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1. Introduction

Let q be a power of a prime p, Fq be a finite field with q elements, and let F∗
q be its 

multiplicative group. A polynomial f ∈ Fq[x] is called a permutation polynomial if its 
associated mapping f : c �→ f(c) from Fq into itself is a bijection [26]. Moreover, f is 
called an involution if the compositional inverse of f is itself. Permutation polynomials 
over finite fields have been a hot topic of study for many years due to their significant ap-
plications in cryptography, design theory, coding theory, and other areas of mathematics 
and engineering. In particular, permutation polynomials with low differential uniformity, 
such as substitution boxes (S-boxes), which refer to vectorial Boolean functions, play an 
important role in block ciphers. The reader can see the recent book of [9] for more details 
concerning vectorial Boolean functions and their cryptographic properties.

Inspired by a practical differential attack on ciphers, multiplicative differential utiliz-
ing modular multiplication as a primitive operation was introduced by Borisov et al. [7]. 
Ellingsen et al. [13] developed a new (output) multiplicative differential and extended 
the idea of differential uniformity to c-differential uniformity. They specifically character-
ized the c-differential uniformity of some known PN functions and the inverse function. 
Hasan et al. [16] later focused on the (−1)-differential uniformity of monomial functions 
and exhibited some PcN power maps over finite fields of odd characteristics. Bartoli and 
Calderini [3] applied the AGW criterion [1] and its generalization to the construction of 
PcN and APcN functions. Determining the c-differential uniformity of several classes of 
power functions, including PcN and APcN functions, Mesnager et al. [28] extended the 
work in [3,13,16], especially about the c-differential uniformity of some known APN func-
tions with odd characteristics. While Zha and Hu [40] presented power functions with 
low c-differential uniformity such as P−1N, Yan [39] obtained ternary power functions 
with low (−1)-differential uniformity such as AP−1N. Through the cyclotomic technique, 
the switch method, and the AGW criteria, Wu and Li [37] constructed PcN and APcN 
multinomial functions. To the best of our knowledge, there are only a few functions with 
low c-differential uniformity over finite fields with even characteristics for c �= 1. Stănică 
[31] characterized the c-differential uniformity of the binary (0, 1)-swapped inverse func-
tion. By solving a two-equation system on two parameters, Tu et al. [33] gave the second 
class of APcN power functions over finite fields of even characteristics. Recently, Li et al. 
[24] constructed low c-differential uniformity functions in even and odd characteristics 
via generalizing Dillon’s switching method and generalized some results of [37]. Garg 
et al. [14] studied the c-differential uniformity of some classes of known permutation 
polynomials over even and odd characteristics by handling various Weil sums.

Whereas there has been considerable progress in constructing PcN functions lately, 
there is not yet any cryptographic attack utilizing a high c-differential uniformity. The 
potential use of c-differential uniformity in cryptography thus seems open still. However, 
the concept of β-planar functions proposed by Bartoli and Timpanella [4] is just the 
PcN where c = β. Anbar et al. [2] further pointed out the correspondence between the 
graph of a PcN function and a difference set in a quasigroup. Since difference sets breed 
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symmetric designs with applications such as constructing optimal self-complementary 
codes and secret sharing, we deem it theoretically and practically appealing to exploit 
c-differential uniformity and PcN functions.

Boomerang attack introduced by Wanger [35] is an important cryptanalysis technique 
against block ciphers. It can be regarded as an extension of classical differential attack 
[6]. In Eurocrypt 2018, Cid et al. [12] firstly proposed a new tool called the Boomerang 
Connectivity Table (BCT) to evaluate the resistance of block ciphers against boomerang 
attack. They also gave some relations between BCT and DDT (Differential Distribution 
Table). Boura and Canteaut [8] further studied the boomerang uniformity of differ-
entially 4-uniform permutations of 4-bit S-boxes and also determined the boomerang 
uniformity of the inverse function and quadratic permutations. Later, Li et al. [23] pro-
vided an equivalent formula to compute the boomerang uniformity of a cryptographic 
function. Moreover, they proposed some 4-uniform BCT permutation polynomials over 
F2n . Mesnager et al. [29] considered the boomerang uniformity of quadratic permuta-
tions by using the relation between BCT and DDT. Generally speaking, the functions 
with boomerang uniformity four offer the best resistance to boomerang attacks. So far, 
a few classes of 4-uniform BCT permutations [8,20–23,25,29,34,38] have been found. 
However, as shown in [15], these 4-uniform BCT permutation quadrinomials obtained 
in [20–22,25,34,38] are equivalent to Gold functions. Recent trends towards generalized 
differential and boomerang uniformities can be found in [27] and the references therein.

In particular, Hasan et al. [17] characterized the c-differential uniformity and 
boomerang uniformity of two classes of permutation polynomials, which was studied 
in [5] and [32]. Motivated by their work, this paper aims to find more permutation 
polynomials over F2n with low c-differential uniformity and boomerang uniformity. In 
this paper, we determine the c-differential uniformity and boomerang uniformity of the 
following three classes of permutation polynomials:

(1) f1(x) = x +Trn1 (x2k+1+1+x3+x +ux), where n = 2k+1, u ∈ F2n with Trn1 (u) = 1;
(2) f2(x) = x + Trn1 (x2k+3 + (x + 1)2k+3), where n = 2k + 1;
(3) f3(x) = x−1 + Trn1 ((x−1 + 1)d + x−d), where n is even and d is a positive integer.
The reason for choosing these three classes of permutation polynomials is as follows:
(1) By using the Gold function, the function G(x) = x + Trn1 (αx + x2k+1) is an invo-

lution over F2n with Tr(α) = 1, gcd(k, n) = 1 [11]. Recently, the c-differential uniformity 
and boomerang uniformity of G(x) have been determined by utilizing Weil sums tech-
nique in [17]. Motivated by their work, we consider the involution f1(x) by using Welch 
permutation polynomial x2k+1+1 + x3 + x over F22k+1 and calculate the c-differential 
uniformity and boomerang uniformity of f1(x) by using Weil sums technique. The result 
shows that f1(x) is an APcN function for c ∈ F2n\{0, 1} with boomerang uniformity of 
2n.

(2) In [10], the authors showed that for any h(x) ∈ F2n [x], the function f(x) =
x + Trn1 (h(x) + h(x + 1)) is a permutation polynomial over F2n . Inspired by their work, 
let h(x) = x2k+3 be a Welch function over F22k+1 , we consider the c-differential uniformity 
and boomerang uniformity of the involution f2(x) by using Weil sums technique. The 
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result shows that f2(x) is also an APcN function for c ∈ F2n\{0, 1} with boomerang 
uniformity of 2n.

(3) Let n be even and d ∈ {2n−2, 2n
2 +2n

4 +1, 2t1 +1, 3(2t2 +1)}, where 1 ≤ t1 ≤ n
2 −1

and 2 ≤ t2 ≤ n
2 − 1, the function G(x) = x−1 + Trn1 ((x−1 + 1)d + x−d) is a differentially 

4-uniform permutation polynomial over F2n (see [32]). Recently, the upper bounds on 
the c-differential uniformity and boomerang uniformity of G(x) for d = 2n − 2 had been 
given in [17]. Motivated by their work, we propose the upper bounds on the c-differential 
uniformity and boomerang uniformity of f3(x) for any positive integer d.

The remainder of the paper is organized as follows. In Section 2, we introduce some 
preliminaries needed in the sequel. In Section 3, the c-differential uniformity of three 
classes of permutation polynomials over F2n is given. In Section 4, the boomerang uni-
formity of three classes of permutation polynomials over F2n is proposed. Finally, we 
give some concluding remarks in Section 5.

2. Preliminaries

For two positive integers m and n with m | n, we use Trnm(·) to denote the trace 
function from F2n to F2m , i.e.,

Trnm(x) = x + x2m

+ x22m
+ . . . + x2(n/m−1)m

.

For m = 1, the absolute trace function is defined by Trn1 (x) =
n−1∑
i=0

x2i .

Definition 1. ([9]) For a Boolean function f(x) : F2n �→ F2, the Walsh transform of f(x)
at ω ∈ F2n is defined as

Wf (ω) =
∑

x∈F2n

(−1)f(x)+Trn1 (ωx).

Definition 2. ([30]) For any function f(x) from Fpn to Fpn , its derivative with respect to 
a ∈ Fpn is defined by

Daf(x) = f(x + a) − f(x).

Let Δf (a, b) be the cardinality of the solution set of Daf(x) = b for a, b ∈ Fpn , then the 
differential uniformity of f(x) is

Δf = max
a∈F∗

pn ,b∈Fpn

Δf (a, b).

Particularly, f(x) is called a perfect nonlinear (PN) function if Δf = 1 or an almost 
perfect nonlinear (APN) function if Δf = 2.
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Definition 3. ([13]) For any function f(x) : Fpn �→ Fpn , its c-derivative with respect to 
a ∈ Fpn is defined by

cDaf(x) = f(x + a) − cf(x),

where c ∈ Fpn . Correspondingly, let cΔf (a, b) be the cardinality of the solution set of 
cDaf(x) = b for a, b ∈ Fpn , then

cΔf = max
a,b∈Fpn ,a �=0 if c=1

cΔf (a, b)

defines the c-differential uniformity of f(x).

