Unclonable Polymers and
Their Cryptographic Applications

Ghada Almashaqbeh', Ran Canetti?, Yaniv Erlich?, Jonathan Gershoni?,
Tal Malkin®, Itsik Pe’er®, Anna Roitburd-Berman* and Eran Tromer*°

! University of Connecticut, ghada@uconn.edu
2 Boston University, canetti@bu.edu
3 Eleven Therapeutics and IDC Herzliya, erlichya@gmail.com
4 Tel Aviv University, gershoni@tauex.tau.ac.il, roitburda@gmail.com
5 Columbia University, {tal,itsik,tromer}@cs.columbia.edu

Abstract. We propose a mechanism for generating and manipulating protein polymers to obtain a
new type of consumable storage that exhibits intriguing cryptographic “self-destruct” properties,
assuming the hardness of certain polymer-sequencing problems.

To demonstrate the cryptographic potential of this technology, we first develop a formalism that
captures (in a minimalistic way) the functionality and security properties provided by the technology.
Next, using this technology, we construct and prove security of two cryptographic applications that
are currently obtainable only via trusted hardware that implements logical circuitry (either classical
or quantum). The first application is a password-controlled secure vault where the stored data is
irrecoverably erased once a threshold of unsuccessful access attempts is reached. The second is (a
somewhat relaxed version of) one-time programs, namely a device that allows evaluating a secret
function only a limited number of times before self-destructing, where each evaluation is made on a
fresh user-chosen input.

Finally, while our constructions, modeling, and analysis are designed to capture the proposed
polymer-based technology, they are sufficiently general to be of potential independent interest.

1 Introduction

Imagine we could cryptographically create k-time programs, i.e., programs that can be run only some
bounded number of times, and inherently self-destruct after the k-th invocation. This would open the
door to a plethora of groundbreaking applications: For instance, we would be able to use even low-entropy
passwords for offline data storage, because k-time programs could lock out a brute-force-search adversary
after a few attempts; today this is possible only via interaction or trusted electronics.

Alternatively, we could release a sensitive and proprietary program (such as a well-trained ML model)
and be guaranteed that the program can be used only a limited number of times, thus potentially preventing
over-use, mission-creep, or reverse engineering. Such programs can also be viewed as a commitment to a
potentially exponential number of values, with a guarantee that only few of these values are ever opened.

Indeed, k-time programs, first proposed by Goldwasser, Kalai, and Rothblum [42] are extremely
powerful. What does it take to make this concept a reality? Obviously, we cannot hope to do that with
pure software or classical information alone, since these are inherently cloneable. In fact, software-only
k-time programs do not exist even if the program can use quantum gates |16]. In [42] it is shown that
“one-out-of-two” memory gadgets, which guarantee that exactly one out of two pieces of data encoded
in the gadget will be retrievable, along with circuit garbling techniques [66|, suffice for building k-time
programs for any functionality.

However, how do we obtain such memory gadgets? While Goldwasser et al. suggest a number of
general directions, we are not aware of actual implementations of one-out-of-two memory gadgets other
than generically tamper-proofing an entire computational component.

Can alternative technologies be explored? Also, what can be done if we only can obtain some weaker
forms of such memory gadgets, that provide only limited retrievability to naive users, along with limited
resilience to adversarial attacks?

More generally, where can we look for such technologies, and how can we co-develop the new technology
together with the cryptographic modeling and algorithmics that will complement the technology to obtain
full-fledged k-time programs, based only on minimal and better-understood assumptions on the physical
gadgets, rather than by dint of complex defensive engineering?

1.1 Contributions

This work describes a cross-disciplinary effort to provide some answers to these questions, using ideas
based on the current technological capabilities and limitations in synthesizing and identifying random
proteins. We begin with a brief overview of the relevant biochemical technology and our ideas for using
this technology for bounded-retrieval information storage. We then describe our algorithmic and analytical
work towards constructing k-time programs and related applications, along with rigorous security analysis
based on well-defined assumptions on the adversarial capabilities—both biochemical and computational.

Biochemical background. Advances in biotechnology have allowed the custom-tailored synthesis of
biological polymers for the purpose of data storage. Most effort has focused on DNA molecules, which
can be synthesized as to encode digital information in their sequence of bases. DNA can be readily cloned
and read with excellent fidelity, both by nature and by existing technology [14,24,32,45|. Even minute
amounts of DNA can be reliably cloned—and then read—an effectively unbounded number of times,
making it an excellent storage medium—too good, alas, for our goal, since it is unclear how to bound the
number of times a DNA-based storage can be read.

Consider, though, a different biological polymer: proteins. These chains of amino acids can likewise
represent digital information, and can be synthesized via standard (albeit more involved) lab procedures.
However, reading (“sequencing”) the amino acid sequence in a protein appears much more difficult: the best
known lab procedure for sequencing general proteins is mass spectrometry, which requires a macroscopic
pure sample, free of substantial pollution. The sequencing process then destroys the sample—the protein
is chopped into small fragments which are accelerated in a detector.

Furthermore, we have no way to clone a protein that is given in a small amount. Indeed, Francis Crick’s
central dogma of molecular biology states: “once ‘information’ has passed into protein it cannot get out
again. [Information] transfer from protein to protein, or from protein to nucleic acid is impossible” |25|.
Over billions of years of evolution, no known biological system has ever violates this rule, despite the
reproductive or immunological benefits this could have bestowed. Moreover, in the 63 years since that
bold hypothesis (or, alternatively, challenge) was put forth, it has also stymied human ingenuity, in spite
of the enormous usefulness to science and medicine that such ability would provide.

This makes proteins terrible as a general-purpose data storage medium: they cannot be read unless
presented in just the right form, and they self-destruct after few reads. However, cryptography is the
art of making computational lemonade out of hard lemons. Can we leverage the time-tested hardness of
sequencing small amounts of proteins for useful functionality? We see a couple of approaches, leading to
different functionality and applications.

Biochemical “conditionally retrievable memory”. As a first attempt, we consider a protein-based
“conditionally retrievable memory”, that stores information in a way so that retrieving the information
requires knowledge of some key, and furthermore, once someone attempts to retrieve the information
“too many times” with wrong keys, the information becomes irrevocably corrupted. A first attempt at
implementing such a system may proceed as follows: The sender encodes the payload information into a
payload protein, and the key into a header protein, which are connected into a single protein (the concrete
encoding and procedures is discussed in Section 2). The process actually creates a macroscopic amount
of such payload-header pairs, and mixes these pairs with a large quantity of decoys which are similarly
structured but encode random keys and payloads. The resulting sample is then put in a vial, serving the
role of (biological) memory.

Recovering the information from the vial can be done via a pull-down procedure, i.e., a chemical
reaction of the sample with an antibody that attaches to a specific portion of the protein. Given the key,
one can choose the correct antibody and use it to isolate the information-bearing proteins from the added
ones. Then, the information can be read via mass spectrometry.

In addition, any meaningful attempt to obtain information from the vial would necessarily employ some
sort, of pull-down on some portion of the sample in the vial, and then employ mass spectrometry on the
purified portion of the sample. (Indeed, performing mass spectrometry on the vial without pull-down will
return results that are polluted by the decoys.) Furthermore, since each application of the spectrometry
process needs, and then irrevocably consumes, some fixed sample mass, an adversary is effectively limited
to trying some bounded number n of guesses for the key, where n depends on the initial mass of the
sample in the vial and the grade of the specific spectrometer used.

Partially retrievable memory. The above scheme appears to be easily adaptable to the case of
storing multiple key-payload pairs in the same vial, along with the random noise proteins. This variant
has the intriguing feature that even a user that knows all keys can only obtains n payloads from the vial,
where n is the number of pull-down-plus-mass-spectrometry operations that can be applied to the given
sample.

Challenges. While the above ideas seem promising, they still leave a lot to be desired as far as a
cryptographic scheme is concerned: First, we would need a more precise model that adequately captures
the capabilities required from honest users of the system, as well as bounds on the feasible capabilities
of potential adversaries—taking into account that adversaries might have access to significantly more
high-end bio-engineering and computational tools than honest users. Next, we would need to develop
algorithmic techniques that combine bio-engineering steps and computational steps to provide adequate
functionality and security properties. Finally, we would need to provide security analysis that rigorously
asserts the security properties within the devised model. We describe these steps next.

Formal modeling: Consumable tokens. The full biochemical schemes we propose involve multiple
steps and are thus difficult to reason about formally. We thus distill the requisite functionality and security
properties into relatively simple idealized definition of a consumable token in Section 4. In a nutshell, an
(1,m,v)-time token is created with 2v values: keys ki, ..., k, and messages my, ..., m,, taken from domains
K and M, respectively. Honest users can query a token only once, with key k. If k¥’ = k; for some ¢, then
the user obtains m;, else the user obtains L. Adversaries can query a token n times, each with a new key
k'. Whenever any of the keys equals k;, the adversary obtains m;. We assume that the size of M, K and
v are fixed, independent of any security parameter.

Constructing consumable tokens. Our biochemical procedures provide a candidate construction for
consumable tokens, but with weak parameters. They can only store a few messages, of short length, under
short keys, with non-negligible completeness and soundness errors. This is in addition to the power gap
between an honest recipient and an adversarial one; the former can perform one data retrieval attempt,
while the latter might be able to perform up to n queries, for some small integer n.

Thus, employing our protein-based consumable tokens in any of the applications discussed above is
not straightforward. It requires several (conventional and new) techniques to mitigate these challenges.
Amplifying completeness is handled by sending several vials, instead of one, all encoding the same message.
Storing long messages is handled by fragmenting a long message into several shorter ones, each of which
is stored under a different header in a separate vial. The rest are more involved and were impacted by the
application itself.

Bounded query, point function obfuscation for low-entropy passwords. Password-protected
secure vaults, or digital lockers, allow encrypting a message under a low entropy password. This can be
envisioned as a point function with multi-bit output where the password is the point and the message
is the output. With our consumable tokens, one can store the message inside a vial with the password
being mapped to a token key (or header) that is used to retrieve the message. The guarantee is that an
honest recipient, who knows the password, will be able to retrieve the message using one query. While an
adversary can try up to n guesses after which the token will be consumed.

However, having a non-negligible soundness error complicates the matter. We cannot use the conven-
tional technique of sharing the message among several vials, and thus reducing the error exponentially.
This is due to the fact that we have one password mapped to the keys of these tokens, so revealing
the key of any of these tokens would give away the password. We thus devise a chaining technique,
which effectively forces the adversary to operate on the tokens sequentially. In Section 5, we start with
formalizing an ideal functionality for bounded-query point function obfuscation, and then detail our
consumable token and chaining based construction, along with formal security proofs.

(1,n)-time programs. Next we use (1,n,v)-consumable tokens to construct (1,n)-time programs,
namely a system that, given a description of a program m, generates some digital rendering 7 of 7, and a
number of consumable tokens, that (a) allows a user to obtain m(z) on any value z of the user’s choice,
and (b) even an adversary cannot obtain more information from the combination of 7 and the physical
tokens, on top of 7(z1), ..., w(z,) for n adversarially chosen values 1, ..., z;,.

In the case of n =1 (i.e., when even an adversary can obtain only a single message out of each token),
(1, 1)-time programs can be constructed by garbling the program 7 and then implementing one-out-of-two

oblivious transfer for each input wire using a (1,1, 2)-consumable token with K = M = {0,1}* |42|.
However, constructing (1,n’)-time programs from (1, n,v)-consumable tokens with n > 1 turns out to
be a significantly more challenging problem, even when v is large and even when n’ is allowed to be
significantly larger than n (i.e., even when the bound that the construction is asked to impose on the
number of z;’s for which the adversary obtains 7(x;) is significantly larger than the number of messages
that the adversary can obtain from each token): A first challenge is that plain circuit garbling provides
no security as soon as it is evaluated on more than a single input (in fact, as soon as the adversary learns
both labels of some wire). Moreover, even if one were to use a “perfect multi-input garbling scheme” (or, in
other words VBB obfuscation [10]), naive use of consumable tokens would allow an adversary to evaluate
the function on an exponential number of inputs.

Our construction combines the use of general program obfuscation (specifically, Indistinguishability
Obfuscation |10,50]) together with special-purpose encoding techniques that guarantee zero degradation in
the number of values that an adversary may obtain—mamely (1,7n)-time programs using our consumable
tokens.

Specifically, our construction obfuscates the circuit, and uses consumable tokens to store random secret
strings each of which represents an input in the circuit input domain. Without the correct strings, the
obfuscated circuit will output L. Beside amplifying soundness error (luckily it is based on secret sharing
for this case), our construction employs an innovative technique to address a limitation imposed by the
concrete construction of consumable tokens. That is, a token can store a limited number of messages (or
random strings), thus allowing to encode only a subset of the circuit inputs rather than the full input
space. We use linear error correcting codes to map inputs to codewords, which are in turn used to retrieve
random strings from several tokens.

We show a number of flavors of this construction, starting with a simple one that uses idealized
(specifically VBB) obfuscation, followed by a more involved variant that uses only indistinguishability
obfuscation iO. We also discuss how reusable garbled circuits [41] can be used to limit the use of O to a
smaller and simpler circuits.

Protection from malicious encapsulators. Our constructions provide varying degrees of protection
for an honest evaluator in face of potentially ill-structured programs. The (1, n)-point function obfuscation
application carries the guarantee that an adversary can only obfuscate (or encapsulate) valid point
functions with the range and domain specified. This is due to the fact that we use consumable tokens each
of which is storing one secret message m (from a fixed domain) under a single token key (from a fixed
space). The use of a wrong key (i.e., one that is not derived correctly from the password that an honest
evaluator knows) will return L. The general (1, n)-program application only guarantees that the evaluator
is given some fixed program, but without guarantees regarding the nature of the program. Such guarantees
need to be provided in other means. A potential direction is to provide a generic non-interactive zero
knowledge proof that the encapsulated program along with the input labels belong to a given functionality
or circuit class.

The analytical model. We base our formalism and analysis within the UC security framework [19].
This appears to be a natural choice in a work that models and argues about schemes that straddle two
quite different models of computation, and in particular attempt at arguing security against attacks that
combine bioengineering capabilities as well as computational components. Specifically, when quantifying
security we use separate security parameters: one for the bioengineering components and one for the
computational ones. Furthermore, while most of the present analysis pertains to the computational
components, we envision using the UC theorem to argue about composite adversaries and in particular
construct composite simulators that have both bioengineering and computational components.

1.2 Related Work

Katz et al. [52] initiated the study of tamper-proof hardware tokens to achieve UC security for MPC
protocols in the plain model. Several follow up works explored this direction, e.g., [23,47, 48|, with
a foundational study in |44]. In general, two types of tokens are used: stateful |28| and stateless (or
resettable) |8, 27]; the latter is considered a weaker and more practical assumption than the former.
In another line of work, Goldwasser et al. |[42]| employed one-time memory devices to build one-time
programs as mentioned before. They assume that such memory devices exist without showing any

concrete instantiation. Our work instead provides an instantiation for a weaker version of memory
devices—(1, n)-time memory devices—and uses them to build (1, n)-time programs. Other works relied
on tamper-proof smart cards to construct functionalities such as anonymous authentication and practical
MPC protocols |46, 54|. They assume that such cards withstand reverse-engineering or side-channel
attacks. Our work, on the other hand, proposes an alternative that relies on deeper, more inherent
physical phenomena that have withstood the test of nature and ingenuity. We show that even a weak
level of security and functionality, far below the natural smart-card trust assumption, suffices for useful
cryptographic functionalities.

Quantum computing offer an unclonability feature that poses the question of whether it can offer
a solution for bounded program execution. This possibility was ruled out by Broadbent et al [16] who
proved that one-time programs, even in the quantum model, cannot be constructed without one-time
memory devices. To circumvent this impossibility, Roehsner et al. |61] introduced a relaxed notion—
probabilistic one-time programs—allowing for some error in the output, and showed a construction in the
quantum model without requiring hardware tokens. Secure software leasing (SSL) [5] emerged as a weaker
alternative for quantum copy-protection [1|. SSL deals with software piracy for quantum unlearnable
circuits; during the lease period the user can run the program over any input, but not after the lease
expires. Our work bounds the number of executions a user obtains regardless of the time period and can
be used for learnable functions.

Another line of research explored basing cryptography on physical assumptions. For example, noisy
channels |26| and tamper-evident seals |57] were used to implement oblivious transfer and bit commitments.
Others built cryptographic protocols for physical problems: |38] introduced zero knowledge proof system
for nuclear warhead verification and [34] presented a unified framework for such proof systems with
applications to DNA profiling and neutron radiography. This has been extended in [35] to build secure
physical computation in which parties have private physical inputs and they want to compute a function
over these inputs. Notably, [35] uses disposable circuits; these are hardware tokens that can be destroyed
(by the opposing party) after performing a computation. In comparison to all these works, our consumable
tokens are weaker as they are used for storing short messages rather than performing a computation.

Physical unclonable functions (PUFs) |60] are hardware devices used as sources of randomness, that
cannot be cloned. PUFs found several applications, such as secure storage [30], key management [51],
oblivious transfer [62], and memory leakage-resilient encryption schemes [7]. The works [17] and [59]
proposed models for using trusted and malicious PUFs, respectively, in the UC setting. Our tokens share
the unclonability feature with PUFs, but they add the bounded query property and the ability to control
the output of a data retrieval query.

Lastly, a few works investigated the use of DNA in building cryptographic primitives and storage
devices. For example, a DNA-based encryption scheme was proposed in |67], while |31] focused on bio-data
storage that deteriorates with time by utilizing engineered sequences of DNA and RNA, without any
further cryptographic applications. Both works do not provide any formal modeling or security analysis.
To the best of our knowledge, we are the first to use unclonable biological polymers—proteins—to build
advanced cryptographic applications with formal treatment. Apart from storage, a more ambitious view
was posed by Adleman [3] back in the 1990s, who investigated the concept of molecular computers. They
showed how biochemical interactions can solve a combinitorial problem over a small graph encoded in
molecules of DNA [2]|. This leaves an open question of whether one can extend that to proteins and build
stronger tokens that can securely execute a full computation.

