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Abstract. Masking is one of the most used side-channel protection tech-
niques. However, a secure masking scheme requires additional implemen-
tation costs, e.g. random number, and transistor count. Furthermore,
glitches and early evaluation can temporally weaken a masked implemen-
tation in hardware, creating a potential source of exploitable leakages.
Registers are generally used to mitigate these threats, hence increasing
the implementation's area and latency.
In this work, we show how to design glitch-free masking without registers
with the help of the dual-rail encoding and asynchronous logic. This
methodology is used to implement low-latency masking with arbitrary
protection order. Finally, we present a side-channel evaluation of our �rst
and second order masked AES implementations.
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1 Introduction

Di�erent techniques exist to counter side-channel attacks; one of the most studied
is the Boolean masking [7, 11, 14], which splits a sensitive variable into several
shares. In this manner, a secret x is dth order masked with d+1 shares as shown
in Eq. (1), with (x0, x1, . . . , xd−1) the random shares and xd the masked value.
The ⊕ symbol denotes the XOR operation.

xd = x0 ⊕ x1 ⊕ . . .⊕ xd−1 ⊕ x (1)

Thereupon, instead of manipulating the plain data, the circuit performs com-
putation on the shares. This results in a more complex relationship between the
side-channel leakages and the sensitive data. At the appropriate moment, the
shares can be recombined to uncover the secret data, that is, x =

⊕d
i=0 xi. Note

that security comes at the cost of higher implementation complexity, raising the
transistor count.

The circuit needs to be transformed to perform the desired computation of
the plain data while manipulating the shares. Securely masking a linear func-
tion is trivial, since each input share can be manipulated independently and in
parallel. For instance, let z = f(x, y) be a linear Boolean operation, its dth order
masking can be expressed as shown in the Eq. (2).
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z =

d⊕
i=0

zi =

d⊕
i=0

fi(xi, yi) = f

(
d⊕

i=0

xi,

d⊕
i=0

yi

)
= f(x, y) (2)

On the other hand, the masking of a non-linear function, such as inversion
in F2n , manipulates the sharing in such a way that its intermediate terms re-
quire the recombination of several shares of a variable. Moreover, the sharing
recombination may be the source of exploitable side-channel leakages, rendering
masking of the non-linear operations a critical task for security engineers. In this
context, techniques such as threshold implementations (TI) [24] were proposed.

TI limits the share recombination leakages. In this manner, the occurrence
of glitches is an important factor to take into account when implementing the
masking scheme in hardware. In fact, a glitchy function has an unexpected be-
havior that may be correlated to the unshared variable [18] � or more broadly
to several shares. To guarantee the security of non-linear functions in the pres-
ence of glitches, register barriers can be employed to cease the spurious signal
propagations [27], thus increasing the overall latency of the masked function.

Theoretical analysis can be used to strengthen con�dence in the protection
brought by the masked implementation. To evaluate the security of a masking
scheme, several methods based on the probing model of Ishai et al. [14] exist.
In this security evaluation method, the adversary can place up to d probes on
di�erent wires of the circuit in order to obtain their instantaneous logic level,
providing clues about a potential dependence between the unshared value and
the internal signal states. This model was enhanced to take into account physical
defaults such as glitches [9] and composability [2].

Satisfying security in those security models requires additional overhead such
as register layers, fresh random bits and higher silicon area. Therefore, reducing
the masking costs is a pertinent branch of research in side-channel countermea-
sures. In this context, this work aims at reducing the number of clock cycles
needed to compute masked functions. For that, we present a self-timed masking
implementation built upon the Muller c-element [22] latches. We show how to re-
place registers with those latches, assuring data synchronization among di�erent
combinatorial layers. Furthermore, we present our locally asynchronous globally
synchronous (LAGS) AES design. Finally, we evaluate the side-channel leakages
based on experimental measurements up to the second-order protection.

2 Background

The use of asynchronous methodologies and dual-rail logic to implement low-
latency masking was �rst introduced by Moradi and Schneider in [21]. They
designed fully unrolled �rst-order threshold implementations of PRINCE and
Midori based on WDDL gates [30]. Later, Sasdrich et al. [28] used the LUT-
based Masked Dual-Rail with Pre-charge Logic (LMDPL) [17] masking scheme
to implement a low-latency AES, which is limited to �rst-order security. More
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recently, Nagpal et al. [23] presented a low-latency domain-oriented implemen-
tation [13] also built upon WDDL gates, but employing Muller c-elements as
synchronization modules, whose results have shown to be higher-order secure.

