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Abstract

We consider the use of supersingular abelian surfaces in cryptography. Several generalisa-

tions of well-known cryptographic schemes and constructions based on supersingular elliptic

curves to the 2-dimensional setting of superspecial abelian surfaces have been proposed.

The computational assumptions in the superspecial 2-dimensional case can be reduced to

the corresponding 1-dimensional problems via a product decomposition by observing that

every superspecial abelian surface is non-simple and separably isogenous to a product of

supersingular elliptic curves. Instead, we propose to use supersingular non-superspecial

isogeny graphs where such a product decomposition does not have a computable description

via separable isogenies. We study the advantages and investigate security concerns of the

move to supersingular non-superspecial abelian surfaces.

1 Introduction

Isogeny-based cryptography is a subfield of cryptography whose protocols’ security is based

on the hardness of finding isogenies between given elliptic curves (or, more generally, abelian

varieties). The first isogeny-based protocol appeared in 1997 in unpublished work of Couveignes

[Cou06] and was independently rediscovered by Rostovtsev and Stolbunov in 2006 [RS06]— this

protocol used complexmultiplication on ordinary elliptic curves to construct a key establishment

protocol à la Diffie and Hellman [DH76]. This CRS protocol is of theoretical interest, but is not

efficient enough in practice, even in state-of-the-art implementations, see De Feo et al. [DFKS18].

The first documented use of supersingular elliptic curves for isogeny-based cryptography

is the hash function of Charles et al. [CLG07] in 2006, and in 2011, Jao and De Feo proposed

Supersingular Isogeny Diffie-Hellman (SIDH) [JDF11], which underlies SIKE [Aza+20], a

third round alternate candidate for the NIST post-quantum standardization competition.

Supersingular elliptic curves are studied in this context because they have a number of

convenient features that are exploited for efficiency and security purposes. In particular:

1. For any primes ℓ ≠ ?, the supersingular ℓ -isogeny graph Gℓ ,? is a Ramanujan graph [Piz90;

Piz98];

2. Any supersingular curve in characteristic ? is defined over F?2 ;
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3. If �/F?2 is supersingular then #�(F?2) ∈ {?2 + 1, ?2 ± ? + 1, ?2 ± 2? + 1}— moreover, it is

easy to construct curves �/F?2 with a given number of F?2-rational points [Brö09]; and,

4. If �/F?2 is supersingular then End(�) is non-commutative.

Respectively, these properties guarantee that

1. Random walks in Gℓ ,? mix rapidly, ensuring that even relatively-short walks yield nearly

uniform outputs;

2. An isomorphism class of supersingular elliptic curves in characteristic ?— represented by

its 9-invariant — requires only 2 log
2
? bits to encode, leading to small communication

requirements and key sizes in isogeny-based key establishment protocols;

3. By choosing an appropriate form of the prime ?, we can force certain torsion subgroups of

� to be F?2-rational. This allows isogenies of corresponding large prime-power degrees to

be computed using (relatively efficient) arithmetic in F?2 , using Vélu’s formulas [Vél71].

4. Quantum attacks using Kuperberg’s algorithm [Kup05; Reg04] do not generally apply

(although some schemes, like CSIDH [Cas+18], are still susceptible [BS20; Jao+20; BĲ18]).

Just as classical elliptic curve cryptography based on discrete logarithms naturally generalises

to hyperelliptic curve cryptography, isogeny-based supersingular elliptic curve cryptography

can naturally be generalised by considering (Jacobians of) hyperelliptic curves of genus 2.

The primary benefit of working in genus 2 is that a smaller finite field can be used for the

same security level, leading to faster field arithmetic and more compact representation of field

elements. Takashima [Tak18] first proposed the genus-2 variant of the CGL hash function by

replacing supersingular elliptic curves with superspecial abelian surfaces and 2-isogenies with

Richelot isogenies. Flynn and Ti [FT19] then studied the superspecial Richelot isogeny graph

and discovered the presence of non-trivial collisions in the genus-2 hash function that arose from

(ℓ 2 , ℓ , ℓ )-isogenies that they named ℓ -diamonds. In the same paper, Flynn and Ti also proposed

the generalisation of SIDH to genus-2 which they named G2SIDH. They proposed the use of

superspecial abelian surfaces and (2,2) and (3,3)-isogenies as the natural generalisations of the

primary components in SIDH. Castryck et al. [CDS20] improved on Takashima’s proposed hash

function by avoiding the diamonds found by Flynn and Ti.

In the above cases of genus-2 cryptography, the schemes work in the graph of superspecial

abelian surfaces. In this paper, we propose moving away from superspecial abelian surfaces

towards (connected components of) supersingular non-superspecial abelian surfaces. Su-

persingular non-superspecial abelian surfaces are actually isogenous to superspecial abelian

surfaces, so a priori there are no apparent difference between working on either types. However,

supersingular non-superspecial abelian surfaces are only isogenous to superspecial abelian

surfaces via inseparable isogenies. Since all of the cryptosystems mentioned above use (2, 2) or
(3, 3)-isogenies — and are co-prime to ? — the effect is that the superspecial and supersingular

non-superspecial graphs are not connected to each other.

