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Abstract

In this paper, we design unconditionally-secure multi-party computation (MPC) protocols in the
asynchronous communication setting with optimal resilience. Our protocols are secure against a compu-
tationally unbounded malicious adversary characterized by an adversary structure Z , which enumerates
all possible subsets of potentially corrupt parties. We present protocols with both perfect-security, as well
as with statistical-security. While the protocols in the former class achieve all the security properties in
an error-free fashion, the protocols belonging to the latter category achieve all the security properties
except with a negligible error.

Our perfectly-secure protocol incurs an amortized communication of O(|Z|2) bits per multiplica-
tion. This improves upon the protocol of Choudhury and Pappu (INDOCRYPT 2020) with the least
known amortized communication complexity of O(|Z|3) bits per multiplication. On the other hand,
our statistically-secure protocol incurs an amortized communication of O(|Z|) bits per multiplication.
This is the first statistically-secure asynchronous MPC protocol against general adversaries. Previously,
perfectly-secure and statistically-secure MPC with an amortized communication cost of O(|Z|2) and
O(|Z|) bits respectively per multiplication were known only in the relatively simpler synchronous com-
munication setting (Hirt and Tschudi, ASIACRYPT 2013).

1 Introduction

Secure multi-party computation (MPC) [34, 20, 5, 32] is a fundamental problem in secure distributed com-
puting. Consider a set of n mutually-distrusting parties P = {P1, . . . , Pn}, where a subset of parties can be
corrupted by a computationally-unbounded malicious (Byzantine) adversary Adv. Informally, an MPC pro-
tocol allows the parties to securely compute any function f of their private inputs, while ensuring that their
respective inputs remain private. The most popular way of characterizing Adv is through a threshold, by
assuming that it can corrupt any subset of up to t parties. In this setting, MPC with perfect security (where
no error is allowed in the security properties) is achievable if and only if t < n/3 [5]. On the other hand, if
a negligible error is allowed in the security properties, then one can tolerate up to t < n/2 corruptions [32].
Protocols of the latter class are statistically-secure.

Hirt and Maurer [23] generalized the threshold model by introducing the general-adversary model (also
known as the non-threshold setting). In this setting, Adv is characterized by a monotone adversary structure
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Z = {Z1, . . . , Zh} ⊂ 2P , which enumerates all possible subsets of potentially corrupt parties, where Adv
can select any subset of parties Z? for corruption, where Z? ∈ Z . The monotonicity of the adversary
structure here implies that if some Z ∈ Z , then every subset of Z also belongs to Z . Modelling the distrust
in the system through Z allows for more flexibility (compared to the threshold model), especially when P
is not too large. Following the terminology of [23], given P ′ ⊆ P , we say that Z satisfies the Q(k)(P ′,Z)
condition, if the union of any k subsets from Z , does not cover the entire set of parties in P ′. That is, if for
every Zi1 , . . . , Zik ∈ Z , the following condition holds:

P ′ 6⊆ Zi1 ∪ . . . ∪ Zik .

In the general-adversary model, MPC with perfect security is achievable if and only if Z satisfies the
Q(3)(P,Z) condition, while statistical security is achievable if and only if Z satisfies the Q(2)(P,Z) con-
dition [23, 28].

Following the seminal work of [5] all generic perfectly-secure MPC protocols follow the paradigm of
shared circuit-evaluation. In this paradigm, it is assumed that f is abstracted as a publicly-known arithmetic
circuit ckt over some finite field F. The problem of securely computing f then boils down to “securely
evaluating” the circuit ckt. To achieve this goal, the parties jointly and securely evaluate each gate in ckt
in a secret-shared fashion, where each value during the circuit-evaluation remains secret-shared. In more
detail, each party first secret-shares its input for f , with every party holding a share for each input, such that
the shares of the corrupt parties reveal no additional information about the underlying shared values. The
parties then maintain the following gate-invariant for each gate in ckt:

Given the gate-inputs in a secret-shared fashion, the parties get the gate-output in a secret-shared fashion
without revealing any additional information about the gate-inputs and gate-output.

Finally, the function-output (which is secret-shared) is publicly reconstructed. Intuitively, security follows
because the adversary does not learn any additional information beyond the inputs of the corrupt parties and
the function output, since the shares learnt by Adv are independent of the underlying values.

How the above gate-invariant is maintained depends on the type of gate and the type of secret-sharing
used. Typically, the underlying secret-sharing is linear, such as Shamir’s [33] for the case of threshold
adversaries, and replicated secret-sharing [25, 28] for the case of general adversaries.1 Consequently, main-
taining the invariant for linear gates in ckt is “free” (completely non-interactive). However, to maintain the
gate-invariant for non-linear (multiplication) gates, the parties need to interact. Consequently, the commu-
nication complexity (namely, the total number of bits communicated by uncorrupted parties) of any generic
MPC protocol is dominated by the communication complexity of evaluating the multiplication gates in ckt.
Hence, the focus is to improve the amortized communication complexity per multiplication gate. The amor-
tized complexity is derived under the assumption that the circuit is “large enough”, so that the terms that are
independent of the circuit size can be ignored.

In terms of communication efficiency, MPC protocols against general adversaries are inherently less
efficient than those against threshold adversaries, by several orders of magnitude. Protocols against thresh-
old adversaries typically incur an amortized communication of nO(1) bits per multiplication, compared to
|Z|O(1) bits per multiplication required against general adversaries. Since |Z| could be exponentially large
in n, the exact exponent is very important. For instance, as noted in [24], if n = 25, then |Z| is around
one million. Consequently, a protocol with an amortized communication complexity of O(|Z|2) bits per
multiplication is preferred over a protocol with an amortized communication complexity of O(|Z|3) bits.
The most efficient perfectly-secure MPC protocol against general adversaries is due to [24], which incurs

1A secret-sharing scheme is called linear, if the shares are computed as a linear function of the secret and the underlying
randomness used in the scheme.
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an amortized communication of O(|Z|2 · (n5 log |F| + n6) + |Z| · (n7 log |F| + n8)) bits per multiplica-
tion.2 The work of [24] also presents the most efficient statistically-secure MPC protocol, with an amortized
communication of O(|Z| · n5 log |F|) bits per multiplication.

Our Motivation and Results. All the above results hold in the synchronous setting, where the parties are
assumed to be globally synchronized, with strict upper bounds on the message delay. Hence, any “late”
message is attributed to a corrupt sender party. Such strict time-outs are, however, extremely difficult to
maintain in real-world networks like the Internet, which are better modelled by the asynchronous commu-
nication setting [7]. Here, no timing assumptions are made and messages can be arbitrarily (but finitely)
delayed, with every message sent being delivered eventually. Furthermore, messages need not be delivered
in the order in which they were sent. Apart from modelling real-world networks better, asynchronous pro-
tocols have the advantage of running at the “actual speed” of the underlying network. More specifically,
in a synchronous protocol, the participants have to pessimistically set the global message delay, say ∆, to
a large value, to ensure that all the messages sent by the different parties at the beginning of a round are
delivered within time ∆. However, if the actual message delay of the network δ is such that δ << ∆, then
the protocol fails to take advantage of the faster network and its running time will still be proportional to ∆.

Unfortunately, asynchronous protocols are inherently more complex and less efficient by several orders
of magnitude when compared to their synchronous counterparts. This is because, in any asynchronous
protocol, a slow (but uncorrupted) sender party cannot be distinguished from a corrupt sender party who
does not send any message. Consequently, to avoid an endless wait, the parties cannot afford to wait to
receive messages from all the parties, which results in unknowingly ignoring messages from a subset of
potentially honest parties. The resilience (fault-tolerance) of asynchronous MPC (AMPC) protocols is poor
compared to synchronous MPC protocols. For instance, perfectly-secure AMPC against threshold adver-
saries is achievable if and only if t < n/4 [4], while statistically-secure AMPC is achievable if and only if
t < n/3 [6, 1]. Against general adversaries, perfectly-secure and statistically-secure AMPC require Z to
satisfy the Q(4)(P,Z) and Q(3)(P,Z) conditions respectively.

Although more practical when compared to synchronous MPC protocols, AMPC protocols are not very
well-studied [4, 6, 3, 30, 13], especially against general adversaries. To the best of our knowledge, the
most efficient perfectly-secure AMPC protocol against general adversaries is due to [12], which incurs an
amortized communication ofO(|Z|3·(n7 log |F|+n9·(log n+log |Z|))) bits per multiplication. On the other
hand, there exists no statistically-secure AMPC protocol against general adversaries. In [12], it was left as an
open problem to further improve the (amortized) communication complexity of their protocol and to bridge
the efficiency gap between the communication complexity of synchronous and asynchronous MPC protocols
against general adversaries. In this work, we make efforts towards solving this problem by presenting
novel perfectly-secure and statistically-secure AMPC protocols against general adversaries. The amortized
communication complexities of these protocols per multiplication are O(|Z|2 · n7 log |F| + |Z| · n9 log n)
and O(|Z| · n9 log |F|) bits respectively. The amortized efficiency of our protocols are comparable with
the most efficient perfectly-secure and statistically-secure MPC protocols against general adversaries in
the synchronous communication setting [24], especially if we focus on the exponent of |Z|. Our results
compared with relevant existing results are presented in Table 1.

1.1 Technical Overview

Our protocol is designed in the pre-processing model, where the parties first generate secret-shared random
multiplication-triples over F of the form (a, b, c), where c = ab. The triples can be generated in a function-
independent per-processing phase. The triples are used later to efficiently evaluate the multiplication gates

2The complexity is derived by substituting the broadcasts done in their protocol through the reliable broadcast protocol of [18],
as referred in [24].
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Setting Security Necessary Condition Reference Communication Complexity
Synchronous Perfect Q(3)(P,Z) [24] O(|Z|2 · (n5 log |F|+ n6) + |Z| · (n7 log |F|+ n8))

Synchronous Statistical Q(2)(P,Z) [24] O(|Z| · n5 log |F|)
Asynchronous Perfect Q(4)(P,Z) [12] O(|Z|3 · (n7 log |F|+ n9 · (logn + log |Z|)))
Asynchronous Perfect Q(4)(P,Z) This work O(|Z|2 · n7 log |F|+ |Z| · n9 logn)

Asynchronous Statistical Q(3)(P,Z) This work O(|Z| · n9 log |F|)

Table 1: Amortized communication complexity per multiplication of different MPC protocols against gen-
eral adversaries

in ckt using Beaver’s method [2]. At the heart of our pre-processing phase lies efficient asynchronous
multiplication protocols to securely multiply two secret-shared values. The protocols closely follow the
synchronous multiplication protocols of [24]. However, there are several non-trivial challenges (discussed
in the sequel) while adapting these protocols to the asynchronous setting.

1.1.1 Perfectly-Secure Multiplication Protocol of [24] and Challenges in the Asynchronous Setting

The perfectly-secure MPC protocol of [24] as well as ours is based on the secret-sharing used in [28]. The
secret-sharing is based on a given sharing specification S, which is a collection of the complement of every
subset from the underlying adversary structure Z . That is, given Z , the corresponding sharing specification
is defined as

S def
= {Sq = P \ Zq|Zq ∈ Z}.

Then a value s ∈ F is said to be secret-shared with respect to S if both the following holds.
– There exist shares s1, . . . , s|S| ∈ F such that s = s1 + . . .+ s|S|;
– For q = 1, . . . , |S|, the share sq is known to every (honest) party in Sq.

A secret-sharing of s as above is denoted by [s], where [s]q denotes the qth share. Note that if the shares [s]q
are selected randomly from F, then the probability distribution of the shares learnt by the adversary will be
independent of s. This is because the set S consists of at least one subset, which excludes all the corrupt
parties among P , such that the corresponding share (which is selected randomly) is unavailable with the
adversary. We now describe the perfectly-secure synchronous multiplication protocol of [24].

The Perfectly-Secure Multiplication Protocol of [24]. The protocol assumes that the Q(3)(P,Z) condi-
tion holds, and takes as input secret-sharings [a], [b] of a and b respectively to securely generate a random
sharing [ab]. Note that the following holds:

ab =
∑

(p,q)∈{1,...,|S|}×{1,...,|S|}

[a]p[b]q.

The main idea is that since Sp ∩ Sq 6= ∅, a publicly-known party from Sp ∩ Sq can be designated to secret-
share the summand [a]p[b]q. For efficiency, every designated “summand-sharing party” can sum up all the
summands assigned to it and share the sum instead. If no summand-sharing party behaves maliciously, then
the sum of all secret-shared sums leads to a secret-sharing of ab.

To deal with maliciously-corrupt summand-sharing parties, [24] first designed an optimistic multiplica-
tion protocol ΠOptMult, which takes an additional parameter Z ∈ Z and generates a secret-sharing of ab,
provided Adv corrupts a set of parties Z? ⊆ Z. The idea used in ΠOptMult is the same as above, except
that the summand-sharing parties are now “restricted” to the subset P \ Z. Since (Sp ∩ Sq) \ Z will be
non-empty (as otherwise Z does not satisfy the Q(3)(P,Z) condition), it is guaranteed that each summand
[a]p[b]q can be assigned to a designated party in P \ Z. Since the parties will not know the exact set of
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corrupt parties, they run an instance of ΠOptMult, once for each Z ∈ Z . This guarantees that at least one
of these instances generates a secret-sharing of ab. By comparing the output sharings generated in all the
instances of ΠOptMult, the parties can detect whether any cheating has occurred. If no cheating is detected,
then any of the output sharings can serve as the sharing of ab. Else, the parties consider a pair of conflicting
ΠOptMult instances (whose resultant output sharings are different) and proceed to a cheater-identification
phase. In this phase, based on the values shared by the summand-sharing parties in the conflicting ΠOptMult

instances, the parties identify at least one corrupt summand-sharing party. This phase necessarily requires
the participation of all the summand-sharing parties from the conflicting ΠOptMult instances. Once a corrupt
summand-sharing party is identified, the parties disregard all output sharings of ΠOptMult instances involv-
ing that party. This process of comparing the output sharings of ΠOptMult instances and identifying corrupt
parties continues, until all the remaining output sharings are for the same value.

Challenges in the Asynchronous Setting. There are two main non-trivial challenges while applying the
above ideas in an asynchronous setting. First, in ΠOptMult, a potentially corrupt party may never share the
sum of the summands designated to that party, leading to an indefinite wait. To deal with this, we notice
that since Z will now be satisfying the Q(4)(P,Z) condition (since we are in the asynchronous world), each
(Sp ∩ Sq) \ Z contains at least one honest party. So instead of designating a single party for the summand
[a]p[b]q, each party in P \ Z shares the sum of all the summands it is “capable” of, thus guaranteeing that
each [a]p[b]q is considered for sharing by at least one (honest) party. A special care is taken to ensure that a
summand is not shared multiple times.

The second challenge is that once the parties identify a pair of conflicting ΠOptMult instances, the po-
tentially corrupt summand-sharing parties from these instances may not participate further in the cheater-
identification phase, leading to an indefinite wait. To get around this problem, the multiplication protocol
proceeds in iterations, where in each iteration, the parties run an instance of the asynchronous ΠOptMult

(outlined above) for each Z ∈ Z and then compare the outputs from each instance. They then proceed to
the respective cheater-identification phase if the outputs are not the same. However, the summand-sharing
parties from previous iterations are not allowed to participate in future iterations until they participate in the
cheater-identification phase of all the previous iterations. This prevents the corrupt summand-sharing par-
ties in previous iterations from acting as summand-sharing parties in future iterations, until they clear their
“pending tasks”, in which case they are caught and discarded forever. We stress that the honest summand-
sharing parties from pending cheater-identification phases are eventually “released”, so that they can act
as summand-sharing parties in future iterations. Thus, even if the corrupt summand-sharing parties from
previous iterations are “stuck” forever, the parties eventually progress to the next iteration, if the current
iteration “fails”. Once the parties reach an iteration where the outputs of all the ΠOptMult instances are the
same (which happens eventually), the protocol stops.

Even though the above modifications (for the asynchronous setting) might look trivial, realizing them
is highly challenging and technical. Hence, we defer to Section 3 for a more detailed overview and formal
details.

1.1.2 Statistically-Secure Multiplication Protocol of [24] and Extension in the Asynchronous Setting

Since, in the (synchronous) statistical setting, Z satisfies only Q(2)(P,Z) condition, reconstructing a value

s which is secret-shared with respect to the sharing specification S def
= {P \ Z|Z ∈ Z} may not be robust.

This is because there may not be sufficiently many honest parties in the sets Sq ∈ S and hence the parties
may fail to get the correct share [s]q. To get rid of this problem in the statistical setting, [24] “enhances” the
secret-sharing by ensuring that the share held by each party in Sq is “authenticated” by every other party in
Sq. The authentication mechanism is achieved by deploying unconditionally-secure Information-Checking
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(IC) signatures [32], for which an information-checking protocol (ICP) tolerating general adversaries is
presented in [24]. They then present an optimistic multiplication protocol, which takes as input enhanced
secret-sharings [a], [b] of a and b, and outputs an enhanced secret-sharing of [ab] provided no cheating
occurs. The idea behind the optimistic multiplication is similar to the perfectly-secure protocol, where each
summand [a]p[b]q is designated to a single party in Sp ∩ Sq (since Z satisfies the Q(2)(P,Z) condition,
Sp ∩ Sq 6= ∅), who secret-shares [a]p[b]q. Once again for efficiency, each summand-sharing party secret-
shares the sum of all the summands designated to it.

Note that unlike the case of perfect security, the optimistic multiplication protocol does not take into
account any subset Z ∈ Z . This is because (Sp ∩ Sq) \ Z may be empty and consequently, there may
not be any party outside the set Z which can be designated to secret-share the summand [a]p[b]q. Thus,
instead of running |S| instances of the optimistic multiplication protocol (one instance corresponding to
every Z ∈ S), only a single instance is executed. However, if the corrupt parties behave maliciously during
the instance, then the end result will not be a secret-sharing of ab. To detect any cheating that may have
occurred, the parties deploy probabilistic checks. If any cheating is detected, the parties publicly identify
at least one corrupt party by reconstructing all the values involved in the protocol. The identified corrupt
party(ies) are discarded and the whole process is repeated again, till no cheating is detected. Note that in
case the process is repeated, then values a and b from failed instances are not considered towards generating
the shared random multiplication-triples. Any subsequent instance of the optimistic multiplication protocol
runs with fresh, independent secret-shared a and b values jointly generated by the parties.

Extension in the Asynchronous Setting. To the best of our knowledge, no prior work has presented
a statistically-secure AMPC protocol against general adversaries. Thus, to extend the above ideas to the
asynchronous setting (where Z now satisfies the Q(3)(P,Z) condition), we have to start from “scratch”. We
first design an asynchronous information-checking protocol (AICP) against general adversaries. Equipped
with this AICP, we then design a statistically-secure asynchronous verifiable secret-sharing (AVSS) scheme.
The AVSS protocol allows us to generate a secret-sharing of a value with respect to the sharing specification
S in an asynchronous network. We then design an optimistic multiplication protocol. However, the challenge
is that, now, no single party can be designated to secret-share the summands [a]p[b]q, since potentially corrupt
parties may never secret-share the sum of the required summands. To get rid of this problem, we use an idea
similar to what is used in our perfectly-secure protocol. That is, every party secret-shares the sum of all
possible summands that it is capable of, while taking special care to ensure that no summand is shared more
than once. This is followed by the parties probabilistically checking whether any cheating has occurred. In
case any cheating is detected, the parties publicly identify and discard the corrupt party(ies). This is done
by publicly reconstructing all the values involved. Upon discarding the corrupt party, the whole process is
repeated again.

2 Preliminaries and Existing Asynchronous Primitives

We assume that the parties in P = {P1, . . . , Pn} are connected by pair-wise secure channels. The adversary
Adv is assumed to be malicious and static, and decides the set of corrupt parties at the beginning of the
protocol execution. Parties not under the control of Adv are called honest.

We assume that the parties want to compute a function f represented by a publicly known arithmetic
circuit ckt over a finite field F consisting of linear and non-linear gates, with M being the number of
multiplication gates. Without loss of generality, we assume that each Pi ∈ P has an input x(i) for f , and
that all the parties want to learn the single output y = f(x(1), . . . , x(n)). We follow the asynchronous
communication model of [4, 7]. The model does not put any restriction on the message delays and only
guarantees that every message sent is delivered eventually. The sequence of message delivery is controlled
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by a scheduler, which is under the control of the adversary. Unlike the previous unconditionally-secure
AMPC protocols [6, 3, 30, 13, 12], we prove the security of our protocols using the UC framework [8, 19, 9],
based on the real-world/ideal-world paradigm. the details of which are presented next.

2.1 The Asynchronous Universal Composability (UC) Framework

The work of [15] has rigorously formalized the asynchronous network model with eventual message de-
livery in the UC framework, starting with the basic task of (asynchronous) point-to-point communication
and formalizing asynchronous MPC. The same model was also followed in the work of [14], though the
treatment was slightly less formal to avoid notational clutter and to make the protocols and proofs easier to
understand. We also follow the same treatment of the UC model as [14] and recall the high-level descrip-
tion of the framework followed in [14]. Interested readers are referred to [26, 15] for the complete formal
details.3

The work of [14] describes the asynchronous UC framework against threshold adversaries. We adapt
the framework for the case of general adversaries. Informally, the security of a protocol is argued by “com-
paring” the capabilities of the adversary in two separate worlds. In the real-world, the parties exchange
messages among themselves, computed as per a given protocol. In the ideal-world, the parties do not in-
teract with each other, but with a trusted third-party (an ideal functionality), which enables the parties to
obtain the result of the computation based on the inputs provided by the parties. Informally, a protocol is
considered to be secure if whatever an adversary can do in the real protocol can be also done in the ideal-
world.

The Asynchronous Real-World. An execution of a protocol Π in the real-world consists of n interac-
tive Turing machines (ITMs) representing the parties in P . Additionally, there is an ITM for representing
the adversary Adv. Each ITM is initialized with its random coins and possible inputs. Additionally, Adv
may have some auxiliary input z. Following the convention of [7], the protocol operates asynchronously by
a sequence of activations, where at each point, a single ITM is active. Once activated, a party can perform
some local computation, write on its output tape, or send messages to other parties. On the other hand, if
the adversary is activated, it can send messages on the behalf of corrupt parties.4

To model the worst-case scenario, the adversary is given the provision to schedule the delivery of the
messages exchanged between the parties. Once Adv delivers a message to some party, this party gets ac-
tivated. The adversary cannot omit, change or inject messages. However, the adversary can reorder the
messages sent by the honest parties. That is, it can decide which message will be delivered and when.
Moreover, even though the adversary can delay the delivery of the messages arbitrarily, it cannot delay
them indefinitely. That is, every message sent by a party is eventually delivered. These requirements on
adversarial scheduling are formalized using the eventual-delivery secure message-transmission ideal func-
tionality in [15].5

The protocol execution is complete once all honest parties obtain their respective outputs. We let
REALΠ,Adv(z),Z?(~x) denote the random variable consisting of the output of the honest parties and the view

3We stress that even though we prove the security of our protocols in the model proposed in [14], the proofs can be easily
reworked to fit in the actual UC model proposed in [15].

4In [15], the order of activation is maintained and tracked in the protocols and proofs. However, doing so in the context of our
protocols will make the proofs hard to read and understand and so we avoid doing that. However, we confirm that this will not
violate the correctness of our UC claims and their proofs.

5In [15], while describing their protocols, the authors have used this functionality to capture the point-to-point communication
between the parties. However, this brings in a lot of additional technicalities and notations. In the context of our protocols,
sending every message through the asynchronous message-transmission functionality will make the protocols harder to read and
understand. Hence, as done in [14], we will avoid communicating the messages in the protocol through the ideal asynchronous
message-transmission functionality. However, we confirm that this will not violate the overall UC-security of our protocols.
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of the adversary Adv during the execution of a protocol Π. Here, Adv controls parties in Z? during the
execution of protocol Π with inputs ~x = (x(1), . . . , x(n)) for the parties (where party Pi has input x(i)), and
auxiliary input z for Adv.

The Asynchronous Ideal-World. A protocol in the ideal-world consists of n dummy parties P1, . . . , Pn,
an ideal-world adversary S (also called simulator) and an ideal functionality FAMPC. We consider static
corruptions such that the set of corrupt parties Z? is fixed at the beginning of the computation and is known
to S. The functionality FAMPC receives the inputs from the respective dummy parties, performs the desired
computation f on the received inputs, and sends the outputs to the respective parties. The ideal-world ad-
versary does not see and cannot delay the communication between the parties and FAMPC. However, it can
communicate with FAMPC on the behalf of corrupt parties.

Since FAMPC models the desired behaviour of a real-world protocol which is asynchronous, ideal func-
tionalities must consider some inherent limitations to model the asynchronous communication model with
eventual delivery. For example, in a real-world protocol, the adversary can decide when each honest party
learns the output since it has full control over message scheduling. To model the notion of time in the
ideal-world, [26] uses the concept of number of activations. Namely, once FAMPC has computed the output
for some party, it does not ask “permission” from S to deliver it to the respective party. Instead, the cor-
responding party must “request” FAMPC for the output, which can be done only when the concerned party
is active. Moreover, the adversary can “instruct” FAMPC to delay the output for each party by ignoring the
corresponding requests, but only for a polynomial number of activations. If a party is activated sufficiently
many times, the party will eventually receive the output from FAMPC and hence, ideal computation even-
tually completes. That is, each honest party eventually obtains its desired output. As in [14], we use the
term “FAMPC sends a request-based delayed output to Pi”, to describe the above interaction between the
FAMPC,S and Pi.

Another limitation is that in a real-world AMPC protocol, the (honest) parties cannot afford for all the
parties to provide their input for the computation to avoid an endless wait, as the corrupt parties may decide
not to provide their inputs. Hence, every AMPC protocol suffers from input deprivation, where inputs of a
subset of potentially honest parties (which is decided by the choice of adversarial message scheduling) may
get ignored during computation. Consequently, once a “core set” of parties CS provide their inputs for the
computation, where P \ CS ∈ Z , the parties have to start computing the function by assuming some default
input for the left-over parties. To model this in the ideal-world, S is given the provision to decide the set CS
of parties whose inputs should be taken into consideration by FAMPC. We stress that S cannot delay sending
CS to FAMPC indefinitely. This is because in the real-world protocol, Adv cannot prevent the honest parties
from providing their inputs indefinitely. The formal description of FAMPC is available in Fig 1.

FAMPC proceeds as follows, running with the parties P = {P1, . . . , Pn} and an adversary S, and is parametrized
by an n-party function f : Fn → F and an adversary structure Z ⊂ 2P .

1. For each party Pi ∈ P , initialize an input value x(i) = ⊥.

2. Upon receiving a message (inp, sid, v) from some Pi ∈ P (or from S if Pi is corrupt), do the following:

• Ignore the message if output has already been computed;

• Else, set x(i) = v and send (inp, sid, Pi) to S.a

3. Upon receiving a message (coreset, sid, CS) from S, do the following:b

• Ignore the message if (P \ CS) 6∈ Z or if output has already been computed;

Functionality FAMPC
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• Else, record CS and set x(i) = 0 for every Pi 6∈ CS .c

4. If CS has been recorded and the value x(i) has been set to a value different from ⊥ for every Pi ∈ CS, then

compute y
def
= f(x(1), . . . , x(n)) and generate a request-based delayed output (out, sid, (CS, y)) for every

Pi ∈ P .
aIf Pi is corrupt, then no need to send (inp, sid, Pi) to S as the input has been provided by S only.
bS cannot delay sending CS indefinitely; see the discussion before the description of the functionality.
cIt is possible that for some Pi 6∈ CS, the input has been set to a value different from 0 during step 1 and x(i) is now reset

to 0. This models the scenario that in the real-world protocol, even if Pi is able to provide its input, Pi’s inclusion to CS finally
depends upon message scheduling, which is under adversarial control.

Figure 1: The ideal functionality for asynchronous secure multi-party computation for session id sid.

Similar to the real-world, we let IDEALFAMPC,S(z),Z?(~x) denote the random variable consisting of the
output of the honest parties and the view of the adversary S , controlling the parties in Z?, with the parties
having inputs ~x = (x(1), . . . , x(n)) (where party Pi has input xi), and auxiliary input z for S .

We say that a real-world asynchronous protocol Π securely realizes FAMPC with perfectly-security if
and only if for every real-world adversary Adv, there exists an ideal-world adversary S whose running time
is polynomial in the running time of Adv, such that for every possible Z?, every possible ~x ∈ Fn and every
possible z ∈ {0, 1}?, it holds that the random variables{

REALΠ,Adv(z),Z?(~x)
}

and
{

IDEALFAMPC,S(z),Z?(~x)
}

are identically distributed. That is, the random variables are perfectly-indistinguishable.
For statistically-secure AMPC, the parties and adversaries are parameterized with a statistical-security

parameter κ, and the above random variables (which are viewed as ensembles, parameterized by κ) are
required to be statistically-indistinguishable. That is, their statistical-distance should be a negligible function
in κ.

The Universal-Composability (UC) Framework. While the real-world/ideal-world-based security paradigm
is used to define the security of a protocol in the “stand-alone” setting, the more powerful UC framework
[8, 9] is used to define the security of a protocol when multiple instances of the protocol might be running in
parallel, possibly along with other protocols. Informally, the security in the UC-framework is still argued by
comparing the real-world and the ideal-world. However, now, in both worlds, the computation takes place in
the presence of an additional interactive process (modelled as an ITM) called the environment and denoted
by Env. Roughly speaking, Env models the “external environment” in which protocol execution takes place.
The interaction between Env and the various entities takes place as follows in the two worlds.

In the real-world, the environment gives inputs to the honest parties, receives their outputs, and can
communicate with the adversary at any point during the execution. During the protocol execution, the
environment gets activated first. Once activated, the environment can either activate one of the parties by
providing some input or activate Adv by sending it a message. Once a party completes its operations upon
getting activated, the control is returned to the environment. Once Adv gets activated, it can communicate
with the environment (apart from sending messages to the honest parties). The environment also fully
controls the corrupt parties that send all the messages they receive to Env, and follow the orders of Env. The
protocol execution is completed once Env stops activating other parties, and outputs a single bit.

In the ideal-model, the environment Env gives inputs to the (dummy) honest parties, receives their
outputs, and can communicate with S at any point during the execution. The dummy parties act as channels
between Env and the functionality. That is, they send the inputs received from Env to functionality and
transfer the output they receive from the functionality to Env. The activation sequence in this world is
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similar to the one in the real-world. The protocol execution is completed once Env stops activating other
parties and outputs a single bit.

A protocol is said to be UC-secure with perfect-security, if for every real-world adversary Adv there
exists a simulator S, such that for any environment Env, the environment cannot distinguish the real-world
from the ideal-world. On the other hand, the protocol is said to be UC-secure with statistical-security, if
the environment cannot distinguish the real-world from the ideal-world, except with a probability which is
a negligible function in the statistical-security parameter κ.

The Hybrid Model. In a G-hybrid model, a protocol execution proceeds as in the real-world. However,
the parties have access to an ideal functionality G for some specific task. During the protocol execution, the
parties communicate with G as in the ideal-world. The UC framework guarantees that an ideal functionality
in a hybrid model can be replaced with a protocol that UC-securely realizes G. This is specifically due to
the following composition theorem from [8, 9].

Theorem 2.1 ([8, 9]). Let Π be a protocol that UC-securely realizes some functionality F in the G-hybrid
model and let ρ be a protocol that UC-securely realizes G. Moreover, let Πρ denote the protocol that is
obtained from Π by replacing every ideal call to G with the protocol ρ. Then Πρ UC-securely realizes F in
the model where the parties do not have access to the functionality G.

2.2 Secret Sharing

In our protocols, we use a secret-sharing based on the one from [28], defined with respect to a sharing

specification S = {S1, . . . , Sh}
def
= {P \ Z|Z ∈ Z}, where h = |S| = |Z|. This sharing specification S is

Z-private, meaning that for every Z ∈ Z , there is an S ∈ S such that Z ∩ S = ∅. Moreover, if Z satisfies
the Q(4)(P,Z) condition, then S satisfies the Q(3)(S,Z) condition. That is, for every Zi1 , Zi2 , Zi3 ∈ Z and
every S ∈ S, the following holds:

S 6⊆ Zi1 ∪ Zi2 ∪ Zi3 .

In general, we say that S satisfies the Q(k)(S,Z) condition if for every Zi1 , . . . , Zik ∈ Z and every S ∈ S,
the following holds:

S 6⊆ Zi1 ∪ . . . ∪ Zik .

Definition 2.2 ([28]). A value s ∈ F is said to be secret-shared with respect to S, if there exist shares
s1, . . . , s|S| ∈ F, such that all the following hold.

– s = s1 + . . .+ s|S|;
– For q = 1, . . . , |S|, the share sq is known to every (honest) party in Sq.

The vector of shares corresponding to a secret-sharing of s is denoted by [s], where [s]q denotes the qth

share. Note that a party Pi may hold multiple shares from [s], depending upon the number of subsets in
S in which it is present. Specifically, Pi will hold the shares {[s]q}Pi∈Sq . The above secret-sharing is
linear, as [c1s1 + c2s2] = c1[s1] + c2[s2] for any publicly-known c1, c2 ∈ F. In general, the parties can
non-interactively compute any linear function of secret-shared values, by applying the corresponding linear
function on their respective shares of the function inputs.

Default Secret-Sharing. The perfectly-secure protocol ΠPerDefSh takes a public input s ∈ F and S to
non-interactively generate [s], where the parties collectively set [s]1 = s and [s]2 = . . . = [s]|S| = 0.

2.3 Existing Asynchronous Primitives

We next discuss the existing asynchronous primitives used in our protocols.
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Asynchronous Reliable Broadcast (Acast). An Acast protocol allows a designated sender PS ∈ P to
identically send a message m ∈ {0, 1}` to all the parties. If PS is honest, then all honest parties eventually
output m. On the other hand, if PS is corrupt and some honest party outputs m?, then every other honest
party eventually outputs m?. The above requirements are formalized by an ideal functionality FAcast, pre-
sented in Fig 2. The functionality, upon receiving m from the sender PS , performs a request-based delayed
delivery of m to all the parties. Notice that if PS is corrupt, then the functionality may not receive any mes-
sage for delivery, in which case parties obtain no output. This models the fact that in any real-world Acast
protocol, a potentially corrupt PS may not invoke the protocol, in which case the (honest) parties obtain no
output.

FAcast proceeds as follows, running with the parties P = {P1, . . . , Pn} and an adversary S, and is parametrized
by an adversary structure Z ⊂ 2P . Let Z? denote the set of corrupt parties, where Z? ∈ Z .
• Upon receiving (sender,Acast, sid,m) from PS ∈ P (or from S if PS ∈ Z?), do the following:

– Send (PS ,Acast, sid,m) to S;a

– Send a request-based delayed output (PS ,Acast, sid,m) to each Pi ∈ P \Z? (no need to send m to the
parties in Z?, as S gets m on their behalf).

aIf PS ∈ Z?, then no need to send (PS ,Acast, sid,m) to S, as in this case m is received from S itself.

Functionality FAcast

Figure 2: The ideal functionality for asynchronous reliable broadcast for session id sid.

In [27], a perfectly-secure Acast protocol ΠAcast is presented with a communication complexity of
O(n2`) bits, provided Z satisfies the Q(3)(P,Z) condition. The protocol is shown to be UC-secure in [11].

Remark 2.3. We note that the functionality FAcast is “one shot” per session id. That is, it allows the sender
PS to send at most one message per session id and a potentially corrupt PS cannot send multiple messages
for delivery to the functionality within the same session id. This is ensured by letting FAcast implicitly
accepting at most one message from PS for delivery for a given session id.

We also note that we implicitly assume that the identity of the designated sender PS is known to all the
participants. In our higher-level protocols where the parties will be calling FAcast, the identity of PS will be
publicly known. To distinguish apart the messages exchanged during the various calls to FAcast with respect
to different sender parties, one could tag all the messages exchanged with respect to a particular instance of
FAcast with the identity of the corresponding sender party.

Asynchronous Byzantine Agreement (ABA). In a synchronous BA protocol [31], each party participates
with an input bit to obtain an output bit. The protocol guarantees the following three properties.

– Agreement: The output bit of all honest parties is the same.
– Validity: If all honest parties have the same input bit, then this will be the common output bit.
– Termination: All honest parties eventually compute an output.

In an ABA protocol, the above requirements are slightly weakened, since all (honest) parties may not be
able to provide their inputs to the protocol, as waiting for all the inputs may turn out to be an endless wait.
Hence the decision is taken based on the inputs of a subset of parties CS , where P \ CS ∈ Z . Moreover,
since the adversary can control the schedule of message delivery, it has full control in deciding the set CS .

The formal specification of an ideal ABA functionality is presented in Fig 3, which is obtained by gener-
alizing the corresponding ideal functionality against threshold adversaries, as presented in [15]. Intuitively,
it can be considered as a special case of the ideal AMPC functionality (see Fig 1), which looks at the set of
inputs provided by the set of parties in CS , where CS is decided by the ideal-world adversary. If the input
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bits provided by all the honest parties in CS are the same, then it is set as the output bit. Else, the output
bit is set to be the input bit provided by some corrupt party in CS (for example, the first corrupt party in
CS according to lexicographic ordering). In the functionality, the input bits provided by various parties are
considered to be the “votes” of the respective parties.