Similarly to these works, we aim at the study of low-latency masking, us-
ing dual-rail encoding with pre-charge logic and Muller c-elements to implement
masked S-boxes with arbitrary protection order. Relying on the domain-oriented
masking (DOM) [13], we focus on presenting and evaluating a generic method-
ology to replace registers with self-timed latches to design e�ective single-cycle
masked functions.

2.1 Notations

We denote binary random variables in F2 with lower-case letters, e.g. x. A random
variable x is Boolean masked with d + 1 shares xi, whose sharing is denoted
with calligraphic fonts � e.g., S = (x0, x1, . . . , xd) � in such a manner that

x =
⊕d

i=0 xi.
We use typewriter fonts to denote binary random variables x, vectors X and

signals encoded in the dual-rail protocol with a pair of wires (x.t,x.f). The wire
x.t is used for signalling x.t = x while x.f signalizes the complement x.f = x.

A dual-rail token of a variable x is then referred as
∗
x = (x.t, x.f) = (x, x).

2.2 The domain-oriented masking

This work relies on the domain-oriented masking (DOM) [13], a known secure
arbitrary order masking scheme. Since their gadget has already been formally
veri�ed in the original paper, we do not present theoretical proofs of security in
this work. In order to satisfy d-glitch-extended probing security [9], their gadget
is divided into two register-isolated steps, which we identify, in this work, as
processing and compression.

Let us take the 2-share DOM-indep gadget Z = A ∧ B with A = (a0, a1)
and B = (b0, b1) the input shares and Z = (z0, z1) the output sharing. In short,
assuming that the input sharings are uniform, we want to �nd a secure way to
compute (z0 ⊕ z1) = (a0 ⊕ a1)∧ (b0 ⊕ b1). Hence, the process step computes the
product terms a0b0, a0b1, a1b0, a1b1 and adds a fresh random share r to the
cross-domain ones, that is, a0b1 and a1b0. Then, to assure non-completeness,
registers (−→) store the resulting shares (x0, x1, x2, x3), as we can see in the
Eq. (3).

f0(a0, b0) = a0b0 −→ x0

f1(a0, b1) = a0b1 ⊕ r −→ x1

f2(a1, b0) = a1b0 ⊕ r −→ x2

f3(a1, b1) = a1b1 −→ x3

(3)

The processing step produces four shares. To reduce the number of output
shares, there exists the compression step, as shown in the Eq. (4). Thanks to the
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register barrier between both steps and the fresh randomness, 1-glitch-extended
security is satis�ed.

z0 = x0 ⊕ x1

z1 = x2 ⊕ x3
(4)

Based on the domain-oriented scheme, Gross et al. proposed the �rst generic
low-latency masking (GLM) in [12]. In their work, they skip the compression step
after the non-linear operations, eliminating the registers after the shared pro-
cessing. However, the number of shares grows quadratically after each masked
multiplication. In consequence, the area and randomness costs increase sub-
stantially. In our work, we maintain the compression step and use a dual-rail
synchronization element to obtain a generic low-latency masking.

2.3 The dual-rail encoding

The dual-rail protocol encodes a bit using two signal wires: a wire x.t carries the
logic value of a variable x while a second wire x.f transports its complement [8].
In this con�guration, a valid token is obtained when one, and only one, signal
wire is active (i.e. in a high logic state), although the null token is encoded when
both wires are deactivated, that is, ∅ = (0, 0). The encoding (1, 1) is never used,
and the behavior of our design after the injection of this invalid token is out of
scope of this work. Table 1 summarizes the dual-rail encoding.

Table 1. The dual-rail encoding.

Data
Token
x.t x.f

null 0 0
x = 0 0 1
x = 1 1 0
not used 1 1

Moradi and Schneider presented the �rst work that borrowed asynchronous
dual-rail techniques with the purpose of implementing low-latency masking [21].
Di�erent from our choice of design, they designed a fully unrolled threshold im-
plementation of two lightweight block-ciphers PRINCE and Midori using WDDL
cells.