2 Unclonable Polymer-based Data Storage

In this section, we present an overview of the protein-based data storage construction that we use to
build consumable tokens. We focus on the specifications and guarantees this construction provides rather
than detailed explanation of the biology behind them. The detailed explanation, and a more complete
version of this section, can be found in Appendix A.°

Protein-based data storage and retrieval. Advances in biotechnology have allowed the custom-
tailored synthesis of biological polymers for the purpose of data storage. Much of the effort in this new

5Tt should be noted that we are working on a sister paper showing the details of this biological construction;
will delve into the technical details of the biochemical realization and empirically analyze it under the framework
established in this paper.

Encode m as a specific A short peptide “header” Link/fuse the header to
sequence of amino acids, recognized by a specific peptide m and inserta Mix of random peptides
Secret Message m a peptide corresponding mAb cleavage site between them linked to different headers

"Hello World!" } SYYRGAAGALLVYDITRR } GYQFVQR } ®
targetpek Nheader @Qg @J

cleavage site

Fig. 1. General scheme for peptide-based data storage.

field has focused on the use of DNA, generating an arsenal of molecular protocols to store and retrieve
information [14, 24, 32,45]. With this growing application, we became interested in the cryptographic
attributes this new hardware offers. Specifically, we propose the use of proteins, in particular short amino-
acid polymers or peptides, as a data storage material. Curiously, the most fundamental characteristics of
proteins; they cannot be directly cloned nor can they replicate or be amplified, and that “data retrieval"
is typically self-destructive, might be considered as limitations from a regular data storage point of view.
However, these exact traits can confer powerful features to instantiate cryptographic primitives and
protocols.

Accordingly, for storage, the digital message is encoded into the primary configuration of the pep-
tide/protein, i.e., the sequence of the 20 natural amino acids of the protein material, the “peptide-payload".
To retrieve the message, the order of the amino-acids of a protein is determined, after which this sequence
is decoded to reconstruct the original message. Given that our primary goal is to design a biological
machinery to securely realize cryptographic primitives, we extend this basic paradigm to support data
secrecy. Our proposal is based on a number of features of proteins and peptides: (i) unique peptides can
be designed to comprise any string of amino acids and be physically produced with precision and at
high fidelity, (ii) a peptide sample whose amino acid sequence is not known is unclonable and cannot be
replicated or amplified, (iii) sequencing the peptide results in its consumption.”

As illustrated in Figure 1, the peptide message, peptide-m, is conjugated to a short (< 10 amino acids)
peptide tag, a tag that is recognized specifically by a predetermined monoclonal antibody (mAb). Thus,
the peptide tag, designated “header", corresponds to its specific mAb. Next, peptide-m is mixed with a
vast variety of decoy peptide messages, all of which are peptide permutations of composition and length,
each conjugated to a collection of alternative header sequences. The sender shares the secret header with
the recipient, i.e., the peptide sequence of the header (this is digital data), which reveals to the recipient
the identity of the correct unique mAb to be used to recover peptide-m. Then he sends a vial of the
protein mix (a physical component).

For data retrieval, as shown in Figure 2, the only possible way to decode the message is to first single
out and purify peptide-m. This can be achieved by employing the unique mAb that specifically recognizes
the unique header attached to peptide-m. Note that all decoy peptides and the target peptide-m are of
the same general length, mass, and composition, but differing in sequence. Thus, effective purification
of the desired protein from the decoys, without the matching mAb, is impossible through standard
biochemical /biophysical methodologies. This achieves message secrecy in the sense that without the
matching mAb, m cannot be retrieved.

Biochemical properties. Protein-based data storage enjoys several properties that we exploit in our
cryptographic applications. These include the following (this is a high level description, more details on
the biochemical features that supports these properties can be found in Appendix A):
— Unclonability. Proteins are unclonable biological polymers, meaning that given an amount of proteins
one cannot replicate it to obtain a larger amount.
— Destructive data retrieval. Modern biology is only capable of reading protein sequences indirectly,
destructively, and at lower throughput compared to DNA. The main practical strategy for reading

7Although we talk about one message in these protocols, several messages can be stored in one sample by
having several peptide-ms instead of one, each of which is conjugated with a unique header and mixed with the
decoys.

The correct “key” enables
Add mAb “key” (Y) affinity-selection and Protease cleavage Peptide-m amino acid The encoded message
to protein mixture purification of peptide-m releases peptide-m sequenced is determined is retrieved

R
@5@0 gj@ L’ O@, by O@ b s)

Fig. 2. Message retrieval.

proteins is mass spectrometry (MS) or versions thereof |9, 39]. This machinery imposes several
conditions on the protein sample to allow retrieving the digital data. First, the sample must contain a
sufficient amount of the target protein, and second, the sample must be pure enough. Once a vial is
purified and read using MS, the structure of the protein is destructed due to fragmentation.

— Adversarial interactions. The only known way to retrieve any information about the data stored in a
vial is by pulling-down the target protein using the key (or mAb), and then sequencing this protein
using MS. Thus, an adversary, who does not know the correct mAb, can only guess a candidate
mADb and check if sequencing will output m. Also, when obtaining several (independent) tokens, the
adversary will operate on these tokens separately, since purification and sequencing are still needed to
obtain the stored data.

— Bounded query. The previous properties imply that a protein-based data storage allows for a finite
number of data retrieval attempts after which the vial is consumed, i.e., each data retrieval attempt
destroys a portion of the biological material. In our model, we account for that fact that an adversary
could be more powerful that an honest recipient, e.g., she owns more advanced MS that operates at
lower thresholds. This implies that the vial will allow the adversary to perform multiple data retrieval
attempts, denoted as n, but an honest recipient will perform only one.

— Message and key (header) sizes. Proteins can store relatively short messages using short headers.
In Appendix A, we show how to use fragmentation to store a long message using several vials instead
of one, such that the header will be the concatenation of all headers used in these vials. Nonetheless,
in our applications, we use consumable tokens to store cryptographic keys rather than very long
messages.

— Completeness and soundness errors. Due to laboratory experimental (human and machine) errors,
the protein-based data storage may have non-negligible completeness and soundness errors. The
former means that despite the use of the correct mAb, the target message may not be successfully
retrieved. While the latter means that despite the use of an incorrect mAb, an adversary may manage
to recover m. In other words, these incorrect mAb may have similar features to the correct one (what
we call close keys). We amplify the completeness error on the biology side (by sending several vials
all encoding the same message),® while we amplify the soundness error as part of the cryptographic
constructions that we build in later sections.

3 Preliminaries

In this section, we recall preliminary notions needed in this work. This include the virtual blackbox and
indistinguishability obfuscation, and injective noninteractive commitments. For background on universally
composable (UC) security, we refer the reader to |18] for a formal treatment.

3.1 Obfuscation
We recall the definitions of virtual blackbox (VBB) and indistinguishability obfuscation (iO).

Definition 1 (VBB Obfuscation). A circuit class {C,.} is obfuscatable if there exists an algorithm O
that takes a circuit C € C,. and outputs another circuit C' such that the following conditions are satisfied:

8 At the cryptography level this is still viewed as one token that allows the honest recipient to retrieve the
message with all but negligible probability

— Correctness: For all security parameters & € N, for all C € C,, and for all inputs x € {0,1}*, we have
that
Pr(C'(z) =C(z): C' + O(1",C)] =1

— Efficiency: These exists a polynomial p such that for all k € N, and all C € C,, we have that
|O(C) < p(|C))| and if C takes t time steps on an input x € {0,1}*, then O(C) takes at most p(t)
time steps.

— Virtual Blackbox: For all PPT adversaries A, these exists a PPT simulator S and a negligible function
negl such that for all all kK € N and all C € C,;, we have

| PriA(1%,0(C)) = 1] — Pr [S€(1%) =1] | < negl(x)

where the probabilities are taken over the randomness of A and simu (and O and C if they are
randomized,).

Definition 2 (Indistinguishability Obfuscation (i0)). A uniform machine iO is called an indistin-
guishability obfuscator for a circuit class {Cyx} if the following conditions are satisfied:

— Correctness: For all security parameters k € N, for all C € Cy, and for all inputs x € {0,1}*, we have
that
Pr[C'(z) = C(z): C' +iO(1%,0)] =1

— Indistinguishability: For any (not necessarily uniform) PPT distinguisher D, these exists a negligible
function negl such that the following hold: For all security parameters k € N, for all pair of circuits
Co, Cy € C,;, we have that if Co(x) = Ci(x) for all inputs x, then

| Pr[D(iO(1%,Cy)) = 1] — Pr[D(iO(1%,C1)) = 1] | < negl(x)

As noted in [13], if negl(x) is bounded by 27*°, for some constant ¢ > 0, then we say that iO
subexponentially indistinguishable.

3.2 Injective Noninteractive Commitments

The work in [13] defines and constructs an injective noninteractive bit commitments scheme. For com-
pleteness, we present their definition and the construction in what follows.

An injective noninteractive bit commitment scheme is a pair of polynomials p(-) and ¢(-), and an
ensemble of injective functions Commit, : {0,1} x {0, 1}?(*) — {0,1}9%) where & is the security parameter,
such that for all PPT adversaries A we have:

Pr |A(1%, Commit,(b;r)) = b‘ b= {01} } < = + negl(x)

r e {0,1}700)

If negl(k) can be replaced by 275" for some constant e > 0, then the scheme is subexponentially secure.

Construction. Given an injective one way function f : {0,1}*'(") — {0,1}¢'(®) with h as the hard-core
bit of f, one can construct an injective noninteractive commitment scheme as follows. Define p(x) = p'(k),
q(k) = ¢ (k) + 1, and Commit,(b;7) = f(r) || b® h(r).

4 The Consumable Token Functionality

We utilize the protein-based data storage to build what we call consumable tokens. A consumable token is
a physical token that stores some secret messages, requires a secret key to retrieve any of these messages,
and (partially) destructs after each data retrieval attempt. An honest recipient will have one data retrieval
attempt, while an adversary (who could be more powerful than honest parties) may have multiple attempts.
In this section, we define an ideal functionality for consumable tokens that we use in our applications.

Notation. We use [n] as a shorthand for {1,2,...,n}. For time unit representation, we use the term
“computational time step” to refer to the time needed to perform an operation in Turing machine-based

modeling of computations. While we use “technologically-realizable time step” to refer to the time
needed to perform an operation in physical procedures, which may involve computational algorithms
as well. We use to denote the security parameter which encapsulates two security parameters: «, for
physical procedures and k. for computational algorithms. Thus, when we say polynomial in &, this means
polynomial in the max{xp, k.}. Lastly, boldface letters represent vectors and PPT is a shorthand for
probabilistic polynomial time.

4.1 Ideal Functionality Definition

In formalizing our ideal functionality, we target an adversary class that interacts with a token only using
the feasible procedure of applying token keys. Also, we adopt a deterministic approach for quantifying
the closeness relation between the keys, and hence, computing the soundness error of any data retrieval
attempt. In particular, each key k in the token key space has a set of close keys. Hitting any of these keys
may allow retrieving the message from the token with a probability bounded by 7 (the upper bound for
the soundness error).

Adversary class A. We require the consumable token (or any cryptographic application built using
this token) to be secure against an adversary that performs data retrieval (or decode) queries using token
keys. This adversary, if given multiple tokens, operate on these tokens separately. To capture the fact that
class A may have more power than the honest parties, an adversary A € A can perform up to n decode
queries instead of only one. This adversary is adaptive in the sense that it may choose her input based on
the outputs obtained from previous interactions. Furthermore, this adversary is capable of performing
digital and physical procedures.

Key affinity database. In order to capture the relation between the keys in the token key space IC, we
use an affinity database D. Such a database is composed of rows each of which is indexed by a key k € K.
Each row, in turn, contains a set of tuples (k’,~’) where &’ is a close key to k and 4’ is the corresponding
soundness error, such that 4" <. So for a token storing message m under key k, a decode query with &’
allows an adversary A to obtain m with probability . Recall that a token can store multiple messages
each of which is tied to a different key. When these keys are selected at random, any key applied by the
adversary will be close to at most one of these keys. Accordingly, in our model the ideal functionality is
parameterized by the affinity database D. It consults this database for each adversarial query to decide
key closeness and ~" value (if any). Furthermore, recall that for any token the soundness error is upper
bounded by . Thus, for all queries i € [n], we require . v; < 7.

Ideal functionality. An ideal functionality for consumable tokens, denoted as Feor, is defined in
Figure 3. As shown, For is parameterized by a security parameter k, a key affinity database D, and
an integer n. As noted earlier, for simplicity Fcr allows an honest party to perform one decode query,
while it allows the adversary to perform up to n queries. It is straightforward to generalize to arbitrary
configurations given that the power gap between honest parties and the adversary is preserved.

As shown in the figure, For supports four interfaces. The first one, Encode, allows the sender P; to
create a consumable token with ID tid encoding multiple secret messages under secret keys, all chosen by
Py, and transfer the token to P,. To capture the fact that in real life an adversary may interrupt the
communication between P; and P,, For asks the adversary whether to proceed. If the adversary agrees
to continue, For notifies Py about the new token, and creates a state for this token.? This state includes
a counter j to track the number of decode queries performed so far, which is initialized to 0. It also
includes two flags, hflag; and hflag,, tracking whether P; and Py, respectively, are honest or corrupted.
These flags are set by default to 1 indicating that both parties are honest.

The second interface, Decode, allows P, to query the token on a key k’. If the input key matches the
it" token key in k, the corresponding message m; will be returned to Py, otherwise, L will be returned.
After the first query, where the counter j is set to 1, For stops answering all future Decode queries,
capturing that an honest recipient gets only one retrieval query.

The third and fourth interfaces, Corrupt-encode and Corrupt-decode, are used to notify For that the
environment wants to corrupt any of the involved parties. Corrupting P; allows the adversary to encode
a vector of messages m’ under a key vector k’, both of his choice. The state of this token will indicate

9Tt is the responsibility of P; to securely share k with Ps.

Functionality Fcr
Fcr is parameterized by a security parameter k, a key affinity database D and a positive integer n.

Encode: Upon receiving the command (Encode, tid, P1, P>, k, m,v) from token creator P;, where tid is the
token ID, P; is the token recipient, k is a vector of v token keys, and m is a vector of v messages, do: if a
token with ID tid was created, end activation. Otherwise, do the following;:
— Send (Encode, tid, P, P2) to the adversary.
— Upon receiving (OK) from the adversary, send (Encode, tid, Pi) to P», and store (tid, P1, P>, k,m,v,j =
0, hflag, =1, hflag, = 1).

Decode: Upon receiving the command (Decode, tid, k') from P», if no token with ID tid exists, then end
activation. Otherwise, retrieve (tid, P, P2, k, m, v, j, hflag,, hflag,) and do the following:
— If j > 0, end activation. Else, increment j, and if 3i € [v] s.t. k' = k;, then set out = m;, else set out = L.
— Send (tid, out) to P».

Corrupt-encode: Upon receiving the command (Corrupt-encode, tid, k', m’, v) from the adversary, do: if a to-
ken with ID tid was created, end activation. Else, send (Encode, tid, P1) to P and store (tid, Pi, P, k', m’ v, j =
0, hflag; = 0, hflag, = 1).

Corrupt-decode: Upon receiving the command (Corrupt-decode, tid, k') from the adversary, if no token with
ID tid was created, end activation. Else, retrieve (tid, P1, P2, k, m, v, j, hflag,, hflag,). If hflag, =1 and 5 > 0,
or j > n, then end activation, else do the following;:
— If 3i € [v] s.t. K’ = k;, then set out = m;, else set out = | and (close, ', 1) = affinity(D, k, k’). If close = 1,
choose 7 ¢ [0,1] and change out = m; if r < «/.
— Store (tid, P, P2, k, m, v, j + 1, hflag, , hflag, = 0).
— Send (tid, out) to the adversary.

Fig. 3. An ideal functionality for consumable tokens.

that P; is corrupted by setting hflag; = 0. On the other hand, and to capture the additional power an
adversary A € A has, corrupting P, allows the adversary to perform up to n decode queries. Moreover,
trying a key k' # k; for ¢ € [v], gives the adversary 4/ chance to obtain m,; if &’ is close enough to key k;.

To depict these capabilities, For tracks the number of decode queries performed so far and stops
answering when this counter j reaches its maximum value n. Key closeness and soundness error are
measured by invoking an algorithm called affinity that simply searches the database and checks if k' (the
adversary’s input) is listed in the close key set of any of token keys in k. It outputs a flag close, and index
1, and a soundness error value «'. If close = 1, this means that &’ is close to k;, and hence, For outputs
m; with probability +’.

As shown, we restrict the token to be in the hand of either an honest party or the adversary but not
both at the same time. Therefore, P, cannot be corrupted after the honest recipient submits a decode
query. Before submitting any honest decode query, corrupting P» is allowed, and when the environment
asks for that, the value of hflag, is set to 0.

4.2 A Construction for Consumable Tokens

In this section, we present a construction for consumable tokens, shown in Figure 4. It is based on
the biological procedures used in storing and retrieving data using proteins discussed in Section 2. We
conjecture that it securely realizes Fo7.19 In the full version, we present a mathematical (vector-based)
model to abstract the biological procedures. We also show a consumable token construction (using this
vector model) and formally prove its security.

10This construction is described at a high level; the biological experiments (the subject of our followup paper)
will determine parameters such as required protein quantities, MS thresholds, amount of decoy proteins, etc., and
falsify our conjecture.

10

Protocol 1 (A Physical Construction of Consumable Tokens)

Protocol 1 is parameterized by a security parameter x, the message space M, the header space H, and the
peptide space P.

