-round differential and the s-round
cluster of differentials can be seen as a multiple-differential distinguisher. How-
ever, the MiF attack allows to go deeper and also allows to use the s rounds in
the cluster for key recovery, so that the actual distinguisher is simply the r-round
differential (in the basic case). Furthermore, we can consider alternative round
splits where the cluster covers many more rounds, and the MiF key recovery
stage covers several bottom cluster rounds. This setting can be considered as an
application of MiF key recovery inside a multiple-differential distinguisher.

Similarly, MiF can in principle be combined with truncated differential dis-
tinguishers. We can conclude that MiF-based key recovery can be combined with
various kinds of differential distinguishers.

The proposed MiF technique also bears some similarity to other earlier results
on meet-in-the-middle attacks, for example, on DES [DSP07], AES [DKS10,
DFJ13] and LowMC [RST18, LIM21]. In [DSP07], the authors similarly lower
the data complexity of their attack by recovering internal values rather than key
bits (in contrast, we recover internal differences). In [DKS10], by enumerating the
possible differential input/outputs to active S-boxes, a set of possible differential
trails is recovered. The same idea is built upon in some of the results in [DFJ13].
More recently, attacks on LowMC [RST18,LIM21] leverage upon a conceptually
similar reconstruction of differential trails but only for probability-one trails.

2.2 Cryptanalysis of Speck

All previous differential attacks on Speck start from a differential (trail) on r
rounds to which 1 round is added at the top and u rounds are added at the
bottom. In all cases, we can add this additional round at the top due to the
fact that the key addition with the first round key is executed at the end of the
first round, and so does not influence the attack complexity. Previous attacks on
Speck32 and Speck64/128 along with the proposed new attacks are listed in
Table 2. Time complexity is measured in the number of full encryptions (FE),
data complexity D in the number of chosen plaintexts, and memory is in bytes.
A brief summary follows next, which covers classical differential attacks and
recently proposed differential-neural approaches.

In SAC 2014, Dinur proposed new attacks on Speck32 for up to 14 rounds,
with the latter having time T and dataD complexities of (T,D)14R = (263,231) [Din14b].
Later, in CRYPTO 2019, Gohr showed that neural networks could be trained
to be cryptographic distinguishers [Goh19]. His 11-round attack on Speck32
uses differential-neural distinguishers that consist of 7-round (and a 6-round)
neural distinguisher appended to a 2-round classical differential. The attack has

5

Table 2: Summary of differential attacks on Speck32/64 and Speck64/128.
Rounds R/R′ denotes that R out of R′ rounds are attacked; Split l + r + k = R
denotes that to an initial differential (trail) on r rounds, l rounds are added at
the top and k rounds are added at the bottom; Pr diff is the probability of
the differential (trail) on r rounds. Time, Data, Mem are resp. the time, data
and memory complexity of the attack; Ref is the reference to the publication
describing the attack. Highlighted cells indicate the best attack time complexities
for a given round.

Variant Rounds Split Pr diff Time Data Mem Ref

Speck32/64 11/22 1+6+4 2−13 246 214 222 [Din14b]
Speck32/64 11/22 1+0+8+2 - 240.15 214.11 228.97 this paper
Speck32/64 11/22 1+9+1 Neural 238 214.5 216 [Goh19]
Speck32/64 11/22 1+0+8+2 - 234.87 215.58 224.71 this paper
Speck32/64 11/22 1+0+8+2 - 224.66 226.70 222.02 this paper

Speck32/64 12/22 1+7+4 2−18 251 219 222 [Din14b]
Speck32/64 12/22 1+0+9+2 - 245.91 218.88 232.13 this paper
Speck32/64 12/22 1+10+1 Neural 244.89 222 216 [BGL+21]
Speck32/64 12/22 1+9+1 Neural 243.40 222.97 216 [Goh19]
Speck32/64 12/22 1+7+2+2 2−29.85 241.97 222.45 230.46 this paper
Speck32/64 12/22 1+8+1+2 2−24 233.84 230.42 224.75 this paper

Speck32/64 13/22 1+8+4 2−24 257 225 222 [Din14b]
Speck32/64 13/22 1+0+10+2 - 256.41 225.27 236.85 this paper
Speck32/64 13/22 1+8+2+2 2−23.85 250.16 231.13 231.07 this paper

Speck32/64 14/22 1+9+4 2−30 263 231 222 [Din14b]
Speck32/64 14/22 1+9+4 2−29.47 262.47 230.47 222 [SHY16]
Speck32/64 14/22 1+9+2+2 2−29.37 261.35 230.64 - this paper
Speck32/64 14/22 1+9+2+2 2−29.37 260.99 231.75 241.91 this paper

Speck32/64 15/22 1+10+4 2−30.39 263.39 231.39 222 [LKK+18]
Speck32/64 15/22 1+10+2+2 2−30.39 262.25 231.39 - this paper

Speck64/128 13/27 1+8+4 2−29 296 230 222 [Din14b]
Speck64/128 13/27 1+8+2+2 2−28.87 259.53 231.46 239.97 this paper
Speck64/128 13/27 1+8+2+2 2−28.87 252.45 232.14 239.70 this paper

Speck64/128 15/27 1+13+1 2−58.9 261.1 261 232 [ALLW14]

Speck64/128 16/27 1+14+1 2−59.02 280 263 - [BRV14]

Speck64/128 19/27 1+14+4 2−60 2125 261 222 [Din14b]
Speck64/128 19/27 1+14+2+2 2−55.69 2101.08 261.03 267.30 this paper

Speck64/128 20/27 1+15+4 2−60.56 2125.56 261.56 222 [SHY16]
Speck64/128 20/27 1+15+2+2 2−60.73 2122.69 263.96 277.19 this paper

6

a success rate of about 50% to recover the final 2 subkeys6 with (T,D)11R =
(238,214.5). Using a similar attack procedure, Gohr also has a 12-round attack
with (T,D)12R = (243.40,222.97) but only a 40% success rate. Benamira et al.
later delved into the inner workings of Gohr’s approach from the standpoint of
classical differential cryptanalysis [BGPT21]. They found that these distinguish-
ers rely not only on the ciphertext pair but also on the difference distributions in
the bottom two rounds. Apart from being able to better interpret the behaviour
of the neural distinguishers and improving their accuracy, no new attacks on
Speck32 were reported. In [BGL+21], Bao et al. use a 10-round differential-
neural distinguisher to mount a 12-round key recovery attack on Speck32 us-
ing a similar key recovery framework as Gohr. By using more than one dif-
ferential prepended to the neural distinguisher, they reported an attack with
(T,D)12R = (244.89,222) and a higher success rate of 86%. Going back to classical
differential cryptanalysis, Song et al. [SHY16] and Lee et al. [LKK+18] reported
attacks on 14 and 15 rounds of Speck32 with resp. (T,D)14R = (262.47,230.47)
and (T,D)15R = (263.39,231.39) by using differentials rather than single trails as
their distinguishers.

Next, we take a look at past attacks on Speck64/128. In [ALLW14], Abed et
al. use a differential trail on 13 rounds to which they add one round at the
top and at the bottom to mount a 1 + 13 + 1 attack on Speck64/128. During
the same period, Biryukov et al. [BRV14] reported an attack with time and
data complexities (T,D)16R = (280,263) for Speck64/128. In [Din14b], Dinur
mounts a 1+14+4 attack on Speck64/128 with (T,D)19R = (2125,261). Song et
al. [SHY16] attack 20-round Speck64/128 with (T,D)20R = (2125.56,261.56).
This was a 1 + 15 + 4 attack that used a differential (rather than a single trail)
for 15 rounds with Pr = 2−60.56 (the single trail probability is 262). The latter
results in a slight improvement, the rest being the same as in Dinur’s attack.
Complexity-wise Song et al. attacks are already close to biclique attacks which
work almost for any cipher.

2.3 Automatic Trail Search for Speck

Techniques for the automatic search for differential trails for Speck can be
broadly divided into two groups. In the first group the problem is represented
in terms of Mixed Integer Linear Programming (MILP) or Satisfiability Modulo
Theory (SMT) and off-the-shelf MILP or SAT solvers are employed to exe-
cute the search. Some results in this group are by Fu et al. [FWG+16] (MILP)
and Song et al. [SHY16] (SMT) with the latter applying the method proposed
by Mouha et al. [MP13] to construct a long differential trail from two short
ones. The second group is composed of dedicated techniques based on Matsui’s
search algorithm [Mat94]. Biryukov et al. [BVC16] proposed the first adapta-
tion of this algorithm to ARX ciphers and an optimised version using carry-
bit-dependent difference distribution tables (CDDT) was later developed by
Liu et al. [LLJW19]. Huang et al. [HW19] further optimized the latter using

6 The second subkey was allowed to be wrong for at most 2 bits.

7

combinatorial DDT (cDDT). We note that the differential search algorithms
from [BVC16,HW19,LLJW19] are complete, i.e., given enough time, they will
return all the differential trails with a given differential probability.

3 Preliminaries

We begin with some preliminaries, necessary to understand the main results
presented in subsequent sections. In the following exposition, addition and sub-
traction modulo 2n are denoted respectively by ADD and SUB.

3.1 Differential Cryptanalysis

Differential cryptanalysis analyzes pairs of encryptions P1 ↦ C1, P2 ↦ C2 by
studying the propagation of the input difference ∆P = P1 ⊕ P2 to the output
difference ∆C = C1 ⊕ C2 through the cipher, which is known as a differential
characteristic or trail. A differential trail consists of a sequence of differences:

∆P Ð→ δ1 Ð→ δ2 Ð→ ...Ð→ δr−1 Ð→∆C. (1)

To perform an attack, an adversary needs a differential trail with sufficiently
high differential probability:

p = Pr
P
[∆P Ð→ ...Ð→∆C], (2)

which is defined as the probability over all plaintexts. However, for simplicity of
the analysis and due to the presence of round keys in ciphers, it is usually ap-
proximated by the probability of the trail over assumed-to-be-independent round
keys (the so-called Markov assumption [LMM91]). In that case, the probability
of the trail can be computed simply as the product of the probabilities of all the
individual transitions:

p = Pr[∆P Ð→ δ1] ⋅Pr[δ1 Ð→ δ2] ⋅ . . . ⋅Pr[δr−1 Ð→∆C]. (3)

A better estimate of the differential probability can be obtained by collecting all
differential trails that have the same input and output differences:

p = Pr[∆P Ð→∆C] = ∑
δ1...δr-1

Pr[∆P Ð→ δ1 Ð→ ...Ð→ δr−1 Ð→∆C]. (4)

The weight of a differential (trail) is defined as w = − log2(p). The following
variant of the Markov assumption is used to analyze our attack time complexities.