In contrast, we opted for an LAGS design, creating a single-cycle S-box within
a synchronous AES architecture. The dual-rail encoding was also present in the
implementation proposed by Sasdrich et al. [28] to create a �rst-order secure low-
latency AES based on the LMDPL masking scheme [17]. Similar to the LMDPL,
we employ the pre-charge / evaluation logic with monotonic functions to obtain
a glitch-free circuit [25]. To eliminate the glitches, only regular AND and OR
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gates are used to construct our dual-rail functions, due to their monotonic be-
havior [15].

We refer to Eqs. (5) and (6) for the AND and XOR functions, respectively,
used in our work. We use the DPL_noEE AND gate [4], shown in Eq. (5),
instead of the WDDL AND [30] to avoid the early propagation in the evaluation
phase [16, 19].

z = a ∧ b⇐⇒ z.t = a.t ∧ b.t
z.f = (a.t ∧ b.f) ∨ (a.f ∧ b.t) ∨ (a.f ∧ b.f) (5)

z = a⊕ b⇐⇒ z.t = (a.t ∧ b.f) ∨ (a.f ∧ b.t)
z.f = (a.f ∧ b.f) ∨ (a.t ∧ b.t) (6)

Encoded as dual-rail tokens, the information in the communication channel
carries the data itself and the validity signal. For instance, the output token
of a dual-rail logic gate is valid when z.f ∨ z.t = 1, supposing z.f 6= z.t to
avoid the illegal case. Thus, the validity signal can be used to control the �ow of
tokens. Based on this idea, the data synchronization is managed by the tokens,
eliminating the need of register layers, as we will explain in the next subsection.

2.4 Data synchronization with the Muller c-elements

Registers are important components in hardware masking due to their role in
synchronizing the boundaries of di�erent combinatorial blocks [27, 9]. However,
although limiting the combinatorial data path, registers increase the overall la-
tency by requiring additional clock cycles to process the whole circuit.

In this work, we use an alternative state-holding element to obtain single-
cycle S-box implementations. The state-holding module used in this work is built
upon the Muller c-element [22], whose symbol is shown in Figure 1 alongside with
a gate-level implementation and a summary of its logical behavior. The Muller
c-element operates as a Boolean function f(a, b) = a ◦ b that outputs 0 when
all inputs have a low logic level, and when all inputs have a high logic level it
outputs 1. Otherwise, the Muller c-element maintains its current steady state if
at least one input is di�erent from the others.

a

b

C z

a

b

z

a b z = a ◦ b

0 0 0
0 1 z−1

1 0 z−1

1 1 1

Fig. 1. A Muller c-element symbol (left), a gate-level design (middle) and its truth
table (right).
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Recently, Nagpal et al. [23] presented a domain-oriented gadget built upon
Muller c-elements and WDDL gates to create a generic single-cycle masking
in hardware that is higher-order secure. We also use Muller cells, but with the
purpose of designing self-timed latches to replace the register layers in any mask-
ing implementation, easing the application of our method in di�erent scenarios.
Moreover, we do not employ WDDL gates as they are vulnerable due to early
propagation leakages [16].

Figures 2 and 3 show the 2-bit wide self-timed latches used in our designs. The
dual-rail latches can be characterized as either strongly indicating or weakly in-
dicating, depending on how their acknowledgement signal is computed. Figure 2,
waits for all of its inputs to become valid, or null, before sending the respective
acknowledgement. In contrast, a weakly indicating latch, Figure 3, waits for only
one speci�c input token to become valid or null before authenticating its current
state [29].

D[0].f

D[0].t

D[1].f

D[1].t

C

C

C

C

Q[0].f

Q[0].t

Q[1].f

Q[1].t

ack oreq i

C

Fig. 2. A 2-bit wide strongly indicating
asynchronous latch.

D[0].f

D[0].t

D[1].f

D[1].t

C

C

C

C

Q[0].f

Q[0].t

Q[1].f

Q[1].t

ack oreq i

Fig. 3. A 2-bit wide weakly indicating
asynchronous latch.

In both cases, weakly or strongly indicating, n pairs of Muller c-elements

store a n-bit token
∗
x and a regular 2-input NOR gate computes the validity

signal for each pair � or a single pair for the weakly indicating version � to
obtain the correspondent acknowledgement signal state.