Encodephys(h, m): Given a vector of v messages m € M" and a vector of v headers h € ", do the following:
1. For i € [v], encode each m; as a target protein peptide-m;.
2. For each peptide-m; and h;, synthesize a protein sequence that concatenates them with an amount that
allows retrieving m; only once.
3. Mix the target proteins with a natural mixture of decoy proteins d, selected at random from P, and
produce a protein vial Sp. Output Sp.

Decodephys(h, Sp): Given a header h € H, and a protein vial S, do the following:
1. Immunoperciptate Sp with the mAb that recognizes h then wash out excess mixture.
2. Cleave the target protein and sequence it using MS. If MS identifies the peptides in this protein, then
decode the message m (which will be one of the messages in m) back into its digital form, and set
out = m. Otherwise, set out = 1. Output out.

Fig. 4. A physical construction of consumable tokens.

5 Bounded-query Point Function Obfuscation

In this section, we introduce one of the cryptographic applications of consumable tokens: obfuscating
bounded-query point functions with multibit output. We begin with motivating this application, after
which we define a notion for bounded-query point function obfuscation, and a construction showing how
consumable tokens can be used to realize this functionality.

Motivation. Program obfuscation is a powerful cryptographic concept that witnessed a large interest
in the past two decades. It hides everything about a program other than what can be learned solely
by running this program. A program obfuscator is a compiler that takes as input the original program,
or circuit, and produces an unintelligible version that preserves functionality but hides any additional
information. Program obfuscation found numerous applications, e.g., |36, 37,55, 58|. Barak et al. [10]
initiated the first rigorous study of program obfuscation laying down several security notions. Among
them, we have virtual black box (VBB), which states that all what an adversary can learn from an
obfuscated program can be simulated using an oracle access to the original program. The same work
showed that this notion cannot be realized for general functionalities, but can be realized for restricted
function classes.

Point functions are one of these classes that has been studied thoroughly [12,20,22,55,65|. A point
function outputs 1 at a single target point z, and 0 at all points ' # z. It is useful for access control
applications where providing the correct passcode grants the user an access to the system. An extended
version of this function class supports a multibit output, i.e., message m, instead of a single bit. The
obfuscation of this extended class is motivated by the notion of digital lockers |20]: for a message m
encrypted using a low-entropy key, such as a human-generated password, the only way for an adversary
to learn anything about m from its ciphertext is through an exhaustive search over the key space.

A question that arises here is whether one can strengthen this security guarantee to also prevent
exhaustive search attacks. In real life access-control applications, this usually takes the form of tracking
the number of login attempts and lock the user out when a maximum number is exceeded. However,
this cannot be applied to digital lockers; an adversary has a copy of the ciphertext and can decrypt it
for as many times as she wishes. Thus, the question becomes more about the possibility of augmenting
multibit-output point function obfuscation with a bounded-query (or limited number of decryptions)
capability.

We answer this question in the affirmative by instantiating a bounded-query obfuscator for point
functions with multibit output using consumable tokens. We achieve that by translating the low entropy
point, or password p, into the high entropy token key space, and setting the multibit output to be the
message m encoded inside the token. The message m is obtained when the correct password p is queried,
and only up to ny queries can be performed (n, € N).

11

Functionality Fsro
Fepo is parameterized by a security parameter k, a class of point functions Z,, and a positive integer n,.

Obfuscate: Upon receiving the command (Obfuscate, P>, p, m) from party Pi (the obfuscator), where P>
is the evaluator, p is a password, and m is the function output (so Ipm € Z.), do: if this is not the first
activation, then do nothing. Otherwise:

— Send (Obfuscate, P1, P») to the adversary.

— Upon receiving (OK) from the adversary, store (p,m,j = 0, hflag, = 1) and output (Obfuscate, P1) to P».

Evaluate: Upon receiving input (Evaluate, p’) from P: if Obfuscate was not invoked yet or j > 0, then end
activation. Otherwise, increment j, and if p = p’, then set out = m, else set out = L. Output out to Ps.

Corrupt-obfuscate: Upon receiving the command (Corrupt-obfuscate, p’, m’) from the adversary, do: If an
Obfuscate output was generated, then end activation. Else, store (p’,m’,j = 0, hflag; = 0, hflag, = 1) and
output (Obfuscate, P1) to Ps.

Corrupt-evaluate: Upon receiving the command (Corrupt-evaluate, p’) from the adversary, if no stored state
exists, end activation. Else, retrieve (p, m, j, hflag,) and do:

— If j = ng, or hflag, =1 and j > 0, then end activation.

— Else, increment j, set hflag, = 0, and if p’ = p, set out = m, else set out = L.

— Output out to the adversary.

Fig. 5. An ideal functionality for bounded-query point function obfuscation.

5.1 Definition

We aim to build an obfuscator for multibit-output point functions with points drawn from a low entropy
distribution. For password space P and message space M, let I, ,,, : P — M U {L} be a point function
that outputs m when queried on p and L otherwise. Let Z = {1, ,,,|p € P, m € M} be the family of these
functions. In this section, we define an ideal functionality for bounded-query point function obfuscation
that allows one honest query and up to n, function evaluations. This functionality, denoted as Frpo, is
captured in Figure 5.

As shown in the figure, Fgpo supports four interfaces. The first is Obfuscate that allows P; to ask for
obfuscating any point function I, ,, in the class Z defined earlier. If the adversary agrees to continue,
Fppo notifies P, about the new obfuscation request and creates a state for it. As shown, this state
stores a counter to track the number of evaluate queries performed so far, which is initialized to 0. It
also stores two flags, hflag; and hflag, introduced before, tracking whether P; and Ps, respectively, are
honest or corrupted. These flags are set by default to 1 indicating that both parties are honest. As noted,
Fppo allows for one obfuscation request, and hence, several instantiations are needed to create multiple
obfuscated functions.

The second interface, Evaluate, allows P, to request evaluating the obfuscated point function over an
input password p’ of her choice. If this input matches the stored password p, then P, obtains m, and L
otherwise. Fppo updates the counter j to be 1, and thus, all future queries will not output anything
since an honest P, gets only one query.

The third and fourth interfaces, Corrupt-obfuscate and Corrupt-evaluate, are used to notify Fppo that
the environment wants to corrupt any of the involved parties. Corrupting P; allows the adversary to
obfuscate any point function I, ,,, € Z of her choice. The state of this obfuscation will indicate that P; is
corrupted by setting hflag; to 0. On the other hand, corrupting P» allows the adversary to perform up to
ng evaluate queries over inputs of her choice. The adversary needs to invoke Corrupt-evaluate for each
input evaluation, where after performing ny queries, Fppo will stop responding. As shown, an obfuscated
function can be in the hand of either an honest party or the adversary, but not both at the same time. In
particular, if an honest party performs her single evaluate query, Corrupt-evaluate will not do anything.

Beside realizing the above ideal functionality, which captures correctness and security, we require
any bounded-query point function obfuscation scheme realizing Fppo to satisfy the efficiency property
defined below.

12

Definition 3 (Efficiency of Bounded-query point function Obfuscation). There exists a poly-
nomial q such that for all kK € N, all I, ,, € I, and all inputs p' € P, if computing I, ,,(p') takes t
computational time steps, then the command (Evaluate,p’) takes q(t,x) technologically-realizable time
steps.

5.2 Construction

A direct application of Fop produces a construction that suffers from two limitations. First, it obfuscates
a class of point functions with multibit output that is restricted in its domain; must be in the high-entropy
token key space K. Second, For has a non-negligible soundness error bounded by ~y, which will violate
the security guarantees of Fgpo. Recall that the goal is to have a construction that permits A to only
perform a bounded query exhaustive search. In other words, the success probability of A in retrieving m
must be only negligibly larger than the probability of guessing the correct password when performing n,
queries (e.g., I%Il + negl(x) when using a uniform password distribution). We now show our construction
in stages, where to simplify the discussion, we assume a uniform password distribution in the following
paragraphs.!!

First attempt. An initial idea is to use a known soundness amplification technique in which m is
shared among u tokens, accompanied with a mechanism to map a password p € P to a set of keys k; € KC
for ¢ € [u]. This mapping can be built as, for example, a set of random oracles 7y, ..., m, each of which
maps any password p € P to a random string of size p for some p € N. So we have 7; : P — {0,1}” and
we denote the output space of each 7; as S¥ C {0,1} such that |S”| = |P|. Each random string is then
used to choose a key at random from . This is modeled by having the token creator P; use a public
algorithm KeyGen that takes a random string as input and returns a token key as an output.

At a high level, with this construction an adversary A will need to retrieve all shares from all token
instances in order to recover m. Taking the worst case scenario, meaning fixing the soundness error to be
the maximum value ~, this multi-instance approach reduces the overall soundness error to v*. By setting
u to be large enough, the soundness error becomes negligible. Furthermore, and given that each token
instance allows n attempts to retrieve a share, and that all shares are needed to recover m, A will have
ng = n attempts to obtain m.

However, the above analysis is flawed. The adversary A can perform what we call a leftover attack
and utilize the relation between the keys of the u tokens (i.e., mappings of the same password) to gain a
better advantage in recovering m. That is, success with any of the tokens not only reveals the message
share stored in that token, but also reveals the keys of the rest of the tokens. In detail, A operates on the
first token and performs up to n — 1 queries (by guessing passwords and mapping them to token keys
using 7y). If any of these queries succeeds in retrieving my, then with probability at least 1 —~, A knows
that the key (and hence the password guess) used in this query is the correct key k; (respectively, the
password p). Knowing p, and the public mapping function set {m1,...,7,} as well as KeyGen, allows A
to derive the rest of the tokens keys and retrieve all shares ma, ..., m,. On the other hand, if A does not
succeed in retrieving m; using the first n — 1 queries, it operates on the second token by repeating the
same strategy. In fact, A here has a better chance to guess the correct password,/key since it will exclude
all the passwords that did not succeed with the first token. If A succeeds in retrieving ms, and thus p
and ki, ks, ..., k, as mentioned previously, then it can go back to the first token and use the last query
to retrieve my. If it didn’t succeed, A applies the same strategy to the rest of the tokens with the hope of
guessing the correct password.

As noted, although the probability of retrieving all shares without correctly guessing any of the token
keys is v*, A now has n, = un queries (instead of n) to guess the right password. Based on that, the
probability of retrieving m can be computed as:'? Pr[m] = % + (1 — %)7“ In other words, A can
retrieve m by either guessing the password correctly in any of the un queries, or by being lucky and
retrieving all shares from all tokens despite using incorrect keys due to the soundness error. Although,

HT ater, when proving Theorem 1, we generalize that by replacing (;,—“‘ with a variable representing the probability
of guessing the password using ng queries. The value of this variable can be computed based on the underlying
password distribution.

2For the j** token, the size of the password space, after excluding the passwords that were already tried, is
|P| — (j — 1)n. For simplicity, we let |P| — (j — 1)n = |P].

13

Protocol 2 (A bounded-query obfuscation scheme for 7)

For a security parameter k, a number of token instances u, ¢ € [u], message m € M, password p € P, and
token key space K, let fi,..., fu be as defined before such that f1 : P — K, and f; : P x {0,1}" — K for
i > 1, P be the obfuscator, P> be the evaluator, and Fcr be the consumable token functionality defined in
Section 4. Construct a tuple of algorithms (Obf, Eval) to obfuscate a function in Z as follows.

Obf: on input a function Ip ., € Z, Pi does the following:
1. Use an additive secret sharing scheme to generate random shares my, ..., m, such that m = ®;_;m,.
2. Set To = 1.
3. For ¢ € [u]:
(a) Generate a random string r; « {0,1}".
(b) Compute r; = ®’Zir;.
(c) Generate a token key k;: ki < fi(p, 7).
(d) Generate a token ct;, with a unique token ID tid;, encoding 7; || m; using k; by sending the command
(Encode, tid;, P1, P, ki, 1; || m;, 1) to For.

Eval: on input an obfuscated function o = {cty,...,ct,} and point p € P, P» does the following:
1. Set ro = L.
2. For i € [u]:
(a) Compute 7| = &'_{r;.
(b) Generate a token key k;: k; < fi(p,7}).
(¢) Query token ct; using k; to retrieve r; | m; by sending the command (Decode, tid;, k;) to Fer.
3. Compute m = ®;_m; and output m.

Fig. 6. A construction for a bounded-query obfuscation scheme for Z.

the second term has been reduced and can be set to negligible by configuring u properly, the first term
increased the advantage of A way beyond %

Our construction. To address the leftover attack, we introduce a construction that chains the u tokens
together so that in order to operate on the ;" token, A would need to retrieve all m; for i < j. Otherwise,
A will have to guess the token key from a large space (larger than |P|). This enables us to amplify the
soundness error without increasing the total number of queries A obtains.

Towards building our construction, we introduce a modified way to map passwords to token keys.
In particular, a function set fi,..., f, is used to generate token keys ki, ..., k, such that for i € [u] we
define f; : P — K and f; : P x{0,1}" — K when ¢ > 1. We write k; < fi(p,7}), where 7}, = 1o ®-- - Br;_1
such that 7o = L and r; + {0,1}* is a random string stored in the i*" token. Each f; first applies the
mapping m; described earlier to p and then uses the output along with the random string 7} (for i > 1) to
generate a token key. A concrete instantiation of f; could be composed of a random oracle that takes
m;(p) || i as input and outputs a random string of size p, then KeyGen is invoked for this random string
to generate a key k; as before.

Note that each f;, for ¢ > 1, may have an input space that is larger than the output space, i.e.,
|P|2% >> |K|. If this is the case (in particular, if 2% > |K]), this function can be instantiated to cover the
full space of K and be a many-to-one mapping. That is, a password p € P can be mapped to different
keys (or to all keys in K) by changing the random string r used when invoking f;. Furthermore, correctly
guessing the key k of any of the tokens (other than the first one) without the random string r, does not
help the adversary in guessing the password p (the adversary still needs to guess 7 in order to recover the
password).

Protocol 2, described in Figure 6, outlines a construction that uses the above function set, along with
the consumable token ideal functionality Fer, to build a bounded-query obfuscator for low-entropy point
functions with multibit output.

We informally argue that this construction addresses the leftover attack described previously (again,
for simplicity we assume a uniform password distribution for the moment). To see this, let an adversary
A follow the same strategy as before and assume that A did not obtain 71||m while performing (n — 1)
queries over the first token. A now moves to the second token, performs (n—1) queries where it will succeed

14

in guessing the key ko correctly with probability 7’2\1 This is different from the naive construction in

which this probability is m since the previously tried passwords are excluded. In our construction,
A, when it does not have r1, has the only choice of trying keys from the full key space K (regardless
of the password space distribution). This is due to the fact that without 75 (where 75 = r1), A cannot
compute the induced key space by P, thus the only choice is to guess keys from C. This probability will
be negligible for a large enough K.

Furthermore, even if A guesses the correct ko, without the random string r4 it will be infeasible
to deduce the password p from ko through fo. A needs to feed fo with passwords and random strings,
where the latter has a space of size 2. Also, under the many-to-one construction of fo,..., f,, several
(or even all) passwords could be mapped to k2 due to the random string combination, which makes the
task harder for A to find out the correct password. The same argument applies to the rest of the tokens
because without 71, none of the subsequent 7, can be computed, and the only effective strategy for A is

to guess keys from the key space IC. So for each of these tokens, the success probability is % instead of

W as in the naive scheme (again, the latter will depend on the password distribution, but
the former will always be uniform). The success probability for A to retrieve m is then approximated as:
Pr[m| ~ % + (1 - %)7“. That is, to retrieve m, A either has to guess the password correctly using the
first token, or get lucky with every token and retrieve the share it stores. As shown, this amplifies the
soundness error (and can be set to negligible with sufficiently large u) without increasing the number of
queries A can do.'?

5.3 Security

Theorem 1 shows that Protocol 2 in Figure 6 securely realizes Fgpo for the function family Z, with an
arbitrary password distribution. For simplicity, we assume that the token keys k;, the randomness r;, and
the message m are all of an equal size, which is polynomial in the security parameter x. The proof can be
found in Section C.1.

Theorem 1. For 0 <~ <1, if each of fi1,..., fu is as defined above, then Protocol 2 securely realizes
Fepo for the point function family T = {I,.|p € P,m € M} in the For-hybrid model in the presence
of any adversary A € A, with ng =n and large enough u.

Remark 1. As mentioned before, x encapsulates a digital and a biological security parameters. Also, A is
capable of doing computational algorithms and physical procedures, so is the simulator. In the above
theorem, the simulator is computational, but it relies on Fc7 whose simulator involves physical procedures.
The use of UC security allows us to obtain an overall security guarantee against all physical/digital
combined attacks, both in concrete and asymptotic terms.

6 (1,n)-time Programs

In this section, we introduce another cryptographic application of consumable tokens; (1, n)-programs.
For such programs, completeness states that an honest party can run a program at most once, while
soundness states that an adversary can run this program at most n times. Again, this can be generalized
to allow for multiple honest queries given that the power gap between honest parties and the adversary is
preserved. We begin with motivating this application, after which we present a construction showing how
consumable tokens can be used to build (1, n)-programs for arbitrary functions.

Remark 2. One may argue that this application is a generalization of the bounded-query point function
obfuscation. Thus, the previous section is not needed as one may construct a (1,n)-program for any
point function. However, (1, n)-program guarantees that only some program was encapsulated, while the
previous section guarantees that a valid point function has been encapsulated. Also, the construction
shown in this section relies on a rather strong assumption, namely, indistinguishability obfuscation, that
was not required in the previous section. Therefore, we present these applications separately.

13Similarly, to make the presentation easier, the probability is simplified here where some terms are omitted.
See the full proof in Section C.1.

15

Motivation. One-time (and k-time) programs allow hiding a program and limiting the number of
executions to only one (or k). They can be used to protect proprietary software and to support temporary
transfer of cryptographic abilities. Furthermore, k-time programs allow obfuscating learnable functions—
functions that can be learned using a polynomial number of queries. By having k as a small constant, an
adversary might not be able to learn the function, which makes obfuscating such a function meaningful.