Note that differential uniformity is an instance of c-differential uniformity when c = 1. 
In particular, f(x) is called a perfect c-nonlinear (PcN) function if cΔf = 1 or an almost 
perfect c-nonlinear (APcN) function if cΔf = 2.

Definition 4. ([23]) For a given permutation f(x) : F2n �→ F2n , the BCT of f(x) is a 
2n × 2n table, the value at the position (a, b) ∈ F2n × F2n of which is the number of 
solution pairs (x, y) ∈ F2n × F2n of the following system

{
f(x) + f(y) = b

f(x + a) + f(y + a) = b.

The boomerang uniformity of f(x), denoted by Bf , is given by

Bf = max
a∈F∗

2n ,b∈F∗
2n

Bf (a, b).

Lemma 1. ([26]) The number N(b) of solutions (x1, x2, . . . , xn) ∈ Fn
2n , for a fixed b ∈ F2n , 

of the equation f(x1, x2, . . . , xn) = b is

N(b) = 1
2n

∑
x1,x2,...,xn∈F2n

∑
β∈F2n

(−1)Trn1 (β(f(x1,x2,...,xn)−b)).

Similarly, the number N̂(b) of solutions (x1, x2, . . . , xn) ∈ Fn
2n , for a fixed b = (b1, b2) ∈

F2
2n , of the system

{
f1(x1, x2, . . . , xn) = b1

f2(x1, x2, . . . , xn) = b2,

is
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N̂(b) = 1
22n

∑
x1,x2,...,xn∈F2n

∑
β∈F2n

(−1)Trn1 (β(f1(x1,x2,...,xn)−b1))

∑
γ∈F2n

(−1)Trn1 (γ(f2(x1,x2,...,xn)−b2)).

3. The c-differential uniformity of three classes of permutation polynomials

In this section, we investigate the c-differential uniformity of the following three classes 
of permutation polynomials:

(1) f1(x) = x +Trn1 (x2k+1+1+x3+x +ux), where n = 2k+1, u ∈ F2n with Trn1 (u) = 1;
(2) f2(x) = x + Trn1 (x2k+3 + (x + 1)2k+3), where n = 2k + 1;
(3) f3(x) = x−1 + Trn1 ((x−1 + 1)d + x−d), where n is even and d is a positive integer.

3.1. The c-differential uniformity of the first class of permutation polynomials

Lemma 2. For any two positive integers n, k with n = 2k+1, let u ∈ F2n with Trn1 (u) = 1. 
Then f1(x) = x + Trn1 (x2k+1+1 + x3 + x + ux) is an involution over F2n .

Proof. Since n = 2k + 1, we have Trn1 (1) = 1. Let y = x2k+1+1 + x3 + x + ux, then

f1(f1(x)) = f1(x) + Trn1 ((x + Trn1 (y))2
k+1+1 + (x + Trn1 (y))3 + (x + Trn1 (y))

+u((x + Trn1 (y))))

= f1(x) + Trn1 (y) + Trn1 (Trn1 (y)) + Trn1 (y)Trn1 (u)

= x.

Hence, f1(x) is an involution over F2n . �
Lemma 3. For any two positive integers n, k with n = 2k + 1 and k �= 1 (mod 3), let 
L1(x) = x2−(k+1) +x2k+1 +x2−1 +x2 ∈ F2n [x]. Then L1(x) = 0 has two solutions x = 0, 1
in F2n .

Proof. Since n = 2k+1 and k �= 1 (mod 3), we have gcd(n, k−1) = gcd(2k+1, k−1) =
gcd(3, k − 1) = 1 and gcd(n, k + 1) = gcd(2k + 1, k + 1) = gcd(k, k + 1) = gcd(1, k) = 1.

Raising 23k+1-th power on both sides of L1(x) = 0 gives

x22k
+ x + x2k−1

+ x2k+1
= 0.

Let L′
1(x) = x22k + x + x2k−1 + x2k+1 . From [26], we know that the conventional 

associate of the linearized polynomial L′
1(x) is A1(x) = x2k + xk+1 + xk−1 + 1 and 

gcd(L′
1(x), x2n + x) is the linearized associate of gcd(A1(x), xn + 1). Therefore, to prove 

the claim that L′
1(x) = 0 has two solutions x = 0, 1 in F2n , it suffices to show that 
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gcd(A1(x), xn + 1) = x + 1, which follows from A1(x) = (xk+1 + 1)(xk−1 + 1) and 
gcd(n, k + 1) = gcd(n, k − 1) = 1. �
Theorem 1. For any two positive integers n, k with n = 2k + 1 and k �= 1 (mod 3), 
let u ∈ F2n with Trn1 (u) = 1 and f1(x) = x + Trn1 (x2k+1+1 + x3 + x + ux). Then for 
(a, b) ∈ F∗

2n × F2n , we have

Δf1(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

2n if (a, b) = (1, 1)
2n−1 if (a, b) �= (1, 1), f1(a) ∈ {b, b + 1}
0 otherwise,

and Δf1 = 2n.

Proof. Recall that L1(x) = x2−(k+1) + x2k+1 + x2−1 + x2. By Definition 2, we consider 
the equation b = Daf1(x) = f1(x + a) + f1(x), which can be further written as

Trn1 (xL1(a)) = f1(a) + b. (1)

Since L1(1) = 0 and f1(1) = 1, Eq. (1) has 2n solutions if (a, b) = (1, 1) and no 
solution if (a, b) ∈ {(ζ, ξ) | ζ = 1, ξ �= 1}. By Lemma 3, L1(a) �= 0 for a /∈ {0, 1}, then 
Eq. (1) has 2n−1 solutions if f1(a) ∈ {b, b + 1} and has no solution otherwise.

Clearly,

Δf1 = max
a∈F∗

2n ,b∈F2n
Δf1(a, b) = 2n. �

Theorem 2. For any two positive integers n, k with n = 2k+1, let g1(x) = Trn1 (x2k+1+1 +
x3 + x) over F2n . Then

Wg1(α) =
{

0 if Trn1 (α) = 0
(−1)Trn1 (θ2k+1+1+θ2k+1+2k )Wg1(1) if Trn1 (α) = 1,

where θ ∈ F2n satisfying L1(θ) = α + 1.

Proof. Recall that L1(x) = x2−(k+1) +x2k+1 +x2−1 +x2. Let θ ∈ F2n , then by Definition 1,

Wg1(α) =
∑

x∈F2n

(−1)Trn1 ((x+θ)2
k+1+1+(x+θ)3+(x+θ)+α(x+θ))

= (−1)Trn1 (θ2k+1+1+θ3+θ+αθ)
∑

x∈F2n

(−1)Trn1 (x2k+1+1+x3+x+x(L1(θ)+α)).

It is easy to see that Trn1 (L1(θ)) = 0. So we choose a θ such that L1(θ) = α if Trn1 (α) =
0, then the sum arrives at 

∑
(−1)Trn1 (x2k+1+1+x3+x), which is 0. Thus, Wg1(α) = 0.
x∈F2n
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If Trn1 (α) = 1, we choose a θ such that L1(θ) = α + 1. The sum becomes ∑
x∈F2n

(−1)Trn1 (x2k+1+1+x3) = Wg1(1). That leads to

Wg1(α) = (−1)Trn1 (θ2k+1+1+θ2k+1+2k )Wg1(1). �
Remark 1. In order to evaluate Wg1(α), it suffices to calculate Wg1(1). Notice that the 
Walsh spectrum of the trace of the Welch permutation polynomial g1(x) = Trn1 (x2k+1+1+
x3 + x) over F22k+1 had been given in [36], so we can obtain Wg1(1) ∈ {±2k+1, ±2k+2}.

Theorem 3. For any two positive integers n, k with n = 2k+1 and u ∈ F2n with Trn1 (u) =
1, let f1(x) = x + Trn1 (x2k+1+1 + x3 + x + ux). Then for any (a, b) ∈ F2n × F2n and 
c ∈ F2n\{0, 1}, we have

cΔf1(a, b) =

⎧⎪⎨
⎪⎩

0 if A = 1 and B = 1
1 if B = 0
2 if A = 0 and B = 1,

where A = Trn1 ((a +b)L1(a)(1 +c)−1+a2k+1+1+a3+a +ua) and B = Trn1 (L1(a)(1 +c)−1). 
Moreover, f1(x) is an APcN function for c ∈ F2n\{0, 1}.

Proof. For sake of conciseness, let h1(x) = x2k+1+1 + x3 + x + ux, then f1(x) = x +
Trn1 (h1(x)). By Definition 3, we consider the equation b = cDaf1(x) = f1(x +a) +cf1(x), 
which can be further written as

(1 + c)f1(x) + Trn1 (ax2k+1
+ a2k+1

x + ax2 + a2x) + f1(a) + b = 0.