FABA proceeds as follows, running with the parties P = {P1, . . . , Pn} and an adversary S, and is parametrized
by an adversary-structure Z ⊂ 2P . Let Z? denote the set of corrupt parties, where Z? ∈ Z and let H = P \ Z?.
For each party Pi, initialize an input value x(i) = ⊥.

1. Upon receiving a message (vote, sid, b) from some Pi ∈ P (or from S if Pi is corrupt) where b ∈ {0, 1}, do
the following:
• Ignore the message if output has been already computed;
• Else, set x(i) = b and send (vote, sid, Pi, b) to S.a

2. Upon receiving a message (coreset, sid, CS, b?) from S where b? ∈ {0, 1}, do the following:b

• Ignore the message if (P \ CS) 6∈ Z or if output has been already computed;
• Else, record CS .

3. If the set CS has been recorded and the value x(i) has been set to a value different from ⊥ for every Pi ∈ CS ,
then compute the output y as follows and generate a request-based delayed output (decide, sid, (CS, y)) for
every Pi ∈ P .
• If x(i) = b holds for all Pi ∈ (H ∩ CS), then set y = b.
• Else if CS ∩ Z? 6= ∅, set y = x(i), where Pi is the party with the smallest index in CS ∩ Z?.
– Else set y = b?.

aIf Pi ∈ Z?, then no need to send (vote, sid, Pi, b) to S as the input has been provided by S only.
bAs in the case of the AMPC functionality FAMPC, S cannot delay sending CS indefinitely.

Functionality FABA

Figure 3: The ideal functionality for asynchronous Byzantine agreement for session id sid.

From [17], every (deterministic) ABA protocol must have some non-terminating runs, where the parties
may run the protocol forever, without obtaining any output. To circumvent this result, randomized ABA
protocols are considered and the best we can hope for from such protocols is that the parties eventually
obtain an output with probability 1, if they continue running the protocol (this property is called the almost-
surely termination property). In [12], a perfectly-secure ABA protocol is presented, provided Z satisfies the
Q(4)(P,Z) condition, which holds for our perfectly-secure AMPC protocol. In the protocol, all honest par-
ties eventually compute their output with probability 1 and the protocol incurs an expected communication
of O(|Z| · (n6 log |F| + n8(log n + log |Z|))) bits. We will use this ABA protocol for securely realizing
FABA in our perfectly-secure AMPC protocol.

Recently, [11] presented a perfectly-secure ABA protocol, provided Z satisfies the Q(3)(P,Z) con-
dition, which holds for our statistically-secure AMPC protocol. In the protocol, all honest parties even-
tually compute their output with probability 1 and the protocol incurs an expected communication of
O(|Z| · (n7 log |F| + n8 log n)) bits. We will use this ABA protocol for securely realizing FABA in our
statistically-secure AMPC protocol.

We note that the security of the ABA protocols of [12, 11] are not proved in the UC model. This is
because their main goal is to show the feasibility of ABA against generalized adversaries. However, we
confirm that UC security proof of these protocols can be provided by bringing in additional technicalities,
especially given the fact that we are considering static adversaries.
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2.4 Some Asynchronous Ideal-World Functionalities

We end this section by discussing a few asynchronous ideal-world functionalities, which we later securely
realize through various protocols.

Verifiable Secret-Sharing (VSS). A VSS protocol allows a designated dealer PD ∈ P to verifiably secret-
share its input s ∈ F. If PD is honest, then the honest parties eventually output [s]. The verifiability property
guarantees that if PD is corrupt and some honest party completes the protocol, then all honest parties eventu-
ally complete the protocol with a secret-sharing of some value. These requirements are formalized through
the functionality FVSS (Fig 4). The functionality, upon receiving a vector of shares from PD, distributes the
appropriate shares to the respective parties. The dealer’s input is defined implicitly as the sum of provided
shares. Looking ahead, we will use FVSS in our protocols as follows: PD on having the input s, sends a
random vector of shares (s1, . . . , s|S|) toFVSS where s1 +. . .+s|S| = s. If PD is honest, then the probability
distribution of the shares learnt by Adv will be independent of the dealer’s input, since S is Z-private. Note
that if PD is corrupt, then it may not provide any vector of shares to the functionality, in which case the
honest parties obtain no output. This models the fact that in the asynchronous setting, the honest parties
need not have any output in the real-world VSS protocol, if a potentially corrupt PD does not invoke the
protocol in the first place.

We note that in the functionality FVSS, we let the dealer PD select the shares, corresponding to its input
s, instead of the functionality picking the shares. One could instead consider a variant of FVSS, where if PD

is honest, then it provides its input s to the functionality, who then picks random shares corresponding to s
and distributes them to the respective parties. And if PD is corrupt, then the functionality receives the full
vector of shares from PD and distributes them.6 Looking ahead, our VSS protocol can be easily modified
to securely realize even this variant of FVSS. The reason we let PD provide the full vector of shares is
that it “unifies” the case of both honest as well as a corrupt PD, since FVSS will be performing the same
set of actions, irrespective of PD. As mentioned earlier, the way we will invoke the functionality FVSS

in our higher-level protocols, it will be guaranteed that if PD is honest, then its input s will be randomly
secret-shared, since PD will be providing a random vector of shares for distribution to FVSS. So it makes no
difference whether an honest PD provides a random vector of shares for its secret or whether the functionality
FVSS picks random shares on the behalf of an honest PD. In either case, the full vector of shares will be
randomly distributed, subject to the condition that they sum up to s.

FVSS proceeds as follows for each party Pi ∈ P and an adversary S, and is parametrized by the adversary structure
Z , sharing specification S = {S1, . . . .Sh} = {P \ Z|Z ∈ Z} and a dealer PD ∈ S. Let Z? ∈ Z be the set of
corrupt parties.

– On receiving (dealer, sid, PD, (s1, . . . , sh)) from PD (or from S if PD ∈ Z?), do the following.
– Set s =

∑
q=1,...,h sq .

– For q = 1, . . . , h, set [s]q = sq .
– If PD ∈ Z?, then generate a request-based delayed output (share, sid, PD, {[s]q}Pi∈Sq

) for each Pi 6∈
Z?. a

– Else generate a request-based delayed output (share, sid, PD, {[s]q}Pi∈Sq ) for each Pi ∈ P .

aIf PD is corrupt, then S may not send any input to FVSS, in which case the functionality will not generate any output.

Functionality FVSS

Figure 4: The ideal functionality for VSS for session id sid.

6In the latter case, we cannot let the functionality pick random shares on behalf of PD’s input. This is because in the real-world
VSS protocol, a corrupt PD may not select random shares for secret-sharing its input.
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Remark 2.4. We note that the functionality FVSS is “one shot” per session id. That is, it allows the dealer
to send at most one set of shares per session id. A potentially corrupt dealer cannot send multiple sets of
shares to the functionality within the same session id. This is ensured by FVSS implicitly accepting at most
one set of shares from the dealer for processing for a given session id.

We also note that we implicitly assume that the identity of the designated dealer PD is known to all the
participants. In our higher-level protocols where the parties will be calling FVSS, the identity of PD will be
publicly known. To distinguish apart the messages exchanged during the various calls to FVSS with respect
to different dealers, one could tag all the messages exchanged with respect to a particular instance of FVSS

with the identity of the corresponding dealer.

Triple-Generation Functionality. The ideal functionalityFTriples (Fig 5) models the pre-processing phase
of our AMPC protocols. The functionality generates secret-sharing of M random multiplication-triples
over F, which are random from the point of view of the adversary.7 The functionality allows the ideal-
world adversary to specify the shares for each of the output triples on the behalf of corrupt parties. The
functionality then “completes” the sharing of all the triples randomly, while keeping them “consistent” with
the shares specified by the adversary.8

FTriples proceeds as follows, running with the parties P and an adversary S, and is parametrized by an adversary-
structure Z , a Z-private sharing specification S = {S1, . . . , Sh} = {P \ Z|Z ∈ Z} and the number of multipli-
cation gates M in ckt. Let Z? ∈ Z denote the set of corrupt parties.

– If there is a set of parties A such that P \ A ∈ Z and every Pi ∈ A has sent the message (triples, sid, Pi),
then send (triples, sid,A) to S and prepare the output as follows.
• Generate secret-sharing of M random multiplication-triples. To generate one such sharing, randomly

select a, b ∈ F, compute c = ab and execute the steps labelled Single Sharing Generation for a, b
and c.

• Let {([a(`)], [b(`)], [c(`)])}`∈{1,...,M} be the resultant secret-sharing of the multiplication-triples. Send
a request-based delayed output (tripleshares, sid, {[a(`)]q, [b(`)]q, [c(`)]q}`∈{1,...,M},Pi∈Sq

) to each
Pi ∈ P \ Z? (no need to send the respective shares to the parties in Z?, as S already has the shares
of all the corrupt parties).

Single Sharing Generation: Do the following to generate a secret-sharing of a given value s.
• Upon receiving (shares, sid, {sq}Sq∩Z? 6=∅) from S , randomly select sq ∈ F corresponding to each

Sq ∈ S for which Sq ∩ Z? = ∅, such that
∑

Sq∩Z? 6=∅

sq +
∑

Sq∩Z?=∅

sq = s holds. a For q = 1, . . . , h,

set [s]q = sq .

aS cannot delay sending the shares on the behalf of the corrupt parties indefinitely as, in our real-world protocol, the
adversary cannot indefinitely delay the generation of secret-shared multiplication-triples.

Functionality FTriples

Figure 5: Ideal functionality for asynchronous pre-processing phase with session id sid.

3 Perfectly-Secure Pre-Processing Phase Protocol with Q(4)(P,Z) Condition

In this section, we present a perfectly-secure protocol for securely realizing the functionality FTriples. For
designing the protocol, we need two building blocks: a perfectly-secure VSS protocol and a perfectly-secure
multiplication protocol, which we discuss next.

7Recall that M is the number of multiplication gates in the circuit ckt.
8This provision is made because in our pre-processing phase protocol, the real-world adversary will have full control over the

shares of the corrupt parties corresponding to the random multiplication-triples generated in the protocol.
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3.1 Perfectly-Secure Verifiable Secret Sharing (VSS)

In [12], a perfectly-secure VSS protocol was presented. We recall and present the protocol here for two
reasons. Firstly, we will show how to slightly modify the protocol to improve its communication complexity.
Secondly, and more importantly, in [12], the UC-security of the protocol was not proved. Since we are
aiming to prove the UC-security of our AMPC protocol where the VSS protocol will be used, we give a
proof of the UC-security of the VSS protocol.

In the perfectly-secure VSS protocol ΠPVSS, the input for the dealer PD is a vector of shares (s1, . . . , sh),

the goal being to ensure that the parties output a secret-sharing of s
def
= s1 + . . . + sh, such that [s]q = sq,

for each Sq ∈ S. The protocol guarantees that even if PD is corrupt, if some honest party completes the
protocol, then every honest party eventually completes the protocol such that there exists some value which
has been secret-shared by PD.

The high-level idea of the protocol is as follows: the dealer gives the share sq to all the parties in the
set Sq ∈ S. To verify whether the dealer has distributed the same share to all the parties in Sq, the parties
in Sq perform pairwise consistency tests of the supposedly common share and publicly announce the result.
Next, the parties check if there exists a subset of “core” parties Cq, where Sq \ Cq ∈ Z , who have confirmed
the pairwise consistency of their supposedly common share. Such a subset Cq is guaranteed for an honest
dealer, as the set of honest parties in Sq always constitutes a candidate set for Cq. To ensure that all honest
parties have the same version of the core sets C1, . . . , Ch, the dealer is assigned the task of identifying these
sets based on the results of the pairwise consistency tests, and making them public. Once the core sets are
identified and verified, it is guaranteed that the dealer has distributed some common share to all honest parties
within Cq. The next goal is to ensure that even the honest parties in Sq \ Cq get this common share, which is
required as per the semantics of our secret-sharing. For this, the (honest) parties in Sq \ Cq “filter” out the
supposedly common shares received during the pairwise consistency tests and ensure that they obtain the
common share held by the honest parties in Cq. Protocol ΠPVSS is presented in Fig 6.

• Distribution of Shares by PD : If Pi is the dealer PD, then execute the following steps.

1. On having the shares s1, . . . , sh ∈ F, send (dist, sid, PD, q, [s]q) to all the parties Pi ∈ Sq , corresponding

to each Sq ∈ S, where s
def
= s1 + . . .+ sh and [s]q = sq .

• Pairwise Consistency Tests and Public Announcement of Results : For each Sq ∈ S, if Pi ∈ Sq , then
execute the following steps.

1. Upon receiving (dist, sid, PD, q, sqi) from D, send (test, sid, PD, q, sqi) to every party Pj ∈ Sq .
2. Upon receiving (test, sid, PD, q, sqj) from Pj ∈ Sq , send (sender,Acast, sid

(PD,q)
ij ,OKq(i, j)) to FAcast

if sqi = sqj , where sid
(PD,q)
ij = sid||PD||q||i||j.a

• Constructing Consistency Graph : For each Sq ∈ S, execute the following steps.

1. Initialize Cq to ∅. Construct an undirected consistency graph G(i)
q with Sq as the vertex set.

2. For every ordered pair of parties (Pj , Pk) where Pj , Pk ∈ Sq , keep requesting for an output from FAcast

with sid
(PD,q)
jk , till an output is received.

3. Add the edge (Pj , Pk) to G
(i)
q if outputs (Pj ,Acast, sid

(PD,q)
jk ,OKq(j, k)) and (Pk,Acast, sid

(PD,q)
kj ,

OKq(k, j)) are received from FAcast with sid
(PD,q)
jk and FAcast with sid

(PD,q)
kj respectively.

• Identification of Core Sets and Public Announcements : If Pi is the dealer PD, then execute the following
steps.

1. For each Sq ∈ S, check if there exists a subset of parties Wq ⊆ Sq , such that Sq \ Wq ∈ Z and the
parties inWq form a clique in the consistency graph GD

q . If such aWq exists, then assign Cq :=Wq .

Protocol ΠPVSS(S)
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2. Upon computing non-empty sets C1, . . . , Ch, send (sender,Acast, sidPD
, {Cq}Sq∈S) to FAcast, where

sidPD
= sid||PD.

• Share Computation : Execute the following steps.

1. For each Sq ∈ S such that Pi ∈ Sq , initialize [s]q to ⊥.
2. Keep requesting for an output from FAcast with sidPD

until an output is received.
3. Upon receiving an output (sender,Acast, sidPD

, {Cq}Sq∈S) from FAcast with sidPD
, wait until the parties

in Cq form a clique in G(i)
q , for q = 1, . . . , h. Then, verify if Sq \ Cq ∈ Z , for each q = 1, . . . , h. If the

verification is successful, then proceed to compute the output as follows.

i. Corresponding to each Cq such that Pi ∈ Cq , set [s]q := sqi.
ii. Corresponding to each Cq such that Pi 6∈ Cq , set [s]q := sq , where (test, sid, PD, q, sq) is received

from a set of parties C′q such that Cq \ C′q ∈ Z .

4. Once [s]q 6= ⊥ for each Sq ∈ S such that Pi ∈ Sq , output (share, sid, PD, {[s]q}Pi∈Sq
).

aThe notation sid
(PD,q)
ij is used here to distinguish among the different calls to FAcast within the session sid.

Figure 6: The perfectly-secure VSS protocol for realizing FVSS in the FAcast-hybrid model. The above steps are
executed by every Pi ∈ P .

Remark 3.1. We stress that if PD is corrupt, then the honest parties may not get any output in the protocol
ΠPVSS, if PD does not make public valid core sets. This is fine as per the semantics of the functionality
FVSS, since the functionality FVSS is not “obliged” to distribute any shares to the honest parties if PD is
corrupt. On the other hand, if PD is honest, then it will eventually compute and broadcast valid core sets,
since the set of honest parties will eventually satisfy all the required conditions of valid core sets.

We next prove the security of the protocol ΠPVSS.

Theorem 3.2. Consider a static malicious adversary Adv characterized by an adversary-structure Z , satis-

fying the Q(4)(P,Z) condition and let S = {S1, . . . , Sh}
def
= {P \ Z|Z ∈ Z} be the sharing specification.

Then protocol ΠPVSS UC-securely realizes the functionality FVSS with perfect security in the FAcast-hybrid
model, in the presence of Adv.

Proof. Let Adv be an arbitrary adversary corrupting a set of parties Z? ∈ Z . Let Env be an arbitrary
environment. We show the existence of a simulator SPVSS, such that for any Z? ∈ Z , the outputs of the
honest parties and the view of the adversary in the protocol ΠPVSS is indistinguishable from the outputs
of the honest parties and the view of the adversary in an execution in the ideal world involving SPVSS and
FVSS. The steps of the simulator will be different depending on whether the dealer is corrupt of honest.

If the dealer is honest, then the simulator interacts with FVSS and receives the shares of the corrupt
parties corresponding to the sets Sq ∈ S which they are part of. With these shares, the simulator then plays
the role of the dealer as well as the honest parties, as per the steps of ΠPVSS, and interacts with Adv. The
simulator also plays the role of FAcast. If Adv queries FAcast for the result of any pairwise consistency test
involving an honest party, the simulator provides the appropriate result. In addition, the simulator records
the result of any test involving corrupt parties which Adv sends to FAcast. Based on the results of these
pairwise consistency tests, the simulator finds the core sets for each Sq and sends these to Adv upon request.

If the dealer is corrupt, the simulator plays the role of honest parties and interacts with Adv, as per the
steps of ΠPVSS. This involves recording shares which Adv distributes to any honest party (on the behalf of
the dealer), as well as performing pairwise consistency tests on their behalf. If Adv sends core sets for each
Sq ∈ S as input to FAcast, then the simulator checks if these are valid, and accordingly, sends the shares held
by honest parties in these core sets as the input shares to FVSS on the behalf of the dealer. The simulator is
presented in Figure 7.
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SPVSS constructs virtual real-world honest parties and invokes the real-world adversary Adv. The simulator simu-
lates the view of Adv, namely its communication with Env, the messages sent by the honest parties and the interac-
tion with FAcast. In order to simulate Env, the simulator SPVSS forwards every message it receives from Env to Adv
and vice-versa. The simulator then simulates the various phases of the protocol as follows, depending upon whether
the dealer is honest or corrupt.

Simulation When PD is Honest
Interaction with FVSS: The simulator interacts with the functionality FVSS and receives a request based delayed
output (share, sid, PD, {[s]q}Sq∩Z? 6=∅), on the behalf of the parties in Z?.

Distribution of Shares by PD: On the behalf of the dealer, the simulator sends (dist, sid, PD, q, [s]q) to Adv, corre-
sponding to every Pi ∈ Z? ∩ Sq .

Pairwise Consistency Tests: For each Sq ∈ S such that Sq ∩ Z? 6= ∅, corresponding to each Pi ∈ Sq ∩ Z?, the
simulator does the following.

– On the behalf of every party Pj ∈ Sq \ Z?, send (test, sid, PD, q, sqj) to Adv, where sqj = [s]q .
– If Adv sends (test, sid, PD, q, sqi) on the behalf of Pi to any Pj ∈ Sq , then record it.

Announcing Results of Consistency Tests:
– If for any Sq ∈ S, Adv requests an output from FAcast with sid

(PD,q)
ij corresponding to parties Pi ∈ Sq \ Z?

and Pj ∈ Sq , then the simulator provides output on the behalf of FAcast as follows.
• If Pj ∈ Sq \ Z?, then send the output (Pi,Acast, sid

(PD,q)
ij ,OKq(i, j)).

• If Pj ∈ (Sq ∩ Z?), then send the output (Pi,Acast, sid
(PD,q)
ij ,OKq(i, j)), if the message (test, sid, PD,

q, sqj) has been recorded on the behalf of Pj for party Pi and sqj = [s]q holds.
– If for any Sq ∈ S and any Pi ∈ Sq ∩ Z?, Adv sends (Pi,Acast, sid

(PD,q)
ij ,OKq(i, j)) to FAcast with sid

(PD,q)
ij

on the behalf of Pi for any Pj ∈ Sq , then the simulator records it. Moreover, if Adv requests for an output
from FAcast with sid

(PD,q)
ij , then the simulator sends the output (Pi,Acast, sid

(PD,q)
ij ,OKq(i, j)) on the behalf

of FAcast.
Construction of Core Sets and Public Announcement:

– For each Sq ∈ S, the simulator plays the role of PD and adds the edge (Pi, Pj) to the graphGD
q over the vertex

set Sq , if the following hold.
• Pi, Pj ∈ Sq .
• One of the following is true.

• Pi, Pj ∈ Sq \ Z?.
• If Pi ∈ Sq ∩Z? and Pj ∈ Sq \Z?, then the simulator has recorded (Pi,Acast, sid

(PD,q)
ij ,OKq(i, j))

sent by Adv on the behalf of Pi to FAcast with sid
(PD,q)
ij , and recorded (test, sid, PD, q, sqi) on the

behalf of Pi for Pj such that sqi = [s]q .
• If Pi, Pj ∈ Sq ∩ Z?, then the simulator has recorded (Pi,Acast, sid

(q)
ij ,OKq(i, j)) and (Pj ,Acast,

sid
(q)
ji ,OKq(j, i)) sent by Adv on behalf Pi and Pj to FAcast with sid

(PD,q)
ij and sid

(PD,q)
ji respec-

tively.
– For each Sq ∈ S, the simulator finds the set Cq which forms a clique in GD

q , such that Sq \ Cq ∈ Z . When
Adv requests output from FAcast with sidPD

, the simulator sends the output (sender,Acast, sidPD
, {Cq}Sq∈S)

on the behalf of FAcast.

Simulation When PD is Corrupt
In this case, the simulator SPVSS interacts with Adv during the various phases of ΠPVSS as follows.

Distribution of shares by PD: For q = 1, . . . , h, if Adv sends (dist, sid, PD, q, v) on the behalf of PD to any party
Pi ∈ Sq \ Z?, then the simulator records it and sets sqi to be v.

Pairwise Consistency Tests: For each Sq ∈ S such that Sq ∩ Z? 6= ∅, corresponding to each party Pi ∈ Sq ∩ Z?

and each Pj ∈ Sq \ Z?, the simulator does the following.

Simulator SPVSS
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– If sqj has been set to some value, then send (test, sid, PD, q, sqj) to Adv on the behalf of Pj .
– If Adv sends (test, sid, PD, q, sqi) on the behalf of Pi to Pj , then record it.

Announcing Results of Consistency Tests:
– If for any Sq ∈ S, Adv requests an output from FAcast with sid

(PD,q)
ij corresponding to parties Pi ∈ Sq \ Z?

and Pj ∈ Sq , then the simulator provides the output on the behalf of FAcast as follows, if sqi has been set to
some value.
• If Pj ∈ Sq \ Z?, then send the output (Pi,Acast, sid

(PD,q)
ij ,OKq(i, j)), if sqj has been set to some value

and sqi = sqj holds.
• If Pj ∈ Sq ∩ Z?, then send the output (Pi,Acast, sid

(PD,q)
ij ,OKq(i, j)), if (test, sid, PD, q, sqj) sent by

Adv on the behalf of Pj to Pi has been recorded and sqj = sqi holds.
– If for any Sq ∈ S and any Pi ∈ Sq ∩ Z?, Adv sends (Pi,Acast, sid

(PD,q)
ij ,OKq(i, j)) to FAcast with sid

(PD,q)
ij

on the behalf of Pi for any Pj ∈ Sq , then the simulator records it. Moreover, if Adv requests for an output
from FAcast with sid

(PD,q)
ij , then the simulator sends the output (Pi,Acast, sid

(PD,q)
ij ,OKq(i, j)) on the behalf

of FAcast.
Construction of Core Sets: For each Sq ∈ S, the simulator plays the role of the honest parties Pi ∈ Sq \ Z? and
adds the edge (Pj , Pk) to the graph G(i)

q over vertex set Sq , if the following hold.
– Pj , Pk ∈ Sq .
– One of the following is true.
• If Pj , Pk ∈ Sq \ Z?, then the simulator has set sqj and sqk to some values, such that sqj = sqk.
• If Pj ∈ Sq ∩Z? and Pk ∈ Sq \Z?, then the simulator has recorded (Pj ,Acast, sid

(PD,q)
jk ,OKq(j, k)) sent

by Adv on the behalf of Pj to FAcast with sid
(PD,q)
jk , and recorded (test, sid, PD, q, sqj) on the behalf of

Pj for Pk and has set sqk to a value such that sqj = sqk.
• If Pj , Pk ∈ Sq ∩ Z?, then the simulator has recorded (Pj ,Acast, sid

(PD,q)
jk ,OKq(j, k)) and (Pk,Acast,

sid
(PD,q)
kj ,OKq(k, j)) sent by Adv on behalf of Pj and Pk respectively to FAcast with sid

(PD,q)
jk and

FAcast with sid
(PD,q)
kj .

Verification of Core Sets and Interaction with FVSS:
• If Adv sends (sender,Acast, sidPD

, {Cq}Sq∈S) to FAcast with sidPD
on the behalf of PD, then the simulator

records it. Moreover, if Adv requests an output from FAcast with sidPD
, then on the behalf of FAcast, the

simulator sends the output (PD,Acast, sidPD
, {Cq}Sq∈S).

• If simulator has recorded the sets {Cq}Sq∈S, then it plays the role of the honest parties and verifies if C1, . . . , Ch
are valid by checking if each Sq \ Cq ∈ Z and if each Cq constitutes a clique in the graph G(i)

q of every party
Pi ∈ P \ Z?. If C1, . . . , Ch are valid, then the simulator sends (share, sid, PD, {sq}Sq∈S) to FVSS, where sq
is set to sqi corresponding to any Pi ∈ Cq \ Z?.

Figure 7: Simulator for the protocol ΠPVSS where Adv corrupts the parties in set Z? ∈ Z .

We now prove a series of claims which will help us prove the theorem. We start with an honest PD.

Claim 3.3. If PD is honest, then the view of Adv in the simulated execution of ΠPVSS with SPVSS is
identically distributed to the view of Adv in the real execution of ΠPVSS involving honest parties.

Proof. Let S? def= {Sq ∈ S | Sq ∩ Z? 6= ∅}. Then the view of Adv during the various executions consists of
the following.

– The shares {[s]q}Sq∈S? distributed by PD: In the real execution, Adv receives [s]q from PD for each
Sq ∈ S?. In the simulated execution, the simulator provides this to Adv on behalf of PD. Clearly, the
distribution of the shares is identical in both the executions.

– Corresponding to every Sq ∈ S?, messages (test, sid, PD, q, sqj) received from party Pj ∈ Sq \Z?,
as part of pairwise consistency tests, where sqj = [s]q: While each Pj sends this to Adv in the
real execution, the simulator sends this on the behalf of Pj in the simulated execution. Clearly, the
distribution of the messages is identical in both the executions.
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– For every Sq ∈ S and every Pi, Pj ∈ Sq, the outputs OKq(Pi,Acast, sid
(PD,q)
ij ,OKq(i, j)) of the

pairwise consistency tests, received as output from FAcast with sid
(PD,q)
ij : To compare the distribu-

tion of these messages in the two executions, we consider the following cases, considering an arbitrary
Sq ∈ S and arbitrary Pi, Pj ∈ Sq.

– Pi, Pj ∈ Sq \Z?: In both the executions, Adv receives OKq(Pi,Acast, sid
(PD,q)
ij ,OKq(i, j)) as the

output from FAcast with sid
(PD,q)
ij .

– Pi ∈ Sq \ Z?, Pj ∈ (Sq ∩ Z?): In both the executions, Adv receives OKq(Pi,Acast, sid
(PD,q)
ij ,

OKq(i, j)) as the output from FAcast with sid
(PD,q)
ij if and only if Adv sent (test, sid, PD, q, sqj)

on the behalf of Pj to Pi such that sqj = [s]q holds.
– Pi ∈ (Sq ∩ Z?): In both the executions, Adv receives OKq(Pi,Acast, sid

(q)
ij ,OKq(i, j)) if and

only if Adv on the behalf of Pi has sent (Pi,Acast, sid
(PD,q)
ij ,OKq(i, j)) to FAcast with sid

(PD,q)
ij

for Pj .
Clearly, irrespective of the case, the distribution of the OKq messages is identical in both the execu-
tions.

– The core sets {Cq}Sq∈S: In both the executions, the sets Cq are determined based on the OKq messages
delivered to PD. So the distribution of these sets is also identical.

We next claim that if the dealer is honest, then conditioned on the view of the adversary Adv (which is
identically distributed in both the executions, as per the previous claim), the outputs of the honest parties are
identically distributed in both the executions.

Claim 3.4. If PD is honest, then conditioned on the view of Adv, the outputs of the honest parties during
the execution of ΠPVSS involving Adv has the same distribution as the outputs of the honest parties in the
ideal-world involving SPVSS and FVSS.

Proof. Let PD be honest and let View be an arbitrary view of Adv. Moreover, let {sq}Sq∩Z? 6=∅ be the shares
of the corrupt parties, as per View. Furthermore, let {sq}Sq∩Z?=∅ be the shares used by PD in the simulated

execution, corresponding to the set Sq ∈ S, such that Sq ∩Z? = ∅. Let s
def
=

∑
Sq∩Z? 6=∅

sq +
∑

Sq∩Z?=∅

sq. Then

in the simulated execution, each honest party Pi obtains the output {[s]q}Pi∈Sq from FVSS, where [s]q = sq.
We now show that Pi eventually obtains the output {[s]q}Pi∈Sq in the real execution as well, if PD’s inputs
in the protocol ΠPVSS are {sq}Sq∈S.

SincePD is honest, it sends the share sq to all the parties in the set Sq, which is eventually delivered. Now
consider an arbitrary Sq ∈ S. During the pairwise consistency tests, each honest Pk ∈ Sq will eventually
send sqk = sq to all the parties in Sq. Consequently, every honest Pj ∈ Sq will eventually broadcast the
message OKq(j, k), corresponding to every honest Pk ∈ Sq. This is because sqj = sqk = sq will hold.
These OKq(j, k) messages are eventually received by every honest party, including PD. This implies that
the parties in Sq \Z? will eventually form a clique in the graph G(i)

q of every honest Pi. This further implies
that PD will eventually find a set Cq where Sq \ Cq ∈ Z and where Cq constitutes a clique in the consistency
graph of every honest party. This is because the set Sq \ Z? is guaranteed to eventually constitute a clique.
Hence PD eventually broadcasts the sets {Cq}Sq∈S, which are eventually delivered to every honest party.
Moreover, the verification of these sets will eventually be successful for every honest party.

Next, consider an arbitrary honest Pi ∈ Sq. If Pi ∈ Cq, then it has already received the share sq from
PD and sqi = sq holds. Hence, Pi sets [s]q to sq. So consider the case when Pi 6∈ Cq. In this case, Pi
sets [s]q based on the supposedly common values sqj received from the parties Pj ∈ Sq as part of pairwise

19



consistency tests. Specifically, Pi checks for a subset of parties C′q ⊆ Cq, where Cq \ C′q ∈ Z , such that every
party Pj ∈ C′q has sent the same sqj value to Pi as part of the pairwise consistency test. If Pi finds such a set
C′q, then it sets [s]q to the common sqj . To complete the proof, we need to show that Pi will eventually find
such a set C′q, and if such a set C′q is found by Pi, then the common sqj is the same as sq.

Assuming that Pi eventually finds such a C′q, the proof that the common sqj is the same as sq follows
from the fact that C′q is guaranteed to contain at least one honest party from Cq, who would have received the
share sqj = sq from PD and sent to Pi as part of the pairwise consistency test. This is because Z satisfies
the Q(4)(P,Z) condition. Also, since the Q(4)(P,Z) condition is satisfied, the set of honest parties in Cq,
namely the parties in Cq \Z?, always constitute a candidate C′q set. This is because every party Pj ∈ Cq \Z?
would have sent sqj = sq to every party in Sq during the pairwise consistency test, and these values are
eventually delivered.

We next prove certain claims with respect to a corrupt dealer. The first claim is that the view of Adv in
this case is also identically distributed in both the real as well as simulated execution. This is simply because
in this case, the honest parties have no inputs and the simulator simply plays the role of the honest parties
exactly as per the steps of the protocol ΠPVSS in the simulated execution.

Claim 3.5. If PD is corrupt, then the view of Adv in the simulated execution of ΠPVSS with SPVSS is
identically distributed as the view of Adv in the real execution of ΠPVSS involving honest parties.

Proof. The proof follows from the fact that if PD is corrupt, then SPVSS participates in a full execution of
the protocol ΠPVSS, by playing the role of the honest parties as per the steps of ΠPVSS. Hence, there is a
one-to-one correspondence between simulated executions and real executions.

We finally claim that if the dealer is corrupt, then conditioned on the view of the adversary (which
is identical in both the executions as per the last claim), the outputs of the honest parties are identically
distributed in both the executions.

Claim 3.6. If D is corrupt, then conditioned on the view of Adv, the output of the honest parties during
the execution of ΠPVSS involving Adv has the same distribution as the output of the honest parties in the
ideal-world involving SPVSS and FVSS.

Proof. Let PD be corrupt and let View be an arbitrary view of Adv. We note that whether valid core sets
{Cq}Sq∈S have been generated during the corresponding execution of ΠPVSS or not can be found out from
View. We now consider the following cases.

– No core sets {Cq}Sq∈S are generated as per View: In this case, the honest parties do not obtain any
output in either execution. This is because in the real execution of ΠPVSS, the honest parties compute
their output only when they get valid core sets {Cq}Sq∈S from PD’s broadcast. If this is not the case,
then in the simulated execution, the simulator SPVSS does not provide any input to FVSS on behalf of
PD; hence, FVSS does not produce any output for the honest parties.

– Core sets {Cq}Sq∈S generated as per View are invalid: Again, in this case, the honest parties do not
obtain any output in either execution. This is because in the real execution of ΠPVSS, even if the sets
{Cq}Sq∈S are received from PD’s broadcast, the honest parties compute their output only when each
set Cq is found to be valid with respect to the verifications performed by the honest parties in their
own consistency graphs. If these verifications fail (implying that the core sets are invalid), then in
the simulated execution, the simulator SPVSS does not provide any input to FVSS on behalf of PD,
implying that FVSS does not produce any output for the honest parties.

– Valid core sets {Cq}Sq∈S are generated as per View: We first note that in this case, PD has distributed
some common share, say sq, determined by View, to all the parties in Cq \Z? during the real execution
of ΠPVSS. This is because all the parties in Cq \ Z? are honest, and form a clique in the consistency
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graph of the honest parties. Hence, each Pj , Pk ∈ Cq \ Z? has broadcasted the messages OKq(j, k)
and OKq(k, j) after checking that sqj = sqk holds, where sqj and sqk are the shares received from PD

by Pj and Pk respectively.
We next show that in the real execution of ΠPVSS, every party in Sq \ Z?, eventually sets [s]q = sq.
While this is true for the parties in Cq \Z?, we consider an arbitrary party Pi ∈ Sq \ (Z? ∪ Cq). From
the protocol steps, Pi checks for a subset of parties C′q ⊆ Cq where Cq \ C′q ∈ Z , such that every party
Pj ∈ C′q has sent the same sqj value to Pi as part of the pairwise consistency test. If Pi finds such a
set C′q, then it sets [s]q to the common sqj . We next argue that Pi will eventually find such a set C′q and
if such a set C′q is found by Pi, then the common sqj is the same as sq. The proof for this is exactly
the same, as for Claim 3.4.
Thus, in the real execution, every honest party Pi eventually outputs {[s]q = sq}Pi∈Sq . From the
steps of SPVSS, the simulator sends the shares {sq}Sq∈S to FVSS on the behalf of PD in the simulated
execution. Consequently, in the ideal world, FVSS will eventually deliver the shares {[s]q = sq}Pi∈Sq

to every honest Pi. Hence, the outputs of the honest parties are identical in both worlds.

The proof of the theorem now follows from Claims 3.3-3.6.

Computational Complexity of the Protocol ΠPVSS. In ΠPVSS, the most computationally-expensive step
is to compute the core sets. This can always be done with computation complexity O(poly(n, |Z|)). For
instance, to check for the existence of a core set Cq, the dealer PD can do the following after every update in
its consistency graph GD

q : for every Zi ∈ Z , check if there exists an edge in the graph GD
q , between every

pair of parties in Sq \ Zi. This may require iterating over the entire Z and within each iteration, checking
for the presence of a clique will further require O(poly(n)) computational effort. Since there can be O(n2)
updates in the graph GD

q , the existence of Cq can be verified with O(poly(n, |Z|)) computational effort.

Reducing the Broadcast Complexity of the Protocol ΠPVSS. Protocol ΠPVSS, as presented in Fig 6,
has a broadcast complexity proportional to the size of Z . More specifically, in the protocol, PD needs to
compute a core set Cq corresponding to each Sq ∈ S. For finding these core sets, every (honest) party needs
to broadcast an OKq message for every other (honest) party by calling FAcast. This results in the number of
bits broadcasted being proportional to |S|, where |S| = |Z| in our case. A small modification to the protocol
can make the broadcast complexity independent of |Z|. The idea is to let every party broadcast a single OK
message for every other party if the pairwise consistency test with that party is successful across all the sets
Sq to which both the parties belong. In more detail, party Pi sends an OK(i, j) message to FAcast, only after
checking whether sqi = sqj holds corresponding to every Sq ∈ S, such that Pj ∈ Sq holds. Consequently,
PD now checks for the presence of a single core set C, such that all the following hold.9

– For every Pi, Pj ∈ C, the messages OK(i, j) and OK(j, i) have been received from the corresponding
FAcast instances.