Goldwasser et al. [42] showed a construction for one-time programs that combines garbled circuits with
one-time memory devices. Goyal et al. |[44] strengthened this result by employing stateful hardware tokens
to support unconditional security against malicious recipients and senders. Bellare et al. [11| presented a
compiler to compile any program into an adaptively secure one-time version. All these schemes assumed
the existence of tamper-proof hardware tokens without any concrete instantiation. Dziembowski et al. |29]
replaced one-time memory devices with one-time PRFs. Although they mentioned that no hardware
tokens are needed, they impose physical restrictions such as inability to leak all bits of the PRF key, and
limiting the number of read /write operations; it is unclear if these assumptions can be realized in practice.
Goyal et al. [43] avoided the usage of hardware tokens by relying on a blockchain and witness encryption.
In particular, the garbled circuit is posted on the blockchain and the input labels are encrypted using
witness encryption, which can be decrypted later after mining several blocks given that the input is
unique to guarantee at most one execution. Yet, requiring to store a garbled circuit on a blockchain is
impractical.

We investigate the applicability of consumable tokens in constructing bounded execution programs.
This is a natural direction given the bounded query capability of these tokens, and the fact that we build
these tokens rather than assuming their existence. Nonetheless, the gap between an honest party and
the adversary forces us to consider a slightly different notion; the (1, n)-program mentioned above. Thus,
any application that requires the adversary to execute only on one input, like digital currencies, cannot
be implemented using (1, n)-programs. However, applications that allow n adversarial queries, such as
obfuscating learnable functions, can employ our scheme.

6.1 Definition

In this section, we define an ideal functionality for bounded-query encapsulation. This functionality,
denoted as Fpg, is captured in Figure 7. The description of the interfaces, and the goal of using the
flags and the counter, are very similar to what was described in the previous section for Fgpo. The only
difference is that instead of hiding a point function, Fpg hides an arbitrary circuit. The honest recipient
can evaluate this circuit over one input, while an adversary can evaluate over up to n, inputs. Thus, we
do not repeat that here.

Beside realizing the above ideal functionality, we require any bounded-query obfuscation scheme
realizing Fpg to satisfy the efficiency property defined below.

Definition 4 (Efficiency of Bounded-query Encapsulation). There ezists a polynomial p such that
forall k €N, all C € Cy, and all inputs x € {0,1}*, if computing C(x) takes t computational time steps,
then the command (Evaluate, -,z) takes p(t, k) technologically-realizable time steps.

6.2 Construction and Security

To ease exposition, we describe our construction in an incremental way. We start with a simplified
construction that handles only programs with small input space, and assumes idealized obfuscation
(specifically, Virtual Black Box obfuscation |10]). Next we extend to handle programs with exponential-size
domains (namely, poly-size inputs). We then replace VBB with indistinguishability obfuscation Q. Finally,
we briefly discuss how reusable garbling can reduce the use of 0.

First attempt—using VBB. In this initial attempt, our goal is to lay down the basic idea behind
our construction (rather than optimizing for efficiency). We use two tables Tab; and Tabsy. Tab; maps
a program’s input space X to the token message space M. This table is secret and will be part of the
hidden program. While Taby, maps X to the token key space K, and it is public.

We use Prog to denote the program that encapsulates the intended circuit or simply function f, which
we want to transform into a (1, n)-program. As shown in Figure 8, Prog is parametererized by a table

16

Functionality Fpg
FeE is parameterized by a security parameter «, a circuit class C,, and a positive integer nq.

Encapsulate: Upon receiving the command (Encapsulate, P>, C') from party Pi (the encapsulator), where
Ps is the evaluator, and C € C, do: if this is not the first activation, then do nothing. Otherwise:
— Send (Encapsulate, Pi, P>) to the adversary.
— Upon receiving (OK) from the adversary, store the state (C,j = 0, hflag; = 1, hflag, = 1), and output
(Encapsulate, P1) to Ps.

Evaluate: Upon receiving input (Evaluate, z) from P>, where z € {0,1}": if Encapsulate was not invoked yet
or j > 0, then end activation. Otherwise, increment j and output (C(z)) to Ps.

Corrupt-encapsulate: Upon receiving the command (Corrupt-encapsulate, C’) from the adversary, do: If
an Encapsulate output was generated, then end activation. Else, store (C’,j = 0, hflag, = 0, hflag, = 1) and
output (Encapsulate, P1) to Ps.

Corrupt-evaluate: Upon receiving the command (Corrupt-evaluate, z’) from the adversary, if no stored state
exists, end activation. Else:
— Retrieve (C, 4, hflag,, hflag,).
— If hflag, = 1 and j > 0, or j = n, then end activation, else increment j, set hflag, = 0, and send (C(z'))
to the adversary.

Fig. 7. An ideal functionality for bounded-query encapsulation.

Program Progr,, .

Input: m

Description:
1. Parse m as mo || m1, and set y = Decrypt(sk, m1)
2. Check that there exists z € X’ such that Tab[z] = mo. If this is not the case then output L
3. If y # ¢t then output y, else, output f(x)

Fig. 8. The program Progr,, .. ¢

Tab : X — M, a secret key sk, and f. It has two paths: a trapdoor path and a regular one. The trapdoor
path is activated when a hidden trigger in the input m is detected. In particular, this input may contain a
ciphertext of the program output. On the other hand, if this ciphertext encrypts the special string ¢fout,
where ¢ is some unique value outside the range of f and /,,; is the length of f’s output, the regular path
is activated. It evaluates f over x € X that corresponds to the first part of m.

Protocol 3 defined in Figure 9 shows a construction for (1, n)-time program for Prog using Fep. For
simplicity, we assume |X| = |[M| = |K|, the keys in K are distinct (i.e., do not have any affinity relation),
and that For has a negligible soundness error (we discuss later how to achieve that). Bounded query
is achieved via the consumable token; to evaluate over input z, the obfuscated program bP requires a
corresponding message m that is stored inside a token. Since the table Tabs is secret hidden inside bP,
the only way for P, to obtain a valid m is through the consumable token. Once the token is consumed,
no more evaluations can be performed. An adversary, on the other hand, and using F¢c7, will be able to
obtain up to n messages corresponding to n program inputs. Thus, this adversary can run bP at most n
times. See Section C.2 for an (informal) security argument of this construction.

Our construction—extending program domain and replacing VBB with 0. The concrete
construction of a consumable token may impose limitations on the number of keys and messages that can
be stored in a single token. Thus, a token may not be able to cover the full domain X of the program
Prog. So if a single token can store a set of message M C M messages, we have |M| < |X|. To address
this issue, we modify the previous construction to use multiple tokens along with an error correcting code

17

Protocol 3 (A (1,n)-time program scheme for Prog—F'irst attempt)

For a security parameter x, message space M, program input space X, and token key space K, such that
|X| = IM| = |K|, let Pi be the encapsulator, P, be the evaluator, For as defined in Section 4 but with
negligible soundness error, and Tab; and Tabs are mapping tables as defined above. Construct a tuple of
algorithms (Encap, Eval) for a (1, n)-time program scheme as follows.

Encap: on input an arbitrary function f with input space X and mapping tables Tab; : X — M and
Tabs : X — K, P; does the following:
1. Generate a token ct, with a unique token ID tid, encoding all messages m € M each using a unique key
from K. This is done by sending the command (Encode, tid;, K, M, |[M|) to Fer.
2. Generate a random secret key sk € {0, 1}".
3. Send ct, Tabz, and bP = VBB(Progy,, s ;) to P2, where bP is an obfuscated version of the program
Progr.p, sk, s described in Figure 8.

Eval: on input (1,n)-Prog = (ct, Tabz,bP) and z € X, P> does the following:
1. Set k' = Tabs[z].
2. Query token ct using k' by sending the command (Decode, tid, k') to For and obtain m.
3. Output out = bP(m).

Fig. 9. A construction for a (1, n)-time program scheme for Progr,;, . ;-

C. We map each x € X to a codeword of length w, and we use w tokens to represent the program input.
Each symbol in a codeword indicates which key to use with each token. By configuring C properly, this
technique allows us to cover the program domain without impacting the number of program executions
that (an honest or a malicious) P, can perform.

Concretely, we use a linear error correcting code C' with minimum distance §, meaning that the
Hamming distance between any two legal codewords is at least §. We represent each key in the set
K C K used in creating a token, where |K| = |M|, as a tuple of index and value. So the set K is ordered
lexicographically such that the first key in this ordered set is given index 0, and so on. Hence, a symbol
in a codeword is the index of the token key to be used with the corresponding token. Based on this
terminology, we work in a field of size ¢ = | K| with a code alphabet ' = {0,...,¢ — 1}.

Definition 5 (Linear Codes [4]). Let F, be a finite field. A [w,d,], linear code is a linear subspace
C with dimension d of F¢, such that the minimum distance between any two distinct codewords c,c’ € C
is at least §. A genmerating matriz G of C' is a w X d-matrixz whose rows generates the subspace C.

For any d < w < g, there exist a [w,d, (w — d + 1)], linear code: the Reed-Solomon code [56], which
we use in our construction. Let S denote the set of strings to be encoded, such that each input z € X
is mapped to a unique s € S. Using classic Reed-Solomon, to encode an input x, we first define its
corresponding s, and then we multiply s by the generating matrix G to generate a codeword of size w.
Using this approach, we can cover a domain size |S| = ¢%+.

Accordingly, P; now has to generate w tokens, denoted as ctg,...,ct,_1, instead of one. Each of
these tokens will include all keys in K. Each key k£ € K will be tied to a unique message m such
that m will be retrieved when a decode query using k is performed over the token. Let the messages
stored in the first token be myq,...,mo,q—1, and in the second token be m;g,...,m1 41, and so on. We
generate these messages using a pseudorandom generator with some random seed r. In particular, we have
m; ; = PRG(r)[i,j] forall i € {0,...,w—1} and j € {0,...,¢q— 1}; we picture the output of the PRG as
an w X ¢ matrix of substrings. Hence, mg o is the substring stored at row 0 and column 0 in this matrix,
which is the first substring of the PRG output, and so on.'* Thus, to create token cto, P, will pass K and
mo,0, - - -, Mo,q—1 to For, while for ct; the messages my o,...,m1 4—1 along with K will be passed, etc.

So to execute Prog over input x, P first maps x to s, and then generates the codeword c for s. After
that, she uses the keys with the indices included in ¢ to query the corresponding tokens. For example, if

14 As we will see shortly, m; ; = PRG(r)[i, j] || ¢"(=I+4out) assuming all z € X are of the same length, but we
omit that for now to ease exposure.

18

Program Progg ,, okt

Input: m, x
Description:
Parse m as mo || - - - || mw—1, and parse each m; as m? || m;
Use G to compute the codeword c¢ that corresponds to x.
Check that m corresponds to a valid codeword: Let B = PRG(r), if 3BJ[i, c[i]] # m?, then output L.
Set y; = Decrypt(sk, m;) for all i € {0,...,w —1}.
If Jy; # ¢"{=ITout) then take the first such y; and do the following:
~ Parse ys as g2 || -+ | g7
— Parse each y/ as v/ || y?! (for j € {0,...,n —1}).
— Output y?"' for which y/° = .
Else, output f(z).

CU N

Fig. 10. The program Progg ,, .4 . ; With linear error correcting codes.

c={5,9,15,...}, then ks is used to query the first token to retrieve mg = mg s, kg is used to query the
second token and retrieve my = my g, etc. These messages m = myg || - - - || mw—1 will be used as input to
Prog to obtain the output f(x). This in turn means that Prog must check that m corresponds to a valid
codeword in C'. We also modify the trapdoor path to allow including multiple outputs instead of one.
This is needed to allow the simulator to simulate for an adversary who queries the tokens out of order.
It may happen that the last query is common for two (or more) codewords (in other words, just when
this query takes place, the simulator will tell that the adversary got valid codewords). Having multiple
outputs (each concatenated with the 2 value that leads to this output) permits the simulator to embed
the valid outputs for the inputs corresponding to these valid codewords.

The modified version of Prog can be found in Figure 10 (with both the linear code and iO instead of
VBB). We also modify the description of Prog (see Figure 11). The parameters of the underlying error
correcting code are configured in a way that produces a code C such that |C| = |X|. As shown, the output
of Encap now contains w tokens beside the obfuscation of Prog. Eval follows the description above.

On preserving the number of program executions (1,n). An honest party can query any token
once. Thus, overall, she will be able to retrieve only one codeword. An adversary, on the other hand,
can query each token up to n times. We want to guarantee that the nw messages she obtains does not
allow constructing more than n valid codewords. In other words, we want to ensure that to retrieve n + 1
codewords, at least nw + 1 distinct queries are needed.

To formalize this notion, we define what we call a cover; a cover of two, or more, codewords is the
set of all distinct queries needed to retrieve these codewords. For example, codewords ¢; = {5,4,13,17}
and ¢y = {5,9,12,18} have a cover of {5,4,9,12,13,17,18},'5 and so P, needs 7 queries to obtain the
messages that correspond to these codewords from the tokens.

Definition 6. A code [w,d,0]q is n-robust if for any n+ 1 distinct codewords the size of the cover is at
least nw + 1.

So the robustness factor is the number of codewords an adversary can obtain. To preserve this number
to be the original n that an adversary can obtain with one token, we need to configure the parameters of
C to satisfy the lower bound of the cover size defined above. We show that for Reed-Solomon codes as
follows.

Lemma 1. For a Reed-Solomon code [w,d,d], to be n-robust (cf. Definition 6), we must have w — n(d —
1)—1>0.

Proof. Recall that ¢ is the minimum distance between any two codewords in the code C. Thus, worst
case scenario (which is the best for an adversary) is to have n + 1 codewords that differ from each other

5Note that if 5 was not on the same position for both codewords then it would have been considered distinct.
Different positions means that ks will be used with different tokens, which leads to different messages m;, ;.

19

Protocol 4 (A (1,n)-time program scheme for Prog)

For a security parameter «, message space M, input space X', and token key space K, let P; be the encapsulator,
P, be the evaluator, For be as defined in Section 4 but with negligible soundness error, [w,d, d]q be a linear
code C with a generating matrix G such that |C| = |X|, and PRG : {0,1}* — {0,1}*?™! be a psuedorandom
generator, where m € M and |K| = g for K C K. Construct a tuple of algorithms (Encap, Eval) for a
(1, n)-time program scheme as follows.

Encap: On input an arbitrary function f with input space X, and a linear code [w,d,], with generating
matrix G, P; does the following:

1. Generate secret key sk € {0,1}" and a string r € {0,1}" both at random.

2. Generate messages m; ; = PRG(r)[i,j] || ¢"(=/T¢eut) for all i € {0,...,w—1} and j € {0,...,q— 1}.

3. Generate at random token key subspace K C K such that |K| = gq.

4. For i € {0,...,w — 1}, generate a token ct;, with a unique token ID tid;, encoding
messages Mio,...,Miq—1 using ko...kq—1 € K. This is done by sending the command
(Encode, tid;, {k‘o . kq_l}, {mm, L. ,mi7q_1}, q) to For.

5. Send ct = {cto, ...,Ctw—1} and bP = iO(Progg ,, .1, . ;) to P2, where Progs ,, . . ; is defined in Figure 10.

Eval: On input a (1,n)-Prog = (ct,bP) and z € X, P> does the following:
1. Map z to a codeword c.
2. For each i € {0,...,w — 1}, query token ct; using kg, by sending the command (Decode, tid;, k() to
Feor and get m; in return.
3. Output out =bP(mo || - - - || Mw—1,).

Fig. 11. A construction for a (1,n)-time program scheme for Progg ,, .1 . ¢-

in 0 symbols but the rest are identical. Thus, we have:
|cover| = w + nd
But recall that for Reed-Solomon, § = w — d + 1. Substituting this in the equation above produces:
|cover| = nw +w —n(d — 1)

To satisfy the cover lower bound stated in Definition 6, and thus have an n-robust code, we must
have w — n(d — 1) > 1, which completes the proof. O

Accordingly, we have the following theorem (the proof can be found in Section C.3).

Theorem 2. Assuming sup-exponentially secure 1O and one-way functions, the iO-based construction
described in Figure 11 is a (1,n)-time program in the For-hybrid model.

Remark 3. It is an intriguing question whether we can obtain (1, n)-time programs without Q. Since an
adversary can evaluate over multiple inputs, we cannot use garbled circuits—evaluating a circuit over
more than one input compromises security. A potential direction is to employ reusable garbling [41], and
use our construction to build a (1, n)-time program for the circuit that encodes the inputs (which requires
a secret key from the grabler). Thus, ¢O is only needed for the encoding circuit, and our consumable
token limits the number of times this circuit can be evaluated, rather than obfuscating the full program
as above.

Acknowledgements. This material is based upon work supported by DARPA under contracts
#HR001120C00, #HR00112020023, and #D17AP00027. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Government or DARPA. This research was supported in part by a grant from
the Columbia-IBM center for Blockchain and Data Transparency, by JPMorgan Chase & Co., and by
LexisNexis Risk Solutions. Any views or opinions expressed herein are solely those of the authors listed.