Recall that L1(x) = x2−(k+1) + x2k+1 + x2−1 + x2. Then by Definition 3 and Lemma 2, 
we have

cΔf1(a, b) = 1
2n

∑
β∈F2n

∑
x∈F2n

(−1)Trn1 (β((1+c)f1(x)+Trn1 (xL1(a))+f1(a)+b))

= 1
2n

∑
β∈F2n

(−1)Trn1 (β(f1(a)+b))
∑

x∈F2n

(−1)Trn1 (β(1+c)f1(x))+Trn1 (β)Trn1 (xL1(a))

= 1
2n (M0 + M1),

where M0 and M1 are the sums corresponding to Trn1 (β) = 0 and Trn1 (β) = 1, respec-
tively. Apparently,

M0 =
∑

n

(−1)Trn1 (β(f1(a)+b))
∑

(−1)Trn1 (β(1+c)f1(x))
β∈F2n ,Tr1 (β)=0 x∈F2n
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= 2n +
∑

β∈F∗
2n ,Trn1 (β)=0

(−1)Trn1 (β(f1(a)+b))
∑

x∈F2n

(−1)Trn1 (β(1+c)f1(x))

= 2n.

The last equality above holds because β(1 + c) �= 0 and f1(x) is a permutation of F2n , 
leading the inner sum to zero. Similarly,

M1 =
∑

β∈F2n ,Trn1 (β)=1

(−1)Trn1 (β(f1(a)+b))
∑

x∈F2n

(−1)Trn1 (β(1+c)(x+Trn1 (h1(x))))+Trn1 (xL1(a))

=
∑

β∈F2n ,Trn1 (β)=1

(−1)Trn1 (β(f1(a)+b))
∑

x∈F2n

(−1)Trn1 (β(1+c))Trn1 (h1(x))+Trn1 (x(L1(a)+β(1+c)))

= M1,1 + M1,0,

where M1,1 and M1,0 are the sums corresponding to Trn1 (βc) = 1 (i.e. Trn1 (β(1 + c) = 0) 
and Trn1 (βc) = 0 (i.e. Trn1 (β(1 + c) = 1), respectively.

M1,1 =
∑

β∈F2n ,Trn1 (β)=Trn1 (βc)=1

(−1)Trn1 (β(a+b))+Trn1 (β)Trn1 (h1(a))
∑

x∈F2n

(−1)Trn1 (x(L1(a)+β(1+c)))

=
∑

β∈F2n ,Trn1 (β)=Tr(βc)=1

(−1)Tr(β(a+b)+h1(a))
∑

x∈F2n

(−1)Tr(x(L1(a)+β(1+c))).

Notice that the inner sum will have a contribution if and only if β(1 + c) = L1(a). 
Therefore, we have

M1,1 =
{

0 if B = 0
2n · (−1)A if B = 1,

where A = Trn1 ((a + b)L1(a)(1 + c)−1 + h1(a)) and B = Trn1 (L1(a)(1 + c)−1).
Recall that g1(x) = Trn1 (x2k+1+1 + x3 + x), then

M1,0 =
∑

β∈F2n ,Trn1 (β)=1,Trn1 (βc)=0

(−1)Trn1 (β(f1(a)+b))Wg1(α),

where α = L1(a) + β(1 + c) + u. It is easy to see that Trn1 (α) = Trn1 (β(1 + c) + u) = 0. 
Therefore, we get M1,0 = 0 from Theorem 2. The proof of the distribution of cΔf1(a, b)
for c ∈ F2n\{0, 1} is completed.

By Definition 3,

cΔf1 = max
a∈F2n ,b∈F2n

cΔf1(a, b) = 2.

Thus, f1(x) is an APcN function for c ∈ F2n\{0, 1}. �
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3.2. The c-differential uniformity of the second class of permutation polynomials

Lemma 4. For any two positive integers n, k with n = 2k + 1, f2(x) = x + Trn1 (x2k+3 +
(x + 1)2k+3) is an involution over F2n .

Proof. Note that f2(x) = 1 +x +Trn1 (x2k+2 +x2k+1 +x3 +x). Since n = 2k+1, we have 
Trn1 (1) = 1. Then it is easy to calculate that f2(f2(x)) = x. Hence, f2(x) is an involution 
over F2n . �
Lemma 5. For any two positive integers n, k with n = 2k + 1 and k �= 1 (mod 3), let 
L2(x) = x21−k + x2k−1 + x2k + x2−k + x2 + x2−1 ∈ F2n [x]. Then L2(x) = 0 has two 
solutions x = 0, 1 in F2n .

Proof. Since n = 2k+1 and k �= 1 (mod 3), we have gcd(n, k−1) = gcd(2k+1, k−1) =
gcd(3, k − 1) = 1 and gcd(n, k) = gcd(2k + 1, k) = gcd(1, k) = 1.

Raising 2k-th power on both sides of L2(x) = 0 leads to

x2 + x22k−1
+ x22k

+ x + x2k+1
+ x2k−1

= 0.

Let L′
2(x) = x2 + x22k−1 + x22k + x + x2k+1 + x2k−1 . From [26], we know that the 

conventional associate of the linearized polynomial L′
2(x) is A2(x) = 1 + x + xk−1 +

xk+1+x2k−1+x2k and gcd(L′
2(x), x2n+x) is the linearized associate of gcd(A2(x), xn+1). 

Therefore, A2(x) = (x +1)(xk+1)(xk−1+1) and gcd(n, 1) = gcd(n, k) = gcd(n, k−1) = 1
give gcd(A2(x), xn + 1) = x + 1, which is sufficient for the claim that L′

2(x) = 0 has two 
solutions x = 0, 1 in F2n . �
Theorem 4. For any two positive integers n, k with n = 2k + 1 and k �= 1 (mod 3), let 
f2(x) = x + Trn1 (x2k+3 + (x + 1)2k+3). Then for (a, b) ∈ F∗

2n × F2n , we have

Δf2(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

2n if (a, b) = (1, 1)
2n−1 if (a, b) �= (1, 1), f2(a) ∈ {b, b + 1}
0 otherwise,

and Δf2 = 2n.

Proof. Recall that f2(x) = 1 + x + Trn1 (x2k+2 + x2k+1 + x3 + x) and L2(x) = x21−k +
x2k−1 + x2k + x2−k + x2 + x2−1 . Then by Definition 2, we consider the equation b =
Daf2(x) = f2(x + a) + f2(x), which can be further written as

Trn1 (xL2(a)) = 1 + f2(a) + b. (2)

Since L2(1) = 0 and f2(1) = 1, Eq. (2) has 2n solutions if (a, b) = (1, 1) and no 
solution if (a, b) ∈ {(ζ, ξ) | ζ = 1, ξ �= 1}. By Lemma 5, L2(a) �= 0 for a /∈ {0, 1}, then 
Eq. (2) has 2n−1 solutions if f1(a) ∈ {b, b + 1} and has no solution otherwise.
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Clearly,

Δf2 = max
a∈F∗

2n ,b∈F2n
Δf2(a, b) = 2n. �

Theorem 5. For any two positive integers n, k with n = 2k + 1, let g2(x) = Trn1 (x2k+2 +
x2k+1 + x3) over F2n . Then

Wg2(α) =
{

0 if Trn1 (α) = 0
(−1)Trn1 (β2k+2+1+β2k+1+β2k+1+2k+βδ)Wg2(δ) if Trn1 (α) = 1,

where β, δ ∈ F2n with Trn1 (δ) = 1 and α = L2(β) + δ.

Proof. Recall that L2(x) = x21−k + x2k−1 + x2k + x2−k + x2 + x2−1 . Let β ∈ F2n , then 
by Definition 1,

Wg2(α) =
∑

x∈F2n

(−1)Trn1 ((x+β)2
k+2+(x+β)2

k+1+(x+β)3+α(x+β))

= (−1)Trn1 (β2k+2+β2k+1+β3+αβ)
∑

x∈F2n

(−1)Trn1 (x2k+2+x2k+1+x3+x(L2(β)+α)).

It is easy to see that Trn1 (L2(β)) = 0. So we choose a β such that L2(β) = α if 
Trn1 (α) = 0, then the sum becomes 

∑
x∈F2n

(−1)Trn1 (x2k+2+x2k+1+x3) = 0. Therefore, we 

have Wg2(α) = 0.
If Trn1 (α) = 1, we choose a β such that L2(β) = α + δ, where Trn1 (δ) = 1. The sum 

turns out to be 
∑

x∈F2n

(−1)Trn1 (x2k+2+x2k+1+x3+δx) = Wg2(δ). It results in

Wg2(α) = (−1)Trn1 (β2k+2+1+β2k+1+β2k+1+2k+βδ)Wg2(δ). �
Theorem 6. For any two positive integers n, k with n = 2k+1, let f2(x) = x +Trn1 (x2k+3+
(x + 1)2k+3). Then for any (a, b) ∈ F2n × F2n and c ∈ F2n\{0, 1}, we have

cΔf2(a, b) =

⎧⎪⎨
⎪⎩

0 if A = 1 and B = 1
1 if B = 0
2 if A = 0 and B = 1,

where A = Trn1 ((a +b)L2(a)(1 +c)−1+a2k+2+a2k+1+a3+a) and B = Trn1 (L2(a)(1 +c)−1). 
Moreover, f2(x) is an APcN function for c ∈ F2n\{0, 1}.