The handshake logic contains two signals: a request input, denoted req_i,
and an acknowledgement output, identi�ed as ack_o. In fact, the acknowledge-
ment signal indicates when the latch stores a valid (ack_o = 0) or a null
(ack_o = 1) token. The request signal paces the data �ow and is connected
to one of the Muller c-element inputs. Thus, req_i = 0 requests a null token
(i.e., the pre-charge), while req_i = 1 means that the combinatorial block fol-
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lowing the latch is ready to evaluate a new valid token. Figure 4 shows the
functioning of the handshake logic.

pre-charge evaluate pre-charge

req i

ack o

Fig. 4. Self-timed handshake in a pre-charge / evaluate logic.

In our designs, we favor the weakly indicating version based on three aspects.

1. Speed : since a single bit triggers the acknowledgement signal, the handshake
logic depth is lower.

2. Area: a single 2-input NOR gate is used to compute the acknowledgement
signal, reducing the total silicon area.

3. Security : a single bit triggers the acknowledgement, instead of the whole
word, mitigating data dependent evaluation time leakages.

The latch is �self-timed� due to its handshake logic, that is managed by the
data itself, excluding the need of a clock signal to pace the token �ow. In this
context, the data streams like a wave, with the intermediate states oscillating
between null and valid tokens, con�guring what is known as pre-charge logic [25].

To illustrate the operation of a self-timed circuit, consider the following two-
stage pipeline, Figure 5, in which C denotes a combinatorial circuit. For ease of
visualization, F represents a random valid token and ∅ denotes the null token.
There are two latches (A) and (B) in this example, whose initial states are,
respectively, ∅ and F. The req_i of the (A) is connected to the ack_o of (B).
This wire is identi�ed as ack_s.

Considering that CA is pre-charged, the valid token is processed once it arrives
at the pipeline input. The latch (A) keeps its logic state since its ack_s = 0.
When req_i switches to 0, (B) absorbs the ∅ from (A) and sets ack_s = 1; The
pre-charge phase of CB is complete, which is signalized by (B) setting ack_s = 1.
In consequence, (A) absorbs the valid token CA(F).

F CA ∅

(A)

CB F

(B)

F

req i = 11 = ack o
ack s = 0

Fig. 5. Initial state.

F CA F

(A)

CB ∅

(B)

∅

req i = 00 = ack o
ack s = 1

Fig. 6. req_i switches to 0.
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The external circuit issues a null token, pre-charging the combinatorial circuit
CA; the latches (A) and (B) stand by, since the request input remains constant
at req_i = 0. Next, the req_i switches to 1, triggering the absorption of the
output valid token CB(CA(F)), completing one self-timed processing cycle. This
absorption sets the ack_s = 0.

∅ CA F

(A)

CB ∅

(B)

∅

req i = 00 = ack o
ack s = 1

Fig. 7. The pre-charge of CA.

∅ CA ∅

(A)

CB F

(B)

F

req i = 11 = ack o
ack s = 0

Fig. 8. req_i switches to 1.

Although being a generic example, we aim at obtaining the same behavior
for the AES S-box. Thus, in the following sections, we show how this can be
implemented and discuss the implementation results for this solution.

3 Self-timed masking implementation

This section presents the design of a self-timed AES S-box based on the simple

variant of the domain-oriented masking (DOM) proposed by Gross et al. in [13].
We start from a known implementation whose security performance has been
already assured in the original work. Thus, we can study the resulting overheads
when enabling self-timed features and evaluate �rst and higher-order security
performance against side-channel analysis.

The dth order DOM gadget has (d + 1)2 registers, which will be replaced
by dual-rail latches with the purpose of enabling the aforementioned self-timed
features. To illustrate, consider the resulting 1st order DOM gadget shown in
Figure 9, in which all logic gate symbols represent their dual-rail variant.