Bearing this in mind, in this paper, we propose moving to the supersingular non-superspecial

graph because of the lack of reducible surfaces there. This would provide the following

advantages:

1. Implementations of genus-2 isogeny-based protocols in the superspecial graph must have

either a branch condition (making constant-time implementations difficult) or termination

condition (leading to possible protocol failures) to handle reducible surfaces; these are not

necessary in the supersingular non-superspecial graph;
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�[?] Type Codim. inℳ2

!2
ordinary 0

! ⊕ �1,1 non-ordinary 1

�2,1 supersingular non-superspecial 2

�1,1 ⊕ �1,1 superspecial 3

Table 1: Strata of the coarse moduli space of abelian surfaces over a finite field, see Pries [Pri08].

2. Side-channel attacks which exploit the existence of reducible surfaces in the secret isogeny

path can be prevented; and,

3. The attack of Costello and Smith [CS20] does not apply (unless ?-isogenies can be efficiently

computed).

At the same time, we will examine the concerns of such a move by examining the size of the

isogeny graph, and its structure.

2 Preliminaries

We fix a prime ? and denote the finite field with ? elements by F? and its algebraic closure by

F? . We call an elliptic curve �/F? either ordinary or supersingular, depending on whether the

?-torsion group of � satisfies �[?] � Z/?Z or �[?] � 0, respectively. In fancier language, we say

that the ?-torsion group scheme of � is either ! � Z/?Z ⊕ �? , or the local-local Barsotti–Tate (BT1)

group scheme �1,1.

In two dimensions we find more than just these two possibilities. Consider an abelian surface

�/F? , then the ?-torsion group scheme �[?] of � is isomorphic to one of the following four

possible group schemes given in Table 1.

Here �2,1 is another certain BT1 group scheme. The codimension of the associated strata in the

coarse moduli space of abelian surfaces is given as well. We also call a genus-2 curve ordinary,

non-ordinary, supersingular non-superspecial, or superspecial if its Jacobian is of that type.

Since the correct generalisation of the term “supersingular” depends on the slopes of the
Newton-polygon corresponding to an abelian variety (see Oort [Oor00]), we have that superspecial

abelian surfaces are in particular supersingular. Hence, we make the explicit distinction into

“supersingular non-superspecial” and “superspecial” abelian surfaces.

There is a similar distinction of the ?-torsion group schemes in higher dimension, but there

we find even more possible types and the correspondence between supersingularity and group

scheme types becomes fuzzy. Here we will restrict only to dimension 2, also because every

abelian surface is given as either the product of two elliptic curves or as the Jacobian of a genus-2

hyperelliptic curve. This simple description of abelian surfaces lends itself to better applicability

to cryptography. This does not hold in dimension 3 and higher and we would have to consider

more complicated models for curves in general.

2.1 Superspecial Abelian Varieties

Ignoring any (principal) polarisation, there exists only one superspecial abelian surface. That is,

every superspecial abelian surface � is isomorphic to a product of (any pair of) supersingular
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elliptic curves � � �1 × �2, see Oort [Oor75, Theorem 2]. Hence we can fix any supersingular

elliptic curve � and view � = � × � as our “canonical” (unpolarised) abelian surface.

It is only when considering data in the form of tuples of abelian surfaces along with some

(principal) polarisation ℒ on � of the form (�,ℒ) that we can effectively distinguish them.

It is also true that Jacobians of hyperelliptic curves naturally admits a principal polarisation,

hence it is useful to keep track of polarisations. This fact generalises also to dimension 3 and

higher. In our case of dimension 2, every principally polarised superspecial abelian surface is

then either the Jacobian of some superspecial genus-2 curve, or isomorphic to a product of two

supersingular elliptic curves (in which case the polarisation splits). In both cases the principal

polarisation arises in a canonical way via the Jacobian construction of the underlying genus-2

curve, or the product of the two genus-1 curves, respectively.

The following exposition for general dimension follows Ibukiyama et al. [IKO86]. Fix a prime

?. Denote by �?,∞ the definite (i.e. ramified at∞) quaternion algebra ramified at ?. Let : be an

algebraically closed field of characteristic ?, and let � be a supersingular elliptic curve defined

over :. Then End(�) ⊗Z Q � �?,∞, and End(�) � O� is a maximal order of �?,∞.
Let � be an abelian variety. Let )G denote translation by G ∈ �. For a line bundle ℒ on �,

denote by !ℒ the morphism

!ℒ : �→ �̂,

G ↦→ )∗Gℒ ⊗ ℒ−1.

As wementioned, for any unpolarised superspecial abelian variety � over : of genus 6 ≥ 2 we

have � � �6 for some supersingular elliptic curve �. Let P be the line bundle corresponding to

the divisor �6−1×{0}+�6−2×{0}×�+· · ·+{0}×�6−1
. ThenP defines a principal polarisation on

�. Let NS(�) be the Neron–Severi group of � (divisor classes on � up to algebraic equivalence),
and denote by"6(O�) the ring of 6× 6-matrices overO�. Note that End(�) � "6(O�). Consider
the following morphism

9 : NS(�) → End(�),
ℒ ↦→ !−1

P ◦ !ℒ .

