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Abstract

In this paper, we study the class of those Boolean functions that are coset leaders
of first order Reed-Muller codes. We study their properties and try to better un-
derstand their structure (which seems complex), by studying operations on Boolean
functions that can provide coset leaders (we show that these operations all provide
coset leaders when the operands are coset leaders, and that some can even produce
coset leaders without the operands being coset leaders). We characterize those coset
leaders that belong to the well known classes of direct sums of monomial Boolean
functions and Maiorana-McFarland functions. Since all the functions of Hamming
weight at most 2n−2 are automatically coset leaders, we are interested in constructing
infinite classes of coset leaders having possibly Hamming weight larger than 2n−2.

Keywords: Boolean functions, coset leader, Hamming Weight.

1 Introduction
The Reed-Muller code RM(r, n) (of length 2n and order r) is the linear code equal to the
vector space of all n-variable Boolean functions f : Fn

2 7→ F2 (represented by the last
column of their truth tables) of algebraic degree at most r; in particular, when r = 1,
it equals the vector space of all affine Boolean functions (see [12] for more details on
Reed-Muller codes).

A coset leader of a linear code C of length N (that is, of an F2-subspace of FN
2 ) is any

vector e of length N that has minimum Hamming weight among all the elements of the
coset of C to which it belongs, that is, among the elements of e + C.
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Coset leaders play a role in coding theory; they can be used in maximum likelihood
decoding analysis (see [1]): if a word g is sent, and the decoder receives the word h, the
word e = h−g is called the error vector and belongs to the coset h+C of C. The decoding
of the word h depends on the weight t of e. For instance, it is known that if t > d−1

2 , where
d is the minimal distance of C, then there may be errors of weight t which are not uniquely
decodable (see [10]). Helleseth and Klove defined in [10] the notion of false neighbor of
a codeword h ∈ C which is a nonzero codeword g ∈ C such that wH(h − g) ≤ wH(h). An
error e has no false neighbor if and only if it is the unique coset leader in its coset.

Coset leaders also present an interest from the cryptographic viewpoint. A coset leader
of RM(1, n) is a Boolean function f whose Hamming weight wH( f ) is the minimum of
the set {wH( f + l), l ∈ RM(1, n)}. In other words, a coset leader is a Boolean function
whose Hamming weight is equal to its nonlinearity, an important notion in cryptography,
see [4].

It is straightforward that any Boolean function in n variables and of Hamming weight
at most 2n−2 is a coset leader of RM(1, n): if wH( f ) ≤ 2n−2, then for every nonzero affine
function a, we have (according to the triangular inequality) that wH( f + a) ≥ wH(a) −
wH( f ) ≥ 2n−2. The case of coset leaders of Hamming weight larger than 2n−2 has been
little studied. It may be illusory to hope to ever find a simple characterization and/or a nice
structure of the set of coset leaders, since coset leaders represent an important part of all
Boolean functions: any coset of RM(1, n) contains at least one coset leader, by definition,
and the number of cosets of RM(1, n) being equal to 22n−n−1, the number of coset leaders
of RM(1, n) is at least 22n−n−1 (it is in fact, significantly larger, since for instance there are
2n coset leaders in each coset of RM(1, n) containing bent functions). Note that by the
covering radius bound, the nonlinearity of any function f , and therefore the Hamming
weight of any coset leader, can not be larger than b2n−1 − 2

n
2−1c (for n even, this bound is

tight - and achieved by the so-called bent functions [15] - and for n ≥ 9 odd, the maximum
nonlinearity is unknown). The property of being bent is clearly preserved by the addition
of affine functions.

Determining the coset leaders in a given coset f + RM(1, n) is closely related to deter-
mining the Walsh transform of f (see the definition in Section 2). Indeed, f (x) + u · x + ε
(where “·" is the inner product chosen for defining the Walsh transform) is a coset leader
if and only if W f (u) equals (−1)ε max{|W f (a)|; a ∈ Fn

2}. All the numerous papers which
calculate the Walsh spectra of some Boolean functions deal then with coset leaders. We
shall not describe the contents of all. In particular, we shall not describe those dealing
with quadratic functions: we know that every quadratic function is, up to the composition
on the right by some affine permutation, equal to f (x) = x1x2 + · · · + x2k−1x2k + a · x + ε,
for some k ≤ n

2 and a ∈ Fn
2, ε ∈ F2, and that max{|W f (a)|; a ∈ Fn

2} equals then 2n−k and
the coset leaders in f + RM(1, n) are the functions of the form (x1 + a2)(x2 + a1) + · · · +

(x2k−1 + a2k)(x2k + a2k−1), for some a1, . . . , a2k. Some papers deal with the Walsh spectrum
of non-quadratic Boolean functions. For instance, in [16] was shown that the degree 3
rotation symmetric function x1x2x3 + x2x3x4 + · · ·+ xnx1x2 has the same nonlinearity as its
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weight, after that the paper [8] made the same observation with the degree 2 rotation sym-
metric functions x1xl + x2xl+1 · · · + xnxn+l−1 for n even, and conjectured the same was true
for degree 3 functions. In [2] is also studied the algorithmic viewpoint on coset leaders:
an algorithmic process is given for finding the whole set of coset leaders of a binary code
C by using the Gröbner representation of C which allows the description of a complete
algorithm for the computation of its set of coset leaders.

In the present paper, we first study the properties of the set of coset leaders, and we
show that the operations of direct sum, direct product and direct majority (an operation
that we define) are internal in the set of coset leaders and that they provide, under rather
weak hypotheses, coset leaders from Boolean functions without the operands being coset
leaders themselves. We construct coset leaders f of Hamming weight wH( f ) satisfying
the inequalities 2n−2 < wH( f ) ≤ b2n−1 − 2

n
2−1c and we characterize those coset leaders in

the well known classes of direct sums of monomial functions and of Maiorana-McFarland
functions. Note that when a class is not a union of cosets of RM(1, n) (as the class of di-
rect sums of monomial functions, for instance), then for every function f in this class, we
need to study the coset leaders in the coset f + RM(1, n) and when a class is a union of
cosets of RM(1, n) (as the class of Maiorana-McFarland functions), it suffices to study the
coset leaders in this class.
The paper is organized as follows. Section 2 recalls the background useful for our con-
structions and characterizations. Section 3 is devoted to the properties of coset leaders
and to the study of the operations that allow to construct some of them. In Section 4, we
characterize the coset leaders in specific classes.

2 Preliminaries
A function from Fn

2 to F2 is called a Boolean function on Fn
2, or an n-variable Boolean

function, or a Boolean function in dimension n. The set 2F
n
2 of all Boolean functions on

Fn
2 is denoted by Bn. Boolean functions can be expressed in different ways, each ensuring

uniqueness. The most used one is by their multi-variate polynomial expression called the
algebraic normal form (in brief, ANF) defined as follows:

Definition 1 We call Algebraic Normal Form of a Boolean function f its n-variable rep-
resentation over F2 belonging to F2[x1, . . . , xn]/(x2

1 + x1, . . . , x2
n + xn):

f (x) =
∑

I⊆{1,2,...,n}

aI

(∏
j∈I

x j

)
=

∑
I⊆{1,2,...,n}

aI xI

where aI ∈ F2.

We also have the possibility of representing Boolean function by their truth-tables, that
we will not consider in this work, and by their trace representation, that we shall describe
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later. We will treat a function f ∈ Bn as a vector of length 2n and as a polynomial in n
variables xl, . . . , xn. The algebraic degree of a Boolean function f , denoted by deg( f ), is
the degree of its ANF (see [11]).
For every binary vector x ∈ Fn

2, the Hamming weight wH(x) of x being the number of
its non zero coordinates (i.e. the size of the set {i ∈ N/xi , 0}, called the support of x,
where N denotes the set {1, . . . , n}), the Hamming weight wH( f ) of a Boolean function f
on Fn

2 is also the size of the support of the function denoted by supp( f ), i.e. of the set
{x ∈ Fn

2/ f (x) = 1} (the set {x ∈ Fn
2/ f (x) = 0} being called the cosupport of the fonction

f , and denoted by cosupp( f )). The Hamming distance between two Boolean functions f
and g equals the Hamming weight of their sum, that is, |{x ∈ Fn

2; f (x) , g(x)}|.
We define in what follows the notions of affine equivalence, of affine invariance and some
notation useful in Section 3 and in Section 4.