Proof. For simplicity, let h2(x) = x2k+2+x2k+1+x3+x, then f2(x) = 1 +x +Trn1 (h2(x)). 
By Definition 3, we consider the equation b = cDaf2(x) = f2(x + a) + cf2(x), leading to
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(1 + c)f2(x) + f2(a) + 1 + Trn1 (a2x2k

+ a2k

x2 + ax2k

+ a2k

x + ax2 + a2x) + b = 0.

Recall that L2(x) = x21−k + x2k−1 + x2k + x2−k + x2 + x2−1 . Then, by Definition 3 and 
Lemma 1, we have

cΔf2(a, b) = 1
2n

∑
β∈F2n

(−1)Trn1 (β(f2(a)+b+1))
∑

x∈F2n

(−1)Trn1 (β(1+c)f2(x))+Trn1 (β)Trn1 (xL2(a))

= 1
2n (M0 + M1),

where M0 and M1 are the sums corresponding to Trn1 (β) = 0 and Trn1 (β) = 1, respec-
tively. Obviously,

M0 =
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (β(f2(a)+b+1))
∑

x∈F2n

(−1)Trn1 (β(1+c)f2(x))

= 2n +
∑

β∈F∗
2n ,Trn1 (β)=0

(−1)Trn1 (β(f2(a)+b+1))
∑

x∈F2n

(−1)Trn1 (β(1+c)f2(x))

= 2n.

The last equality above holds because β(1 + c) �= 0 and f2(x) is a permutation of F2n , 
making the inner sum zero. Similarly,

M1 =
∑

β∈F2n ,Trn1 (β)=1

(−1)Trn1 (β(f2(a)+b+1))
∑

x∈F2n

(−1)Trn1 (β(1+c)(1+x+Trn1 (h2(x))))+Trn1 (xL2(a))

=
∑

β∈F2n ,Trn1 (β)=1

(−1)Trn1 (β(f2(a)+b+c))
∑

x∈F2n

(−1)Trn1 (β(1+c))Trn1 (h2(x))+Trn1 (x(L2(a)+β(1+c)))

=M1,1 + M1,0,

where M1,1 and M1,0 are the sums corresponding to Trn1 (βc) = 1 (i.e. Trn1 (β(1 + c)) = 0) 
and Trn1 (βc) = 0 (i.e. Trn1 (β(1 + c)) = 1). We easily obtain

M1,1 =
∑

β∈F2n ,Trn1 (β)=Trn1 (βc)=1

(−1)Trn1 (β(a+b)+Trn1 (β)Trn1 (h2(a))
∑

x∈F2n

(−1)Trn1 (x(L2(a)+β(1+c)))

=
∑

β∈F2n ,Trn1 (β)=Trn1 (βc)=1

(−1)Trn1 (β(a+b)+h2(a))
∑

x∈F2n

(−1)Trn1 (x(L2(a)+β(1+c))).

Notice that the inner sum will have a contribution if and only if β(1 + c) = L2(a). 
Therefore, we have

M1,1 =
{

0 if B = 0
2n · (−1)A if B = 1,
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Table 1
Distribution of the solutions of (x + a)−1 + cx−1 = b with conditions on (a, b, c).

Conditions on (a, b, c) Solution set Ω Card(Ω)
ab = 1, Trn1 (c−1) = 0 {0, two roots from x2 + acx + a2c = 0} 3
ab = c, Trn1 (c) = 0 {a, two roots from x2 + ac−1x + a2 = 0} 3

ab /∈ {1, c, 1 + c}, Trn1 (
abc

a2b2 + c2 + 1
) = 0 {two roots from x2 +

ab + c + 1
b

x +
ac

b
= 0} 2

b = 0 {
ac

1 + c
} 1

a = 0, b �= 0 {b−1(1 + c)} 1
ab = 1, Trn1 (c−1) = 1 {0} 1
ab = c, Trn1 (c) = 1 {a} 1
ab = 1 + c {(

ac

b
)2

n−1} 1
otherwise {∅} 0

where A = Trn1 ((a + b)(1 + c)−1L2(a) + h2(a)) and B = Trn1 ((1 + c)−1L2(a)).
Similarly, recall that g2(x) = Trn1 (x2k+2 + x2k+1 + x3), then

M1,0 =
∑

β∈F2n ,Trn1 (β)=1,Trn1 (βc)=0

(−1)Trn1 (β(f2(a)+b))Wg2(α),

where α = L2(a) + β(1 + c) + 1. It is easy to see that Trn1 (α) = Trn1 (β(1 + c) + 1) = 0. 
Thus, we get M1,0 = 0 from Theorem 5.

The second conclusion follows Definition 3, where

cΔf2 = max
a∈F2n ,b∈F2n

cΔf2(a, b) = 2.

Thus, f2(x) is an APcN function for c ∈ F2n\{0, 1}. �
3.3. The c-differential uniformity of the third class of permutation polynomials

Lemma 6. ([13]) Let n be a positive integer and c ∈ F2n\{0, 1}. For any (a, b) ∈ F2n×F2n , 
the distribution of the solutions of (x + a)−1 + cx−1 = b is described as Table 1.

Theorem 7. Let n be even and d be a positive integer. Let f3(x) = x−1 + Trn1 ((x−1 +
1)d + x−d) be a map from F2n to itself. Then for any c ∈ F2n , we have:
(1) If c = 0, then f3(x) is a PcN function;
(2) If c = 1 and d ∈ {2n − 2, 2n

2 + 2n
4 + 1, 2t1 + 1, 3(2t2 + 1)}, where 1 ≤ t1 ≤ n

2 − 1 and 
2 ≤ t2 ≤ n

2 − 1, then Δf3 = 4;
(3) If c ∈ F2n\{0, 1} and Trn1 (c) = Trn1 (c−1) = 1, then cΔf3 ≤ 8;
(4) If c ∈ F2n\{0, 1}, Trn1 (c) = 0 or Trn1 (c−1) = 0, then cΔf3 ≤ 9.

Proof. For convenience, let h3(x) = (x−1 + 1)d + x−d, then f3(x) = x−1 + Trn1 (h3(x)).
By Definition 3, we consider the following equation for determining cΔf2(a, b) where 

a, b ∈ F2n

(x + a)−1 + Trn1 (h3(x + a)) + cx−1 + cTrn1 (h3(x)) = b. (3)
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Table 2
Conditions on (a, b, c) for the maximum cardinality of the solution set of 
Eq. (4).

ab a(b + c) a(b + 1) Trn1 (c−1) Trn1 (c) Trn1 (h3(a))
Case I 1 × × 0 × 0

c × × × 0 0

Case II × × × × × ×
Case III × c × × 0 1
Case IV × × 1 0 × 1

For c = 0 with (a, b) ∈ F2n × F2n or c ∈ F2n\{0, 1} with a = 0, b ∈ F2n , Eq. (3) has 
exactly one solution since f3(x + a) or f3(x) is a permutation polynomial. Thus, f3(x)
is a PcN function.

For c = 1 and d ∈ {2n − 2, 2n
2 + 2n

4 + 1, 2t1 + 1, 3(2t2 + 1)} with 1 ≤ t1 ≤ n
2 − 1 and 

2 ≤ t2 ≤ n
2 − 1, Δf3 = 4 [32].

For c ∈ F2n\{0, 1} with (a, b) ∈ F∗
2n × F2n , let A = Trn1 (h3(x + a)), B = Trn1 (h3(x)), 

then Eq. (3) is denoted as

(x + a)−1 + cx−1 = A + cB + b. (4)

Before starting our discussion with the division of (A, B) in Eq. (4), we underline a 
trivial fact that x = 0 (resp. x = a) is not a solution to Eq. (4) when (A, B) = (×, 1)
(resp. (A, B) = (1, ×)).

Case I: (A, B) = (0, 0). By Lemma 6, Eq. (4) has three solutions if ab = 1, Trn1 (c−1) =
0, Trn1 (h3(a)) = 0 (i.e. A = 0), or ab = c, Trn1 (c) = 0, Trn1 (h3(a)) = 0 (i.e. B = 0). 
Otherwise, the cardinality of its solution set is two at maximum.

Case II: (A, B) = (1, 1). By Lemma 6, Eq. (4) has only two solutions if a(b +c +1) = 1, 
Trn1 (c−1) = 0, or a(b + c + 1) = c, Trn1 (c) = 0. Note that x = 0 and x = a in Table 1 are 
excluded since they arouse contradictions in the value of Trn1 (1) as stated above. In the 
rest of (a, b, c), Eq. (4) has two solutions at maximum.

Case III: (A, B) = (0, 1). Similarly, only when a(b + c) = c, Trn1 (c) = 0 and 
Trn1 ((h3(a)) = 1 (i.e. B = 1) does Eq. (4) have three solutions by Lemma 7. Else, it 
has two solutions at maximum.