Lemma 1. The image of NS(�) by 9 is{
� ∈ "6(O�) |�† = �

}
,

the Hermitian matrices in "6(O�). Extending to NS
0(�) = NS(�) ⊗/ Q, this induces a Jordan algebra

structure on NS
0(�). Denote by HN(.) theHauptnorm (see Braun and Koecher [BK65]) on NS

0(�).
Then deg!ℒ = (!6/6!)2 = HN(9(ℒ))2, where ! is the divisor corresponding to ℒ. We have that ℒ is
ample if and only if 9(ℒ) is positive definite.

Proof. This follow from Ibukiyama et al. [IKO86, Proposition 2.8] and Mumford [Mum08]. �

Note that in our case, the Hauptnorm on NS
0(�) corresponds to the usual reduced norm on

"6(O�). Ample line bundles in NS(�) give polarisations on �, and so by Lemma 1 there is a

bĳection {
principal polarisations on �

}
↔

{
� ∈ GL6(O�) |�† = �, � > 0

}
.

Note that GL6(O�) acts on the set of all positive definite Hermitian matrices in "6(O�) by
conjugation. If we consider our objects up to automorphism we obtain the bĳection{

Principal polarisations on � up to au-

tomorphism.

}
↔

{
Conjugacy classes of positive definite

Hermitian matrices in GL6(O�).

}
.
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Lemma 2 (Jordan and Zaytman [JZ20, Proposition 31]). Let � � �6 be a superspecial abelian variety,
and let � and �′ correspond to the principal polarisations ℒ and ℒ′, respectively. Let ) : �→ � be an
isogeny with maximal Weil isotropic kernel of degree ℓ 6= (with respect to the principal polarisation ℒ).
Then )∗ℒ′ = ℓ =ℒ if and only if"†�′" = ℓ =� for a matrix" ∈ "6(O�), and then" corresponds to
).

Fix any maximal order O of �?,∞. Then, by Lemmas 1 and 2, there is an equivalence of

categories


Objects: Isomorphism classes of prin-

cipally polarised superspecial abelian

varieties over : of genus 6 ≥ 2.

Morphisms: Isogenies with maximal

Weil isotropic kernels of degree ℓ 6= .


↔



Objects: Conjugacy classes of pos-

itive definite Hermitian matrices in

GL6(O).
Morphisms: Conjugation by "6(O)
sending one class to an ℓ =-multiple of

the other.


.

2.2 Endomorphisms of Superspecial Abelian Surfaces

TheDeuring correspondence gives a bĳection between supersingular elliptic curves andmaximal

orders of �?,∞. Similarly, the discussion in Section 2.1 shows a bĳection between principally

polarised superspecial abelian surfaces and conjugacy classes of positive definite Hermitian

matrices in GL2(O), where O is a maximal order of �?,∞. Note, though, that unlike in dimension

1 where the Deuring correspondence gives us a canonical identification of curves and maximal

orders, in dimension 2 all of our data is relative to a maximal order O (which we have to

fix beforehand). Computationally, this requires us to determine endomorphism rings of

supersingular elliptic curves. Changing data between different representations (relative to

different maximal orders) is also not trivial. And yet, reducing the superspecial isogeny path

problem from higher dimension to dimension 1 by finding reducible abelian varieties in the

superspecial graph still has lower computational complexity than applying the usual path

finding algorithms directly, see Costello and Smith [CS20] and especially Remark 2 ibid.

2.3 Supersingular Non-Superspecial Abelian Surfaces

Fix a prime ? and let : = F? . Let ? by the finite group scheme ? = Spec :[G]/(G?). Consider a
supersingular abelian surface � over :. Then by Oort [Oor75, Corollary 7], there exists an exact

sequence

0→ ?
�C−→ � × �

#
−→ �→ 0,

i.e. we have an inseparable isogeny # : (� × �)/�C(?) → �. The possible embeddings

�C : ? → � × � are parametrised by an embedding parameter C ∈ P1(:). By Oort [Oor75], � is

superspecial if C ∈ P1(F?2) and � is supersingular non-superspecial if C ∉ F?2 . Let �O be the

prime ideal over ? in O = End(�) (for some generator � ∈ O).

Theorem 3 (Ibukiyama et al. [IKO86, Proposition 2.14]). Let � be a supersingular non-superspecial
abelian surface with C ∉ F?2 . Then the set of principal polarisations on � is naturally bĳective to

%� =

{ (
?0 2

2 ?1

)���� 0, 1 ∈ Z; 0, 1 > 0; 2 ∈ �O; ?201 − 22 = ?
}
.
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The set %� describes principal polarisations on � pulled back to � × �. Hence the number

of principal polarisations on � up to equivalence is given by counting the equivalence classes

in %� under the pullback of End(�) by # in End(� × �) = "2(O). The pullback of End(�) in
End(� × �) has different representations, depending on whether C ∈ F?4 \ F?2 or C ∉ F?4 . The

number ℎ of principal polarisations ℒ on � up to equivalence is then as follows.

Theorem 4 (Ibukiyama [Ibu20, Theorem 1.1, Theorem 1.2]). 1. If C ∉ F?4 , then

ℎ =

{
1 if ? = 2,
?2(?4−1)(?2−1)

5760
for any ? ≥ 3.

When ? is odd, we have Aut(�,ℒ) = {±1} for any principal polarisation.