Assumption 1 For a (possibly truncated) differential trail ∆P Ð→ ∆C with
a weight w, and a uniformly and independently sampled pair of ciphertexts
(C1,C2), the average fraction of subkeys for which the partial decryption of
(C1,C2) follows the trail is equal to 2−w.

8

3.2 The Differential Probability of ADD and SUB

The differential probabilities of addition/subtraction modulo 2n were studied by
Lipmaa and Moriai [LM01].

Definition 1. xdp+ and xdp− are the probabilities with which input XOR differ-
ences α,β propagate to output XOR difference γ through the operations ADD and
SUB respectively, computed over all n-bit inputs a, b:

xdp+(α,β, γ) = 2−2n ⋅ ∣{(a, b) ∶ ((a⊕ α) + (b⊕ β))⊕ (a + b) = γ}∣ , (5)

xdp−(α,β, γ) = 2−2n ⋅ ∣{(a, b) ∶ ((a⊕ α) − (b⊕ β))⊕ (a − b) = γ}∣ . (6)

Lemma 1 ([LM01, Lemma 3]). The probability xdp+(α,β, γ) is non-zero
if and only if

αi ⊕ βi ⊕ γi =
⎧⎪⎪⎨⎪⎪⎩

0 if (i = 0) ,
βi−1 if (i ≥ 1) ∧ (αi−1 = βi−1 = γi−1) .

(7)

If the probability xdp+(α,β, γ) is non-zero (i.e., the differential (α,β → γ) is
possible), its exact value can be computed with the formula given in Theorem 1.

Theorem 1 ([LM01, Algorithm 2]). If xdp+(α,β, γ) > 0 then

xdp+(α,β, γ) = 2−n+l+1, where l = ∣{i ∈ {0, . . . , n − 2} ∶ αi = βi = γi}∣ . (8)

Note that the maximum possible transition weight through ADD is n − 1.
From Lemma 1 and Theorem 1, we can deduce that the differential probability
of transitions does not depend on the order of the three differences. Furthermore,
since the mapping (a, b) ↦ (a − b, b) is the inverse of (a, b) ↦ (a + b, b), we can
deduce the SUB has exactly the same differential behaviour as ADD. The full
proof is given in Appendix F.

Lemma 2. The probability xdp+(α,β, γ) is invariant under any permutation
of the inputs α,β, γ, i.e.,

xdp+(α,β, γ) = xdp+(α, γ, β) = xdp+(β,α, γ) = (9)

Lemma 3. The differential (α,β → γ) has the same probability through modular
addition and modular subtraction for any choice of differences α,β, γ, i.e.,

xdp+(α,β, γ) = xdp−(α,β, γ) . (10)

3.3 Distribution of Differential Weights and Probabilities of ADD

In this section, we recall and derive properties of the distribution of weights
and/or probabilities of differential transitions through the ADD operation. These
properties will be used in the analysis of the MiF tool and complexities of the
attacks. All proofs can be easily derived from the following lemma by Lipmaa
and Moriai [LM01]. For completeness, they are provided in Appendix F.

9

Lemma 4 ([LM01, Theorem 2]). The fraction of all transitions through
ADD (including invalid ones) having weight w is given by

Pr
α,β,γ
[xdp+(α,β, γ) = 2−w] = 1

2
(7
8
)
n−1

B(w;n − 1, 6
7
) . (11)

Lemma 5. Let α,β be chosen independently and uniformly at random. The
expected number of differences γ such that the differential transition (α,β) → γ
is valid (i.e., xdp+(α,β, γ) > 0) is given by

E
α,β
[∣{γ ∶ xdp+(α,β, γ) > 0}∣] = (7

4
)
n−1
= 2(n−1) log2

7
4 . (12)

Lemma 6. Let (α,β) → γ be a transition through ADD sampled uniformly at
random from all valid transitions through ADD. The average differential transi-
tion probability p is given by

E
α,β,γ∶

xdp+(α,β,γ)>0

[xdp+(α,β, γ)] = (4
7
)
n−1
= 2(n−1) log2

4
7 . (13)

Example 1. Speck32 uses 16-bit additions, for which the differential transitions
have average weight approximately w = 12.86 and average probability approx-
imately 2−12.11. Speck64 uses 32-bit additions, for which the differential tran-
sitions have average weight approximately w = 26.57 and average probability
approximately 2−25.03.

3.4 Dinur’s Attack

Since our work draws parallels to Dinur’s attack, we describe it briefly in this
section. In its basic version, Dinur’s attack uses an r round differential to attack
r+2 rounds. All internal differences and some values in the bottom two rounds are
known from the differential and ciphertexts. To recover the remaining unknown
internal values, Dinur applies a guess-and-determine strategy that works bitwise
on the bottom two modular additions (cf. 1RProcedure, 2RProcedure [Din14b,
Appendix A]). As a result, the last two round keys are recovered. The basic
r + 2 attack is then trivially extended to r + 4 rounds for any Speck variant
by recovering two additional round keys through an exhaustive search, which
increases the attack complexity by a factor of 22n. Dinur’s attack applies two
filtration procedures, called one-bit and multi-bit filters [Din14b, § 7.2], that
exploit the differential properties of modular addition. The one-bit filter provides
the main filtration power and is effectively a check for the conditions of Lemma 1.
It gives filtration efficiency of 1

2
⋅ (7

8
)n−1 ≈ 2−7 for each 32-bit ADD with known

α,β, γ differences. The multi-bit filter provides further improvement by a factor
of about 2−3 for each 32-bit ADD operation.

10

a

b

Fig. 1: Speck round function and key schedule.

3.5 Description of the Block Cipher Speck

Speck is a family of lightweight block ciphers proposed by USA National Se-
curity Agency in [BSS+13]. It follows an iterative ARX design, supporting block
sizes of 32,48,64,96, and 128 bits and various key sizes. The members of the
Speck family have been designed to provide good performance in software with
their main target being microcontrollers. With Speck2n/(kn) is denoted the
instance of Speck with a block size of 2n bits composed of two n-bit words and
a key size of kn bits, where k denotes the number of keywords. Speck2n uses
three operations over n-bit words: bitwise XOR, addition modulo 2n and bitwise
rotation. The key-dependant round function of Speck2n depicted in Figure 1 is
a map RK ∶ {0,1}2n → {0,1}2n defined as

RK(x, y) = ((x⋙ ra) + y)⊕K, (y⋘ rb)⊕ (((x⋙ ra) + y)⊕K) , (14)

where the rotation values are ra = 7, rb = 2 for n = 16, and ra = 8, rb = 3 for
all other block sizes. The decryption of Speck uses modular subtraction on the
inverted round function and is naturally derived. The key schedule of Speck2n
takes the master key and generates R round-key wordsK0,K1,⋯,KR−1, where R
is the number of rounds, using the same round function as used by the encryption.
For a detailed description of Speck we refer the reader to [BSS+13].

4 The Meet-in-the-Filter (MiF) Attack

In this section, we describe the Meet-in-the-Filter (MiF) attack, which is divided
into two main parts – the MiF tool and the key recovery procedure based on
dynamic counting. It is applicable to ciphers with incomplete or relatively slow
diffusion such as ARX.

4.1 The MiF Tool

Consider a block cipher with r + u rounds split into r rounds covered by a
differential (trail) and u rounds covered by backward search. The goal of the MiF
tool is to efficiently enumerate trails for the bottom u rounds. We can further

11

split u into two parts: u = s+t, in order to obtain a time-memory trade-off. The s
and t rounds of the split are processed separately in search of a meeting point (a
matching difference). An illustration of the MiF filter is shown in Figure 2. We

Fig. 2: Illustration of MiF with an r + u and u = s + t split.

start from an r-round differential with probability p denoted as ∆IN
rÐ→ ∆OUT.

Next we choose a suitable split of u into s top and t bottom rounds (u = s + t)
together with corresponding probability thresholds 2−ws and 2−wt . In an offline
phase, we apply Huang et al.’s Matsui-like search [HW19] to prepare the cluster.

Definition 2. The cluster S(s,ws) is the set of all s-round trails τs starting
with the difference ∆OUT and having probability at least 2−ws :

S(s,ws) = {τs = (∆OUT
sÐ→∆X) ∶ Pr[τs] ≥ 2−ws} . (15)

The functional notation S(s,ws) stresses the fact that the set S is a function
of the parameters s and ws. We use S as a shorthand for S(s,ws) when the
parameters are clear from the context. Constructing S would usually require
negligible precomputation time compared to the full differential attacks.

In the online phase, a set of c′ ⋅ p−1 (for some small constant c′ ≥ 1) chosen
plaintext pairs (P1, P2 = P1 ⊕ ∆IN) are encrypted for r + u rounds. For each
corresponding ciphertext pair (C1,C2), a reverse search on t rounds starting
with the ciphertext difference ∆C = C1 ⊕C2 as input is executed. Since the
reverse search is performed on Speck in decryption mode, the modular addition
operation ADD is replaced by modular subtraction SUB which does not change
the probability computation due to Lemma 3. For a given observed ciphertext
pair, the reverse search produces the filter-set T (t,wt).

Definition 3. The filter-set T consists of all t-round trails τt starting from ∆C
in the reverse direction and having probability at least 2wt .

T (t,wt) = {τt = (∆C
tÐ→∆Y) ∶ Pr[τt] ≥ 2−wt} . (16)

Similarly to S(s,ws), the set T (t,wt) is expressed as a function of the parameters
t and wt. We use T as a shorthand for T (t,wt) when the parameters are clear

12

from the context. Of all trails τt in T , we keep only the ones whose output
difference ∆Y matches an output difference ∆X of a trail τs in S. A match
between a given τs ∈ S and a given τt ∈ T results in a u-round trail τu obtained
by the following concatenation:

τu = (τt∣∣τs) =∆C
uÐ→∆OUT = (∆C

tÐ→ (∆Y =∆X) sÐ→∆OUT) . (17)

A ciphertext pair for which a match is found, is recorded as a candidate
right pair, i.e., a pair whose corresponding plaintexts (P1, P2) have followed the

differential (trail) (∆IN
rÐ→∆OUT). Each such pair comes with a set of suggested

u-round trails {τu = ∆OUT
s+tÐÐ→ ∆C}. The latter contains information for the

key-recovery phase and is passed on to the key-recovery procedure. The set S is
referred to as the cluster while the process of matching the set T against S is
referred to as the (backward) filter. The absolute values of the logarithm base-2
probability thresholds – i.e., the constants ws and wt – are called respectively
the cluster weight and the filter weight. Since the split s + t can be seen as
one large u-round filter that passes only candidate right pairs, the procedure is
called meet-in-the-filter or MiF. In general, MiF offers the attacker a reduction in
filtration complexity for the u bottom rounds through a time-memory trade-off.