– For q = 1, . . . , |S|, C ⊆ Sq
– For q = 1, . . . , |S|, Sq \ C ∈ Z .

Upon finding such a C, the dealer broadcasts it by sending it to FAcast. Note that such a set C is eventually
obtained for an honest PD. This is because the set of parties (S1\Z?)∩. . .∩(Sq\Z?) constitutes a candidate
C for an honest PD, where Z? is the set of corrupt parties. The rest of the steps of the protocol remain the
same. With these modifications, the communication complexity of the protocol ΠPVSS is computed as
follows. The dealer needs to send the share s(q) to all the parties in Sq, and every party in Sq has to send
the received share to every other party in Sq during pairwise consistency tests. This incurs a communication

9Checking for the existence of such a C can be always performed with O(poly(n, |Z|)) computational effort.

21



of O(|Z| · n2 log |F|) bits, since each |Sq| = O(n) and each share s(q) can be represented by log |F| bits.
There will be total O(n2) OK messages broadcasted, where each message can be represented by O(log n)
bits, since it represents the index of two parties. Moreover, PD will broadcast a single core set C of size
O(n log n) bits. Based on this discussion, we next state the following theorem for the modified version of
ΠPVSS.

Theorem 3.7. Consider a static malicious adversary Adv characterized by an adversary-structure Z , satis-

fying the Q(4)(P,Z) condition and let S = {S1, . . . , Sh}
def
= {P \ Z|Z ∈ Z} be the sharing specification.

Then protocol ΠPVSS UC-securely realizes the functionality FVSS with perfect security in the FAcast-hybrid
model, in the presence of Adv. The protocol makes O(n2) calls to FAcast with O(log n) bit messages, one
call to FAcast with O(n log n) bit message and additionally incurs a communication of O(|Z| · n2 log |F|)
bits.

By replacing the calls to FAcast with protocol ΠAcast, the protocol incurs a total communication of
O(|Z| · n2 log |F|+ n4 log n) bits.

3.1.1 Asynchronous Reconstruction Protocols

Let s be a value which is secret-shared with respect to some sharing specification S = {S1, . . . , S|S|}, such
that S satisfies the Q(2)(S,Z) condition. We first present a protocol ΠPerRecShare which allows all parties
in P to reconstruct a single share [s]q corresponding to any designated set Sq ∈ S. In the protocol, every
party in Sq sends the share [s]q to all the parties outside Sq, which then “filter” out the potentially incorrect
versions of [s]q and output [s]q. Protocol ΠPerRecShare is formally presented in Figure 8.

• Sending Share to All Parties: If Pi ∈ Sq , then execute the following steps.

1. On having the share [s]q , send (share, sid, q, [s]q) to all the parties in P \ Sq .

• Computing Output: Based on the following conditions, execute the corresponding steps.

1. Pi ∈ Sq: Output [s]q .
2. Pi /∈ Sq: Upon receiving (share, sid, q, v) from a set of parties S′

q ⊆ Sq such that Sq \ S′
q ∈ Z , output

[s]q = v.

Protocol ΠPerRecShare(q)

Figure 8: Perfectly-secure reconstruction protocol for session id sid to publicly reconstruct the share [s]q correspond-
ing to Sq ∈ S. The public inputs are P , Z and S. The above steps are executed by every Pi ∈ P

Lemma 3.8. Let Z be an adversary structure and let S = {S1, . . . , S|S|} be a sharing specification, such
that S satisfies the Q(2)(S,Z) condition. Moreover, let s be a value, which is secret-shared as per S.
Then for any q ∈ {1, . . . , |S|} and any adversary Adv corrupting a set of parties Z? ∈ Z , all honest
parties eventually output the share [s]q in the protocol ΠPerRecShare. The protocol incurs a communication
of O(n2 log |F|) bits.

Proof. Consider an arbitrary honest party Pi ∈ P . We consider two cases.

– Pi ∈ Sq: In this case, Pi outputs [s]q.

– Pi /∈ Sq: In this case, Pi waits for a subset of parties S′q ⊆ Sq where Sq \ S′q ∈ Z , such that every
party Pj ∈ S′q has sent the same share v to Pi. If Pi finds such a set S′q, then it outputs v. To complete
the proof, we need to show that Pi will eventually find such a set S′q and if such a set S′q is found by
Pi, then the common value v is the same as [s]q.
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Assuming that Pi eventually finds such a common S′q, the proof that the common value v is the same
as [s]q follows from the fact that S′q is guaranteed to contain at least one honest party from Sq, who
would have sent the share [s]q to Pi. This is because the Q(2)(S,Z) condition is satisfied. Also, since
the Q(2)(S,Z) condition is satisfied, the set of honest parties in Sq, namely the parties in Sq \ Z?,
always constitute a candidate S′q set. This is because every party Pj ∈ Sq \ Z? would have sent [s]q
to Pi and these values are eventually delivered to Pi.

The communication complexity follows from the protocol steps.

We now present the protocol ΠPerRec (Fig 9), which allows all parties in P to reconstruct a secret shared
value s. The idea is to run an instance of ΠPerRecShare for each Sq ∈ S, and to sum up the shares obtained as
the output from each instance.

• Reconstructing Shares: For each Sq ∈ S, participate in an instance ΠPerRecShare(q) with sid to obtain the
output [s]q .

• Output Computation: Output s =
∑
Sq∈S

[s]q .

Protocol ΠPerRec

Figure 9: Perfectly-secure reconstruction protocol for session id sid to reconstruct a shared value s. The public inputs
of the protocol are P,S and Z . The above steps are executed by every Pi ∈ P

The properties of the protocol ΠPerRec are stated in Lemma 3.9, which follow from the protocol steps
and Lemma 3.8.

Lemma 3.9. Let Z be an adversary structure and let S = {S1, . . . , S|S|} be a sharing specification, such
that S satisfies the Q(2)(S,Z) condition. Moreover, let s be a value which is secret-shared as per S. Then for
every adversary Adv corrupting a set of partiesZ? ∈ Z , all honest parties eventually output s in the protocol
ΠPerRecShare. The protocol incurs a communication of O(|S| · n2 log |F|) bits, which is O(|Z| · n2 log |F|)
bits if |S| = |Z|.

3.2 Perfectly-Secure Multiplication Protocol

We next present a perfectly-secure multiplication protocol which takes input {([a(`)], [b(`)])}`=1,...,M

and outputs {[c(`)]}`=1,...,M , where c(`) = a(`)b(`), without revealing any additional information about
{a(`), b(`)}`=1,...,M . We first explain and present the protocol assuming M = 1, where the inputs are [a] and
[b] and the goal is to securely generate a random sharing [ab] of ab. The modifications to handle M pairs of
inputs are straightforward.

We briefly recall the high-level idea behind our multiplication protocol which had been discussed in
detail in Section 1.1. We first design an asynchronous optimistic multiplication protocol ΠOptMult which
takes as input a set Z ∈ Z and generates a secret-sharing of ab, provided Adv corrupts a set of parties
Z? ⊆ Z. Using protocol ΠOptMult, the parties then proceed in iterations, where in each iteration, the parties
run an instance of the asynchronous ΠOptMult for each Z ∈ Z . They then compare the outputs from each
instance to detect if the corrupt parties cheated in any of the instances, and proceed to the respective cheater-
identification phase if any cheating is detected. An iteration “fails” if cheating is detected in the form of
a pair of “conflicting” ΠOptMult instances, where the resultant secret-shared outputs are different. If this
happens, then the parties temporarily “wait-list” all the parties who have shared any summand during the
conflicting instances of ΠOptMult for that iteration. The summand-sharing parties stay on the waiting-list till
they complete all their supposed tasks in the corresponding cheater-identification phase, after which they
are “released” to participate in instances of ΠOptMult in future iterations. This mechanism ensures that if
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an iteration fails, then the cheating parties from that iteration cannot participate in future iterations till they
participate in the pending cheater identification phase of the failed iteration, in which case they are eventually
discarded by all honest parties. This process is repeated till the parties reach a “successful” iteration where
no cheating is detected (where the outputs of all the ΠOptMult instances are the same). We will show that
there will be at most t(tn + 1) + 1 iterations within which a successful iteration is reached, where t is the
cardinality of the maximum-sized subset in Z .

Based on the above discussion, we next present protocols ΠOptMult,ΠMultCI and ΠMult. Protocol ΠMultCI

(multiplication with cheater-identification) represents an iteration as discussed above. In the protocol, the
parties run an instance of ΠOptMult for each Z ∈ Z . If a pair of conflicting ΠOptMult instances with different
outputs are identified, then the parties proceed to execute the corresponding cheater-identification phase.
Protocol ΠMult iteratively calls ΠMultCI multiple times till it reaches a “successful” instance of ΠMultCI,
where the outputs of all the instances of ΠOptMult are the same. Across all the instances of these protocols,
the parties maintain the following dynamic sets:

– W(i)
iter: Denotes the parties wait-listed by Pi corresponding to instance number iter of ΠMultCI during

ΠMult. If Pi detects any cheating during the instance number iter of ΠMultCI with a pair of conflicting
ΠOptMult instances, then all the summand-sharing parties from the conflicting instances are included
inW(i)

iter. These parties are removed fromW(i)
iter as and when they execute their respective steps of the

corresponding cheater-identification phase.
– LD(i)

iter: The set of parties fromW(i)
iter which are locally discarded by Pi during the cheater-identification

phase of instance number iter of ΠMultCI in ΠMult.
– GD: Denotes the set of parties, globally discarded by all (honest) parties across various instances of

ΠMultCI in protocol ΠMult.10

Looking ahead, these sets will be maintained in such a way that no honest party is ever included in the GD
and LD(i)

iter sets of any honest Pi. Moreover, any honest party which is included in the W(i)
iter set of any

honest Pi will eventually be removed. Consequently, it will be ensured that each honest party is allowed
to eventually participate in all the instances of ΠOptMult and hence all the instances of ΠOptMult eventually
produce some output and never get stuck forever.

3.2.1 Optimistic Multiplication Protocol

Protocol ΠOptMult is executed with respect to a given Z ∈ Z and iteration number iter. The inputs of
the protocol are [a] and [b]. The protocol is guaranteed to eventually generate an output, which will be
[ab] if no party outside the set Z behaves maliciously. The idea behind the protocol is as follows. Since
ab =

∑
(p,q)∈{1,...,|S|}×{1,...,|S|}[a]p[b]q, a secret-sharing of ab can be computed locally from secret-sharing

of the summands [a]p[b]q, owing to the linearity property of the secret-sharing. If Z satisfies the Q(4)(P,Z)
condition, each (Sp ∩Sq) \Z contains at least one honest party. Since the parties may not know the identity
of the honest parties in the set (Sp ∩Sq) \Z, every party in (Sp ∩Sq) \Z tries to secret-share the summand
[a]p[b]q. For the sake of efficiency, instead of sharing a single summand, each party in P \ Z tries to act as
a summand-sharing party and shares the sum of all the summands it is “capable” of. To ensure that each
summand [a]p[b]q is secret-shared exactly by one party, the parties select distinct summand-sharing parties
in hops. The summands whose sum has been shared by the elected party are “marked” as shared, ensuring
that they are not considered in future hops. To agree on the summand-sharing party of each hop, the parties
execute an instance of the agreement on common subset (ACS) primitive [4], where one instance of ABA is
invoked on the behalf of each candidate summand-sharing party. While voting for a candidate party from

10The reason for two different discarded sets is that the various instances of cheater-identification corresponding to the failed
ΠMultCI instances are executed asynchronously, thus resulting in a corrupt party to be identified by different honest parties during
different iterations.
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P \Z during a hop, the parties ensure that the candidate has indeed secret-shared some sum and additionally
satisfies the following conditions:

– The candidate party has not been selected in an earlier hop.
– The candidate party does not belong to the waiting list or the list of locally-discarded parties of any

previous iteration.
– The candidate does not belong to the list of globally-discarded parties.

– Initialization
• Initialize summand-index-set of indices of all summands : SIS(Z,iter) = {(p, q)}p,q=1,...,|S|.
• Initialize the summand-index-set corresponding to Pj ∈ P \ Z : SIS

(j)
(Z,iter) = {(p, q)}Pj∈Sp∩Sq .

• Initialize the set of summands-sharing parties : Selected(Z,iter) = ∅.
• Initialize the hop number hop = 1.

– While SIS(Z,iter) 6= ∅, do the following:
• Sharing Sum of Summands:

1. If Pi /∈ Z and Pi /∈ Selected(Z,iter), then compute c(i)(Z,iter) =
∑

(p,q)∈SIS
(i)

(Z,iter)

[a]p[b]q . Randomly

select the shares c(i)(Z,iter)1
, . . . , c

(i)
(Z,iter)h

, such that c(i)(Z,iter)1
+ . . .+ c

(i)
(Z,iter)h

= c
(i)
(Z,iter). Call FVSS

with (dealer, sidhop,i,iter,Z , (c
(i)
(Z,iter)1

, . . . , c
(i)
(Z,iter)h

)), where sidhop,i,iter,Z = hop||sid||i||iter||Z.a

2. Keep requesting for an output from FVSS with sidhop,j,iter,Z , corresponding to every Pj ∈ P \ Z,
till an output is received.

• Selecting Summand-Sharing Party Through ACS:

1. For j = 1, . . . , n, send (vote, sidhop,j,iter,Z , 1) to FABA, if all the following conditions hold:
– Pj /∈ GD;
– Pj /∈ Z;
– Pj /∈ Selected(Z,iter);
– ∀iter′ < iter, Pj /∈ W(i)

iter′ and Pj /∈ LD(i)
iter′ ;

– An output (share, sidhop,j,iter,Z , Pj , {[c(j)(Z,iter)]q}Pi∈Sq ) is received from FVSS, with
sidhop,j,iter,Z .

2. For j = 1, . . . , n, request for an output from FABA with sidhop,j,iter,Z , until an output is received.
3. Upon receiving (decide, sidhop,j,iter,Z , 1) from FABA with sidhop,j,iter,Z corresponding to any

Pj ∈ P , corresponding to each Pk ∈ P for which no vote message has been sent yet, send
(vote, sidhop,k,iter,Z , 0) to FABA with sidhop,k,iter,Z .

4. Once an output (decide, sidhop,j,iter,Z , vj) is received from FABA with sidhop,j,iter,Z for all j ∈
{1, . . . , n}, select the least indexed Pj , such that vj = 1. Then set hop = hop + 1 and update the
following.
– Selected(Z,iter) = Selected(Z,iter) ∪ {Pj}.
– SIS(Z,iter) = SIS(Z,iter) \ SIS

(j)
(Z,iter).

– ∀Pk ∈ P \ {Z ∪ Selected(Z,iter)}: SIS
(k)
(Z,iter) = SIS

(k)
(Z,iter) \ SIS

(j)
(Z,iter).

– ∀Pj ∈ P \ Selected(Z,iter), participate in an instance of ΠPerDefSh with input c(j)(Z,iter) = 0.

– Output {[c(1)(Z,iter)]q, . . . , [c
(n)
(Z,iter)]q, [c(Z,iter)]q}Pi∈Sq

, where c(Z,iter)
def
= c

(1)
(Z,iter) + . . .+ c

(n)
(Z,iter).

aThe notation sidhop,i,iter,Z is used to distinguish among the different calls to FVSS and FABA within each hop.

Protocol ΠOptMult(P,Z,S, [a], [b], Z, iter)

Figure 10: Optimistic multiplication in (FVSS,FABA)-hybrid for iteration iter and session id sid, assuming Z to be
corrupt. The above code is executed by each Pi, who implicitly uses the dynamic sets GD,W(i)

iter′ and LD(i)
iter′ for all

iter′ < iter
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We next formally prove the properties of the protocol ΠOptMult. While proving these properties, we
will assume that Z satisfies the Q(4)(P,Z) condition. This further implies that the sharing specification

S = {S1, . . . , Sh}
def
= {P \ Z|Z ∈ Z} satisfies the Q(3)(S,Z) condition. Moreover, we assume that for

every iter, the following conditions hold.
– No honest party is ever included in the set GD;
– All honest parties are eventually removed from the W(i)

iter′
,LD(i)

iter′
sets of every honest Pi for every

iter′ < iter
Looking ahead, these conditions are guaranteed in the protocols ΠMultCI and ΠMult (where these sets are
constructed and managed), where ΠOptMult is used as a subprotocol (see Lemma 3.27 and Claim 3.31 later).

Claim 3.10. For everyZ ∈ Z and every ordered pair (p, q) ∈ {1, . . . , |S|}×{1, . . . , |S|}, the set (Sp∩Sq)\Z
contains at least one honest party.

Proof. From the definition of the sharing specification S, we have Sp = P \ Zp and Sq = P \ Zq, where
Zp, Zq ∈ Z . Let Z? ∈ Z be the set of corrupt parties during the protocol ΠOptMult. If (Sp ∩ Sq) \ Z does
not contain any honest party, then it implies that ((Sp ∩ Sq) \ Z) ⊆ Z?. This further implies that P ⊆
Zp ∪Zq ∪Z ∪Z?, implying that Z does not satisfy the Q(4)(P,Z) condition, which is a contradiction.

Claim 3.11. For every Z ∈ Z , if all honest parties participate during the hop number hop in the protocol
ΠOptMult, then all honest parties eventually obtain a common summand-sharing party, say Pj , for this hop,
such that the honest parties will eventually hold [c

(j)
(Z,iter)]. Moreover, party Pj will be distinct from the

summand-sharing party selected for any hop number hop′ < hop.

Proof. Since all honest parties participate in hop number hop, it follows that SIS(Z,iter) 6= ∅ at the beginning
of hop number hop. This implies that there exists at least one ordered pair (p, q) ∈ SIS(Z,iter). From Claim
3.10, there exists at least one honest party in (Sp∩Sq)\Z, say Pk, who will have both the shares [a]p as well
as [b]q (and hence the summand [a]p[b]q). We also note that Pk would not have been selected as the common
summand-sharing party in any previous hop′ < hop, as otherwise, Pk would have already included the
summand [a]p[b]q in the sum c

(k)
(Z,iter) shared by Pk during hop number hop′, implying that (p, q) 6∈ SIS(Z,iter).

Now, during the hop number hop, party Pk will randomly secret-share the sum c
(k)
(Z,iter) by making a call to

FVSS, and every honest Pi will eventually receive an output (share, sidhop,k,iter,Z , Pk, {[c
(k)
(Z,iter)]q}Pi∈Sq)

from FVSS with sidhop,k,iter,Z . Moreover, Pk will not be present in the set GD and if Pk is present in the
setsW(i)

iter′
,LD(i)

iter′
of any honest Pi for any iter′ < iter, then will eventually be removed from these sets.11

We next claim that during the hop number hop, there will be at least one instance of FABA corresponding to
which all honest parties eventually receive the output 1. For this, we consider two possible cases:

– At least one honest party participates with input 0 in theFABA instance corresponding to Pk: Let Pi be
an honest party, who sends (vote, sidhop,k,iter,Z , 0) to FABA with sidhop,k,iter,Z . Then from the steps of
ΠOptMult, it follows that there exists some Pj ∈ P , such that Pi has received (decide, sidhop,j,iter,Z , 1)
as the output from FABA with sidhop,j,iter,Z . Hence, every honest party will eventually receive the
output (decide, sidhop,j,iter,Z , 1) as the output from FABA with sidhop,j,iter,Z .

– No honest party participates with input 0 in theFABA instance corresponding to Pk: In this case, every
honest party will eventually send (vote, sidhop,k,iter,Z , 1) to FABA with sidhop,k,iter,Z and eventually
receives the output (decide, sidhop,k,iter,Z , 1) from FABA.

Now, based on the above claim, we can further claim that all honest parties will eventually participate with
some input in all the n instances of FABA invoked during the hop number hop and hence, all the n instances

11Recall that we are assuming that no honest party is ever included in the set GD and all honest parties are eventually removed
from theW(i)

iter′ ,LD
(i)

iter′ sets of every honest Pi for every iter′ < iter.
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of FABA during the hop number hop will eventually produce an output. Since the summand-sharing party
for hop number hop corresponds to the least indexed FABA instance in which all the honest parties obtain 1
as the output, it follows that eventually, the honest parties will select a summand-sharing party. Moreover,
this summand-sharing party will be common, as it is based on the outcome of FABA instances.

Let Pj be the summand-sharing party for the hop number hop. We next show that the hon-
est parties will eventually hold [c

(j)
(Z,iter)]. For this, we note that since Pj has been selected as

the summand-sharing party, at least one honest party, say Pi, must have sent (vote, sidhop,j,iter,Z , 1)
to FABA with sidhop,j,iter,Z . If not, then FABA with sidhop,j,iter,Z will never produce the output
(decide, sidhop,j,iter,Z , 1) and hence, Pj will not be the summand-sharing party for the hop number
hop. Now since Pi sent (vote, sidhop,j,iter,Z , 1) to FABA, it follows that Pi has received an output
(share, sidhop,j,iter,Z , Pj , {[c

(j)
(Z,iter)]q}Pi∈Sq) from FVSS with sidhop,j,iter,Z . This implies that Pj must have

sent the message (dealer, sidhop,j,iter,Z , (c
(j)
(iter,Z)1

, . . . , c
(j)
(iter,Z)h

)) to FVSS with sidhop,j,iter,Z . Consequently,
every honest party will eventually receive their respective outputs from FVSS with sidhop,j,iter,Z and hence,
the honest parties will eventually hold [c

(j)
(Z,iter)].

Finally, to complete the proof of the claim, we need to show that party Pj is different from the summand-
sharing parties selected during the hops 1, . . . , hop− 1. If Pj has been selected as a summand-sharing party
for any hop number hop′ < hop, then no honest party ever sends (vote, sidhop,j,iter,Z , 1) to FABA with
sidhop,j,iter,Z . Consequently, FABA with sidhop,j,iter,Z will never send the output (decide, sidhop,j,iter,Z , 1)
to any honest party and hence Pj will not be selected as the summand-sharing party for hop number hop,
which is a contradiction.

Claim 3.12. In protocol ΠOptMult, all honest parties eventually obtain an output. The protocol makesO(n2)
calls to FVSS and FABA.

Proof. From Claim 3.10 and 3.11, it follows that the number of hops in the protocol isO(n), as in each hop
a new summand-sharing party is selected and if all honest parties are included in the set of summand-sharing
parties Selected(Z,iter), then SIS(Z,iter) becomes ∅. The proof now follows from the fact that in each hop,
there are O(n) calls to FVSS and FABA.

Claim 3.13. In protocol ΠOptMult, if no party in P \ Z behaves maliciously, then for each Pi ∈
Selected(Z,iter), the condition c(i)

(Z,iter) =
∑

(p,q)∈SIS(i)
(Z,iter)

[a]p[b]q holds and c(Z,iter) = ab.

Proof. From the protocol steps, it follows that Selected(Z,iter) ∩ Z = ∅, as no honest part ever votes
for any party from Z as a candidate summand-sharing party during any hop in the protocol. Now since
Selected(Z,iter) ⊆ (P \ Z), if no party in P \ Z behaves maliciously, then it implies that every party

Pi ∈ Selected(Z,iter) behaves honestly and secret-shares c(i)
(Z,iter) by calling FVSS, where

c
(i)
(Z,iter) =

∑
(p,q)∈SIS(i)

(Z,iter)

[a]p[b]q.

Moreover, from the protocol steps, it follows that for every Pj , Pk ∈ Selected(Z,iter):

SIS
(j)
(Z,iter) ∩ SIS

(k)
(Z,iter) = ∅.

To prove this, suppose Pj and Pk are included in Selected(Z,iter) during hop number hopj and hopk respec-
tively, where without loss of generality, hopj < hopk. Then from the protocol steps, during hopj , the parties
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would set SIS
(k)
(Z,iter) = SIS

(k)
(Z,iter) \ SIS

(j)
(Z,iter). This ensures that during hopk, there exists no ordered pair

(p, q) ∈ {1, . . . , |S|} × {1, . . . , |S|}, such that (p, q) ∈ SIS
(j)
(Z,iter) ∩ SIS

(k)
(Z,iter).

If all the parties Pi ∈ Selected(Z,iter) behave honestly, then from the protocol steps, it also follows that :⋃
Pi∈Selected(Z,iter)

SIS
(i)
(Z,iter) = {(p, q)}p,q=1,...,|S|.

Finally, from the protocol steps, it follows that ∀Pj ∈ P \ Selected(Z,iter), the condition c(j)
(Z,iter) = 0 holds.

Now since c(Z,iter) = c
(1)
(Z,iter) + . . .+ c

(n)
(Z,iter), it follows that if no party in P \ Z behaves maliciously, then

c(Z,iter) = ab holds.

Claim 3.14. In ΠOptMult, no additional information about a and b is leaked to Adv.

Proof. Let Z? ∈ Z be the set of corrupt parties. To prove the claim, we argue that in the protocol, Adv does
not learn any additional information about the shares {[a]p, [b]p}Sp∩Z?=∅. For this, consider an arbitrary
summand [a]p[b]q where Sp∩Z? = ∅ and where q ∈ {1, . . . , |S|}. Clearly, the summand [a]p[b]q will not be
available with any party in Z?. Let Pj be the party from Selected(Z,iter), such that (p, q) ∈ SIS

(j)
(Z,iter); i.e. the

summand [a]p[b]q is included by Pj while computing the summand-sum c
(j)
(Z,iter). Clearly Pj is honest, since

Pj 6∈ Z?. In the protocol, party Pj randomly secret-shares the summand-sum c
(j)
(Z,iter) by supplying a random

vector of shares for c(j)
(Z,iter) to the corresponding FVSS. Now, since S is Z-private, it follows that the shares

{[c(j)
(Z,iter)]r}Sr∩Z? 6=∅ learnt by Adv in the protocol will be independent of the summand [a]p[b]q and hence,

independent of [a]p. Using a similar argument, we can conclude that the shares learnt by Adv in the protocol
will be independent of the summands [a]q[b]p (and hence independent of [b]p), where Sp ∩ Z? = ∅, and
where q ∈ {1, . . . , |S|}.

The proof of Lemma 3.15 now follows from Claims 3.10-3.14.

Lemma 3.15. Let Z satisfy the Q(4)(P,Z) condition and let S = {P \ Z|Z ∈ Z}. Consider an arbitrary
Z ∈ Z and iter, such that all honest parties participate in the instance ΠOptMult(P,Z, S, [a], [b], Z, iter).
Then all honest parties eventually compute [c(Z,iter)], [c

(1)
(Z,iter)], . . . , [c

(n)
(Z,iter)] where c(Z,iter) = c

(1)
(Z,iter) +

. . .+ c
(n)
(Z,iter), provided no honest party is included in the GD and LD(i)

iter′
sets and each honest party in the

W(i)

iter′
sets of every honest Pi is eventually removed, for all iter′ < iter. If no party in P \Z acts maliciously,

then c(Z,iter) = ab. In the protocol, Adv does not learn anything additional about a and b. The protocol
makes O(n2) calls to FVSS and FABA.

We end this section by claiming an important property about the protocol ΠOptMult. This will be useful
later when we analyze the properties of the protocol ΠMult, where ΠOptMult is used as a sub-protocol.

Claim 3.16. For every Z ∈ Z and every iter, all the following hold for every Pj ∈ Selected(Z,iter) during
the instance ΠOptMult(P,Z, S, [a], [b], Z, iter).

– There exists at least one honest party Pi such that Pj will not be present in theW(i)

iter′
and LD(i)

iter′
sets

of Pi for any iter′ < iter.
– Pj will not be present in the set GD.

Proof. Consider an arbitrary Pj ∈ Selected(Z,iter), such that Pj is included in Selected(Z,iter) during the hop
number hop in the instance ΠOptMult(P,Z, S, [a], [b], Z, iter). We prove the first part of the claim through
a contradiction. Let H be the set of honest parties and for every Pi ∈ H, let there exist some iter′ < iter,
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such that either Pj ∈ W(i)

iter′
or Pj ∈ LD(i)

iter′
. This implies that during hop number hop, no Pi ∈ H will

send (vote, sidhop,j,iter,Z , 1) to FABA with sidhop,j,iter,Z . Consequently, FABA with sidhop,j,iter,Z will never
return the output (decide, sidhop,j,iter,Z , 1) for any honest party and hence, Pj will not be selected as the
summand-sharing party for hop number hop, which is a contradiction.

The second part of the claim also follows using a similar argument as above. Namely, if Pj is present in
the set GD, then no Pi ∈ H will send (vote, sidhop,j,iter,Z , 1) to FABA with sidhop,j,iter,Z and consequently,
Pj will not be selected as the summand-sharing party for hop number hop, which is a contradiction.

Protocol ΠOptMult for M Pairs of Inputs. Protocol ΠOptMult can be easily modified if there are M pairs
of inputs. In each hop, every party will now be sharingM number of summations, by callingFVSS M times.
Thus, the total number of calls to FVSS will be O(n2M). While voting for a candidate summand-sharing
party in a hop, the parties check whether it has shared M values. In this way, the number of calls to FABA

can be restricted to only O(n2), independent of M .

3.2.2 Multiplication Protocol with Cheater Identification

Based on protocol ΠOptMult, we next present the protocol ΠMultCI with cheater identification (Fig 11). The
protocol takes as inputs an iteration number iter and [a], [b]. If no party behaves maliciously, then the
protocol outputs [ab]. In the protocol, parties execute an instance of ΠOptMult for each Z ∈ Z and publicly
compare the outputs. Since at least one of the ΠOptMult instances is guaranteed to output [ab], if all the
outputs are the same, then it implies that no cheating has occurred. Otherwise, the parties identify a pair
of conflicting ΠOptMult instances with different outputs, executed with respect to the sets, say Z,Z ′ ∈ Z .
Note that this process of publicly comparing the outputs of the ΠOptMult instances and identifying a pair of
conflicting instances does not reveal any additional information about a and b to the adversary, apart from
the differences between various outputs, which will be known beforehand to the adversary.

Let Selected(Z,iter) and Selected(Z′,iter) be the summand-sharing parties in the conflicting ΠOptMult in-
stances. The parties next proceed to a cheater-identification phase to identify at least one corrupt party from
the set Selected(Z,iter) ∪ Selected(Z′,iter). For this, each summand-sharing party Pj ∈ Selected(Z,iter) is
made to re-share the sum of the summands, overlapping with the summands whose sum has been secret-
shared by summand-sharing parties Pk ∈ Selected(Z′,iter) and vice-versa. The re-shared secret-shared sums
are “compared” with the summations secret-shared earlier by the summand-sharing parties during the in-
stances of ΠOptMult. This is to prevent a corrupt summand-sharing party from re-sharing different sums
than what had been secret-shared earlier. Next, these “partitions” are compared, based on which at least one
corrupt party in Selected(Z,iter) ∪ Selected(Z′,iter) is guaranteed to be identified provided all the parties in
Selected(Z,iter) ∪ Selected(Z′,iter) secret-share the required partitions.

The cheater-identification phase will be “stuck” if the corrupt parties in Selected(Z,iter)∪Selected(Z′,iter)

do not participate and secret-share the required partitions. To prevent such corrupt parties from causing fu-
ture instances of ΠMultCI to fail, the parties wait-list all the parties in Selected(Z,iter) ∪ Selected(Z′,iter). A
party is then “released” only after it has re-shared all the required values as part of the cheater-identification
phase. Notice that every honest party from Selected(Z,iter) ∪ Selected(Z′,iter) is eventually released from the
waiting-list of every honest party. This wait-listing guarantees that corrupt parties will be barred from acting
as summand-sharing parties as part of the ΠOptMult instances of future invocations of ΠMultCI, until they
participate in the cheater-identification phase of previously failed instances of ΠMultCI. Since the cheater-
identification phase is executed asynchronously, each party maintains its own set of locally-discarded par-
ties, where corrupt parties are included as and when they are identified.
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– Initialization: InitializeW(i)
iter = LD(i)

iter = ∅ and flag
(i)
iter = ⊥.a Fix some (publicly-known) Z ′ ∈ Z .

– Running Optimistic Multiplication and Checking Pair-wise Differences:
• For each Z ∈ Z , participate in the instance ΠOptMult(P,Z,S, [a], [b], Z, iter) with session id sid. Let
{[c(1)(Z,iter)]q, . . . , [c

(n)
(Z,iter)]q, [c(Z,iter)]q}Pi∈Sq

be the output obtained. Moreover, let Selected(Z,iter) be

set of summand-sharing parties and for each Pj ∈ Selected(Z,iter), let SIS
(j)
(Z,iter) be the summand-index-

set of ordered pairs of indices corresponding to the summands whose sum has been secret-shared by
Pj , during this instance of ΠOptMult.

• Corresponding to every Z ∈ Z where Z 6= Z ′, participate in an instance of ΠPerRec to publicly recon-
struct c(Z,iter) − c(Z′,iter).

– Output in Case of Success: If c(Z,iter) − c(Z′,iter) = 0 for every Z ∈ Z , then do the following.
• Set flag

(i)
iter = 0;

• Output {[c(Z′,iter)]q}Pi∈Sq
.

– Waiting-List and Cheater Identification in Case of Failure: If there exists a Z ∈ Z such that c(Z,iter) −
c(Z′,iter) 6= 0, then let Z be the first set from Z such that c(Z,iter) − c(Z′,iter) 6= 0. Set the conflicting-sets to
be Z,Z ′, set flag

(i)
iter = 1 and proceed as follows.

• Wait-listing Parties: SetW(i)
iter = Selected(Z,iter) ∪ Selected(Z′,iter).

• Re-Sharing Partition of the Summand-Sums:

1. If Pi ∈ Selected(Z,iter), then for every Pj ∈ Selected(Z′,iter), compute:

d
(ij)
(Z,iter) =

∑
(p,q)∈SIS

(i)

(Z,iter)
∩SIS

(j)

(Z′,iter)

[a]p[b]q.

Randomly pick d(ij)(Z,iter)1
, . . . , d

(ij)
(Z,iter)h

such that d(ij)(Z,iter)1
+ . . . + d

(ij)
(Z,iter)h

= d
(ij)
(Z,iter). Send

(dealer, sidi,j,iter,Z , (d
(ij)
(Z,iter)1

, . . . , d
(ij)
(Z,iter)h

) to FVSS, where sidi,j,iter,Z = sid||i||j||iter||Z.
2. If Pi ∈ Selected(Z′,iter), then for all Pj ∈ Selected(Z,iter), compute:

e
(ij)
(Z′,iter) =

∑
(p,q)∈SIS

(i)

(Z′,iter)∩SIS
(j)

(Z,iter)

[a]p[b]q.

Randomly pick e(ij)(Z′,iter)1
, . . . , e

(ij)
(Z′,iter)h

such that e(ij)(Z′,iter)1
+ . . . + e

(ij)
(Z′,iter)h

= e
(ij)
(Z′,iter). Send

(dealer, sidi,j,iter,Z′ , (e
(ij)
(Z′,iter)1

, . . . , e
(ij)
(Z′,iter)h

) to FVSS, where sidi,j,iter,Z′ = sid||i||j||iter||Z ′.
3. Corresponding to every Pj ∈ Selected(Z,iter) and every Pk ∈ Selected(Z′,iter), keep requesting for

an output from FVSS with session id sidj,k,iter,Z , till an output is obtained.
4. Corresponding to every Pj ∈ Selected(Z′,iter) and every Pk ∈ Selected(Z,iter), keep requesting for

an output from FVSS with session id sidj,k,iter,Z′ , till an output is obtained.

• Removing Parties from Wait List: SetW(i)
iter = W(i)

iter \ {Pj}, if all the following criteria pertaining to
Pj hold:

1. Pj ∈ Selected(Z,iter) : if an output (share, sidj,k,iter,Z , Pj , {[d(jk)(Z,iter)]q}Pi∈Sq ) is received from
FVSS with session id sidj,k,iter,Z , corresponding to each Pk ∈ Selected(Z′,iter),

2. Pj ∈ Selected(Z′,iter) : if an output (share, sidj,k,iter,Z′ , Pj , {[e(jk)(Z′,iter)]q}Pi∈Sq ) is received from
FVSS with session id sidj,k,iter,Z′ , corresponding to every Pk ∈ Selected(Z,iter).

• Verifying the Re-Shared Summand-Sum Partitions and Locally Identifying Corrupt Parties:

1. For every Pj ∈ Selected(Z,iter), participate in an instance of ΠPerRec to reconstruct the following
difference value:

c
(j)
(Z,iter) −

∑
Pk∈Selected(Z′,iter)

d
(jk)
(Z,iter).

Protocol ΠMultCI(P,Z,S, [a], [b], iter)
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If the difference is not 0, then set LD(i)
iter = LD(i)

iter ∪ {Pj}.
2. For every Pj ∈ Selected(Z′,iter), participate in an instance of ΠPerRec to reconstruct the following

difference value:
c
(j)
(Z′,iter) −

∑
Pk∈Selected(Z,iter)

e
(jk)
(Z′,iter).

If the difference is not 0, then set LD(i)
iter = LD(i)

iter ∪ {Pj}.
3. For each ordered pair (Pj , Pk) where Pj ∈ Selected(Z,iter) and Pk ∈ Selected(Z′,iter), participate

in an instance of ΠPerRec to reconstruct the following difference value:

d
(jk)
(Z,iter) − e

(kj)
(Z′,iter).