(a0.t, a0.f)

(b0.t, b0.f)

(b1.t, b1.f)

(a1.t, a1.f)

(r.t, r.f)

L00

L01

L10

L11

2

(z0.t, z0.f)

(z1.t, z1.f)

ack o
req i

acknowledge

Fig. 9. The 1st order self-timed DOM gadget.
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The request input is common to all latches and the Eq. 7 shows the complete
detection logic for the general case, with the symbol ◦ denoting the Muller c-
element operation. In this manner, the acknowledgement signal indicates the
token state stored in the current latch.

ack_o = ¬((x0.f ∨ x0.t) ◦ (x1.f ∨ x1.t) ◦ · · · ◦ (xd.f ∨ xd.t)) (7)

Hence, for any protection order, only the �rst output share is used to compute
the acknowledgement signal. By limiting the number of shares used to compute
the validity signal, we aim at avoiding data dependent time of evaluation. More-
over, note that the more validity bits we use, the later the acknowledgement
signal will be obtained, reducing the handshake speed.

Our S-box implementation, shown in the Figure 10, is based on the Can-
right's design [6]. Basically, we implemented the simple variant shown in [13]
using self-timed latches instead of registers. Each multiplier outputs a single ac-
knowledgement signal and Muller c-elements are used to link the handshake of
the two last multiplication stages. Indeed, the Muller c-elements are also em-
ployed in our design to join di�erent acknowledgement signals.

L L L L

L

L

L

L

req iack o

c c

A Map L

ν ⊗ γ2

GF (24)
Multip.

N ⊗ Γ2

GF (22)
Multip.

( )−1

GF (22)
Multip.

GF (22)
Multip.

GF (24)
Multip.

GF (24)
Multip.

Map L S

Legend

8-bit sig.

4-bit sig.

2-bit sig.

ack\req

Fig. 10. Self-timed AES S-box based on the Canright's design.

We opt for the Canright's AES S-box design to evaluate our solution. How-
ever, we highlight that replacing register by self-timed latches is a generic solu-
tion, that can be applied in di�erent implementations.

Our AES128 architecture is locally asynchronous and globally synchronous
(LAGS), as we are interested in employing asynchronous techniques to obtain
a single-cycle S-box. Nevertheless, a fully unrolled design can be obtained using
self-timed latches.

Moreover, as the asynchronous pipeline can process several valid tokens, our
AES architecture has a 32-bit single-rail data path with a single S-box. Thus,
four substitution bytes are computed per clock cycle. In this context, a positive
clock edge triggers the domino logic, allowing us to synchronize the computation
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of the correct tokens. If the clock period is adequate, the four SubBytes are ready
before the next positive edge using only one S-box.

S-Box S2AA2S

8

ack o

req i

State

Array
MC

rcon

Key

Array
REG

REG

cipher keyplain text

32

cipher text

0x00000000

M
U
X
A

M
U
X
B

M
U
X
C

MUXD

K0o

K3o

r
o
u
n
d
k
e
y

Fig. 11. The LAGS AES128 architecture with a 32-bit data path.

The interface between the synchronous and asynchronous worlds are managed
by two modules: the synchronous to asynchronous (S2A) and the asynchronous
to synchronous (A2S) blocks shown in the Figure 11.

The S2A block converts the 32-bit single-rail data into four 8-bit dual-rail
tokens. This block issues the tokens to the S-box input with the help of a mul-
tiplexer. The S2A is also able to identify whenever the circuit requests a pre-
charge token. In other words, the acknowledgement output signal of the S-box
block indicates when a token has been absorbed, triggering the pre-charge or the
evaluation phase, depending on the acknowledgement signal state.

In parallel, the A2S module manages the S-box output � converting the
valid token back to single-rail logic � and its request input signal. We count
the number of occurrences of the positive acknowledgement edge in order to
track the desired token progression in the pipeline. This block contains a 32-bit
wide self-timed latch to store each output token. However, this latch has four
acknowledgement signals, one for each output token, in order to identify the
validity of each computation. The request signals are demultiplexed to obtain a
single request output. At the end of the S-box computation, the four substitution
bytes are available at the S-box output and the A2S module waits for the next
positive edge of the clock signal to trigger the next computation. Since the A2S
module stands by until the next positive edge of the clock signal, the request
signal remains constant as well as the internal states of the S-box.

Di�erent from previous low-latency AES128 implementations, such as [28,
23], we compute an AES128 round in �ve cycles. This is a choice of design. As
we will show in the implementation results, this design allows us to obtain a
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relatively small AES architecture at the cost of higher encryption latency. Thus,
to compute the AES128 encryption we need 10 × 5 + 4 = 54 clock cycles. Our
AES architecture is based on the one by Moradi et al. [20], which relies on state
and key arrays built upon shift registers.