Efficiency of MiF Pairs of plaintexts (P1, P2) that follow the differential for
the top r rounds are called right pairs or signal while those that do not are wrong
pairs or noise. After the application of MiF, some of this signal may be lost due to
the weight thresholds (ws and wt) being applied to the bottom u rounds. Denote
the probability that a right pair follows a u-round trail produced (or filtered) by
MiF by q. Such a u-round trail is called a right trail, i.e., a right u-round trail
is one that will be followed by the corresponding right pair after going through
the initial r-round differential. We refer to q as the efficiency of the MiF filter.
The inverse of q is the value by which the attacker needs to multiply the initial
data D = 2 ⋅c′ ⋅p−1 to compensate for the decreased filter efficiency. The constant
c′ maintains the probability of catching at least c right trails in the set of trails
(dataset) produced by MiF (see Section 4.3 and Appendix D), as required by
our key recovery technique (see Section 4.3). Thus the overall data complexity
of the attack is a function of the efficiency of the MiF filter and is equal to Dq−1.

The efficiency of the MiF filter depends on the choice of the split values s
and t, and the corresponding cluster and filter weights, ws and wt respectively.
To maximize efficiency, the filter weight must be set large enough to allow all
possible difference propagations in the backward filter. In particular, based on
Lemma 6, the weight of average probability of a random valid t-round trail can
be estimated as −t(n−1) log2 4/7, e.g., for t = 2 and n = 16, the weight of average
probability of a 2-round trail is 24.22. To ensure that no trails will be discarded
by the backward filter, the maximum value wt = 2(n − 1) = 30 should be set. If
no limit is imposed on the backward filter, we can estimate q as the cumulative
probability of all trails in S that comes from one r-round differential:

q = ∑
τs∈ S

Pr[τs] . (18)

13

Typically, most trails suggested by MiF will not be right (i.e., are noise). We
will denote the number of trails returned by MiF as ntrails. These trails, together
with respective ciphertext pairs, are passed on to the key recovery stage, which
we will describe and analyze in the following section.

4.2 Key Recovery using Single-Trail Analysis

In this section, we describe a general key recovery procedure based on single
trail analysis. We recall the general setting – an attacker uses a differential

∆IN
rÐ→ ∆OUT over r rounds and queries encryption of a plaintext pair with the

difference ∆IN over r + u rounds, obtaining a ciphertext pair (C1,C2) with a

difference ∆C. MiF suggests a set of valid trails of the form ∆C
u←Ð∆OUT, with

a hypothesis that this set contains the right trail.

In single-trail analysis, the attacker analyzes each proposed trail indepen-
dently of other encryptions and all other trails. The analysis returns a set of
candidate subkeys for analyzed k ≤ u rounds, for which the partial decryption
of the ciphertext pair (C1,C2) follows the first k rounds of the suggested trail

∆C
u←Ð ∆OUT (i.e., the subtrail ∆C

k←Ð ∆Z of the trail ∆C
k←Ð ∆Z

u−k←ÐÐ ∆OUT).
These candidate subkeys can then be used to derive candidates for the master
key, to be tested against known encryptions or to follow the expected differential
trail. The full key recovery attack simply consists of applying a sufficient number
of iterations of the above procedure.

This setting follows the direction of Dinur’s work; in fact, the procedure de-
scribed in this section is simply a generalization of the analysis stage of Dinur’s
attacks. One of the main advantages of MiF is that this procedure can be ap-
plied right from the beginning due to the knowledge of a set of candidate trails.
In addition, we pay closer attention to the theoretical analysis of the attack’s
complexity.

Recursive Single-Trail Procedure The procedure takes as input a ciphertext

pair (C1,C2) and a trail ∆C
k←Ð ∆Z; it outputs all k-round subkeys for which

the partial decryption of the pair (C1,C2) follows the given trail. The idea is
simply to guess the subkeys in chunks and recursively.

Guessing subkeys in (small) chunks allows to quickly filter out wrong guesses,
which are those making the partial decryption of the ciphertext pair (C1,C2)
diverge from the given differential trail. A simple example is guessing subkeys
round-by-round: after guessing one full subkey, we may decrypt the pair by one
round and check whether the obtained difference follows the trail. Since many
ciphers have incomplete diffusion over a small number of rounds, guessing even
a small part of the subkey often allows partial decryption and computation of a
part of the difference in the previous round, leading to faster discarding of invalid
subkeys. For example, guessing even a single subkey bit in Speck (starting
from least significant bits) yields one bit of the difference in the previous round.
Smaller chunks allow reducing the unnecessary work, bringing the procedure cost

14

close to the theoretical lower bound arising from the output size of the procedure
– the total number of valid subkey candidates.

Recursive implementation of the procedure aims at minimizing the memory
complexity. Indeed, the total number of candidate subkeys can be huge, and
keeping all of them in memory at the same time is unnecessarily costly. Re-
cursive guessing of the subkey chunks allows reducing the memory footprint of
the procedure to negligible. An alternative formulation of this method is the
depth-first traversal of the search tree (as opposed to breadth-first traversal).

Example 2. In our attacks on Speck variants, we will set the chunk size to be
1 bit. The recursive procedure thus will simply recover the subkeys round-by-
round and bit-by-bit, checking the conformance to the differential trail after each
subkey bit guess. In Speck, the n-bit subkey κ is XORed right after the ADD
operation. When decrypting, the ADD becomes SUB and this subkey hides one
of the inputs. Guessing i least significant bits of the subkey κ allows computing
SUB on i least significant bits, leading to the knowledge of i least significant bits
of the difference in the previous round7, which can be used as a filter discarding
wrong subkey guesses.

The following definition formalizes the notion of truncated trails, i.e., parts
of the analyzed trail that can be tested after guessing some subkey chunks.

Definition 4. Given a differential trail τ over k rounds and an integer d, by the
differential trail τ truncated at the depth d we will understand τ restricted
to all bit positions where the difference can be computed from the ciphertext
difference and first d chunks of subkeys guessed. The maximum depth dmax is
defined as the full number of chunks of subkeys that have to be guessed in the
attack.

Example 3. In Speck, the maximum depth dmax is simply equal to the number
of key recovery rounds (2, 3 or 4) times the word size, i.e., dmax = k ⋅ n.

4.3 Key Recovery using Multiple-Trail Analysis (Counting)

We propose an advanced method based on the counting technique. While Dinur
opposed his single-trail analysis of Speck to the counting method, we will show
that counting often allows to significantly reduce the time complexity of the
attacks, and becomes more applicable when coupled with the MiF technique.
The basic idea of counting is to increase the number of encrypted pairs by a
small factor c > 1 and target collecting and detecting at least c right trails in the
full dataset. This requirement amplifies the filtering of the subkey candidates. For
example, if a single-trail attack suggests 226 32-bit subkeys, a rough estimation
shows that in the dataset of double size only (226+1)2/2/232 = 221 32-bit subkeys
would be suggested by at least c = 2 trails.

7 In fact, guessing i < n bits allows to compute i+ 1 bits of the difference. We will use
this fact in Claim 3 to reduce the complexity.

15

Remark 1. If one wants to keep the same success probability of the attack (e.g.,
63% in our case), the actual required multiplier c′ to the number of encryptions
has to be set slightly larger than c. We list the correct values of c′ for small c
(the detailed computations based on the Poisson distribution are described in
Appendix D):

c 1 2 3 4 5 6 7 8

c′ (success rate 63%) 1.00 2.15 3.26 4.35 5.43 6.51 7.58 8.64
log2 0.00 1.10 1.70 2.12 2.44 2.70 2.92 3.11

c′ (success rate 95%) 3.00 4.74 6.30 7.75 9.15 10.51 11.84 13.15
log2 1.58 2.25 2.65 2.95 3.19 3.39 3.57 3.72

Recursive Multiple-Trail Procedure The most straightforward way to im-
plement counting is simply to process each trail on-the-fly separately and main-
tain a counter for each discovered subkey candidate of predetermined size while
using a hash table to address the counters. This approach however suffers from
large memory complexity, often close to the time complexity of the attack.

We propose an alternative solution, called dynamic counting, the memory
complexity of which is governed by the number of considered trails instead of
the number of suggested subkeys. Each trail suggests on average a non-negligible
amount of candidate subkeys, and this is exactly the savings factor in mem-
ory complexity for our solution, compared to naive counting. Furthermore, the
memory access patterns in our procedure are sequential, as opposed to random
memory accesses of the conventional counter-based method.

The main idea of dynamic counting is to change the order from “trail-then-
subkeys” into “subkeys-then-trails”. The high-level structure of the procedure is
thus a recursive enumeration of subkeys in the depth-first order, as is done in
the single-trail recursive procedure for each trail. However, in the new procedure,
we keep the list of all trails satisfied by the currently guessed subkey chunks.
Each subkey guess works as a “sieve” filtering the list of trails by discarding the
trails that do not satisfy the new guess. It also severs subkey search branches
having less than c surviving trails (the core of the counting method), hence being
dynamic.

Note that the original list of trails is kept until the full current subtree is
explored, i.e., we will effectively store one list of trails per each depth of the re-
cursion tree (equal to the number of chunks in the involved subkeys). In practice,
the size of the stored lists decreases fast when increasing depth, and, compared
to the size of the original list, the memory overhead is just a small constant
factor (depending only on the minimum partial weights of analyzed trails).

Remark 2. Note that the counting attack requires at least c right pairs, instead
of c right trails. This means that the same subkey suggested from different trails
of a given ciphertext pair should be counted only once.

Remark 3. Setting c = 1 reduces the algorithm into an alternative implementa-
tion of the single-trail procedure. Indeed, the set of visited trail-subkey pairs at

16

each depth will be the same, only the order differs (breadth-first versus depth-
first). Effectively, this means that the time complexities of the two procedures
(single-trail and multiple-trail with c = 1) are essentially the same, although the
multiple-trail procedure requires more memory.

Memory Complexity While the keys-then-trails order improves the mem-
ory complexity, it may still be high for cases with large numbers of trails and
memory should be allocated carefully. We propose several memory optimiza-
tion techniques tailored to the Speck block cipher in Appendix C. Based on the
described techniques, we propose the following claim, which we will use for mem-
ory complexity estimations of our attacks. We remark that further reduction is
possible through careful analysis of on-the-fly filtration efficiency.