If the difference is not 0, then do the following:

i. Participate in instances of ΠPerRec to reconstruct d(jk)(Z,iter) and e(kj)(Z′,iter).
ii. Participate in instances of ΠPerRecShare to reconstruct the shares [a]p and [b]q , such that (p, q) ∈

SIS
(j)
(Z,iter) ∩ SIS

(k)
(Z′,iter).

iii. Compute the sum f
(jk)
(iter), where:

f
(jk)
(iter) =

∑
(p,q)∈SIS

(j)

(Z,iter)
∩SIS

(k)

(Z′,iter)

[a]p[b]q.

iv. If f (jk)(iter) 6= d
(jk)
(Z,iter), then set LD(i)

iter = LD(i)
iter ∪ {Pj}.

v. If f (jk)(iter) 6= e
(kj)
(Z′,iter), then set LD(i)

iter = LD(i)
iter ∪ {Pk}.

aThe variable flag
(i)
iter will be used later as an indicator if any cheating is detected during the instance iter of ΠMultCI.

Figure 11: Code for Pi for multiplication with cheater identification for iteration iter and session id sid, in the FVSS-
hybrid

For a better understanding of the various sets and values computed during the protocol ΠMultCI, we
pictorially illustrate them in Fig 12.

We next proceed to prove the properties of the protocol ΠMultCI. While proving these properties, we
will assume that Z satisfies the Q(4)(P,Z) condition. This further implies that the sharing specification

S = {S1, . . . , Sh}
def
= {P \ Z|Z ∈ Z} satisfies the Q(3)(S,Z) condition. Moreover, we will also assume

that no honest party is ever included in the set GD, which will be guaranteed in the protocol ΠMult where
the set GD is constructed and managed, and where ΠMultCI is used as a sub-protocol.

We first give the definition of a successful ΠMultCI instance, which will be used throughout this section
and the next.

Definition 3.17 (Successful ΠMultCI Instance). For an instance ΠMultCI(P,Z, S, [a], [b], iter), we define the
following.

– The instance is called successful if and only if for every Z ∈ Z where Z 6= Z ′, the value c(Z,iter) −
c(Z′,iter) = 0, where Z ′ ∈ Z is the fixed set used in the protocol.

– If the instance is not successful, then the sets Z,Z ′ are called the conflicting-sets for the instance, if Z
is the smallest indexed set from Z such that c(Z,iter) − c(Z′,iter) 6= 0.

We first show that any instance of ΠMultCI will be eventually found to be either a success or a failure by
the honest parties.

Claim 3.18. For every iter, any instance ΠMultCI(P,Z, S, [a], [b], iter) will eventually be deemed to either
succeed or fail by the honest parties, provided no honest party is ever included in the GD and LD(i)

iter′
sets,
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ΠOptMult(𝒫, 𝒵, 𝕊, 𝑎 , 𝑏 , 𝑍, iter) ΠOptMult(𝒫, 𝒵, 𝕊, 𝑎 , 𝑏 , 𝑍′, iter)

Selected(𝑍 , iter) Selected(#!, iter)

⋯𝑃$⋯ ⋯𝑃%⋯

SIS(𝑍 , iter)
($) SIS(#!, iter)

(%)

⋯(𝑝, 𝑞)⋯ ⋯(𝑟, 𝑠)⋯
𝑐(𝑍 , iter)
($) 𝑐(#!, iter)

(%)

(A)

Selected(𝑍 , iter)

Selected(#!, iter)

𝒲iter
(()

(B)

Selected(𝑍 , iter)

Selected(#!, iter)
⋯𝑃%⋯

SIS(𝑍 , iter)
($)

SIS(#!, iter)
(%)

(C)

⋯(𝑝, 𝑞)⋯

⋯𝑃$⋯

𝑑(𝑍 , iter)
($%)

𝑒(#!, iter)
(%$)

Figure 12: Pictorial depiction of the various values and sets computed during the protocol ΠMultCI. Fig-
ure (A) shows the pair of conflicting ΠOptMult instances corresponding to sets Z,Z ′ ∈ Z , with differ-
ent secret-shared outputs c(Z,iter) and c(Z′,iter). The figure also shows the set of summand-sharing parties
Selected(Z,iter) and Selected(Z′,iter) during the two ΠOptMult instances. Moreover, for every summand-

sharing party Pj ∈ Selected(Z,iter), there is a summand-index-set SIS
(j)
(Z,iter), denoting all the ordered

pair of indices whose corresponding summands have been summed to c
(j)
(Z,iter) and secret-shared by Pj

during the corresponding ΠOptMult instance. Figure (B) denotes the waiting-list maintained by party Pi,
which has all the summand-sharing parties from the conflicting ΠOptMult instances. Figure (C) denotes
the common summands (whose indices are highlighted in yellow), held by both Pj ∈ Selected(Z,iter) and

Pk ∈ Selected(Z′,iter), whose corresponding sums d(jk)
(Z,iter) and e(kj)

(Z′,iter) are re-shared by Pj and Pk respec-
tively, during the cheater-identification phase.

and all honest parties are eventually removed from theW(i)

iter′
sets of every honest Pi for every iter′ < iter.

Moreover, for a successful instance, the parties output a sharing of ab. If the instance is not successful, then
the parties identify the conflicting-sets Z,Z ′ for the instance.

Proof. Let Z? ∈ Z be the set of corrupt parties. If the lemma conditions hold, then it follows from
Lemma 3.15, that corresponding to every Z ∈ Z , the instance ΠOptMult(P,Z, S, [a], [b], Z, iter) eventu-
ally completes with honest parties obtaining the outputs [c

(1)
(Z,iter)], . . . , [c

(n)
(Z,iter)], [c(Z,iter)], where c(Z,iter) =

c
(1)
(Z,iter) + . . . + c

(n)
(Z,iter). Moreover, in the ΠOptMult instance corresponding to Z?, the output c(Z?,iter) will

be the same as ab, since all the parties in P \ Z? will be honest.
Since S satisfies the Q(3)(S,Z) condition, it follows that with respect to the fixed Z ′ ∈ Z , the honest

parties will eventually reconstruct the difference c(Z,iter) − c(Z′,iter), corresponding to every Z ∈ Z . Now
there are two possibilities. If all the differences c(Z,iter)− c(Z′,iter) turn out to be 0, then the ΠMultCI instance
will be considered to be successful by the honest parties and the honest parties will output [c(Z′,iter)], which
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is bound to be the same as ab. This is because c(Z′,iter) − c(Z?,iter) = 0 and hence c(Z′,iter) = c(Z?,iter) = ab
holds. The other possibility is that at least one of the differences is not zero, in which case the instance
ΠMultCI will not be considered successful by the honest parties. Moreover, in this case, the parties will
set (Z,Z ′) as the conflicting-sets for the instance, where Z is the smallest indexed set from Z such that
c(Z,iter) − c(Z′,iter) 6= 0.

We next prove a series of claims regarding any ΠMultCI instance which is not successful. We begin by
showing that if any instance of ΠMultCI is not successful, then every honest party in eventually removed from
the waiting-list of the honest parties for that instance. Moreover, no honest party will be ever included in the
LD set of any honest party for that instance.

Claim 3.19. For every iter, if the instance ΠMultCI(P,Z,S, [a], [b], iter) is not successful, then every honest
party from the set Selected(Z,iter)∪Selected(Z′,iter) is eventually removed from the waiting setW(i)

iter of every

honest party Pi. Moreover, no honest party is ever included in the LD(i)
iter set of any honest party Pi.

Proof. Suppose that the instance ΠMultCI(P,Z,S, [a], [b], iter) is not successful. This implies that the parties
identify a pair of conflicting-sets (Z,Z ′), such that c(Z,iter) − c(Z′,iter) 6= 0. From the protocol steps,

every honest party Pi initializes W(i)
iter to Selected(Z,iter) ∪ Selected(Z′,iter). Let Pj be an arbitrary honest

party belonging to Selected(Z,iter) ∪ Selected(Z′,iter). From the protocol steps, party Pj secret-shares all the

required values d(jk)
(Z,iter), e

(jk)
(Z′,iter) by calling appropriate instances of FVSS and eventually, these values are

secret-shared, with every honest Pi receiving the appropriate shares from corresponding FVSS instances.
Consequently, Pj will eventually be removed from the setW(i)

iter. Moreover, since Pj is an honest party, the
d

(jk)
(Z,iter), e

(jk)
(Z′,iter) values shared by Pj will be correct and consequently, the conditions for including Pj to

the LD(i)
iter set of any honest party Pi will fail. That is, if Pj ∈ Selected(Z,iter), then the parties will find that

the following holds:
c

(j)
(Z,iter) −

∑
Pk∈Selected(Z′,iter)

d
(jk)
(Z,iter) = 0.

On the other hand, if Pj ∈ Selected(Z′,iter), then the parties will find that the following holds:

c
(j)
(Z′,iter) −

∑
Pk∈Selected(Z,iter)

e
(jk)
(Z′,iter) = 0.

Moreover, if there exists any Pk ∈ Selected(Z,iter) ∪ Selected(Z′,iter) such that either d(jk)
(Z,iter) 6= e

(kj)
(Z′,iter) or

d
(kj)
(Z,iter) 6= e

(jk)
(Z′,iter), then after reconstructing the values shared by Pj and the shares held by Pj , the parties

will find that Pj has behaved honestly and hence, Pj will not be included to the LD(i)
iter set of any honest

Pi.

We next give the definition of a conflicting-pair of parties, which is defined based on the partitions of
the summand-sum, re-shared by the summand-sharing parties.

Definition 3.20 (Conflicting-Pair of Parties). Let ΠMultCI(P,Z, S, [a], [b], iter) be an instance of ΠMultCI

which is not successful and let Z,Z ′ be the corresponding conflicting-sets for the instance. A pair of parties
(Pj , Pk) is said to be a conflicting-pair of parties for this ΠMultCI instance if all the following hold:

– Pj ∈ Selected(Z,iter);
– Pk ∈ Selected(Z′,iter);

– d
(jk)
(Z,iter) 6= e

(kj)
(Z′,iter).
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We next show that if an instance of ΠMultCI is not successful, then certain conditions hold with re-
spect to the summand-sums and the respective partitions shared by the summand-sharing parties during the
underlying instances of ΠOptMult and the cheater-identification phase of the ΠMultCI instance.

Claim 3.21. Let ΠMultCI(P,Z, S, [a], [b], iter) be an instance of ΠMultCI which is not successful and let
Z,Z ′ be the corresponding conflicting-sets for the instance. Moreover, let Z? be the set of corrupt parties.
Then, one of the following must hold true for some Pj ∈ Z?.

i. Pj ∈ Selected(Z,iter) and c(j)
(Z,iter) −

∑
Pk∈Selected(Z′,iter)

d
(jk)
(Z,iter) 6= 0.

ii. Pj ∈ Selected(Z′,iter) and c(j)
(Z′,iter) −

∑
Pk∈Selected(Z,iter)

e
(jk)
(Z′,iter) 6= 0.

iii. There is some Pk ∈ Selected(Z,iter)∪Selected(Z′,iter) such that either (Pj , Pk) or (Pk, Pj) constitutes
a conflicting-pair of parties.

Proof. Since the instance of ΠMultCI is not successful and Z,Z ′ constitute conflicting-sets, it follows that
c(Z,iter) 6= c(Z′,iter). Assume for the sake of contradiction that the none of the conditions in the claim is true.
Then, we can infer the following.

c(Z,iter) =
∑

Pj∈Selected(Z,iter)

c
(j)
(Z,iter)

=
∑

Pj∈Selected(Z,iter)

∑
Pk∈Selected(Z′,iter)

d
(jk)
(Z,iter)

=
∑

Pj∈Selected(Z,iter)

∑
Pk∈Selected(Z′,iter)

e
(kj)
(Z′,iter)

=
∑

Pk∈Selected(Z′,iter)

∑
Pj∈Selected(Z,iter)

e
(kj)
(Z′,iter)

=
∑

Pk∈Selected(Z′,iter)

c
(k)
(Z′,iter)

= c(Z′,iter),

where the first equation follows from the definition of c(Z,iter), the second equation holds because, as per

our assumption, c(j)
(Z,iter) −

∑
Pk∈Selected(Z′,iter)

d
(jk)
(Z,iter) = 0 for every Pj ∈ Selected(Z,iter), the third equation

holds because, as per our assumption, there is no conflicting-pair of parties, the fifth equation holds because
as per our assumption c(k)

(Z′,iter) −
∑

Pj∈Selected(Z,iter)

e
(kj)
(Z′,iter) = 0 for every Pk ∈ Selected(Z′,iter) and the last

equation follows from the definition of c(Z′,iter). However, c(Z,iter) = c(Z′,iter) is a contradiction.

We next define a characteristic function with respect to the partitions of the summands-sum shared by
the summand-sharing parties, to “characterize” instances of ΠMultCI which are not successful. Looking
ahead, this will be helpful to upper bound the number of failed ΠMultCI instances in the protocol ΠMult.

Definition 3.22 (Characteristic Function). Let ΠMultCI(P,Z,S, [a], [b], iter) be an instance of ΠMultCI

which is not successful and let Z,Z ′ be the corresponding conflicting-sets for the instance. Then the char-
acteristic function fchar for this instance is defined as follows.
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– If there is some Pj ∈ Selected(Z,iter) such that c(j)
(Z,iter) −

∑
Pk∈Selected(Z′,iter)

d
(jk)
(Z,iter) 6= 0, then

fchar(iter)
def
= (Pj , Pk), where Pk is the smallest-indexed party from P \ {Pj}.12

– Else, if there is some Pj ∈ Selected(Z′,iter) such that c(j)
(Z′,iter) −

∑
Pk∈Selected(Z,iter)

e
(jk)
(Z′,iter) 6= 0, then

fchar(iter) = (Pk, Pj), where Pk is the smallest-indexed party from P \ {Pj}.13

– Else, fchar(iter)
def
= (Pj , Pk), where (Pj , Pk) is a conflicting-pair of parties, corresponding to the

ΠMultCI instance.14

Before we proceed, we would like to stress that if fchar is defined either with respect to the first or the
second condition, then party Pk in the pair (Pj , Pk) serves as a “dummy” party. This is just for notational
convenience to ensure uniformity so that fchar is always a pair of parties irrespective of whether it is defined
with respect to the first, second or third condition.

From the definition, it is easy to see that if fchar(iter) = (Pj , Pk), then at least one party among Pj , Pk
is maliciously-corrupt. We next claim that the characteristic function is well defined.

Claim 3.23. Let ΠMultCI(P,Z,S, [a], [b], iter) be an instance of ΠMultCI which is not successful and let
Z,Z ′ be the corresponding conflicting-sets for the instance. Then fchar(iter) is well defined.

Proof. Proof follows from Claim 3.21.

We next prove an important property by showing that if fchar(iter) = (Pj , Pk) for some instance of
ΠMultCI which is not successful, and if both Pj and Pk have been removed from the waiting-list of some
honest party for that instance, then the corrupt party(ies) among Pj , Pk will eventually be discarded by all
honest parties.

Claim 3.24. Let ΠMultCI(P,Z, S, [a], [b], iter) be an instance of ΠMultCI which is not successful and let
Z,Z ′ be the corresponding conflicting-sets for the instance. Moreover, let fchar(iter) = (Pj , Pk). If both
Pj and Pk are removed from the setW(h)

iter of any honest party Ph, then the corrupt party(ies) among Pj , Pk
will eventually be included in the set LD(i)

iter of every honest Pi.

Proof. Let fchar(iter) = (Pj , Pk), where without loss of generality, Pj ∈ Selected(Z,iter) and Pk ∈
Selected(Z′,iter). From the definition of characteristic function (Def 3.22), one of the following holds for
Pj and Pk:

– (Pj , Pk) constitutes a conflicting-pair: In this case, d(jk)
(Z,iter) 6= e

(kj)
(Z′,iter). Since the honest Ph has

removed both Pj and Pk from W(h)
iter , from the protocol steps, the outputs (share, sidj,k,iter,Z , Pj ,

{[d(jk)
(Z,iter)]q}Ph∈Sq) and (share, sidk,j,iter,Z′ , Pk, {[e

(kj)
(Z′,iter)]q}Ph∈Sq) have been obtained by Ph from

FVSS with sidj,k,iter,Z and sidk,j,iter,Z′ respectively. Consequently, each honest party will eventually
receive its respective share corresponding to [d

(jk)
(Z,iter)] and [e

(kj)
(Z′,iter)] from the corresponding FVSS

instances. Hence, each honest party will be able to locally compute its share of d(jk)
(Z,iter)−e

(kj)
(Z′,iter) and

participate in the instance of ΠPerRec to reconstruct the difference. Since S satisfies the Q(3)(S,Z)

condition, all honest parties will eventually reconstruct d(jk)
(Z,iter)− e

(kj)
(Z′,iter) and find that the difference

12If there are multiple parties Pj satisfying this condition, then we consider the Pj with the smallest index.
13If there are multiple parties Pj satisfying this condition, then we consider the Pj with the smallest index.
14If there are multiple conflicting-pairs, then we consider the one having parties with the smallest indices.
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is not 0. Consequently, the honest parties will participate in appropriate instances of ΠPerRec to recon-
struct the values d(jk)

(Z,iter), e
(kj)
(Z′,iter), and instances of ΠPerRecShare to reconstruct the shares [a]p and [b]q,

such that (p, q) ∈ SIS
(j)
(Z,iter) ∩ SIS

(k)
(Z′,iter). Now, either d(jk)

(Z,iter) 6= f
(jk)
(iter) or e(kj)

(Z′,iter) 6= f
(jk)
(iter), where:

f
(jk)
(iter) =

∑
(p,q)∈SIS(j)

(Z,iter)
∩SIS(k)

(Z′,iter)

[a]p[b]q,

as otherwise d(jk)
(Z,iter) = e

(kj)
(Z′,iter) will hold, which is a contradiction. Consequently, every honest party

Pi will eventually add the corrupt party(ies) among Pj , Pk to LD(i)
iter.

– The condition c
(j)
(Z,iter) −

∑
Pk∈Selected(Z′,iter)

d
(jk)
(Z,iter) 6= 0 holds: Since the honest Ph has removed

Pj from W(h)
iter , then from the protocol steps, corresponding to every Pk ∈ Selected(Z′,iter), party

Ph has received the output (share, sidj,k,iter,Z , Pj , {[d
(jk)
(Z,iter)]q}Ph∈Sq) from FVSS with sidj,k,iter,Z .

Consequently, for every Pk ∈ Selected(Z′,iter), all honest parties eventually receive their respec-

tive shares corresponding to [d
(jk)
(Z,iter)] from the respective FVSS instances. In the protocol, all

honest parties participate in an instance of ΠPerRec with their respective shares corresponding to
[c

(j)
(Z,iter)]−

∑
Pk∈Selected(Z′,iter)

[d
(jk)
(Z,iter)] to reconstruct the difference c(j)

(Z,iter) −
∑

Pk∈Selected(Z′,iter)

d
(jk)
(Z,iter).

Now since the difference is not 0, each honest Pi will eventually include the corrupt Pj to LD(i)
iter.

– The condition c(k)
(Z′,iter) −

∑
Pj∈Selected(Z,iter)

e
(kj)
(Z′,iter) 6= 0 holds: This case is symmetric to the previous

case and using a similar argument as above, we can conclude that each honest Pi will eventually
include the corrupt Pk to LD(i)

iter.

We next claim that the adversary does not learn anything additional about a and b in the protocol.

Claim 3.25. In ΠMultCI, Adv does not not learn any additional information about a and b.

Proof. From Claim 3.14, Adv does not learn any additional information about a and b from the in-
stances of ΠOptMult executed in ΠMultCI. Corresponding to every Z ∈ Z , Adv learns the difference
c(Z,iter) − c(Z′,iter) which are all 0, unless the adversary cheats. In case of cheating, the reconstructed
differences c(Z,iter) − c(Z′,iter) depend completely upon the inputs of the adversary and hence learning these
differences does not add anything additional about a and b to the adversary’s view. Next, corresponding
to every honest Pj ∈ Selected(Z,iter) ∪ Selected(Z′,iter), the shares corresponding to d(jk)

(Z,iter) or e(kj)
(Z′,iter)

learnt by Adv will be distributed uniformly, since S is Z-private and hence, these shares do not add any-
thing additional about a and b to the adversary’s view. Moreover, for every honest Pj ∈ Selected(Z,iter) ∪
Selected(Z′,iter), Adv will know beforehand that the differences c(j)

(Z,iter) −
∑

Pk∈Selected(Z′,iter)

d
(jk)
(Z,iter) as

well as c(j)
(Z′,iter) −

∑
Pk∈Selected(Z,iter)

e
(jk)
(Z′,iter) will be 0 and hence, learning these differences does not add

anything additional about a and b to adversary’s view. On the other hand, for every corrupt Pj ∈
Selected(Z,iter) ∪ Selected(Z′,iter), the above differences completely depend upon the adversary’s inputs and
hence, reveal no additional information. Finally, if for any ordered pair of parties (Pj , Pk), the condition
d

(jk)
(Z,iter) 6= e

(kj)
(Z′,iter) holds, then at least one among Pj and Pk is corrupt. Consequently, the shares [a]p and
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[b]q where (p, q) ∈ SIS
(j)
(Z,iter)∩SIS

(k)
(Z′,iter) reconstructed in this case are already known to the adversary, and

do not add anything new to the view of the adversary regarding a and b.

Claim 3.26. Protocol ΠMultCI needs O(|Z| · n2) calls to FVSS and FABA and incurs an additional commu-
nication of O(|Z|2 · n2 log |F|+ |Z| · n4 log |F|) bits.

Proof. In the protocol, corresponding to each Z ∈ Z , an instance of ΠOptMult is executed. From Lemma
3.15, this will require O(|Z| · n2) calls to FVSS and FABA. There are O(|Z|) instances of ΠPerRec to
reconstruct O(|Z|) difference values for checking whether the instance is successful or not, incurring a
communication of O(|Z|2 · n2 log |F|) bits. If the instance is not successful, then there are O(n2) calls
to FVSS to share various summand-sum partitions. To check whether the correct partitions are shared,
O(n2) values need to be publicly reconstructed through these many instances of ΠPerRec, which incurs a
communication of O(|Z| · n4 log |F|) bits.

The proof of Lemma 3.27 now follows from Claims 3.18-3.26.

Lemma 3.27. Let Z satisfy the Q(4)(P,Z) condition and let all honest parties participate in ΠMultCI(P,
Z,S, [a], [b], iter). Then, Adv does not learn any additional information about a and b. Moreover, the
following hold.

– The instance will eventually be deemed to succeed or fail by the honest parties, where for a successful
instance, the parties output a sharing of ab.

– If the instance is not successful, then the honest parties will agree on a pair Z,Z ′ ∈ Z such that
c(Z,iter) − c(Z′,iter) 6= 0. Moreover, all honest parties present in theW(i)

iter set of any honest party Pi
will eventually be removed and no honest party is ever included in the LD(i)

iter set of any honest Pi.
Furthermore, there will be a pair of parties Pj , Pk from Selected(Z,iter)∪Selected(Z′,iter), with at least

one of them being maliciously-corrupt, such that if both Pj and Pk are removed from the setW(h)
iter of

any honest party Ph, then eventually the corrupt party(ies) among Pj , Pk will be included in the set
LD(i)

iter of every honest Pi.
– The protocol makes O(|Z| · n2) calls to FVSS and FABA and additionally incurs a communication of
O((|Z|2 · n2 + |Z| · n4) log |F|) bits.

Protocol ΠMultCI for M Pairs of Inputs. The modifications to the protocol ΠMultCI for handling M pairs
of secret-shared inputs {[a(`)], [b(`)]}`=1,...,M are simple. The parties now run instances of ΠOptMult handling
M pairs of inputs. Corresponding to every pair (Z,Z ′), the parties reconstruct M differences. If any of
these differences is non-zero, the parties focus on the smallest-indexed ([a(`)], [b(`)]) such that c(`)

(Z,curr) −

c
(`)
(Z′,curr) 6= 0. The parties then proceed to the cheater identification phase with respect to (Z,Z ′) and

([a(`)], [b(`)]). The protocol will require O(M · |Z| · n2) calls to FVSS, O(|Z| · n2) calls to FABA and
additionally incurs a communication of O(M · |Z|2 · n2 log |F|+ |Z| · n4 log |F|) bits.

3.2.3 Robust Multiplication Protocol

Protocol ΠMult (Fig 13) takes inputs [a], [b] and securely generates [ab]. The protocol proceeds in iterations,
where in each iteration, an instance of ΠMultCI is invoked. If the iteration is successful, then the parties
take the output of the corresponding ΠMultCI instance. Else, they proceed to the next iteration, with the
cheater-identification phase of failed ΠMultCI instances running in the background. Let t be the cardinality
of maximum-sized subset from Z . To upper bound the number of failed iterations, the parties run ACS
after every tn + 1 failed iterations to “globally” discard a new corrupt party. This is done through calls to
FABA, where the parties vote for a candidate corrupt party, based on the LD sets of all failed iterations. The
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idea is that during these tn + 1 failed iterations, there will be at least one corrupt party who is eventually
included in the LD set of every honest party. This is because there can be at most tn distinct pairs of
“conflicting-parties” across the tn+ 1 failed iterations (follows from Lemma 3.27). At least one conflicting
pair, say (Pj , Pk), is guaranteed to repeat among the tn + 1 failed instances, with both Pj and Pk being
removed from the previous waiting-lists. Thus, the corrupt party(ies) among Pj , Pk is eventually included
to the LD sets. There can be at most t(tn + 1) failed iterations after which all the corrupt parties will
be discarded and the next iteration is guaranteed to be successful, with only honest parties acting as the
candidate summand-sharing parties in the underlying instances of ΠOptMult.

– Initialization: Set t = max{|Z| : Z ∈ Z}, initialize GD = ∅ and iter = 1.
– Multiplication with Cheater Identification: Participate in the instance ΠMultCI(P,Z,S, [a], [b], iter) with

sid.
• Positive Output: If flag

(i)
iter is set to 0, then output the shares obtained during the ΠMultCI instance.

• Negative Output: If flag
(i)
iter is set to 1 during the ΠMultCI instance, then proceed as follows.

• Identifying a Cheater Party Through ACS: If iter = k · (tn + 1) for some k ≥ 1, then do the
following.

1. Let LD(i)
r be the set of locally-discarded parties for the instance ΠMultCI(P,Z,S, [a], [b], r),

for r = 1, . . . , iter. For j = 1, . . . , n, send (vote, sidj,iter,k, 1) to FABA where sidj,iter,k =

sid||j||iter||k, if for any r ∈ {1, . . . , iter}, party Pj is present in LD(i)
r and Pj 6∈ GD.

2. For j = 1, . . . , n, keep requesting for an output from FABA with sidj,iter,k, until an output is
received.

3. Upon receiving (decide, sidj,iter,k, 1) fromFABA with sidj,iter,k corresponding to some Pj ∈ P ,
send (vote, sid`,iter,k, 0) to FABA with sid`,iter,k for each P` ∈ P , corresponding to which no
vote message has been sent yet.

4. Once an output (decide, sid`,iter,k, v`) is received from FABA with sid`,iter,k for every ` ∈
{1, . . . , n}, select the minimum indexed party Pj from P , such that vj = 1. Then set
GD = GD ∪ {Pj}, set iter = iter + 1 and go to the step labelled Multiplication with
Cheater Identification.

• Else set iter = iter + 1 and go to the step Multiplication with Cheater Identification.

Protocol ΠMult(P,Z,S, [a], [b])

Figure 13: Multiplication protocol in the (FVSS,FABA)-hybrid for sid. The above code is executed by every party Pi

For a better understanding, a flowchart for the protocol ΠMult is presented in Fig 14.
We next proceed to prove the properties of the protocol ΠMult. While proving these properties, we

will assume that Z satisfies the Q(4)(P,Z) condition. This further implies that the sharing specification

S = {S1, . . . , Sh}
def
= {P \ Z|Z ∈ Z} satisfies the Q(3)(S,Z) condition.

We begin with the definition of a successful iteration in protocol ΠMult.

Definition 3.28 (Successful Iteration). In protocol ΠMult, an iteration iter is called successful if every
honest Pi sets flag

(i)
iter = 0 during the corresponding instance ΠMultCI(P,Z, S, [a], [b], iter) of ΠMultCI.

We next claim that during each iteration of the protocol ΠMult, the honest parties will know whether the
iteration is successful or not.

Claim 3.29. For any iter, if all honest parties participate in iteration number iter of the protocol ΠMult and
if no honest party is ever included in the set GD, then all honest parties will eventually agree on whether the
iteration is successful or not.

Proof. We prove the claim through induction on iter. The statement is obviously true for iter = 1, since
during the instance ΠMultCI(P,Z, S, [a], [b], 1), all honest parties Pi will eventually set flag

(i)
1 to a common
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Multiplication with 
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No
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Identify new corrupt 
parties through ACS 

and update 𝒢𝒟

Figure 14: Flowchart for the protocol ΠMult. Here t denotes the cardinality of the maximum-sized subset
from Z

value from {0, 1} (follows from Lemma 3.27). Assume that the statement is true for iter = r. Now
consider iter = r+ 1 and let all honest parties participate in iteration number r+ 1 by invoking the instance
ΠMultCI(P,Z,S, [a], [b], r + 1). From the protocol steps, since the honest parties participate in iteration
number r + 1, it implies that none of the previous r iterations were successful. From Lemma 3.27, all
honest parties from the setsW(i)

1 , . . . ,W(i)
r will eventually be removed for every honest Pi. Moreover, no

honest party will ever be included in the sets LD(i)
1 , . . . ,LD(i)

r . Furthermore, as per the lemma condition,
no honest party is ever included in the set GD. It now follows from Claim 3.18 and Lemma 3.27 that during
the instance ΠMultCI(P,Z,S, [a], [b], r + 1), all honest parties Pi will eventually set flag

(i)
r+1 to a common

value from {0, 1} and learn whether the iteration is successful or not.

We next claim that if any iteration of ΠMult is successful, then honest parties output [ab] in that iteration.

Claim 3.30. If the iteration number iter in ΠMult is successful, then honest parties output [ab] during iteration
number iter.

Proof. Let iteration number iter in ΠMult be successful. This implies that every honest Pi sets flag
(i)
iter =

0 during the corresponding instance ΠMultCI(P,Z, S, [a], [b], iter) of ΠMultCI and hence this instance of
ΠMultCI is successful. The proof now follows from Lemma 3.27.

We next prove that after every tn + 1 unsuccessful iterations of ΠMult, a new corrupt party is globally
discarded.

Claim 3.31. Let t
def
= max{|Z| : Z ∈ Z}. In ΠMult, for every k ≥ 1, if none of the iterations (k − 1)(tn+

1)+1, . . . , k(tn+1) is successful, then eventually, a new corrupt party is included in the set GD. Moreover,
no honest party is ever included in the set GD.

39



Proof. Let Z? ∈ Z be the set of corrupt parties during the execution of ΠMult. We prove the claim through
strong induction over k.

Base case: k = 1. We first note that from the protocol steps, the condition GD = ∅ holds for each of the
iterations 1, . . . , tn+1, during the corresponding instance of ΠMultCI in these iterations. Consequently, from
Claim 3.29, for the iterations 1, . . . , tn + 1, the honest parties agree on whether the iteration is successful
or not. Let none of the iterations 1, . . . , tn + 1 be successful. This implies that for iter = 1, . . . , tn + 1,
none of the instances ΠMultCI(P,Z, S, [a], [b], iter) of ΠMultCI is successful. This further implies that for
every iter ∈ {1, . . . , tn + 1}, there exists a well-defined unordered pair of parties (Pj , Pk), such that
fchar(iter) = (Pj , Pk), with at least one among Pj , Pk being maliciously-corrupt (follows from Claim
3.23). Let C denote the set of all pairs of “characteristic parties” for the first tn + 1 instances of ΠMultCI.
That is,

C def= {(Pj , Pk) : fchar(iter) = (Pj , Pk) and iter ∈ {1, . . . , tn+ 1}.

It then follows that |C| ≤ tn. This is because |Z?| ≤ t, implying that there can be at most tn distinct
(unordered) pairs of parties, where at least one of the parties in the pair is corrupt. Since the cardinality of
C is smaller than the number of failed ΠMultCI instances, from the pigeonhole principle, we can conclude
that there exist at least two iterations r, r′ ∈ {1, . . . , tn+ 1} where r < r′, such that fchar(r) = fchar(r

′) =
(Pj , Pk).

Now, let us focus on the failed instances ΠMultCI(P,Z,S, [a], [b], r) and ΠMultCI(P,Z, S, [a], [b], r′),
corresponding to iteration number r and r′ respectively in ΠMult. LetW(i)

r and LD(i)
r be the dynamic sets

maintained by every party Pi during the instance ΠMultCI(P,Z,S, [a], [b], r). Note that at the time of initial-
izingW(i)

r , both Pj as well as Pk will be present inW(i)
r (this follows from the protocol steps of ΠMultCI).

Let Z,Z ′ ∈ Z be the conflicting-sets for the failed instance ΠMultCI(P,Z,S, [a], [b], r′). From the definition
of characteristic function fchar, it follows that Pj , Pk ∈ Selected(Z,r′)∪Selected(Z′,r′). Hence, Pj (resp. Pk)
is selected as a summand-sharing party in at least one of the instances ΠOptMult(P,Z, S, [a], [b], Z, r′) or
ΠOptMult(P,Z,S, [a], [b], Z ′, r′). This further implies that there exists at least one honest party, say Ph, such
that both Pj as well as Pk are removed by Ph from the setW(h)

r . This is because if both Pj as well as Pk
are still present in theW(i)

r set of all honest parties during the instances ΠOptMult(P,Z, S, [a], [b], Z, r′) and
ΠOptMult(P,Z,S, [a], [b], Z ′, r′), then neither Pj not Pk will be selected as a summand-sharing party and
hence Pj , Pk 6∈ Selected(Z,r′) ∪ Selected(Z′,r′) (follows from Claim 3.16), which is a contradiction. Now, if

both Pj and Pk are removed fromW(h)
r , then from Claim 3.24, the corrupt party(ies) among Pj , Pk will be

eventually included in the LD(i)
r set of every honest Pi. For simplicity and without loss of generality, let Pj

be the corrupt party among Pj , Pk.
In the protocol ΠMult, once the parties find that iteration number tn+1 has failed, they run an instance of

ACS to identify a cheating party across the first tn+ 1 failed instances, where the parties vote for candidate
cheating parties based on the contents of their local LD sets. To complete the proof for the base case, we
need to show that ACS will eventually output a common corrupt party for all the honest parties. The proof
for this is similar to that of Claim 3.11. Namely, as argued above, the corrupt party Pj from the pair (Pj , Pk)

above will be eventually included in the LD(i)
r set of every honest Pi. We first show that there will be at

least one instance of FABA, corresponding to which all honest parties eventually receive the output 1. For
this, we consider two possible cases:

– At least one honest party participates with input 0 in the FABA instance corresponding to Pj : Let Pi
be an honest party, who sends (vote, sidj,tn+1,1, 0) to FABA with sidj,tn+1,1. Then from the steps of
ΠMult, it follows that there exists some P` ∈ P , such that Pi has received (decide, sid`,tn+1,1, 1) as
the output from FABA with sid`,tn+1,1. Hence, every honest party will eventually receive the output
(decide, sid`,tn+1,1, 1) as the output from FABA with sid`,tn+1,1.
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– No honest party participates with input 0 in the FABA instance corresponding to Pj : In this case,
every honest party will eventually send (vote, sidj,tn+1,1, 1) to FABA with sidj,tn+1,1. This is because
Pj will be eventually included in the LD(i)

r set of every honest Pi. Consequently, every honest party
eventually receives the output (decide, sidj,tn+1,1, 1) from FABA.

Now based on the above argument, we can further infer that all honest parties will eventually participate
with some input in all the n instances of FABA invoked after the first tn + 1 failed iterations and hence, all
the n instances of FABA will eventually produce an output. Let Pm be the smallest indexed party such that
FABA with sidm,tn+1,1 has returned the output (decide, sidm,tn+1,1, 1). Hence, all honest parties eventually
include Pm to GD.

Finally, it is easy to see that Pm ∈ Z?. This is because if Pm 6∈ Z?, then Pm is honest. From Claim
3.19 it follows that Pm will not be included in the LD(i)

iter of any honest Pi for any iter ∈ {1, . . . , tn +
1}. Consequently, no honest Pi will ever send (vote, sidm,tn+1,1, 1) to FABA with sidm,tn+1,1. Hence,
FABA with sidm,tn+1,1 will never return the output (decide, sidm,tn+1,1, 1), which is a contradiction. This
completes the proof for the base case.