Definition 2 Two Boolean functions f and g are said affinely equivalent if there exists L,
an affine automorphism of Fn

2, such that f = g ◦ L where ◦ is the operation of composi-
tion. If L is a simple permutation of the input bits, then f and g are called permutation-
equivalent.
Two Boolean functions f and g are said EA-equivalent if g is affinely equivalent to the
sum of f and an affine function.

Recall that an affine automorphism of Fn
2 is a function L :


x1

x2

x3
...

xn


7→ M


x1

x2

x3
...

xn


+


a1

a2

a3
...

an


where M is a nonsingular n × n matrix.
A parameter associated to a function is called an affine invariant if it is preserved by
affine equivalence. For instance, the Hamming weight and the algebraic degree are affine
invariants.

Notation 1 Let f and g be two Boolean functions.
The notation f ∼ g will be used for “ f and g are affinely equivalent".
We shall denote by Var( f ) the set {i | xi appears in the ANF of f }, which is not preserved
by affine equivalence.

A class of Boolean functions in even dimension plays an important role thanks to its
exceptional properties and its relation with design theory, cryptography, coding theory
and sequences for telecommunications:

Definition 3 [15, 7, 14] A Boolean function over Fn
2 (n even) is bent if its Hamming

distance to the set of all n-variable affine Boolean functions (the nonlinearity of f ) equals
2n−1 − 2n/2−1 (which is optimal).
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Proposition 1 [15, 7, 14] An n-variable Boolean function is bent if and only if its Ham-
ming distance to any affine function equals 2n−1±2

n
2−1. In particular, if f is a bent Boolean

function over Fn
2, then wH( f ) = 2n−1 ± 2

n
2−1. If f is quadratic, the converse is true.

Bent functions are those functions such that, for every non zero vector a ∈ Fn
2, the deriva-

tive DaF = F(x) + F(x + a) is balanced.

We shall use the notion of Fourier and Walsh transform defined as follows:

Definition 4 The Fourier transform of a function f over Fn
2 and valued in Z is denoted by

f̂ and defined as:

f̂ (u) =
∑
x∈Fn

2

f (x)(−1)u·x for all u ∈ Fn
2,

where “ · ” is some chosen inner product, that is, where x · y is a bilinear form such that
x · y = 0 for every y ∈ Fn

2 if and only if x = 0 (i.e. the only element orthogonal to Fn
2 is 0).

For a Boolean function f , we obtain by considering it as valued in {0, 1} ⊂ Z:

f̂ (u) =
∑

x∈supp( f )

(−1)u·x for all u ∈ Fn
2.

The Walsh transform of f , denoted by W f , is the Fourier transform of the sign function
fχ(x) = (−1) f (x):

W f (u) =
∑
x∈Fn

2

(−1) f (x)+u·x for all u ∈ Fn
2.

These transforms satisfy the so-called inverse Fourier formulas
∑

u∈Fn
2

f̂ (u)(−1)u·x = 2n f (x)
and

∑
u∈Fn

2
W f (u)(−1)u·x = 2n(−1) f (x) and the Parseval relation

∑
u∈Fn

2
W2

f (u) = 22n.
Bent functions are those functions whose Walsh transform takes the values ±2n/2 only.

A class of n-variable Boolean functions which generalizes bent functions is the class of
plateaued functions, whose Walsh transform takes only the values 0 and ±µ, where µ is
necessarily a power of 2, say µ = 2r, with r ≥ n

2 if n is even and r ≥ n+1
2 if n is odd (this

positive number µ is called the amplitude of the plateaued function, see [5]).
Let f be an n-variable Boolean function. It is clear that (−1) f (x) = 1 − 2 f (x) which

implies

f̂ (u) = 2n−1δ0 −
1
2

W f (u), (1)

where δ0 is the Dirac function at the zero vector. In particular, u = 0 yields:

wH( f ) = 2n−1 −
1
2

W f (0). (2)
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If f is the direct sum of two functions, that is, f (x, y) = f1(x) + f2(y), where x ∈ Fn
2 and

y ∈ Fm
2 , then we have:

W f (a, b) = W f1(a)W f2(b). (3)

In particular, if f1(x) =
∏n

i=1 xi is the monomial function of degree n (that is, equals the
Dirac function at the all-1 vector) and if f2 is the monomial function of degree m, then
f̂1(a) = (−1)wH(a), f̂2(b) = (−1)wH(b) and therefore the direct sum f satisfies:

W f (a, b) = (2nδ0(a) − 2(−1)wH(a))(2mδ0(b) − 2(−1)wH(b)). (4)

If f is the direct product of two functions, that is, f (x, y) = f1(x) f2(y), then we have:

f̂ (a, b) = f̂1(a) f̂2(b), i.e.,
2n+m+1δ0(a, b) − 2W f (a, b) = (2nδ0(a) −W f1(a))(2mδ0(b) −W f2(b)), i.e.,
2W f (a, b) = 2n+mδ0(a, b) + 2nδ0(a)W f2(b) + 2mδ0(b)W f1(a) −W f1(a)W f2(b). (5)

The nonlinearity nl( f ) of a Boolean function f over Fn
2 is the minimum Hamming distance

dH( f , h) = |{x ∈ Fn
2; f (x) , h(x)}| between f and affine functions h (in other words, the

distance from f to RM(1, n)). We have:

nl( f ) = 2n−1 −
1
2

max
a∈Fn

2

| W f (a) | . (6)

Thanks to the Parseval Relation, the maximum of W2
f (a) is larger than or equal to its

arithmetic mean 22n

2n = 2n, and we have then the so-called covering radius bound:

nl( f ) ≤ 2n−1 − 2n/2−1.

3 Properties of coset leaders
In this paper, since we study only the coset leaders of the first order Reed-Muller codes,
we shall omit specifying “of RM(1, n)" when speaking of these coset leaders.
Let us recall first the coset leader definition.

Definition 5 An n-variable Boolean function f with n ≥ 2 is called a coset leader of the
first order Reed-Muller code RM(1, n) if for all l ∈ RM(1, n), wH( f + l) ≥ wH( f ).
By abuse of language, given any Boolean function f , we shall call “coset leaders of f "
the coset leaders in the coset f + RM(1, n).

This latter expression will ease our presentation when we shall study classes of functions
that are not unions of cosets of RM(1, n). We have the following easy result:
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Lemma 1 An n variable Boolean function f is a coset leader of the first order Reed-
Muller code RM(1, n) if and only if nl( f ) = wH( f ), that is, W f (0) = maxa∈Fn

2
| W f (a) |,

or equivalently, W f (0) ≥ |W f (a)| for all a ∈ Fn
2, or still equivallently f̂ (0) ≤ 2n−1 −

maxa,0 | f̂ (a)|.

Proof. The first part of the statement is by definition of the nonlinearity. The rest is a
direct consequence of Relations (2) and (6). �

Given a Boolean function f and a vector a, denoting the function a · x by `a(x), we
have W f +`a(0) = W f (a) and W f +`a+1(0) = −W f (a); then we have:

Lemma 2 For every n-variable Boolean function f , every vector a and every bit ε, the
function f + `a + ε is a coset leader if and only if |W f (a)| is maximal over Fn

2 and either
W f (a) > 0 and ε = 0, or W f (a) < 0 and ε = 1.

Remark 1 In the case of a bent function f , we have maxa∈Fn
2
| W f (a) |= 2

n
2 , and by

Lemma 1, the bent coset leaders of RM(1, n) are all the bent functions of Hamming weight
2n−1 − 2

n
2−1. Note that we have 2n−1 − 2

n
2−1 > 2n−2 for any n ≥ 4.

The property of being a coset leader is an affine invariant:

Lemma 3 Let n be a positive integer, and let f and g be two n-variable Boolean functions
with n ≥ 2 such that f ∼ g. Then, f is a coset leader of RM(1, n) if and only if g is also a
coset leader of RM(1, n).

Proof. Let f be a coset leader in n variables and let L be an affine automorphism of Fn
2

such that g = f ◦ L. We have that g is not a coset leader if and only if there exists an affine
function l such that wH( f ◦ L + l) < wH( f ◦ L), that is, wH(( f + l ◦ L−1) ◦ L) < wH( f ◦ L)
or equivalently wH( f + l ◦ L−1) < wH( f ), that is, f is not a coset leader. �

As we said in the introduction, by the covering radius bound, the nonlinearity of a
function can not be larger than b2n−1 − 2

n
2−1c, that is, the Hamming weight of a coset

leader can not be larger than b2n−1−2
n
2−1c. We have the following characterization (which

excludes functions of weight at most 2n−2 and bent functions since the case of these two
categories of functions has been completely clarified):

Proposition 2 Let f be a non-bent n-variable Boolean function of Hamming weight
larger than 2n−2. For being a coset leader of RM(1, n), f needs to satisfy wH( f ) = 2n−2 +e,
where 1 ≤ e < 2n−2 − 2

n
2−1, and then, f is a coset leader if and only if, for every non con-

stant affine function l, we have wH( f (l + 1)) ≥ e.