Claim 1 The memory complexity of the multi-trail procedure with optimizations
can be estimated as 2 ⋅ ntrails encryption blocks.

4.4 Distributions of Weights in MiF Trails

The complexity of the MiF attack depends significantly on the chosen differen-
tial (especially on its output difference ∆OUT), the round split, the cluster and
filter weights ws and wt. These parameters affect in particular the properties
of the trails suggested by MiF, namely the distribution of weights of truncated
trails (in the sense of Def. 4), which directly affects the time complexity of the
attack. Estimating this distribution purely by using theory from Section 3.3 is
not possible as the evolution of the weights of truncated trails with depth is not
uniform (we will show it on examples of our attacks). The time complexity of
the multiple-trail key recovery is especially sensitive to intermediate weights, as
they will often define the dominating stages of the attack.

Definition 5. Given an integer d, let qd denote the average probability for the
MiF trails truncated at depth d (the trails are sampled uniformly at random from
the possible output of MiF).

By distributions of weights/probabilities in MiF trails we will mean the values
(q0, q1, . . . , qdmax). In addition, the attack’s complexity depends directly on the
(expected) number of trails to be suggested by MiF. It is thus necessary to be
able to compute these quantities in order to estimate the time complexity of the
attacks. The most straightforward way is to compute the full set of possible trails
(for all reachable ciphertext differences) and to collect the required statistics
from this set. However, in settings with large clusters this approach may not be
feasible. To this end, we describe a generic sampling-based method. Its precision
depends on the number of samples, which we ensure to be sufficiently large.

Obtaining Distributions via Generic Sampling The most straightforward
way to obtain the distributions of weights of truncated trails is to partially
simulate the attack and obtain a collection of trails from MiF, to be used further

17

to compute the necessary distributions. Running a full attack in most cases can
be impractical. However, for sampling, the simulation process can be optimized
significantly. An important observation is that the high complexity of the attacks
stems from the difficulty of catching the signal (right pairs/trails), while most of
the attack time is actually spent on noise (wrong pairs/trails). Since the absence
of a few right trails would not change the distributions noticeably, we can restrict
sampling to noise only. To this end, we propose the following simple procedure:

1. generate a random ciphertext difference ∆C (or, for more genuine results,
encrypt a random plaintext pair following the chosen input difference ∆IN);

2. run the MiF tool and obtain a set of suggested trails;

3. update the required distributions from the given set;

4. repeat from Step 1 until a sufficient precision is reached.

In our attacks on Speck32 and Speck64 we noticed that sampling pro-
vides surprisingly stable and precise results. Our usual sampling goal is 1 million
trails8, or less for very low cluster weights ws, where a large number of encryp-
tions is needed to pass through the MiF tool. For these low cluster weight/small
cluster scenarios, we can in fact avoid sampling and enumerate all reachable
trails. For larger cluster weights ws, one has to ensure that a large number of
different ciphertext differences is involved, since a collection of 1 million trails
suggested from just a couple of encryptions would not be sufficiently represen-
tative. In addition, sampling allows estimating well the average number of trails
suggested by MiF per one encrypted pair. This is vital for computing the ex-
pected number of trails in a concrete attack, which in turn is needed to compute
the time complexities (Claim 2, 3 and 4 below).

4.5 Key Recovery Complexity Analysis

We begin with the complexity analysis of the single-trail case, and we will build
the analysis of the multiple-trail case on top of it. Our estimations will be based
on the MiF trail weight distributions computed using techniques described in
Section 4.4. For simplicity and due to relevance for Speck, we will assume the
chunk size of 1 bit. Our key instrument is the following lemma, which connects
the distribution qd of weights/probabilities of truncated trails and the number
of surviving trail-subkey pairs per depth.

Lemma 7. At depth d of the single-trail procedure, across all branches and
ntrails initial trails, there are on average

vd = ntrails ⋅ 2d ⋅ qd (19)

trail-subkey pairs visited.

8 Deviations in average trail weights drop below 5% between 100000 to 500000 samples
for smaller to larger cluster sizes, respectively.

18

Proof. Follows as an application of Assumption 1 to the key recovery procedure9.

The total time complexity Tcnt of the key recovery procedure splits into
two major parts: the complexity Tenum of enumerating (recursively) the subkey
candidates and the complexity Ttrials of checking the candidates by partial trial
decryptions:

Tcnt = Tenum + Ttrials. (20)

Estimating Ttrials The time complexity of the trial decryptions can be eas-
ily derived from the number of the final subkey candidates vdmax suggested by
the key recovery procedure. Naturally, we also assume that the key schedule
can be easily inverted and all rounds’ subkeys can be computed from the recov-
ered subkey candidates (this is the case for most modern ciphers), at the cost
proportional to the number of involved rounds, namely, R−k

R
FE.

In cases when the differential trail is known for at least 1 round longer than
the key recovery requires, it can be used to test a subkey candidate at the lower
cost of 2 round decryptions (equal to 2

R
FE). Note that one-round trail extension

with even a relatively low weight (say, 5) filters out most of the wrong candi-
dates (31/32) and the consequent rounds add negligible complexity. This was
suggested already in Dinur’s work [Din14b, Section 6], but since it did not affect
the dominating parts of his attacks, it was left only as a suggestion. However,
this shortcut might not be available if we have used a differential rather than a
single trail.

Claim 2 Under the above assumptions,

Ttrials ≤ vdmax ⋅
R′

R
FE, (21)

where R′ = 2 if the differential trail is known for at least one more round, and
R′ = R − k otherwise.

Estimating Tenum (Single-Trail) In order to estimate Tenum, we will assume
that the time complexity of the single-trail recursive procedure is overwhelmingly
dominated by the partial chunk decryptions. These can be counted by counting
all trail-subkey pairs at each depth of the recursion. This is explained by the fact
that each trail is analyzed independently of all other trails. We emphasize that
summing the work done at each depth is needed to obtain an accurate estimate.
Furthermore, we will (pessimistically) assume that one partial chunk decryption
has cost equivalent to 1 round of the primitive (although it in fact requires just
a few logic gates in the case of Speck10).

9 Even though Speck is known not to be a Markov cipher, the theory holds well in
practice as confirmed by our experiments.

10 Bitslice-style optimizations for reducing this crucial constant might significantly im-
prove the attack time complexity further, compared to [Din14b].

19

Claim 3 Under the above assumptions,

Tenum ≤
R′′

R
⋅
dmax−1
∑
d=0

vd FE, (22)

where R′′ = 4 in the general case. Furthermore, when the key chunks guessed
are used for partial decryption of the word addition/subtraction, the complexity
can be reduced by a factor of 2. In particular, R′′ = 2 can be used in the case of
Speck.

Explanation. At depth d, by Assumption 1, each trail suggests on average 2dqd
candidate truncated subkeys, totalling to ntrails ⋅ ∑dmax−1

d=0 2dqd non-final trail-
subkey pairs. For each such pair, the partial decryptions are performed for each
of the two candidates for the next subkey bit and for each of the two associated
state values, leading to the cost of 4/R FE per a non-final trail-subkey pair.

The complexity halving in the Speck case is based on the fact that, by
Theorem 1, guessing i least significant bits of the (equivalent) key preceding the
addition allows to check the difference for i + 1 least significant bits. Effectively,
this means that we can replace the two checks of the two 1-bit extensions of
the current guess by one. Indeed, a direct application of the general estimation
would mean that, for a fixed i-bit subkey, the two checks for (i + 1)-bit subkey
candidates would always return the same answer because the most significant bit
in (truncated) addition does not affect the difference. Due to our cost estimation
of 1 round of the primitive, we may perform decryption of states only after
guessing each round’s subkey’s most significant bit. Since this bit propagates
linearly through ADD, the two subkey candidates are related by one bit flip,
which has negligible cost.

Estimating Tenum (Multiple-Trail) We will model each subkey suggested by
trails as sampled independently and uniformly at random. This is formalized by
the following assumption.

Assumption 2 The subkeys suggested by each trail at each depth can be mod-
elled as random uniformly distributed subsets of all possible subkeys, sampled
independently from subkeys for trails suggested by another pair.

The validity of the assumption is not entirely obvious. It is crucial to require
independence only across different pairs (see Remark 2). Indeed, for one cipher-
text pair, there would likely exist multiple trails of the form ∆C Ð→ ∆Z with
prefixes equal up to some depth d < dmax. This means that the keys suggested
by these trails would be counted many times until the trails will diverge, even
though they belong to a single ciphertext pair. That is why the assumption re-
quires independence only between subkeys suggested by different pairs. In fact,
the described intersections of suggested subkey sets related to a single pair of
ciphertexts only reduce the number of suggested unique subkeys per pair and
(slightly) improve the counting efficiency in practice. As we will show (see e.g.

20

Section 5.3), the analysis relying on this and other used assumptions closely
match experimental data.

Claim 4 For any depth d, 0 ≤ d ≤ dmax, and any integer c, 1 ≤ c ≪ 2d, let
ηd = ntrails ⋅ qd. Under the above assumptions,

T c>1
enum ≤

R′′

R
⋅
dmax−1
∑
d=0

2d ⋅ ηd ⋅ (1 − e−ηd ⋅
c−2
∑
i=0

ηid
i!
) FE, (23)

where R′′ is defined as in Claim 3. In particular, R′′ = 2 in the case of Speck.

Explanation. The high-level structure of this estimation is based on counting
the average total number of trail-subkey pairs processed during the procedure,
similarly to Claim 3 (estimating Tenum for the case c = 1).

As was shown in Lemma 7, the average number of trail-subkey pairs at depth
d for c = 1 is equal to ntrails ⋅ 2d ⋅ qd = 2d ⋅ ηd. By Assumption 2, we can model
them as 2d ⋅ ηd balls thrown into 2d bins, with each throw chosen uniformly and
independently at random. Our goal is to compute the expected number of balls
(trail-subkey pairs) landing in bins (subkeys) with at least c balls in each of them.
Solution to this standard problem is given in Proposition 3 in Appendix E, with
η = ηd, N = 2d and c = c in the proposition.

Remark 4. Note that the expression (23) with c = 1 reduces exactly to the ex-
pression (22) from Claim 3, if we define the sum ∑−1i=0 . . . to be equal to zero.

5 Attacks on 11 Rounds of Speck32

In this section, we estimate the time complexity of the MiF filtering procedure
when applied to Speck32 before describing MiF attacks on Speck32 reduced
to 11 rounds. Our attacks can be divided into two categories (based on the
division of the rounds): Attacks using an r+s+t split, which is a straightforward
application of MiF, and attacks with a MiF filter of a different size. We can vary
the number of r, s, t rounds depending on the number of rounds being attacked,
the availability of a valid differential or to achieve other time-data trade-offs.