2. If C ∈ F?4 \ F?2 , then

ℎ =


1 if ? = 2,
?2(?2−1)2

2880
if ? ≡ ±1 (mod 5) or ? = 5,

1 + (?−3)(?+3)(?2−3?+8)(?2+3?+8)
2880

if ? ≡ ±2 (mod 5).

If ? ≡ ±2 (mod 5), there is a unique principal polarisationℒ on� such that Aut(�,ℒ) � Z/10Z,
and for all the other principal polarisations we have Aut(�,ℒ) = {±1}.

2.4 G2SIDH

TheG2SIDH is a generalisation of SIDH to genus-2. Let ? be a prime of the form ? = 2
4� ·34� · 5 −1.

Now, let � be the hyperelliptic curve given by

� : H2 = G6 + 1

over F?2 . The Jacobian of �, denoted by �� , can be used as the base principally polarised

superspecial abelian surface. One could also choose a different base principally polarised

superspecial abelian surface by performing a random walk from �� in the Richelot isogeny

graph. Due to our choice of prime characteristic, we have that #�(F?2) = (? + 1)4 and so, we have

that �(F?2) = �[24�] × �[34�] × �[ 5 ] as a group.
We then define symplectic generators for the 2

4�
and 3

4�
-torsion groups as 〈%1 , %2 , %3 , %4〉 =

�[24�] and 〈&1 , &2 , &3 , &4〉 = �[34�]. Symplectic generators of the torsion group �[<] with

respect to the Weil pairing are points (%1 , %2 , %3 , %4) such that

4<(%1 , %3) = 4<(%2 , %4) = �,

where � is some primitive <-th root of unity and all other combinations are trivial.

In the first step of the key exchange, Alice chooses her secret isogeny )� such that the kernel

of the isogeny has order 2
24�

, which is a maximal isotropic subgroup,  �, of order 2
24�

. She does

so by selecting scalars : ∈ {0, 4�
2
}, 0 ∈ [ℓ 4�], 1 ∈ [ℓ 4�−:], 2 ∈ [ℓ 4�−2:], 3 ∈ [ℓ :], and a permutation

� ∈ �8, and computing the generators

 �,1 = %�(1) + [3]%�(2) + [0]%�(3) + [1]%�(4) ,
 �,2 = ℓ

: · (%�(2) + [B� · (1 − 32)]%�(3) + [2]%�(4)),
 �,3 = ℓ

4�−: · ([−B� · 3]%�(3) + %�(4)),
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Let �� be the codomain of )�. She sends the tuple(
�� , )�(&1), )�(&2), )�(&3), )�(&4)

)
to Bob.

Bob analogously completes his side of the computation and Alice thus receives the tuple(
�� , )�(%1), )�(%2), )�(%3), )�(%4)

)
.

She can then use her combination of secret scalars generating the kernel of her secret isogeny

)� to compute an isogeny from �� using )�(%8) as the basis instead of %8 . Denote the codomain

of this isogeny by ���. Bob will complete his side of the protocol and obtain the abelian surface

���. By construction, ��� and ��� are isomorphic as principally polarised abelian surfaces and

thus also the corresponding hyperelliptic curves are isomorphic via Torelli’s theorem [Mil86,

Cor. 12.2]

2.5 CDS Hash

Constructing an isogeny-based hash function has its origins in 2006 when Charles, Goren and

Lauter proposed using random walks in the 2-isogeny graph of supersingular elliptic curves as

the basis of a hash function.

To compute the hash function, a base supersingular elliptic curve �0 is chosen along with a

2-isogeny )−1 : �−1 → �0. Then each bit of the input to the hash function is used to determine

the next step in the random walk since there are only two choices left. Exploiting the fact that

the supersingular 2-isogeny graph is Ramanujan, they were able to prove that this hash function

is secure if the input is sufficiently long.

The genus-2 variant of the CGL hash function was first proposed by Takashima [Tak18] which

is to be performed in the superspecial (2,2)-isogeny graph. This hash function was broken by

Flynn and Ti [FT19] when they discovered that the (2,2)-isogeny graph has 2-diamonds that

admits non-trivial collisions in the hash function. This vulnerability is patched by Castryck

et al. [CDS20] by using Lagrangian subgroups (instead of just isotropic subgroups) to avoid

non-trivial collisions in the hash function. A final technicality that they had to overcome was the

potential of encountering a reducible abelian surface in the superspecial graph. The probability

of this occurrence after a random walk is $(1/?) since there are a total of Θ(?3) abelian surfaces,

and only $(?2) of them are reducible.

The authors suggested threemethods for dealingwith encounterswith reducible surfaces. The

first is to ignore encounters with reducible surfaces. The second proposes to deterministically

find a neighbouring irreducible surface to connect to. The final option involves gluing the

2-torsion points of the constituent elliptic curves to produce explicit (2,2)-isogenies to a non-

reducible surface [CDS20, §6.3]. However, the authors elected not to include the latter two

options and are willing to accept the $(1/?) risk of encountering reducible surfaces.

3 Effects of Reducible Surfaces in the Superspecial Graph

In both cryptosystems, we see that the immediate benefit obtained inmoving to the supersingular

non-superspecial graph is the omission of reducible surfaces. This serves to rule out exceptions

in the graph that both these cryptosystems do not prepare for. This lack of preparation would

result in key exchange or encryption failures in the case of G2SIDH, or to hash failures in the

case of G2Hash.
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Implementing branches that take into account the occurrences of reducible surfaces may give

rise to attacks on the respective protocols.