Proof. By hypothesis we have wH( f ) = 2n−2 + e with e ≥ 1. The inequality e <
2n−2 − 2

n
2−1 is a necessary condition, as we observed above. Assuming it is satisfied,

we have wH( f +1) = 2n−wH( f ) = 2n− (2n−2 +e) = 3 ·2n−2−e > 2n−2 +e = wH( f ), and the
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inequality wH( f + l) < wH( f ) is then possible only if l is not constant. Hence, we have that
f is a coset leader of RM(1, n) if and only if, for every non constant affine function l, we
have wH( f +l) ≥ wH( f ), that is, wH( f l) ≤ 2n−2 (since wH( f +l) = wH( f )+2n−1−2wH( f l)),
or equivalently, wH( f (l + 1)) ≥ e. �

Every n-variable Boolean function can be viewed as an (n + 1)-variable Boolean func-
tion that does not depend on its last input variable. We show in the next proposition that
this does not change its status of being (or not being) a coset leader.

Proposition 3 Let f be an n-variable Boolean function. Then f is a coset leader of
RM(1, n) if and only if, seen as an (n+1)-variable function, it is a coset leader of RM(1, n+

1).

Proof. For k ≥ n, let us denote by w(k)
H ( f ) the Hamming weight of f seen as a k-variable

Boolean function. Let f be a coset leader, then seeing f as in n + 1 variables, we have
w(n+1)

H ( f ) = 2w(n)
H ( f ) . For all affine function l(x) in n + 1 variables, if n + 1 ∈ Var(l) then

f + l is balanced in Fn+1
2 and we have then w(n+1)

H ( f + l) = 2n > w(n+1)
H ( f ). If n + 1 < Var(a),

then f + l does not depend on its last input coordinate and since f is a coset leader of
RM(1, n), we have w(n+1)

H ( f + l) = 2w(n)
H ( f + l) ≥ 2w(n)

H ( f ) = w(n+1)
H ( f ). Hence, seen as an

(n + 1)-variable function, f is a coset leader of RM(1, n + 1). The converse is straightfor-
ward. �

Consider the 5-variable functions f1 = x1x2x3 + x4x5 and f2 = x4x5 + x5. According
to Relation (4), the Walsh transform of f1 is valued in {±4,±12} and we have W f1(0) =

12, meaning that f1 is a coset leader, while f2 is also a coset leader of RM(1, 5) since
wH( f2) = 23 (recall that any Boolean function of Hamming weight at most 2n−2 is a coset
leader). But the sum f1 + f2 = x1x2x3 + x5 is a balanced function meaning that it is not a
coset leader of RM(1, 5). The following lemma gives a sufficient condition under which
the sum of two coset leaders is a coset leader.

Lemma 4 Let f1 and f2 be two coset leaders of RM(1, n). If, for every affine function l,
we have:

min{wH(l f1),wH(l f2)} ≤ 2wH(l f1 f2),

then, f1 + f2 is a coset leader of RM(1, n).

Proof. For every affine function l, the inequality wH( f1 + f2 + l) = wH( f1 + l) + wH( f2) −
2wH(( f1 + l) f2) ≥ wH( f1) + wH( f2) − 2wH( f1 f2) − 2wH(l f2) + 4wH(l f1 f2) holds since f1 is
a coset leader and wH(( f1 + l) f2) = wH( f1 f2) + wH(l f2) − 2wH(l f1 f2). Since wH( f1) +

wH( f2) − 2wH( f1 f2) = wH( f1 + f2), then we have wH( f1 + f2 + l) − wH( f1 + f2) ≥
4wH(l f1 f2) − 2wH(l f2). The proof ends by observing that f2 is a coset leader and then
we have also wH( f1 + f2 + l) − wH( f1 + f2) ≥ 4wH(l f1 f2) − 2wH(l f1) for all affine function

8



l. �

It is difficult to study the general structure of the set of coset leaders, for instance by
determining the most general operations that are internal to this class. But some particular
operations behave well with respect to coset leaders. For instance, we saw that the sum
of two coset leaders is in general not a coset leader, but the situation is different when the
sum is direct:

Proposition 4 The direct sum of two coset leaders is a coset leader.

Proof. Given two coset leaders f1 and f2 in n and m variables, respectively, we have ac-
cording to Lemma 1 that W f1(0) = maxa∈Fn

2
| W f1(a) | and W f2(0) = maxb∈Fm

2
| W f2(b) |.

According to Relation (3), we decuce then W f (0, 0) = maxa∈Fn
2,b∈F

m
2
| W f (a, b) |. This

completes the proof. �

Note that such a direct sum can have Hamming weight larger than 2n+m−2.
Conversely to Proposition 4, if the direct sum of two general Boolean functions is

a coset leader, then these functions are either both coset leaders, or they are both the
complements of coset leaders, since the maximum of the product of the two independent
non-negative sequences |W f1(a)| and |W f2(b)| is achieved when each of these sequences
reaches its maximum. Let us see that the situation is different with the direct product. We
begin with a characterization.

Proposition 5 The direct product of an n-variable function f1 and an m-variable function
f2 is a coset leader if and only if:

∀a ∈ Fn
2 \ {0},∀b ∈ Fm

2 \ {0},
2n+m + 2nW f2(0) + 2mW f1(0) −W f1(0)W f2(0) ≥

max
((

2n −W f1(0)
)
|W f2(b)| ,

(
2m −W f2(0)

)
|W f1(a)| , |W f1(a)W f2(b)|

)
. (7)

Proof. Let f be the direct product of f1 and f2. Relation (5) and the facts that 2n−W f1(0) ≥
0 and 2m−W f2(0) ≥ 0 directly imply that f is a coset leader if and only if we have Inequal-
ity (7) (in which the three numbers whose maximum is taken correspond respectively to
“a = 0, b , 0"; “a , 0, b = 0" and “a , 0, b , 0"). �

We first deduce that:

Corollary 1 The direct product of two coset leaders is a coset leader.

Proof. Since W f1(0) ≥ 0 and W f2(0) ≥ 0, we have:

2n+m + 2nW f2(0) + 2mW f1(0) −W f1(0)W f2(0) =

2m(2n + W f1(0)) +
(
2n −W f1(0)

)
W f2(0) ≥(

2n −W f1(0)
)
|W f2(0)|,

9



and

2n+m + 2nW f2(0) + 2mW f1(0) −W f1(0)W f2(0) =

2n(2m + W f2(0)) +
(
2m −W f2(0)

)
W f1(0) ≥(

2m −W f2(0)
)
|W f1(0)|.

Hence, since f1 and f2 are coset leaders, we have:

2n+m + 2nW f2(0) + 2mW f1(0) −W f1(0)W f2(0) ≥
(
2n −W f1(0)

)
|W f2(b)|

and
2n+m + 2nW f2(0) + 2mW f1(0) −W f1(0)W f2(0) ≥

(
2m −W f2(0)

)
|W f1(a).

We have also 2n+m + 2nW f2(0) + 2mW f1(0)− 2W f1(0)W f2(0) = 2n+m + (2n −W f1(0))W f2(0) +

(2m − W f2(0))W f1(0) ≥ 0 which implies 2n+m + 2nW f2(0) + 2mW f1(0) − W f1(0)W f2(0) ≥
|W f1(a)W f2(b)| for every nonzero a and b, and f is a coset leader, according to Proposition
5. �

But an n-variable coset leader having Hamming weight less than 2n−1 and an m-
variable coset leader having Hamming weight less than 2m−1, the Hamming weight of their
direct product, equal to the product of these Hamming weights, is smaller than 2n+m−2, and
the result of Corollary 1 is then trivial.