5.1 Filtering Speck32 Trails with MiF

We begin by first describing the functionality of MiF when applied to Speck.
Recall that we only need subkeys for k = 4 rounds to recover the full master key.
Thus a straightforward application of MiF appends 4 rounds at the bottom of
an r-round differential in the form of a 2 + 2 MiF filter with (s, t) = (2,2). The
operation of this filter configuration is shown in Figure 3. The elements in green
are fixed values from the best r-round differential (trail) used in the attack. The
elements in dark yellow come from the pre-computed cluster trails τs ∈ S. Purple
elements correspond to trails τt ∈ T generated by the reverse search procedure
(the backward filter).

21

First n-bit
check

Second n-bit
check

2nd 1st

Fig. 3: Operation of a 2 + 2 MiF filter on the bottom four rounds of an r + 4
round attack on Speck2n. The elements in green are fixed values from an r
round differential (trail). The elements in dark yellow come from a pre-computed
cluster trail τs ∈ S. Purple elements correspond to trails τt ∈ T generated by the
reverse search procedure (the backward filter).

Since Speck is a Feistel-like cipher, the match in the middle between the
sets S and T can be done efficiently n bits at a time. Specifically, the first n-bit
check is executed on the right branch of round r+3 at the bottom (see Figure 3).
It matches the differences generated by the ADD operation in the last round to
the differences in the right branch coming from the cluster S. This match is
illustrated by the red line in Figure 3 (denoted “First n-bit check”). Only the
trails τt ∈ T that pass the first check proceed to the second n-bit check. The
latter is executed on the left branch at round r + 2 and is illustrated by a blue
line in Figure 3 (denoted “Second n-bit check”).

Denote by Tb the time complexity for checking the non-zero probability con-
dition of Lemma 1 for a single ADD differential. Further, let Ta be the time com-
plexity to generate a single output difference γ for fixed input differences α,β
for one ADD operation, such that the differential (α,β → γ) is of non-zero prob-
ability. The parameters Ta, Tb are all measured in Speck encryptions. Next, we
give the procedure for generating the bottom 4-round trails for the (1+6+2+2)-
round attack. For the sake of generality, we omit the additional round at the top
in our description since it does not affect the attack complexity.

1. Encrypt D
2
chosen plaintext pairs {(P1, P2 = P1 ⊕∆IN)} for r + 2 + 2 rounds

and collect the corresponding ciphertexts {(C1,C2)}. Recall that the data
complexity is D = 2 ⋅ c′ ⋅ p−1 ⋅ q−1 chosen plaintexts.

2. Each ciphertext pair (C1,C2) from Step 1 is expanded into about 212.1

ADD differentials for the last round modular addition in time Ta Speck-
encryptions (per pair). This is the number of non-zero ADD differentials for
Speck32 on average due to Lemma 5.

22

3. Of the D
2
⋅212.1 ADD differentials from Step 2, a fraction of ∣S(s,ws)∣

216
on average

results in a match with an entry from the cluster S. For each match, check
the non-zero probability condition of Lemma 1 in time Tb.

4. Each ADD differential from Step 3 has a pz = 2−3.9 chance to be of non-zero
probability (cf. Lemma 4). Therefore the total number of possible differen-

tials surviving the s+t MiF filter is D
2
⋅212.1 ∣S(s,ws)∣

216
2−3.9. Each one represents

a candidate right pair.
5. For each trail τk = τs∣∣τt from Step 4 execute key-recovery (Section 4.3).

In Step 2, the reverse search procedure in the backward filter of Speck32
visits at most 212.1 ADD differentials per round. Note that starting from ci-
phertext differences with low Hamming weight will (significantly) reduce this
number, while for random differences we shall generally see all 212.1 transitions
if there is no limit on the permissible transition weight. Since the cluster entry
at the point of the match is fixed from the output difference ∆OUT of the dif-

ferential (Step 3), the MiF filter checks on average, max (1, ∣S(s,ws)∣
2n

) elements

(∆xr,∆yr →∆xr+1) for the non-zero probability condition of Lemma 1. For ex-

ample, entries in a cluster with ∣S ∣ = 220 elements will have 220

216
= 24 candidates

on average, lower than the expected 212.1 ADD transitions given in the attack
procedure. Therefore the number of operations executed in the above steps is a
worst-case estimate.

MiF Complexity The complexity of the MiF filtering procedure, Tmif can be
estimated as follows:

Tmif =
D

2
⋅ 212.1Ta

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Steps 1, 2

+ D
2
⋅ 212.1 ∣S(s,ws)∣

216
Tb

´¹¹¹¸¹¹¹¶
Step 3

= D ⋅211.1(Ta+
∣S(s,ws)∣

216
Tb) . (24)

The unit of measurement here is FE. For Ta and Tb we assume that each of the
three basic arithmetic operations in Speck (addition, bitwise rotation, XOR)
have the same amortized cost of 1 unit operation (UO). Thus one round of
Speck, composed of five basic operations, costs 5 UO.

For Speck32, we estimate the cost to generate a single output difference γ
for fixed input differences α,β for one ADD to be equal to 1 UO on average (3
for Speck64), since the cDDT is able to generate a new γ at every table access,
after the other parts of the word were recursively set (in the cDDT, the (α,β, γ)-
differentials are processed in 8-bit chunks). The cost of checking the non-zero
probability condition of Lemma 1 is estimated at 11 UO, by counting the number
of operations needed to implement. With the given amortized estimations in
UO units, the parameters Ta and Tb for Speck32 reduced to R rounds are
computed in terms of R-round FE as: Ta = 1

5R
FE and Tb = 11

5R
FE. The 5R in the

denominator comes from the fact that each round has five unit operations, i.e.,
costs 5 UO. Note that we also assume that the cluster search can be implemented
as (hash) table look-ups requiring 1 UO each. In most of our attacks, however,

23

MiF’s time complexity is not the dominating term, especially when larger clusters
are in use.

Simplified MiF Filter For clusters that are smaller than ∣S ∣ = 212, we can
instead opt for a simplified MiF procedure. Knowledge of the output difference
∆X stored in the cluster and the ciphertext difference ∆C allows deriving all
XOR differences of the bottom two rounds. This is the same technique used by
Dinur in his 2-round attack (cf. [Din14b, Section 7]). We can then verify if the
trail is valid by Lemma 1. Thus we do not need to perform the backward filtering
procedure (Steps 2–4) that checks (on average) 212.1 possible ADD differentials
for each ciphertext pair. Given a cluster entry and ciphertext pair, we estimate
the cost of checking the validity of a trail to be Tc = 18 UOs (three rotations,
four XOR s and one Lemma 1 check). The estimated time complexity of the
simplified MiF procedure then reduces to:

Tmif =
D

2
⋅ ∣S ∣ ⋅ Tc UOs ≤ D

2
⋅ ∣S ∣ ⋅ 4

R
FE. (25)

5.2 Attacks using Splits (1+6+2+2) and (1+0+8+2)

When using MiF, we are not restricted to having u = s+ t rounds appended after
an r-round differential. Instead, the values of r, s, t can be varied to obtain various
trade-offs. One extreme would be to have all r rounds of the differential as the
top half of the MiF filter, i.e., a 0+s+t split with s = r. Note that when attacking
the same number of rounds, the latter allows using longer differentials than the
r+s+ t split. We consider two scenarios that according to our findings produced
the best 11-round attacks: a (1+6+2+2) split using 6-round differentials, and a
(1+0+8+2) split using 8-round differentials.

The (1+6+2+2) split follows exactly the basic structure of MiF described
in Section 4. As for the (1+0+8+2) split, the cluster S will instead contain 8-
round trails obtained by applying the Matsui-like search starting from the input
difference ∆IN of the 8-round differentials rather than their output difference
∆OUT. This slightly increases the time required to pre-compute the S but does
not affect the online phase of the attack. We only need to store information about
the bottom two rounds of the 8-round trails in S to reconstruct the 4-round
trails required for key recovery during the backward filtering procedure. Apart
from using a different round configuration, the rest of the MiF filtering procedure
follows the steps described in Section 5.1. Similarly, Tmif can be calculated based
on Equation (24) or Equation (25) for ∣S ∣ < 212.

5.3 Results

Our strategy to find the best 11-round attacks on Speck32 (and subsequently,
other variants of Speck) is as follows: We first identify the best differentials
to be used in our attacks, some of which are listed in Table 6. Starting from a
conservative value (usually the weight of the initial differential trail used in the

24

Table 3: Attacks on 11 round Speck32: The “Diff. ID” column refers to the IDs
of the differentials in Table 6).

No. Split ws
∣S(s,ws)∣
(log2)

pq
(log2)

c
D

(log2)
Tmif

(log2)
Tcnt

(log2)
Tatt

(log2)
Diff.
ID

1
1+6+2+2

34 19.28 -13.31 2 15.41 27.49 36.84 36.84 1
2 25 3.58 -21.30 3 24 25.13 25.09 26.11 2

3
1+0+8+2

37 21.27 -12.01 2 14.11 29.87 40.15 40.15 4
4 32 17.52 -13.48 2 15.58 25.93 34.87 34.87 5
5 24 0 -24.00 3 26.70 24.24 22.66 24.66 4

attack), we increment the cluster weight ws and compute the attack complexities
for both (1+6+2+2)and (1+0+8+2) splits. Note that we always set wt to the
maximum value of 30 as to not impose any limit on the backward filtering
process, thus maximising MiF efficiency. We repeat the process for all possible
differentials to identify the attacks with the best time and/or data complexities.
The results of our search for the (1+0+8+2) split is shown in Figure 4, which
consists of only the best attack time complexities T for varying amounts of data
D. Additionally in Table 3, we provide parameters for several other best attacks,
including those using the (1+6+2+2) split, on 11-round Speck32.

Data complexity, log2

Ti
m

e
co

m
pl

ex
ity

, l
og

2

24
26
28
30
32
34
36
38
40
42
44
46
48
50

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

C=1 C=2 C=3 C=4 Dinur Gohr

11R Attack (1+0+8+2)

Fig. 4: Time and data complexities of the best 1+0+8+2 attacks on 11-round
Speck32.

For 11-round Speck32, the figure shows that using either c = 3 or c = 4
leads to optimal time complexity versus data complexity trade-offs, i.e., by
spending more data, we get bigger gains in analysis speed. This is in con-

25

trast to using c = 1, which is analogous to adopting Dinur’s approach [Din14b],
which barely sees any time complexity improvements with more data consump-
tion. When optimized for time complexity, we have an (1+0+8+2) attack with
(T,D)11R = (224.66,226.7)11 which is 221.34 times faster than the 11-round at-
tacks by Dinur [Din14b] and 213.34 times faster than Gohr’s [Goh19]. Recall also
that Gohr’s attack successfully recovers 30 bits of key information 50% of the
time, while our attacks recover the full master key with a success rate of around
63%.