Inductive Step. Let the statement be true for k = 1, . . . , k′. Now consider the case when k = k′ + 1. Let
GD1, . . . ,GDk′ be the set of discarded cheating parties after the iteration number tn + 1, . . . , k′(tn + 1)
respectively.15 From the inductive hypothesis, GD1 ⊂ GD2 ⊂ . . . ⊂ GDk′ and no honest party is present in
GDk′ . Consequently, from the protocol steps and from Claim 3.29, for the iterations k′(tn+1)+1, . . . , (k′+
1)(tn + 1), the honest parties agree on whether the iteration is successful or not. Let none of the iterations
k′(tn+ 1) + 1, . . . , (k′ + 1)(tn+ 1) be successful. This implies that for iter = k′(tn+ 1) + 1, . . . , (k′ +
1)(tn + 1), none of the instances ΠMultCI(P,Z,S, [a], [b], iter) of ΠMultCI is successful. In the protocol,
once the parties find that the iteration number (k′ + 1)(tn + 1) is not successful, they proceed to select a
common cheating party through ACS. Let LD(i)

iter,W
(i)
iter be the dynamic sets maintained by each party Pi

across the iterations 1, . . . , (k′ + 1)(tn+ 1).
We first note that none of the parties from GDk′ will be selected as a summand-sharing party in any of the

underlying ΠOptMult(P,Z, S, [a], [b], Z, iter) instances, for any iter ∈ {k′(tn+1)+1, . . . , (k′+1)(tn+1)}
and any Z ∈ Z (this follows from Claim 3.16). We also note that there will be at least one party from Z?,
which is not present in GDk′ ; i.e. GDk′ ⊂ Z?. If not, then only honest parties will be selected as summand-
sharing parties in all the underlying instances of ΠOptMult during the iteration number k′(tn + 1) + 1 and
hence, the iteration number k′(tn + 1) + 1 in ΠMult would be successful, which is a contradiction. Since
the iteration number k′(tn + 1) + 1, . . . , (k′ + 1)(tn + 1) constitutes tn + 1 failed iterations, by applying
the same pigeonhole-principle based argument as applied for the base case, we can infer that there exists
a pair of iterations r, r′ ∈ {k′(tn + 1) + 1, . . . , (k′ + 1)(tn + 1)} where r < r′, such that fchar(r) =
fchar(r

′) = (Pj , Pk), with at least one among Pj and Pk being maliciously-corrupt. Moreover, the corrupt
party(ies) among Pj , Pk will be from the set Z? \ GDk′ , since the parties from GDk′ will not be selected
as a summand-sharing party during the iteration number r and r′. Next, following the same argument
as used for the base case, we can infer that the corrupt party(ies) among Pj and Pk will be eventually
included in the LD(i)

r set of every honest Pi. This will further imply all the n instances of FABA with
sid1,(k′+1)(tn+1),(k′+1), . . . , sidn,(k′+1)(tn+1),(k′+1) will eventually return an output for all the honest parties,
such that at least one of the FABA instances with sid`,(k′+1)(tn+1),(k′+1) corresponding to the party P` will
return an output (decide, sid`,(k′+1)(tn+1),(k′+1), 1). Let Pm be the smallest indexed party corresponding to
which theFABA instance with sidm,(k′+1)(tn+1),(k′+1) returns the output (decide, sidm,(k′+1)(tn+1),(k′+1), 1).
Hence the honest parties will update GD to GDk′∪{Pm}. To complete the proof, we need to show that Pm 6∈

15Recall that in the protocol, ACS is executed after every block of tn + 1 failed iterations and GD gets updated through ACS. In
the context of the given scenario, the parties would have run ACS after iteration numbers tn + 1, 2(tn + 1), . . . , (k′ − 1)(tn + 1)
and k′(tn + 1) to update the set GD. The set GDk′ denotes the updated GD set after the ACS instance number k′.

41



GDk′ and Pm ∈ Z?. The former follows from the fact that if Pm ∈ GDk′ , then it implies that then no honest
party ever sends (vote, sidm,(k′+1)(tn+1),(k′+1), 1) to FABA with sidm,(k′+1)(tn+1),(k′+1) and consequently,
FABA with sidm,(k′+1)(tn+1),(k′+1) will never return the output (decide, sidm,(k′+1)(tn+1),(k′+1), 1). On the
other hand, Pm ∈ Z? follows using a similar argument as used for the base case.

An immediate corollary of Claim 3.31 is that there can be at most t(tn+ 1) consecutive failed iterations
in the protocol ΠMult.

Corollary 3.32. In protocol ΠMult, there can be at most t(tn + 1) consecutive failed iterations, where

t
def
= max{|Z| : Z ∈ Z}.

We next claim that it will take at most t(tn + 1) + 1 iterations in the protocol ΠMult to guarantee that
there is at least one successful iteration.

Claim 3.33. In protocol ΠMult, it will take at most t(tn + 1) + 1 iterations to ensure that one of these
iterations is successful.

Proof. Follows easily from Claim 3.29 and Corollary 3.32.

We next claim that the adversary does not learn anything additional about a and b in the protocol.

Claim 3.34. In protocol ΠMult, Adv does not learn anything additional about a and b.

Proof. Follows directly from the fact that in every iteration of ΠMult, Adv does not learn anything additional
about a and b, which in turn follows from Claim 3.25.

Lemma 3.35 now follows from Claim 3.33, Claim 3.30 and Claim 3.34, where the communication
complexity follows from the communication complexity of ΠMultCI and the fact that there are t(tn+1)+1 =
O(n3) instances of ΠMultCI executed inside the protocol ΠMult.

Lemma 3.35. Let Z satisfy the Q(4)(P,Z) condition and let S = {P \ Z|Z ∈ Z}. Then ΠMult takes
at most t(tn + 1) iterations and all honest parties eventually output a secret-sharing of [ab], where t =
max{|Z| : Z ∈ Z}. In the protocol, Adv does not learn anything additional about a and b. The protocol
makesO(|Z| ·n5) calls to FVSS and FABA and additionally incurs a communication ofO(|Z|2 ·n5 log |F|+
|Z| · n7 log |F|) bits.

Protocol ΠMult for M Pairs of Inputs. The modifications to the protocol ΠMult for handling M pairs of
secret-shared inputs {[a(`)], [b(`)]}`=1,...,M are simple. Now, the instances of ΠMultCI are executed with M
pairs of inputs in each iteration. This requires O(M · |Z| · n5) calls to FVSS, O(|Z| · n5) calls to FABA and
additional communication of O((M · |Z|2 · n5 + |Z| · n7) log |F|) bits.

3.3 The Pre-Processing Phase Protocol

The perfectly-secure pre-processing phase protocol ΠPerTriples is standard. We first explain the protocol for
generating a random secret-sharing of one multiplication-triple. The modifications to generate M secret-
shared multiplication-triples are straightforward.

The protocol consists of two stages. In the first stage, the parties jointly generate a secret-sharing of
a random pair of values and during the second stage, the parties securely generate a secret-sharing of the
product of these values. For the first stage, each party secret-shares a pair of random values. The parties then
run an instance of ACS to agree on a common subset of parties whose selected pair of values are eventually
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secret-shared, such that an honest party is guaranteed to be included in the subset. The sum of the secret-
sharing of the pairs of values shared by the parties in the subset is considered the output of the first stage.
For the second stage, the parties simply run an instance of ΠMult over the output pair of secret-shared values
obtained at the end of the first stage.

Protocol ΠPerTriples for securely realizing FTriples with M = 1 in the (FVSS,FABA)-hybrid model is
formally presented in Fig 15.

– Stage I: Generating a Secret-Sharing of Random Pair of Values.
• Sharing Random Pairs of Values:

1. Randomly select a(i), b(i) ∈ F and shares (a
(i)
1 , . . . , a

(i)
h ) and (b

(i)
1 , . . . , b

(i)
h ), such that a(i)1 +

. . . + a
(i)
h = a(i) and b(i)1 + . . . + b

(i)
h = b(i). Call FVSS with (dealer, sidi,1, (a

(i)
1 , . . . , a

(i)
h ))

and FVSS with (dealer, sidi,2, (b
(i)
1 , . . . , b

(i)
h )) for sidi,1 and sidi,2, where sidi,1 = sid||i||1 and

sidi,2 = sid||i||2.
2. For j = 1, . . . , n, keep requesting for an output from FVSS with sidj,1 and sidj,2, till an output is

received.

• Selecting a Common Subset of Parties Through ACS

1. Upon receiving (share, sidj,1, Pj , {[a(j)]q}Pi∈Sq
) and (share, sidj,2, Pj , {[b(j)]q}Pi∈Sq

) from FVSS

with sidj,1 and sidj,2 respectively, send (vote, sidj , 1) to FABA, where sidj
def
= sid||j.

2. For j = 1, . . . , n, request for output from FABA with sidj , till an output is received.
3. Upon receiving (decide, sidj , 1) fromFABA with sidj corresponding to every Pj ∈ GPi for any subset

of parties GPi such that P \ GPi ∈ Z , send (vote, sidj , 0) to FABA with sidj corresponding to
every Pj , for which no message has been sent yet.

4. Once (decide, sidj , vj) is received from FABA for j = 1, . . . , n, set CS = {Pj : vj = 1}.
5. Let a

def
=

∑
Pj∈CS

a(j), b
def
=

∑
Pj∈CS

b(j). Locally compute the shares {[a]q}Pi∈Sq
and {[b]q}Pi∈Sq

.

– Stage II: Generating the Product.
• Participate in the instance ΠMult(P,Z,S, [a], [b]) with sid and compute {[c]q}Pi∈Sq

. Output {[a]q, [b]q,
[c]q}Pi∈Sq .

Protocol ΠPerTriples(P,Z,S)

Figure 15: A perfectly-secure protocol to securely realize FTriples with M = 1 in (FVSS,FABA)-hybrid model for
session id sid. The above code is executed by every party Pi

Protocol ΠPerTriples for Generating M Multiplication-Triples. The modifications in ΠPerTriples to gener-
ate M multiplication-triples are straight forward. During the first stage, each party secret-shares M pairs of
values, by calling FVSS 2M number of times. While running ACS, a party votes “positively” for party Pj ,
only after receiving an output from all the 2M instances of FVSS corresponding to Pj . During the second
stage, the instance of ΠMult will now take M pairs of secret-shared inputs.

We now prove the security of the protocol ΠPerTriples in the (FVSS,FABA)-hybrid model. While proving
these properties, we will assume that Z satisfies the Q(4)(P,Z) condition. This further implies that the

sharing specification S = {S1, . . . , Sh}
def
= {P \ Z|Z ∈ Z} satisfies the Q(3)(S,Z) condition.

Theorem 3.36. If Z satisfies the Q(4)(P,Z) condition, then ΠPerTriples is a perfectly-secure protocol for
securely realizing FTriples with UC-security in the (FVSS,FABA)-hybrid model. The protocol makes O(M ·
|Z| · n5) calls to FVSS, O(|Z| · n5) calls to FABA and additionally incurs a communication of O(M · |Z|2 ·
n5 log |F|+ |Z| · n7 log |F|) bits.

Proof. The communication complexity and the number of calls to FVSS and FABA follow from the protocol
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steps and the communication complexity of the protocol ΠMult. So we next prove the security. For ease of
explanation, we consider the case where only one multiplication-triple is generated in ΠPerTriples; i.e. M =
1. The proof can be easily modified for any general M .

Let Adv be an arbitrary adversary, attacking the protocol ΠPerTriples by corrupting a set of parties Z? ∈
Z , and let Env be an arbitrary environment. We show the existence of a simulator SPerTriples (Fig 16), such
that for any Z? ∈ Z , the outputs of the honest parties and the view of the adversary in the protocol ΠPerTriples

is indistinguishable from the outputs of the honest parties and the view of the adversary in an execution in
the ideal world involving SPerTriples and FTriples.

The high level idea of the simulator is as follows. Throughout the simulation, the simulator itself per-
forms the role of the ideal functionality FVSS and FABA whenever required. During the first stage, whenever
Adv sends a pair of vector of shares to FVSS on the behalf of a corrupt party, the simulator records these
vectors. On the other hand, for the honest parties, the simulator picks pairs of random values and random
shares for those values, and distributes the appropriate shares to the corrupt parties, as per FVSS. During
ACS, to select the common subset of parties, the simulator itself performs the role of FABA and simulates
the honest parties as per the steps of the protocol and FABA. This allows the simulator learn the common
subset of parties CS . Notice that the secret-sharing of the pairs of values shared by all the parties in CS will
be available with the simulator. While the secret-sharing of pairs of the honest parties in CS are selected
by the simulator itself, for every corrupt party Pj which is added to CS , at least one honest party Pi should
participate with input 1 in the corresponding call to FABA. This implies that the honest party Pi must have
received some shares from FVSS corresponding to the vector of shares which Pj sent to FVSS. Since in the
simulation, the role of FVSS is played by the simulator itself, it implies that the vector of shares used by Pj
will be known to the simulator.

Once the simulator learns CS and the secret-sharing of the pairs of values shared by the parties in CS ,
during the second stage, the simulator simulates the rest of the interaction between the honest parties and
Adv as per the protocol steps, by itself playing the role of the honest parties. Moreover, in the underlying
instances of ΠOptMult,ΠMultCI and ΠMult, the simulator itself performs the role of FVSS and FABA whenever
required. Notice that simulator will be knowing the values which should be shared by the respective parties
through FVSS during the underlying instances of ΠOptMult and ΠMultCI. This is because these values are
completely determined by the secret-sharing of the pairs of values shared by the parties in CS , which will be
known to the simulator. Consequently, in the simulated execution, the simulator will be knowing which in-
stances of ΠMultCI are successful and which iterations of ΠMult are successful. Once the simulated execution
is over, the simulator learns the shares of the corrupt parties corresponding to the output multiplication-triple
in the simulated execution. The simulator then communicates these shares on the behalf of the corrupt par-
ties during its interaction with FTriples. This ensures that the shares of the corrupt parties remain the same in
both the worlds.

In the steps of the simulator, to distinguish between the values used by the various parties during the
real execution and simulated execution, the variables in the simulated execution will be used with a ˜sym-
bol.

SPerTriples constructs virtual real-world honest parties and invokes the real-world adversary Adv. The simulator
simulates the view of Adv, namely its communication with Env, the messages sent by the honest parties, and the
interaction with FVSS and FABA. In order to simulate Env, the simulator SPerTriples forwards every message it
receives from Env to Adv and vice-versa. The simulator then simulates the various stages of the protocol as follows.

– Stage I: Generating a Secret-Sharing of a Random Pair of Values.
• Sharing Random Pairs of Values:

• The simulator simulates the operations of the honest parties during this phase by picking random
pairs of values and random vector of shares for those values on their behalf. Namely, when Adv

Simulator SPerTriples
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requests for output from FVSS with sidj,1 and sidj,2 for any Pj 6∈ Z?, the simulator picks random
values ã(j), b̃(j) ∈ F and random shares (ã

(j)
1 , . . . , ã

(j)
h ) and (̃b

(j)
1 , . . . , b̃

(j)
h ), such that ã(j)1 + . . .+

ã
(j)
h = ã(j) and b̃(j)1 + . . .+ b̃

(j)
h = b̃(j). The simulator then sets [ã(j)]q = ã

(j)
q and [̃b(j)]q = b̃

(j)
q

for q = 1, . . . , h, and responds to Adv with the output (share, sidj,1, Pj , {[ã(j)]q}Sq∩Z? 6=∅) and
(share, sidj,2, Pj , {[̃b(j)]q}Sq∩Z? 6=∅) on the behalf of FVSS with sidj,1 and sidj,2 respectively.

• Whenever Adv sends (dealer, sidi,1, (ã
(i)
1 , . . . , ã

(i)
h )) and (dealer, sidi,2, (̃b

(i)
1 , . . . , b̃

(i)
h )) to FVSS

with sidi,1 and sidi,2 respectively on the behalf of any Pi ∈ Z?, the simulator sets [ã(i)]q = ã
(i)
q

and [̃b(i)]q = b̃
(i)
q for q = 1, . . . , h, where ã(i)

def
= ã

(i)
1 + . . .+ ã

(i)
h and b̃(i)

def
= b̃

(i)
1 + . . .+ b̃

(i)
h .

• Selecting a Common Subset of Parties (ACS): The simulator simulates the interface to FABA for Adv
by itself performing the role of FABA and playing the role of the honest parties, as per the steps of the
protocol. When the first honest party completes this phase during the simulated execution, SPerTriples
learns the set CS . It then sets ã

def
=

∑
Pj∈CS

ã(j), b̃
def
=

∑
Pj∈CS

b̃(j), computes [ã] =
∑

Pj∈CS
[ã(j)] and

[̃b] =
∑

Pj∈CS
[̃b(j)].

– Stage II: Generating the Product. The simulator plays the role of the honest parties as per the protocol
and interacts with Adv for the instance ΠMult(P,Z,S, [ã], [̃b]), where during the instance, the simulator uses
the shares {[ã]q, [̃b]q}Pi∈Sq

on the behalf of every Pi 6∈ Z?. Moreover, during this instance of ΠMult, the
simulator simulates the interface to FABA for Adv during the underlying instances of ΠOptMult and during
cheater identification, by itself performing the role of FABA, as per the steps of the protocol. Furthermore,
during the underlying instances of ΠOptMult and ΠMultCI, whenever required, the simulator itself plays the
role FVSS.

– Interaction with FTriples: Let {[c̃]q}Sq∩Z? 6=∅ be the output shares of the parties in Z?, during the instance
ΠMult(P,Z,S, [ã], [̃b]). The simulator sends (shares, sid, {[ã]q, [̃b]q, [c̃]q}Sq∩Z? 6=∅) to FTriples, on the behalf
of the parties in Z?.

Figure 16: Simulator for the protocol ΠPerTriples with M = 1 where Adv corrupts the parties in set Z? ∈ Z

We now prove a series of claims, which will help us to finally prove the theorem. We first claim that in
any execution of ΠPerTriples, a set CS is eventually generated.

Claim 3.37. In any execution of ΠPerTriples, a common set CS is eventually generated where P \ CS ∈ Z ,
such that for every Pj ∈ CS , there exists a pair of values held by Pj , which are eventually secret-shared.

Proof. We first show that there always exists some set Z ∈ Z such that in theFABA instances corresponding
to every party in P \ Z, all honest parties eventually obtain an output 1. For this, we consider the following
two cases.

– If some honest party Pi has participated with vote input 0 in any instance of FABA during step 3 of the
ACS phase: this implies that there exists a subset GP i for Pi where P\GP i ∈ Z , such that Pi receives
the output (decide, sidj , 1) from FABA with sidj , corresponding to every Pj ∈ GP i. Consequently,
every honest party will eventually receive the same outputs from these FABA instances. Since P \
GP i ∈ Z , we get that there exists some set Z ∈ Z such that the FABA instances corresponding to
every party in P \ Z responded with output 1, which is what we wanted to show.

– No honest party has participated with vote input 0 in any instance ofFABA: In the protocol, each party
Pj 6∈ Z? sends its vector of shares to FVSS with sidj,1 and sidj,2 and every honest party eventually
receives its respective shares from these vectors as the output from the corresponding instances of
FVSS. Hence, corresponding to every Pj 6∈ Z?, all honest parties eventually participate with input
(vote, sidj , 1) during the instance of FABA with sidj , and this FABA instance will eventually respond
with output (decide, sidj , 1). Since Z? ∈ Z , it then follows that even in this case, there exists some
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set Z ∈ Z such that the FABA instances corresponding to every party in P \Z responded with output
1.

We next show that all honest parties eventually receive an output from all the instances of FABA. Since
we have shown there exists some set Z ∈ Z such that the FABA instances corresponding to every party in
P \Z eventually returns the output 1, it thus follows that all honest parties eventually participate with some
vote inputs in the remaining FABA instances and hence will eventually obtain some output from these FABA

instances as well. Since the set CS corresponds to the FABA instances in which the honest parties obtain 1 as
the output, it thus follows that eventually, the honest parties obtain some CS where P \ CS ∈ Z . Moreover,
the set CS will be common, as it is based on the outcome of FABA instances.

Now consider an arbitrary Pj ∈ CS. This implies that the parties obtain 1 as the output from the jth

instance of FABA. This further implies that at least one honest party Pi participated in this FABA instance
with vote input 1. This is possible only if Pi received its respective shares from the instances of FVSS

with sidj,1 and sidj,2, further implying that Pj has provided some vector of shares (a
(j)
1 , . . . , a

(j)
h ) and

(b
(i)
1 , . . . , b

(i)
h ) as inputs to these FVSS instances. It now follows easily that eventually, all honest parties will

have their respective shares corresponding to the vectors of shares provided by Pj , implying that the honest

parties will eventually hold [a(j)] and [b(j)], where a(j) def= a
(j)
1 + . . .+a

(j)
h and b(j)

def
= b

(j)
1 + . . .+b

(j)
h .

We next show that the view generated by SPerTriples for Adv is identically distributed to Adv’s view
during the real execution of ΠPerTriples.

Claim 3.38. The view of Adv in the simulated execution with SPerTriples is identically distributed as the view
of Adv in the real execution of ΠPerTriples.

Proof. We first note that in the real-world (during the real execution of ΠPerTriples), the view of Adv consists
of the following:

(1) The vector of shares (a
(j)
1 , . . . , a

(j)
h ) and (b

(i)
1 , . . . , b

(i)
h ) (if any) for FVSS with sidj,1 and sidj,2 respec-

tively, corresponding to Pj ∈ Z?.
(2) Shares {[a(j)]q, [b

(j)]q}Sq∩Z? 6=∅, corresponding to Pj 6∈ Z?.
(3) Inputs of the various parties during the FABA instances as part of ACS and the outputs from the FABA

instances.
(4) The view generated for Adv during the instance of ΠMult.

The vectors of shares in (1) are the inputs of Adv and hence they are identically distributed in both the
real as well as simulated execution of ΠPerTriples, so let us fix these vectors. In the real execution, every
Pj 6∈ Z? picks its pair of values randomly and the vectors of shares for FVSS, corresponding to these values,
uniformly at random. On the other hand, in the simulated execution, the simulator picks the pair of values

and their shares randomly on the behalf of Pj . Now since the sharing specification S = (S1, . . . , Sh)
def
=

{P \ Z|Z ∈ Z} is Z-private, it follows that the distribution of the shares in (2) is identical in both the real,
as well as the simulated execution. Specifically, conditioned on the shares in (2), the underlying pairs of
values shared by the parties Pj 6∈ Z? are uniformly distributed. Since the partial view of Adv containing (1)
and (2) are identically distributed, let us fix them.

Now conditioned on (1) and (2), it is easy to see that the partial view of Adv consisting of (3) is iden-
tically distributed in both the executions. This is because the outputs of the FABA instances are determined
deterministically based on the inputs provided by the various parties in these FABA instances. Furthermore,
the inputs of the parties in these FABA instances depend upon the order in which various parties receive
outputs from various FVSS instances, which is completely determined by Adv, since message scheduling is
under the control of Adv. Since in the simulated execution, the simulator provides the interface to various
instances of FABA to Adv in exactly the same way as FABA would have been accessed by Adv in the real
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execution, it follows that the partial view of Adv containing (1), (2) and (3) is identically distributed in both
the executions and so let us fix this. This also fixes the set CS , which according to Claim 3.37, is guaranteed
to be generated.

Let [a] and [b] be the secret-sharing held by the honest parties after stage I, conditioned on the view of
Adv in (1), (2) and (3). Note that in the simulated execution, the simulator will be knowing the complete
sharing [a] and [b]. This is because [a] and [b] are computed deterministically based on the secret-sharing of
the pairs of the values shared by the parties in CS , all of which will be completely known to the simulator in
the simulated execution. To complete the proof of the claim, we need to show that the partial view of Adv
consisting of (4) is identically distributed in both the executions (conditioned on (1), (2) and (3)). However,
this follows from the privacy of ΠOptMult,ΠMultCI and ΠMult (Claims 3.14, 3.25 and 3.34) and the fact that
in the simulated execution, simulator plays the role of the honest parties during the instance of ΠMult exactly
as per the steps of ΠMult, where the simulator will be completely knowing the shares of both [a] and [b]
corresponding to both the honest as well as corrupt parties. Consequently, it will be knowing the shares with
which different parties have to participate in the underlying instances of ΠOptMult and ΠMultCI. Moreover,
in the simulated execution, the simulator honestly plays the role of FVSS and FABA in these ΠOptMult and
ΠMultCI instances. This guarantees that the view of Adv during the real execution of the ΠMult instance is
exactly the same as the view of Adv during the simulated execution of ΠMult.

Finally, we show that conditioned on the view of Adv, the outputs of the honest parties are identically
distributed in both the worlds.

Claim 3.39. Conditioned on the view of Adv, the output of the honest parties are identically distributed
in the real execution of ΠPerTriples involving Adv, as well as in the ideal execution involving SPerTriples and
FTriples.

Proof. Let View be an arbitrary view of Adv, and let {([a(j)], [b(j)])}Pj∈CS be the secret-sharing of the
pairs of values as per View, shared by the parties in CS . Note that CS is bound to have at least one honest
party. This is because P \ CS ∈ Z and if CS ⊆ Z?, then it implies that Z does not satisfy the Q(2)(P,Z)
condition, which is a contradiction. From the proof of Claim 3.38, it follows that corresponding to every
honest Pj ∈ CS , the pairs (a(j), b(j)) are uniformly distributed conditioned on the shares of these pairs, as
determined by View. Let us fix these pairs.

We show that in the real-world, the honest parties eventually output ([a], [b], [c]), where conditioned on
View, the triple (a, b, c) is a uniformly random multiplication-triple over F. From the protocol steps, the

parties set [a]
def
=

∑
Pj∈CS

[a(j)], [b]
def
=

∑
Pj∈CS

[b(j)]. Since corresponding to every Pj ∈ CS , the honest parties

eventually hold [a(j)] and [b(j)] (follows from Claim 3.37), it follows that the honest parties eventually
hold [a] and [b]. Moreover, since [c] is computed as the output of the instance ΠMult(P,Z,S, [a], [b]), it
follows from Lemma 3.35 that the honest parties will eventually hold [c], where c = ab. We next show
that conditioned on View, the multiplication-triple (a, b, c) is uniformly distributed over F. However, this
follows from the fact that there exists a one-to-one correspondence between the random pairs shared by the
honest parties in CS and (a, b). Namely, from the viewpoint of Adv, for every candidate pair (a(j), b(j))
shared by the honest parties Pj ∈ CS , there exists a unique (a, b) which is consistent with View. Since
the pairs shared by the honest parties Pj are uniformly distributed and independent of View, it follows that
(a, b) is also uniformly distributed. Since c = ab holds, it follows that (a, b, c) is uniformly distributed.

To complete the proof, we now show that conditioned on the shares {([a]q, [b]q, [c]q)}Sq∩Z? 6=∅ (which
are determined by View), the honest parties output a secret-sharing of some random multiplication-triple in
the ideal-world which is consistent with the shares {([a]q, [b]q, [c]q)}Sq∩Z? 6=∅. However, this simply follows
from the fact that in the ideal-world, the simulator SPerTriples sends the shares {([a]q, [b]q, [c]q)}Sq∩Z? 6=∅ to

47



FTriples on the behalf of the parties in Z?. As an output, FTriples generates a random secret-sharing of some
random multiplication-triple consistent with the shares provided by SPerTriples.

The proof of Theorem 3.36 now follows from Claim 3.38 and Claim 3.39.

4 Statistically-Secure Pre-Processing Phase Protocol with Q(3)(P ,Z) Con-
dition

In this section, we present a statistically-secure protocol for securely realizing FTriples, provided Z satisfies
the Q(3)(P,Z) condition. We first design a statistically-secure VSS protocol, for which we present an AICP
with Q(3)(P,Z) condition.

4.1 Asynchronous Information Checking Protocol (AICP)

An ICP [32, 16] is used for authenticating data in the presence of a computationally-unbounded adversary.
An AICP [10, 29] extends ICP for the asynchronous setting. In an AICP, there are four entities, a signer
S ∈ P , an intermediary I ∈ P , a receiver R ∈ P and all the parties in P acting as verifiers (note that S, I
and R also act as verifiers). An AICP has two sub-protocols, one for the authentication phase and one for
the revelation phase.

In the authentication phase, S has some private input s ∈ F, which it distributes to I along with some
authentication information. Each verifier is provided with some verification information, followed by the
parties verifying whether S has distributed consistent information. The data held by I at the end of this
phase is called S’s IC-Signature on s for intermediary I and receiver R, denoted by ICSig(S, I,R, s). Later,
during the revelation phase, I reveals ICSig(S, I,R, s) to R, who “verifies” it with respect to the verification
information provided by the verifiers and decides whether to accept or reject s. We require the same security
guarantees from AICP as expected from digital signatures, namely correctness, (if S, I and R are all honest,
then R should accept s), unforgeability (a corrupt I should fail to reveal an honest S’s signature on s′ 6= s)
and non-repudiation (if an honest I holds some ICSig(S, I,R, s), then later an honest R should accept s, even
if S is corrupt). Additionally, we will need the privacy property guaranteeing that if S, I and R are all honest,
then Adv does not learn s.

Our AICP is a generalization of the AICP of [29], which was designed against threshold adversaries.
During the authentication phase, S embeds s in a random t-degree signing-polynomial F (x), where t is
the cardinality of maximum-sized subset in Z , and gives F (x) to I. In addition, each verifier Pi is given
a random verification-point (αi, vi) on F (x). Later, during the revelation phase, I is supposed to reveal
F (x) to R, while each verifier Pi is supposed to reveal their verification-points to R. R then accepts F (x)
if it is found to be consistent with “sufficiently many” verification-points. The above idea achieves all
the properties of AICP, except the non-repudiation property, since a potentially corrupt S may distribute
“inconsistent” data to I and the verifiers. To deal with this, during the authentication phase, the parties
interact in a “zero-knowledge” fashion to verify the consistency of the distributed information. For this, S
additionally distributes a random t-degree masking-polynomial M(x) to I, while each verifier Pi is given a
point onM(x) at αi. The parties then publicly check the consistency of the F (x),M(x) polynomials and the
distributed points with respect to a random linear combination of these polynomials and points. The linear
combiner is randomly selected by I only when it is confirmed that S has distributed the verification-points
to sufficiently many supporting verifiers in a set SV . This ensures that S has no knowledge beforehand
about the random combiner while distributing the points to SV and hence, any inconsistency among the
data distributed by a corrupt S will be detected with a high probability.
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Protocol ΠAuth(P,Z,S, I,R, s)
– Distributing the Polynomials and the Verification Points: Only S executes the following steps.
• Randomly select t-degree signing-polynomial F (x) and masking-polynomialM(x), such that F (0) = s,

where t = max{|Z| : Z ∈ Z}.
• For j = 1, . . . , n, randomly select αj ∈ F \ {0} and compute vj = F (αj),mj = M(αj).
• Send (authPoly, sid, F (x),M(x)) to I.
• For j = 1, . . . , n, send (authPoint, sid, (αj , vj ,mj)) to party Pj .

– Confirming Receipt of Verification Points: Each party Pi (including S, I and R) upon receiving (authPoint,
sid, (αi, vi,mi)) from S, sends (Received, sid, i) to I.

– Announcing Masked Polynomial and Set of Supporting Verifiers:
• I, upon receiving (Received, sid, j) from a set of parties SV where P \ SV ∈ Z , randomly picks d ∈

F \ {0} and sends (sender,Acast, sidI, (d,B(x),SV)) to FAcast, where sidI = sid||I and B(x)
def
=

dF (x) +M(x).
• Every party Pi ∈ P keeps requesting for output from FAcast with sidI until an output is received.

– Announcing Validity of Masked Polynomial:
• S, upon receiving an output (I,Acast, sidI, (d,B(x),SV)) from FAcast with sidI, checks if B(x) is a t-

degree polynomial, P \ SV ∈ Z and dvj +mj = B(αj) holds for all Pj ∈ SV .
– If all the above conditions hold, then S sends (sender,Acast, sidS,OK) to FAcast, where sidS =

sid||S;
– Else, S sends (sender,Acast, sidS,NOK, s) to FAcast.

• Every party Pi ∈ P keeps requesting for output from FAcast with sidS until an output is received.
– Deciding Whether Authentication is Successful: Every party Pi (including S, I and R) upon receiving

(I,Acast, sidI, (d,B(x),SV)) from FAcast with sidI, sets the variable authCompleted
(sid,i)
S,I,R to 1 if either of the

following holds.
• (sender,Acast, sidS,NOK, s) is received from FAcast with sidS. In this case, Pi also sets ICSig(S, I,

R, s) = s.
• (sender,Acast, sidS,OK) is received from FAcast with sidS. Here, Pi sets ICSig(S, I,R, s) = F (x), if

Pi = I.a

Protocol ΠReveal(P,Z,S, I,R, s)
– Revealing Signing Polynomial and Verification Points: Each party Pi (including S, I and R) does the fol-

lowing, if authCompleted
(sid,i)
S,I,R is set to 1 and ICSig(S, I,R, s) has not been publicly set during ΠAuth.

• If Pi = I then send (revealPoly, sid, F (x)) to R, where ICSig(S, I,R, s) has been set to F (x) during
ΠAuth.

• If Pi ∈ SV , then send (revealPoint, sid, (αi, vi,mi)) to R.
– Accepting or Rejecting the IC-Sig: The following steps are executed only by R, if authCompleted

(sid,i)
S,I,R is

set to 1 by R during the protocol ΠAuth(P,Z,S, I,R, s), where R = Pi.
– If R has set ICSig(S, I,R, s) = s during ΠAuth, then output s.
– Else, wait till (revealPoly, sid, F (x)) is received from I, where F (x) is a t-degree polynomial. Upon

receiving, proceed as follows.

1. Upon receiving (revealPoint, sid, (αj , vj ,mj)) from any Pj ∈ SV , accept (αj , vj ,mj) if either of
the following holds:
– vj = F (αj); or
– B(αj) 6= dvj +mj , where B(x) is received from FAcast with sidI, during ΠAuth.

2. Wait till a subset of parties SV ′ ⊆ SV is found, such that SV \ SV ′ ∈ Z and for every Pj ∈ SV ′,
the corresponding revealed point (αj , vj ,mj) is accepted. Then output s = F (0).

aIf S broadcasts s along with NOK, then ICSig will be set publicly to s, while if S broadcasts OK then only I sets ICSig to
F (x).

Protocol AICP
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Figure 17: The asynchronous information-checking protocol against general adversaries for session id sid in the
FAcast-hybrid

We next formally prove the properties of our AICP. While proving these properties, we assume that Z
satisfies the Q(3)(P,Z) condition. We first show that when S, I and R are honest, all honest parties set
the local bit indicating that the authentication has completed to 1. Furthermore, R will accept the signature
revealed by I.

Claim 4.1 (Correctness). If S, I and R are honest, then each honest Pi eventually sets authCompleted
(sid,i)
S,I,R

to 1 during ΠAuth. Moreover, R eventually outputs s during ΠReveal.

Proof. Let S, I and R be honest and let H be the set of honest parties among P . Moreover, let Z? ∈ Z be
the set of corrupt parties. We first show that each honest party Pi eventually sets authCompleted

(sid,i)
S,I,R to 1

during ΠAuth. During ΠAuth, S chooses the signing-polynomial F (x) such that s = F (0) holds. S will then
send the signing-polynomial F (x) and masking-polynomial M(x) to I, and the corresponding verification-
point (αi, vi,mi) to each verifier Pi, such that vi = F (αi) and mi = M(αi) holds. Consequently, each
verifier in H will eventually receive its verification-point and indicates this to I. Since P \ H = Z? ∈ Z ,
it follows that I will eventually find a set SV , such that P \ SV ∈ Z , and where each verifier in SV has
indicated to I that it has received its verification-point. Consequently, I will computeB(x) = dF (x)+M(x),
and broadcast (d,B(x),SV), which is eventually delivered to every honest party, including S. Moreover,
S will find that B(αj) = dvj + mj holds for all the verifiers Pj ∈ SV . Consequently, S will broadcast an
OK message, which is eventually received by every honest party Pi, who then sets authCompleted

(sid,i)
S,I,R to

1. Moreover, I will set ICSig(S, I,R, s) to F (x).
During ΠReveal, I will send F (x) to R, and each verifier Pi ∈ H ∩ SV will send its verification points

(αi, vi,mi) to R. These points and the polynomial F (x) are eventually received by R. Moreover, the
condition vi = F (αi) will hold true for these points, and consequently these points will be accepted. Since
SV \ (H∩SV) ⊆ Z? ∈ Z , it follows that R will eventually find a subset SV ′ ⊆ SV where SV \ SV ′ ∈ Z ,
such that the points corresponding to all the parties in SV ′ are accepted. This implies that R will eventually
output s = F (0).

We next show that when S, I and R are honest, the adversary does not learn anything about s during
either ΠAuth or ΠReveal.

Claim 4.2 (Privacy). If S, I and R are honest, then the view of adversary Adv throughout ΠAuth and ΠReveal

is independent of s.

Proof. Let t = max{|Z| : Z ∈ Z} and let Z? ∈ Z be the set of corrupt parties. For simplicity and
without loss of generality, let |Z?| = t. During ΠAuth, the adversary Adv learns t verification-points
{(αi, vi,mi)}Pi∈Z? . However, since F (x) is a random t-degree polynomial with F (0) = s, the points
{(αi, vi)}Pi∈Z? are distributed independently of s. That is, for every candidate s ∈ F from the point of view
of Adv, there is a corresponding unique t-degree polynomial F (x), such that F (αi) = vi holds correspond-
ing to every Pi ∈ Z?.