Case IV: (A, B) = (1, 0). When a(b + 1) = 1, Trn1 (c−1) = 0 and Trn1 (h3(a)) = 1 (i.e. 
A = 1), there are three solutions to Eq. (4) while there are at most two solutions in 
other cases of (a, b, c) according to Lemma 6.

In Table 2, mutual exclusion emerges between the conditions on Trn1 (h3(a)) in Case I 
and in Case III/IV and between the conditions on a(b +c) = c in Case III and a(b +1) = 1
in Case IV because a(b + c) = c together with a(b +1) = 1 yields c = 1. Hence, we can at 
most obtain three solutions in only one of Case I/III/IV and two in the left three cases, 
which is 3 + 2 × 3 = 9. Table 3 illustrates the distribution of the maximum cardinality 
of the solution set of Eq. (3). �
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Table 3
Distribution of the maximum cardinality of the solution set of Eq. (3).

Conditions on (a, b, c) Case I Case II Case III Case IV max(Card(Ω1))
ab = 1, Trn1 (c−1) = 0, Trn1 (h3(a)) = 0 3 2 2 2 9
ab = c, Trn1 (c) = 0, Trn1 (h3(a)) = 0 3 2 2 2 9
a(b + c) = c, Trn1 (c−1) = 0, Trn1 (h3(a)) = 1 2 2 3 2 9
a(b + 1) = 1, Trn1 (c−1) = 0, Trn1 (h3(a)) = 1 2 2 2 3 9
otherwise 2 2 2 2 8

* Ω1 represents the solution set of Eq. (3).

4. The boomerang uniformity of three classes of permutation polynomials

In this section, we study the boomerang uniformity of the following three families of 
permutation polynomials:

(1) f1(x) = x + Trn1 (x2k+1+1 + x3 + x + ux), where n = 2k + 1 with k �= 1 (mod 3)
and u ∈ F2n with Trn1 (u) = 1;

(2) f2(x) = x + Trn1 (x2k+3 + (x + 1)2k+3), where n = 2k + 1 and k �= 1 (mod 3);
(3) f3(x) = x−1 + Trn1 ((x−1 + 1)d + x−d), where n is even and d is a positive integer.

4.1. The boomerang uniformity of the first class of permutation polynomials

Theorem 8. For any two positive integers n, k with n = 2k + 1 and k �= 1 (mod 3), let 
u ∈ F2n with Trn1 (u) = 1 and f1(x) = x + Trn1 (x2k+1+1 + x3 + x + ux). Then for any 
(a, b) ∈ F∗

2n × F∗
2n , we have

Bf1(a, b) =
{

2n if Trn1 (L1(a)b) = 0
0 if Trn1 (L1(a)b) = 1,

and Bf1 = 2n.

Proof. Recall that L1(x) = x2−(k+1) +x2k+1 +x2−1 +x2. The following system is derived 
from Definition 4:

⎧⎪⎪⎨
⎪⎪⎩
x + y + Trn1 (u(x + y)) + Trn1 (x2k+1+1 + y2k+1+1) + Trn1 (x3 + y3) + Trn1 (x + y) = b

x + y + Trn1 (u(x + y)) + Trn1 ((x + a)2k+1+1 + (y + a)2k+1+1)
+Trn1 ((x + a)3 + (y + a)3) + Trn1 (x + y) = b.

(5)
Adding the two equations of the system (5) gives

Trn1 ((x + y)2
k+1

a + (x + y)a2k+1
) + Trn1 ((x + y)2a + (x + y)a2) = 0.
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Then the system (5) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩
x + y + Trn1 (u(x + y) + (x + y)2k+1+1 + x2k+1

y + xy2k+1)
+Trn1 ((x + y)3 + x2y + xy2) + Trn1 (x + y) = b

Trn1 ((x + y)2k+1
a + (x + y)a2k+1) + Trn1 ((x + y)2a + (x + y)a2) = 0.

(6)

Let y = x + z, the system (6) turns out to be

{
z + Trn1 (uz + z2k+1+1 + z3 + z) + Trn1 (x2k+1

z + xz2k+1 + x2z + xz2) = b

Trn1 (z2k+1
a + za2k+1 + z2a + za2) = 0,

which can be further reduced to
{
f1(z) + Trn1 (xL1(z)) = b

Trn1 (aL1(z)) = 0.
(7)

By Lemma 1, the cardinality of the solution set for (x, z) ∈ F2n × F2n of the system 
(7) is given by:

Bf1(a, b) = 1
22n

∑
x,z∈F2n

∑
β∈F2n

(−1)Trn1 (β(f1(z)+b))+Trn1 (β)Trn1 (xL1(z))
∑

γ∈F2n

(−1)Trn1 (γ)Trn1 (aL1(z))

= 1
22n

∑
β,γ∈F2n

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (βf1(z))+Trn1 (γ)Trn1 (aL1(z))

×
∑

x∈F2n

(−1)Trn1 (β)Trn1 (xL1(z))

= 1
22n (S0,0 + S0,1 + S1,0 + S1,1),

where S0,0, S0,1, S1,0, and S1,1 are a partition of the sum with the following correspon-
dence of Trn1 (β) and Trn1 (γ). Specifically, for ζ, ξ ∈ {0, 1}, Sζ,ξ denotes the part of the 
sum when Trn1 (β) = ζ and Trn1 (γ) = ξ. Hence, we have

S0,0 = 2n
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

γ∈F2n ,Trn1 (γ)=0

∑
z∈F2n

(−1)Trn1 (βf1(z))

= 22n−1
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (βf1(z)).

Similarly,

S0,1 = 2n
∑

n

(−1)Trn1 (βb)
∑

n

∑
(−1)Trn1 (βf1(z))+Trn1 (aL1(z))
β∈F2n ,Tr1 (β)=0 γ∈F2n ,Tr1 (γ)=1 z∈F2n
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= 22n−1
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (z(L1(a)+β)).

Furthermore, we have

S1,0 = 2n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (βf1(z))
∑

x∈F2n

(−1)Trn1 (xL1(z))

= 2n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)Trn1 (βb)
∑

z∈F2n\{0,1}
(−1)Trn1 (βf1(z))

∑
x∈F2n

(−1)Trn1 (xL1(z))

+ 22n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)Trn1 (βb)(1 + (−1)Trn1 (β(1+Trn1 (1+u))))

= 22n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)Trn1 (βb)(1 + (−1)Trn1 (β(1+Trn1 (1+u))))

= 0,

where the third equality holds since L1(z) �= 0 for z ∈ F2n\{0, 1} from Lemma 3. 
Similarly,

S1,1 =2n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (βf1(z))+Trn1 (aL1(z))
∑

x∈F2n

(−1)Trn1 (xL1(z))

=0.

Thus, we have

Bf1(a, b) = 1
22n (S0,0 + S0,1 + S1,0 + S1,1)

= 1
2

∑
β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)(
∑

z∈F2n

(−1)Trn1 (βf1(z)) +
∑

z∈F2n

(−1)Trn1 (z(L1(a)+β)))

= 1
2(2n +

∑
β∈F∗

2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (βf1(z))

+
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (z(L1(a)+β)))

= 2n−1 + 2n−1(−1)Trn1 (L1(a)b)

=
{

2n if Trn1 (L1(a)b) = 0
0 if Trn1 (L1(a)b) = 1,

where the fourth equality holds since f1(z) is a permutation of F2n and the inner sum 
will contribute if and only if β = L1(a). Then by Definition 4,

Bf1 = max
∗ ∗

Bf1(a, b) = 2n. �

a∈F2n ,b∈F2n
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4.2. The boomerang uniformity of the second class of permutation polynomials

Theorem 9. For any two positive integers n, k with n = 2k + 1 and k �= 1 (mod 3), let 
f2(x) = x + Trn1 (x2k+3 + (x + 1)2k+3). Then for any (a, b) ∈ F∗

2n × F∗
2n , we have

Bf2(a, b) =
{

2n if Trn1 (L2(a)b) = 0
0 if Trn1 (L2(a)b) = 1,

and Bf2 = 2n.

Proof. Recall that f2(x) = 1 + x + Trn1 (x2k+2 + x2k+1 + x3 + x) and L2(x) = x21−k +
x2k−1 + x2−k + x2k + x2−1 + x2. We derive the following system from Definition 4:

⎧⎪⎪⎨
⎪⎪⎩
x + y + Trn1 (x2k+2 + y2k+2) + Trn1 (x2k+1 + y2k+1) + Trn1 (x3 + y3) + Trn1 (x + y) = b

x + y + Trn1 ((x + a)2k+2 + (y + a)2k+2) + Trn1 ((x + a)2k+1 + (y + a)2k+1)
+Trn1 ((x + a)3 + (y + a)3) + Trn1 (x + y) = b.

(8)
An equation addition within the system (8) brings

Trn1 ((x+y)2
k

a2+(x+y)2a2k

)+Trn1 ((x+y)2
k

a+(x+y)a2k

)+Trn1 (a(x+y)2+a2(x+y)) = 0.