Generally, we found that using lower cluster weights ws lead to better attack
time complexities since the resulting cluster sizes ∣S ∣ are smaller. A smaller clus-
ter produces fewer trails for the key recovery procedure since only a fraction of
the trails in the reverse search procedure will find a match in the cluster. Fewer
trails in turn reduce the total number of keys that need to be filtered. Also, a
smaller cluster size allows using the simplified MiF procedure described in Sec-
tion 5.1. We can actually push this notion to its limits by setting ws to the weight
of the corresponding trail being used in the attack, thus having ∣S ∣ = 1. For ex-
ample, our fastest 11-round attack uses an input difference of (0x0a20,0x4205)
along with an (1+0+8+2) split. This input difference corresponds to an optimal
8-round trail with probability 2−24. Therefore by setting ws = 24, this 8-round
trail is the only one being stored in the cluster (∣S ∣ = 1).

However, going to these extremes means these attacks require the most data.
When optimized for time complexity, our best attack on 11 rounds requires more
(albeit still practical, D < 227) data than previous 11-round attacks by Dinur
and Gohr, which only require 214 and 214.5 chosen plaintexts respectively. This
is due to the lower efficiency q of the MiF filter, which has to be compensated by
increasing the amount of data used. Thus we can reduce the data complexity for
MiF attacks by using larger cluster weights, which increases both ∣S ∣ and q. By
having ws = 37, we have an 11-round attack which is about 56 times faster than
Dinur’s attack while using a similar amount of data (T,D)11R = (240.20,214.11).
By using ws = 32, we still end up using twice as much data as Gohr, but now
have an attack that is around 8 times faster (T,D)11R = (235.06,215.58) and with
better success rate.

Experimental Verification of an 11-round Attack The fastest 11-round
attack using the (1+0+8+2) split (Attack #5 from Table 3) was implemented
and verified in practice. We provide detailed experiment information for c = 3,
which is the fastest variant.

The offline MiF phase generates a cluster S with the given parameters:
s = 8,ws = 24. Due to low cluster weight, the only trail in the cluster is the

best trail (0x0a20,0x4205) 8Ð→ (0x802a,0xd4a8) of weight 24. Next, D = 225.7
random pairs with difference ∆P = ∆IN = (0x0a20,0x4205) are encrypted. For
each ciphertext pair, we run the simplified MiF procedure from Section 5.1 to

11 The time complexity is less than the data complexity since it is measured in full
(11-round) Speck32 encryptions. Most of 225.7 collected pairs are filtered out by
MiF with the complexity of 1-round Speck encryption.

26

bridge the difference ∆OUT = (0x802a,0xd4a8) from the cluster with the ci-
phertext difference ∆C, and checking the resulting 2-round trail for validity
(using Lemma 1). Valid trails are recorded together with the associated cipher-
text pairs. Our implementation performs this procedure in several seconds. As
a result, we collect 214.9 trails, which is in line with 2−10.8 trails/pair obtained
using the method from Section 4.4.

We run the multi-trail key recovery procedure (Section 4.3) with c = 3 (in fact,
using the secret key we could see that 5 right trails were actually suggested by
MiF). Our implementation performs this procedure in less than a second, yielding
the (only) right secret master key. Our not fully optimized attack demonstrates
significant performance improvement over the previous best attack on 11 rounds
from Gohr which takes about 500 seconds [Goh19]. A graph illustrating the
complexity of key recovery for this attack is provided in Appendix B.

6 Attacks on 12 to 15 Rounds of Speck32

In Table 4 we summarize the best attacks on 12 to 15 rounds of Speck32 along
with the attack parameters. For each number of rounds, we list the best attack
in terms of time complexity and optimal attacks that use a similar amount of
data as previous attacks in the literature. For example, the best 12-round attack
using Dinur’s approach [Din14b] requires 219 chosen plaintexts and has a time
complexity of T = 251. In contrast, we can use slightly less data (Table 4, #1)
for an attack that is about 34 times faster. We also have a 12-round attack that
is faster than the differential-neural attack by Bao et al. [BGL+21] by a factor
of 7.6 by only using 1.5 times more data (Table 4, #2). At higher rounds such
as 14 and 15, the time-data trade-offs are no longer possible as we are working
with almost the full codebook. Due to the restriction in data complexity, we are
limited to just using c = 1 or 2. However, we still have 14-round and 15-round
attacks that are around two to three times faster. In all cases, MiF complexity
is not the dominant term and does not affect the overall analysis complexity
(Tatt ≈ Tcnt).

Experimental Verification of a 12-round Attack The fastest attack on 12-
round Speck32/64 using the round splits 1+ 8+ 1+ 2 (attack #3 from Table 4)
was implemented and verified in practice. Initially, it was executed using the split
1 + 0 + 9 + 2, however, after the inspection of the generated cluster, it became
clear that the split 1+8+1+2 describes it more precisely (see below). We provide
detailed experiment information for c = 4, which is the fastest variant.

The offline MiF phase generates a cluster S with the given parameters:
s = 9,ws = 31,∆IN = (0x7458,0xB0F8). Due to the low cluster weight, the
generated cluster contains only 12 trails. Upon a manual inspection, it turned
out that the 9-round cluster in fact consists of a single 8-round trail (namely,

(0x7458,0xB0F8) 8Ð→ (0x802A,0xD4A8) having the best possible trail weight 24),
extended by 1 round in 12 different ways. The cluster has efficiency 2−27.30,

27

Table 4: Attacks on 12–15 rounds of Speck32: The “Diff. ID” column refers to
the IDs of the differentials in Table 6).

No. Rounds Split ws
∣S(s,ws)∣
(log2)

pq
(log2)

c
D

(log2)
Tmif

(log2)
Tcnt

(log2)
Tatt

(log2)
Diff.
ID

1 12 1+0+9+2 38 21.27 -16.17 3 18.88 32.80 45.91 45.91 8
2 12 1+7+2+2 36 15.71 -19.74 3 22.45 30.96 42.02 42.02 3
3 12 1+8+1+2 31 3.58 -27.30 4 30.42 31.42 33.54 33.84 7
4 13 1+0+10+2 43 19.38 -23.16 2 25.27 37.20 56.41 56.41 11
5 13 1+8+2+2 40 11.69 -28.01 4 31.13 36.84 50.16 50.16 6
6 14 1+9+2+2 50 17.84 -29.65 1 30.64 40.95 61.35 61.35 9
7 14 1+9+2+2 50 17.84 -29.65 2 31.75 42.05 60.99 60.99 9
8 15 1+10+2+2 55 18.18 -30.40 1 31.39 41.93 62.25 62.25 10

catching the 2−3.30 fraction of the signal from the 8-round trail. Next, D = 229.42
random pairs with difference ∆P =∆IN are encrypted. For each ciphertext pair,
we run the simplified MiF procedure from Section 5.1 to bridge one of the dif-
ferences ∆X from the cluster with the ciphertext difference ∆C. Our imple-
mentation performs this procedure in 40 seconds. As a result, we collect 223.52

trails, which is in line with 2−5.87 trails/pair obtained using the method from
Section 4.4.

We run the multi-trail key recovery procedure (Section 4.3) with c = 4. Using
the secret key we could see that 7 right trails were actually suggested by MiF.
The increased number of right trails was persistent across several executions. We
explain this by probability increase for the cluster due to the differential effect of
the underlying trails. This means that we could, in principle, use higher c with
the same data complexity D while maintaining the target success rate above
63%. Our implementation performed this procedure in 13 minutes for c = 4 or
in 6 minutes for c = 7 (on the same data set), yielding only the correct secret
master key.

Our attack demonstrates significant performance improvement over the pre-
vious best attack on 12 rounds by Gohr (12 hours) [Goh19]. The illustration
of the time complexity evolution of the attack for different values of c (and
data complexity adapted to maintain the success rate of 63%) can be found in
Figure 5.

7 Attacks on Speck64/128

In Table 5 we highlight some of our best attacks on 13, 19 and 20 rounds of
Speck64/128, all of which adopt a 1 + r + 2 + 2 split. Contrary to intuition, our
results show that using suboptimal differentials can sometimes produce better
attacks due to having better trail weight distributions for key recovery e.g. 4-
round trails with heavier weights in the top two rounds would suggest fewer keys
than those with less. The time-data trade-offs that are possible with MiF can
be clearly observed in the 13-round and 19-round attacks which both have data

28

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

Total #keys / depth c=1 (model) c=2 (model) c=3 (model) c=4 (model) c=1 (real attack) c=2 (real attack)
c=3 (real attack) c=4 (real attack)

12R Attack (1+0+9+2)

Fig. 5: Time complexity analysis of an attack family on 12-round Speck32 (see
Table 4, #3). Lines plotted are the predicted numbers of trail-subkey pairs visited
per each depth 0 . . .64 for attacks with c = 1,2,3,4; data points mark values
collected from real attack runs, one run per each c (full attacks for c = 3,4 and
partial samples up to feasible depths for c = 1,2).

complexities that are well within the codebook. When using 2.5 times the data,
we have a 13-round MiF attack that is around 234.66 times faster than Dinur’s
approach [Din14b]. By further doubling the amount of data, analysis speed is
further improved by a factor of 28.89.

Table 5: Attacks on Speck64: The “Diff. ID” column refers to the IDs of the
differentials in Table 6).

No. Rounds Split ws
∣S(s,ws)∣
(log2)

pq
(log2)

c
D

(log2)
Tmif

(log2)
Tcnt

(log2)
Tatt

(log2)
Diff.
ID

1 13 1+8+2+2 59 26.13 -29.18 2 31.28 50.96 61.34 61.34 12
2 13 1+8+2+2 56 23.71 -29.35 2 31.46 51.06 59.53 59.53 12
3 13 1+8+2+2 55 22.86 -29.44 3 32.14 51.75 51.07 52.45 12
4 19 1+14+2+2 86 26.97 -56.46 2 58.56 77.76 114.65 114.65 13
5 19 1+14+2+2 81 22.02 -57.32 6 61.03 79.80 101.08 101.08 13
6 20 1+15+2+2 92 27.98 -61.86 2 63.96 83.22 122.69 122.69 14

When using around the same amount of data D ≈ 261 as the best attacks
in literature, our attack has an analysis complexity of 2101.08, which is around
224 faster. Compared to Speck32, we clearly see bigger gains when using MiF
on Speck64 because more noise (wrong trails) can be quickly discarded using
the counting technique. This is due to these trails having a lower differential

29

transition probability (Lemma 6). When it comes to 20 rounds of Speck64/128,
we face restrictions in terms of data complexity as we have almost exhausted the
codebook. Thus, we are limited to using c = 2 in our best attack, which is still
7.3 times faster than the best 20-round attack proposed by Song et al. [SHY16].