Table 2 summarizes the control used during one encryption round of the AES,
with SBo, MCo and MUXCo denoting the S-box, mix columns and MUX C outputs,
respectively. Also, the K0o and K3o represent the output and input columns of
the key array. The rotated K3o, for example, is used as the S-box input for the
key scheduling. One clock cycle is used to perform the shift rows in the state
array. The combinatorial mix columns operation is performed in the �rst four
cycles of each encryption round.

Table 2. AES control during one encryption round.

Cycle Round Key S-box Input State Array Key Array

0 K0o ⊕ SBo ⊕ rcon MCo ⊕ MUXCo shift rows round key

1 K0o ⊕ K3o MCo ⊕ MUXCo SBo round key

2 K0o ⊕ K3o MCo ⊕ MUXCo SBo round key

3 K0o ⊕ K3o MCo ⊕ MUXCo SBo round key

4 �- rotate[K3o] SBo stand by

Since we compute four S-boxes within one clock cycle, the system requires
144(d + d2) refresh bits per clock cycle to protect the AES encryption, with d
the masking protection order.

4 Implementation results

We use Synopsys Design Compiler in order to synthesize our design using the
CMOS 40-nm standard cell library with a target frequency of 100 MHz. The area
results are normalized in terms of gate equivalents (GE) with a two-input NAND
gate from the selected library as reference. No compile_ultra scripts were used
in this work. We refer to Table 3, which reports the performance �gures of our
self-timed S-box implementations compared to the state-of-the-art.

Among the low-latency S-boxes, Sasdrich et al. [28] present the smallest �rst-
order design. Nevertheless, our solution can be considered competitive in terms
of gate counting and allows arbitrary protection order. Compared to the design
proposed by Gross et al. [12], the area and randomness overheads of our solution
show a better result, thanks to the presence of the compression step after the
synchronization layers.

Nagpal et al. [23] propose two AES S-box designs: the Canright's [6] AES
S-box based on composite �elds and the Boyar and Peralta's [5] bit-slicing ap-
proach. Comparing the composite �eld implementations, our self-timed masking
outperforms the area requirements of the solution proposed by Nagpal et al.,
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Table 3. Performance �gures of di�erent masked S-box implementations.

Design Masking Area Refresh Latency

Order [kGE] [bits] [cycles]

Gross et al. [13] 1st 2.6 18 8
Arribas et al. [1] 1st 25.8 0 1
Gross et al. [12] 1st 60.7 2048 1
Sasdrich et al. [28] 1st 3.5 36 1
Nagpal et al. [23] {Canright's design} 1st 7.6 18 1
Nagpal et al. [23] {Boyar and Peralta's design} 1st 4.0 34 1
this work 1st 6.1 36 1

Gross et al. [12] 2nd 57.1 4446 1
Nagpal et al. [23] {Canright's design} 2nd 14.8 51 1
Nagpal et al. [23] {Boyar and Peralta's design} 2nd 9.3 102 1
this work 2nd 11.4 108 1

which is not the case when comparing our implementation to to their bit-slice
AES S-box. However, the DOM gadget applied to the [5] multiplication may
produce a �awed masking due to share's collision leakages [12].

Since we built our designs upon DOM gadgets, one S-box computation re-
quires 36(d+d2) fresh randomness per clock cycle. However, to securely compute
the AES encryption, our AES design requires 144(d+d2) refresh bits, since four
SubBytes are computed within one clock cycle with a single S-box. However,
despite being able to compute four SubBytes in a single-cycle, our design has
shown to be slow compared to other solutions. Indeed, the throughput of our
�rst-order S-box is approximately 5.3MB/s. Hence, our self-timed masking o�ers
a trade-o� between latency and throughput to designers. Although the latency
is reduced, the clocked version of the same S-box implementation would per-
form better in terms of operating frequency, since the synchronous circuit has a
smaller critical path.

One reason for this lack of performance is the number of S-box stages in our
design. In fact, the simple variant of the DOM AES S-box has eight stages, as
shown in the Figure 10. Since the handshake signal needs to travel from the
request input to the acknowledgement output to shift a token from a latch N to
a latch N + 1, the higher is the number of stages, the slower is the token �ow.
Moreover, the latches have to be pre-charged after evaluating a valid token,
which also compromises the speed. Based on this aspect, our solution may be
more suitable for S-box designs with less combinatorial stages.