Then the system (8) is equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x + y + Trn1 ((x + y)2k+2 + x2k

y2 + x2y2k) + Trn1 ((x + y)2k+1 + x2k

y + xy2k)
+Trn1 ((x + y)3 + x2y + xy2) + Trn1 (x + y) = b

Trn1 (a2(x + y)2k + a2k(x + y)2) + Trn1 (a(x + y)2k + a2k(x + y))
+Trn1 (a(x + y)2 + a2(x + y)) = 0.

(9)

Taking y = x + z, the system (9) becomes

{
z + Trn1 (z2k+2 + z2k+1 + z3 + z) + Trn1 (x2k

z2 + x2z2k + x2k

z + xz2k + x2z + xz2) = b

Trn1 (a2z2k + a2k

z2 + az2k + a2k

z + az2 + a2z) = 0,

which can be written as
{

1 + f2(z) + Trn1 (xL2(z)) = b

Trn1 (aL2(z)) = 0.
(10)

By Lemma 1, the cardinality of the solution set for (x, z) ∈ F2n × F2n of the system 
(10) is given by:
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Bf2(a, b) = 1
22n

∑
x,z∈F2n

∑
β∈F2n

(−1)Trn1 (β(1+f2(z)+b))+Trn1 (β)Trn1 (xL2(z))

×
∑

γ∈F2n

(−1)Trn1 (γ)Trn1 (aL2(z))

= 1
22n

∑
β,γ∈F2n

(−1)Trn1 (β(1+b))
∑

z∈F2n

(−1)Trn1 (βf2(z))+Trn1 (γ)Trn1 (aL2(z))

×
∑

x∈F2n

(−1)Trn1 (β)Trn1 (xL2(z))

= 1
22n (S0,0 + S0,1 + S1,0 + S1,1),

where S0,0, S0,1, S1,0, and S1,1 are a partition of the sum with the following correspon-
dence of Trn1 (β) and Trn1 (γ). Specifically, for ζ, ξ ∈ {0, 1}, Sζ,ξ denotes the part of the 
sum when Trn1 (β) = ζ and Trn1 (γ) = ξ. Hence, we have

S0,0 = 2n
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

γ∈F2n ,Trn1 (γ)=0

∑
z∈F2n

(−1)Trn1 (βf2(z))

= 22n−1
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (βf2(z)).

Similarly,

S0,1 = 2n
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

γ∈F2n ,Trn1 (γ)=1

∑
z∈F2n

(−1)Trn1 (βf2(z))+Trn1 (aL2(z))

= 22n−1
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (z(L2(a)+β)).

Furthermore, we have

S1,0 = 2n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)1+Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (βf2(z))
∑

x∈F2n

(−1)Trn1 (xL2(z))

= 2n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)1+Trn1 (βb)
∑

z∈F2n\{0,1}
(−1)Trn1 (βf2(z))

∑
x∈F2n

(−1)Trn1 (xL2(z))

+22n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)1+Trn1 (βb)((−1)Trn1 (βf2(0)) + (−1)Trn1 (βf2(1)))

= 22n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)1+Trn1 (βb)((−1)Trn1 (β) + 1)

= 0,

where f2(0) = 1, f2(1) = 0, and the third identity holds since L2(z) �= 0 for z ∈ F2n\{0, 1}
from Lemma 5. Similarly,
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S1,1 =2n−1
∑

β∈F2n ,Trn1 (β)=1

(−1)1+Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (βf2(z))+Trn1 (aL2(z))
∑

x∈F2n

(−1)Trn1 (xL2(z))

=0.

Thus, we have

Bf2(a, b) = 1
22n (S0,0 + S0,1 + S1,0 + S1,1)

= 1
2

∑
β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)(
∑

z∈F2n

(−1)Trn1 (βf2(z)) +
∑

z∈F2n

(−1)Trn1 (z(L2(a)+β)))

= 1
2(2n +

∑
β∈F∗

2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (βf2(z))

+
∑

β∈F2n ,Trn1 (β)=0

(−1)Trn1 (βb)
∑

z∈F2n

(−1)Trn1 (z(L2(a)+β)))

= 2n−1 + 2n−1(−1)Trn1 (L2(a)b)

=
{

2n if Trn1 (L2(a)b) = 0
0 if Trn1 (L2(a)b) = 1,

where the fourth equality holds since f2(z) is a permutation of F2n and the inner sum 
will contribute if and only if β = L2(a). Then by Definition 4,

Bf2 = max
a∈F∗

2n ,b∈F∗
2n

Bf2(a, b) = 2n. �
4.3. The boomerang uniformity of the third classes of permutation polynomials

Lemma 7. ([8]) Let n be even and f(x) = x−1 be a map from F2n to itself. For any 
(a, b) ∈ F∗

2n ×F∗
2n , the distribution of the solutions of the system (11) is listed in Table 4, 

in which ω ∈ F4\F2 is a primitive third root of unity and F4 = {0, 1, ω, ω2}.
{
x−1 + y−1 = b

(x + a)−1 + (y + a)−1 = b
(11)

Theorem 10. Let n be even and d be an integer. Let f3(x) = x−1 +Trn1 ((x−1 +1)d +x−d)
be a map from F2n to itself. Then Bf3 ≤ 12.

Proof. Recall that ω ∈ F4\F2 and F4 = {0, 1, ω, ω2}. By Definition 4, we consider the 
following system to compute Bf3(a, b) for any (a, b) ∈ F∗

2n × F∗
2n :

{
x−1 + y−1 = b + A

(x + a)−1 + (y + a)−1 = b + B,
(12)
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Table 4
Distribution of the solutions of the system (11) with conditions on (a, b).

ab Trn1 (
1
ab

) Solution set Ω1 (n ≡ 2 (mod 4)) Solution set Ω2 (n ≡ 0 (mod 4))

1 × {(0, a), (a, 0), (aω, aω2), (aω2, aω)} Ω1
ω × {(0, aω2), (aω2, 0), (a, aω), (aω, a)} Ω1 ∪ {(x2, x2 + a), (x2 + a, x2)}
ω2 × {(0, aω), (aω, 0), (a, aω2), (aω2, a)} Ω1 ∪ {(x3, x3 + a), (x3 + a, x3)}
/∈ F∗

4 0 {(x1, x1 + a), (x1 + a, x1)} Ω1
/∈ F∗

4 1 {∅} {∅}
* x2 and x2 + a are the roots of x2

2 + ax2 + a2ω2 = 0.
* x3 and x3 + a are the roots of x2

3 + ax3 + a2ω = 0.
* x1 and x1 + a are the roots of x2

1 + ax1 + ab−1 = 0.

Table 5
Solutions of the system (12) for (ab, a(b + 1)) ∈ Γ and A = B.
ab a(b + 1) a b A = B = 0 A = B = 1
1 ω ω2 ω {(0, ω2), (ω2, 0), (1, ω), (ω, 1)} {(0, ω), (ω, 0), (ω2, 1), (1, ω2)}+2

1 ω2 ω ω2 {(0, ω), (ω, 0), (1, ω2), (ω2, 1)} {(0, ω2), (ω2, 0), (ω, 1), (1, ω)}+2

ω 1 ω2 ω2 {(0, ω), (ω, 0), (ω2, 1), (1, ω2)}+2 {(0, ω2), (ω2, 0), (ω, 1), (1, ω)}
ω ω2 1 ω {(0, ω2), (ω2, 0), (ω, 1), (1, ω)}+2 {(0, ω), (ω, 0), (ω2, 1), (1, ω2)}+2

ω2 1 ω ω {(0, ω2), (ω2, 0), (ω, 1), (1, ω)}+2 {(0, ω), (ω, 0), (ω2, 1), (1, ω2)}
ω2 ω 1 ω2 {(0, ω), (ω, 0), (ω2, 1), (1, ω2)}+2 {(0, ω2), (ω2, 0), (ω, 1), (1, ω)}+2

* +2 implies two more solutions when n ≡ 0 (mod 4).

where (x, y) ∈ F2n × F2n , A = Trn1 (x−d + y−d + (x−1 + 1)d + (y−1 + 1)d), B = Trn1 ((x +
a)−d + (y + a)−d + ((x + a)−1 + 1)d + ((y + a)−1 + 1)d).

Evidently, any element in {(x, y)|x = y} is not the solution to the system (12) for they 
lead to b = 0. Hence, we discuss below the solutions within {(x, y)|x �= y} concerning 
various (A, B).

Case I: A = B. Knowing that ab = a(b + 1) will result in a contradiction with 
a ∈ F∗

2n , we first look at (ab, a(b + 1)) ∈ Γ = {(ζ, ξ) | ζ, ξ ∈ F∗
4 , ζ �= ξ}. For instance, if 

(ab, a(b + 1)) = (1, ω), we have (a, b) = (ω2, ω). Then by Lemma 7, we handily get four 
solutions {(0, ω2), (ω2, 0), (1, ω), (ω, 1)} for (A, B) = (0, 0) and another four solutions 
{(0, ω), (ω, 0), (ω2, 1), (1, ω2)} for (A, B) = (1, 1) when n ≡ 2 (mod 4) and two more 
when n ≡ 0 (mod 4). Table 5 simply gives all solutions of the system (12) derived from 
Table 4 regarding (ab, a(b + 1)) ∈ Γ and A = B.