Let us see now that there are functions f1 and f2 for which Proposition 5 applies
and such that f has Hamming weight larger than 2n+m−2. In fact, we shall see in the
next corollary that a direct product is always a coset leader, unless one of the functions
has a very low nonlinearity. Indeed, let f1 have nonlinearity 2n−1 − N

2 and f2 have non-
linearity 2m−1 − M

2 , for some integers N and M. Then we have −N ≤ W f1(a) ≤ N,
for every a and −M ≤ W f2(b) ≤ M, for every b. Hence, we have 2n+m + 2nW f2(0) +

2mW f1(0)−W f1(0)W f2(0) ≥ 2n+m−2nM−2mN−NM and max
((

2n−W f1(0)
)
|W f2(b)| ,

(
2m−

W f2(0)
)
|W f1(a)| , |W f1(a)W f2(b)|

)
≤ max

((
2n + N

)
M ,

(
2m + M

)
N , NM

)
. We deduce,

taking N = 2nλ and M = 2mµ:

Corollary 2 Let f1 be any n-variable function of nonlinearity 2n−1(1− λ
2 ), where 0 < λ ≤ 1

and let f2 be any m-variable function of nonlinearity 2m−1(1− µ

2 ), where 0 < µ ≤ 1. Assume
that:

max(λ + 2µ + 2λµ , 2λ + µ + 2λµ) ≤ 1. (8)

Then the direct product of f1 and f2 is a coset leader.

Condition (8) is rather weak, since if both λ and µ are not larger than −3+
√

17
4 ≈ .28 then it

is satisfied. Indeed, λ ≤ −3+
√

17
4 implies 3λ+ 2λ2 ≤ 1, and then λ ≤ −3+

√
17

4 and µ ≤ −3+
√

17
4

10



imply max(2µ + λ + 2λµ , µ + 2λ + 2λµ) ≤ 1. The only pairs ( f1, f2) that do not sat-
isfy Condition (8) are then such that f1 has very low nonlinearity (not much larger than
(.72) · 2n−1) or f2 has very low nonlinearity (not much larger than (.72) · 2m−1).

Let us now visit a third secondary construction of Boolean functions: given three func-
tions f1, f2 and f3 in n, m and r variables, respectively, we call the direct majority of f1, f2

and f3 the Boolean function which takes value 1 if and only if a majority of these three
functions takes value 1, that is: f (x, y, z) = f1(x) f2(y) + f1(x) f3(z) + f2(y) f3(z). It is known
from [3] and recalled in [4, Proposition 85], that given three functions h1, h2, h3 over FN

2 ,
we have Wh1 +Wh2 +Wh3 = Ws+2W f , where s = h1+h2+h3 and f = h1h2+h1h3+h2h3. We
can apply this to the functions h1(x, y, z) = f1(x), h2(x, y, z) = f2(y) and h3(x, y, z) = f3(z).
We have then Wh1(a, b, c) = 2m+rW f1(a)δ0(b)δ0(c), Wh2(a, b, c) = 2n+rW f2(b)δ0(a)δ0(c) and
Wh3(a, b, c) = 2n+mW f3(c)δ0(a)δ0(b), and since we know by iterating (3) that the direct sum
s satisfies Ws(a, b, c) = W f1(a)W f2(b)W f3(c), we have then:

∀a ∈ Fn
2,∀b ∈ Fm

2 ,∀c ∈ Fr
2, 2W f (a, b, c) = (9)

2m+rW f1(a)δ0(b)δ0(c) + 2n+rW f2(b)δ0(a)δ0(c) + 2n+mW f3(c)δ0(a)δ0(b)−W f1(a)W f2(b)W f3(c).

We deduce:

Proposition 6 The direct majority f of three Boolean functions f1, f2 and f3 in n, m and r
variables, respectively, is a coset leader if and only if, for every nonzero a, b, c, we have:

2m+rW f1(0) + 2n+rW f2(0) + 2n+mW f3(0) −W f1(0)W f2(0)W f3(0) ≥

max
(
|W f1(a)|(2m+r−W f2(0)W f3(0)), |W f2(b)|(2n+r−W f1(0)W f3(0)),

|W f3(c)|(2n+m −W f1(0)W f2(0)), |W f1(0)W f2(b)W f3(c)|,

W f1(a)W f2(0)W f3(c)|, |W f1(a)W f2(b)W f3(0)|, |W f1(a)W f2(b)W f3(c)|
)
.

Corollary 3 If f1, f2 and f3 are three coset leaders in n, m and r variables, respectively,
then their direct majority is a coset leader.

Proof. According to Proposition 6, the direct majority of f1, f2 and f3 is a coset leader if
and only if, for every triple (a, b, c) ∈ Fn

2 ×F
m
2 ×F

r
2 having at most one zero term, we have:

2m+rW f1(0) + 2n+rW f2(0) + 2n+mW f3(0) −W f1(0)W f2(0)W f3(0) ≥ |W f1(a)W f2(b)W f3(c)|.

Hence, if 2m+rW f1(0) + 2n+rW f2(0) + 2n+mW f3(0) ≥ 2W f1(0)W f2(0)W f3(0), then f is a coset

leader. But this condition is always satisfied since we have W f1(0) ≤ 2n <
√

3
2 2n,W f2(0) ≤

2m <
√

3
2 2m and W f3(0) ≤ 2r <

√
3
2 2r. �
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Remark 2 More generally, let g be any r-variable Boolean function and f1, . . . , fr be
Boolean functions in n1, . . . , nr variables, respectively. Then we can consider the Boolean
function f (x(1), . . . , x(r)) = g( f1(x(1)), . . . , fr(x(r))), where x(1) ∈ Fn1

2 , . . . , x
(r) ∈ Fnr

2 are
“disjoint" (that is, independent) variables. In the case of the direct sum, we have r = 2 and
g(y1, y2) = y1 +y2 and in the case of the direct product, we have r = 2 and g(y1, y2) = y1y2.
We have:

W f (a(1), . . . , a(r)) =
∑

(x(1)),...,x(r))∈Fn1+···+nr
2

(−1)g( f1(x(1)),..., fr(x(r)))+
∑r

i=1 a(i)·x(i)

= 2−r
∑

(x(1)),...,x(r))∈F
n1+···+nr
2

y,z∈Fr2

(−1)g(y)+
∑r

i=1 a(i)·x(i)+
∑r

i=1 zi(yi+ fi(x(i)))

= 2−r
∑
z∈Fr

2

Wg(z)
r∏

i=1

Wzi fi(a
(i)). (10)

In the case of the direct sum, we have Wg(y1, y2) =
∑

y∈F2
2
(−1)y1+y2+z1y1+z2y2 = 4δ(1,1)(z),

where δ(1,1)(z) equals 1 if (z1, z2) = (1, 1) and equals 0 otherwise. Relation (10) gives (3).
In the case of the direct product, we have Wg(y1, y2) =

∑
y∈F2

2
(−1)y1y2+z1y1+z2y2 = 2(−1)z1z2

and this gives (5).
Note that the only other symmetric function in 2 variables is g(y1, y2) = y1y2 + y1 + y2,
which is not interesting since applying such g to ( f1, f2) gives the complement of what we
get by applying the direct product to ( f1 +1, f2 +1); we have seen that such latter functions
are most often coset leaders; their complements are then not.
In the case of the direct majority, we have g(y1, y2, y3) = y1y2 + y1y3 + y2y3. The Walsh
transform of g is known from [9], but what we have recalled above gives a fast way for
calculating it: denoting by l1, l2 and l3 the three coordinate functions over F3

2 and by s1

the Boolean function l1 + l2 + l3, we have Wl1(z) =
∑

y∈F3
2
(−1)(z1+1)y1+z2y2+z3y3 = 8 δ(1,0,0)(z),

Wl2(z) = 8 δ(0,1,0)(z), Wl3(z) = 8 δ(0,0,1)(z), Ws1(z) = 8 δ(1,1,1)(z) and Wg(z) = 4 (δ(1,0,0)(z) +

δ(0,1,0)(z) + δ(0,0,1)(z)) − δ(1,1,1)(z)). Note that the Walsh transform of g vanishes on a whole
hyperplane1. Relation (10) gives then (9).
We can also take g(y1, y2, y3) = y1y2y3. Then, similarly to the case of the direct product
of two functions, we have, thanks to the relation f̂ (a, b, c) = f̂1(a) f̂2(b) f̂3(c), that such a
direct product of three functions is a coset leader under the sufficient condition that none
of the three functions is of very weak nonlinearity.
Other examples of g functions could be tried but either they would no longer be symmetric,
or they would be in at least 4 variables and the number of terms in Relation (10) would
increase.

1This is equivalent to saying that g has a linear structure, see [4, Proposition 29]; here, we have g(x +

1, y + 1, z + 1) = g(x, y, z) + 1.
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4 Coset leaders in classical classes of Boolean functions

4.1 Direct sums of monomials
In this subsection and the two next ones, “·" is the usual inner product: a · x =

∑n
i=1 aixi.