Thanks to our choice of design, our AES encryption can be computed in 54
clock cycles and the gate count results are signi�cantly lower, compared to other
low-latency solutions, as shown in Table 4. In this manner, low-latency masked S-
boxes built within our 32-bit AES architecture would allow the hardware designer
to obtain a smaller silicon area at the cost of increasing the number of clock cycles
needed to perform an AES encryption.
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Table 4. Performance �gures of di�erent low-latency masked AES implementations.

Design Masking Area Refresh Latency Area x Latency

Order [kGE] [bits] [cycles] [kGE · cycles]
Sasdrich et al. [28] 1st 157.5 976 11 1,732.5
Nagpal et al. [23] 1st 104.9 680 11 1,153.9
this work 1st 14.2 144 54 766.8

Nagpal et al. [23] 2nd 203.9 2040 11 2,242.9
this work 2nd 23.4 432 54 1,263.6

5 Side-Channel Analysis

To verify the e�ectiveness of a countermeasure, it is common to simulate the
power consumption of a device under attack. Moreover, implementing self-timed
circuits on an FPGA is not straightforward, since the Muller c-elements and
the handshake logic contains combinatorial loops. For these reasons, we use
simulated traces in order to evaluate the side-channel vulnerability of our design.

To obtain a realistic acquisition, our simulations take into account the stan-
dard cell timing behavior so that the occurrence of glitches is possible. The
logic simulation outputs value change dump (VCD) �les which can be parsed
to model the power consumption by processing the toggling activity of all wires
in the device under test (DUT). Thus, we model the system's power consump-
tion in a noiseless manner with a sampling frequency of 1 GHz. We refer to
Figure 12, which shows the block diagram illustrating the process to obtain the
power consumption traces used in this work.

Noiseless
Simulation

HDL

netlist

TXT

vectors

SDF

timing

VCD

toggling

VCD Parsing PWR

traces

Fig. 12. Modeling power traces from VCD �les generated after timing simulations.

We apply the �xed vs random t-test methodology3 proposed by Goodwill et
al. [10]. It uses the Welch's t-test to determine whether the di�erence of two
dataset means provides su�cient evidence to reject the null hypothesis.

3 We use SCALib for side-channel analysis: github.com/simple-crypto/scalib
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5.1 AES S-box analysis

We start with a side-channel evaluation of our AES S-box. Figures 13 and 14
show the �rst and second-order univariate t-test results using one million simu-
lated traces for the �rst-order implementation of our self-timed AES S-box. As
expected, no exploitable side-channel leakages were identi�ed in the �rst-order
analysis. But second-order leakages were spotted for our �rst-order design.
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Fig. 13. 1st order TVLA results for the 1st

order masked AES S-box based on one mil-
lion simulated traces.
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Fig. 14. 2nd order TVLA results for the
1st order masked AES S-box based on one
million simulated traces.

Figures 15 and 16 show the second and third-order univariate t-test results
using one million simulated traces for the second order implementation of our
self-timed AES S-box.
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Fig. 15. 2nd order TVLA results for the
2nd order masked AES S-box based on one
million simulated traces.
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Fig. 16. 3rd order TVLA results for the
2nd order masked AES S-box based on one
million simulated traces.

Again, the results con�rm the robustness of our designs against side-channel
analysis, even for the second-order implementation. These results are in adequacy
with the DOM [13]. Thus, replacing registers by Muller c-element latches does
not introduce weaknesses in the higher-order design.
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5.2 Full design analysis

We evaluate the whole AES encryption in the same manner. Figures 17 and 18
show the �rst and second-order univariate t-test results using one hundred thou-
sand simulated traces for the �rst-order implementation of our AES. Similar to
the S-box, no �rst-order leakages were detected for the �rst-order design.
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Fig. 17. 1st order TVLA results for the
1st order masked AES encryption based on
one hundred thousand simulated traces.
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Fig. 18. 2nd order TVLA results for the
1st order masked AES encryption based on
one hundred thousand simulated traces.