20

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

. Aaronson, S.: Quantum copy-protection and quantum money. In: 2009 24th Annual IEEE Conference on

Computational Complexity. pp. 229-242. IEEE (2009)

. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. science 266(5187), 1021-1024

(1994)

. Adleman, L.M.: Computing with dna. Scientific american 279(2), 54-61 (1998)
. Almashaqgbeh, G., Benhamouda, F., Han, S., Jaroslawicz, D., Malkin, T., Nicita, A., Rabin, T., Shah, A.,

Tromer, E.: Gage mpc: Bypassing residual function leakage for non-interactive mpe. PETS 2021(4), 528-548
(2021)

. Ananth, P., Placa, R.L.L.: Secure software leasing. In: EUROCRYPT (2021)
. Angel, T.E., Aryal, U.K., Hengel, S.M., Baker, E.S., Kelly, R.T., Robinson, E.-W., Smith, R.D.: Mass

spectrometry-based proteomics: existing capabilities and future directions. Chemical Society reviews 41(10),
391228 (may 2012)

. Armknecht, F., Maes, R., Sadeghi, A.R., Sunar, B., Tuyls, P.: Memory leakage-resilient encryption based on

physically unclonable functions. In: Towards Hardware-Intrinsic Security, pp. 135-164. Springer (2010)

. Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Uc-secure multiparty computation from one-way

functions using stateless tokens. In: ASTACRYPT (2019)

. Baldwin, M.A.: Protein identification by mass spectrometry issues to be considered. Molecular & Cellular

Proteomics 3(1), 1-9 (2004)

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im) possibility
of obfuscating programs. In: CRYPTO. pp. 1-18 (2001)

Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applications to one-time programs
and secure outsourcing. In: ASTACRYPT. pp. 134-153. Springer (2012)

Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation. In: CRYPTO. pp. 520-537.
Springer (2010)

Bitansky, N., Canetti, R., Garg, S., Holmgren, J., Jain, A., Lin, H., Pass, R., Telang, S., Vaikuntanathan,
V.: Indistinguishability obfuscation for ram programs and succinct randomized encodings. SIAM Journal on
Computing 47(3), 1123-1210 (2018)

Blawat, M., Gaedke, K., Huetter, 1., Chen, X.M., Turczyk, B., Inverso, S., Pruitt, B.W., Church, G.M.:
Forward error correction for dna data storage. Procedia Computer Science 80, 1011-1022 (2016)

Bornholt, J., Lopez, R., Carmean, D.M., Ceze, L., Seelig, G., Strauss, K.: A dna-based archival storage system.
ACM SIGOPS Operating Systems Review 50(2), 637649 (2016)

Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Annual Cryptology Conference. pp.
344-360. Springer (2013)

Brzuska, C., Fischlin, M., Schréder, H., Katzenbeisser, S.: Physically uncloneable functions in the universal
composition framework. In: CRYPTO. pp. 51-70 (2011)

Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS. pp.
136-145. IEEE (2001)

Canetti, R.: Universally composable security. J. ACM 67(5), 28:1-28:94 (2020)

Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: EUROCRYPT. pp. 489-508.
Springer (2008)

Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable password-based key
exchange. In: EUROCRYPT. pp. 404-421. Springer (2005)

Canetti, R., Kalai, Y.T., Varia, M., Wichs, D.: On symmetric encryption and point obfuscation. In: TCC. pp.
52-71. Springer (2010)

Chandran, N., Goyal, V., Sahai, A.: New constructions for uc secure computation using tamper-proof hardware.
In: EUROCRYPT. pp. 545-562 (2008)

Church, G.M., Gao, Y., Kosuri, S.: Next-generation digital information storage in dna. Science p. 1226355
(2012)

Crick, F.H.: On protein synthesis. In: Symp Soc Exp Biol. vol. 12, p. 8 (1958)

Damgard, I., Kilian, J., Salvail, L.: On the (im) possibility of basing oblivious transfer and bit commitment
on weakened security assumptions. In: EUROCRYPT. pp. 56-73. Springer (1999)

Damgard, 1., Scafuro, A.: Unconditionally secure and universally composable commitments from physical
assumptions. In: ASTACRYPT (2013)

Dottling, N., Kraschewski, D., Miiller-Quade, J.: Unconditional and composable security using a single stateful
tamper-proof hardware token. In: TCC (2011)

Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing functions. In: TCC. pp. 125-143.
Springer (2011)

Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable pufs: Memory-based secure key storage.
In: Proceedings of the sixth ACM workshop on Scalable trusted computing. pp. 5964 (2011)

21

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.

56.
57.

58.
59.

60.

61.

62.

El Orche, F.E., Hollenstein, M., Houdaigoui, S., Naccache, D., Pchelina, D., Roenne, P.B., Ryan, P.Y., Weibel,
J., Weil, R.: Taphonomical security:(dna) information with foreseeable lifespan. Cryptology ePrint Archive
(2021)

Erlich, Y., Zielinski, D.: Dna fountain enables a robust and efficient storage architecture. Science 355(6328),
950-954 (2017)

Feist, P., Hummon, A.B.: Proteomic challenges: sample preparation techniques for microgram-quantity protein
analysis from biological samples. International journal of molecular sciences 16(2), 353763 (feb 2015)
Fisch, B., Freund, D., Naor, M.: Physical zero-knowledge proofs of physical properties. In: CRYPTO. pp.
313-336. Springer (2014)

Fisch, B.A., Freund, D., Naor, M.: Secure physical computation using disposable circuits. In: TCC. pp.
182-198. Springer (2015)

Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure mpc from indistinguishability obfuscation.
In: TCC. pp. 74-94. Springer (2014)

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. In: FOCS. pp. 40—49. IEEE (2013)

Glaser, A., Barak, B., Goldston, R.J.: A zero-knowledge protocol for nuclear warhead verification. Nature
510(7506), 497-502 (2014)

Glish, G.L., Vachet, R.W.: The basics of mass spectrometry in the twenty-first century. Nature Reviews Drug
Discovery 2(2), 140-150 (2003)

Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E.M., Sipos, B., Birney, E.: Towards practical,
high-capacity, low-maintenance information storage in synthesized dna. Nature 494(7435), 77 (2013)
Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and
succinct functional encryption. In: ACM STOC (2013)

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: CRYPTO. pp. 39-56. Springer (2008)
Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using blockchains. In: TCC. pp. 529-561.
Springer (2017)

Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware
tokens. In: TCC. pp. 308-326 (2010)

Grass, R.N., Heckel, R., Puddu, M., Paunescu, D., Stark, W.J.: Robust chemical preservation of digital
information on dna in silica with error-correcting codes. Angewandte Chemie International Edition 54(8),
2552-2555 (2015)

Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using standardsmartcards. In: ACM
CCS. pp. 491-500 (2008)

Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in the tamper-proof hardware
model under minimal complexity. In: TCC (2016)

Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Constant round adaptively secure protocols in the
tamper-proof hardware model. In: PKC. pp. 428-460 (2017)

Hervey IV, W.J., Strader, M.B., Hurst, G.B.: Comparison of digestion protocols for microgram quantities of
enriched protein samples. Journal of Proteome Research 6(8), 3054-3061 (2007)

Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: ACM STOC.
pp- 60-73. ACM (2021)

Jin, C., Xu, X., Burleson, W.P., Rithrmair, U., van Dijk, M.: Playpuf: Programmable logically erasable pufs
for forward and backward secure key management. IACR Cryptol. ePrint Arch. 2015, 1052 (2015)

Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: EUROCRYPT.
vol. 7, pp. 115-128. Springer (2007)

Landenmark, H.K., Forgan, D.H., Cockell, C.S.: An estimate of the total dna in the biosphere. PLoS biology
13(6), €1002168 (2015)

Lindell, Y.: Anonymous authentication. Journal of Privacy and Confidentiality 2(2) (2011)

Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. In. EUROCRYPT. pp.
20-39. Springer (2004)

MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes, vol. 16. Elsevier (1977)

Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. TCC 411(10), 1283-1310
(2010)

Naccache, D., Shamir, A., Stern, J.P.: How to copyright a function? In: PKC. pp. 188-196. Springer (1999)
Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure computation with (malicious)
physically uncloneable functions. In: EUROCRYPT. pp. 702-718. Springer (2013)

Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297(5589), 2026-2030
(2002)

Roehsner, M.C., Kettlewell, J.A., Batalhdo, T.B., Fitzsimons, J.F., Walther, P.: Quantum advantage for
probabilistic one-time programs. Nature communications 9(1), 1-8 (2018)

Rithrmair, U.: Oblivious transfer based on physical unclonable functions. In: International Conference on
Trust and Trustworthy Computing. pp. 430-440 (2010)

22

63. Savaryn, J.P., Toby, T.K., Kelleher, N.L.: A researcher’s guide to mass spectrometry-based proteomics.
PROTEOMICS 16(18), 24352443 (sep 2016)

64. Stein, S.: Mass Spectral Reference Libraries: An Ever-Expanding Resource for Chemical Identification.
Analytical Chemistry 84(17), 7274-7282 (2012). https://doi.org/10.1021/ac301205z

65. Wee, H.: On obfuscating point functions. In: ACM STOC. pp. 523-532 (2005)

66. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS. pp. 162-167 (1986)

67. Zhang, Y., Fu, L.H.B.: Research on dna cryptography. In: Applied cryptography and network security. vol. 357,
pp. 10-5772. InTech: Rijeka, Croatia (2012)

A Unclonable Polymer-based Data Storage

Biological polymers are large molecules made of recurring building blocks, nucleotides and amino acids
for DNA/RNA and protein, respectively, and play important roles in all living organisms. For example,
we pass on genetic information to our children by our genes that are made of DNA, a long polymer
built of four types of nucleotides. Our cells transcribe the DNA into RNA copies, which are short-living
polymers that can be thought of as a set of digital instructions. Finally, RNA is translated into proteins,
which make virtually all of the molecular machines in our body; from enzymes that metabolize food
to the strong fibers that comprise our hair. In over 3.5 billion years of evolution, nature optimized the
chemical structure of these biopolymers to reliably carry information. Our biosphere holds about 1037
bytes of data in the DNA of organisms [53]. This amount of data is 15 orders of magnitude bigger than
all human-made digital data.

Advances in biotechnology have allowed the custom-tailored synthesis of biological polymers for the
purpose of data storage. Much of the effort in this new field has focused on the use of DNA, generating an
arsenal of molecular protocols to store and retrieve information |14, 15,24, 32,40,45|. Possible advantages
of such DNA-based data storage machinery include: high storage density, where a single milligram of DNA
can carry a terabyte of data; reliability and robustness as DNA samples can be amplified to replicate the
data they store; and the high durability of the DNA material [45|. The data storage protocols combine
digital algorithms and physical procedures that encode the digital data into DNA strings, and then
synthesize these strings to produce the DNA material. Data retrieval proceeds in the reversed direction.
That is, commodity devices are used to “read" the DNA molecules as digital strings of the four letters,
then these strings are decoded to obtain the digital data.

With the growing application using biological polymers for storage, we became interested in the
cryptographic attributes this new hardware offers. Specifically, in this paper we propose using protein as
a data storage material. Curiously, the most fundamental characteristics of proteins; the fact that they
cannot be directly cloned nor can they replicate or be amplified and that “data retrieval" is typically
self-destructive, might be considered as limitations from a regular data storage point of view. However,
these exact traits of protein can confer powerful features to instantiate cryptographic primitives and
protocols. In what follows, we describe a protein-based scheme for data storage and discuss its practical
specifications. We rely on this scheme in realizing the cryptographic primitives we build, and we use its
specifications in justifying correctness and security of these constructions.

A.1 A Physical Scheme for Protein-based Data Storage

Proteins are large polymers, hundreds of amino acids long, that fold onto themselves to create stable
geometric objects presenting surfaces and regions of distinct physio-chemical features such as: rigidity or
flexibility as well as electrical charge, polarity or hydrophobicity. The collective effect of these traits and
their 3D orientation in space result in a precise spatial conformation which is critical for fulfilment of a
given protein’s function. Short amino-acid polymers (< 50 amino-acids), i.e., oligomers, are referred to as
peptides and often are viewed as being too short to have elaborate conformations. This however, is not
necessarily true, as is illustrated by some peptide neurotransmitters and hormones such as: enkaphalin,
angiotensin II, angiotensin I, substance P, alpha-endorphin and beta-endorphin that are comprised of
5, 8, 10, 11, 16, and 31 amino acids, respectively. One must keep in mind that for the purpose of the
proposed use of proteins or peptides for data storage, a functional 3D conformation is not required nor
does it need to be maintained. For storage, the digital message is encoded into the primary configuration
of the peptide/protein, i.e., the sequence of the 20 natural amino acids of the protein material, the

23

https://doi.org/10.1021/ac301205z
https://doi.org/10.1021/ac301205z

Encode m as a specific A short peptide “header” Link/fuse the header to
sequence of amino acids, recognized by a specific peptide m and inserta Mix of random peptides
Secret Message m a peptide corresponding mAb cleavage site between them linked to different headers

"Hello World!" } SYYRGAAGALLVYDITRR } GYQFVQR } ®
targetpek Nheader @Qg @J

cleavage site

Fig. 12. General scheme for peptide-based data storage. A message (m) is assigned to a specific peptide
sequence. A short peptide header which is specifically recognized by a unique monoclonal antibody (mAb) is linked
to the peptide message via a specific protease cleavage site. The message is then mixed with a vast collection
of decoy peptides, each with a different peptide sequence and linked to different headers recognized by different
mAbs. The desired specific peptide can be affinity selected using its correct corresponding mAb. The peptide can
be cleaved and the sequence of peptide-m can be determined, and thus, enable the message to be decoded.

“peptide-payload". To retrieve the message, the order of the amino-acids of a protein is determined, after
which this sequence is decoded to reconstruct the original message.

Given that our primary goal is to design a biological machinery to realize cryptographic primitives
securely, we extend this basic paradigm to support data secrecy. Our proposal is based on a number of
features of proteins and peptides: (i) unique peptides can be designed to comprise any string of amino
acids and be physically produced with precision and at high fidelity, (ii) a peptide sample whose amino
acid sequence is not known is unclonable and cannot be replicated or amplified, (iii) sequencing the
peptide results in its consumption.

As illustrated in Figure 12, the peptide message, peptide-m, is conjugated to a short (< 10 amino
acids) peptide tag, a tag that is recognized specifically by a predetermined monoclonal antibody (mAb).
Thus, the peptide tag, designated “header", corresponds to its specific mAb. Next, the peptide message,
peptide-m, is mixed with a vast variety of decoy peptide messages, all of which are peptide permutations
of composition and length, each conjugated to a collection of alternative “header" sequences. All attempts
to learn the sequence of peptide-m by sequencing the mixture of peptide-m along with the decoy peptides
are destined to fail and will generate an incomprehensible set of sequence data for which the desired
peptide message cannot be decoded. The only possible way to decode the message is to first single out
and purify the data-containing peptide. This can be achieved employing the unique mAb that specifically
recognizes the unique header attached to peptide-m. Application of the mAb allows affinity selection of
the correct peptide otherwise mixed with an overwhelming amount of decoy peptides. Without knowing
which of a large collection of mAbs is to be used to affinity purify peptide-m, one cannot retrieve the
stored message.

We outline these processes as two protocols for data storage and retrieval, which are depicted pictorially
in Figures 12 and 13, respectively. Data storage proceeds as follows:'®

1. Encode the message as an unordered sequence of amino acids (peptide-m) which can be determined
by protein sequencing methodologies.

2. Secretly choose a “header" peptide to be linked to peptide-m. A typical length for such a peptide
could be 5 to 15 amino acids and is specifically and exclusively recognized by a unique mAb.

3. Produce a single protein sequence, which concatenates the peptide-m and the header peptide spaced
by an amino acid motif which enables specific targeted protease cleavage, e.g., coagulation factor
Xa which specifically cleaves carboxy terminus to the arginine residue in the tetra-peptide sequence
IEGR or TEV (tobacco etch virus) protease which cleaves carboxy terminus to the glutamine (Q)
residue of the 7 amino acid sequence ENLYFQG/S.

4. Mix the protein sequence containing peptide-m and its header with a mixture of decoy peptides
where each of these decoys is concatenated with a header peptide distinct and different from the
secret header. The amount of peptide-m will be as dictated by the data retrieval protocol to allow

16 Although we talk about one message in these protocols, several messages can be stored in one vial by having
several peptide-ms instead of one, each of which is conjugated with a unique header and mixed with the decoys.

24

The correct “key” enables
Add mAb “key” (Y) affinity-selection and Protease cleavage Peptide-m amino acid The encoded message
to protein mixture purification of peptide-m releases peptide-m sequenced is determined is retrieved

X
ks %c) L} O@, = O@ P s

%“@O @ngf

Fig. 13. Message retrieval. A vast mixture of proteins (a “vial") containing the desired peptide-m linked to a
header (known to the sender and the receiver) that corresponds to the secret mAb is received. The mAb is added
to the mixture eliciting peptide-m affinity selection and purification. Protease cleavage releases peptide-m which
can then be sequenced. Decoding the sequence reveals the stored (secret) message.

one data retrieval attempt, with limited extra amount to account for losses of material during the
immunopercipitation process.

The sender shares the secret header with the recipient (so this is digital data, i.e., the peptide sequence
of the header, which reveals to the recipient the identity of the correct unique mAb to be used to recover
peptide-m). Then he sends a vial of the protein mix (a physical component comprised of peptide-m mixed
with a vast collection of decoy peptides). It should be noted that all decoy peptides and the target
peptide-m are of the same general length, mass, and composition, differing in sequence. Thus, effective
purification of the desired message from the decoys, without the matching mAb, is impossible through
standard biochemical /biophysical methodologies.

Figure 13 illustrates the data retrieval protocol, which is the reversed process depicted in Figure 12.
Basically, pre-knowledge of the correct mAb and its implementation leads to revealing the peptide-m
sequence and the decoding of the message sent to the recipient.

A.2 “Cloning" Proteins is a misnomer

The popular claim that a specific protein has been “cloned" is, in actuality, misleading. Proteins, in
marked contrast to nucleic acid polymers (DNA and RNA), are not directly cloneable. Thus, when popular
statements refer to a given “cloned protein", in fact the correct meaning of this statement is that the DNA
corresponding to the protein has been cloned, not the protein itself. This is a fundamental distinction
between proteins and nucleic acids. The latter are replicated by a relatively simple process using a single
strand template against which a new complementary strand is generated, nucleotide base for base through
base-pairing (e.g., A to T and G to C). Proteins, on the other hand, are naturally produced via an
extremely complex multi-component process in which an RNA message is read, tri-nucleotide codon after
codon, by ribosomes which recruit amino acid charged t-RNA molecules to enzymatically link amino acid
residues, one by one via the ribosome large subunit. To date there is no method, natural or artificial, to
systematically replicate or amplify proteins or even short peptides directly. Furthermore, all production
of specific proteins requires absolute pre-knowledge of the amino acid sequence being generated. Thus,
storing data by protein ensures that the amount and availability of the message can be limited strictly,
reliably and determined and regulated by the sender.