During ΠAuth, the adversary Adv also learns d and the blinded-polynomial B(x) = dF (x) + M(x),
along with the points {(αi, vi)}Pi∈Z? . However, this does not add any new information about s to the
view of the adversary. This is because M(x) is a random t-degree polynomial. Hence for every candidate
M(x) polynomial from the point of view of Adv where M(αi) = mi holds for every Pi ∈ Z?, there is
a corresponding unique t-degree polynomial F (x), such that F (αi) = vi holds corresponding to every
Pi ∈ Z?, and where dF (x) +M(x) = B(x). We also note that in ΠAuth, the signer S does not broadcast s,
which follows from the Claim 4.1. Finally, Adv does not learn anything new about s during ΠReveal, since
the verification-points and the signing-polynomial are sent only to R.
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We next prove the unforgeability property.

Claim 4.3 (Unforgeability). If S,R are honest, I is corrupt and if R outputs s′ during ΠReveal, then s′ = s
holds, except with probability at most nt

|F|−1 .

Proof. Let H be the set of honest parties in P and let Z? be the set of corrupt parties. Since R outputs s′

during ΠReveal, it implies that during ΠAuth, the variable authCompleted
(sid,i)
S,I,R is set to 1 by R, if R = Pi.

This further implies that S has broadcasted either an OK or an NOK message during ΠAuth, which further
implies that I has broadcasted some blinded-polynomialB(x) during ΠAuth. Now there are now two possible
cases.

– S has broadcasted NOK along with s during ΠAuth: In this case, every honest party including R would
set ICSig(S, I,R, s) to s during ΠAuth. Moreover, during ΠReveal, the receiver R outputs s. Hence, in
this case, s′ = s holds with probability 1.

– S has broadcasted OK during ΠAuth: This implies that during ΠAuth, I had broadcasted a t-degree
blinded-polynomial B(x), along with the set SV . Furthermore, S has verified that P \ SV ∈ Z
and B(αi) = dvi + mi holds for every verifier Pi ∈ SV . Now during ΠReveal, if I sends F (x) as
ICSig(S, I,R, s) to R, then again s′ = s holds with probability 1. So consider the case when I sends
F ′(x) as ICSig(S, I,R, s) to R, where F ′(x) is a t-degree polynomial such that F ′(x) 6= F (x) and
where F ′(0) = s′. In this case, we show that except with probability at most nt

|F|−1 , the verification-
point of no honest verifier from SV will get accepted by R during ΠReveal, with respect to F ′(x).
Now assuming that this statement is true, the proof follows from the fact that in order for F ′(x) to
be accepted by R, it should accept the verification-point of at least one honest verifier from SV with
respect to F ′(x). This is because R should find a subset of verifiers SV ′ ⊆ SV whose corresponding
verification-points are accepted, where SV \ SV ′ ∈ Z . So clearly, the set of corrupt verifiers in SV
cannot form a candidate SV ′. This is because since Z satisfies the Q(3)(P,Z) condition, it satisfies
the Q(2)(SV,Z) condition as P \ SV ∈ Z . This further implies that Z satisfies the Q(1)(SV ′,Z)
condition as SV \SV ′ ∈ Z . Hence, any candidate for SV ′ must contain at least one honest party from
SV .
Consider an arbitrary verifier Pi ∈ H ∩ SV from which R receives the verification-point (αi, vi,mi)
during ΠReveal. This point can be accepted only if either of the following holds.
• vi = F ′(αi): This is possible with probability at most t

|F|−1 . This is because F ′(x) and F (x), be-
ing distinct t-degree polynomials can have at most t points in common, and since the evaluation-
point αi corresponding to Pi, being randomly selected from F− {0}, will not be known to I.

• dvi+mi 6= B(αi): This is impossible, as otherwise S would have broadcasted s and NOK during
ΠAuth, which is a contradiction.

Now as there could be up to n− 1 honest verifiers in SV , it follows from the union bound that except
with probability at most nt

|F|−1 , the polynomial F ′(x) will not be accepted.

We next prove the non-repudiation property.

Claim 4.4 (Non-Repudiation). If S is corrupt and I,R are honest and if I has set ICSig(S, I,R, s) during
ΠAuth, then R eventually outputs s during ΠReveal, except with probability at most n

|F|−1 .

Proof. Let H be the set of honest parties in P and Z? ∈ Z be the set of corrupt parties. Since I has set
ICSig(S, I,R, s) during ΠAuth, it implies that that it has set the variable authCompleted

(sid,i)
S,I,R to 1 during

ΠAuth, if I = Pi. This further implies that I has broadcasted a blinded-polynomial B(x), the linear combiner
d and the set SV , where B(x) = dF (x) + M(x) and where F (x) and M(x) are the signing and masking
polynomials received by I from S. Moreover, S has broadcasted either an OK message or an NOK message.
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Consequently, all honest parties Pj , including R, eventually set authCompleted
(sid,j)
S,I,R to 1. Now there are

two possible cases.
• S has broadcasted NOK, along with s during ΠAuth: In this case, all honest parties, including I and

R, set ICSig(S, I,R, s) to s during ΠAuth. Moreover, from the steps of ΠReveal, R outputs s during
ΠReveal. Thus, the claim holds in this case with probability 1.

• S has broadcasted OK during ΠAuth: In this case, I sets ICSig(S, I,R, s) to F (x), where F (0) = s.
During ΠReveal, I sends F (x) to R. Moreover, every verifier Pi ∈ H ∩ SV eventually sends its
verification-point (αi, vi,mi) to R. We next show that except with probability at most n

|F|−1 , all these
verification-points are accepted by R. Now assuming that this statement is true, the proof follows
from the fact that H ∩ SV = SV \ Z?. Consequently, R eventually accepts the verification-points
from a subset of parties SV ′ ⊆ SV where SV \ SV ′ ∈ Z and outputs s.
Consider an arbitrary verifier Pi ∈ H ∩ SV whose verification-point (αi, vi,mi) is received by R
during ΠReveal. Now there are two possible cases, depending upon the relationship that holds between
F (αi) and vi during ΠAuth.

– vi = F (αi) holds: In this case, according to the protocol steps of ΠReveal, the point (αi, vi,mi) is
accepted by R.

– vi 6= F (αi) holds: In this case, we claim that except with probability at most 1
|F|−1 , the condition

dvi + mi 6= B(αi) will hold, implying that the point (αi, vi,mi) is accepted by R. This is
because the only way dvi + mi = B(αi) holds is when S distributes (αi, vi,mi) to Pi where
vi 6= F (αi) andmi 6= M(αi) holds, and I selects d = (M(αi)−mi) ·(vi−F (αi))

−1. However,
S will not be knowing the random d from F \ {0} which I picks while distributing F (x),M(x)
to I, and (αi, vi,mi) to Pi.

Now, as there can be up to n− 1 honest verifiers in SV , from the union bound, it follows that except
with probability at most n

|F|−1 , the verification-point of all honest verifiers in SV are accepted by R.

We next derive the communication complexity of ΠAuth and ΠReveal.

Claim 4.5. Protocol ΠAuth incurs a communication of O(n · log |F|) bits and makes O(1) calls to FAcast

with O(n · log |F|)-bit messages. Protocol ΠReveal requires a communication of O(n · log |F|) bits.

Proof. During ΠAuth, signer S sends t-degree polynomials F (x) and M(x) to I, and verification-points to
each verifier. This requires a communication ofO(n·log |F|) bits. Intermediary I needs to broadcastB(x), d
and the set SV , which requires one call to FAcast with a message of size O(n · log |F|) bits. Moreover, S
may need to broadcast s, which requires one call to FAcast with a message of size O(log |F|) bits. During
ΠReveal, I may send F (x) to R, and each verifier may send its verification-point to R. This will require a
communication of O(n · log |F|) bits.

Lemma 4.6 now follows from Claims 4.1-4.5.

Lemma 4.6. Let Z satisfy the Q(3)(P,Z) condition. Then the pair of protocols (ΠAuth,ΠReveal) satisfy the

following properties, except with probability at most εAICP
def
= nt
|F|−1 , where t = max{|Z| : Z ∈ Z}.

– Correctness: If S, I and R are honest, then each honest Pi eventually sets authCompleted
(sid,i)
S,I,R to 1

during ΠAuth. Moreover, R eventually outputs s during ΠReveal.
– Privacy: If S, I and R are honest, then the view of adversary remains independent of s.
– Unforgeability: If S,R are honest, I is corrupt and if R outputs s′ ∈ F during ΠReveal, then s′ = s

holds.
– Non-repudiation: If S is corrupt and I,R are honest and if I has set ICSig(S, I,R, s) during ΠAuth,

then R eventually outputs s during ΠReveal.
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Protocol ΠAuth requires a communication of O(n · log |F|) bits and makes O(1) calls to FAcast with O(n ·
log |F|)-bit messages. Protocol ΠReveal requires a communication of O(n · log |F|) bits.

Before proceeding further, we introduce certain notations for our AICP, which will be used when we use
our AICP in our statistically-secure VSS protocol.

Notation 4.7 (Notation for Using AICP). We use the following terms while invoking (ΠAuth,ΠReveal):
– “Pi gives ICSig(sid, Pi, Pj , Pk, s) to Pj” to mean that Pi acts as S and invokes an instance of the

protocol ΠAuth with session id sid, where Pj and Pk plays the role of I and R respectively.
– “Pj receives ICSig(sid, Pi, Pj , Pk, s) from Pi” to mean that Pj , as I, has set authCompleted

(sid,j)
Pi,Pj ,Pk

to
1 during protocol ΠAuth with session id sid, where Pi and Pk plays the role of S and R respectively.

– “Pj reveals ICSig(sid, Pi, Pj , Pk, s) to Pk” to mean Pj , as I, invokes an instance of ΠReveal with session
id sid, with Pi and Pk playing the role of S and R respectively.

– “Pk accepts ICSig(sid, Pi, Pj , Pk, s)” to mean that Pk, as R, outputs s during the instance of ΠReveal

with session id sid, invoked by Pj as I, with Pi playing the role of S.

4.2 Statistically-Secure VSS Protocol with Q(3)(P ,Z) Condition

The high level idea behind our statistically-secure protocol ΠSVSS (Figure 18) is similar to that of the
perfectly-secure VSS protocol ΠPVSS (see Fig 6). In ΠPVSS, dealer PD, on having the shares (s1, . . . , sh),
sends sq to the parties in Sq ∈ S. This is followed by the parties in Sq performing pair-wise consistency tests
of their supposedly common shares and publicly announcing the results. Based on these results, the parties
identify a core set Cq ⊆ Sq, where Sq \ Cq ∈ Z , such that all the (honest) parties in Cq have received the
same share sq from PD. Once such a Cq is identified, then the honest parties in Cq, forming a “majority”, can
“help” the (honest) parties in Sq \ Cq get this common sq. However, since Z now satisfies the Q(3)(P,Z)
condition, Cq may have only one honest party. Consequently, the “majority-based filtering” used by the
parties in Sq \ Cq to get sq will fail.

To deal with the above problem, the parties in Sq issue IC-Signatures during the pair-wise consistency
tests of their supposedly common shares. The parties then check whether the common share sq held by the
(honest) parties in Cq is “(Pi, Pj , Pk)-authenticated” for every Pi, Pj ∈ Cq and every Pk ∈ Sq; i.e. Pj holds
ICSig(Pi, Pj , Pk, sq). Now, to help the parties Pk ∈ Sq \ Cq obtain the common share sq, every Pj ∈ Cq
reveals IC-signed sq to Pk, signed by every Pi ∈ Cq. Since Cq is bound to contain at least one honest party, a
corrupt Pj will fail to forge an honest Pi’s IC-signature on an incorrect sq. On the other hand, an honest Pj
will be able to eventually reveal the IC-signature of all the parties in Cq on the share sq, which is accepted
by Pk. Protocol ΠSVSS is formally presented in Fig 18.

– Distribution of Shares: PD, on having input (s1, . . . , sh), sends (dist, sid, q, sq) to all Pi ∈ Sq , for q =
1, . . . , h.

– Pairwise Consistency Tests on IC-Signed Values: For each Sq ∈ S, each Pi ∈ Sq does the following.
• Upon receiving (dist, sid, q, sqi) from D, give ICSig(sid

(PD,q)
i,j,k , Pi, Pj , Pk, sqi) to every Pj ∈ Sq , corre-

sponding to every Pk ∈ Sq , where sid
(PD,q)
i,j,k = sid||PD||q||i||j||k.

• Upon receiving ICSig(sid
(PD,q)
j,i,k , Pj , Pi, Pk, sqj) from Pj ∈ Sq corresponding to every party Pk ∈ Sq ,

if sqi = sqj holds, then send (sender,Acast, sid
(PD,q)
i,j ,OKq(i, j)) to FAcast, where sid

(PD,q)
i,j =

sid||PD||q||i||j.
– Constructing Consistency Graph: For each Sq ∈ S, each Pi ∈ P executes the following steps.
• Initialize a set Cq to ∅. Construct an undirected consistency graph G(i)

q with Sq as the vertex set.
• For every Pj , Pk ∈ Sq , keep requesting for an output from FAcast with sid

(PD,q)
j,k , until an output is

received.

Protocol ΠSVSS(S)
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• Add the edge (Pj , Pk) to G(i)
q if (Pj ,Acast, sid

(PD,q)
j,k ,OKq(j, k)) and (Pk,Acast, sid

(PD,q)
k,j ,OKq(k, j))

is received from FAcast with sid
(PD,q)
j,k and sid

(PD,q)
k,j respectively.

– Identification of Core Sets and Public Announcements: PD executes the following steps to compute the
core sets.
• For each Sq ∈ S, check if there exists a subset of parties Wq ⊆ Sq , such that Sq \ Wq ∈ Z , and the

parties inWq form a clique in the consistency graph GD
q . If such aWq exists, then assign Cq :=Wq .a

• Once C1, . . . , Ch are computed, send (sender,Acast, sidPD
, {Cq}Sq∈S) to FAcast, where sidPD

= sid||PD.
– Share computation: Each Pi ∈ P executes the following steps.
• Keep requesting for output from FAcast with sidPD

until an output is received.
• Upon receiving an output (sender,Acast, sidPD

, {Cq}Sq∈S) from FAcast with sidPD
, wait until the parties

in Cq form a clique in G(i)
q , corresponding to each Sq ∈ S. For q = 1, . . . , h, verify if Sq \ Cq ∈ Z .

If the verification is successful, then proceed to compute the shares corresponding to each Sq such that
Pi ∈ Sq as follows.

1. If Pi ∈ Cq then set [s]q = sqi and corresponding to every signer Pj ∈ Cq , reveal ICSig(sid
(PD,q)
j,i,k , Pj ,

Pi, Pk, sqi) to every receiver party Pk ∈ Sq \ Cq .
2. If Pi /∈ Cq , then wait till Pi finds some Pj ∈ Cq such that Pi has accepted

ICSig(sid
(PD,q)
k,j,i , Pk, Pj , Pi, sqj) revealed by the intermediary Pj , corresponding to every signer

Pk ∈ Cq . Then set [s]q = sqj .

• Upon computing {[s]q}Pi∈Sq
, output (share, sid, PD, {[s]q}Pi∈Sq

).

aSimilar to the protocol ΠPVSS, the existence of the core sets can be verified with O(poly(n, |Z|)) computational effort (see
the discussion on the computational complexity of the protocol ΠPVSS).

Figure 18: The statistically-secure VSS protocol for session id sid for realizing FVSS in the FAcast-hybrid model

Remark 4.8. We stress that similar to the protocol ΠPVSS, the honest parties may not get any output in the
protocol ΠSVSS, if PD does not make public valid core sets. On the other hand, if PD is honest, then it will
eventually get and broadcast valid core sets, since the set of honest parties will eventually satisfy all the
required conditions of valid core sets.

We next prove the properties of the protocol ΠSVSS, stated in Theorem 4.9.

Theorem 4.9. LetZ satisfy the Q(3)(P,Z) condition. Then ΠSVSS UC-securely realizesFVSS in theFAcast-
hybrid model, except with probability |Z|·n3 ·εAICP, where εAICP ≈ n2

|F| . The protocol makesO(|Z|·n3) calls
to FAcast with O(n · log |F|) bit messages and additionally incurs a communication of O(|Z| · n4 log |F|)
bits.

By replacing the calls to FAcast with protocol ΠAcast, the protocol incurs a total communication of
O(|Z| · n6 log |F|) bits.

Proof. In the protocol, the dealer needs to send the share sq to all the parties in Sq, and this requires
communication of O(|Z| · n log |F|) bits. An instance of ΠAuth and ΠReveal is executed with respect to
every ordered triplet of parties Pi, Pj , Pk ∈ Sq, leading to O(|Z| · n3) instances of ΠAuth and ΠReveal being
executed. The communication complexity now follows from the communication complexity of ΠAuth and
ΠReveal (Claim 4.5) and from the communication complexity of the protocol ΠAcast.

We next prove the security of the protocol. Let Adv be an arbitrary adversary, attacking the protocol
ΠSVSS by corrupting a set of parties Z? ∈ Z , and let Env be an arbitrary environment. We show the
existence of a simulator SSVSS, such that for any Z? ∈ Z , the outputs of the honest parties and the view of
the adversary in the protocol ΠSVSS is indistinguishable from the outputs of the honest parties and the view
of the adversary in an execution in the ideal world involving SSVSS andFVSS, except with probability at most
|Z| ·n3 · εAICP, where εAICP ≈ n2

|F| (see Lemma 4.6). The simulator is very similar to the simulator SPVSS for
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the protocol ΠPVSS (see Fig 7), except that the simulator now has to simulate giving and accepting signatures
on the behalf of honest parties, as part of pairwise consistency checks. In addition, for each Sq ∈ S, the
simulator has to simulate revealing signatures to the corrupt parties in Sq \ Cq on the behalf of the honest
parties in Cq. The simulator is formally presented in Figure 19.

SSVSS constructs virtual real-world honest parties and invokes the real-world adversary Adv. The simulator
simulates the view of Adv, namely its communication with Env, the messages sent by the honest parties and the
interaction with FAcast. In order to simulate Env, the simulator SPVSS forwards every message it receives from Env
to Adv and vice-versa. The simulator then simulates the various phases of the protocol as follows, depending upon
whether the dealer is honest or corrupt.

Simulation When PD is Honest
Interaction with FVSS: the simulator interacts with the functionality FVSS and receives a request based delayed
output (share, sid, PD, {[s]q}Sq∩Z? 6=∅), on the behalf of the parties in Z?.

Distribution of Shares: On the behalf of the dealer, the simulator sends (dist, sid, PD, q, [s]q) to Adv, corresponding
to every Pi ∈ Z? ∩ Sq .

Pairwise Consistency Tests on IC-Signed Values:
– For each Sq ∈ S such that Sq∩Z? 6= ∅, corresponding to each Pi ∈ Sq∩Z?, the simulator does the following.
• On the behalf of every party Pj ∈ Sq \ Z? as a signer and every Pk ∈ Sq as a receiver, perform the role

of the signer and the honest verifiers as per the steps of ΠAuth and interact with Adv on the behalf of
the honest parties to give ICSig(sid

(PD,q)
j,i,k , Pj , Pi, Pk, sqj) to Pi, where sqj = [s]q .

• On the behalf of every Pj , Pk ∈ Sq as intermediary and receiver respectively, perform the role of the
honest parties as per the steps of ΠAuth and interact with Adv on the behalf of the honest parties, if Adv

gives the signature ICSig(sid
(PD,q)
i,j,k , Pi, Pj , Pk, sqi) to Pj on the behalf of the signer Pi. Upon receiving

the signature ICSig(sid
(PD,q)
i,j,k , Pi, Pj , Pk, sqi) from Pi, record it.

– For each Sq ∈ S and for every Pi, Pj ∈ Sq \ Z? the simulator simulates Pi giving
ICSig(sid

(PD,q)
i,j,k , Pi, Pj , Pk, v) to Pj , corresponding to each Pk ∈ Sq , by playing the role of the honest parties

and interacting with Adv on their behalf, as per the steps of ΠAuth, in the respective ΠAuth instances. Based
on the following conditions, the simulator chooses the value v in these instances as follows.
• Sq ∩ Z? 6= ∅: Choose v to be [s]q .
• Sq ∩ Z? = ∅: Pick a random element from F as v.

Announcing Results of Pairwise Consistency Tests:
– If for any Sq ∈ S, Adv requests an output from FAcast with sid

(PD,q)
i,j corresponding to parties Pi ∈ Sq \ Z?

and Pj ∈ Sq , then the simulator provides the output on the behalf of FAcast as follows.
• If Pj ∈ Sq \ Z?, then send the output (Pi,Acast, sid

(PD,q)
i,j ,OKq(i, j)).

• If Pj ∈ (Sq ∩ Z?), then send the output (Pi,Acast, sid
(PD,q)
i,j ,OKq(i, j)), if

ICSig(sid
(PD,q)
j,i,k , Pj , Pi, Pk, sqj) has been recorded on the behalf of Pj as a signer, correspond-

ing to the intermediary Pi and every Pk ∈ Sq as a receiver, such that sqj = [s]q holds.
– If for any Sq ∈ S and any Pi ∈ Sq ∩ Z?, Adv sends (Pi,Acast, sid

(PD,q)
i,j ,OKq(i, j)) to FAcast with sid

(PD,q)
i,j

on the behalf of Pi for any Pj ∈ Sq , then the simulator records it. Moreover, if Adv requests an output from
FAcast with sid

(PD,q)
i,j , then the simulator sends the output (Pi,Acast, sid

(PD,q)
i,j ,OKq(i, j)) on the behalf of

FAcast.
Construction of Core Sets and Public Announcement:

– For each Sq ∈ S, the simulator plays the role of PD and adds the edge (Pi, Pj) to the graph G(D)
q over the

vertex set Sq , if any one of the following is true.

1. Pi, Pj ∈ Sq \ Z?.
2. If Pi ∈ Sq ∩Z? and Pj ∈ Sq \Z?, then the simulator has recorded (Pi,Acast, sid

(PD,q)
i,j ,OKq(i, j)) sent

by Adv on the behalf of Pi to FAcast with sid
(PD,q)
i,j , and has recorded ICSig(sid

(PD,q)
i,j,k , Pi, Pj , Pk, sqi)

Simulator SSVSS
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on the behalf of Pi as a signer and Pj as an intermediary corresponding to every party Pk ∈ Sq as a
receiver, such that sqi = [s]q holds.

3. If Pi, Pj ∈ Sq∩Z?, then the simulator has recorded (Pi,Acast, sid
(q)
i,j ,OKq(i, j)) and (Pj ,Acast, sid

(q)
j,i ,

,OKq(j, i)) sent by Adv on behalf Pi and Pj respectively, to FAcast with sid
(PD,q)
i,j and FAcast with

sid
(PD,q)
j,i .

– For each Sq ∈ S, the simulator finds a set Cq which forms a clique in GD
q , such that Sq \ Cq ∈ Z . When Adv

requests output from FAcast with sidPD
, the simulator sends the output (sender,Acast, sidPD

, {Cq}Sq∈S) on
the behalf of FAcast.

Share Computation: Once C1, . . . , Cq are computed, then for each Sq ∈ S, simulator does the following for every
Pi ∈ (Sq \ Cq) ∩ Z? and every Pj ∈ Cq \ Z?.

– Simulate the revelation of the signature ICSig(sid
(PD,q)
k,j,i , Pk, Pj , Pi, sqk) to Pi on the behalf of the intermedi-

ary Pj corresponding to every signer Pk ∈ Cq , where sqk = [s]q , by playing the role of the honest parties as
per ΠReveal and interacting with Adv.

Simulation When PD is Corrupt
In this case, the simulator SSVSS interacts with Adv during the various phases of ΠSVSS as follows.

Distribution of Shares: For q = 1, . . . , h, if Adv sends (dist, sid, PD, q, v) on the behalf of PD to any party
Pi ∈ Sq \ Z?, then the simulator records it and sets sqi to v.

Pairwise Consistency Tests on IC-Signed Values:
– For each Sq ∈ S such that Sq ∩ Z? 6= ∅, corresponding to each party Pi ∈ Sq ∩ Z? and each Pj ∈ Sq \ Z?,

the simulator does the following.
• If sqj has been set to some value, then simulate giving ICSig(sid

(PD,q)
j,i,k , Pj , Pi, Pk, sqj) to Adv on the

behalf of Pj as a signer, corresponding to every Pk ∈ P as receiver, by playing the role of the honest
parties as per the steps of ΠAuth.

• Upon receiving ICSig(sid
(PD,q)
i,j,k , Pi, Pj , Pk, sqi) from Adv on the behalf of Pi as a signer, corresponding

to Pj ∈ Sq as an intermediary and Pk ∈ Sq as a receiver, record ICSig(sid
(PD,q)
i,j,k , Pi, Pj , Pk, sqi).

– For each Sq ∈ S, corresponding to each party Pi, Pj ∈ Sq \ Z?, the simulator does the following.
• Upon setting sqi to some value, simulate Pi giving ICSig(sid

(PD,q)
i,j,k , Pi, Pj , Pk, sqi) to Pj , corresponding

to every receiver Pk ∈ Sq , by playing the role of the honest parties and interacting with Adv as per the
steps of ΠAuth.

Announcing Results of Pairwise Consistency Tests:
– If for any Sq ∈ S, Adv requests an output from FAcast with sid

(PD,q)
i,j corresponding to parties Pi ∈ Sq \ Z?

and Pj ∈ Sq , then the simulator provides the output on the behalf of FAcast as follows, if sqi has been set to
some value.
• If Pj ∈ Sq \ Z?, then send the output (Pi,Acast, sid

(PD,q)
i,j ,OKq(i, j)), if sqj has been set to some value

and sqi = sqj holds.
• If Pj ∈ Sq∩Z?, then send the output (Pi,Acast, sid

(PD,q)
i,j ,OKq(i, j)), if ICSig(sid

(PD,q)
j,i,k , Pj , Pi, Pk, sqj)

has been recorded on the behalf of Pj as a signer for the intermediary Pi, corresponding to every
Pk ∈ Sq as a receiver, such that sqj = sqi holds.

– If for any Sq ∈ S and any Pi ∈ Sq ∩ Z?, Adv sends (Pi,Acast, sid
(PD,q)
i,j ,OKq(i, j)) to FAcast with sid

(PD,q)
i,j

on the behalf of Pi for any Pj ∈ Sq , then the simulator records it. Moreover, if Adv requests for an output
from FAcast with sid

(PD,q)
i,j , then the simulator sends the output (Pi,Acast, sid

(PD,q)
i,j ,OKq(i, j)) on the behalf

of FAcast.
Construction of Core Sets: For each Sq ∈ S, the simulator plays the role of the honest parties Pi ∈ Sq \ Z? and
adds the edge (Pj , Pk) to the graph G(i)

q over vertex set Sq , if any one of the following is true.
• If Pj , Pk ∈ Sq \ Z?, then the simulator has set sqj and sqk to some values, such that sqj = sqk holds.
• If Pj ∈ Sq ∩ Z? and Pk ∈ Sq \ Z?, then all the following should hold.

– The simulator has recorded (Pj ,Acast, sid
(PD,q)
j,k ,OKq(j, k)) sent by Adv on the behalf of Pj to FAcast
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with sid
(PD,q)
j,k ;

– The simulator has recorded ICSig(sid
(PD,q)
j,k,m , Pj , Pk, Pm, sqj) on the behalf of Pj as a signer and Pk as an

intermediary, corresponding to every receiver Pm ∈ Sq;
– The simulator has set sqk to a value such that sqj = sqk holds.

• If Pj , Pk ∈ Sq ∩ Z?, then the simulator has recorded (Pj ,Acast, sid
(PD,q)
j,k ,OKq(j, k)) and

(Pk,Acast, sid
(PD,q)
k,j ,OKq(k, j)) sent by Adv on behalf of Pj and Pk respectively, to FAcast with sid

(PD,q)
j,k

and FAcast with sid
(PD,q)
k,j .

Verification of Core Sets and Interaction with FVSS:
• If Adv sends (sender,Acast, sidPD

, {Cq}Sq∈S) to FAcast with sidPD
on the behalf of PD, then the simulator

records it. Moreover, if Adv requests for an output from FAcast with sidPD
, then on the behalf of FAcast, the

simulator sends the output (PD,Acast, sidPD
, {Cq}Sq∈S).

• If simulator has recorded the sets {Cq}Sq∈S, then it plays the role of the honest parties and verifies if for
q = 1, . . . , h, the set Cq is valid with respect to Sq , by checking if Sq \ Cq ∈ Z and if Cq constitutes a
clique in the graph G

(i)
q of every party Pi ∈ P \ Z?. If C1, . . . , Cq are valid, then the simulator sends

(share, sid, PD, {sq}Sq∈S) to FVSS, where sq is set to sqi corresponding to any Pi ∈ Cq \ Z?.

Figure 19: Simulator for the protocol ΠSVSS where Adv corrupts the parties in set Z? ∈ Z

We now prove a series of claims, which helps us to prove the theorem. We start with an honest PD.

Claim 4.10. If PD is honest, then the view of Adv in the simulated execution of ΠSVSS with SPVSS is
identically distributed to the view of Adv in the real execution of ΠSVSS involving honest parties.

Proof. Let S? def= {Sq ∈ S | Sq ∩ Z? 6= ∅}. Then the view of Adv during the two executions consists of the
following.

– The shares {[s]q}Sq∈S? distributed by PD: In the real execution, Adv receives [s]q from PD for each
Sq ∈ S?. In the simulated execution, the simulator provides this to Adv on behalf of PD. Clearly, the
distribution of the shares is identical in both the executions.

– Corresponding to every Sq ∈ S? and every triplet of parties Pi, Pj , Pk where Pj ∈ Sq \ Z?,
Pi ∈ Sq ∩ Z? and Pk ∈ Sq, the signature ICSig(sid

(PD,q)
j,i,k , Pj , Pi, Pk, sqj) received from Pj as part

of pairwise consistency tests: While Pj sends this to Adv in the real execution, the simulator sends
this on the behalf of Pj in the simulated execution. Clearly, the distribution of the messages learnt by
Adv during the corresponding instances of ΠAuth is identical in both the executions.

– Corresponding to every Sq ∈ S, every pair of parties Pi, Pj ∈ Sq \ Z? and every Pk ∈ Sq, the
view generated when Pi gives ICSig(sid

(PD,q)
i,j,k , Pi, Pj , Pk, v)) to Pj : We consider the following two

cases.
• Sq ∈ S? : In both the real and simulated execution, the value of v is [s]q. Since the simulator sim-

ulates the interaction of honest parties with Adv during the simulated execution, the distribution
of messages is identical in both the executions.

• Sq /∈ S? : In the simulated execution, the simulator chooses v to be a random element from F,
while in the real execution, v is [s]q. However, due to the privacy property of AICP (Claim
4.2), the view of Adv is independent of the value of v in either of the executions. Hence, the
distribution of the messages is identical in both the executions.

– For every Sq ∈ S and every Pi, Pj ∈ Sq, the outputs (Pi,Acast, sid
(PD,q)
i,j ,OKq(i, j)) of the pair-

wise consistency tests, received from FAcast with sid
(PD,q)
i,j : To compare the distribution of these

messages in the two executions, we consider the following cases, considering an arbitrary Sq ∈ S and
arbitrary Pi, Pj ∈ Sq.
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– Pi, Pj ∈ Sq \ Z?: In both the executions, Adv receives (Pi,Acast, sid
(PD,q)
ij ,OKq(i, j)) as the

output from FAcast with sid
(PD,q)
i,j .

– Pi ∈ Sq\Z?, Pj ∈ (Sq∩Z?): In both the executions, Adv receives (Pi,Acast, sid
(PD,q)
i,j ,OKq(i, j))

as the output from FAcast with sid
(PD,q)
i,j if and only if Adv gave ICSig(sidPD,q

j,i,k , Pj , Pi, Pk, sqj) on
the behalf of Pj to Pi, corresponding to every Pk ∈ Sq, such that sqj = [s]q holds.

– Pi ∈ (Sq ∩ Z?): In both the executions, Adv receives (Pi,Acast, sid
(q)
i,j ,OKq(i, j)) if and only if

Adv on the behalf of Pi has sent (Pi,Acast, sid
(PD,q)
i,j ,OKq(i, j)) to FAcast with sid

(PD,q)
i,j for Pj .

Clearly, irrespective of the case, the distribution of the OK messages is identical in both the executions.
– The core sets {Cq}Sq∈S: In both the executions, the sets Cq are determined based on the OKq messages

delivered to PD. So the distribution of these sets is also identical.

– Corresponding to every Sq ∈ S?, for every triplet of parties Pi, Pj , Pk where Pi ∈ Cq \ Z?, Pj ∈
(Sq \ Cq) ∩ Z? and Pk ∈ Cq, the signatures ICSig(sidPD,q

k,i,j , Pk, Pi, Pj , sqk) revealed by party Pi to Pj ,
signed by party Pk: We note that the distribution of core sets Cq is the same in both the executions. In the
real execution, Pi, upon receiving ICSig(sidPD,q

k,i,j , Pk, Pi, Pj , sqk) during ΠAuth, checks if sqk = sqi holds,
before adding the edge (Pi, Pk) in Giq. Since PD is honest, sqi = [s]q. In the simulated execution as well,
the simulator reveals ICSig(sidPD,q

k,i,j , Pk, Pi, Pj , sqk) to Adv, where sqk = [s]q. Hence, the distribution of
messages is identical in both executions.

We next claim that if the dealer is honest, then conditioned on the view of the adversary Adv (which is
identically distributed in both the executions, as per the previous claim), the outputs of the honest parties are
identically distributed in both the executions.

Claim 4.11. If PD is honest, then conditioned on the view of Adv, the output of the honest parties during
the execution of ΠSVSS involving Adv has the same distribution as the output of the honest parties in the
ideal-world involving SPVSS and FVSS, except with probability at most |Z| · n3 · εAICP, where εAICP ≈ n2

|F| .

Proof. Let PD be honest and let View be an arbitrary view of Adv. Moreover, let {sq}Sq∩Z? 6=∅ be the shares
of the corrupt parties, as per View. Furthermore, let {sq}Sq∩Z?=∅ be the shares used by PD in the simulated

execution corresponding to the set Sq ∈ S, such that Sq ∩Z? = ∅. Let s
def
=

∑
Sq∩Z? 6=∅

sq +
∑

Sq∩Z?=∅

sq. Then,

in the simulated execution, each honest party Pi obtains the output {[s]q}Pi∈Sq from FVSS, where [s]q = sq.
We now show that except with probability at most |Z| · n3 · εAICP, each honest Pi eventually obtains the
output {[s]q}Pi∈Sq in the real execution as well, if PD’s inputs in the protocol ΠSVSS are {sq}Sq∈S.

Since PD is honest, it sends the share sq to all the parties in the set Sq, which is eventually delivered.
Now consider any Sq ∈ S. During the pairwise consistency tests, each honest Pk ∈ Sq will eventually
send ICSig(sid

(PD,q)
k,j,m , Pk, Pj , Pm, sqk) to all the parties Pj in Sq, with respect to every receiver Pm ∈ P ,

where sqk = sq. Consequently, every honest Pj ∈ Sq will eventually broadcast the OKq(j, k) message,
corresponding to every honest Pk ∈ Sq. This is because, by the correctness of AICP (Claim 4.1), Pj will
receive sqk, and sqj = sqk = sq will hold. So, every honest party (including PD) eventually receives the
OKq(j, k) messages This implies that the parties in Sq \ Z? will eventually form a clique in the graph G(i)

q

of every honest Pi. This further implies that PD will eventually find a set Cq where Sq \ Cq ∈ Z and where
Cq constitutes a clique in the consistency graph of every honest party. This is because the set Sq \ Z? is
guaranteed to eventually constitute a clique. Hence, PD eventually broadcasts the sets {Cq}Sq∈S, which
are eventually delivered to every honest party. Moreover, the verification of these sets will eventually be
successful for every honest party.
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Next consider an arbitrary Sq and an arbitrary honest Pi ∈ Sq. If Pi ∈ Cq, then it has already received the
share sqi from PD and sqi = sq holds. Hence, Pi sets [s]q to sq. So consider the case when Pi 6∈ Cq. In this
case, Pi waits to find some Pj ∈ Cq such that Pi accepts the signature ICSig(sid

(PD,q)
k,j,i , Pk, Pj , Pi, sqj) from

intermediary Pj , corresponding to every signer Pk ∈ Cq and upon finding such a Pj , party Pi sets [s]q to sqj .
We show that except with probability at most n ·εAICP, party Pi will eventually find a candidate Pj satisfying
the above condition. Moreover, if Pi finds a candidate Pj satisfying the above condition, then except with
probability at most n · εAICP, the condition sqj = sq holds. As Pi can have up to O(n) candidates for Pj ,
it will follow from the union bound that except with probability at most n2 · εAICP, party Pi will eventually
compute [s]q. Now assuming these statements are true, the proof follows from the union bound and the fact
that Sq can be any set out of |Z| subsets in S and for any Sq, there could be upto O(n) honest parties Pi in
Sq \ Cq. We next proceed to prove the above two statements.

Since S satisfies the Q(2)(S,Z) condition and Sq \ Cq ∈ Z , it follows that Z satisfies the Q(1)(Cq,Z)
condition and hence Cq contains at least one honest party, say Ph. Consider any arbitrary Pk ∈ Cq. From
the protocol steps, Ph has broadcasted the OKq(h, k) after receiving ICSig(sid

(PD,q)
k,h,i , Pk, Ph, Pi, sqk) from

Pk during ΠAuth and verifying that sqk = sqh holds, where sqh = sq. It then follows from Lemma 4.6,
that except with probability at most εAICP, party Pi will accept the signature ICSig(sid

(PD,q)
k,h,i , Pk, Ph, Pi, sqh)

revealed by Ph. Hence, except with probability at most n·εAICP, party Pi will eventually accept the signature
ICSig(sid

(PD,q)
k,h,i , Pk, Ph, Pi, sqh) corresponding to all Pk ∈ Cq, revealed by Ph.