Acknowledgement

We thank Daniel Feher and Giuseppe Vitto for implementation of Dinur’s filter-
ing algorithm and early study of key-recovery strategies in MiF.

References

ALLW14. Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential
cryptanalysis of round-reduced Simon and Speck. In FSE 2014, volume
8540 of LNCS, pages 525–545. Springer, 2014. 6, 7

BBP22. Nicoleta-Norica Bacuieti, Lejla Batina, and Stjepan Picek. Deep neural net-
works aiding cryptanalysis: A case study of the Speck distinguisher. Cryp-
tology ePrint Archive, Report 2022/341, 2022. 3

BGL+21. Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Condi-
tional differential-neural cryptanalysis. Cryptology ePrint Archive, Report
2021/719, 2021. 3, 6, 7, 27

BGPT21. Adrien Benamira, David Gérault, Thomas Peyrin, and Quan Quan Tan.
A deeper look at machine learning-based cryptanalysis. In EUROCRYPT
2021, volume 12696 of LNCS, pages 805–835. Springer, 2021. 3, 7

BR20. Emanuele Bellini and Matteo Rossi. Performance comparison between deep
learning-based and conventional cryptographic distinguishers. Cryptology
ePrint Archive, Report 2020/953, 2020. 3

BRV14. Alex Biryukov, Arnab Roy, and Vesselin Velichkov. Differential analysis of
block ciphers SIMON and SPECK. In FSE 2014, volume 8540 of LNCS,
pages 546–570. Springer, 2014. 6, 7

BS91. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. J. Cryptology, 4(1):3–72, 1991. 2

BSS+13. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK Families of Lightweight
Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. 11

BVC16. Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. Automatic search
for the best trails in ARX: Application to block cipher Speck. In FSE 2016,
volume 9783 of LNCS, pages 289–310. Springer, 2016. 7, 8

DFJ13. Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key re-
covery attacks on reduced-round AES in the single-key setting. In EURO-
CRYPT 2013, volume 7881 of LNCS, pages 371–387. Springer, 2013. 5

Din14a. Itai Dinur. Improved differential cryptanalysis of round-reduced Speck. In
SAC 2014, volume 8781 of LNCS, pages 147–164. Springer, 2014. 3

Din14b. Itai Dinur. Improved differential cryptanalysis of round-reduced Speck.
Cryptology ePrint Archive, Report 2014/320, 2014. 3, 5, 6, 7, 10, 19, 24,
26, 27, 29

DKS10. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key at-
tacks on 8-round AES-192 and AES-256. In ASIACRYPT 2010, volume
6477 of LNCS, pages 158–176. Springer, 2010. 5

30

DSP07. Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved meet-in-the-
middle attacks on reduced-round DES. In INDOCRYPT 2007, volume 4859
of LNCS, pages 86–100. Springer, 2007. 5

FWG+16. Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. MILP-based
automatic search algorithms for differential and linear trails for Speck. In
FSE 2016, volume 9783 of LNCS, pages 268–288. Springer, 2016. 7

Goh19. Aron Gohr. Improving attacks on round-reduced Speck32/64 using deep
learning. In CRYPTO 2019, volume 11693 of LNCS, pages 150–179.
Springer, 2019. 3, 5, 6, 26, 27, 28

HW19. Mingjiang Huang and Liming Wang. Automatic tool for searching for dif-
ferential characteristics in ARX ciphers and applications. In INDOCRYPT
2019, volume 11898 of LNCS, pages 115–138. Springer, 2019. 7, 8, 12

LIM21. Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of full lowmc
and lowmc-m with algebraic techniques. In CRYPTO 2021, volume 12827
of LNCS, pages 368–401. Springer, 2021. 5

LKK+18. HoChang Lee, Seojin Kim, HyungChul Kang, Deukjo Hong, Jaechul Sung,
and Seokhie Hong. Calculating the approximate probability of differentials
for ARX-based cipher using SAT solver. Journal of the Korea Institute of
Information Security & Cryptology, 28(1):15–24, 2018. 6, 7, 32

LLJW19. Zhengbin Liu, Yongqiang Li, Lin Jiao, and Mingsheng Wang. A new method
for searching optimal differential and linear trails in ARX ciphers. Cryptol-
ogy ePrint Archive, Report 2019/1438, 2019. 7, 8

LM01. Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differ-
ential properties of addition. In FSE, volume 2355 of LNCS, pages 336–350.
Springer, 2001. 9, 10, 38

LMM91. Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and differ-
ential cryptanalysis. In EUROCRYPT, volume 547 of LNCS, pages 17–38.
Springer, 1991. 8

Mat94. Mitsuru Matsui. On correlation between the order of S-boxes and the
strength of DES. In EUROCRYPT 1994, volume 950 of LNCS, pages 366–
375. Springer, 1994. 7

MP13. Nicky Mouha and Bart Preneel. Towards finding optimal differential char-
acteristics for ARX: Application to Salsa20. Cryptology ePrint Archive,
Report 2013/328, 2013. 7

RST18. Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanalysis
of low-data instances of full LowMCv2. IACR Trans. Symmetric Cryptol.,
2018(3):163–181, 2018. 5

SHY16. Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential
analysis of ARX block ciphers with application to SPECK and LEA. In
ACISP 2016, volume 9723 of LNCS, pages 379–394. Springer, 2016. 6, 7, 30

31

Supplementary Material

A Differentials

Table 6: Differentials used in this paper. Where existing differentials were not
available we used a SAT solver to compute them. Pr T is the probability of the
best trail, and Pr D is the probability of the differential, and both are expressed
as − log2(Pr).

ID r ∆in ∆out Pr T Pr D Ref.

1 6 0x0211,0x0A04 0x850A,0x9520 13 - -
2 6 0x0A20,0x4205 0x8000,0x840A 14 - -
3 7 0x0A20,0x4205 0x850A,0x9520 18 17.94 -
4 8 0x0A20,0x4205 0x802A,0xD4A8 24 23.84 -
5 8 0x0A60,0x4205 0x802A,0xD4A8 24 23.84 -

S
p
e
c
k
3
2 6 8 0x7448,0xB0F8 0x850A,0x9520 24 23.95 -

7 8 0x7458,0xB0F8 0x802A,0xD4A8 24 23.95 -
8 9 0x0A20,0x4205 0x01A8,0x530B 31 30.37 -
9 9 0x8054,0xA900 0x0040,0x0542 30 29.37 -
10 10 0x2800,0x0010 0x0004,0x0014 35 30.39 [LKK+18]
11 10 0x7448,0xB0F8 0x00a8,0x520B 37 36.30 -

S
p
e
c
k
6
4 12 8 0x00820200,0x00001202 0x20200000,0x01206008 29 28.87 -

13 14 0x04092400,0x20040104 0x80008004,0x84008020 56 55.69 -
14 15 0x04092400,0x20040104 0x808080a0,0xA08481A4 62 60.73 -

B Key Recovery Complexity Graphs

In this appendix, we provide workload graphs for various best MiF attack families
on different Speck instances. These graphs show the prediction of the total
number of trail-subkey pairs visited at each depth (accumulated over all visited
branches). Each graphs presents a family of attacks for varying values of c =
1 . . .6. This allows us to clearly illustrate the effect of the counting technique
coupled with MiF. We outline briefly the most interesting data on these graphs:

– The starting point for each curve defines the predicted initial number of
trails to be suggested by MiF. It is adapted for each c based on the factor c′

(see Appendix D).

– The total number of trail-subkey pairs across all (integral) depths except
the last one (equal to, roughly, the area under the curve) defines the time
complexity Tenum of the recursive procedure, up to a complexity coefficient
(see Claim 3, Claim 4).

– The final value of the curve defines the number of recovered subkey groups
to be tested either using conformance to the trail or by full trial decryptions.
This induces the time complexity Ttrials, again, up to a complexity coefficient
(see Claim 2).

Note that the coefficients of Tenum and Ttrials are slightly different, therefore
the dominating term is not always clear from these graphs. However, they both
contribute to the attack’s complexity Tatt.

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

Total #keys / depth c=1 (model) c=2 (model) c=3 (model) c=4 (model) c=1 (real attack) c=2 (real attack)
c=3 (real attack) c=4 (real attack)

11R Attack (1+0+8+2)

Fig. 6: Time complexity analysis of the fastest attack family on 11-round
Speck32 (see Table 3, attack #5 with c = 3). Lines plotted are the predicted
numbers of trail-subkey pairs visited per each depth 0 . . .64 for attacks with
c = 1,2,3,4; data points mark data collected from a real experiment with bad
trails only (in the case c = 1, missing points were not obtained due to complexity
limitations; in the cases c = 3,4 missing points signify the absence of survived
wrong candidates).

C Memory Optimizations for the Multi-Trail Key
Recovery Procedure

– On-the-fly quick filtering. In Speck, due to a round subkey being added
only to one branch, a large fraction of suggested trails does not have valid
keys for decryption of the associated ciphertext pairs in accordance with the

33

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

48

52

56

60

64

48 52 56 60 64

Total #keys / depth c=1 c=2 c=3 c=4 c=5 c=6

14R Attack (1+9+2+2)

Fig. 7: Time complexity analysis of an attack family on 14-round Speck32 (see
Table 4, #6,#7), zoomed into the last 16 bits of key recovery (the dominating
part). Lines plotted are the predicted numbers of trail-subkey pairs visited per
each depth 0 . . .64 for attacks with c = 1,2,3,4,5,6. Note that attacks with c ≥ 3
require an infeasible amount of data.

trails. Part of this filter can be implemented very efficiently using Dinur’s
multi-bit filters. For example, in Speck32, 6-bit filters applied to the last
round’s transition keep only about 0.25 of all trails.

– On-the-fly deep filtering. In our attacks, the MiF backwards filter covers 2
rounds, and these 2 rounds have very high-weight transitions on average.
Therefore, checking the existence of 2-round keys would allow filtering out
more trails. This can be implemented by running the single-trail recursive
procedure up to 2 rounds. Note that this method has negligible time over-
head, in contrast to seemingly similar Dinur’s initial 2- round subkey guess-
ing. This is due to the availability of the full trail from MiF, allowing search
tree cutoffs on each bit level.