A.3 Sequencing Proteins

Determining protein sequences historically has required long and tedious chemical processing entailing
cleavage of proteins into shorter peptides, fragment purification and then, through processes such as
Edman degradation, revealing the N-terminal residues through cyclic chemical reactions, one by one
until a complete sequence is assembled. Thus, for example, the complete sequence of the bacterial
enzyme beta-galactosidase (> 1000 residues) took 9 years and numerous publications (e.g., Zabin and
Fowler 1970-1978). A revolution in the ability to determine protein sequences occurred when their genes
(DNA) could be cloned and subjected to nucleic acid sequencing. In reality, therefore, almost all protein
sequences known to date were artificially determined first by translating their cDNA (complementary
DNA) equivalents.

25

A major breakthrough in direct reading of proteins has been by the implementation of mass spectroscopy
(MS) or versions thereof |9,40]. This strategy relies on physical fragmenting the proteins into a mixture
of short peptides and generating a histogram of their observed molecular weights. Then, the spikes of
this histogram are matched with weights of known peptides (amino acid combinations) registered in a
database |64]. This process is inherently destructive due to fragmentation. It is further resistant to natural
scaling attempts, because an increase in the length of the peptides means exponential increase in their
combinatorial variety. This in turn makes the constant range of available weight spectra exponentially
more dense and harder to be identified.

The MS analyses are praised for their precision and sensitivity. This however must be clarified, as the
exceptional performance of MS is very much dependent on the successful assignment of an “unknown"
protein to pre-known and deciphered proteins in a database for comparison. Sequencing proteins de novo,
i.e., from first principles and not through comparisons with known baseline data is possible, however is
restricted to shorter peptides and with some limitations regarding their amino acid compositions. That
being said, our research has revealed various parameters and conditions required for effective de novo
sequencing, thus, allowing us to assert that revelation of the sequence of peptide-m is feasible, provided
that peptide-m can be relatively purified.

Peptides as molecular machines for cryptographic applications. We have established the
fundamental conditions required for using peptides as physical payloads in cryptographic applications.
The following are terms and conditions that need to be met for effective use of peptides as cryptographic
payloads and have been determined through experimentation:

— composition of the peptide (use of select and preferred amino acids).

— peptide length (within the capacity for reliable MS de novo sequencing).

— association with discrete peptide headers that can be exploited for highly precise and selective
message purification by defined keys (i.e., mAbs that bind their corresponding headers with exquisite
specificity).

— a modular platform to produce vast collections of effective decoy payloads.

In order to read a protein sequence successfully, MS needs a biological material at the recommended
amounts, i.e., above a minimum threshold of sample volume and protein concentration. This concentration
allows MS to identify the peptides in the mixture through standard protocols of de novo sequencing.
However, an order of magnitude dilution or sampling from the mixture is considered guaranteed to fail. MS
protocols have been continuously challenged by limited availability of samples, and have been optimized
to facilitate detection under such conditions |6,63]. Enriched microscale approaches allow handling of
samples at low-microgram and high-nanogram quantities [33,49]. State of the art noise models are based
on Poisson and multinomial distributions of the discrete ion signal [18], quantifying the expected increase
in error rates upon any attempt for further reduction of the number of molecules in the experiment. All
these methodologies confirm that going below the required material thresholds cause failures in sequencing
proteins, and hence, prevent retrieving the stored data successfully. Moreover, the protocols referred to in
these studies generally rely on an existing database of protein sequences for comparison of MS spectra.
The proposed application demands sequencing de novo of unknown random sequences not regularly
present in the existing databases. In fact, the peptide-m sequence can be dictated a priori to be exclusive
and not existent in the MS protein database.

A.4 Adversarial Interaction with a Peptide-based Data Storage

We assume that the adversary is knowledgeable and surpasses the sender’s technological capacity and
is knowledgeable of the existence of the complete repertoire of mAbs (or the full key space) available
to the sender. The condition that ensures security is that the identity of the bona fide correct Key is
absolutely and unforgivingly requires its use first and only once. Any error is unacceptable as a false
attempt promises consumption of the vial and its content and thus loss of any chance to retrieve the
message. The problem thus becomes a matter of reducing the chance of guessing the correct key always
and repeatedly to totally impractical.

The promise of success in retrieving the secret message stored in a vial is by purifying it using
the matching mAb, and then sequence the purified mix using MS. Other techniques such as attempts

26

to purify the protein without the use of any mAb or diluting the sample and repeated iterations of
purification and sequencing, are not viable due to the following reasons. Purification strategies, such
as high-performance liquid chromatography (HPLC) or gel electrophoresis, are usually based on a
combination of separation methods that exploit the physiochemical characteristics of peptides, including
size, charge and hydrophobicity. These strategies can only separate out relatively large fractions of the
mixture, as opposed to immunopercipitation that can pull down proteins at less than 106 concentration.
Furthermore, these separation assays are rendered useless by incorporating decoy proteins most of which
are chemically and physically similar to the target peptide-m in terms of their polarity, gel retardation,
and other basic properties. In addition, partitioning the protein mix in a vial without the use of antibodies
with the hope of isolating the target peptide-m is not effective. Any partitioning of the sample may push
the amount of peptide-m below MS detectability threshold.

Consequently, for an adversary who seizes the protein vial, the only way to reveal anything about the
secret message is by applying the pre-determined correct mAb and then sequence the purified sample.
This adversary may perform a brute search attack, meaning that he guesses the secret header, apply a
matching mAb to purify the sample and sequence it.

In our model, we consider an adversary that could be more powerful than the honest recipient. That
is, he may use a more advanced MS; one that operates at lower quantity and purity thresholds than the
honest recipient’s MS. This permits this powerful adversary to perform more data retrieval attempts
than what the honest recipient gets. In particular, we have that an honest recipient will perform one
data retrieval attempt using the correct mAb, while an adversary could be capable of performing up to n
attempts, for a small integer n. Moreover, this adversary could be an adaptive one, meaning that he may
choose his next header guess based on the outcome of previous trials.

A.5 Bounded Query

In theory, an adversary with endless resources and capability should ultimately be able retrieve m.
Obviously, not on the first simple attempt, that would only be possible if the adversary was exceptionally
lucky, or if the identity of the correct key was known to him, which we assume is not. The latter is the
only real advantage the honest user has over an adversary, the pre-set knowledge of the correct mAb to
use. Diluting the contents of the vial, or sub-dividing it so to be able to test multiple rounds, multiple
attempts each time with a different key will give the adversary the chance to eventually discover and
apply the correct key. However, two conflicting parameters must be considered:

(i) the technical capability of the adversary to successfully assay ever more sub-divisions of the vial with
different keys with each attempt.
(ii) the number of available keys being so great as to make (i) impractical.

Thus, one must structure and design the vial to ensure that the power in theory of the adversary in
(i) is overcome practically, by a reasonable number of keys determined in (ii). These conditions can be
met by limiting the volume/amount of m in the vial and banking on the fact that with each incorrect
attempt of the adversary the absolute amount of m is gradually consumed to the point that despite all
technical prowess of the adversary, the concentration/amount of m is rendered way below the required
threshold of sensitivity making the measure of m impossible.

Keys in the current model are mAbs which are famous for exquisite specificity to bind and react with
their corresponding header. Thus, in theory, each attempt of the adversary using an incorrect key should
leave the bona fide m untouched. Practically, there are always non-specific losses in every attempt to
pull-down the correct m when using the wrong key, however our model does not rely on the marginal
losses due to technical processing of the sample. Rather, all decoy peptides are associated with a collection
of different headers recognized by different mAbs or keys. In addition, the bona fide peptide-m displays the
correct header, plus a collection of the alternative headers of the decoys. The correct header is associated
with the genuine peptide-m exclusively, however, peptide-m shares multiple additional headers of the
decoys. Thus, every attempt to pull-down the correct peptide-m using an incorrect key will pull down the
peptide-m along with a diversity of decoys. Due to the similarity of composition and size of the decoys
and the peptide-m, MS sequencing generates a heap of incomprehensible fragments so complex making
deciphering of m impossible. Also, due to the destructive sequencing using MC, the vial will be consumed
after a limited number of attempts, establishing what we call the bounded query feature of peptide-based
data storage.

27

A.6 Experimental Errors

Two classes of errors can complicate the model we propose: the first is what we call completeness errors.
That is, despite proficiency of the honest user and the pre-knowledge of the correct key, processing the
vial is technically faulty and the sequence of peptide-m is not generated. The corrective of this error is to
simple send multiple vials to be processed multiple times to eventually produce a robust and coherent
sequence. The second type of error is that the adversary succeeds in retrieving information about the
secret message m despite using an incorrect mAb. This could be due to the use of some (incorrect)
mADb that could be of physical features close to the correct mAb. Coupled with any inaccuracies in the
biological procedures, this may lead to retrieving m with some (non-negligible) probability. We amplify
the soundness error as part of our cryptographic constructions as will be shown later.

B Vector-based Model and Construction of Consumable Tokens

This section introduces a mathematical abstraction of protein-based data storage. Such an abstraction is
needed to formally prove how the biological construction realizes our formal notion (i.e., ideal functionality)
of consumable tokens presented in Section 4.1.

B.1 Model

Our mathematical abstraction involve modeling the secret headers, the protein vial encoding the secret
message(s), and all procedures needed to store and retrieve data from a protein vial. We use vectors
of protein quantities to capture protein vials, hence the name vector-based model, and so all biological
procedures are pictured as vector operations.

Token payloads. A token can be used to store a vector of v secret messages m for an arbitrary
v € N*,17 such that each m; € M and M is the space of all messages. Inside a token, the i*” message (or
payload) will be encoded and synthesized as a protein, which we call a target protein protein-m,. Some
applications may require storing only one payload per token, while others may require a large number of
payloads to be stored.

It was discussed in Appendix A that our biology-based construction supports short payloads. To store
a long message, we fragment it into multiple payloads and store each one in a different vial (full details
can be found in Appendix B.2 as part of our security proof). Thus, storing a message in a token may
correspond to a construction of several vials depending on the message length. For simplicity, in the
discussion below we assume messages of short length (so a token corresponds to one vial). Even later, and
as mentioned before, when we say store a message in a token this implicitly involves the fragmentation
procedure (if needed) and creating several vials instead of one.

Token keys. A token key is the digital description of the antigen header attached to protein-m,. Thus,
a token may have a vector of v keys denoted at h such that each h; € H, where H is the space of all
headers.

Protein-based consumable tokens. A protein-based consumable token is a vial containing decoy
proteins mixed with the target proteins protein-m; for i € {0,...,v—1}. All proteins in a vial are of equal
amounts, which is measured in milligrams (mg), and all have the same physical properties.

We model a protein vial as a tuple (y,m, h) consisting of a polymer amount vector y that represents
the amounts of all proteins in the vial, vector of payloads m, and a vector of token keys h. The length of
y is the number of headers used to construct the sample, which is || in our case.'® We picture y indexed
by the headers in #, so for an index k' € H, the value y[h'] is the amount of the protein attached to h'.

17 As mentioned before, although v is an arbitrary integer, it may have an upper bound imposed by the physical
construction.

18 Although the size of this space could be exponential, in this work we do not focus on the computational costs
of the model. In practice, the physical procedures will choose a subset of the headers at random when constructing
a token. So, an adversary still needs to guess the secret header from the full space H. Any additional errors due to
this modeling difference will be counted for in the completeness and soundness errors in our model.

28

Token creation. Creating a vial storing m is abstracted by setting the component values of the polymer
amount vector y. These values must allow an honest recipient to retrieve one of the secret messages. In
other words, to retrieve m;, pulling down the target protein protein-m,—using the antibodies that match
the secret header h;—must return a protein amount sufficient for the sequencing machinery MS to detect
the signal of the target protein and decode m,.

The amount of a protein in a vial depends on the binding strength of the matching antibodies and the
thresholds of MS. For the antibodies binding strength we have two parameters: « for the strength of the
specific parts of the antibodies, and o’ for the strength of non-specific parts of these antibodies, where
a > . These are multiplicative factors that determine the fraction of a protein amount to pulled down
when applying antibodies. For the MS thresholds, we have ¢ns and 7. representing the two conditions
that a protein sample must satisfy so MS will be able to detect a protein signal. In particular, a sample
for target protein protein-m; must have at least gms mg of this protein, and second, the relative amount
of this protein with respect to all proteins within the sample must be larger than 7.

The values of these factors may vary based on the quality of the raised antibodies and the actual MS
machine. To simplify our model, we fix them to their lower bounds as realized by biology, and thus, all
proteins in a vial will have equal amounts.**

As mentioned previously, in this work we restrict ourselves to a scheme that allows reading only one
message m;. This means that the amount of protein-m; will drop below the required thresholds after
the first pull down. Let ¢ be the initial amount of any protein in the vial. The conditions above can be
translated as follows.

A pull down must return a protein amount above the threshold gms (where aq is the pulled down
amount of the target protein when using the matching antibodies). So:

Qms
> 1
g2 (1)
A pull down must yield a pure enough protein sample. Note that (|| — 1)a’q is the amount pulled
from the proteins in a vial, other than the target protein, using the non-specific parts of the antibodies
matching the header attached to the target protein. Thus, by computing the relative amount of the target
protein and the rest of the proteins in the pulled-down sample we obtain:

m > Te (2)

The condition above controls the choice of the parameters, and we assume it holds for our physical
construction and model.

The GenToken routine is used to create a token. It is parameterized by H, «, and gms, and takes as
inputs the token keys h and the secret messages m.

GenToken (71, o gme) (h,m){
Vh' € H do:
y[h] < e
return (y,h, m)

}

Pulling-down proteins. Retrieving a message m; stored in a vial starts by pulling down the target
protein protein-m, using the antibodies matching the header h;. Since knowing the header implies knowing
the antibodies, we abstract the pull-down procedure as applying a header to the token (y,m,h). This
procedure produces a pulled-down tuple (z,m, h) and a new state for the original token (y’, m,h), such
that ||z]|; < |ly|1 and y' =y — z.

The protein amounts in z are controlled by the applied header i’. That is, the protein in y with a
header that matches h’ will have the largest amount in z, since this will be recognized by the specific
parts of the antibodies. The rest of the proteins, on the other hand, will have much smaller amounts,
since their headers will be recognized by the non-specific parts of these antibodies.

¥ Quantifying the exact values of these factors or their lower bounds is a hard task in practice. As part of our

ongoing work on the biology construction paper, we will estimate these factors based on the biological experiments
conducted in that work.

29

As discussed in Appendix A, some headers could be (physically) very close to h;, and thus, applying
any of these headers may allow retrieving m;. This falls under what we call soundness error, where due
to this closeness relation, an adversary who applies a header 4’ # h; may obtain m; with probability at
maximum 7 (v is an upper bound for the soundness error) based on how close A’ is to h;. We model this
closeness relation using a header affinity database D indexed with all headers in H. The row for header h
contains all its close headers, each of which is tied to some soundness error value 7' < « where the larger
~" the closer the header. The interface affinity can be used to determine if two headers are close and the
value of 7/. Based on that, for a header A’ that close to h;, the target protein protein-m; will be pulled
down with factor « (instead of o) with probability 7.

The above is captured using a PullDown routine parameterized by H, «, o', D, and security parameter
K.

PullDown (3 .07, p,x) (P, (y, m, h)){
Vh € ‘H do:
(close,~") = affinity(h, ', D)
ifh="n:
y'[h] « (1 = a)y[h]
Else if close = 1 and (r {0,1}"%) <~
y'[h] (1 = a)y[h]

Else:
y/[h] (1= a)y[h]
zZ=y—-Yy

return (z,m, h), (y’,m, h)

The routine above makes a simplifying assumption about the behavior of the pull-down procedure. In
particular, both z and y’ may contain lower amounts than what we model. This is due to the fact that
some quantities could be lost by, e.g., being stuck on the lab equipment. For simplicity, we do not model
this additive loss, which makes our model stronger in the sense that an adversary obtains more residual
material after each pull down he performs. Also, in practice, the initial amount of proteins will be larger
than the lower bound we require in our model to account for such losses.

Sequencing proteins. After performing a pull-down, the next step is to sequence (z, m, h) in order to
obtain m; that the recipient wants. As mentioned before, sequencing is done by feeding the pulled-down
proteins to the sequencing machinery MS. In order to retrieve m;, z must contain a sufficient amount
of protein-m; with high purity. We model the sufficient amount by requiring z[h;] > gms, and we model
purity by requiring % > 7.

Recall that an adversary may use an advanced, highly accurate, MS that detects proteins at lower
signal thresholds than those for an honest recipient. This makes the amount of the target protein sufficient
for more than one retrieval operation. To model this aspect, we introduce adversarial threshold values,
denoted as ¢, and 7, such that ¢/, < gms and 75 < 7.

We define a Sequence routine to model the behavior of the sequencing machinery. This sequence takes

as input the pulled-down tuple (z, m,h), and returns either a message m; or 1 depending on whether
the MS thresholds are satisfied.

Sequenceq ;) (z, m, h){
for:€0,...,v—1 do:

. i Z[h,}
if z[h;] > q and Mol 27
return m;

return L

}

Recall that the sequence operation destroys all proteins in z. This makes (y, m,h) sufficient for a
limited number of data retrieval queries (one for the honest party and n for the adversary). We formally
analyze that as part of the security proof of the vector-based construction of consumable tokens that we
introduce next.

30

Protocol 5 (A Vector-based Construction of Consumable Tokens)

Protocol 5 is parameterized by a security parameter r, the header space H, the message space M, the
parameters (qms, Tc, @, &’) defined above, and the header affinity database D.