Definition 6 Let f be a non constant Boolean function in n variables. We call f a
direct sum of monomials (in brief, DSM) if the following holds for its ANF f (x) =∑

I⊆{1,2,...,n} aI xI:
∀ I, J such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}

Note that the class of DSM is not a union of cosets of the first order Reed-Muller code.
We shall have then not only to determine those DSM functions that are coset leaders but
also the sums of DSM and affine functions that are coset leaders.

We also need the following definition:

Definition 7 (Direct Sum Vector [13]). Let f be a DSM function, its direct sum vector is
the following sequence of length k + 1 = deg( f ) + 1:

m f = [m0,m1,m2, . . . ,mk],

where mi is the number of monomials of degree i in the ANF of f (i ≥ 0):

mi = |{aI = 1, such that |I| = i}|.

The function f associated to the direct sum vector m f = [m0,m1,m2, . . . ,mk], has M =∑k
i=0 mi distinct monomials in its ANF and n variables with n ≥

∑k
i=0 imi.

Clearly, two DSM functions having the same direct sum vector and the same number
of variables are permutation-equivalent and two DSM functions having the same part
[m2, . . . ,mk] and the same number of variables are EA-equivalent.

Remark 3 The number of DSM functions of direct sum vector [m0,m1,m2, . . . ,mk] equals

2
k∏

i=1

(n − (i − 1)mi−1

imi

)
×

(
imi
i

)(
imi−i

i

)
. . .

(
2i
i

)(
i
i

)
mi!

 .
Indeed, the number of functions equal to the direct sum of m1 monomials of degree 1

clearly equals
(

n
m1

)
=

(
n

m1

) (m1
1 )(m1−1

1 )...(2
1)(1

1)
m1! ; such function being chosen, the number of func-

tions equal to the direct sum of m2 monomials of degree 2 having disjoint variables with
the m1 already chosen monomials equals the number of choices of 2m2 variables among
the n − m1 = n − (2 − 1)m2−1 remaining variables, times the number of direct sums of

monomials of degree 2 in these variables, which yields
(

n−(2−1)m2−1
2m2

)
×

(2m2
2 )(2m2−2

2 )...(2×2
2 )(2

2)
m2!

possibilities . One continues the process until i = k and obtains the result by multiplying
results obtained for each i = 1 · · · k.
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In the following, given a Boolean function f in n variables, the Walsh spectrum {W f (a), a ∈
Fn

2} of f is denoted by WS ( f ) and the set {|W f (a)|, a ∈ Fn
2} (called the extended Walsh

spectrum of f ) is denoted by EWS ( f ). Note that Lemma 1 is equivalent to f is a coset
leader if and only if W f (0) = max EWS ( f ).

Remark 4 The Walsh spectrum of DSM functions has been covered by the paper [6]
when determining their nonlinearity, but the details we need here were skipped. Consider
a DSM function f of direct sum vector m f = [m0,m1,m2, . . . ,mk]. Note that if m1 , 0,
then according to Relation (4), we have W f (0) = 0, and f having weight 2n−1, it can
not then be a coset leader. So all DSM coset leaders satisfy m1 = 0. Note also that if
n >

∑k
i=1 imi, then for all vector a ∈ Fn

2 such that there exists i0 ∈ supp(a) \ Var( f ), we
have

W f (a) =
∑

xi0∈F2

(−1)xi0

∑
x∈Fn

2
xi0 =0

(−1) f (x)+a·x = 0,

and the coset leaders of f are necessarily without any such term xi0 . From Relation (1) and
the fact that a function of Hamming weight 1 has it Fourier transform valued in ±1, the
Walsh transform of each degree i monomial in a DSM function f is valued in {±2, 2i − 2}.
The integer mi being the number of degree i monomials in f , then given a ∈ Fn

2, let ti ≤ mi

be the number of degree i monomials in f whose Walsh transform at a equals 2i−2, which
means that mi − ti is the number of degree i monomials in f whose Walsh Transform at
a equals ±2. Hence, if m0 = m1 = 0 then in the expression of W f (a), we have 2i − 2
raised at the power ti for every i, and 2 raised at the power p =

∑k
i=2(mi− ti) (and we have∑k

i=2 ti =
∑k

i=2 mi − p). Therefore, the Walsh transform of an n-variable DSM function f
of direct sum vector m f = [m0 = 0,m1 = 0,m2, . . . ,mk] with n >

∑k
i=1 imi is valued in the

following sets:
{0};{

± 2n−
∑k

i=2 imi

k∏
i=2

(2i − 2)mi
}
;

{
± 2n−

∑k
i=2 imi+1

k∏
i=2

(2i − 2)tiwhere 0 ≤ ti ≤ mi;
k∑

i=1

ti =

k∑
i=2

mi − 1
}
;

{
± 2n−

∑k
i=2 imi+2

k∏
i=2

(2i − 2)tiwhere0 ≤ ti ≤ mi;
k∑

i=2

ti =

k∑
i=2

mi − 2
}
;

. . .{
± 2n−

∑k
i=2 imi+

∑k
i=2 mi−1(2 j − 2) , 2 ≤ j ≤ k

}
;{

± 2n−
∑k

i=2 imi+
∑k

i=2 mi
}
.
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The union of these sets equals:

WS ( f ) =
{
±2n−

∑k
i=1 imi+p

k∏
i=2

(2i−2)tiwhere 0 ≤ ti ≤ mi, p ≥ 0 and p +

k∑
i=1

ti =

k∑
i=1

mi

}
∪{0}

and if n =
∑k

i=1 imi this set becomes:

WS ( f ) =
{
± 2p

k∏
i=2

(2i − 2)ti where 0 ≤ ti ≤ mi, p ≥ 0 and p +

k∑
i=1

ti =

k∑
i=1

mi

}
.

The value of W f (0) among these is 2n−
∑k

i=2 imi
∏k

i=2(2i−2)mi which is maximal over EWS ( f ),
since for all i ≥ 2, 2i − 2 ≥ 2.
Note that WS ( f ) for the case m0 = 1 or m1 , 0 is obtained easily by observing that
f = h + b · x + ε where h is a DSM with m0 = m1 = 0, b · x is the linear part of f and ε = 0
or 1, which implies W f (a) = (−1)εWh(a + b).

Recall that, by abuse of language, given a class C of Boolean functions, we call “coset
leaders of the functions in C" the coset leaders of RM(1, n) that belong to

⋃
f∈C( f +

RM(1, n)).

Theorem 1 1) Any DSM function f in n variables with direct sum vector:

m f = [m0,m1,m2, . . . ,mk],

with k ≥ 2 and n ≥
∑k

i=0 imi, is a coset leader of RM(1, n) if and only if m0 = m1 = 0.

2) The coset leaders of DSM functions are the functions h + `a + ε where:

• h is a DSM function with m0 = m1 = 0,

• `a(x) = a · x is such that a(i) = 0 for every i < K1∪· · ·∪Km2 where K1, . . . ,Km2

are the pairwise disjoint pairs of {1, 2, . . . , n} such that the degree 2 part of h
is given by

∑m2
i=1

(∏
j∈Ki

x j

)
and where we denote by a(i) the vector (a j) j∈Ki of

length Card(Ki),

• ε = 0 if ∏
i=1,...,m2

a(i),0

(−1)wH(a(i))+1 = 1,

and ε = 1 otherwise.

Proof. 1) Every monomial function of degree i ≥ 2 in i variables is a coset leader, since
its Hamming weight equals 1 and the coset of RM(1, i) which contains it does not contain
the 0 function. According to Proposition 4, every DSM such that m0 = m1 = 0 and
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n =
∑k

i=0 imi is then a coset leader. If m0 = m1 = 0 and n >
∑k

i=0 imi, then denoting by
f ′ the same function as f viewed as in

∑k
i=0 imi variables, WS ( f ) = {W f (a), a ∈ Fn

2} is
the union of {0} and of the set obtained by multiplying each value in WS ( f ′) by 2n−

∑k
i=0 imi .