Figures 19 and 20 show the second and third-order univariate t-test results us-
ing one hundred thousand simulated traces for the second-order implementation
of our self-timed AES. Once again, the side-channel evaluation was performed
on whole the encryption. As expected, the second-order evaluation shows no
leakage, but third-order univariate analysis shows that some points cross the
threshold line.
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Fig. 19. 2nd order TVLA results for the
2nd order masked AES encryption based
on one million simulated traces.
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Fig. 20. 3rd order TVLA results for the
2nd order masked AES encryption based
on one million simulated traces.

These results show that if time leakages are present in our design, they are
di�cult to exploit and to detect even in high resolution and low noise environ-
ment.
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5.3 Bivariate analysis

Figure 21 shows the bivariate analysis for the second-order AES S-box for one
million traces, whereas Figure 22 shows the t-test results for the second-order
AES encryption using one hundred thousand traces. We stress that our side-
channel evaluations were made in a noiseless high-resolution setting. This is due
to measurement methodology used in this work, resulting in power consumption
traces modeled from post-synthesis simulation taking into account the gate-level
delays.

In both analysis, the upper triangle shows the results when random mask
refresh is disabled, while the lower triangle illustrates the side-channel analysis
when fresh randomness is employed. The result obtained from the unprotected
setting uses only 10% of the amount of traces used in the protected scenario:
one hundred thousand traces for the S-box and ten thousand traces for the AES
encryption.
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Fig. 21. Bivariate analysis of the 2nd or-
der self-timed AES S-box implementation.
The lower triangle shows the 2nd order t-
test using one million traces with mask re-
fresh enabled. The upper triangle shows
the 2nd order t-test using one hundred
thousand traces with mask refresh dis-
abled.
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Fig. 22. Bivariate analysis of the 2nd or-
der self-timed AES encryption implemen-
tation. The lower triangle shows the 2nd

order t-test using one hundred thousand
traces with mask refresh enabled. The up-
per triangle shows the 2nd order t-test us-
ing ten thousand traces with mask refresh
disabled.

The blue and red dots shown in the Figures 21 and 22 represent sample
points in which the multivariate t-statistics exceed the ±4.5 threshold. For ease
of visualization, only the �rst encryption round is shown in the AES analysis. As
expected when the random number generator is shut o�, second-order leakages
are detected in our design, con�rming the need of random refresh in DOM. It
also con�rms that our register replacement approach do not bring any weakness
at higher-order in bivariate setting.
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6 Conclusion

As previously stated, synchronizing the intermediate shares at the boundaries
of combinatorial blocks is of high importance to obtain a secure masking imple-
mentation. Thus, this work presented a generic solution, that may be applied to
di�erent masked S-boxes, permitting the designer to obtain single-cycle imple-
mentations while assuring secure masking properties. Indeed, the main asset of
our work is the reduction of the S-box latency to a single clock cycle, a feature
achieved when replacing the register layers with self-timed latches. Nevertheless,
the dual-rail logic adds a signi�cant gate-count overhead to the �nal implemen-
tation, limiting its application in low area scenarios.

We observe that our solution has a low throughput compared to other low-
latency solutions. This is due to the number of S-box stages in the pipeline,
slowing the handshake logic propagation. For example, the throughput could be
improved by reducing the number of S-box stages, enhancing the acknowledge-
ment logic depth by reducing the number of intermediate handshakes.

Although being resistant against glitches, our DOM-based design uses the
pre-charge / evaluate logic with monotonic cells, eliminating this hazard. Further
research can be done to relax the security properties of the masked gadget when
glitches are eliminated in order to reduce the overall implementation costs.

In order to evaluate our designs, we describe the implementation of a self-
timed AES S-box and provide leakage assessment results based on noiseless side-
channel analysis. One of the motivations behind a noiseless leakage assessment is
to observe potential timing leakages due to the self-timed behavior of our S-box.

Furthermore, we present a 32-bit data path AES128 architecture to obtain
a smaller silicon area design at the cost of computing one encryption round of
the AES in �ve clock cycles. We highlight that our �rst-order AES encryption
requires 54 clock cycles with a total area of 14 kGE approximately.

Finally, despite the area and throughput overheads, replacing the register
by self-timed latches does not bring any weakness to the DOM implementation,
even in second-order multivariate leakage analysis.
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