Secondly, for the rest of (ab, a(b + 1)), which is {(ζ, ξ) | ζ, ξ ∈ F2n , ζ �= ξ}\Γ, we 
rephrase it as the situation that at least one of ab and a(b + 1) is not in F∗

4 . For 
instance, if ab = 1 and a(b + 1) /∈ F∗

4 , we again easily obtain by Lemma 7 four so-
lutions {(0, a), (a, 0), (aω, aω2), (aω2, aω)} for (A, B) = (0, 0) and two more solutions for 
(A, B) = (1, 1) if and only if Trn1 (a−1(b + 1)−1) = 0.

To sum up Case I, we conclude in Table 6 the distribution of the solutions of the 
system (12) for A = B. Notice that for any element of {(x, y) | x, y ∈ F4, x �= y} we 
always have A = B = 0. Therefore, these solutions for A = B = 1 in Table 5 have been 
excluded in Table 6.

Case II: A �= B, or equally A = B + 1. Notice that a solution (x0, y0) to the system 
(12) for (A, B) = (0, 1) mirrors another solution (x0 + a, y0 + a) to the system (12) for 
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Table 6
Distribution of the solutions of the system (12) for A = B with conditions on (a, b).

ab a(b + 1) Trn1 (
1
ab

) Trn1 (
1

a(b + 1)
) Solution set Ω Card(Ω)

1 1 × × {∅} 0
1 ω × × {(0, ω2), (ω2, 0), (1, ω), (ω, 1)}+2 4/6
1 ω2 × × {(0, ω), (ω, 0), (ω2, 1), (1, ω2)}+2 4/6
1 /∈ F∗

4 × 0 {(0, a), (a, 0), (aω, aω2), (aω2, aω),+2} 6
1 /∈ F∗

4 × 1 {(0, a), (a, 0), (aω, aω2), (aω2, aω)} 4
ω 1 × × {(0, ω), (ω, 0), (ω2, 1), (1, ω2)}+2 4/6
ω ω × × {∅} 0
ω ω2 × × {(0, ω2), (ω2, 0), (1, ω), (ω, 1)}+4 4/8
ω /∈ F∗

4 × 0 {(0, aω2), (aω2, 0), (a, aω), (aω, a),+2}+2 6/8
ω /∈ F∗

4 × 1 {(0, aω2), (aω2, 0), (a, aω), (aω, a)}+2 4/6
ω2 1 × × {(0, ω2), (ω2, 0), (ω, 1), (1, ω)}+2 4/6
ω2 ω × × {(0, ω), (ω, 0), (1, ω2), (ω2, 1)}+4 4/8
ω2 ω2 × × {∅} 0
ω2 /∈ F∗

4 × 0 {(0, aω), (aω, 0), (a, aω2), (aω2, a),+2}+2 6/8
ω2 /∈ F∗

4 × 1 {(0, aω), (aω, 0), (a, aω2), (aω2, a)}+2 4/6
/∈ F∗

4 1 0 × {(0, a), (a, 0), (aω, aω2), (aω2, aω),+2} 6
/∈ F∗

4 ω 0 × {(0, aω2), (aω2, 0), (a, aω), (aω, a),+2}+2 6/8
/∈ F∗

4 ω2 0 × {(0, aω), (aω, 0), (a, aω2), (aω2, a),+2}+2 6/8
/∈ F∗

4 /∈ F∗
4 0 0 +4 4

/∈ F∗
4 /∈ F∗

4 0 1 +2 2
/∈ F∗

4 1 1 × {(0, a), (a, 0), (aω, aω2), (aω2, aω)} 4
/∈ F∗

4 ω 1 × {(0, aω2), (aω2, 0), (a, aω), (aω, a)}+2 4/6
/∈ F∗

4 ω2 1 × {(0, aω), (aω, 0), (a, aω2), (aω2, a)}+2 4/6
/∈ F∗

4 /∈ F∗
4 1 0 +2 2

/∈ F∗
4 /∈ F∗

4 1 1 {∅} 0
* +2 and +4 respectively imply two and four (more) solutions implicitly given by quadratic equations.
* +2 and +4 respectively imply two and four more solutions when n ≡ 0 (mod 4).

(A, B) = (1, 0). Thus, to be succinct, we only discuss the situation of (A, B) = (0, 1) as 
follows.

We first examine four obvious solutions. Consider (x, y) ∈ {(0, b−1), (b−1, 0)}, for 
example, then we have a(b + 1)(ab + 1) = 1, which further infers ab �= 1, a �= 1, and 
b �= 1. The second is because a = 1 will lead to (b + 1)(b + 1) = 1 and then b = 0 against 
b ∈ F∗

2n . When considering another pair (x, y) ∈ {(a, (a−1 + b)−1), ((a−1 + b)−1, a)}, 
we have ab(ab + a + 1) = 1, implying ab �= 1, a �= 1, and b �= 1. Particularly, under 
ab(ab + a + 1) = 1, we can deduce any two of ab = 1, a = 1, and b = 1 from the other 
one, then (x, y) ∈ {(1, 0), (0, 1)} arrives at a paradox (1 = 0) in the second equation of 
the system (12).

Now we turn to {(x, y) | x, y ∈ F2n\{0, a}}. The system (12) can be reduced to

{
x + y = bxy

(x + y)(a(x + y) + a2) = xy(x + a)(y + a).
(13)

Multiplying b2 on both sides of the second part of the system (13) and replacing xy by 
b−1(x + y) reaches
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{
x + y = bxy

(ab2 + ab + 1)(x + y) = a2b2 + a2b.
(14)

If ab2 + ab + 1 = 0, then a2b2 + a2b �= 0 always holds since otherwise b = 1 and 
ab2 + ab + 1 = 1 �= 0. Therefore, the system (14) has no solution.

If ab2 + ab + 1 �= 0, we let θ = a2b(b + 1)(ab2 + ab + 1)−1 and combine x + y = bxy to 
get the following quadratic equation:

x2 + θx + θ

b
= 0. (15)

It is well known that Eq. (15) has two solutions if and only if Trn1 (θ−1b−1) = 0, which 
can be denoted by x = x0 and x = x0 + θ (y = x0 + θ and y = x0 respectively).

As in Case I, we also analyze the solution set by considering if ab ∈ F∗
4 or

a(b + 1) ∈ F∗
4 .

If ab ∈ F∗
4 or a(b +1) ∈ F∗

4 , it is easy to verify that a(b +1)(ab +1) �= 1, ab(ab +a +1) �= 1, 
and ab2+ab +1 �= 0 always hold. Thus, none of {(0, b−1), (b−1, 0), (a, (a−1+b)−1), ((a−1+
b)−1, a)} is a solution and we can at most obtain two solutions from Eq. (15) if and only 
if the corresponding trace function Trn1 (θ−1b−1) = 0. Specifically, for ab ∈ {1, ω, ω2}, we 
have θ−1b−1 = (a +1)−1, (a +1)(a +ω)−1, (a +1)(a +ω2)−1, respectively, while for a(b +
1) ∈ {1, ω, ω2}, we have θ−1b−1 = (a2 +1)−1, ω(a +1)(a2 +ω2)−1, (a +1)ω−1(a2 +ω)−1, 
respectively.

If both ab /∈ F∗
4 and a(b + 1) /∈ F∗

4 , notice that a(b + 1)(ab + 1) �= ab(ab + a + 1)
otherwise a = 0 contradicts a ∈ F∗

2n , then we may have either {(0, b−1), (b−1, 0)} or 
{(a, (a−1 + b)−1), ((a−1 + b)−1, a)} as possible solutions. Since either a(b +1)(ab +1) = 1
or ab(ab + a + 1) = 1 is not incompatible with ab2 + ab + 1 �= 0, it is still likely to find 
two more solutions from Eq. (15).

We summarize the solution set of the system (12) for A �= B (including (A, B) = (0, 1)
as what has been discussed above and the mirroring situation (A, B) = (1, 0)) in Table 7
and finally conclude in Table 8 the maximum cardinality of its solution set under different 
(a, b), namely Bf3(a, b). �
Remark 2. Note that the methods used in this paper include the Walsh spectrum, Weil 
sums, and a very detailed analysis of some equations. Determining the Walsh spectrum 
of the first and second class of permutation polynomials gives a straightforward way 
to calculate the c-differential and boomerang uniformity. At the same time, we tried 
to use the same methods to find the Walsh spectrum of the third class of permuta-
tion polynomials. In the process, we encountered some difficulties that were difficult to 
overcome, such as some unknown Kloosterman sums. Hence, we only gave the upper 
bounds on the c-differential and boomerang uniformity of the third class of permutation 
polynomials.
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Table 7
Distribution of the solutions of the system (12) for A �= B with conditions on (a, b).

ab a(b + 1) a(b + 1)(ab + 1) ab(ab + a + 1) Trn1 (
1
θb

) Solution set Ω Card(Ω)

1 × × × 0 +4 4
ω × × × 0 +4 4
ω2 × × × 0 +4 4
× 1 × × 0 +4 4
× ω × × 0 +4 4
× ω2 × × 0 +4 4
/∈ F∗

4 /∈ F∗
4 1 × 0 Λ + 4 8

/∈ F∗
4 /∈ F∗

4 × 1 0 Π + 4 8
/∈ F∗

4 /∈ F∗
4 �= 1 �= 1 0 +4 4

/∈ F∗
4 /∈ F∗

4 1 × 1 Λ 4
/∈ F∗

4 /∈ F∗
4 × 1 1 Π 4

* +4 implies four (more) solutions implicitly given by quadratic equations.
* Λ = {(0, b−1), (b−1, 0), (a, a + b−1), (a + b−1, a)}.
* Π = {(a, (a−1 + b)−1), ((a−1 + b)−1, a), (0, a + (a−1 + b)−1), (a + (a−1 + b)−1, 0)}.
* Ω = {∅} for any other (a, b) unlisted and thus Card(Ω) = 0.