3.1 Attack on G2SIDH and CDS Hash with Reducible Surfaces

The authors of G2SIDH did not provision for the possibility of encountering reducible surfaces

in their proposal of G2SIDH. At the same time, the CDS hash did not implement their proposed

method for dealing with reducible surfaces. This oversight could lead to key exchange or hash

failures and weak keys in the cryptosystems. One natural workaround key exchange and hash

failures would be to implement or generalise the technique outlined by [CDS20], which is to

form explicit (ℓ , ℓ )-isogenies by gluing along the constituent elliptic curve’s ℓ -torsion.

The obvious repercussion of this is that we no longer have a constant time implementation

of the key exchange scheme. This opens up G2SIDH and the CDS hash function to simple

side-channel timing attacks that can detect if reducible surfaces exists in the path corresponding

to the secret key.

Given two principally polarised abelian surfaces �1 and �2, an adversary can devise an attack

based on this observation. Suppose that there is one reducible surface detected between �1 and

�2, the adversary will compute all neighbours of �1 and �2 to find the reducible surface lying

between the two surfaces. This situation is illustrated as such:

�
)0−−−→ � × �′

)1−−−→ �′ (1)

In the context of G2SIDH, the isogeny ) : � → �′ would be decomposable as a non-

backtracking sequence of = (ℓ , ℓ )-isogenies, for ℓ ∈ {2, 3} and ℓ = ≈ √?. By [FT19, Section 4.1], a

standard meet-in-the-middle attack solves this problem in time $̃( 4

√
?3). However, an attacker

who knows that there is a reducible surface � × �′ on the path from � to �′ can potentially

reduce the time required. With notation as in Equation (1), suppose that )0 , )1 correspond to

(ℓ , ℓ )-isogeny paths of length =0 , =1 respectively, and suppose without loss of generality that

=0 ≤ =1.
1
The attacker enumerates all (ℓ , ℓ )-isogeny paths of length =0 starting from �, until

he arrives at a reducible surface �̂ � �̂ × �̂′— under the heuristic assumption that reducible

surfaces are uniformly distributed in the superspecial graph, with overwhelming probability

there is only one such surface, and it is in fact � × �′. Then the attacker launches the standard

meet-in-the-middle attack from �̂ to �′.
The first step of this attack requires time $̃(ℓ 3=0), while the second requires $̃(ℓ

3=
1

2 ). In the

optimal situation in which =0 =
1

3
= and =1 =

2

3
=, this attack has complexity $̃(ℓ =) = $̃( 6

√
?3).

If more reducible surfaces are detected, such that we have

�
)0−−−→ �1 × �′

1

)1−−−→ �2 × �′
2

)2−−−→ · · ·
)<−1−−−−−→ �< × �′<

)<−−−→ �′

where each ) 9 is a path of length = 9 , then the meet-in-the-middle attack has complexity

$̃(ℓ = 9∗ +∑
9≠9∗ ℓ

= 9 )where 9∗ = arg max9{= 9}.

Remark 5. This attack affects a vanishingly small proportion of the keys, and it is exceedingly unlikely
for a path to contain more than one reducible surface. However, it should be noted that these weak keys
still exist, and would result in a lack of security. Removing them is as easy as beginning with a different
base curve (a supersingular non-superspecial base curve).
1
It is reasonable to model that a timing attack will reveal which of =

0
and =

1
is larger, and the proof in the case

=
0
> =

1
is analogous.
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3.2 The Attack of Costello and Smith

Costello and Smith [CS20] address the superspecial isogeny problem in arbitrary genus 6; in

particular, given two principally polarised superspecial abelian surfaces �, �′ of dimension 6

defined over F? and a prime ℓ ≠ ?, they propose two algorithms to find a chain of (ℓ , ℓ , . . . , ℓ )-
isogenies from � to �′. Their classical algorithm [CS20, Theorem 1] runs in expected time

$̃(?6−1) (with success probability 2
−(6−1)

) while their quantum algorithm [CS20, Theorem

2] runs in time $̃(
√
?6−1). This is a dramatic improvement over the performance of naïve

meet-in-the-middle algorithms: There are Θ(?
6(6+1)

2 ) in the superspecial graph, so the naïve

classical algorithm takes time $̃(?
6(6+1)

4 ).
Note that supersingular non-superspecial surfaces are actually isogenous to reducible surfaces

as well, but these isogenies are inseparable, and it is not known how to compute them efficiently

(see Pieper [Pie21]) — thus the attack of Costello and Smith cannot be applied in the non-

superspecial case.

3.3 Moving to the Supersingular Non-Superspecial graph

The attack on weak keys in Section 3.1 illustrates the choice that genus-2 cryptography practi-

tioners have to make when using superspecial surfaces: A constant time implementation or

the chance of protocol failures. Avoiding reducible surfaces by moving the to supersingular

non-superspecial graph would remove that choice. Furthermore, this move would not degrade

the security of the cryptosystems as we shall see in the next section.