Hence, W f (0) remains maximal in EWS ( f ), that is, f is a coset leader.
Let us show now that these functions are the only coset leaders in the class of DSM
functions: if m0 = 1 and m1 = 0, then f = g + 1 where g is a DSM function with
m0 = m1 = 0 and is then a coset leader, which implies that f is not a coset leader; and if
m1 > 0, then according to Relation (3), we have W f (0) = 0 meaning that f is balanced
and then, it can not be a coset leader. This completes the proof of 1).
2) Given a DSM function f , any function g ∈ f +RM(1, n) can be written as g = h+ `a + ε
where ε = 0 or 1 and h is the DSM function with m0 = m1 = 0 equal to f deprived of
its degree 0 and 1 monomials. Let us denote by K1, . . . ,Km2 ,Km2+1, . . . ,Km2+m3 , . . . ,KM,
where M =

∑k
i=2 mi, the disjoint subsets of {1, . . . , n} such that the degree s part of h is

given by
∑m2+···+ms

i=m2+···+ms−1+1

(∏
j∈Ki

x j

)
and let KM+1 = {1, . . . , n}\(K1∪· · ·∪KM) corresponding

to the variables of h that do not appear in its ANF. The sets K1, . . . ,KM+1 form a partition
of the set {1, 2, . . . , n} and we have h =

∑M
i=1

(∏
j∈Ki

x j

)
and KM+1 ∩ Var(h) = ∅.

If ε = 0, then g = h + `a has the same Walsh spectrum as h, and is then, according to
Lemma 2, a coset leader if and only if Wg(0) = Wh(a) is maximal over EWS (h). This
needs first that supp(a) ⊆ Var(h), that is, supp(a) ∩ KM+1 = ∅, since if there exists
i0 ∈ supp(a) \ Var(h) then Wh(a) = 0 meaning that Wh(a) is not optimal. Assuming that
supp(a) ⊆ Var(h), we have according to Relation (4) iterated:

Wh(a) = 2n−
∑k

i=2 imi

M∏
i=1

(
2Card(Ki)δ0(a(i)) − 2(−1)wH(a(i))

)
(11)

and we have Wh(a) = max EWS (h) if and only if each factor 2Card(Ki)δ0(a(i))−2(−1)wH(a(i))

has maximal absolute value (which is equivalent to a(i) = 0 for all i = m2 + 1, . . . ,M),
and

∏
i=1,...,m2

a(i),0
(−1)wH(a(i))+1 = 1.

If ε = 1, then we have the same situation but with
∏

i=1,...,m2
a(i),0

(−1)wH(a(i))+1 = −1. �

The next result is a characterization of coset leaders of DSM functions having Ham-
ming weight larger than 2n−2.

Lemma 5 Let f be a DSM coset leader in n variables of direct sum vector m f = [m0 =

0,m1 = 0,m2, . . . ,mk] with k ≥ 2 and n ≥
∑k

i=1 imi. Then, wH( f ) > 2n−2 if and only if

k∏
i=2

(2i − 2)mi < 2
∑k

i=2 imi−1

More generally, every coset leader g = h + a · x + ε of a DSM function, defined in Theorem
1, where h is a DSM with m0 = m1 = 0, has Hamming weight larger than 2n−2 if and only
if

∏k
i=2(2i − 2)mi < 2

∑k
i=2(imi)−1.
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Proof. Recall from Remark 4 and Theorem 1 that W f (0) = 2n−
∑k

i=2 imi
∏k

i=2(2i − 2)mi .
Then, the inequality

∏k
i=2(2i − 2)mi < 2

∑k
i=2 imi−1 is equivalent to W f (0) < 2n−1, that is,

wH( f ) > 2n−2.
The proof is completed by observing that every coset leader g = h + a · x + ε of a DSM
function (where h has no monomial of degree 1 or 2) is such that WS (g) = (−1)εWS (h),
which implies Wg(0) = Wh(0) since, both g and h being coset leaders, we have Wg(0) =

maxu |Wg(u)| and Wh(0) = maxu |Wh(u)|. �

Lemma 5 yields

Corollary 4 Let f be a degree k DSM function in n variables of direct sum vector m f =

[m0 = 0,m1 = 0,m2, . . . ,mk] with k ≥ 2 and n ≥
∑k

i=1 imi. Then we have:

1) f is a coset leader of RM(1, n) of Hamming weight greater than 2n−2 if and only if∑k
i=2 mi log2( 2i−1

2i−1−1 ) > 1, where log2(x) is the binary logarithm of x.

2) if for all i = 2, . . . , k, we have mi >
1

(k−1) log2( 2i−1

2i−1−1
)
, then this condition is satisfied.

Proof. From Lemma 5, f is a coset leader of RM(1, n) of weight greater than 2n−2 if and
only if the inequality

∏k
i=2(2i − 2)mi < 2

∑k
i=2 imi−1 holds. This inequality is equivalent to

log2

( k∏
i=2

(2i − 2)mi
)
< log2

(1
2

k∏
i=2

2imi
)
⇔

k∑
i=2

mi log2(2i − 2) < −1 +

k∑
i=2

imi ⇔

k∑
i=2

mi log2

( 2i−1

2i−1 − 1

)
> 1,

which proves 1), and 2) is straightforward. �

Remark 5 Corollary 4 allows to generate easily DSM coset leaders of RM(1, n) with
Hamming weight greater than 2n−2. For instance for n = 8 all the coset leaders of
RM(1, 8) of weight greater than 26 = 64 are known and we have:

• for k = 2 the possible direct sum vectors are [0, 0, 2], [0, 0, 3], [0, 0, 4].

• for k = 3, the possible direct sum vectors are [0, 0, 1, 1], [0, 0, 2, 1], [0, 0, 1, 2].

• for k = 4, the possible direct sum vectors are [0, 0, 1, 0, 1], [0, 2, 0, 1].

• for k = 5, the unique direct sum vector is [0, 0, 1, 0, 0, 1]
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• for k = 6, the unique direct sum vector is [0, 0, 1, 0, 0, 0, 1]

• for k = 7 or 8, there is no DSM coset leaders of RM(1, 8) of weight greater than
26 = 64.

We shall provide in Corollary 5 an example of an infinite class of coset leaders whose
Hamming weight is larger than 2n−2. We need first the following result.

Lemma 6 Let µ be a positive integer with µ ≥ 3. Setting nµ = 2 + 3 + · · · + µ =
(µ−1)(µ+2)

2 ,
we have

µ∏
i=2

(2i − 2) < 2nµ−1

Proof. We prove it by induction on µ. For µ = 3, we have n3 = 5 and
∏3

i=2(2i − 2) = 12 <
25−1 = 16. Now assume that, for some µ ≥ 3, the inequality

∏µ
i=2(2i − 2) < 2nµ−1 holds.

By observing that nµ+1 = nµ + µ + 1, we have
∏µ+1

i=2 (2i − 2) = (2µ+1 − 2)
∏µ

i=2(2i − 2) <
2µ+1 ∏µ

i=2(2i − 2)) < 2µ+12nµ−1 = 2nµ+1−1 which ends the proof. �

Corollary 5 let µ and n be two integers such that µ ≥ 3 and n =
(µ+2)(µ−1)

2 . Every n-
variable function f equivalent to the direct sum of µ−1 monomials equal to x1x2+x3x4x5+

· · · + xn−µ+1xn−µ+2 . . . xn is a coset leader of weight wH( f ) = 2n−1 −
∏µ

i=3(2i − 2) > 2n−2.

Proof. According to Lemma 3 it suffices to show the result for h(x) = x1x2 + x3x4x5 + · · ·+

xn−µ+1xn−µ+2 . . . xn. The direct sum vector of h as a DSM function is such that m0 = m1 = 0,
mi = 1 for all i = 2, . . . , µ and n =

∑µ
i=2 i. Then, according to Theorem 1, f is a coset leader

and from Relation (4), W f (0) =
∏µ

i=2(2i−2). From Lemma 6, we have
∏µ

i=2(2i−2) < 2n−1

and this ends the proof according to lemma 5. �

A function of the form x1x2 + x3x4x5 + · · · + xn−µ+1xn−µ+2 . . . xn is called a triangular
function.