Encodeyec(h, m, v): Given a vector of v messages m € M" and a vector of v headers h € H", do the following;:

1. (y,m,h) < GenToken s q,¢me) (h, m)
2. Output (y,m,h)

Decodeyec(h', (y, m, h)): Given a header h’ € H and a consumable token (y, m,h), do the following:

1. ((z,m,h), (y',m, h)) < PullDown(3;,a,a’,p,x) (R, (y,m, h))
2. out < Sequence(, . (z,m,h)
3. Output out

Fig. 14. A vector-based construction of consumable tokens.

B.2 Vector-Based Construction of Consumable Tokens

We use our vector-based model to build a construction that realizes the ideal functionality of consumable
tokens For. As mentioned before, this is the same as the physical construction introduced in Section 4.2,
but uses the mathematical terms we introduced in the previous section. The construction is described in
Figure 14.

Theorem 3 states that Protocol 5 securely realizes For. The security proof involves proving (1) the
bounded query feature, i.e., an adversary can perform a finite number of decode queries n, (2) that
fragmentation allows storing a message m of any length securely using several vials, and (3) that there is
a simulator who can simulate a view for the adversary in the ideal world, by interacting with Fep, such
that this view is indistinguishable from what the adversary observes in the real world.

’ —1
Theorem 3. Forn < %, the vector-based construction in Protocol 5 securely realizes For.
Proof. We start with proving that an adversary A can perform a finite number of decode queries using a
consumable token.

Lemma 2. For allm € MY, allh € H", where v € N*, all tuples (y, m,h) created by GenTokeny o 4.,
with parameters a, ', qms, . as defined before, and an adversary A with sequencing thresholds q,, and

108 (G nlims)

oa(1=ah such that all j** Decode queries, for j > n+1,

Ts defined before, there exists an integer n <
that A makes will output L with probability 1.

Proof. This follows by the specifications of the PullDown procedure. Recall that the only way to retrieve
any of the stored messages is through a PullDown followed by a Sequence procedure. Each PullDown
invocation over (y,m,h) reduces the amount of each protein in y by at least a factor of o/. That is, the
§" pull-down produces a residual amount of any protein-m; as y;[h;] < (1 — o)y;—_1[h;]. Given that the
initial amount of each protein component in y is 2™ this amount drops below g after n pull-down
operations when (1 — o)™ < ¢/, which produces:

10g(Gmslims)
; 3)
log(1 — o)
This applies for any protein component in y including the target proteins protein-m, for i € {0,...,v—1}.

Given that the pulled-down amount will be destructed when invoking Sequence, and that proteins are
uncolonable, any protein component in y will be consumed after A performs (at maximum) n queries,
which completes the proof. O

31

Next we prove that for any message m € M, we can construct a consumable token to encode it. If m
is longer that what is allowed by biology, where the allowed length is denoted as f,., we fragment it and
store each fragment in a separate vial.2’

Lemma 3. For an integer fon. € NT and a given message m € M, there exists a consumable token
construction that encodes m using t € N* wvials.

Proof. We have two cases: |m| < lene, and |m| > lepe. When |m| < e, this is the straightforward case
where one vial is enough to encode m. When |m| > e, we fragment m into my || - - - || m; such that each
|mj| = Lene (it could be the case that |[my| < fepe) and t = Uﬂ—‘ Each m; will be encoded in a separate

vial using a randomly selected header h;. Thus, a consumable token in this case is a set of ¢ vials in which
the message m is encoded under the token key h = hy || --- || hs.

The security of this construction relies on the security of the single-vial token instance. That is, for
the single-vial token instance, the probability that an adversary A retrieves a message m stored in the
token is:

o i ()

In other words, either A gets lucky and guesses the correct header h using the n queries he can
perform, or he does not guess the right header but tries a close enough one that allows him to obtain m
with probability < ~. If A can retrieve any message fragment with probability better than that, then we
can use A to construct an adversary A’ to attack the single-vial token instance. Thus, this multi-vial
token scheme is a secure consumable token for long messages, which completes the proof. a

Lastly, we describe a simulator S that resides in the ideal world and interacting with For. We show
that S will generate a view such that the environment cannot distinguish from the real world view. For
simplicity, we consider A as a proxy for the environment and focus on its view.

The simulator. We have two cases based on which party is corrupted:

— Token creator Py is corrupted: This is a simple case. S will receive the message and header vectors m
and h (each of which contains v components) that A sends when invoking Encode,... S generates
a token ID tid and then sends the command (Corrupt-encode, tid, P, P>, h, m,v) to For, where in
For's terminology h is k. For will inform P, (if A allows that) that a token has been created. An
honest P, sends a decode query (Decode, tid, k') where in Protocol 5’s terminology k' is h'. S will
forward that to For and outputs whatever For outputs. It is easy to see that the ideal world view is
indistinguishable from the real world view.

— Token recipient Py is corrupted: This is also simple. S will receive a retrieval query Decode,e. from
A to operate on the token using the header h’. S will send the command (Corrupt-decode, tid, h’) to
For and outputs to A whatever For outputs. Based on the biological construction of consumable
tokens, applying a header h’ # h for all ¢ € [v] will cause MS to output L (the pulled-down protein
sample is a random subset of the proteins in a token). MS will output m; only when any of h; is
applied and the threshold of MS are satisfied (this happens in the first n pull-down and sequence
invocations). Fo7 has a similar behavior. Furthermore, after the n'* query, For will always output
1. By Lemma 2, Decode,.. will also output L after the n” decode query. By Lemma 3, this applies
also to the multi-vial token construction (since each vial will have the same behavior). Thus, the ideal
world view is indistinguishable from the real world one.

This completes the proof of Theorem 3. O

20Gimilar analogy applies to a vector of secret messages. This vector will be decomposed into sub-vectors of
message fragments, i.e., the first sub-vector will contain the first fragment of each message in m, and so on. Then,
each sub-vector will be stored in a separate vial.

32

C Proofs

C.1 Proof of Theorem 1

Theorem 4 (Theorem 1 restated). For 0 <~ <1, if each of fi1,..., fu is as defined in Section 5.2,
then Protocol 2 securely realizes for the point function family T = {I .|p € P, m € M} in the For-hybrid
model in the presence of any adversary A € A, with ng =n and large enough u.

Proof. We start with proving that our construction is efficient in the sense of Definition 6.1, then we show
how Protocol 2 securely realizes in the Fop-hybrid model.

Efficiency. Protocol 2 consists of regular computational operations, all of which takes polynomial time,
and interactions with For. We need to show that For executes all commands sent to it efficiently. This
clearly depends on the concrete construction used to realize For, which in our case, is the physical
construction described in Section 4.2. All procedures performed within any of the u Encode and Decode
queries that Protocol 2 issues, can be conducted in labs with appropriate equipment within technologically
realizable time steps. The number of these steps is polynomial in the sense that computationally-bounded
parties are able to receive the output, whether it is m or L, within polynomial time (in the security
parameter k).

Next, we define an ideal model adversary S that interacts with the environment and simulates a copy
of the real-life adversary A € A. For simplicity, we let A be a proxy for the environment, and hence, the
task of S is to simulate a view for A in the ideal world (when interacting with) that is computationally
indistinguishable from the real world view (when executing Protocol 2), where both are in the Feop-hybrid
model.

We analyze four cases; corrupted P; (A will be controlling the obfuscator), corrupted Py (A will
be controlling the evaluator), corrupted P; and P5 (A will be controlling both parties), and honest Py
and P, (A will not be controlling any of them). Furthermore, we present our analysis for the case of a
static adversary class 4. That is, the environment will choose which party to corrupt at the onset of the
protocol. In Remark 5, we show how this analysis can be extended to deal with adaptive adversaries who
can corrupt parties at any point of time during the protocol execution.

Case 1 - Corrupted P;. To obfuscate a point function, a corrupted P; will submit Corrupt-encode
queries to For (see step 3(d), under Obf in Protocol 2). Based on the number and content of these
queries, any of the following cases may occur: Submitting invalid or fewer than u Corrupt-encode queries,
exactly u queries, or more than u queries. We show how to handle each of these cases separately.

1.a Invalid or fewer than u queries: A, through the corrupted P;, may not submit any Corrupt-encode
query, or submit fewer than u queries (recall that u tokens need to be created when obfuscating any
function I,), or even submit invalid ones (e.g., invalid format). All these cases represent an invalid
obfuscation request. Thus, S will not send anything and no obfuscation state will be created. Later on, if
P; requests an evaluation over some password, will do nothing. This is equivalent to what happens in
the real world, P, may not receive any tokens, or receive fewer than u tokens. In both cases, P, cannot
evaluate the obfuscated I ..

1.b Exactly u queries: Here, P; submits u valid Corrupt-encode queries to For, each of which contains
some message share m;, some token key k;, and some randomness ;. S uses this information to generate
a Corrupt-obfuscate query for as follows. Recall that § is simulating Feor locally, as well as the random
oracles representing the functions f1,..., f,,. Thus, it gets to see the full content of all queries that A
submits to For and each f;. This allows S to easily define the point function I, ,,, (if any) submitted by A.
In detail, S records the password and random string that A sends to each f;, which we denote as (p/,),
along with the key k' that S returned to A. Later on, S can search this record to find the password p that
corresponds to the keys encapsulated in the Corrupt-encode queries. It also can compute m using the shares
found in these queries as m = @} ;m;. At the end, S submits the query (Corrupt-obfuscate, sid, Py, Ps, I)
to , and it creates a local state recording the token instances information including their tid, k;, r;, and
my;.
Two edge cases may occur here that S has to check:

33

— A may not submit a well-defined point function I, ,, € Z, meaning that A may not use keys generated
properly using the same password. This cane be verified by checking the record that S maintains
for each f;. If this is the case, then the obfuscation request is considered for circuit C = 1 and S
submits the query (Corrupt-obfuscate, sid, P, P>, C') to . This is equivalent to what happens in the
real world, an invalid point function cannot be obfuscated, so we have C' = L.

— A may not permit transferring all u tokens to P despite submitting valid u Corrupt-encode queries.
Recall that For asks the permission of A to send the tokens to P,. Hence, S can track the number
of tokens that were allowed to be sent. If at least one token is not sent, then no obfuscation state will
be created. This is also equivalent to what happens in the real world, if the adversary does not allow
transferring all tokens, then P, does not have the obfuscated function which require w token instances.

For evaluating the obfuscated function, honest P> will submit the command (Evaluate,sid, z) to . P
will receive nothing if no obfuscation state has been created yet, L if the obfuscated circuit C'= L, or m
if an obfuscation state for C' # L and x is the valid point (otherwise, it will obtain).

It is easy to see that the adversary view is identical to his view in the ideal world.

1.c More than u queries: A corrupted P; may submit more than u Corrupt-encode queries and A may
allow sending more than u tokens to P». Recall that For creates a token and also transfers it to Py (if A
allows that) as part of the Corrupt-encode query implementation. Furthermore, recall that P», according
to Protocol 2, will wait only for the first u tokens and use them to evaluate the obfuscated function, i.e.,
it will ignore the rest of the tokens. Thus, & will use the first (correctly-formatted) u Corrupt-encode
queries to simulate the view for A in a similar way as discussed above.

Case 2 - Corrupted P,. Honest P; submits (Obfuscate,sid, Pi, P, I,) to , where S does not know
the function I, ,,. If A does not allow sending the obfuscated function to P>, then will not create any
obfuscation state, and all Evaluate queries will output nothing. Thus, S, who is simulating Fe7 will not
notify P, about any token instances creation. This is equivalent to what happens in the real world, when
A does not allow sending the obfuscated function, P, will not receive any tokens.

On the other hand, if A allows sending the obfuscated function to P, then S will notify P that u
tokens have been created by P;. Recall that through the Corrupt-decode interface, For permits corrupted
P, (or A) to query each token n times. In total, A can submit nu queries. Any incorrectly-formatted
query (one that does not follow the correct format or does not provide the required inputs) will be ignored,
and hence, will not be counted. In order to simulate the protocol view for A, S needs to reply to each
Corrupt-decode in a way that accounts for the possibility that A might be able to recover m. S needs to
extract the passwords (if any) that correspond to the Corrupt-decode queries that A submits, and then
use them to generate up to n, Evaluate commands for and see if any of them will output m (we show
later in Lemma 4 that n, = n).

In order to do so, S will prepare a local state consisting of dummy tokens generated as follows:

— & chooses a password p’ € P at random,?! some random message shares m/,...,m/,, and some
random strings r1,...,7y_1.
— S maps p’ to a set of keys using f1, ..., f, and the random strings r1,...,7r,_1 as done in Protocol 2.

— & stores this information in an array T of size u representing the u token instances.

S will use the array T to reply to A’s Corrupt-decode queries. To simplify the presentation, we discuss
the simple case in which A starts with querying the first token. Then, we show how the simulation extends
to any arbitrary order of Corrupt-decode queries.

2.a Simple case. The simulation for this case proceeds as follows:

— A submits the j** query (Corrupt-decode, tid, " 1) for the first token.

— S extracts the password p; that corresponds to the input key (if any) by searching the random oracle
record as before, i.e., set p}; = p’ such that fi(p') =k ;.

— If no password is found in the oracle records, then S leaves the token array T as is.

— Else, S submits the command (Corrupt-evaluate, sid, p’;) to :

21Gimilar to |21], we assume for convenience that the password space P is super-polynomial in size. In particular,
p’ will be different from all passwords input to the protocol with all but negligible probability.

34

e If it receives m back, this means that the password p; is correct. S then replaces the dummy
message share m,, for the last token entry in T" with one that allows constructing m. That is, it
sets m, =m @;‘:_11 m}. S also replaces all dummy token keys in 7" with correct ones generated
using the correct password p; (combined with the same random strings rq,...,7,—1 that S used
when constructing T).

e If returns L (meaning that p} is incorrect), S leaves the token array T as is.

— S uses T to reply to any Corrupt-decode query as described in the definition of Fer (if A inputs a
valid key, reply with m;, else if it is a close key based on the affinity database D, then return m; with
probability 4’. Otherwise, reply with).

Accordingly, if A does not know (or successfully guess) the correct password, S will reply with dummy
message shares. By Lemma 5, the probability that A, who does not know the dummy password used by
S, retrieves all dummy shares of m’ (and in this case the environment will be able to distinguish the real
world from the ideal world) is negligible for large enough u. On the other hand, if it happens that A knows
(or successfully guessed) the correct password, A will retrieve the message m successfully as in the real
world since T" will contain the correct information that corresponds to I, ;. So, the output is the same in
both worlds, and the distribution of the dummy info in 7" is the same as the distribution of the token info
in the real world. Thus, the view of the environment (or A) in the ideal world is indistinguishable from
the one in real world.

2.b General case. If A does not start with the first token, S uses T to respond to Corrupt-decode using
the same technique as above. Although A can start querying any token in any order and skip the first
token, the probability it hits the right key of any of these tokens is negligible even if A happened to know
the correct password. This is because of the chaining construction. That is, generating the i* token key
for i > 1 requires not only the password, but also the randomness stored in all previous tokens (where
guessing this randomness succeeds with negligible probability). Also, and as will be shown by Lemma 5,
the probability that A obtains all shares of m without guessing the password correctly using the first
token is negligible for large enough u. Thus, it is better for A to start with the first token.
Nonetheless, assume A does not want to start with the first token. S will handle this case follows:

— For an input key k; ; from A, S searches the random oracle f; record to check if there is a password
p} that corresponds to this key.
— If such a record exists, and if outputs m for p;, then S updates T as follows:

e S repeats the same process as in the previous case to update the keys in 7.

e To update the message shares, S will choose one of the tokens that its share was not retrieved
by A. In other words, S picks a token i that A did not succeed in retrieving its share m/ and
computes a new share value as m; = m @ m; ®j_, m,. By Lemma 5, the probability that A
retrieves all shares of m is negligible for large enough u. Thus, with overwhelming probability &
will find at least one token to update its share.

— &S continues replying to all Corrupt-decode queries using the array T'. If A exceeds n queries for any
token, S will reply with L for all future Corrupt-decode queries over that token.

The indistinguishability argument for this case follows as in the simple case discussed above.

Case 3 - Corrupted P, and P,. This case is easy to handle. Since S is simulating Fo7 and each
fi locally, it gets to see the content of all queries submitted by both P, and P», and can respond to
all Corrupt-decode queries submitted by P,. As noted, S is not using any dummy information to reply
to any of the queries; all are taken from P;’s queries. Thus, the ideal world view generated by S is
indistinguishable from the real world one.

Case 4 - Honest P, and P,. Here recall that if both parties are honest all what A sees is the request
to deliver the obfuscated circuit to Ps. Nothing about the content of any of the Obfuscate and Evaluate
commands, nor ’s response, will be revealed to A. Thus, the task of S is just to simulate this delivery
request. When P; submits the command (Obfuscate, sid, Py, P», I 1), S simulates submitting the delivery
of u tokens by asking A’s permission to send these tokens to P», and then notifying P, about them if A
agrees. Thus, the ideal world view generated by S is indistinguishable from the real world one.

35

It remains to show that Protocol 2 does not amplify the number of queries A obtains, meaning that
ng = n, and that, when u is configured properly, the soundness error of Protocol 2 is negligible. These are
shown in Lemmas 4 and 5 below.

Lemma 4. Given the parameters listed in Theorem 1, Protocol 2 has ng = n.

Proof. Recall that the leftover attack under the construction outlined by Protocol 2 succeeds with
negligible probability. Also, recall that operating on any of the u token instances does not provide A with
any additional information to enhance its chances in recovering the share from any given token. Since
A can perform up to n Corrupt-decode queries to retrieve any share, and that all shares are needed to
recover m, this is equivalent to having n Corrupt-evaluate queries in total to retrieve m. a

Lemma 5. Given the parameters listed in Theorem 1, Protocol 2 has negligible soundness error for large
enough u.

Proof. For simplicity, the proof considers uniform password distribution (Remark 4 shows how to
generalize for arbitrary password distributions). Also, we let each function f; have an output space of size
57| = [P|.22

Recall that with a single token, the probability that A obtains m without knowing the correct password
is I%I +(1- %)’y, where 7 is non-negligible. Our goal is to show that with chaining construction, this
probability can be amplified % + negl(x) for a security parameter k. We now proceed to prove that.