– Larger first recursion step. The multi-trail procedure keeps a list of trails per
each depth level in the recursion. These lists have quickly decreasing sizes
(according to Lemma 6, the expected factor per bit of a random differential

transition through ADD is n
√
(4/7)n−1 ≤ 2−0.75 for n ≥ 16. Therefore, the

total storage size expansion (compared to the size of the input list of trails)
is below the sum of this geometric progression, equal to 1/(1−2−0.75) ≈ 2.47.
It can be effectively reduced to 1 by increasing the first recursion step’s guess
to several bits. This would chop off the heaviest lists of trails on the recursion
path. For example, guessing 8 bits instead of 1 would replace the factor

1 + 2−0.75 + 2−1.5 + 2−2.25 + . . . + 2−6 + 2−6.75 + . . . ≈ 2.47 (26)

34

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

48

56

64

48 56 64

Total #keys / depth c=1 c=2 c=3 c=4 c=5 c=6

15R Attack (1+10+2+2)

Fig. 8: Time complexity analysis of an attack family on 15-round Speck32 (see
Table 4, #8), zoomed into the last 16 bits of key recovery (the dominating part).
Lines plotted are the predicted numbers of trail-subkey pairs visited per each
depth 0 . . .64 for attacks with c = 1,2,3,4,5,6. Note that attacks with c ≥ 2
require an infeasible amount of data.

by

1 + 2−6 + 2−6.75 + . . . ≈ 1.039. (27)

We remark that this step is very similar to Dinur’s initial 2-round subkey
guessing. However, by guessing a smaller number of bits (which is possible
due to the availability of the trail) we can minimize the memory overhead
without visibly affecting the time complexity.

– Compact storage. In our attacks on Speck, the backwards filter covers 2
rounds. Due to the Feistel-like structure, input and output differences of 2
rounds of Speck completely determine the intermediate differences, i.e., the
full 2-round trail. Therefore, instead of storing full 4-round trails as required
for the key recovery, we could initially store trails in a compressed form: the
ciphertext difference ∆C and the cluster difference ∆X. The last 2 rounds of
the trail can be recovered due to the aforementioned property of the Feistel
structure, and the preceding rounds can be recovered from the cluster.

Note that the (de)compression overhead on time complexity would be neg-
ligible on first depths. At a particular depth, when the size of the list of
trails is sufficiently small, all the necessary auxiliary information required to
minimize the time complexity can be computed and stored for subsequent
computations, causing only a negligible memory overhead.

35

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

0

16

32

48

64

80

96

112

128

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total #keys / depth c=1 c=2 c=3 c=4 c=5 c=6

19R Attack (1+14+2+2)

Fig. 9: Time complexity analysis of an attack family on 19-round Speck64 (see
Table 5, #5). Lines plotted are the predicted numbers of trail-subkey pairs visited
per each depth 0 . . .128 for attacks with c = 1,2,3,4,5,6.

D Computing the Required Multiplier for Counting

The binomial distribution converges to the Poisson distribution when the number
of trials goes to infinity. The following proposition is essentially given by the
Poisson distribution. We derive it explicitly to highlight the approximations used
so that the approximation error can be bounded if necessary.

Proposition 1. Let q ∈ R+, q ≪ 1 and c ∈ Z,1 ≤ c≪ 1/q. Consider c′/q indepen-
dent experiments each with the probability of a positive outcome equal to q. The
probability to succeed at least c times is equal to (up to a negligible error)

1 − e−c
′
c−1
∑
i=0

(c′)i

i!
. (28)

Proof. The exact probability can be computed by subtracting from 1 the prob-
abilities to succeed strictly less than c times:

Pr[#successes ≥ c] = 1 −
c−1
∑
i=0
(c
′/q
i
)qi(1 − q)(c

′/q)−i. (29)

Since i ≤ c ≪ 1/q ≤ c′/q, we can use the approximation (n
k
) ≈ nk

k!
. Since q ≪ 1,

we can approximate (1 − q)(c
′/q)−i as e−c

′

/(1 − q)i ≈ e−c
′

. After cancelling qi and

moving e−c
′

outside, the proposition follows.

We now consider the problem of finding the right c′ given the target suc-
cess rate q̃ of at least c positive outcomes. Note that this value is practically
independent of q when q is sufficiently large.

36

Depth (bits)

Tr
ai

l-s
ub

ke
y

pa
irs

 a
t t

he
 d

ep
th

, l
og

2

80

88

96

104

112

120

128

80 88 96 104 112 120 128

Total #keys / depth c=1 c=2 c=3 c=4 c=5 c=6

19R Attack (1+14+2+2) (final stage)

Fig. 10: Time complexity analysis of an attack family on 19-round Speck64 (see
Table 5, #5), zoomed in to the last 48 bits of key recovery (the dominating
part). Lines plotted are the predicted numbers of trail-subkey pairs visited per
each depth 0 . . .128 for attacks with c = 1,2,3,4,5,6.

Proposition 2. Given the target success rate q̃ ∈ R+, the required number c′/q
of experiments is characterized by the following equation:

c−1
∑
i=0

(c′)i

i!
= ec

′+b, (30)

where b = ln(1 − q̃).

Proof. Follows from Proposition 1 by equating (28) to q̃.

Since c′ affects the overall success probability in a monotone way, its value
can be computed using binary search on the error of the equation (i.e., the
difference between the left-hand and the right-hand sides, which is decreasing
with increasing c′).

E Throwing Balls into Bins

Proposition 3. Let η ∈ R+,N ∈ Z+, c ∈ Z+. Consider ηN balls be thrown into
N bins, each throw destination chosen independently and uniformly at random.
Then, the expected number Tc of balls to have landed into bins with at least c
balls in each of the bins is well approximated by:

Tc = ηN ⋅ (1 − e−η
c−2
∑
i=0

ηi

i!
) . (31)

37

Proof. Consider any arbitrary bin. The number of balls in it follows the binomial
distribution with B(M,1/N). In particular, the probability of the bin having
exactly c balls is equal to

(ηN
c
) ⋅ (1/N)c ⋅ (1 − 1/N)ηN−c. (32)

For small c and large N,ηN , the probability is very closely approximated by

(ηN)c

c!
⋅ (1/N)c ⋅ (1 − 1/N)ηN−c ≈ ηc

c!
⋅ e−η. (33)

To get the expected number of balls landing in bins with at least c balls in each
of them can be computed by subtracting from the total number of balls ηN the
amounts of balls landing in bins with 1,2, . . . , c−1 balls (here we use the linearity
of expectation, which does not require independence):

Tc = ηN −N ⋅
c−1
∑
i=1

i ⋅ e−η ⋅ η
i

i!
= ηN ⋅ (1 − e−η

c−2
∑
i=0

ηi

i!
) . (34)

F Proofs for Differential Properties of Addition

First, we recall the main results from Lipmaa and Moriai.

Lemma 1 ([LM01, Lemma 3]). The probability xdp+(α,β, γ) is non-zero if
and only if

αi ⊕ βi ⊕ γi =
⎧⎪⎪⎨⎪⎪⎩

0 if (i = 0) ,
βi−1 if (i ≥ 1) ∧ (αi−1 = βi−1 = γi−1) .

(35)

Theorem 1 ([LM01, Algorithm 2]). If xdp+(α,β, γ) > 0 then

xdp+(α,β, γ) = 2−n+l+1, where l = ∣{i ∈ {0, . . . , n − 2} ∶ αi = βi = γi}∣ . (36)

Lemma 4 ([LM01, Theorem 2]). The fraction of all transitions through
ADD (including invalid ones) having weight w is given by

Pr
α,β,γ
[xdp+(α,β, γ) = 2−w] = 1

2
(7
8
)
n−1

B(w;n − 1, 6
7
) . (37)

We can now derive proofs for the results about xdp+/xdp− used in the paper.

Lemma 2. The probability xdp+(α,β, γ) is invariant under any permutation
of the inputs α,β, γ, i.e.,

xdp+(α,β, γ) = xdp+(α, γ, β) = xdp+(β,α, γ) = (38)

Proof. Follows from Lemma 1 and Theorem 1 after observing that the latter two
remain valid for any permutation of the bits αi, βi, γi, 0 ≤ i ≤ n − 1.

38

Lemma 3. The differential (α,β → γ) has the same probability through modular
addition and modular subtraction for any choice of differences α,β, γ, i.e.,

xdp+(α,β, γ) = xdp−(α,β, γ) . (39)

Proof. By definition of xdp+/xdp−, we get

xdp+(α,β, γ) = 2−2n ⋅ ∣{(a, b) ∶ ((a⊕ α) + (b⊕ β))⊕ (a + b) = γ}∣
= 2−2n ⋅ ∣{(c, b) ∶ (((c − b)⊕ α) + (b⊕ β))⊕ c = γ}∣
= 2−2n ⋅ ∣{(c, b) ∶ ((c − b)⊕ α) + (b⊕ β) = c⊕ γ}∣
= 2−2n ⋅ ∣{(c, b) ∶ ((c⊕ γ) − (b⊕ β))⊕ (c − b) = α}∣
= xdp−(γ, β,α) = xdp−(α,β, γ),

by using c = a + b and the previous lemma.

Lemma 9. The total number of valid differential transitions through ADD is
given by

∣{α,β, γ ∶ xdp+(α,β, γ) > 0}∣ = 4 ⋅ 7n−1. (40)

Proof. Follows from Lemma 4 by summing it over all weights w ≤ n−1 and over
all 23n possible values for (α,β, γ).

Lemma 5. Let α,β be chosen independently and uniformly at random. The
expected number of differences γ such that the differential transition (α,β) → γ
is valid (i.e., xdp+(α,β, γ) > 0) is given by

E
α,β
[∣{γ ∶ xdp+(α,β, γ) > 0}∣] = (7

4
)
n−1
= 2(n−1) log2

7
4 . (41)

Proof. Follows from Lemma 9 by dividing the total number 4 ⋅ 7n−1 of valid
transitions by the total number 22n of input pairs (α,β).

Lemma 6. Let (α,β) → γ be a transition through ADD sampled uniformly at
random from all valid transitions through ADD. The average differential transi-
tion probability p is given by

E
α,β,γ∶

xdp+(α,β,γ)>0

[xdp+(α,β, γ)] = (4
7
)
n−1
= 2(n−1) log2

4
7 . (42)

Proof. Follows from Lemma 9 by dividing the total number 22n of input pairs
by the total number 4 ⋅ 7n−1 of valid transitions.

39

	Meet-in-the-Filter and Dynamic Counting with Applications to Speck