For the remainder of this section, we discuss the advantages of moving to the supersingular

non-superspecial graph; in particular, moving the to supersingular non-superspecial graph

removes reducible surfaces from consideration.

3.3.1 Constant time algorithms with no failure conditions.

Indeed, the first two advantages are linked. Practitioners that employ genus-2 cryptosystems on

the superspecial graph would have to choose between having a constant time implementation

(by not preparing for reducible surfaces), or eliminating protocol failures (by preparing for

reducible surfaces). Moving to the supersingular non-superspecial graph allows the user to

have their cake and eat it too.

3.3.2 Eliminating weak keys.

Weak keys can manifest in schemes that work over the superspecial graph by when reducible

surfaces are present in the path dictated by the keys. As we have seen at the start of this section,

the presence of reducible surfaces in the paths can reduce the security of the keys significantly.

4 Supersingular Isogeny Graphs

In this section we will elaborate on the superspecial and supersingular non-superspecial isogeny

graphs. We are interested in their number of vertices, their connectedness properties, their field

of definition, and their overall structure.
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4.1 The Number of Superspecial Curves

Recall the discussion about superspecial abelian surfaces in Section 2.1. It gives us a way of

counting the number of isomorphism classes of principally polarised superspecial abelian

surfaces via the following observation made by Ibukiyama et al. [IKO86].

Let � be the definite quaternion algebra over Qwith discriminant � and let O be a maximal

order of �. Write � = �1�2 for two positive integers �1 , �2 and set !=(�1 , �2) the set of left
O-lattices in �= which are equivalent to (O ⊗ Z?)= at ? if ? does not divide �2, and otherwise to

the other local equivalence class if ? divides �2. Denote by �=(�1 , �2) the number of global

equivalence classes in !=(�1 , �2). In particular, for a prime number ?, denote by �=(?, 1) the
class number of the principal genus and by �=(1, ?) the class number of the non-principal genus.

Let : be a algebraically closed field of characteristic ?. As we saw, every principally polarised

superspecial abelian surface � over : arises from choosing a principal polarisation on a product

� × � for a supersingular elliptic curve � over :. Let �?,∞ = End(�) ⊗ Q the endomorphism

algebra of �, which is the definite quaternion algebra ramified at ?. Then the number of

principally polarisations on � × � up to automorphisms is equal to �2(?, 1) for �?,∞.
On the other hand, as a principally polarised abelian variety, either � = �1 × �2 for two

supersingular elliptic curves �1 and �2, or � = Jac(�) for a superspecial genus-2 curve �.

Hence the number of isomorphism classes of superspecial genus-2 curves over : is given by

�? = �2(?, 1) − ℎ?(ℎ? + 1)/2, where ℎ? = �1(?, 1) is the number of isomorphism classes of

supersingular elliptic curves over :, see Ibukiyama et al. [IKO86, Corollary 2.12]. The number

�? is finite and behaves like Θ(?3); every superspecial genus-2 curve can be defined over F?2 ,

see Ibukiyama and Katsura [IK94, Theorem 1].

This settles the question about the number of superspecial curves, but what about the

supersingular non-superspecial ones? We will look at that in the next section.

4.2 The Number of Supersingular Non-Superspecial Curves

Consider the 3-dimensional coarse moduli spaceℳ2(:) of isomorphism classes of genus-2

curves over a finite field : or characteristic ?. Recall Table 1, which describes the stratification of

the coarse moduli space of abelian surfaces in characteristic ?. It induces a similar stratification

ofℳ2(:).
In Section 4.1 we have seen that the number of superspecial abelian surfaces is finite, which

matches the codimension 3 of the superspecial stratum in Table 1. On the other hand, the stratum

containing the supersingular non-superspecial points is 1-dimensional and hence over : = F?
there exist infinitely many isomorphism classes of supersingular non-superspecial genus-2

curves.

Since we require three absolute invariants (see Cardona, Quer, Nart, and Pujolàs [CQ05;

CNP05]) to describe a point inℳ2(:), for : = F@ the codimension-2 supersingular locus has

Θ(@) elements, see also Zobernig [Zob21] for some exact results in small characteristic.

4.3 Supersingular Non-Superspecial Isogeny Graphs

Recall now the discussion of Section 2.3, specifically Theorem 4. Fix one supersingular non-

superspecial abelian surface �, say corresponding to a choice of the embedding parameter

C ∉ F?2 . Then Theorem 4 tells us the number of principal polarisations ℒ on �. All these tuples

(�,ℒ) are the Jacobian of some supersingular non-superspecial genus 2 curve �(�,ℒ) (with the

canonical principal polarisation).
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Fix some prime ℓ coprime to ?. Then the vertices of the (ℓ , ℓ )-isogeny graph containing any

(�,ℒ) ranges exactly over the abelian surfaces (�,ℒ) of possible principal polarisations ℒ on

�. It is defined over the field of definition of C; this can be seen using a similar argument as

in Ibukiyama and Katsura [IK94]. It is furthermore connected; this can also be seen using a

similar strong approximation argument as in Oort [Oor01, Lemma 7.9] Jordan and Zaytman

[JZ20, Theorem 42]. Consider two surfaces (�,ℒ) and (�,ℒ′), corresponding to which we have

two Hermitian matrices � and �′, respectively. Then, by strong approximation, there exists a

matrix " such that "†�" = ℓ =�′ for some large enough =. This corresponds to a chain of

(ℓ , ℓ )-isogenies between the pair of surfaces (�,ℒ) and (�,ℒ′).
Hence, for a starting curve corresponding to C ∈ F?4 \ F?2 we get an (ℓ , ℓ )-isogeny graph with

Θ(?6) vertices, and for C ∉ F?4 we get a graph with Θ(?8) vertices.