An adversary A will be given u tokens each stores a message share m;, concatenated with some random
string, under a key k; as described in Protocol 2. For the case of u = 1, and as mentioned previously, A
will obtain m with the following probability:

When u > 1, A will submit decode queries each of which containing a token key guess. A has to
retrieve each share m; for ¢ € [u]. The chaining construction affects the success probability of A since
knowing the subspace of keys that corresponds to the password space for the j** token requires all random
strings stored in previous tokens for ¢ < j. The success probability of A is the probability of recovering
the message m, which can be expressed as follows (where ct; is the token storing m;):

Pr[m] = Pr [ﬁ Alet;) = mi]

i=1

To simplify the discussion, we refer to the above as Pr[m] = Pr[my, ..., m,], where knowing m; implies
knowing r; since they are stored together. Note that composing multiple tokens together will not give A
any extra advantage. This is due to the following. First, the keys used to generate the tokens are chosen
independently at random. Second, by the definition of the adversary class A and the key affinity database,
all what A can do is to search the database for keys close to some key of his choice. Such information will
not be helpful since keys are chosen at random. Thus, it is just like having A operating on each token
separately (in any order he wishes), and each key guess A tries has an independent success probability.

For u = 1, we have:

Pr[m] = Pr[m,] = % + (1 - %)7

For u = 2, we have Pr[m] = Pr[m;y, ms], which can be computed as: 23

n n n n
P - QA I (R
rma, ma] |7>|”< |7>|><|7>”< P|>)
2
n n n n
7] |7>|(P &

That is, guessing ki correctly (which happens with probability %) allows retrieving both shares
with probability 1 (k; allows recovering m; and the randomness 1, as well as deducing the password

22This can be extended to cases where the key space for tokens i > 1 covers K, i.e., |S”| = |K|. This will reduce
the number of token instances u needed to satisfy a certain soundness error bound.

Z3The exact probability of guessing the correct password for the i*® token should be but for a large

(ARG
password space |P| — (i — 1)n = |P|.

36

p,2* which suffice to compute ko and retrieve my). If all guesses of k; were incorrect (which happens
with probability 1 — I%), then the probability of obtaining m; is 7, and the probability of obtaining ms
depends on whether ks is guessed correctly or not.

For w = 3, we have Pr[m] = Pr[my, mg, ms], which can be computed as:

primman) = g+) (=2 () (g 220 - 1))
=) (e m)e (o) 7)

2 3
n n n n n n
= =+ = 1—)v+<1—> 72+(1—> 43
Pl [P (|P| Id |P| P
This is done by extending the analogy of computing Pr[my,ms] described above to three shares

while observing that guessing ko correctly (and with the knowledge of r1) allows deducing p, and hence,
computing k3 and obtaining mg successfully.

Continuing in this manner allows deriving a formula to compute Pr[m] = Pr[my, ..., m,] as follows:
n n\" n n\’
Pr[ml,mg,...,mu]=+(1—> A — (1—) 7t (4)
P P 2\

The last term has an upper bound of % (1 — I%\)% which for large password space will be very small
since % will be very small.?> The second term can be made negligible by setting u to be large enough.
This makes Pr[m] = 1+ negl(x), which completes the proof. O

This completes the proof of Theorem 1. O

Remark 4 (On arbitrary password distribution). The above analysis also works for arbitrary password
distributions. It suffices to replace % with the probability of guessing the correct password when

performing n queries based on the underlying password distribution chosen in the protocol.

Remark 5 (On adaptive adversaries). The simulation strategy described above can be used to show
that Protocol 2 is secure against adaptive adversaries. Note that P; does not receive any output. Thus,
corrupting this party later in the protocol will not impact the simulation. If anything, it makes the
simulation easier since corrupting P; will reveal its state which contains I, ,,. Similarly, corrupting P,
after performing the first (honest) Evaluate query has no impact. At that time, the tokens are consumed
and all future Corrupt-decode queries made by A will output L. Corrupting P, after the protocol starts
but before performing any Evaluate query is the same as Case 2 - Corrupted P, discussed before, with
the difference that S gets additional useful information, i.e., the password p, which is part of P’s state.

C.2 Security Arguments for Intermediate (1,n)-time Program Constructions

VBB-based construction of (1, n)-time programs. This is for the first intermediary construction
for (1,n)-time programs shown in Section 6.2. We show a sketch of the simulator S in the Fer-hybrid
model, where we let the adversary A be a proxy for the environment. We have two cases:

— Py is corrupted: Here adversary A is controlling party P;. The simplest case is that P; sends a correct
program Prog to , which & can see, and thus can evaluate on its own, in addition to valid token
encode queries that S will implement. It is easy to simulate as S can send an obfuscated version of
the program to P,, and can reply to the decode queries coming from P, without even interacting with
. Other cases may involve P;’s sending an invalid program Prog or invalid/incomplete token encoding
query (all these cases are similar to these appearing in the security proof of the bounded-query point
function obfuscation and discussed in details in Appendix C.1). All these are equivalent to obfuscating
an invalid function, and thus it always outputs L. Replying to the token decode queries can be also
easily handled since S knows the full information about the token from the encode queries that A
submitted.

24With k1, A can search the password space and find the password p that satisfies k1 = f1(p).
Z5Recall when we set |S”| = |K|, this term will become T7» Which is negligible.

37

— P, is corrupted: Here adversary A is controlling party P,, and hence, it gets to query the program
up to n times over inputs x1,...,%,. The simulator implements For locally and it prepares an
obfuscation of program Prog with only the trapdoor path (since S does not know the program that
an honest P; has submitted to) with some decryption key sk that S chooses, and a mapping table
Tab; that maps the message space to the program input space. This version is denoted as bP’, which
S sends it to A.

When A queries the token ct over some key k', S finds which x corresponds to k' using Tabs (that is,
it searches for x such that Tabg[z] = k’). Then, it queries over = and gets the output back denoted as
y. After that, S retrieves mg = Tab;[z], encrypts y as m; = Encrypt(sk,y) and sends m = mq || m
to A. When A queries bP’ over m, it obtains the correct output v.

If the key k&’ does not correspond to a valid input x, then S replies with m = myq || ¢*ou¢, for some
random mg such that mgy & Tab;. This will cause the output of bP’ to be L.

It is easy to see that the view of A in the ideal world is indistinguishable from the real world. This is
mainly due to the use of VBB obfuscation, which does not allow A to distinguish a real obfuscation of f
from a simulated one that contains only the trapdoor path.

VBB-based construction of (1,n)-time programs with linear error correcting codes. This
is for the second intermediary construction for (1,n)-time programs shown in Section 6.2, in which we
extend the function domain using linear codes. We show a sketch for the simulator in the Fop-hybrid
model. We have two cases:

— Py is corrupted: This is similar to the case seen in the previous construction.

— P is corrupted: At a high level, S does not get to see the program that P; want to obfuscate. S
prepares an obfuscation of Prog with the trapdoor path only, and for that it generates both the
decryption key sk and the PRG seed r. S will receive Decode queries from the adversary A and will
reply with message payloads generated using the PRG as described before.

However, in order to obtain the program output on a given input from , S needs to find out the
codeword (if any) that A wants. A may query the tokens out of order. Thus, S needs to keep track of
when all w tokens are queried and see if a valid codeword exists in the set of queries so far. Worst
case scenario, each time S needs to check n“~! combinations of queries to find a valid codeword (if
any), which is a polynomial number (n is a small constant, and w = |K]| is of a polynomial value).
If a valid codeword exists, S finds out the corresponding x, queries to obtain the output over this
x, and embeds an encryption of the output inside the reply to this last query (i.e., inside the string
¢zl +£out) appended to substring of the PRG output). In particular, S will replace the first || + £ous
bits with x concatenated with the output ciphertext.

It could be the case that a query allows forming more than one valid codeword. In this case, S will
have more than one input value x each of which has its own output value. It will query as above and
embed these inputs and their corresponding outputs in the string ¢™(|#[+fout)

As before, it is easy to see that the view of A in the ideal world is indistinguishable from the real
world. This is mainly due to the use of VBB obfuscation, which does not allow A to distinguish a real
obfuscation of f from a simulated one that contains only the trapdoor path.

C.3 Proof of Theorem 2

Theorem 5 (Theorem 2 restated). Assuming sup-exponentially secure iO and one way functions,
the 1O-based construction described above is a (1,n)-time program in the Fop-hybrid model.

Proof. The proof is similar to the proof of the VBB-based construction in the sense that there will be two
cases: corrupted P; and corrupted Ps. The case of corrupted P; is identical to the VBB-based construction.
This is because S gets to see the function submitted by P;, and hence, can prepare an obfuscation program
identical to what A sees in the real world. Since the two programs have equivalent functionality over all
inputs, by the security of iO, A cannot distinguish between the simulated obfuscation and the real world
one.

On the other hand, and similar to before, when P, is corrupted and P; is honest, S hands P, an
obfuscated program that contains only the trapdoor path. The program that underlies the simulated

38

Simulated Program Proggz,sk’r’f

Input: m, x
Description:

Parse m as mo || - - - || mw—_1, and parse each m; as m? || m;
Use G to compute the codeword c¢ that corresponds to x
Check that m corresponds to a valid codeword: Let B = PRG(r), if 3BJ[i, c[i]] # m?, then output |
Set y; = Decrypt(sk, m;) for all 4 € {0,...,w —1}
If Jy; # ¢nUzl+eout) then take the first such y; and do the following:
— Parse y; as ¢ || -+ ||yt
— Parse each y/ as y7° ||y (for j € {0,...,n —1})
— Output y*' for which y?° =z
Else, output L

AR

Fig. 15. The program Prog‘&iz’skmf that S obfuscates for the case of an honest P; and corrupted Ps.

obfuscation (denoted as ProgSim) can be found in Figure 15. This program agrees with the one that A

receives in the real world (denoted as Progreal and can be found in Figure 10 in Section 6) over only the
n inputs that S receives from A. For all other inputs, the simulated program will output L, while the
real world one will output f(x).

The only remaining issue is to show that A cannot distinguish between the simulated and real world
obfuscated programs. Towards this goal, we use similar techniques to these used in the security proof of
authenticated constrained encryption found in [13]. In particular, let My denote the set of n messages that
correspond to the inputs that both the simulated and real world obfuscated programs agree on, and M;
denote the set of the messages corresponding to the rest of the inputs on which these obfuscated programs
differ. We present a series of hybrid experiments Ho, ..., H|az |41, each of which is indistinguishable from
the previous one.

Let u; be the lexicographically 4t element of M;. We define hybrid H ; as follows:

Hybrid H; (For 1 < j < |Mj|): In the 5" hybrid, Prog first checks whether the input m < u;, and if so,
it outputs L. Otherwise, it behaves in an identical way to Prog™®®
world. The hybrid program is described in Figure 16.

that the adversary receives in the real

Thus, Hp corresponds to the real world obfuscated program, and Hjys, |41 corresponds to the ideal
world obfuscated program.

In order to show that Hyo and H|pz |41 are indistinguishable, we need to show that each H; and
H;1 are indistinguishable. We construct a series of intermediate hybrids H;,...,H; s, where H; o is the
same as H; and H; 5 is the same as H; 1. For every ¢t € {0,...,5}, we prove that H;; and H; ;41 are
indistinguishable, which establishes that H; and H;;, are indistinguishable.

Hybrid H,o: This is the same as experiment H;.

Hybrid H; ;: This is the same as experiment H; o, except that we modify Prog as shown in Figure 17.
We move the program parameters to constants for clarity, and we use an injective non-interactive
commitment scheme [13] to compute commitments z;, for i € {0,...,w — 1} as shown in the figure. If
the input message m = w41, then Prog will check whether this m is consistent with the commitment
to the message corresponding to the codeword of ;4. In other words, checking that m corresponds
to a valid codeword when m = w41 has been moved to a later point (beyond its original location in line 3).

Hybrid H; »: This is the same as experiment H; ;, except that the hardwired z; values are now computed
as z; = Commit(0;r}) for some random strings 7} (again, i € {0,...,w —1}).

39

4" Hybrid Program Progg . skt

Input: m, x
Description:

Parse m as mo || - - - || mw—1, and parse each m; as m? || m;
Use G to compute the codeword c¢ that corresponds to x
Check that m corresponds to a valid codeword: Let B = PRG(r), if 3BJi, c[i]] # m{, then output L
Set y; = Decrypt(sk,m;) for all i € {0,...,w —1}
If Jy; # ¢"{=ITout) then take the first such y; and do the following:
— Parse yias g || [y ~!
— Parse each y/ as v/ ||y (for j € {0,...,n —1})
— Output y*' for which y?° =z
Else:
— If m < wj, then output L
— Otherwise, output f(z)

UL

Fig. 16. The program Progg ,, . . ; for hybrid H;.

Program Progg ,, s for Hjn

Input: m, x.
Constants: G, sk, r, uj+1 and its codeword ¢, z; = Commit(0; PRG(r)[i, c’[i]]) for i € {0,...,w — 1}
Description:

1. Parse m as mo || - - - || mw—1, and parse each m; as m? || my.
2. Use G to compute the codeword c that corresponds to z
3. If m # w41, check that m corresponds to a valid codeword: Let B = PRG(r), if 3B[i, c[i]] # m?, then
output L
4. Set y; = Decrypt(sk,m}) for all i € {0,...,w — 1}
5. If:
— m < uj and Vy; = ¢"=IFut) then output L.
— m = u;4+1 and 3Commit(0;my) # z;, then output L.
6. Otherwise, if Jy; # ¢"(=IH¢out) then take the first such y; and do the following:
— Parse s as 40 || -+ || g
— Parse each y/ as y7* ||y (for j € {0,...,n —1})
— Output y{’l for which qu‘,o =z
Else, output f(z)

Fig.17. The program Progg ,, . . ¢ for hybrid Hj 1.
Hybrid H;3: This is the same as experiment H; », except that the hardwired z; is now computed as
z; = Commit(1;r}).

Hybrid H;4: This is the same as experiment H; 3, except that we modify Prog to output L when
m = u;y1 (without checking the commitment). Denote this modified version as Prog’. An equivalent
description of Prog’ is to remove the second bullet in line 5 in Figure 17, and change the first bullet in
that line to be m < ujy1.

Hybrid H; 5: This is the same as experiment H; 4, except that we remove the commitments z;.

40

This completes the description of the hybrid experiments. Now we argue that these hybrids are
indistinguishable.

Indistinguishability of H; o and H; 1. These are indistinguishable by the security of ¢{O. The commit-
ments are for the same strings that the PRG produces for the codeword. Also, moving the test of the valid
codeword of m = wu;41 to line 5, does not change the program behavior; if the codeword is inconisistent,
the output will be | as before. Same for the check of y;, if a y; containing the program output over x
exists, this value will will be output by Prog. Hence, the underlying programs of H; o and H;; have an
equivalent functionality, and by the security of O, an adversary A cannot distinguish between the two
hybrids.

Indistinguishability of H; 1 and H; 2. These are indistinguishable by the security of the PRG (i.e., the
PRG output is indistinguishable from random).

Indistinguishability of H; 2 and H; 3. These are indistinguishable by the hiding property of the com-
mitment scheme.

Indistinguishability of H; 3 and H; 4. These are indistinguishable by the security of ¢O. Since we have
z; = Commit(1; %), then the condition in the third bullet in line 6 will always fail. Thus, the output will
always be L for m = u; 1 in Prog which is identical to the behavior of Prog’. Thus, by the security of
10, an adversary A cannot distinguish between the two hybrids.

Indistinguishability of H; 4 and H; 5. These are indistinguishable by the security of ¢{0. The removal
of the constants z; will not impact functionality since they are not used in either of the programs
underlying both hybrids. Similarly, when the input is u;1, in hybrid H; 4 the output will be L since
the condition in the second bullet in line 5 will fail. In H; 5, the output will be also L because of the
first bullet in line 5 (i.e., if m < ;11 then output L). For the rest of all inputs, both programs behave
in an identical way. Thus, by the security of :O, an adversary A cannot distinguish between the two hybrids.

This completes the proof of Theorem 2. O

Remark 6 (On amplifying the soundness error of For). Recall that in our construction in Section 6, we
assume that For has a negligible soundness error in our constructions (this is instead of the non-negligible
soundness error). Amplifying this error to negligible can be done using conventional approaches; share
each m in m as m = @?zlm]—, and store each share in a separate token instance under an independent
key. Thus, for a vector of messages m, we will have ¢ vectors of message shares, each of which is stored
in a separate token. Since these are independent, and an attacker needs all shares to construct any
message, the soundness error will be reduced to +¢. By setting ¢ to be large enough, this quantity becomes
negligible.

41

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Unclonable Polymer-based Data Storage
	3 Preliminaries
	3.1 Obfuscation
	3.2 Injective Noninteractive Commitments

	4 The Consumable Token Functionality
	4.1 Ideal Functionality Definition
	4.2 A Construction for Consumable Tokens

	5 Bounded-query Point Function Obfuscation
	5.1 Definition
	5.2 Construction
	5.3 Security

	6 (1,n)-time Programs
	6.1 Definition
	6.2 Construction and Security

	References
	A Unclonable Polymer-based Data Storage
	A.1 A Physical Scheme for Protein-based Data Storage
	A.2 ``Cloning" Proteins is a misnomer
	A.3 Sequencing Proteins
	A.4 Adversarial Interaction with a Peptide-based Data Storage
	A.5 Bounded Query
	A.6 Experimental Errors

	B Vector-based Model and Construction of Consumable Tokens
	B.1 Model
	B.2 Vector-Based Construction of Consumable Tokens

	C Proofs
	C.1 Proof of Theorem 1
	C.2 Security Arguments for Intermediate (1,n)-time Program Constructions
	C.3 Proof of Theorem 2