Table 8
Maximum cardinality of the system (12) with conditions on (a, b).
ab a(b + 1) max(Card(Ω)) for A = B max(Card(Ω)) for A �= B max(Bf3 (a, b))
1 × 6 4 10
× 1 6 4 10
∈ F4\F2 × 6 (n ≡ 2 (mod 4)) 4 10 (n ≡ 2 (mod 4))
∈ F4\F2 × 8 (n ≡ 0 (mod 4)) 4 12 (n ≡ 0 (mod 4))
× ∈ F4\F2 6 (n ≡ 2 (mod 4)) 4 10 (n ≡ 2 (mod 4))
× ∈ F4\F2 8 (n ≡ 0 (mod 4)) 4 12 (n ≡ 0 (mod 4))
/∈ F4 /∈ F4 4 8 12

5. Concluding remarks

This paper mainly concentrates on the c-differential uniformity and boomerang uni-
formity of three classes of permutation polynomials over F2n . On the one hand, by using 
the Weil sums technique to determine the number of solutions of some certain equa-
tions, we obtain two families of involutions f1(x) and f2(x), which are APcN functions 
for c ∈ F2n\{0, 1}. Moreover, the boomerang uniformity of f1(x) and f2(x) can attain 2n. 
On the other hand, we present some upper bounds on the c-differential uniformity and 
boomerang uniformity of f3(x) by calculating the solutions of some certain equations. 
It is a continuation and generalization of some previous works in [17,32]. We summarize 
all the known permutation polynomials over F2n with low c-differential uniformity and 
boomerang uniformity in Table 9 and Table 10, respectively. Finding more permuta-
tion polynomials with low c-differential uniformity and boomerang uniformity over finite 
fields with even characteristics would be interesting.
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cΔf Reference
≤ 4 [31]

, 1} 2 [17]
1 [17]
2n [17]

≤ 8 [17]

≤ 9 [17]
1 [17]
1 [14]
2 [14]
≤ 4 [14]
1 [14]

2n\F2m 2 [14]
≤ 4 [14]
1 [14]

F2n\F2m 2 [14]
≤ 4 [14]
≤ 5 [19]
2 Theorem 3
2n Theorem 1
2 Theorem 6
2n Theorem 4
≤ 8 Theorem 7

1, c ∈ F2n\{0, 1} ≤ 9 Theorem 7
1 Theorem 7

1, 2 ≤ t2 ≤ n
2 − 1, c = 1 4 [32]
Table 9
Known permutation polynomials over F2n with low c-differential uniformity.
f(x) Conditions
x2n−2 + x2n−1 + (x + 1)2

n−1 n ≥ 2, c ∈ F2n\{0, 1}
x + Trn1 (αx + x2k+1) n ≥ 3 is odd and gcd(k, n) = 1, α ∈ F2n with Trn1 (α) = 1, c ∈ F2n\{0

n ≥ 3 is odd and gcd(k, n) = 1, α ∈ F2n with Trn1 (α) = 1, c = 0
n ≥ 3 is odd and gcd(k, n) = 1, α ∈ F2n with Trn1 (α) = 1, c = 1

x−1 + Trn1 (
x2

x + 1
) all n, c ∈ F2n\{0, 1}, Trn1 (c) = Trn1 (c−1) = 1

all n, c ∈ F2n\{0, 1}, Trn1 (c) = Trn1 (c−1) = 0 or Tr(c) + Tr(c−1) = 1
all n, c = 0

(x2m

+ x + δ)2
2m+1 + x n = 3m, δ ∈ F2n , c ∈ F2m\{1}

n = 3m, Γ1 = {δ ∈ F2n : Tr3mm (δ) = 1}, δ ∈ Γ1, c ∈ F2n\F2m

n = 3m, δ ∈ F2n\Γ1, c ∈ F2n\F2m

(x2m

+ x + δ)2
2m−1+2m−1

+ x n = 3m, m �≡ 1 (mod 3), δ ∈ F2n , c ∈ F2m\{1}
n = 3m, m �≡ 1 (mod 3), Γ0 = {δ ∈ F2n : Tr3mm (δ) = 0}, δ ∈ Γ0, c ∈ F
n = 3m, m �≡ 1 (mod 3), δ ∈ F2n\Γ0, c ∈ F2n\F2m

(x2m

+ x + δ)2
3m−1+2m−1

+ x n = 3m, 2m �≡ 1 (mod 3), δ ∈ F2n , c ∈ F2m\{1}
n = 3m, 2m �≡ 1 (mod 3), Γ0 = {δ ∈ F2n : Tr3mm (δ) = 0}, δ ∈ Γ0, c ∈
n = 3m, 2m �≡ 1 (mod 3), δ ∈ F2n\Γ0, c ∈ F2n\F2m

Inv ◦ (0, 1, γ) n ≥ 4, c, γ ∈ F2n\{0, 1}
x + Trn1 (x2k+1+1 + x3 + x + ux) n = 2k + 1, u ∈ F2n with Trn1 (u) = 1, c ∈ F2n\{0, 1}

n = 2k + 1 with k �= 1 (mod 3), u ∈ F2n with Trn1 (u) = 1, c = 1
x + Trn1 (x2k+3 + (x + 1)2

k+3) n = 2k + 1, c ∈ F2n\{0, 1}
n = 2k + 1 with k �= 1 (mod 3), c = 1

x−1 + Trn1 ((x−1 + 1)d + x−d) n is even, any positive d, Trn1 (c) = Trn1 (c−1) = 1, c ∈ F2n\{0, 1}
n is even, any positive d, Trn1 (c) = Trn1 (c−1) = 0 or Tr(c) + Tr(c−1) =
n is even, any positive d, c = 0
n is even, d ∈ {2n − 2, 2

n

2 + 2
n

4 + 1, 2t1 + 1, 3(2t2 + 1)}, 1 ≤ t1 ≤ n
2 −
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Bf Reference

d(α) = 2n − 1 4 [8]
≤ 12 [8]
4 [23]
4 [34]

c3) ∈ Γ0, else see [25] 4 [20–22,25]
, c2, c3) ∈ Γ0, else see [38] 4e [38]

2n [17]
≤ 12 [17]

m 2m [29]

else see [18] 6 [18]
= 1 2n Theorem 8

2n Theorem 9
≤ 12 Theorem 10
Table 10
Known permutation polynomials over F2n with low boomerang uniformity.
f(x) Conditions

αx2k+1 + α2m

x2−m+2m+k

n = 3m, m ≡ 2 (mod 4), gcd(n, k) = 2, 3|(m + k), or
All quadratic permutation Δf = 4
x2m+2 + γx n = 2m and m is odd, ord(γ2m−1) = 3
x2m+1+2m

+ c1x
2m+1+1 + c2x

2m+2 + c3x
3 n = 2m and m is odd, (c1, c2, c3) ∈ Γ1, else see [34]

c0x
2m(2k+1) + c1x

2k+m+1 + c2x
2m+2k

+ c3x
2k+1 n = 2m, m and k are odds, gcd(m, k) = 1, (c0, c1, c2,

n = 2m, m/e and k/e are odds, e = gcd(m, k), (c0, c1
x + Trn1 (αx + x2k+1) n ≥ 3 is odd, α ∈ F2n with Trn1 (α) = 1, gcd(k, n) = 1
x−1 + Trn1 ( x2

x+1 ) n is even∑
0≤i≤j≤ n

m
−1

cijx
qi+qj

q = 2m, cij ∈ F2n , f is a permutation on F2n , Δf = 2

((x2n−2 + β)2
n−2 + 1)2

n−2 β ∈ F2n\F4, f is a permutation of Carlitz rank three,
x + Trn1 (x2k+1+1 + x3 + x + ux) n = 2k + 1 with k �= 1 (mod 3), u ∈ F2n with Trn1 (u)
x + Trn1 (x2k+3 + (x + 1)2

k+3) n = 2k + 1 with k �= 1 (mod 3)
x−1 + Trn1 ((x−1 + 1)d + x−d) n is even, any positive d
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