4.4 Isogeny Graph Structure

In dimension one, for ordinary elliptic curves, we find volcanoes whose crater is a cyclic graph
of length # Cl(O ), where O is the ring of integers of some imaginary quadratic number field

 . In particular, let � be the discriminant of O and denote by C the trace of Frobenius of any of

the elliptic curves �/F@ in the volcano. Then the depth of the volcano is given by ordℓ (E), where

4@ = C2 − E2�.

These ordinary elliptic curve volcanoes can be oriented via the following observation: Over a

fixed finite field F@ , the depth of a volcano is finite. At the floor, all cyclic subgroups correspond
to ascending isogenies, whereas on the crater we either have horizontal or descending isogenies.

By using correctly the subgroup structure, we can make sure that we either ascend or descend

the volcano and so reach the crater or the floor. Using this information, it is possible to compute

explicitly the endomorphism ring End(�) of each elliptic curve � in the volcano.

In dimension two, isogeny graphs of ordinary abelian surfaces assemble into a similar volcano

structure. On the other extreme, superspecial abelian surfaces form connected graphs which,

unlike the supersingular isogeny graphs of elliptic curves, are not Ramanujan graphs in general

but still expander graphs. They are in fact Ramanujan graphs only for a few small ground field

primes and isogeny degrees, see Jordan and Zaytman [JZ20], and Aikawa et al. [ATY22].

As expected, for supersingular non-superspecial abelian surfaces we find a tree-like structure

locally around vertices in the isogeny graph, see Amorós et al. [Amo+21] for a discussion of

the underlying Bruhat-Tits tree in one dimension. But, most importantly, by restricting to the

supersingular isogeny graph we do not end up with the same “orientability” concerns as in the

case of ordinary elliptic curve volcanoes. The supersingular non-superspecial isogeny graph

arranges into an infinite number of components, one for each supersingular non-superspecial

abelian surface � corresponding to C ∉ F?2 . Each of these components is made up of vertices

corresponding to tuples (�,ℒ) for the finite set of possible principal polarisations ℒ on �, and

defined over the field of definition of C.

4.5 Constructing Supersingular Non-Superspecial Curves

We can use the following proposition to generate a starting curve � which is known to lie

in the supersingular non-superspecial component of size Θ(?6), for primes ? ≡ 2, 3 (mod 5).
Additionally, Ti et al. [TVZ22] give several methods to construct supersingular non-superspecial

genus 2 curves using a complex multiplication method.

Proposition 6 (Ibukiyama et al. [IKO86], Proposition 1.13). Let � : H2 = G5 − 1 be a hyperelliptic
curve over F?A , where ? ≠ 5, then � is
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1. ordinary if ? ≡ 1 (mod 5),

2. supersingular non-superspecial if ? ≡ 2, 3 (mod 5),

3. superspecial if ? ≡ 4 (mod 5).

We can also answer in which component of the supersingular non-superspecial isogeny graph

the Jacobian of the specific curve � of Proposition 6 lies.

Lemma 7. Let ? ≡ 2, 3 (mod 5), then the Jacobian of the curve� : H2 = G5−1 is a principally polarised
supersingular non-superspecial abelian surfaces corresponding to an embedding parameter C ∈ F?4 \ F?2 .

Proof. The geometric automorphism group of � is Z/10Z, and so the result follows from

Proposition 6 and Theorem 4. �

Hence, if we choose a prime ? ≡ 2, 3 (mod 5), the curve � : H2 = G5 − 1 lies in a connected

component of the supersingular non-superspecial isogeny graph which is defined over F?4 , with

Θ(?6) vertices.

4.6 Examples

We start with an example graph for the curve � : H2 = G5 − 1 over F
7

4 . The (2, 2)-isogeny graph

in Figure 1 has 40 vertices, see also Theorem 4.

Figure 1: The curve � : H2 = G5 − 1 sitting in the (2, 2)-isogeny graph whose edges are given by

(2, 2)-isogenies defined over F
7

4 . The vertex corresponding to the curve � is drawn in

blue. Multiple edges are collapsed into one.

Let us also look at an example of a larger graph. One can check that the curve

� : H2 = 10G6 + 2G5 + 3G4 + 9G3 + 5G2 + 5G + 4
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over F11 with absolute invariants (0, 6, 8) is supersingular non-superspecial. The (2, 2)-isogeny
graph containing � is given in Figure 2. It has 605 vertices and is defined over F

11
4 , hence we

know that the Jacobian of � must correspond to an embedding parameter C ∈ F
11

4 \ F
11

2 .

Figure 2: The curve� sitting in the (2, 2)-isogeny graphwhose edges are given by (2, 2)-isogenies
defined over F

11
4 . The vertex corresponding to the curve � is drawn in blue. Multiple

edges are collapsed into one.