4.2 An infinite class of coset leaders that are sums of monomials and
not affinely equivalent to DSM functions

Proposition 7 Let n be an integer with n ≥ 6. Let f be an n- variable Boolean function
such that:

f ∼
n−2∏
j=1

xi j + xin−1 xin + xip xiq xir

where 1 ≤ i1 < i2 < · · · < in ≤ n, p, q ∈ {1, .., n − 2}, p , q, and r ∈ {n − 1, n}.
Then f is a coset leader of RM(1, n) of weight 2n−2 + 2 which is not affinely equivalent to
a DSM function.
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Proof. Let us calculate WS (g) for g =
∏n−2

j=1 xi j + xin−1 xin + xip xiq xir . We assume without
loss of the generality that p = 1, q = 2 and r = n − 1. For all a = (a1, a2, . . . , an) ∈ Fn

2,
we denote by ai1...it the vector of length n − t obtained from a by erasing the coordinates
ai1 , . . . ait . We have, distinguishing the cases xi1 = 0 and xi1 = 1:

Wg(a) =
∑
x∈Fn

2

(−1)
∏n−2

j=1 xi j +xin−1 xin +xi1 xi2 xin−1 +a·x
=

∑
x∈Fn

2;xi1 =0

(−1)xin−1 xin +ai1 ·xi1
+ (−1)ai1

∑
x∈Fn

2;xi1 =1

(−1)
∏n−2

j=2 xi j +xin−1 xin +xi2 xin−1 +ai1 ·xi1
=

∑
x∈Fn

2;xi1 =0

(−1)(xin−1 +ain )(xin +ain−1 )+ain−1 ain +ai1in−1in ·xi1in−1in
+

(−1)ai1

( ∑
x∈Fn

2;xi1 =1,xi2 =0

(−1)xin−1 xin +ai1i2 ·xi1i2
+ (−1)ai2

∑
x∈Fn

2;xi1 =1,xi2 =1

(−1)
∏n−2

j=2 xi j +xin−1 xin +xin−1 +ai1i2 ·xi1i2
)

=

2n−2(−1)ain−1 ainδ0(ai1in−1in) + (−1)ai1

∑
x∈Fn

2;xi1 =1,xi2 =0

(−1)(xin−1 +ain )(xin +ain−1 )+ain−1 ain +ai1i2in−1in ·xi1i2in−1in
+

(−1)ai1 +ai2 A × B

where
A =

∑
xi1i2in−1in∈Fn−4

2

(−1)
∏n−2

j=3 xi j +ai1i2in−1in ·xi1i2in−1in

and
B =

∑
(xn−1,xn)∈F2

2

(−1)xin−1 (xin +1)+ai1i2 ...in−2 ·(xn−1,xn).

We have then, A = 2n−4δ0(ai1i2in−1in) − 2(−1)wH(ai1i2in−1in ) and

B =
∑

(xn−1,xn)∈F2
2

(−1)(xin−1+ain
)(xin +ain−1 +1)+ain +ain−1 ain = 2(−1)ain +ain−1 ain .

Hence,
Wg(a) = 2n−2(−1)ain−1 ainδ0(ai1in−1in) + 2n−3(−1)ai1 +ain−1 ainδ0(ai1i2in−1in)+
(−1)ai1 +ai2 +ain +ain−1 ain (2n−3δ0(ai1i2in−1in) − 4(−1)wH(ai1i2in−1in ))

}
, (12)

implying that WS (g) = {±3 ·2n−3±4;±2n−3±4;±(2n−1−4);±2n−2±4;±4}. We can easily
check that for n ≥ 6, max EWS (g) = 2n−1 − 4 and by taking a = 0 in Relation (12), we
have Wg(0) = 2n−1 − 4 meaning by Lemma 1 that g is a coset leader.
Function g can not be affinely equivalent to a DSM function h of direct sum vector mh =

[m0 = 0,m1 = 0,m2, . . . ,mk]. Indeed, suppose that it is, then if n >
∑k

i=2 imi, from Remark
4, WS (h) contains 0 which is not the case for WS (g), a contradiction, and if n =

∑k
i=2 imi,

then h having necessarily degree n − 2, it has 2 monomials and from Remark 4 again,
WS (h) conains 4 values which is not the case for WS (g) (note that two affinely equivalent
functions have the same Walsh spectrum). �
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4.3 Maiorana-McFarland functions
Now we characterize coset leaders by the Walsh transform in the whole class of Maiorana-
McFarland functions. Let us recall their definition:

Definition 8 Let n and r be any positive integers such that r ≤ n. We denote by MMr the
class of n-variable Boolean functions of the form:

f (x, y) = x · φ(y) + g(y); x ∈ Fr
2, y ∈ F

n−r
2 , (13)

where φ is a function from Fn−r
2 to Fr

2 and g is an (n−r)-variable Boolean function. We call
Maiorana-McFarland’s functions (in brief, MM functions) the functions of such general
form.

Note that MM1 equals the whole space of n-variable functions (hence, speaking in this
case of Maiorana-McFarland’s functions is more a viewpoint on the functions than a spe-
cific definition) and MMr ⊂ MMr−1, for every r ≥ 2.
Note that since functions φ and g defined in any function f ∈ MMr are in n − r vari-
ables, then any function in MMr is of degree at most n − r + 1. The original class of
Maiorana-McFarland’s bent functions, introduced by Maiorana, McFaland and Dillon, is
the subclass of MM n

2
in which φ is a permutation.

Clearly, each class MMr is a union of cosets of the first order Reed-Muller code.
From [4, Proposition 53], for all function f given by Relation (13), we have:

W f (u, v) = 2r
∑

y∈(φ)−1(u)

(−1)g(y)+v·y; u ∈ Fr
2, v ∈ F

n−r
2 . (14)

This means that

wH( f ) = 2n−1 − 2r−1
∑

y∈(φ)−1(0)

(−1)g(y) (15)

and that,
nl( f ) = 2n−1 − 2r−1 max

u∈Fr
2, v∈F

n−r
2

∣∣∣∣ ∑
y∈(φ)−1(u)

(−1)g(y)+v·y
∣∣∣∣.

Hence, from Lemma 1, we have

Lemma 7 Let n and r be two positive integers such that r ≤ n. For all f ∈ MMr, f is a
coset leader of RM(1, n) if and only if

max
u∈Fr

2,v∈F
n−r
2

∣∣∣∣ ∑
y∈(φ)−1(u)

(−1)g(y)+v·y
∣∣∣∣ =

∑
y∈(φ)−1(0)

(−1)g(y).
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Remark 6 Given f = x · φ(y) + g(y) in MMr and by setting Mu,v,ε = {y ∈ (φ)−1(u)/ g(y) +

v · y = ε} where (u, v) ∈ Fr
2 × F

n−r
2 and ε ∈ F2, we have from Lemma 7 that every function

g = f +u · x+v ·y+ε is a coset leader if and only if card(Mu,v,ε)−card(Mu,v,1+ε) is positive
and is maximal over Fr

2 × F
n−r
2 . Indeed, it suffices to observe that

∑
y∈(φ)−1(u)(−1)g(y)+v·y =

card(Mu,v,0) − card(Mu,v,1).

A simple case where a Maiorana-McFarland function is a coset leader is the following:

Corollary 6 Let n and r be two positive integers such that r ≤ n. For all f (x, y) =

x · φ(y) + g(y) ∈ MMr, if g vanishes on φ−1(0) and if Card((φ)−1(0)) ≥ card((φ)−1(u)) for
all u ∈ Fr

2, then f is a coset leader of RM(1, n).

Remark 7 Let n and r be two positive integers such that r ≤ n. Assume that a function
f = x ·φ(y) + g(y) ∈ MMr is a coset leader of RM(1, n). Then, according to Relation (15),
f has Hamming weight larger than 2n−2 if and only if

∑
y∈(φ)−1(0)(−1)g(y) < 2n−r−1.

Remark 8 If φ is a permutation as it is the case for functions in the Maiorana-McFarland
original class of bent functions, then φ−1(u) has only one element for all u and any function
f (x, y) = x · φ(y) + g(y) ∈ MM n

2
is a coset leader if and only if g(φ−1(0)) = 0. But we

knew already that, more generally, the bent functions which are coset leaders are those of
Hamming weight 2n−1 − 2

n
2−1.

It is clearly out of reach to precisely determine all the coset leaders of Maiorana-McFarland
functions: this is obvious for class MM1, since we have seen that MM1 equals to whole
class of n-variable Boolean functions. Let us look at the large values of r.
Before that, assume that the function φ considered the function f = x ·φ(y) + g(y) in MMr

is constant then we have:

Lemma 8 The coset leaders of every function f = x · φ(y) + g(y) in MMr, when φ is
constant, are the coset leaders of g (viewed as functions in n variables).

Proof Assume φ is constant and takes value u0 ∈ F
r
2. For all (u, v) ∈ Fr

2×F
n−r
2 , if u , u0 then

φ−1(u) = ∅ and we have
∑

y∈(φ)−1(u)(−1)g(y)+v·y = 0, which means that the coset leaders of
f are obtained when u = u0 only. Then we have

∑
y∈(φ)−1(u0)(−1)g(y)+v·y =

∑
y∈Fn−r

2
(−1)g(y)+v·y

and this ends the proof since g is a Boolean function in n − r variables. �

Theorem 2 Let n and r be two positive integers such that r ≤ n.