Finally, consider an arbitrary Pj ∈ Cq, such that Pi has accepted the signature ICSig(sid
(PD,q)
k,j,i , Pk, Pj ,

Pi, sqj) corresponding to all Pk ∈ Cq and sets [s]q to sqj . Now one of these signatures corresponds to the
signer Pk = Ph. If Pj is corrupt, then it follows from Lemma 4.6, that except with probability at most
εAICP, the condition sqj = sqh holds. As there can be up to O(n) honest parties Ph in Cq, it follows that Pj
will fail to reveal signature of any honest party from Cq on any sqj 6= sq, except with probability at most
n · εAICP. Since there can be up to O(n) corrupt parties Pj ∈ Cq, it then follows from the union bound that
except with error probability n2 · εAICP, no corrupt party from Cq will be able to forge the signature of any
honest party from Cq on an incorrect sq.

We next prove certain claims with respect to a corrupt dealer. The first claim is that the view of Adv in
this case is also identically distributed in both the real as well as simulated execution. This is simply because
in this case, the honest parties have no inputs and the simulator simply plays the role of the honest parties,
exactly as per the steps of the protocol ΠSVSS in the simulated execution.

Claim 4.12. If PD is corrupt, then the view of Adv in the simulated execution of ΠSVSS with SPVSS is
identically distributed to the view of Adv in the real execution of ΠSVSS involving honest parties.

Proof. The proof follows from the fact that if PD is corrupt, then SPVSS participates in a full execution of
the protocol ΠSVSS by playing the role of the honest parties as per the steps of ΠSVSS. Hence, there is a
one-to-one correspondence between simulated executions and real executions.

We finally claim that if the dealer is corrupt, then conditioned on the view of the adversary (which
is identical in both the executions as per the last claim), the outputs of the honest parties are identically
distributed in both the executions.

Claim 4.13. If D is corrupt, then conditioned on the view of Adv, the output of the honest parties during
the execution of ΠSVSS involving Adv has the same distribution as the output of the honest parties in the
ideal-world involving SPVSS and FVSS, except with probability at most |Z| · n3 · εAICP, where εAICP ≈ n2

|F| .
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Proof. Let PD be corrupt and let View be an arbitrary view of Adv. We note that it can be found out from
View whether valid core sets {Cq}Sq∈S have been generated during the corresponding execution of ΠSVSS

or not. We now consider the following cases.
– No core sets {Cq}Sq∈S are generated as per View: In this case, the honest parties do not obtain any

output in either execution. This is because in the real execution of ΠSVSS, the honest parties compute
their output only when they get valid core sets {Cq}Sq∈S from PD’s broadcast. If this is not the case,
then in the simulated execution, the simulator SPVSS does not provide any input to FVSS on behalf of
PD; hence, FVSS does not produce any output for the honest parties.

– Core sets {Cq}Sq∈S generated as per View are invalid: Again, in this case, the honest parties do not
obtain any output in either execution. This is because in the real execution of ΠSVSS, even if the sets
{Cq}Sq∈S are received from PD’s broadcast, the honest parties compute their output only when each
Cq set is found to be valid with respect to the verifications performed by the honest parties in their
own consistency graphs. If these verifications fail (implying that the core sets are invalid), then in
the simulated execution, the simulator SPVSS does not provide any input to FVSS on behalf of PD,
implying that FVSS does not produce any output for the honest parties.

– Valid core sets {Cq}Sq∈S are generated as per View: We first note that in this case, PD has distributed
some common share, say sq, as determined by View, to all the parties in Cq \ Z?, during the real
execution of ΠSVSS. This is because all the parties in Cq \ Z? are honest, and form a clique in the
consistency graph of the honest parties. Hence, each Pj , Pk ∈ Cq \ Z? has broadcasted the messages
OKq(j, k) and OKq(k, j) after checking that sqj = sqk holds, where sqj and sqk are the values
received from PD by Pj and Pk respectively.
We next show that in the real execution of ΠSVSS, except with probability at most n3 ·εAICP, all honest
parties in Sq \ Z? eventually set [s]q to sq. While this is obviously true for the parties in Cq \ Z?, the
proof when Pi ∈ Sq \ (Z? ∪ Cq) is exactly the same, as in Claim 4.11.
Since |S| = |Z|, it then follows that in the real execution, except with probability at most n3 · εAICP,
every honest party Pi eventually outputs {[s]q = sq}Pi∈Sq . From the steps of SPVSS, the simulator
sends the shares {sq}Sq∈S to FVSS on the behalf of PD in the simulated execution. Consequently, in
the simulated execution, FVSS will eventually deliver the shares {[s]q = sq}Pi∈Sq to every honest I.
Hence, except with probability at most |Z| · n3 · εAICP, the outputs of the honest parties are identical
in both the executions.

The proof of the theorem now follows from Claims 4.10-4.13.

4.2.1 Statistically-Secure VSS for Superpolynomial |Z|

The error probability of ΠSVSS depends linearly on |Z| (Theorem 4.9), which is problematic for a large-
sized Z . The reason for the error probability being dependent on |Z| is that the protocol involves Ω(|Z|)
probabilistic checks and during each of these checks, a party who has behaved maliciously, might remain
undetected with probability εAICP. In more detail, in each invocation of ΠAuth/ΠReveal, a cheating attempt of
a malicious party is not detected with probability εAICP. As there are Θ(|Z|) invocations of ΠAuth/ΠReveal

per instance of ΠSVSS, the resulting error probability depends linearly on |Z|. To avoid this, we use the idea
of local dispute control to deal with detected cheaters, which was also used in the synchronous statistical
VSS protocol of [24] to deal with superpolynomial sized adversary structures. This will ensure that the error
probability of ΠSVSS is only n3 ·εAICP, irrespective of the size of Z and the number of invocations of ΠSVSS.

In the dispute-control framework, the parties locally discard corrupt parties the moment they are caught
cheating during any instance of ΠAuth/ΠReveal. And once a party Pj is locally discarded by some hon-
est party Pi, then Pi “behaves” as if Pj has certainly behaved maliciously in all “future” instances of
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ΠAuth/ΠReveal, irrespective of whether this is the case or not. Consequently, the adversary now will have
only a “fixed” number of attempts to cheat and the total error probability of arbitrary many instances of
ΠAuth/ΠReveal will no longer depend on |Z|. In the sequel, we first discuss the modifications in the AICP to
handle the disputes, followed by the modifications needed in the protocol ΠSVSS.

Each party Pi now maintains a list of locally-discarded parties LD(i) which it keeps populating across
all instances of ΠAuth and ΠReveal, as soon as Pi identifies any party cheating. The way Pi discards parties,
it will be guaranteed that an honest Pi never discards an honest party. We first present the modifications
made in the protocol ΠAuth to locally discard parties.

Modifications in ΠAuth. In any instance of ΠAuth, if Pi is present in the corresponding set of supporting
verifiers SV (i.e. Pi ∈ SV), then Pi includes the corresponding signer Pj of the ΠAuth instance to LD(i), if
both the following conditions hold.

– Pj broadcasts an OK message during the ΠAuth instance;
– The linear combination dvi +mi of the verification point (vi,mi) of Pi with respect to the linear com-

biner d, does not lie on the masked polynomial B(x), broadcasted by the corresponding intermediary.
The idea here is that if Pi is honest and if the above conditions hold during any ΠAuth instance, then clearly
the corresponding signer Pj is corrupt. This is because if Pj was honest, then it should have broadcasted an
NOK message, after finding that the point dvi +mi does not lie on the polynomial B(x).

Once Pi discards Pj , then in any pair of (ΠAuth,ΠReveal) instance involving the signer Pj , if Pi is
present in the corresponding set SV , then in the ΠReveal instance, instead of revealing the verification point
received from Pj , party Pi reveals a special publicly-known “dummy” point to the corresponding receiver.16

Upon receiving the special dummy point, the receiver always accepts it, irrespective of what polynomial is
revealed by the corresponding intermediary.

The above modification ensures that if in any instance of ΠAuth involving a corrupt signer Pj and an
honest intermediary, if Pj distributes an inconsistent verification point to an honest verifier Pi from the cor-
responding SV set and still broadcasts an OK message during ΠAuth, then except with probability εAICP, the
signer will be locally discarded by the verifier Pi. From then onward, in all the instances of (ΠAuth,ΠReveal),
involving the signer Pj , if the verifier Pi is added to the SV set, then verification point revealed by the verifier
Pi during ΠReveal will always be considered as accepted, irrespective of what verification point it actually
receives from the signer. We stress that the above modification does not help a corrupt intermediary to forge
an honest signer’s signature towards an honest receiver, with the help of potentially corrupt verifiers.

Modifications in ΠReveal. We next discuss the modifications needed in the protocol ΠReveal to handle
disputes. Consider an instance of ΠReveal, where Pi is the receiver. If Pi is sure that the corresponding
intermediary Pj has tried to forge an incorrect signature, then Pi adds Pj to LD(i). From then onward,
in any instance of ΠReveal involving Pj as intermediary and Pi as the receiver, Pi rejects the IC-signature
revealed by Pi, irrespective of what data is revealed by Pj .

To check whether Pj has tried to forge an incorrect signature or not during an instance of ΠReveal, party
Pi has to be sure that it has not accepted the verification-point of some honest verifier belonging to the
corresponding set SV . To achieve this goal, Pi now additionally checks during ΠReveal if there exists a
subset of verifiers SV ′′ ⊆ SV , where SV \ SV ′′ ∈ Z , such that the verification-points received from all the
parties in SV ′′ are not accepted. If such a subset SV ′′ exists, then clearly the intermediary Pj has cheated,
since the subset SV ′′ is bound to contain at least one honest verifier. And if the verification point of an
honest verifier is not considered as accepted, then clearly Pj is corrupt.

The above modification ensures that if in any instance of ΠReveal involving an honest signer, a corrupt
intermediary Pj and an honest receiver Pi, if Pj tries to reveal an incorrect signature during ΠReveal, then

16This dummy point serves as an indicator for the receiver that Pi is in conflict with Pj .
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except with probability εAICP, the intermediary Pj will be locally discarded by the receiver Pi. And from
then onward, in all the instances of (ΠAuth,ΠReveal), involving Pj as the intermediary and Pi as the receiver,
the signature revealed by Pj during ΠReveal will always be rejected, irrespective of what data is actually
revealed by Pj .

Modifications in ΠSVSS. Recall that in our modified ΠAuth protocol, an honest verifier will be able to
locally catch and discard a corrupt signer, only when the signer broadcasts an OK message during ΠAuth,
even after distributing an inconsistent verification point to the verifier. Taking this into account, we make the
following modifications in the ΠSVSS protocol, when parties exchange the signed versions of the supposedly
common share during the pairwise-consistency tests, where the parties now invoke instances of the modified
ΠAuth protocol to verify the consistency of the data distributed by the underlying signer parties. Consider
an arbitrary ordered pair of parties (Pj , Pi). If Pj , Pi ∈ Sq, then during the pairwise consistency test
corresponding to Sq, party Pi broadcasts an OKq(i, j) message, only if Pi finds both the following conditions
to be true with respect to Pj .

– The signed value sqj received by Pi from Pj is the same as the value sqi received from the dealer.
– In all the instances of ΠAuth where Pj plays the role of the signer and Pi plays the role of the interme-

diary, party Pj has broadcasted only OK messages.17

The rest of the protocol steps of ΠSVSS remains as it is. The above modifications in ΠAuth,ΠReveal, along
with the way pairwise consistency tests are now performed in the ΠSVSS protocol, it will be ensured that if
a corrupt signer party Pj in any core set Cq gives an incorrect verification-point to any honest verifier Pi,
with respect to any honest intermediary Pk ∈ Cq, during any instance of ΠAuth, then Pj will be caught and
locally discarded by Pi, except with probability εAICP. And from then on, Pj will not have any chance of
cheating the verifier Pi in any ΠAuth instance. By considering all possibilities for a corrupt signer and an
honest verifier and an honest intermediary, it follows that except with probability at most n3 · εAICP, the
verification-points of all honest verifiers will be accepted by every honest receiver during all the instances
of ΠReveal in any instance of ΠSVSS. And consequently, except with probability at most n3 · εAICP, the
signatures revealed by all honest intermediary parties will always be accepted.

On the other hand, if any corrupt intermediary Pj in any core set Cq tries to forge the signature of an
honest signer Pk from Cq to any honest receiver Pi, then except with probability εAICP, Pj will be discarded
by Pi. And from then on, Pi will always reject any signature revealed by Pj . Hence, by considering
all possibilities for a corrupt intermediary, honest signer and honest receiver, it follows that except with
probability at most n3 · εAICP, no corrupt intermediary will be able to forge an honest signer’s signature to
any honest receiver in any instance of ΠSVSS.

Based on the above discussion, we state the following lemma.

Lemma 4.14. The modified ΠSVSS has an error probability of n3 · εAICP, independent of the number of
invocations.

4.3 Statistically-Secure Multiplication Protocol

We next proceed to design our statistically-secure multiplication protocol with Q(3)(P,Z) condition, which
will be used in our statistically-secure pre-processing phase protocol. We first start with a non-robust opti-

17Recall that in the original ΠSVSS protocol, apart from checking the pairwise consistency of the signed sqj and sqi, party does
not check for anything additional, for broadcasting the OKq(i, j) message. Specifically, if Pi, Pj ∈ Sq , then while receiving
the signatures ICSig(sid

(PD,q)
j,i,? , Pj , Pi, ?, sqj) from Pj , party Pi as an intermediary, does not care whether Pj as a signer has

broadcasted OK or NOK during the underlying ΠAuth instances. But now in the modified protocol, along with Sq , for every other
subset Sq′ ∈ S where Pj , Pi ∈ Sq′ , in all the instances of ΠAuth involving Pj as the signer and Pi as the intermediary, Pi checks
whether Pj has issued the required signatures to Pi and that too, by broadcasting OK messages in the underlying ΠAuth instances,
while giving signatures to Pi.
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mistic multiplication protocol.

4.3.1 The Basic Multiplication Protocol

Our starting point is the basic multiplication protocol of [24] in the synchronous setting. The protocol takes
[a], [b], along with a set of globally-discarded parties GD which are guaranteed to be corrupt, and outputs
[c]. In the protocol, each summand [a]p[b]q is assigned to a publicly-known designated party from P \ GD.
Every designated summand-sharing party then secret-shares the sum of all the assigned summands, based
on which the parties compute [c]. If no summand-sharing party behaves maliciously, then c = ab holds.

Similar to ΠOptMult, the main challenge while running the above protocol in the asynchronous setting is
that a potentially corrupt summand-sharing party may never share the sum of the summands assigned to it.
To deal with this issue, similar to what was done for ΠOptMult, we ask each party in P \GD to share the sum
of all possible summands it is capable of, while ensuring that no summand is shared twice. The idea here is
that since Z now satisfies the Q(3)(P,Z) condition, for every summand [a]p[b]q, the set (Sp ∩ Sq) \ GD is
guaranteed to contain at least one honest party who will share [a]p[b]q. Based on this above idea, we design
a protocol ΠBasicMult which is executed with respect to a set GD, and an iteration number iter. The protocol
is almost the same as the protocol ΠOptMult, except that it does not take any subset Z ∈ Z as input.18

Consequently, the various dynamic sets and session ids maintained in the protocol will not be annotated
with Z (unlike the protocol ΠOptMult).

The protocol proceeds similar to how ΠOptMult (Fig 10) does for the perfect setting. In the protocol,
each party in P \ GD shares the sum of all the summands it is capable of sharing. The protocol proceeds
in “hops”, and a distinct summand-sharing party is selected in each hop. While voting for a candidate
summand-sharing party, the parties ensure that the candidate has indeed secret shared some sum, that it was
not selected in an earlier hop, and this it is not a part of GD (see Fig 20 for the formal details).

– Initialization:
• SISiter = {(p, q)}p,q=1,...,|S|;
• Selectediter = ∅;
• hop = 1;
• Corresponding to each Pj ∈ P \ GD, SIS

(j)
iter = {(p, q)}Pj∈Sp∩Sq

.
– While SISiter 6= ∅, do the following:
• Sharing Summands: Same as in ΠOptMult, except that Pi randomly secret-shares c

(i)
iter =∑

(p,q)∈SIS
(i)
iter

[a]p[b]q by calling FVSS with sidhop,i
def
= sid||hop||i, provided Pi /∈ Selectediter.

• Selecting Summand-Sharing Party Through ACS: Same as in ΠOptMult, except that (vote, sidhop,j , 1)
is sent to FABA with sidhop,j corresponding to any Pj ∈ P , if all the following hold:
– Pj /∈ GD;
– Pj /∈ Selectediter; and
– An output (share, sidhop,j , Pj , {[c(j)iter]q}Pi∈Sq ) is received from FVSS with sidhop,j , corresponding to

the dealer Pj .
If Pj is selected as common summand-sharing party for this hop, then update the following.
– Selectediter = Selectediter ∪ {Pj}.
– SISiter = SISiter \ SIS

(j)
iter.

– ∀Pk ∈ P \ {GD ∪ Selectediter}: SIS
(k)
iter = SIS

(k)
iter \ SIS

(j)
iter.

– hop = hop + 1.

Protocol ΠBasicMult(P,Z,S, [a], [b],GD, iter)

18This is because there may not be any honest party in the set (Sp ∩ Sq) \ Z, possessing the shares [a]p as well as [b]q , who can
secret-share the summand [a]p[b]q , since we are now working with the Q(3)(P,Z) condition.
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– For every Pj ∈ P \ Selectediter, participate in an instance of ΠPerDefSh with public input c(j) = 0.

– Output: Output {[c(1)iter]q, . . . , [c
(n)
iter ]q, [citer]q}Pi∈Sq , where citer

def
= c

(1)
iter + . . .+ c

(n)
iter .

Figure 20: Non-robust basic multiplication protocol in the (FVSS,FABA)-hybrid model for session id sid. The above
code is executed by every party Pi

We next formally prove the properties of the protocol ΠBasicMult. While proving these properties, we
will assume that Z satisfies the Q(3)(P,Z) condition. This further implies that the sharing specification

S = (S1, . . . , Sh)
def
= {P \ Z|Z ∈ Z} satisfies the Q(2)(S,Z) condition. Moreover, while proving these

properties, we assume that no honest party is ever included in the set GD. Looking ahead, the latter condition
will be ensured in our next protocol ΠRandMultCI, where ΠBasicMult is used as a subprotocol and where the
set GD is maintained. We first show that the intersection of any two sets in S contains at least one honest
party outside GD.

Claim 4.15. For everyZ ∈ Z and every ordered pair (p, q) ∈ {1, . . . , h}×{1, . . . , h}, the set (Sp∩Sq)\GD
contains at least one honest party.

Proof. From the definition of the sharing specification S, we have Sp = P \ Zp and Sq = P \ Zq, where
Zp, Zq ∈ Z . Let Z? ∈ Z be the set of corrupt parties during the protocol ΠBasicMult. Now, Sp ∩ Sq =
(P \Zp)∩ (P \Zq) = P \ (Zp ∪Zq). This means that (Sp ∩ Sq)∪Zp ∪Zq = P . If (Sp ∩ Sq) ⊆ Z?, then
P ⊆ Z? ∪Zp ∪Zq. This is a violation of the Q(3)(P,Z) condition, and hence, Sp ∩Sq contains at least one
honest party. Since GD contains only corrupt parties, (Sp ∩Sq) \ GD contains at least one honest party.

We next claim a series of properties related to protocol ΠBasicMult whose proofs are almost identical to
the proof of the corresponding properties for protocol ΠOptMult. Hence, we skip the formal proofs.

Claim 4.16. For any iter, if all honest parties participate during the hop number hop in the protocol
ΠBasicMult(P,Z, S, [a], [b], iter), then all honest parties eventually obtain a common summand-sharing party,
say Pj , for this hop, such that the honest parties will eventually hold [c

(j)
iter]. Moreover, party Pj will be dis-

tinct from the summand-sharing party selected for any hop number hop′ < hop.

Proof. The proof is identical to that of Claim 3.11, except that we now use Claim 4.15 to argue that for
every ordered pair (p, q) ∈ SISiter, there exists at least one honest party in (Sp ∩Sq) \ GD, say Pk, who will
have both the shares [a]p as well as [bq] (and hence the summand [a]p[b]q).

Claim 4.17. In protocol ΠBasicMult, all honest parties eventually obtain an output. The protocol makes
O(n2) calls to FVSS and FABA.

Proof. The proof is similar to that of Claim 3.12.

Claim 4.18. During protocol ΠBasicMult, Adv learns nothing about a and b.

Proof. The proof is similar to that of Claim 3.14.

Claim 4.19. In ΠBasicMult, if no party in P \ GD behaves maliciously, then for each Pi ∈ Selectediter, the
condition c(i) =

∑
(p,q)∈SIS(i)iter

[a]p[b]q holds, which further implies that c = ab holds.

Proof. The proof is similar to that of Claim 3.13.

Lemma 4.20 now follows from Claims 4.15-4.19.
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Lemma 4.20. Let Z satisfy the Q(3)(P,Z) condition and let S = (S1, . . . , Sh) = {P \ Z|Z ∈ Z}.
Consider an arbitrary iter, such that all honest parties participate in the instance ΠBasicMult(P,Z,S,
[a], [b],GD, iter). Then all honest parties eventually compute [citer] and [c

(1)
iter], . . . , [c

(n)
iter] where citer =

c
(1)
iter + . . . + c

(n)
iter, provided no honest party is ever included in the GD. If no party in P \ GD behaves

maliciously, then citer = ab holds. In the protocol, Adv does not learn any additional information about a
and b. The protocol makes O(n2) calls to FVSS and FABA.

We claim another property of ΠBasicMult, which will be useful later while analyzing the properties of
ΠRandMultCI, where ΠBasicMult is used as a sub-protocol.

Claim 4.21. For any iter, if Pj ∈ Selectediter during the instance ΠBasicMult(P,Z, S, [a], [b],GD, iter), then
Pj 6∈ GD.

Proof. The proof is similar to that of Claim 3.16.

We finally end this section by discussing the modifications to the protocol ΠBasicMult for handling M
pairs of inputs.

Protocol ΠBasicMult for M pairs of inputs. Protocol ΠBasicMult can be easily modified if executed with
input {([a(`)], [b(`)])}`=1,...,M . The modifications will be along similar lines to those done for ΠOptMult.
Consequently, there will be O(n2M) calls to FVSS, but only O(n2) calls to FABA.

4.3.2 Protocol ΠRandMultCI for Detectable Random-Triple Generation

Based on ΠBasicMult, we design a protocol ΠRandMultCI, which takes as input an iteration number iter and
an existing set of corrupt parties GD. If no party in P \ GD behaves maliciously, then the protocol outputs
a random secret-shared multiplication-triple [aiter], [biter], [citer]. Else, except with probability 1

|F| , the par-
ties update GD by identifying at least one new corrupt party among P \ GD. The protocol is based on a
synchronous protocol from [24] with similar properties.

In the protocol, the parties first generate secret-sharing of random values aiter, biter, b′iter and riter. While
aiter and biter are the candidate pair of values for the multiplication triple returned by ΠRandMultCI, the values
b′iter and riter are used to identify if any cheating has occurred. Two instances of ΠBasicMult with inputs
[aiter], [biter] and [aiter], [b

′
iter] are run to obtain [citer] and [c′iter] respectively. The parties then reconstruct

the “challenge” riter and publicly check if [aiter](riter[biter] + [b′iter]) = (riter[citer] + [c′iter]) holds, which
should be the case if no cheating has occurred during the instances of ΠBasicMult. If the condition holds,
then the parties output [aiter], [biter], [citer], which is guaranteed to be a multiplication-triple, except with
probability 1

|F| . Otherwise, the parties proceed to identify at least one new corrupt party by reconstruct-
ing [aiter], [biter], [b

′
iter], [citer], [c

′
iter] and the sum of the summands shared by the various summand-sharing

parties during the instances of ΠBasicMult.
Protocol ΠRandMultCI is formally presented in Fig 21.

– Generating Secret-Sharing of Random Values: The parties jointly generate [aiter], [biter], [b
′
iter] and [riter],

where aiter, biter, b′iter and riter are random from the view-point of Adv, by using a similar procedure as in
ΠPerTriples. For this, each Pi ∈ P acts as a dealer, picks random a

(i)
iter, b

(i)
iter, b

′(i)
iter , r

(i)
iter from F and generates

random [a
(i)
iter], [b

(i)
iter], [b

′(i)
iter ] and [r

(i)
iter], by making calls to FVSS. The parties then agree on a common subset

of parties CS through ACS as in ΠPerTriples, such that P \ CS ∈ Z and for each Pj ∈ CS , the honest parties

Protocol ΠRandMultCI(P,Z,S,GD, iter)
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eventually hold [a
(j)
iter], [b

(j)
iter], [b

′(j)
iter ] and [r

(j)
iter]. The parties then set

[aiter]
def
=

∑
Pj∈CS

[a
(j)
iter], [biter]

def
=

∑
Pj∈CS

[b
(j)
iter], [b′iter]

def
=

∑
Pj∈CS

[b
′(j)
iter ] and [riter]

def
=

∑
Pj∈CS

[r
(j)
iter].

– Running Multiplication Protocol and Reconstructing the Random Challenge:
• The parties participate in instances ΠBasicMult(P,Z,S, [aiter], [biter],GD, iter) and ΠBasicMult(P,Z,S,

[aiter], [b
′
iter],GD, iter) to get outputs {[c(1)iter], . . . , [c

(n)
iter ], [citer]} and {[c′(1)iter ], . . . , [c

′(n)
iter ], [c′iter]} respec-

tively. Let Selectediter,c and Selectediter,c′ be the summand-sharing parties for the two instances respec-
tively. Moreover, for Pj ∈ Selectediter,c, let SIS

(j)
iter,c be the set of ordered pairs of indices corresponding

to the summands whose sum has been shared by Pj during the instance ΠBasicMult(P,Z,S, [aiter], [biter],
GD, iter). Similarly, for Pj ∈ Selectediter,c′ , let SIS

(j)
iter,c′ be the set of ordered pairs of indices corre-

sponding to the summands whose sum has been shared by Pj during the instance ΠBasicMult(P,Z,S,
[aiter], [b

′
iter],GD, iter).

• Once the parties obtain their respective outputs from the instances of ΠBasicMult, they participate in an
instance of ΠPerRec with shares corresponding to [riter], to reconstruct riter.

– Detecting Errors in Instances of ΠBasicMult:
• The parties locally compute [eiter]

def
= riter[biter] + [b′iter] and then participate in an instance of ΠPerRec

with shares corresponding to [eiter], to reconstruct eiter.

• The parties locally compute [diter]
def
= eiter[aiter] − riter[citer] − [c′iter] and then participate in an instance

of ΠPerRec with shares corresponding to [diter], to reconstruct diter.
• Output Computation in Case of Success: If diter = 0, then every party Pi ∈ P sets the Boolean

variable flag
(i)
iter = 0 and outputs {([aiter]q, [biter]q, [citer]q)}Pi∈Sq

.
– Cheater Identification in Case of Failure: If diter 6= 0, then every party Pi ∈ P sets the Boolean

variable flag
(i)
iter = 1 and proceeds as follows.

• Participate in instances of ΠPerRecShare to reconstruct the shares {[aiter]q, [biter]q, [b′iter]q}Sq∈S and in
instances of ΠPerRec to reconstruct c(1)iter, . . . , c

(n)
iter , c

′(1)
iter , . . . , c

′(n)
iter .

• Set GD = GD ∪ {Pi}, if Pi ∈ Selectediter,c ∪ Selectediter,c′ and the following holds for Pi:

riter · c(i)iter + c
′(i)
iter 6= riter ·

∑
(p,q)∈SIS

(i)
iter,c

[aiter]p[biter]q +
∑

(p,q)∈SIS
(i)

iter,c′

[aiter]p[b′iter]q.

Figure 21: Detectable triple generation protocol in the (FVSS,FABA)-hybrid model

We now formally prove the properties of the protocol ΠRandMultCI. While proving these properties,

we will assume that Z satisfies the Q(3)(P,Z) condition. This further implies that S = (S1, . . . , Sh)
def
=

{P \ Z|Z ∈ Z} satisfies the Q(2)(S,Z) condition.
We first claim that the honest parties eventually compute [aiter], [biter], [b

′
iter] and [riter]

Claim 4.22. Consider an arbitrary iter, such that all honest parties participate in the instance ΠRandMultCI(P,
Z,S,GD, iter), where no honest party is present in GD. Then the honest parties eventually compute
[aiter], [biter], [b

′
iter] and [riter].

Proof. The proof is similar to the proof of Claim 3.37.

We next claim that all honest parties will eventually agree on whether the instances of ΠBasicMult in
ΠRandMultCI has succeeded or failed.

Claim 4.23. Consider an arbitrary iter, such that all honest parties participate in the instance ΠRandMultCI(P,
Z,S,GD, iter), where no honest party is present in GD. Then all honest parties eventually reconstruct a
(common) value diter. Consequently, each honest Pi eventually sets flag

(i)
iter to either 0 or 1.
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Proof. From Claim 4.22, the honest parties eventually hold [aiter], [biter], [b
′
iter] and [riter]. From Lemma

4.20, it follows that the honest parties eventually hold the outputs {[c(1)
iter], . . . , [c

(n)
iter], [citer]} and {[c′(1)

iter ], . . . ,

[c
′(n)
iter ], [c′iter]} from the corresponding instances of ΠBasicMult. From Lemma 3.9, the honest parties even-

tually reconstruct riter from the corresponding instance of ΠPerRec. From the linearity property of secret-
sharing, it then follows that the honest parties eventually hold [eiter] and hence eventually reconstruct eiter
from the corresponding instance of ΠPerRec. Again, from the linearity property of secret-sharing, it follows
that the honest parties eventually hold [diter], followed by eventually reconstructing diter from the corre-
sponding instance of ΠPerRec. Now based on whether diter is 0 or not, each honest Pi eventually sets flag

(i)
iter

to either 0 or 1.

We next claim that if no party in P \ GD behaves maliciously, then the honest parties eventually hold a
secret-shared multiplication-triple.

Claim 4.24. Consider an arbitrary iter, such that all honest parties participate in the instance ΠRandMultCI(P,
Z,S,GD, iter), where no honest party is present in GD. If no party in P \ GD behaves maliciously, then
diter = 0 and the honest parties eventually hold ([aiter], [biter], [citer]), where citer = aiter · biter holds.

Proof. If no party in P \ GD behaves maliciously, then from Lemma 4.20, the honest parties eventually
compute [citer] and [c′iter] from the respective instances of ΠBasicMult, such that citer = aiter · biter and c′iter =
aiter · b′iter holds. From Claim 4.23, the honest parties will eventually reconstruct diter. Moreover, since
citer = aiter · biter and c′iter = aiter · b′iter holds, the value diter will be 0 and consequently, the honest parties
will output ([aiter], [biter], [citer]).

We next show that if diter 6= 0, then the honest parties eventually include at least one new maliciously-
corrupt party in the set GD.

Claim 4.25. Consider an arbitrary iter, such that all honest parties participate in the instance ΠRandMultCI(P,
Z,S,GD, iter), where no honest party is present in GD. If diter 6= 0, then the honest parties eventually
update GD by adding a new maliciously-corrupt party in GD.

Proof. Let diter 6= 0 and let Selectediter be the set of summand-sharing parties across the two instances of

ΠBasicMult executed in ΠRandMultCI; i.e. Selectediter
def
= Selectediter,c ∪Selectediter,c′ . Note that there exists

no Pj ∈ Selectediter such that Pj ∈ GD, which follows from Claim 4.21. We claim that there exists at least
one party Pj ∈ Selectediter, such that corresponding to c(j)

iter and c′(j)iter , the following holds:

riter · c
(j)
iter + c

′(j)
iter 6= riter ·

∑
(p,q)∈SIS(j)iter,c

[aiter]p[biter]q +
∑

(p,q)∈SIS(j)
iter,c′

[aiter]p[b
′
iter]q.

Assuming the above holds, the proof now follows from the fact that once the parties reconstruct diter 6=
0, they proceed to reconstruct the shares {[aiter]q, [biter]q, [b′iter]q}Sq∈S through appropriate instances of

ΠPerRecShare and the values c(1)
iter, . . . , c

(n)
iter, c

′(1)
iter , . . . , c

′(n)
iter through appropriate instances of ΠPerRec. Upon

reconstructing these values, party Pj will be eventually included in the set GD. Moreover, it is easy to see
that Pj is a maliciously-corrupt party, since for every honest Pj ∈ Selectediter, the following conditions
hold:

c
(j)
iter =

∑
(p,q)∈SIS(j)iter,c

[aiter]p[biter]q and c
′(j)
iter =

∑
(p,q)∈SIS(j)

iter,c′

[aiter]p[b
′
iter]q.
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We prove the above claim through a contradiction. So let the following condition hold for each Pj ∈
Selectediter:

riter · c
(j)
iter + c

′(j)
iter = riter ·

∑
(p,q)∈SIS(j)iter,c

[aiter]p[biter]q +
∑

(p,q)∈SIS(j)
iter,c′

[aiter]p[b
′
iter]q.

Next, summing the above equation over all Pj ∈ Selectediter, we get that the following holds:∑
Pj∈Selectediter

riter · c
(j)
iter + c

′(j)
iter =

∑
Pj∈Selectediter

riter ·
∑

(p,q)∈SIS(j)iter,c

[aiter]p[biter]q +
∑

(p,q)∈SIS(j)
iter,c′

[aiter]p[b
′
iter]q.

This implies that the following holds:

riter ·
∑

Pj∈Selectediter

c
(j)
iter + c

′(j)
iter = riter ·

∑
Pj∈Selectediter

∑
(p,q)∈SIS(j)iter,c

[aiter]p[biter]q +
∑

(p,q)∈SIS(j)
iter,c′

[aiter]p[b
′
iter]q.

Now based on the way aiter, biter, b′iter, citer and c′iter are defined, the above implies that the following holds:

riter · citer + c′iter = r · aiter · biter + aiter · b′iter
This further implies that

riter · citer + c′iter = (riter · biter + b′iter) · aiter

Since in the protocol eiter
def
= riter · biter + b′iter, the above implies that

riter · citer + c′iter = eiter · aiter ⇒ eiter · aiter − riter · citer − c′iter = 0 ⇒ diter = 0,

where the last equality follows from the fact that in the protocol, diter
def
= eiter · aiter − riter · citer − c′iter.

However diter = 0 is a contradiction, since according to the hypothesis of the claim, we are given that
diter 6= 0.

We next show that if the honest parties output a secret-shared triple in the protocol, then except with
probability 1

|F| , the triple is a multiplication-triple. Moreover, the triple will be random for the adversary.

Claim 4.26. Consider an arbitrary iter, such that all honest parties participate in the instance ΠRandMultCI(P,
Z,S,GD, iter), where no honest party is present in GD. If diter = 0, then the honest parties eventually output
([aiter], [biter], [citer]), where except with probability 1

|F| , the condition citer = aiter · biter holds. Moreover,
the view of Adv will be independent of (aiter, biter, citer).

Proof. Let diter = 0. Then from the protocol steps, the honest parties eventually output ([aiter], [biter], [citer]).

In the protocol diter
def
= eiter ·aiter− riter · citer− c′iter, where eiter

def
= riter · biter + b′iter. Since diter = 0 holds,

it implies that the honest parties have verified that the following holds:

riter(aiter · biter − citer) = (c′iter − aiter · b′iter).

We also note that riter will be a random element from F and will be unknown to Adv till it is publicly
reconstructed. This simply follows from the fact there will be at least one honest party Pj in the set CS , such
that the corresponding value r(j)

iter shared by Pj will be random from the view-point of Adv. We also note that
riter will be unknown to Adv, till the outputs for the underlying instances of ΠBasicMult are computed, and
the honest parties hold [citer] and [c′iter]. This is because in the protocol, the honest parties start participating
in the instance of ΠPerRec to reconstruct riter, only after they obtain their respective shares corresponding to
[citer] and [c′iter]. Now we have the following cases with respect to whether any party from P \ GD behaved
maliciously during the underlying instances of ΠBasicMult.
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– Case I: citer = aiter · biter and c′iter = aiter · b′iter — In this case, (aiter, biter, citer) is a multiplication-
triple.

– Case II: citer = aiter · biter, but c′iter 6= aiter · b′iter — This case is never possible, as this will lead to the
contradiction that riter(aiter · biter − citer) 6= (c′iter − aiter · b′iter) holds.

– Case III: citer 6= aiter ·biter, but c′iter = aiter ·b′iter — This case is possible only if riter = 0, as otherwise
this will lead to the contradiction that riter(aiter · biter − citer) 6= (c′iter − aiter · b′iter) holds. However,
since riter is a random element from F, it implies that this case can occur only with probability at most
1
|F| .