In Figure 3 we only show vertices that are at most two edges from our starting curve �. This

gives a better understanding of the local tree-like structure in the supersingular non-superspecial

isogeny graph.

5 Protocols in Supersingular Non-Superspecial Components

In this section we discuss parameter choices and security of genus-2 isogeny-based proto-

cols in supersingular non-superspecial components, and compare against the corresponding

superspecial protocols CDS and G2SIDH.
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Figure 3: The local neighbourhood of the curve � in the F?4-subgraph of the (2, 2)-isogeny
graph. The vertex corresponding to the curve � is drawn in blue. Multiple edges are

collapsed into one.

5.1 Hash Functions in Supersingular Non-Superspecial Components

By Lemma 7 and the work of Section 4.3, for any primes ? ≡ ±2 (mod 5) and ℓ ≠ ?, the

hyperelliptic curve � : H2 = G5 − 1 is in the supersingular non-superspecial component whose

edges are (ℓ , ℓ )-isogenies defined over F?4 .

The techniques of [CDS20, Propositions 1 and 3] yield a hash function in a straightforward

fashion: Given a message < = <=−1<=−2 · · ·<0 ∈ {0, 1}3= , we construct a “good” sequence
2
of

= (2, 2)-isogenies by processing <0 , <1 , . . . , <=−1 in sequence; in particular, associate to each

binary string of length three one of the eight kernels given in [CDS20, Proposition 3], and follow

the kernel corresponding to<0, then<1, and so on until<=−1. Together this path corresponds to

an (2= , 2=)-isogeny with codomain �′; we set the output of our hash function to be the absolute

invariants of �′.
This hash function is preimage resistant and collision resistant, respectively, under the

assumption that each of the follow computational problems is hard.

Problem 8. Given a prime ? and two supersingular non-superspecial genus-2 curves �/F? , �′/F?
whose embedding parameter C satisfies C ∈ F?4 \ F?2 , find a (2= , 2=)-isogeny ) : �� → ��′.

2
These sequences are constructed to avoid the “trivial cycles” that arise from ℓ -diamonds (see Flynn and Ti [FT19]),

which were present in the hash function of Takashima [Tak18].
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Problem 9. Given a prime ? and a supersingular non-superspecial curve �/F? whose embedding
parameter C satisfies C ∈ F?4 \ F?2 , find:

1. A (2= , 2=)-isogeny ) : � → �′

2. A (2=′ , 2=′)-isogeny )′ : � → �′′

such that ker) ≠ ker)′ and ��′ is F?-isomorphic to ��′′.

These problems are precisely analogous to [CDS20, Problems 1 and 2].

As there areΘ(?6) vertices in this supersingular non-superspecial component, generic classical

algorithms yield preimages or collisions in time $̃(?3). Much the same is true in the quantum

setting; though some generic algorithms boast complexity $̃(?2) for Problems 8 and 9, Jaques

and Schanck [JS19] suggest that these algorithms do not outperform the classical square-root

algorithms in practice due to overhead introduced by the required data structures. Thus to

achieve � bits of (classical or quantum) security, we should take log
2
? ≈ �

3
. This is half the bit

length of the required characteristic in the superspecial graph [CDS20, §8], and one-third the bit

length of the required in the supersingular graph in genus 1 [CLG07]. The output of the hash

function is a triple of elements of F?4 , so this has total bit length 2�— the same as [CLG07] and

[CDS20].

5.2 Key Exchange in Supersingular Non-Superspecial Components

Abstractly, G2SIDH key exchange works in a supersingular non-superspecial component in

much the same way as described in Section 2.4, simply by starting from a supersingular

non-superspecial hyperelliptic curve �. The only major complication is in choosing �: Ideally

it would be chosen such that its embedding parameter C satisfies C ∈ F?4 \ F?2 (so that it lies

in the component of size Θ(?6)) and its Jacobian satisfies #��(F?4) = (? + 1)8 = 2
84�

3
84� 5 8

(and

we would work in a field of characteristic ? whose bit length is half that of the primes used

in G2SIDH). Unfortunately our distinguished curve � : H2 = G5 − 1 does not satisfy this order

condition; however, techniques of the kind used in [TVZ22] can be used to find an appropriate

starting curve.

6 Conclusion and Open Questions

We have shown that it is sensible to work in supersingular non-superspecial isogeny graphs.

Doing so circumvents several problems we find in the superspecial graph which stem from the

fact that there we encounter two types of vertices: Jacobians of genus 2 curves and reducible

surfaces in the form of products of elliptic curves. On the other hand, in supersingular

non-superspecial graphs we find only Jacobians as vertices and do not need to make explicit

distinctions for different vertex types. Finally, we leave the reader with several open questions

begging for future research:

• Determine exactly the expansion coefficients of the various supersingular genus 2 graphs

(superspecial and supersingular non-superspecial components), as mentioned in Sec-

tion 4.4. One possible approach would be to study Hecke operators acting on automorphic

forms of Hermitian quaternionic lattices corresponding to the principal polarisations of

supersingular non-superspecial abelian surfaces, c.f. [Piz90; ATY22].
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• Determine efficient parameters and good starting curves for key exchange using supersin-

gular non-superspecial isogeny graphs.

• Work out efficient algorithms for computing (ℓ , ℓ )-isogenies for ℓ > 3.
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