1. If r = n, the zero function is the unique coset leader in MMr.

2. If r = n − 1, the coset leaders in MMr are the zero function and, for every φ taking
two distinct values u0 = φ(0) and u1 = φ(1), the four functions:

f (x, y) = x · (φ(y) + ui) + v(y + i); x ∈ Fn−1
2 , y ∈ F2; i, v ∈ F2.
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3. If r = n − 2, then the coset leaders f (x, y); x ∈ Fn−2
2 ; y ∈ F2

2, of MMr are as follows,
according to the size of the image set of φ:

a) [φ constant]
f (x, y) = 0, f (x, y) = y1y2, f (x, y) = y1y2 + y1, f (x, y) = y1y2 + y2, and
f (x, y) = y1y2 + y1 + y2 + 1.

b) [φ taking two distinct values u1 and u2]

– If card(φ−1(u1)) , card(φ−1(u2)), then up to renaming u1, u2, we have
φ−1(u1) = {z1, z2, z3}, φ−1(u2) = {z4} and the corresponding coset leaders
are the functions:

f (x, y) = x · (φ(y) + u1) + g(y) + v · y + g(z1) + v · z1,

where g and v are such that g(y) + v · y is constant over φ−1(u1);
the functions:

f (x, y) = x · (φ(y) + u1) + g(y) + v · y +

3∑
i=1

(g(zi) + v · zi) + 1; v ∈ F2
2,

where g is such that g(y) + v · y is non-constant over φ−1(u1) for every v,
and the functions:

f (x, y) = x · (φ(y) + u2) + g(y) + v · y + g(z4) + v · z4; v ∈ F2
2.

– If card(φ−1(u1)) = card(φ−1(u2)) = 2, then by setting φ−1(u1) = {z1, z2}

and φ−1(u2) = {z3, z4}, the coset leaders are the functions:

f (x, y) = x · (φ(y) + u1) + g(y) + v · y + g(z1) + v · z1,

where g is such that g(y) + v · y is constant over φ−1(u1),
and the functions:

f (x, y) = x · (φ(y) + u2) + g(y) + v · y + g(z3) + v · z3,

where g is such that g(y) + v · y is constant over φ−1(u2).

c) [φ taking three distinct values u1, u2 and u3]. Up to renaming u1, u2 and u3,
we have φ−1(u1) = {z1, z2}, u2 = φ(z3) and u3 = φ(z4), then the corresponding
coset leaders are the functions:

f (x, y) = x · (φ(y) + u1) + g(y) + v · y + g(z1) + v · z1; x ∈ Fn−2
2 , y ∈ F2

2,

where g and v are such that g(y) + v · y is constant over φ−1(u1),
and the functions:

f (x, y) = x · (φ(y) + ui) + g(y) + v · y + g(zi+1) + v · zi+1; i = 2, 3, v ∈ F2
2,

if all the restrictions of g(y) + v · y to φ−1(u1) are balanced.
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d) [φ taking four distinct values u1 = φ(z1), u2 = φ(z2), u3 = φ(z3) and u4 = φ(z4)]
where F2

2 = {z1, z2, z3, z4}, then the coset leaders of f are the sixteen functions:

f (x, y) = x · (φ(y) + ui) + g(y) + v · y + g(zi) + v · zi; i ∈ {1, 2, 3, 4}, , v ∈ F2
2.

Proof. 1) If r = n, then MMr = RM(1, n) and the zero function is the unique coset leader.
2) If r = n − 1, then for a given function f (x, y) = x · φ(y) + g(y), where φ and g are
1-variable functions, we have:
a) If φ is constant, then according to Lemma 8, the coset leaders of f are the coset leaders
of g (viewed as in n variables). Since g is in 1 variable, it is affine and the unique coset
leader of g is then function 0. The unique coset leader corresponding to this case is then
the zero function (we could have seen this directly by observing that f itself is affine).
b) If φ takes two distinct values u0 = φ(0) and u1 = φ(1), the pre-image φ−1(u) is empty
when u < {u0, u1} and equals {i}where i ∈ F2 when u = ui. Since g is affine, we can without
loss of generality assume that it is the zero function and consider the coset leaders of f .
The sum

∑
y∈φ−1(u)(−1)g(y)+v·y equals then 0 when u < {u0, u1} and (−1)vi when u = ui, and

the result follows from Relation (14) (or Lemma 7) and Lemma 2 with ε = vi.
3) If r = n − 2, the functions φ and g in f (x, y) = x · φ(y) + g(y) ∈ MMr are 2-variable
functions, and we have:
a) If φ is constant, then according to Lemma 8, the coset leaders of f are the coset leaders
of g (viewed as in n variables). Since g is in 2 variables y1 and y2, it is either affine,
and the unique coset leader of g is then function 0, or it has degree 2, in which case the
coset leaders of g when g varies among the functions of degree 2 in two variables are
the functions of Hamming weight 1, that is, the functions y1y2, y1(y2 + 1) = y1y2 + y1,
(y1 + 1)y2 = y1y2 + y2 and (y1 + 1)(y2 + 1) = y1y2 + y1 + y2 + 1.
b) If φ takes two distinct values u1 and u2, noting that card(φ−1(u)) ≤ 3 for all u, we have:
- If φ−1(u1) = {z1, z2, z3} and φ−1(u2) = {z4}, then if u < {u1, u2}, the sum

∑
y∈φ−1(u)(−1)g(y)+v·y

equals 0; if u = u1 and g(y)+v ·y is constant over φ−1(u1), it equals 3(−1)g(z1)+v·z1; if u = u1

and g(y) + v · y is not constant over φ−1(u1), it equals (−1)1+
∑3

i=1(g(zi)+v·zi); and if u = u2, it
equals (−1)g(z4)+v·z4 and the result follows from Lemma 2.
-If card(φ−1(u1)) = card(φ−1(u2)) = 2, then by setting φ−1(u1) = {z1, z2} and φ−1(u2) =

{z3, z4}, the sum
∑

y∈φ−1(u)(−1)g(y)+v·y equals 0 when u < {u1, u2} or when u = u1 and g(y)+v·y
is balanced over φ−1(u1) or when u = u2 and g(y) + v · y is balanced over φ−1(u2). This
sum equals 2 (−1)g(z1)+v·z1 (resp. 2 (−1)g(z3)+v·z3) when u = u1 and g(y) + v · y is constant
over φ−1(u1) (resp. when u = u2 and g(y) + v · y is constant over φ−1(u2)), and the result
follows again from Lemma 2.
c) The pre-image φ−1(u) is empty when u < {u1, u2, u3}. Noting that card(φ−1(u)) ≤ 2, we
can take φ−1(u1) = {z1, z2}, φ(z3) = u2 and φ(z4) = u3, then the sum

∑
y∈φ−1(u)(−1)g(y)+v·y

equals 0 when u < {u1, u2, u3} or when u = u1 and g(y) + v · y is balanced over φ−1(u1), it
equals 2 (−1)g(z1)+v·z1 when u = u1 and g(y) + v · y is constant over φ−1(u1), and the result
follows from Lemma 2.
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d) The pre-image φ−1(u) is empty when u < {u1, u2, u3, u4} and equals zi ∈ F
2
2 when u = ui.

The sum
∑

y∈φ−1(u)(−1)g(y)+v·y equals then 0 when u < {u1, u2, u3, u4} and (−1)g(zi)+v·zi when
u = ui, and the result follows from Lemma 2. �

Remark 9 Denoting the Maiorana-McFarland original class of bent functions by MM′
n
2
,

every coset leader in MM′
n
2

with n ≥ 6 and deg(g) ≥ 3 is not affinely equivalent to a

DSM function. Indeed, its Walsh spectrum, which is {±2
n
2 }, is different from the Walsh

spectrum of any DSM function of degree at least 3 given in Remark 4, since this latter
Walsh spectrum contains a value divisible by 2deg(g) − 2, which is not the case for ±2

n
2 .

Conclusion
In this paper, we gave properties of the coset leaders of the first-order Reed-Muller code
and started a study of their structure through the study of operations that are internal to
their class. We characterized those coset leaders that belong to the well known classes of
direct sums of monomial functions and Maiorana-McFarland functions. We also gave in-
finite classes of coset leaders having Hamming weight greater than 2n−2. Many questions
remain open after our work; the global structure of coset leaders is still to be understood,
and the coset leaders of many classes whose Walsh transform is known (such as the class
of Niho functions, majority functions and Carlet-Feng functions) remain to be determined.
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