– Case IV: citer 6= aiter · biter as well as c′iter 6= aiter · b′iter — This case is possible only if riter =
(c′iter−aiter ·b′iter) · (aiter ·biter−citer)−1, as otherwise this will lead to the contradiction that riter(aiter ·
biter − citer) 6= (c′iter − aiter · b′iter) holds. However, since riter is a random element from F, it implies
that this case can occur only with probability at most 1

|F| .
Hence, we have shown that except with probability at most 1

|F| , the triple (aiter, biter, citer) is a multiplication-
triple. To complete the proof, we need to argue that the view of Adv in the protocol, will be independent of
the triple (aiter, biter, citer). For this, we first note that aiter, biter and b′iter will be random for the adversary.
The proof for this is similar to that of Claim 3.39 and follows from the fact that there will be at least one
honest party Pj in CS , such that the corresponding values a(j)

iter, b
(j)
iter and b′(j)iter shared by Pj will be randomly

distributed for Adv. From Lemma 4.20, Adv learns nothing additional about aiter, biter and b′iter during the
two instances of ΠBasicMult. While Adv learns the value of eiter, since b′iter is a uniformly distributed for Adv,
for every candidate value of b′iter from the view-point of Adv, there is a corresponding value of biter consistent
with the eiter learnt by Adv. Hence, learning eiter does not add any new information about (aiter, biter, citer)
to the view of Adv. Moreover, Adv will be knowing beforehand that diter will be 0 and hence, learning this
value does not change the view of Adv regarding (aiter, biter, citer).

We next derive the communication complexity of the protocol ΠRandMultCI.

Claim 4.27. Protocol ΠRandMultCI requires O(n2) calls to FVSS and FABA, and additionally incurs a com-
munication of O(|Z| · n3 log |F|) bits.

Proof. Follows from the communication complexity of the protocol ΠBasicMult (Claim 4.17) and the fact
that if diter 6= 0, then the parties proceed to publicly reconstruct O(n) values through instances of ΠPerRec

and publicly reconstructO(|S|) number of shares through instances of ΠPerRecShare, where |S| = |Z| for our
sharing specification S.

The proof of Lemma 4.28 now follows from Claims 4.22-4.27.

Lemma 4.28. Let Z satisfy the Q(3)(P,Z) condition and let S = (S1, . . . , Sh) = {P \ Z|Z ∈ Z}.
Consider an arbitrary iter, such that all honest parties participate in the instance ΠRandMultCI(P,Z,S,
GD, iter), where no honest party is present in GD. Then each honest Pi eventually sets flag

(i)
iter to either 0

or 1. In the former case, the honest parties output ([aiter], [biter], [citer]), such that with probability at least
1 − 1

|F| , the condition citer = aiter · biter holds. Moreover, the view of Adv will be independent of the triple
(aiter, biter, citer). In the latter case, the honest parties will eventually include at least one new maliciously-
corrupt party Pj to GD. The protocol makes O(n2) calls to FVSS and FABA, and additionally incurs a
communication of O(|Z| · n3 log |F|) bits.

Protocol ΠRandMultCI for M Triples. The extension of ΠRandMultCI for generating M triples is straightfor-
ward. The parties first generateM random shared tuples {([a(`)

iter], [b
(`)
iter], [b

′(`)
iter ])}`=1,...,M and a single random

challenge [riter]. The parties then run 2M instances of ΠBasicMult to compute {([c(`)
iter], [c

′(`)
iter ])}`=1,...,M , fol-

lowed by probabilistically checking if all the instances of ΠBasicMult are executed correctly, by using the
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same riter for all the instances. If cheating is detected in any of the instances, then the parties proceed
further to identify at least one new maliciously-corrupt party and update GD, as done in ΠRandMultCI. The
protocol makesO(n2 ·M) calls to FVSS andO(n2) calls to FABA, and additionally incurs a communication
of O((M · |Z| · n2 + |Z| · n3) log |F|) bits.

4.4 Statistically-Secure Pre-Processing Phase Protocol

The statistically-secure pre-processing phase protocol ΠStatTriples proceeds in iterations, where in each iter-
ation an instance of ΠRandMultCI is invoked, which either succeeds or fails. In case of success, the parties
output the returned secret-shared multiplication-triples. Else, they continue to the next iteration. As a new
corrupt party is discarded in each failed iteration, the protocol eventually outputs shared multiplication-
triples. Protocol ΠStatTriples for generating a single shared multiplication-triple is formally presented in Fig
22. The only modification to generate M secret-shared triples will be to call ΠRandMultCI for generating M
random triples.

– Initialization: Parties initialize GD = ∅ and iter = 1.
– Detectable Triple Generation: Parties participate in an instance ΠRandMultCI(P,Z,S,GD, iter) with session

id siditer
def
= sid||iter. Each Pi ∈ P then proceeds as follows.

• Positive Output: If flag
(i)
iter is set to 0 during the instance ΠRandMultCI(P,Z,S,GD, iter), then output the

shares {([aiter]q, [biter]q, [citer]q)}Pi∈Sq obtained during the instance of ΠRandMultCI.
• Negative Output: If flag

(i)
iter is set to 1 during the instance ΠRandMultCI(P,Z,S,GD, iter), then set iter =

iter + 1 and go to the step Detectable Triple Generation.

Protocol ΠStatTriples(P,Z,S)

Figure 22: A statistically-secure protocol for FTriples with M = 1 in (FVSS,FABA)-hybrid for session id sid

We next prove the security of the protocol ΠStatTriples in the (FVSS,FABA)-hybrid model.

Theorem 4.29. Let Z satisfy the Q(3)(P,Z) condition. Then ΠStatTriples UC-securely realizes FTriples in
the (FVSS,FABA)-hybrid model, except with error probability of at most n

|F| . The protocol makesO(n3 ·M)

calls to FVSS andO(n3) calls to FABA, and additionally communicatesO((M · |Z| ·n3 + |Z| ·n4) log |F|)
bits.

By replacing the calls to FVSS with protocol ΠSVSS (along with the modifications discussed in Section
4.2.1), protocol ΠStatTriples UC-securely realizes FTriples in the FABA-hybrid model, except with error prob-
ability n3 · εAICP. The protocol makes O(n3) calls to FABA and additionally incurs a communication of
O(M · |Z| · n9 log |F|) bits.

Proof. The communication complexity and the number of calls to FVSS and FABA simply follow from the
communication complexity of ΠRandMultCI and the fact that there might beO(n) instances of ΠRandMultCI in
the protocol. This is because from Lemma 4.28, if any instance of ΠRandMultCI fails, then at least one new
corrupt party is globally discarded and included in GD. Once all the corrupt parties are included in GD,
then from Claim 4.24, the next instance of ΠRandMultCI is bound to give the correct output.

We next prove the security. For the ease of explanation, we consider the case where only one
multiplication-triple is generated in ΠStatTriples; i.e. M = 1. The proof can easily be modified for any
general M .

Let Adv be an arbitrary adversary, attacking the protocol ΠStatTriples by corrupting a set of parties Z? ∈
Z , and let Env be an arbitrary environment. We show the existence of a simulator SStatTriples (Fig 23),
such that for any Z? ∈ Z , the outputs of the honest parties and the view of the adversary in the protocol
ΠStatTriples is indistinguishable from the outputs of the honest parties and the view of the adversary in an
execution in the ideal world involving SStatTriples and FTriples, except with probability at most n

|F| .
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The high level idea of the simulator is very similar to that of the simulator for the protocol ΠPerTriples

(see the proof of Theorem 3.36). Throughout the simulation, the simulator itself performs the role of the
ideal functionalities FVSS and FABA whenever required and performs the role of the honest parties, exactly
as per the steps of the protocol. In each iteration, the simulator simulates the actions of honest parties during
the underlying instance of ΠRandMultCI by playing the role of the honest parties with random inputs. Once
the simulator finds any iteration of ΠRandMultCI to be successful, the simulator learns the secret-sharing of
the output triple of that iteration and sends the shares of this triple, corresponding to the corrupt parties to
FTriples, on the behalf of Adv.

SStatTriples constructs virtual real-world honest parties and invokes the real-world adversary Adv. The simulator
simulates the view of Adv, namely its communication with Env, the messages sent by the honest parties, and the
interaction with FVSS and FABA. In order to simulate Env, the simulator SStatTriples forwards every message it
receives from Env to Adv and vice-versa. The simulator then simulates the various stages of the protocol as follows.

– Initialization: On behalf of the honest parties, the simulator initializes GD to ∅ and iter to 1.
– Detectable Triple Generation: The simulator plays the role of the honest parties as per the protocol and in-

teracts with Adv for an instance ΠRandMultCI(P,Z,S,GD, iter). During this instance, the simulator simulates
the interface for FABA and FVSS for Adv during the underlying instances of ΠBasicMult, by itself performing
the role of FABA and FVSS. Next, based on whether the instance is successful or not, simulator does the
following.
• If during the instance ΠRandMultCI(P,Z,S,GD, iter), simulator has set flag

(i)
iter = 0, corresponding to

any Pi 6∈ Z?: In this case, let ([ãiter], [̃biter], [c̃iter]) be the output of the honest parties from the instance
of ΠRandMultCI. The simulator then sets {[ãiter]q, [̃biter]q, [c̃iter]q}Sq∩Z? 6=∅ to be the shares corresponding
to the parties in Z? and goes to the step labelled Interaction with FTriples.

• If during the instance ΠRandMultCI(P,Z,S,GD, iter), simulator has set flag
(i)
iter = 1, corresponding

to any Pi 6∈ Z?: In this case, the simulator sets iter = iter + 1 and goes to step labelled Detectable
Triple Generation.

– Interaction with FTriples: Let {[ã]q, [̃b]q, [c̃]q}Sq∩Z? 6=∅ be the shares set by the simulator corresponding to the
parties in Z?. The simulator sends (shares, sid, {[ã]q, [̃b]q, [c̃]q}Sq∩Z? 6=∅) to FTriples, on the behalf of Adv.

Simulator SStatTriples

Figure 23: Simulator for the protocol ΠStatTriples where Adv corrupts the parties in set Z? ∈ Z

We now prove a series of claims which will help us to finally prove the theorem. We first show that the
view generated by SStatTriples for Adv is identically distributed to Adv’s view during the real execution of
ΠStatTriples.

Claim 4.30. The view of Adv in the simulated execution with SPerTriples is identically distributed as the view
of Adv in the real execution of ΠStatTriples.

Proof. In both the real as well as simulated execution, the parties run an instance of ΠRandMultCI for each
iteration iter, where in the simulated execution, the role of the honest parties is played by the simulator,
including the role of FVSS and FABA. Now, in either execution, if flag

(i)
iter is set to 0 during some iteration

iter corresponding to any honest Pi, then from Lemma 4.28, the view of Adv will be independent of the
underlying triple and hence, will be identically distributed in both the executions. Else, in both executions,
at least one new corrupt party gets discarded and the parties proceed to the next iteration. Hence, the view
of Adv in both executions is identically distributed.

We now show that conditioned on the view of Adv, the output of honest parties is identically distributed
in the real execution of ΠStatTriples involving Adv, as well as in the ideal execution involving SStatTriples and
FTriples.

71



Claim 4.31. Conditioned on the view of Adv, the output of the honest parties is identically distributed in
the real execution of ΠStatTriples involving Adv and in the ideal execution involving SStatTriples and FTriples,
except with probability at most n

|F| .

Proof. Consider an arbitrary view View of Adv, generated as per some execution of ΠStatTriples. From
Lemma 4.28, in the real execution of ΠStatTriples, during each iteration, all honest parties either obtain
shares of a random multiplication triple, or discard a new maliciously-corrupt party. Since |Z?| < n, it will
take less than n iterations to discard all the maliciously-corrupt parties. Furthermore, once all parties in Z?

are discarded, from Claim 4.24, the next instance of ΠRandMultCI will output a secret-shared multiplication-
triple for the honest parties. Consequently, within n iterations, there will be some iteration iter, such that all
honest parties Pi eventually set flag

(i)
iter to 0 and output a secret-shared triple ([aiter], [biter], [citer]). Moreover,

from the union bound, it follows that except with probability at most n
|F| , the triple (aiter, biter, citer) will be

a multiplication-triple. Furthermore, from Lemma 4.28, the triple will be randomly distributed over F.
To complete the proof, we show that conditioned on the shares {([aiter]q, [biter]q, [citer]q)}Sq∩Z? 6=∅

(which are determined by View), the honest parties output a secret-sharing of some random multiplication-
triple in the simulated execution, which is consistent with the shares {([aiter]q, [biter]q, [citer]q)}Sq∩Z? 6=∅.
However, this simply follows from the fact that in the simulated execution, SStatTriples sends the shares
{([aiter]q, [biter]q, [citer]q)}Sq∩Z? 6=∅ to FTriples on the behalf of the parties in Z?, and as an output, FTriples

generates a random secret-sharing of some random multiplication-triple consistent with these shares.

The theorem now follows from Claim 4.30 and Claim 4.31.

5 MPC Protocols in the Pre-Processing Model

The MPC protocol ΠAMPC in the pre-processing model is standard. The parties first generate secret-shared
random multiplication-triples through FTriples in a pre-processing phase. Each party then randomly secret-
shares its input for ckt through FVSS in an input phase. To avoid an indefinite wait, the parties agree on a
common subset of parties CS where P \ CS ∈ Z , whose inputs are eventually secret-shared, through ACS.
The parties will eventually obtain some CS , since the set of honest parties constitute a candidate CS . Once
CS is decided, for the remaining parties the parties take a default-sharing of 0 as the corresponding input.
The next phase is the circuit-evaluation phase, where the parties jointly evaluate each gate in ckt in a secret-
shared fashion by generating a secret-sharing of the gate-output from a secret-sharing of the gate-input(s).
Linear gates are evaluated non-interactively due to the linearity of secret-sharing. To evaluate multiplication
gates, the parties deploy Beaver’s method [2], using the secret-shared multiplication-triples generated by
FTriples. Finally, the parties publicly reconstruct the secret-shared function output.

In the protocol, all honest parties may not reconstruct the function-output at the same “time” and dif-
ferent parties may be at different phases of the protocol, as the protocol is executed asynchronously. Con-
sequently, a party, upon reconstructing the function-output, cannot afford to terminate immediately, as its
presence and participation might be needed for the completion of various phases of the protocol by other
honest parties. A standard trick to get around this problem in the AMPC protocols [21, 22, 14] is to have
an additional termination phase, whose code is executed concurrently throughout the protocol to check if a
party can “safely” terminate the protocol with the function output.

Pre-Processing Phase

1. Send (triples, sid, Pi) to the functionality FTriples.
2. Request output from FTriples until an output (tripleshares, sid, {[a(`)]q, [b(`)]q, [c(`)]q)}`∈{1,...,M},Pi∈Sq

) is re-
ceived from FTriples.

Protocol ΠAMPC
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Input Phase

Once the output from FTriples is received, then proceed as follows.
• Secret-sharing of the Inputs and Collecting Shares of Other Inputs:

1. Upon having the input x(i) for the function f , randomly select the shares x(i)1 , . . . , x
(i)
h ∈ F, subject to

the condition that x(i) = x
(i)
1 + . . . + x

(i)
h . Send (dealer, sidi, Pi, (x

(i)
1 , . . . , x

(i)
h )) to FVSS, where

sidi
def
= sid||i.a

2. For j = 1, . . . , n, request for output from FVSS with sidj corresponding to Pj , until an output is received.

• Selecting Common Input-Providers:

1. Upon receiving (share, sidj , Pj , {[x(j)]q}Pi∈Sq ) from FVSS with sidj , send (vote, sidj , 1) to FABA with

sidj , where sidj
def
= sid||j.b

2. For j = 1, . . . , n, keep requesting for output from FABA with sidj until an output is received.
3. Upon receiving (decide, sidj , 1) fromFABA with sidj corresponding to each Pj ∈ GPi such thatP\GPi ∈

Z , send (vote, sidj , 0) to every FABA with sidj for which no input has been provided yet.
4. Once (decide, sidj , vj) is received fromFABA with sidj for every j ∈ {1, . . . , n}, set CS = {Pj : vj = 1}.c
5. Wait until (share, sidj , Pj , {[x(j)]q}Pi∈Sq

) is received from FVSS for every Pj ∈ CS. For every Pj 6∈ CS,
participate in an instance of ΠPerDefSh with public input 0 to generate a default secret-sharing of 0.

Circuit-Evaluation Phase

Evaluate each gate g in the circuit according to the topological ordering as follows, depending upon the type of g.
• Addition Gate: If g is an addition gate with inputs x, y and output z, then corresponding to every Sq such

that Pi ∈ Sq , set [z]q = [x]q + [y]q as the share corresponding to z. Here {[x]q}Pi∈Sq
and {[y]q}Pi∈Sq

are
Pi’s shares corresponding to gate-inputs x and y respectively.

• Multiplication Gate: If g is the `th multiplication gate with inputs x, y and output z, where ` ∈ {1, . . . ,M},
then do the following:

1. Corresponding to every Sq such that Pi ∈ Sq , set [d(`)]q
def
= [x]q − [a(`)]q and [e(`)]q

def
= [y]q − [b(`)]q ,

where {[x]q}Pi∈Sq and {[y]q}Pi∈Sq are Pi’s shares corresponding to gate-inputs x and y respectively
and {([a(`)]q, [b(`)]q, [c(`)]q)}Pi∈Sq

are Pi’s shares corresponding to the `th multiplication-triple.
2. Participate in instances of ΠPerRec with shares {[d(`)]q}Pi∈Sq

and {[e(`)]q}Pi∈Sq
to publicly reconstruct

d(`) and e(`), where d(`)
def
= x− a(`) and e(`)

def
= y − b(`).

4. Upon reconstructing d(`) and e(`), corresponding to every Sq such that Pi ∈ Sq , set [z]q
def
= d(`) · e(`) +

d(`) · [b(`)]q + e(`) · [a(`)]q + [c(`)]q . Set {[z]q}Pi∈Sq
as the shares corresponding to z.

• Output Gate: If g is the output gate with output y, then participate in an instance of ΠPerRec with shares
{[y]q}Pi∈Sq to publicly reconstruct y.

Termination Phase

Concurrently execute the following steps during the protocol:

1. Upon computing the circuit-output y, send the message (ready, sid, Pi, y) to every party in P .
2. Upon receiving the message (ready, sid, Pj , y) from a set of parties A such that Z satisfies Q(1)(A,Z) condi-

tion, send (ready, sid, Pi, y) to every party in P .
3. Upon receiving the message (ready, sid, Pj , y) from a set of parties W such that P \ W ∈ Z , output y and

terminate.
aThe notation sidi is used here to distinguish among the n different calls to FVSS.
bThe notation sidj is used here to distinguish among the n different calls to FABA.
cThe parties need not have to explicitly check if P \ CS ∈ Z , since the way CS is computed, it will be ensured that

P \ CS ∈ Z .
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Figure 24: The perfectly-secure AMPC protocol in the (FTriples,FVSS,FABA)-hybrid model. The public inputs of

the protocol are P, ckt,Z and the sharing specification S = {S1, . . . , Sh}
def
= {P \ Z|Z ∈ Z}. The above steps are

executed by every Pi ∈ P

Intuitively, protocol ΠAMPC eventually terminates as the set CS is eventually decided. This is because
even if the corrupt parties do not secret-share their inputs, the inputs of all honest parties are eventually
secret-shared. Once CS is decided, the evaluation of each gate will be eventually completed: while the
addition gates are evaluated non-interactively, the evaluation of multiplication gates requires reconstructing
the corresponding masked gate-inputs which is eventually completed due to the reconstruction protocols.
The privacy of the inputs of the honest parties in CS will be maintained as the sharing specification S is
Z-private. Moreover, the inputs of the corrupt parties in CS will be independent of the inputs of the honest
parties in CS , as inputs are secret-shared via calls to FVSS. Finally, correctness holds since each gate is
evaluated correctly. We next rigorously formalize this intuition by giving a formal security proof and show
that the protocol ΠAMPC is perfectly-secure, if the parties have access to ideal functionalities FTriples,FVSS

and FABA.

Theorem 5.1. Protocol ΠAMPC UC-securely realizes the functionalityFAMPC for securely computing f (see
Fig 1) with perfect security in the (FTriples,FVSS,FABA)-hybrid model, in the presence of a static malicious
adversary characterized by an adversary-structure Z satisfying the Q(3)(P,Z) condition. The protocol
makes one call to FTriples and O(n) calls to FVSS and FABA and additionally incurs a communication of
O(M · |Z| ·n2 log |F|) bits, where M is the number of multiplication gates in the circuit ckt representing f .

Proof. The communication complexity in the (FTriples,FVSS,FABA)-hybrid model follows from the fact
that for evaluating each multiplication gate, the parties need to run 2 instances of the reconstruction protocol
ΠPerRec.

For security, let Adv be an arbitrary real-world adversary corrupting the set of parties Z? ∈ Z and let
Env be an arbitrary environment. We show the existence of a simulator SAMPC, such that the output of
honest parties and the view of the adversary in an execution of the real protocol with Adv is identical to
the output in an execution with SAMPC involving FAMPC in the ideal model. This further implies that Env
cannot distinguish between the two executions. The steps of the simulator are given in Fig 25.

The high level idea of the simulator is as follows. During the simulated execution, the simulator itself
performs the role of the ideal functionalities FTriples,FVSS and FABA whenever required. Performing the
role of FTriples allows the simulator to learn the secret-sharing of all the multiplication-triples. During
the input phase, whenever Adv secret-shares any value through FVSS on the behalf of a corrupt party, the
simulator records this on the behalf of the corrupt party. This allows the simulator to learn the function-input
of the corresponding corrupt party. On the other hand, for the honest parties, the simulator picks arbitrary
values as their function-inputs and simulates the secret-sharing of those input values using random shares,
as per FVSS. To select the common input-providers during the simulated execution, the simulator itself
performs the role of FABA and simulates the honest parties as per the steps of the protocol and FABA. This
allows the simulator to learn the common subset of input-providers CS , which the simulator passes to the
functionality FAMPC. Notice that the function-inputs for each corrupt party in CS will be available with the
simulator. This is because for every corrupt party Pj which is added to CS , at least one honest party Pi
should participate with input 1 in the corresponding call to FABA. This implies that the honest party Pi must
have received the shares Pj sent to FVSS from FVSS. Since in the simulation, the role of FVSS is played by
the simulator, it implies that the full vector of shares provided by Pj to FVSS will be known to the simulator.
Hence, along with CS , the simulator can send the corresponding function-inputs of the corrupt parties in
CS to FAMPC. Upon receiving the function-output, the simulator simulates the steps of the honest parties
for the gate evaluations as per the protocol. Finally, for the output gate, the simulator arbitrarily computes
a secret-sharing of the function-output y received from FAMPC, which is consistent with the shares which
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corrupt parties hold for the output-gate sharing. Then, on the behalf of the honest parties, the simulator
sends the shares corresponding to the above sharing of y during the public reconstruction of y. This ensures
that in the simulated execution, Adv learns the function-output y. For the termination phase, the simulator
sends y on the behalf of honest parties.

SAMPC constructs virtual real-world honest parties and invokes the real-world adversary Adv. The simulator sim-
ulates the view of Adv, namely its communication with Env, the messages sent by the honest parties, and the
interaction with various functionalities. In order to simulate Env, the simulator SAMPC forwards every message it
receives from Env to Adv and vice-versa. The simulator then simulates the various phases of the protocol as follows.

Pre-Processing Phase

Simulating the call to FTriples: The simulator simulates the steps of FTriples by itself playing the role of FTriples.
Namely, it receives the shares corresponding to the parties in Z? for each multiplication-triple from Adv and then
randomly generates secret-sharing of M random multiplication-triples {(ã(`), b̃(`), c̃(`))}`=1,...,M consistent with
the provided shares. At the end of simulation of this phase, the simulator will know the entire vector of shares
corresponding to the secret-sharing of all multiplication-triples.

Input Phase

• The simulator simulates the operations of the honest parties during the input phase, by randomly picking x̃(j)

as the input, for every Pj 6∈ Z?, selecting random shares x̃(j)1 , . . . , x̃
(j)
h such that x̃(j) = x̃

(j)
1 + . . . + x̃

(j)
h ,

and setting [x̃(j)]q = x̃
(j)
q , for q = 1, . . . , h. When Adv requests output from FVSS with sidj on the behalf of

any party Pi ∈ Z?, then the simulator responds with an output (share, sidj , Pj , {[x̃(j)]q}Pi∈Sq
) on the behalf

of FVSS.
• Whenever Adv sends (dealer, sidi, Pi, (x

(i)
1 , . . . , x

(i)
h )) to FVSS on the behalf of any Pi ∈ Z?, the simulator

records the input x(i)
def
= x

(i)
1 + . . .+ x

(i)
h on the behalf of Pi and sets [x(i)] = (x

(i)
1 , . . . , x

(i)
h ).

• When the simulation reaches the “Selecting Common Input-Providers” stage, the simulator simulates the
interface of FABA to Adv by itself performing the role of FABA. When the first honest party completes the
simulated input phase, SAMPC learns the set CS .

Interaction with FAMPC: Once the simulator learns CS , it sends the input values x(i) that it has recorded on the
behalf of each Pi ∈ (Z? ∩ CS), and the set of input-providers CS to FAMPC. Upon receiving the output y from
FAMPC, the simulator starts the simulation of circuit-evaluation phase.

Circuit-Evaluation Phase

The simulator simulates the evaluation of each gate g in the circuit in topological order as follows:
• Addition Gate: Since this step involves local computation, the simulator does not have to simulate any

messages on the behalf of the honest parties. The simulator locally adds secret-sharings corresponding to the
gate-inputs and obtains a secret-sharing corresponding to the gate-output.

• Multiplication Gate: If g is the `th multiplication gate in the circuit, then the simulator takes the complete
secret-sharing of the `th multiplication triple (ã(`), b̃(`), c̃(`)) and computes the messages of the honest parties
as per the steps of the protocol (by considering secret-sharing of the above multiplication-triple and secret-
sharing of the gate-inputs), and sends them to Adv on the behalf of the honest parties as part of the instances
of ΠPerRec protocol. Once the simulation of the circuit-evaluation phase is done, the simulator will know a
secret-sharing corresponding to the gate-output.

• Output Gate: Let [ỹ] = (ỹ1, . . . , ỹh) be the secret-sharing corresponding to the output gate, available with
SAMPC during the simulated circuit-evaluation. The simulator then randomly selects shares ỹ1, . . . , ỹh such
that ỹ1 + . . . + ỹh = y and ỹq = ỹq corresponding to every Sq ∈ S where Sq ∩ Z? 6= ∅. Then, as part of
the instance of ΠPerRec protocol to reconstruct the function output, the simulator sends the shares {ỹq}Sq∈S
to Adv on the behalf of the honest parties.

Termination Phase

Simulator SAMPC
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The simulator sends a ready message for y to Adv on the behalf of Pi 6∈ Z?, if in the simulated execution, Pi has
computed y.

Figure 25: Simulator for the protocol ΠAMPC where Adv corrupts the parties in set Z? ∈ Z

We next prove a sequence of claims, which helps us to show that the joint distribution of the honest
parties and the view of Adv is identical in both the real, as well as the ideal-world. We first claim that in any
execution of ΠAMPC, a set CS is eventually generated. This automatically implies that the honest parties
eventually possess a secret-sharing of M random multiplication-triples generated by FTriples, as well as a
secret-sharing of the inputs of the parties in CS .

Claim 5.2. In any execution of ΠAMPC, a set CS is eventually generated where P \ CS ∈ Z , such that for
every Pj ∈ CS , there exists some x(j) held by Pj which is eventually secret-shared.

Proof. As the proof of this claim is similar to the proof of Claim 3.37, we skip the formal proof.

We next show that the view generated by SAMPC for Adv is identically distributed to Adv’s view during
the real execution of ΠAMPC.

Claim 5.3. The view of Adv in the simulated execution with SAMPC is identically distributed to the view of
Adv in the real execution of ΠAMPC.

Proof. It is easy to see that the view of Adv during the pre-processing phase is identically distributed in both
the executions. This is because in both the executions, Adv receives no messages from the honest parties
and the steps of FTriples are executed by the simulator itself in the simulated execution. Namely, in both
the executions, Adv’s view consists of the shares of M random multiplication-triples corresponding to the
parties in Z?. So, let us fix these shares. Conditioned on these shares, during the input phase, Adv learns
the shares {[x(j)]q}Pj 6∈Z?,(Sq∩Z?)6=∅ during the real execution corresponding to the parties Pj 6∈ Z?. In the
simulated execution, it learns the shares {[x̃(j)]q}Pj 6∈Z?,(Sq∩Z?)6=∅. Since the sharing specification S is Z-

private and the vector of shares (x
(j)
1 , . . . , x

(j)
h ) as well as (x̃

(j)
1 , . . . , x̃

(j)
h ) are randomly chosen, it follows

that the distribution of the shares {[x(j)]q}Pj 6∈Z?,(Sq∩Z?)6=∅ as well as {[x̃(j)]q}Pj 6∈Z?,(Sq∩Z?)6=∅ is identical
and independent of both x(j) as well as x̃(j), so let us fix these shares. Since the role of FABA is played by
the simulator itself, it follows easily that the view of Adv during the selection of the set CS is identically
distributed in both the real as well as the simulated execution.

During the evaluation of linear gates, no communication is involved. During the evaluation of mul-
tiplication gates, in the simulated execution, the simulator will know the secret-sharing associated with
gate-inputs and also the secret-sharing of the associated multiplication-triple. Hence, the simulator correctly
sends the shares corresponding to the values d(`) and e(`) as per the protocol on the behalf of the honest
parties. Moreover, the values d(`) and e(`) will be randomly distributed for Adv in both the executions,
since the underlying multiplication-triple is randomly distributed, conditioned on the shares of the corrupt
parties. Thus, Adv’s view during the evaluation of multiplications gates is identically distributed in both the
executions.

For the output gate, the shares received by Adv in the real execution from the honest parties correspond to
a secret-sharing of the function-output y. From the steps of SAMPC, it is easy to see that the same holds even
in the simulated execution, as SAMPC sends to Adv shares corresponding to a secret-sharing of y, which are
consistent with the shares held by Adv. Hence, Adv’s view is identically distributed in both the executions
during the evaluation of output gate. Finally, it is easy to see that Adv’s view is identically distributed in
both the executions during the termination phase. This is because in both the executions, every honest party
who has obtained the function output y, sends a ready message for y.
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We next claim that conditioned on the view of Adv (which is identically distributed in both the executions
from the last claim), the output of the honest parties is identically distributed in both the worlds.

Claim 5.4. Conditioned on the view of Adv, the output of the honest parties is identically distributed in the
real execution of ΠAMPC involving Adv, as well as in the ideal execution involving SAMPC and FAMPC.

Proof. Let View be an arbitrary view of Adv, and let CS be the set of input-providers determined by View
(from Claim 5.2, such a set CS is bound to exist). Moreover, according to View, for every Pi ∈ CS, there
exists some input x(i) such that the parties hold a secret-sharing of x(i). Furthermore, from Claim 5.3, if
Pi ∈ Z? then the corresponding secret-sharing is included in View. For Pi 6∈ Z?, the corresponding x(i) is
uniformly distributed conditioned on the shares of x(i) available with Adv as determined by View. Let us
fix the x(i) values corresponding to the parties in CS and denote the vector of values x(i), where x(i) = 0 if
Pi 6∈ CS , by ~x.

It is easy to see that in the ideal-world, the output of the honest parties is y, where y
def
= f(~x). This

is because SAMPC provides the identity of CS along with the inputs x(i) corresponding to Pi ∈ (CS ∩ Z?)
to FAMPC. We now show that the honest parties eventually output y even in the real-world. For this,
we argue that all the values during the circuit-evaluation phase of the protocol are correctly secret-shared.
Since the evaluation of linear gates needs only local computation, it follows that the output of the linear
gates will be correctly secret-shared. During the evaluation of a multiplication gate, the honest parties will
hold a secret-sharing of the corresponding d(`) and e(`) values, as during the pre-processing phase, all the
multiplication-triples are generated in a secret-shared fashion, since they are computed and distributed by
FTriples. Since S satisfies the Q(2)(S,Z) condition, the honest parties eventually get d(`) and e(`) through
the instances of ΠPerRec. This automatically implies that the honest parties eventually hold a secret-sharing
of y and reconstruct it correctly, as y is reconstructed through an instance of ΠPerRec. Hence, during the
termination phase, every honest party will eventually send a ready message for y, while the parties in Z?

may send a ready message for y′ 6= y. Since Z? ∈ Z , it follows that no honest party ever sends a ready
message for y′. Hence no honest party ever outputs y′, as it will never receive the required number of ready
messages for y′. Since the ready messages of the honest parties for y are eventually delivered to every honest
party, it follows that eventually, all honest parties receive sufficiently many ready messages to obtain some
output, even if the corrupt parties does not send the required messages.

Now let Pi be the first honest party to terminate the protocol with some output. From the above ar-
guments, the output has to be y. This implies that Pi receives ready messages for y from a set of parties
P \ Z, for some Z ∈ Z . Let H be the set of honest parties whose ready messages are received by Pi. It
is easy to see that H 6∈ Z , as otherwise, Z does not satisfy the Q(3)(P,Z) condition. The ready messages
of the parties in H are eventually delivered to every honest party and hence, each honest party (including
Pi) eventually executes step 2 of the termination phase and sends a ready message for y. It follows that
the ready messages of all honest parties P \ Z? are eventually delivered to every honest party (irrespective
of whether Adv sends all the required messages), guaranteeing that all honest parties eventually obtain the
output y.

The theorem now follows from Claims 5.2-5.4.

IfZ satisfies the Q(4)(P,Z) condition, then we can replace the calls to FTriples and FVSS with perfectly-
secure protocol ΠPerTriples and ΠPVSS respectively and the calls to FABA with the ABA protocol of [12].
The resultant protocol then achieves perfect security in the plain model. On the other hand, if Z satis-
fies the Q(3)(P,Z) condition, then we can replace the calls to FTriples and FVSS with statistically-secure

77



protocols ΠStatTriples and ΠSVSS respectively and the calls to FABA with the ABA protocol of [11].19 The
resultant protocol then achieves statistical security in the plain model. To bound the error probability of the
statistically-secure protocol by 2−κ, we select a finite field F such that |F| > n42κ. Based on the above
discussion, we get the following corollaries of Theorem 5.1.

Corollary 5.5. If Z satisfies the Q(4)(P,Z) condition, then ΠAMPC UC-securely realizes FAMPC in plain
model. The protocol incurs a total communication of O(M · (|Z|2 · n7 log |F| + |Z| · n9 log n) + |Z|2 ·
(n11 log |F|+ n13 · (log n+ log |Z|))) bits, where M is the number of multiplication gates in ckt.

Corollary 5.6. If Z satisfies the Q(3)(P,Z) condition, then ΠAMPC UC-securely realizes FAMPC in the
FABA-hybrid model with statistical security. If |F| > n52κ for a given statistical-security parameter κ,
then the error probability of the protocol is at most 2−κ. The protocol incurs a total communication of
O(M · |Z| · n9 log |F|+ |Z| · (n10 log |F|+ n11 log n)) bits, where M is the number of multiplication gates
in ckt.
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[3] Z. Beerliová-Trubı́niová and M. Hirt. Simple and Efficient Perfectly-Secure Asynchronous MPC. In
ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 376–392. Springer Verlag,
2007.

[4] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Computation. In STOC, pages 52–61.
ACM, 1993.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-
Tolerant Distributed Computation (Extended Abstract). In STOC, pages 1–10. ACM, 1988.

[6] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous Secure Computations with Optimal Resilience
(Extended Abstract). In PODC, pages 183–192. ACM, 1994.

[7] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Insti-
tute, Israel, 1995.

[8] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
FOCS, pages 136–145. IEEE Computer Society, 2001.

[9] R. Canetti. Universally Composable Security. J. ACM, 67(5):28:1–28:94, 2020.

19Recall that the ABA protocols of [12], as well as [11], are almost-surely terminating, where Z satisfies the Q(4)(P,Z) and
Q(3)(P,Z) condition respectively. Communication-complexity-wise, the ABA protocol of [12] is more efficient, compared to
[11].

78



[10] R. Canetti and T. Rabin. Fast Asynchronous Byzantine Agreement with Optimal Resilience. In STOC,
pages 42–51, 1993.

[11] A. Choudhury. Almost-Surely Terminating Asynchronous Byzantine Agreement Against General Ad-
versaries with Optimal Resilience. In ICDCN, pages 167–176. ACM, 2023.

[12] A. Choudhury and N. Pappu. Perfectly-Secure Asynchronous MPC for General Adversaries (Extended
Abstract). In INDOCRYPT, volume 12578 of Lecture Notes in Computer Science, pages 786–809.
Springer, 2020.

[13] A. Choudhury and A. Patra. An Efficient Framework for Unconditionally Secure Multiparty Compu-
tation. IEEE Trans. Information Theory, 63(1):428–468, 2017.

[14] R. Cohen. Asynchronous Secure Multiparty Computation in Constant Time. In PKC, volume 9615 of
Lecture Notes in Computer Science, pages 183–207. Springer, 2016.

[15] S. Coretti, J. A. Garay, M. Hirt, and V. Zikas. Constant-Round Asynchronous Multi-Party Computation
Based on One-Way Functions. In ASIACRYPT, volume 10032 of Lecture Notes in Computer Science,
pages 998–1021, 2016.
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